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Using the thermodynamic Bethe ansatz equations we study the quantum phase diagram, thermodynamics, and
criticality of one-dimensional (1D) spin-1 bosons with strongly repulsive density-density and antiferromagnetic
spin-exchange interactions. We analytically derive a high-precision equation of state from which the Tomonaga-
Luttinger-liquid physics and quantum critical behavior of the system are computed. We obtain explicit forms
for the scaling functions near the critical points yielding the dynamical exponent z = 2 and correlation length
exponent ν = 1/2 for the quantum phase transitions driven by either the chemical potential or the magnetic field.
Consequently, we further demonstrate that quantum criticality of the system can be mapped out from the finite
temperature density and magnetization profiles of the 1D trapped gas. Our results provide the physical origin of
quantum criticality in a 1D many-body system beyond the Tomonaga-Luttinger-liquid description.
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I. INTRODUCTION

The study of spinor Bose gases is an active area of research
in the field of cold atoms [1,2]. In an optical trap, the laser-
atom interaction is determined by the induced electric dipole
moment, thus the atoms are confined independently of their
spin orientations. This has provided exciting opportunities
of simulating quantum dynamics of spinor Bose-Einstein
condensates in which the “vector” property of spinor atoms can
be preserved. Several experimental groups have successfully
demonstrated spinor BECs of 23Na [3,4] and 87Rb [5–7]
atoms in optical traps. In particular, the exquisite tunability
with ultracold atoms confined to low dimensions has pro-
vided unprecedented opportunities for testing the theory of
one-dimensional (1D) exactly solvable many-body systems
[8–17]. These experimental developments have stimulated
an extensive study of related exactly solvable models with
δ-function interactions, see recent reviews [18,19].

Quantum spinor gases with multispin states exhibit richer
quantum effects than their single-component counterparts.
Spinor Bose gases with spin-independent short-range inter-
actions have a ferromagnetic ground state, i.e., the ground
state is always fully polarized [20,21]. In contrast to the
two-component Fermi gases [22], the two-component spinor
Bose gas with spin-independent s-wave scattering [23–25]
has a ferromagnetic ground state as long as the interaction is
fully spin independent. However, 1D spinor Bose gases with
short-range density-density and spin-exchange interactions
[26,27] can display a different ground state, i.e., either a
ferromagnetic or an antiferromagnetic ground state solely
depending on the spin-exchange interaction. In this context,
the spin-1 spinor Bose gas with a short-range δ-function
interaction and antiferromagnetic spin-spin interaction is
particularly interesting due to the existence of various phases
of quantum liquids associated with the Bethe ansatz (BA)
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solutions [26,28–30]. At zero temperature, this model exhibits
three phases in the chemical potential–magnetic field plane.
These are (i) a spin-singlet phase of pairs of bosons with
hyperfine states |F = 1,mF = ±1〉 or two |F = 1,mF = 0〉
bosons, (ii) a ferromagnetic phase of fully polarized atoms in
the hyperfine state |F = 1,mF = 1〉, and (iii) a mixed phase
of spin-singlet pairs and unpaired single atoms, see Fig. 1.

Spinor Bose gases exhibit various phases of strongly
correlated quantum liquids and are thus particularly valuable
to investigating quantum magnetism and criticality. Near a
quantum critical point, the many-body system is expected
to show universal scaling behavior in the thermodynamic
quantities due to the collective nature of many-body effects.
Thus a universal and scale-invariant description of the system
is expected through the power-law scaling of thermodynamic
properties [31,32]. Most recently, quantum criticality and uni-
versal scaling behavior have been experimentally investigated
in low-dimensional cold atomic matter [33,34]. These ad-
vances build on theoretical schemes for mapping out quantum
criticality in cold-atom systems [35–37]. In this framework,
exactly solvable models of cold atoms, exhibiting quantum
phase transitions, provide a rigorous way to treat quantum
criticality in archetypical quantum many-body systems, such
as the Gaudin-Yang Fermi gas [38], the Lieb-Liniger Bose
gas [39], and a mixture of bosons and fermions [40].

Despite much work on the 1D spin-1 bosons with
strongly repulsive density-density and antiferromagnetic
spin-exchange interactions [26,28,29], there has been no
study of the quantum criticality of the model by using the
exact solution. Contrary to the impression one might have,
exact solvability does not guarantee that physical quantities
of interest can be actually calculated by the BA solutions.
The thermodynamic Bethe ansatz (TBA) equations for this
model [29] involve an infinite number of coupled nonlinear
integral equations that impose a number of challenges to
accessing the physics of the model.

In the present paper, building on the method proposed in
the study of quantum criticality of the Gaudin-Yang Fermi
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FIG. 1. (Color online) Phase diagram in the μ-H plane showing
the spin-singlet phase S of paired bosons, ferromagnetic phase F

of spin-aligned bosons, and a mixed phase M of pairs and unpaired
bosons. V stands for the vacuum. The S-M and F-M boundaries are
determined by the critical fields in Eqs. (8) and (10), respectively.
The V-S and V-F boundaries are given in Eq. (6). The dashed-dotted
lines are the extrapolation of the phase boundaries of Eqs. (11)
and (12) in the strong coupling regime.

gas [38] and the Lieb-Liniger Bose gas [39], we analytically
study the quantum phase diagram, universal thermodynamics,
and criticality of spin-1 bosons with strongly repulsive density-
density and antiferromagnetic spin-exchange interactions. We
derive a high-precision equation of state of the system in
experimental accessible conditions, i.e., in the strong coupling
regime and low temperatures. We also analytically derive the
Tomonaga-Luttinger-liquid (TLL) thermodynamics, quantum
critical exponents, and universal scaling functions near the
critical points associated with quantum phase transitions
driven by the chemical potential and magnetic field. These
scaling forms for the thermodynamic properties across the
phase boundaries illustrate the physical origin of quantum
criticality in this system, where the singular part of the
thermodynamic properties involves a sudden change of density
of state for either pairs or unpaired single atoms.

The paper is organized as follows. In Sec. II, we present
the model and its corresponding TBA equations. In Sec. III,
we analytically determine the phase diagram of the model at
zero temperature. In Sec. IV, we derive the equation of state
and universal TLL thermodynamics in the physical regime,
i.e., for strong coupling and low temperatures. In Sec. V, we
investigate quantum critical behavior driven by the chemical
potential and magnetic field. The scaling functions near the
critical points are obtained analytically. Section VI is the
conclusion.

II. MODEL

We consider N particles of mass m confined in 1D to a
length L with δ-interacting type density-density and spin-
exchange interactions between two atoms. The Hamiltonian
is given by [1,26]

H = −
N∑

i=1

∂2

∂x2
i

+
∑
i<j

[c0 + c2 Si · Sj ]δ(xi − xj ) + Ez, (1)

where Si is the spin-1 operator with a z component (s = 1,0,

− 1). The interaction parameters are c0 = (g0 + 2g2)/3 and
c2 = (g2 − g0)/3, where gS = 4πh̄2aS/m. Here m is the
particle mass and aS represents the s-wave scattering length
in the total spin S = 0,2 channels. Ez = −HSz stands for the
Zeeman energy, where H is the external field and Sz the total
spin in the z component. In the above equation, we have set
h̄ = 2m = 1.

Using the BA hypothesis, Cao et al. [26] solved the model
(1) with the antiferromagnetic spin-exchange interaction
for c = c0 = c2 > 0. The energy eigenspectrum is given in
terms of the quasimomenta {kj } of the particles through
E = ∑N

j=1 k2
j , obeying the following set of coupled BA

equations [26]

exp(ikjL) =
N∏

�=1

kj − k� + 4c′i
kj − k� − 4c′i

M∏
α=1

kj − �α − 2c′i
kj − �α + 2c′i

,

(2)
N∏

�=1

�α − k� + 2c′i
�α − k� − 2c′i

= −
M∏

β=1

�α − �β + 2c′i
�α − �β − 2c′i

.

Here c′ = c/4, j = 1, . . . ,N , α = 1 . . . ,M , and {�α} are
the rapidities for the internal spin degrees of freedom. The
quantum number M is a conserved quantity obeying the
relation M = N − Sz. In this model, the antiferromagnetic
interaction leads to an effective attraction in the spin-singlet
channel so that the singlet bosonic pairs comprise a
spin-singlet ground state. In the thermodynamic limit
N,L → ∞, the sets of solutions {kj } and {�α} of the BA
equations (2) take a certain form, where the kj ’s and �α’s can
form complex pairs kj = λj ± ic′ and �j = λj ± ic′, where
λj is real. Notice that each pair of kj ’s share the same real
part as a corresponding pair of �j ’s. The bound states are
associated with a pair of |F = 1,mF = ±1〉 bosons or two
|F = 1,mF = 0〉 bosons. In addition to that, we also have real
kj ’s and � strings of the form �

n,j
α = �n

α + i(n + 1 − 2j )c′,
j = 1, . . . ,n describing spin-wave bound states.

At finite temperatures, the physical states become degener-
ate. The equilibrium state can be obtained by the condition of
minimizing the Gibbs free energy G = E + Ez − μN − T S,
where μ is the chemical potential and S the entropy, see
Yang and Yang’s grand canonical description [41] of the BA
equations for the integrable Bose gas. The Zeeman energy
EZ = −HSz and entropy S are given in terms of the densities
of charge bound states and spin strings described above which
are subject to the BA equations (2). Minimizing the Gibbs free
energy leads to a set of coupled nonlinear integral equations,
i.e., the TBA equations (see [29] for details)

ε1(k) = k2 − μ − H − T a4 ∗ ln
(
1 + e− ε1(k)

T

)

+ T [a1 − a5] ∗ ln
(
1 + e− ε2(k)

T

)

− T

∞∑
n=1

[an−1 + an+1] ∗ ln
(
1 + e− φn (k)

T

)
,

ε2(k) = 2(k2 − c′2 − μ) + T [a1 − a5] ∗ ln
(
1 + e− ε1(k)

T

)
+ T [a2 − a4 − a6] ∗ ln

(
1 + e− ε2(k)

T

)
,
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φn(k) = n + T [an−1 + an+1] ∗ ln
(
1 + e− ε1(k)

T

)

+ T

∞∑
n=1

Tmn ∗ ln
(
1 + e− φn (k)

T

)
. (3)

Here n = 1,2, . . . ,∞ and the symbol ∗ denotes the con-
volution (f ∗ g(x)) = ∫ ∞

−∞ f (x − x ′)g(x ′)dx ′, the functions

an = 1
π

n|c′|
(nc′)2+x2 and Tnm are given in Ref. [29]. These TBA

equations are expressed in terms of the dressed energies ε1(k),
ε2(k), and φn(k) for unpaired states, paired states, and spin
strings, respectively. They depend on the chemical potential
μ, the external field H , and spin fluctuations which are
ferromagnetically coupled to the unpaired Fermi sea.

The pressure per unit length of the system is given by
p = p1 + p2 with

p1 = T

2π

∫ ∞

−∞
ln(1 + e−ε1(k)/T )dk,

(4)

p2 = T

π

∫ ∞

−∞
ln(1 + e−ε2(k)/T )dk,

corresponding to the pressures for unpaired bosons and spin-
singlet pairs, respectively.

III. PHASE DIAGRAM IN THE μ-H PLANE

The ground-state properties and phase diagram at zero
temperature can be determined by the dressed energy equations

ε1(k) = k2 − μ − H + a4 ∗ ε1(k) + [a5 − a1] ∗ ε2(k),

ε2(k) = 2(k2 − c′2 − μ) + [a5 − a1] ∗ ε1(k)

+ [a6 + a4 − a2] ∗ ε2(k), (5)

which are obtained from the TBA equations (3) in the limit
T → 0. The negative part of the dressed energies εa(k),
a = 1, 2 for k � Qa corresponds to occupied states, while
the positive part of εa corresponds to unoccupied states. The
integration boundaries Qa characterize the “Fermi surfaces”
defined by εa(Qa) = 0. In a canonical ensemble the bosonic
pairs form a spin-singlet ground state when the external field
is less than a lower critical field. In this phase, the low-energy
physics can be characterized by a spin-charge separation
theory of the U (1) TLL describing the charge sector and a
O(3) nonlinear sigma model describing the spin sector [28].
However, if the external field exceeds an upper critical field,
we have solely ferromagnetic single bosons with aligned
spins along the external field. For an intermediate magnetic
field, the spin-singlet pairs and spin-aligned bosons form a
two-component TLL with magnetization [29]. However, in
realistic experiments with cold atoms, 1D systems can be
realized by tightly confining the atomic cloud in two (radial)
dimensions and weakly confining it along the axial direction
in a harmonic trap. Therefore, the phase diagram in the μ-H
plane is essential for understanding quantum criticality of the
trapped gas at finite temperatures.

We may determine the phase boundaries by analyzing the
band fillings in the dressed energy equations (5). The V-F
phase boundary is established by the condition ε1(k) � 0 and
ε2(k) > 0. Then from Eq. (5) we have μc1 = −H . The V-S
phase boundary is determined by ε1(k) > 0 and ε2(k) � 0,

which results in μc2 = −εb/2, where εb = h̄2c2/(16m) is the
binding energy of the bound pair. For convenience we shall
use the dimensionless units in the study of quantum criticality
of the system, i.e., μ̃ ≡ μ/εb and h = H/εb. Thus the critical
fields for the phase boundaries V-F and V-S read

μ̃c1 = −h, μ̃c2 = − 1
2 . (6)

The F-M phase boundary is obtained by the requirement
ε1(±Q1) = 0 and ε2(k) � 0, yielding the set of equations

ε̃1(x) = 8x2 − μ̃c3 − h + 1

π

∫ Q̃1

−Q̃1

ε̃1(x ′)
1 + (x − x ′)2

dx ′,

(7)

Q̃2
1 = μ̃c3

8
+ h

8
− 1

8π

∫ Q̃1

−Q̃1

ε̃1(x ′)
1 + (Q̃1 − x ′)2

dx ′,

which give the critical field for the phase transition from a
ferromagnetic phase of spin-aligned bosons into a mixed phase
of the pairs and unpaired bosons,

μ̃c3 = −1

2
+ 2

5π

∫ Q̃1

−Q̃1

ε̃1(x)

1+16x2/25
dx− 2

π

∫ Q̃1

−Q̃1

ε̃1(x)

1+16x2
dx,

(8)

where Q̃1 = Q1/c and ε̃1(x) is given by Eq. (7).
The S-M phase boundary is determined by the conditions

ε1(k) � 0 and ε2(±Q2) = 0, from which we obtain the set of
equations,

ε̃2(x) = 2

(
8x2 − 1

2
− μ̃c4

)
+ 1

π

∫ Q̃2

−Q̃2

ε̃2(x ′)
1 + (x − x ′)2

dx ′

+ 2

3π

∫ Q̃2

−Q̃2

ε̃2(x ′)
1 + 4(x − x ′)2/9

dx ′

− 2

π

∫ Q̃2

−Q̃2

ε̃2(x ′)
1 + 4(x − x ′)2

dx ′,

(9)

Q̃2
2 = 1

16
+ μ̃c4

8
− 1

24π

∫ Q̃2

−Q̃2

ε̃2(x ′)
1 + 4(Q̃2 − x ′)2/9

dx ′

− 1

16π

∫ Q̃2

−Q̃2

ε̃2(x ′)
1 + (Q̃2 − x ′)2

dx ′

+ 1

8π

∫ Q̃2

−Q̃2

ε̃2(x ′)
1 + 4(Q̃2 − x ′)2

dx ′,

which provide the critical fields for a phase transition from the
spin-singlet phase of paired bosons into a mixed phase of pairs
and unpaired bosons,

μ̃c4 =−h + 4

5π

∫ Q̃2

−Q̃2

ε̃2(x)

1 + 16x2/25
dx − 4

π

∫ Q̃2

−Q̃2

ε̃2(x)

1 + 16x2
dx.

(10)

Here Q̃2 = Q2/c and ε̃2(x) is given by Eq. (9).
In order to investigate quantum criticality of the system in

the strong coupling regime, we need closed form expressions
for the critical fields. By Taylor expansion of Eqs. (8) and (10),
we obtain the critical field values

μ̃c3 = −1

2
+ 8

√
2

15π

(
h − 1

2

) 3
2

+ 104

75π2

(
h − 1

2

)2

, (11)
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μ̃c4 = −h + 32
√

2

15π

(
1

2
− h

) 3
2

+ 2912

225π2

(
1

2
− h

)2

, (12)

which are in good agreement with the numerical results
obtained from Eqs. (8) and (10) in the strong coupling regime.
These asymptotic results [Eqs.(11) and (12)] can also be
obtained by converting the critical fields obtained in the H -n
plane [29] into the μ-H plane, where the effective chemical
potentials μ1 = μ + H and μ2 = μ + εb/2 for unpaired and
paired bosons are presented explicitly in Ref. [29].

In the next section we will derive analytical expressions for
the equation of state and universal TLL thermodynamics in
the physical regime where t = T/εb 	 1, i.e., for the strong
coupling and low-temperature regimes.

IV. EQUATION OF STATE AND TLL THERMODYNAMICS

The thermodynamics and the high precision of the equation
of state of a system provide the key information that can be
used to map out quantum critical phenomena and to make
comparisons between theory and experiment. Recently, the
equation of state of a two-component ultracold Fermi gas
has been measured [42,43] using theoretical schemes [44].
Such experimental advances provide exciting opportunities
to test universal TLL and quantum critical phenomena in
low-dimensional many-body systems.

A. Equation of state

The lack of analytic solutions of the TBA equations limits
the ability to make physical predictions of the model at
finite temperatures. In fact, the thermodynamic properties
of the model at finite temperature are notoriously difficult
to extract due to the presence of the bosonic nature and
the spin-spin exchange interaction. Building on the method
presented in Ref. [38] and considering the physical region
(strong coupling |c| 
 1 and low temperatures), we find that
spin fluctuations are strongly suppressed by a strong field, i.e.,
H 
 T . Therefore we can analytically extract the spin-wave
bound-state contributions to the unpaired dressed energy,
see the third equation in Eqs. (3). Moreover, we notice that
the convolution terms converge rapidly once ε1,2(k) > 0 in the
TBA equations. Therefore, we are allowed to carry out a Taylor
expansion with respect to c in the kernel functions an in the
TBA equations at low temperatures. Then, integrating by parts,
we may obtain the dressed energies in terms of polylogarithm
functions up to order 1/|c|3,

ε1(k) ≈ h̄2

2m
k2 − μ − H − 2|c|p1

c2 + k2
+ 4|c|p2

c2 + 16k2

− 20|c|p2

25c2 + 16k2
− T

5
2

2
√

π |c|3( h̄2

2m

) 3
2

Li 5
2

( − e
A0

1
T

)

+ 1984T
5
2

125
√

2π |c|3( h̄2

2m

) 3
2

Li 5
2

( − e
A0

2
T

)

−Te− H
T

− K̄
4

[(
1 − 2k2

c2

)
I0

(
K̄

4

)
+ 2k2

c2
I1

(
K̄

4

)]
,

(13)

ε2(k) ≈ 2h̄2

2m
k2 − h̄2

2m

c2

8
− 2μ + 8|c|p1

c2 + 16k2

− 40|c|p1

25c2 + 16k2
+ 3968T

5
2

125
√

π |c|3( h̄2

2m

) 3
2

Li 5
2

( − e
A0

1
T

)

+ 2|c|p2

c2 + 4k2
− |c|p2

c2 + k2
− 6|c|p2

9c2 + 4k2

+ 181T
5
2

108
√

2π |c|3( h̄2

2m

) 3
2

Li 5
2

( − e
A0

2
T

)
. (14)

Here Lis(z) = ∑∞
k=1 zk/ks is the polylogarithm function. The

terms K̄ = 8p1/(T |c|) and In(z) = ∑∞
γ=0

(z/2)n+2γ

γ !(n+γ )! are ob-
tained from the so-called “string” or spin-wave contributions.

Using the above dressed energies and integrating by parts,
we may calculate the pressure (4) in a straightforward way,
with the result

p1 ≈ −
T

3
2 f 1

3
2(

4πh̄2

2m

) 1
2

[
1 − p1

|c|3
2m

h̄2 + 3968p2

125|c|3
2m

h̄2

]
, (15)

p2 ≈ −
T

3
2 f 2

3
2(

2πh̄2

2m

) 1
2

[
1 + 3968p1

125|c|3
2m

h̄2 + 181p2

108|c|3
2m

h̄2

]
, (16)

where we have denoted f i
s = Lis(−e

Ai
T ) with i = 1,2 and

A1 = μ + H + 2p1

|c| − 16p2

5|c| + Te− H
T e− K̄

4 I0

(
K̄

4

)

+ T
5
2

|c|3( h̄2

2m

) 3
2

[
1

2
√

π
f 1

5
2

− 1984

125
√

2π
f 2

5
2

]
, (17)

A2 = h̄2

2m

c2

8
+ 2μ − 32p1

5|c| − p2

3|c|

− T
5
2

|c|3( h̄2

2m

) 3
2

[
3968

125
√

π
f 1

5
2

+ 181

108
√

2π
f 2

5
2

]
. (18)

Thus an infinite number of TBA equations have been simplified
to two coupled equations, making the thermodynamics of the
model analytically accessible.

The above expressions for the pressures in Eqs. (15)
and (16) provide the precise equation of state of the system
from which universal TLL thermodynamics and scaling func-
tions near critical points can be further derived analytically.
We present a high-precision equation of state in the later
discussions of the singularities of thermodynamic properties
near the quantum critical point as the temperature tends to
zero. To evaluate physical properties we substitute Eqs. (17)
and (18) into Eqs. (15) and (16). This provides two coupled
equations for p1 and p2, which can be solved by iteration.
We discuss the quantum criticality of the system using these
pressures in the next section.

B. Universal TLL thermodynamics

In general, the free energy of a 1D many-body system at
low temperatures can be naturally attributed to low-lying ex-
citations near the Fermi points. From calculations of the finite
temperature corrections to the free energy, one can extract
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universal TLL thermodynamics. This low-energy physics can
also be obtained from conformal field theory [45]. Here we
further develop an efficient way to obtain the universal TLL
thermodynamics in the mixed phase of the pairs and unpaired
bosons from the TBA equations (3). For temperatures T 	 1
and the strong coupling regime |c| 
 1, the gapless phase
is in the region H ∼ c2 
 T . Therefore, we can ignore the
spin-wave bound-state contributions in this phase. The first
few terms coming from an asymptotic expansion in the TBA
equations (3) are given in terms of 1/|c| corrections by

ε1(k) ≈ h̄2

2m
k2 − μ − H − 2p1

|c| + 16p2

5|c| , (19)

ε2(k) ≈ 2h̄2

2m
k2 − h̄2

2m

c2

8
− 2μ + 32p1

5|c| + p2

3|c| . (20)

Higher order corrections can be calculated in a straightforward
manner [see the analysis in Eqs. (15) and (16)]. However,
they are not necessary in the present discussion. From Eq. (4)
we obtain the pressures for spin-aligned single bosons and
spin-singlet pairs

p1 =
(

h̄2

2m

)−1/2
1

π

∫ ∞

0

√
ε0

1dε0
1

1 + e(ε0
1−A0

1)/T
, (21)

p2 =
(

h̄2

2m

)−1/2 √
2

π

∫ ∞

0

√
ε0

2dε0
2

1 + e(ε0
2−A0

2)/T
, (22)

where

A0
1 ≈ μ + H + 2p1

|c| − 16p2

5|c| , (23)

A0
2 ≈ 2μ + h̄2

2m

c2

8
− 32p1

5|c| − p2

3|c| . (24)

The integrals in Eqs. (21) and (22) can be calculated
explicitly via the Sommerfeld expansion. We assume that
there are two “Fermi seas,” i.e., a Fermi sea of bound pairs
with an effective chemical potential A0

2 and a Fermi sea of
unpaired bosons with an effective chemical potential A0

1. From
Eqs. (19)–(24) and the relations n1 = ∂p

∂H
and n = n1 + 2n2 =

∂p

∂μ
, by a cumbersome iteration we can obtain closed forms for

the pressures

p1 = 2π2n3
1

3

(
1 − 6n1

|c| + 96n2

5|c|
)

+ T 2

6n1

(
1 + 2n1

|c| − 32n2

5|c|
)

, (25)

p2 = π2n3
2

3

(
1 + 48n1

5|c| + n2

|c|
)

+ T 2

3n2

(
1 − 16n1

5|c| − n2

3|c|
)

. (26)

The Helmholtz free energy per unit length is given by f =
nμ − p. After a lengthy iteration, we obtain a universal leading
temperature correction to the free energy of the form

f = f0 − πT 2

6

(
1

v1
+ 1

v2

)
, (27)

with f0 the ground state already obtained in Ref. [29]. Here

v1 = 2πn1

(
1 + 2(32n2 − 10n1)

5|c|
)

(28)

and

v2 = πn2

(
1 + 2(48n1 + 5n2)

15|c|
)

(29)

are the charge velocities for unpaired and paired bosons. The
entropy per unit length is given by s = − ∂f

∂T
where

s = πT

3

(
1

v1
+ 1

v2

)
. (30)

We observe that in this gapless phase, spin-wave bound-
state fluctuations are suppressed due to a strong external field.
The suppression of spin fluctuations leads to a universality
class of a two-component TLL in the mixed phase of pairs
and unpaired bosons, which we denote by TLLM . At low
temperatures, the spin-singlet phase persists as a single compo-
nent TLL (denoted by TLLS) below a crossover temperature.
The fully polarized single atoms can persist in a TLL phase
(denoted by TLLF ) below another crossover temperature.
However, the TLL is not appropriate for describing quantum
criticality, since it does not include proper thermal fluctuations
for the quantum critical regime. In general the TLL persists
below the crossover temperature at which the relation of the
linear temperature-dependent entropy (or specific heat) breaks
down.

In Fig. 2 we present the entropy as a function of the temper-
ature using these two different approaches: the polylogarithm
function result [Eqs. (15)–(18)] and the Sommerfeld expansion
(30). The crossover temperature t∗ determines the boundaries
between the TLL regime and the quantum critical regime; see
the contour plots of entropy in the t-μ plane for two different
values of the external field in Fig. 3. The crossover boundaries
are established by the points at which the TLL entropy (30)
breaks down, i.e., the entropy is no longer linear temperature
dependent. At finite temperatures, the system exhibits the
characteristic V-shaped behavior of quantum criticality.

FIG. 2. (Color online) Entropy vs temperature from TLL entropy
[Eq. (30)] and entropy calculated from the equation of state
[Eqs. (15)–(18)] for μ = −0.49 and μ = −0.45. The universal linear
temperature-dependent TLL entropy is broken down at the crossover
temperatures t∗ which separate the TLL phase and the quantum
critical regime, see Fig. 3.
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FIG. 3. (Color online) Contour plot of entropy S in the t-μ plane
from the equations of state (15) and (16) for two values of the external
magnetic field (a) h = 0.49 and (b) h = 0.51. The dashed lines are the
crossover temperatures determined in Fig. 2. The intersection points
between two dashed lines are the critical points in the μ-H plane,
see Fig. 1. (a) The dashed line separates the TLLS and TLLM from
the quantum critical regimes. (b) The dashed line separates the TLLF

and TLLM from the quantum critical regimes. The left-most-dashed
line in (a) and (b) separates the vacuum V from the TLLS and TLLF ,
respectively.

V. QUANTUM CRITICALITY

Quantum criticality describes the critical behavior near a
quantum phase transition, i.e., it describes collective behavior
of a large number of interacting particles at temperatures
sufficiently low, such that quantum mechanics plays a crucial
role in determining the distinguishing characteristics [31].
The quantum phase transition occurs at absolute zero tem-
perature as the parameters of the system are varied. In the
critical regime, a universal and scale-invariant description
of the system is expected through the power-law scaling
of thermodynamical properties. From the phase diagram of
spin-1 bosons, see Fig. 1, we observe that the quantum phase
transition occurs as the driving parameters μ̃ and h̃ cross the
phase boundaries at zero temperature. Although there is no
true finite temperature quantum phase transition in a 1D model,
quantum criticality of a 1D many-body system is associated

with a universal crossover T ∗ that separates the excitation
spectrum from relativistic to nonrelativistic dispersion [46,47].
In the present spin-1 model of bosons, we can interpret the
spin-singlet phase as a Tonks-Girardeau (TG) gas of hard-core
bosons with mass 2m and the spin-aligned ferromagnetic phase
as a TG gas of single atoms with mass m. The mixed phase of
two coupled TG gases is made of particles with mass m and 2m.

A. Criticality driven by a chemical potential

Quantum critical behavior is uniquely characterized by the
critical exponents depending only on the dimensionality and
the symmetry of the excitation spectrum. This is reflected by
singularities in the thermodynamic quantities, such as density
n, compressibility κ = ∂n/∂μ, and magnetization M . They
can be obtained from the derivatives of the pressure p with
respect to μ and H . In order to identify universal scaling of the
thermodynamic properties in the quantum critical regime, we
will only take into account the first few terms in the equations of
state (15) and (16). To this end, the total pressure is simplified
as

p̃ = − t
3
2

2
√

2π

(
1

2
f 1

3
2

+ 1√
2
f 2

3
2

)
, (31)

where we have defined a dimensionless pressure p̃ = p/|c|εb

with the potentials

Ã1 = μ̃ + h + 2p̃1 − 16p̃2

5
, (32)

Ã2 = 1 + 2μ̃ − 32p̃1

5
− p̃2

3
, (33)

and we have denoted the function f i
s = Lis(−e

Ai
T ).

By iterating equations (31)–(33), we obtain the dimension-
less density ñ ≡ n/|c|, where

ñ = −
√

t

2
√

2π

(
1

2
f 1

1/2�1 +
√

2f 2
1/2�2

)
, (34)

with

�1 = 1 − t1/2

2
√

2π
f 1

1/2 + t

8π

(
f 1

1/2

)2 + 8t1/2

5
√

π
f 2

1/2

+ 2t

15π

(
f 2

1/2

)2 + 12t

25π
√

2
f 1

1/2f
2
1/2,

�2 = 1 + 4t1/2

5
√

2π
f 1

1/2 − t

5π

(
f 1

1/2

)2 + t1/2

12
√

π
f 2

1/2

+ t

144π

(
f 2

1/2

)2 + 101t

75π
√

2
f 1

1/2f
2
1/2.

The total density (34) depends on the density of single atoms
and the density of paired atoms. Furthermore, using the stan-
dard thermodynamic relations, we obtain the magnetization
M̃ ≡ M/|c|,

M̃ = −
√

t

2
√

2π

{
1

2
f 1

1/2

[
1 − t1/2

2
√

2π
f 1

1/2 + t

8π

(
f 1

1/2

)2

+ 32t

25π
√

2
f 1

1/2f
2
1/2

]
+

√
2f 2

1/2

[
4t1/2

5
√

2π
f 1

1/2

− t

5π

(
f 1

1/2

)2 + t

15π
√

2
f 1

1/2f
2
1/2

]}
, (35)
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and the susceptibility χ̃ ≡ χεb/|c|,

χ̃ = − 1

2
√

2πt

{
1

2
f 1

−1/2

[
1 − 3t1/2

2
√

2π
f 1

1/2 + 3t

4π

(
f 1

1/2

)2 + 8t1/2

5
√

π
f 2

1/2 + 2t

15π

(
f 1

1/2

)2 + 36t

25π
√

2
f 1

1/2f
2
1/2

]

+ f 2
−1/2

32t

25π
√

2

(
f 1

1/2

)2
}
. (36)

By a lengthy calculation, the compressibility κ̃ ≡ κεb/|c| is given by

κ̃ = − 1

2
√

2πt

{
1

2
f 1

−1/2

[
(�1)2 − t1/2

2
√

2π
f 1

1/2

(
1 − 3t1/2

2
√

2π
f 1

1/2 + 16t1/2

25
√

π
f 2

1/2

)
+ 2t1/2

5
√

π
f 2

1/2

(
1 − 3t1/2

2
√

2π
f 1

1/2 + 197t1/2

60
√

π
f 2

1/2

)]

+ 2
√

2f 2
−1/2

[
(�2)2 + 4t1/2

5
√

2π
f 1

1/2

(
1 + 11t1/2

10
√

2π
f 1

1/2 + t1/2

4
√

π
f 2

1/2

)
+ t1/2

12
√

π
f 2

1/2

(
1 + 424t1/2

25
√

2π
f 1

1/2 + t1/2

4
√

π
f 2

1/2

) ]}
.

(37)

These thermodynamic properties pave the way to extracting
universal scaling functions in the vicinity of the critical points
μ̃c. Following the procedure discussed in Ref. [38], quantum
criticality of these thermodynamic quantities can be obtained
in the limit T → 0 and T > |μ̃ − μ̃c| across each of the phase
boundaries, with the following results:

V − F :

{
ñ 
 −

√
t

4
√

2π
Li 1

2

( − e
μ̃−μ̃c1

t

)
,

M̃ 
 −
√

t

4
√

2π
Li 1

2

( − e
μ̃−μ̃c1

t

)
,

(38)

V − S :

{
ñ 
 −

√
t

2
√

π
Li 1

2

( − e
2(μ̃−μ̃c2)

t

)
,

M̃ 
 2t

5π
√

2
Li 1

2

( − e
2(μ̃−μ̃c2)

t

) ∼ 0,
(39)

F − M :

{
ñ 
 ñ03 − λ1

√
tLi 1

2

( − e
2(μ̃−μ̃c3)

t

)
,

M̃ 
 M̃03 + λ2
√

tLi 1
2

( − e
2(μ̃−μ̃c3)

t

)
,

(40)

S − M :

{
ñ 
 ñ04 − λ3

√
tLi 1

2

( − e
μ̃−μ̃c4

t

)
,

M̃ 
 −λ4
√

tLi 1
2

( − e
μ̃−μ̃c4

t

)
.

(41)

Here M̃03 = ñ03, ñ04, λi (with i = 1, . . . ,4), a, and b are
constants, independent of μ̃ and t . They are given explicitly
by

ñ03 =
√

a

2π
√

2

(
1 +

√
a

π
√

2
+ a

2π2

)
,

ñ04 =
√

b

π

(
1 −

√
b

6π
+ b

36π2

)
,

λ1 = 1

2
√

π

(
1 − 16

√
a

5π
√

2
− 8a

25π2

)
,

(42)

λ2 = 4
√

a

5
√

2π3/2

(
1 − 3

√
a

5π
√

2

)
,

λ3 = 1

4
√

2π

(
1 − 32

√
b

5π
+ 848b

75π2

)
,

λ4 = 1

4
√

2π

(
1 − 16

√
b

5π
+ 8b

15π2

)
,

with

a =
(

h − 1

2

) (
1 + 13

√
2

15π

√
h − 1

2

)
,

b = 2

(
1

2
− h

)(
1 + 91

√
2

45π

√
1

2
− h

)
.

In the above equations ñ03 and ñ04 are the background
densities near the critical points μ3 and μ4, respectively. At
quantum criticality, the above densities can be cast into a
universal scaling form (see [31,32,36]), e.g.,

n(μ,T ) = n0 + T
d
z
+1− 1

νz G
(

μ − μc

T
1
νz

)
. (43)

Here the dimensionality d = 1 and the scaling functionG(x) =
λLi 1

2
(x) with a constant λ. Consequently the dynamical

critical exponent z = 2 and the correlation length exponent
ν = 1/2 can be read off from the universal scaling form (43).
We observe that the spin-1 Bose gas belongs to the same
universality class as spin-1/2 attractive fermions [38] due
to the hard-core nature of the two coupled Tonks-Girardeau
gases.

In Figs. 4 and 5 we plot the “scaled density”
T −( d

z
+1− 1

νz
)[n(μ,T ) − n0] versus μ̃ for different values of the

temperature near the critical points μ̃c1, μ̃c2, μ̃c3, and μ̃c4. We
observe that after an appropriate subtraction of the background
density all curves at different temperatures intersect at the
critical points, which is the hallmark of criticality. In the regime
of low polarization, i.e., P < Pc, the true phase transitions
from the vacuum into the spin-singlet paired phase and from
the pure paired phase into the mixture of spin-singlet pairs and
spin-aligned bosons occur as the chemical potential passes the
lower critical point μ̃c2 [Eq. (6)] and the upper critical point
μ̃c4 [Eq. (12)], respectively, see Fig. 4.

For large polarization, i.e., P > Pc, the phase transitions
from vacuum into the ferromagnetic spin-aligned boson phase
and from the spin-aligned boson phase into the mixture
of spin-singlet pairs and spin-aligned bosons occur as the
chemical potential varies across the lower critical point
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FIG. 4. (Color online) Scaled density vs chemical potential for
h = 0.49 at different temperatures T/εb = 0.005, 0.01, 0.015, 0.02,

and 0.025. The density curves at different temperatures intersect
at the critical points. This feature can be used to map out the
phase boundary V-S at μ̃c2 = −0.5 [Eq. (6)] in upper panel and
the phase boundary S-M at μ̃c4 ≈ −0.489 [Eq. (12)] in the lower
panel.

μ̃c1 [Eq. (6)] and the upper critical point μ̃c3 [Eq. (11)],
respectively, see Fig. 5. The universal scaling behavior and
the zero-temperature phase diagram can be identified from the
finite temperature density profiles of the trapped gas where the
local chemical potentials are replaced by the harmonic trapping
potential.

Furthermore, we mention that similar calculations of the
scaling function can be constructed for the compressibility
across all phase boundaries,

V-F: κ̃ 
 − 1

4
√

2πt
Li− 1

2

( − e
μ̃−μ̃c1

t

)
,

V-S: κ̃ 
 − 1√
πt

Li− 1
2

( − e
2(μ̃−μ̃c2)

t

)
,

(44)
F-M: κ̃ 
 κ̃03 − λ5√

t
Li− 1

2

( − e
2(μ̃−μ̃c3)

t

)
,

S-M: κ̃ 
 κ̃04 − λ6√
t
Li− 1

2

( − e
μ̃−μ̃c4

t

)
.

Here κ̃03, κ̃04 are the background compressibilities in the
vicinities of the critical points μ̃c3 [Eq. (11)] and μ̃c4

[Eq. (12)], whereas λ5 and λ6 are temperature-independent

FIG. 5. (Color online) Scaled density vs chemical potential for
h = 0.51 at different temperatures T/εb = 0.005, 0.01, 0.015, 0.02,

and 0.025. The density curves at different temperatures intersect at
the critical points. This feature can be used to map out the phase
boundary V-F at μ̃c1 = −h [Eq. (6)] in upper panel and the phase
boundary F-M at μ̃c3 ≈ −0.499 [Eq. (11)] in the lower panel.

constants

κ̃03 = 1

4π
√

2a

(
1 + 3

√
a

π
√

2
+ 3a

π2

)
, (45)

κ̃04 = 1

π
√

b

(
1 −

√
b

2π
+ b

6π2

)
, (46)

λ5 = 1√
π

(
1 − 24

√
a

5π
√

2
+ 36a

25π2

)
, (47)

λ6 = 1

4
√

2π

(
1 − 36

√
b

5π
+ 414b

25π2

)
. (48)

Again, the critical exponents z = 2 and ν = 1/2 can be read
off the universal scaling function F(x) = λLi− 1

2
(x) in the

universal form

κ(μ,T ) = κ0 + T
d
z
+1− 2

νz F
(

μ − μc

T
1
νz

)
. (49)

B. Criticality driven by a magnetic field

The quantum phase transitions driven by a magnetic field
are particularly interesting. In the phase diagram of Fig. 1, for
fixed chemical potential we can vary the external field H to
pass the phase boundaries S-M and M-F. At finite temperatures,
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FIG. 6. (Color online) Contour plot of the entropy S vs the
external field H for fixed chemical potential μ̃ = −0.495 in the T-H
plane. The dashed lines are determined by comparing the result from
the equation of state [Eqs. (15) and (16)] and the TLL entropy (30).
The crossover temperatures separate the quantum critical regimes
from the TLL phases.

the three zero-temperature quantum phases, i.e., the phase
of singlet pairs, ferromagnetic phase of spin-aligned atoms,
and the mixed phase of pairs and single atoms, become the
relativistic TLL of a bound pair (TLLS), TLL of single atoms
(TLLF ), and a two-component TLL (TLLM ) of paired and
single atoms, respectively. We obtain the critical fields by
converting the critical fields [Eqs. (12) and (11)]

hc1 = −μ̃ + 32
√

2

15π

(
μ̃ + 1

2

) 3
2

− 32

45π2

(
μ̃ + 1

2

)2

, (50)

hc2 = −μ̃ + 1

2

(
15π

4

) 2
3
(

μ̃ + 1

2

) 2
3

− 5

8

(
μ̃ + 1

2

)
. (51)

These critical fields and the crossover temperatures can
be observed in the contour plot of the entropy in the T-H
plane, see Fig. 6. The low-energy TLL physics breaks down at
the crossover temperature (dashed lines) where the dispersion
of either bound pairs or unpaired single atoms becomes
nonrelativistic. In particular, in the vicinity of the quantum
critical points hc1 and hc2, the system exhibits two different
quantum critical regimes. From Eqs. (34), (35), and (37), we
find the scaling function in the critical regime near the critical
point (50)

S-M :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ñ 
 ñ05 − λ7
√

tLi 1
2

( − e
h−hc1

t

)
,

M̃ 
 −λ8
√

tLi 1
2

( − e
h−hc1

t

)
,

κ̃ 
 κ̃05 − λ9√
t
Li− 1

2

( − e
h−hc1

t

)
,

(52)

where the constants are given by

ñ05 =
√

d

π

(
1 −

√
d

6π
+ d

36π2

)
,

κ̃05 = 1

π
√

d

(
1 −

√
d

2π
+ d

6π2

)
,

λ7 = 1

4
√

2π

(
1 − 32

√
d

5π
+ 848d

75π2

)
,

λ8 = 1

4
√

2π

(
1 − 16

√
d

5π
+ 8d

15π2

)
,

λ9 = 1

4
√

2π

(
1 − 36

√
d

5π
+ 414d

25π2

)
,

with

d = 2

(
μ̃ + 1

2

) (
1 −

√
2

9π

√
μ̃ + 1

2

)
,

e = 1

2

(
15π

4

) 2
3
(

μ̃ + 1

2

) 2
3

.

In the vicinity of the quantum critical points hc2, we obtain
the scaling forms

F-M :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ñ 
 ñ06 − λ10
√

tLi 1
2

( − e
α(h−hc2)

t

)
,

M̃ 
 M̃06 + λ11
√

tLi 1
2

( − e
α(h−hc2)

t

)
,

κ̃ 
 κ̃06 − λ12√
t
Li− 1

2

( − e
α(h−hc2)

t

)
,

(53)

where

ñ06 =
√

e

2π
√

2

(
1 +

√
e

π
√

2
+ e

2π2

)
,

κ̃06 = 1

4π
√

2e

(
1 + 3

√
e

π
√

2
+ 3e

π2

)
.

λ10 = 1

2
√

π

(
1 − 16

√
e

5π
√

2
− 8e

25π2

)
, (54)

λ11 = 4
√

e

5
√

2π3/2

(
1 − 3

√
e

5π
√

2

)
,

λ12 = 1√
π

(
1 − 24

√
e

5π
√

2
+ 36e

25π2

)
,

with

α = − 8

5π

(
15π

4

) 1
3
(

μ̃ + 1

2

) 1
3

. (55)

In this case, the background density M̃06 = ñ06 is equal
to the total density at the critical point. The density (or
magnetization) and compressibility can be recast into the
universal scaling form

M(h,T ) = n0 + T
d
z
+1− 1

νz G
(

α(h − hc)

T
1
νz

)
, (56)

κ(μ,T ) = κ0 + T
d
z
+1− 2

νz F
(

α(h − hc)

T
1
νz

)
, (57)

with the same critical exponents as those for quantum
criticality driven by the chemical potential, i.e., the dynamical
critical exponent z = 2 and the correlation length exponent
ν = 1/2.

In Fig. 7 we show the magnetization as a function of
the external field for different temperatures for a fixed
chemical potential. All curves intersect at the critical point
hc1 without background magnetization. However, these curves
intersect at the upper critical point hc2 with appropriate
subtraction of the background magnetization. We can obtain
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FIG. 7. (Color online) Magnetization vs external field for μ̃ =
−0.495. Upper panel: the intersection point of the magnetization
curves at different temperatures gives the critical external field hc1

at the boundary S-M. Lower panel: after a proper subtraction of
the background magnetization M̃06 = n(t), the intersection point of
the magnetization curves at different temperatures gives the critical
external field hc2 at the boundary F-M.

similar scaling behavior for the densities near the critical
points hc1 and hc2 like that presented in Figs. 4 and 5. It
turns out that magnetization can be used to map out the
bulk phase diagram through the 1D trapped gas at finite
temperatures.

VI. CONCLUSION

Using the TBA equations, we have studied the quantum
phase diagram, thermodynamics, and quantum critical behav-
ior of one-dimensional spin-1 bosons with strongly repulsive
density-density and antiferromagnetic spin-exchange interac-
tions. We have determined with high precision the equation
of state from which the TLL thermodynamics, universal
scaling functions, and critical exponents have been obtained.
The universality class of quantum criticality has also been
discussed.

The scaling forms of the density, compressibility, magneti-
zation, and susceptibility associated with the phase transitions
driven by the chemical potential and magnetic field were
rescaled to the universality class of quantum criticality of free
fermions with critical exponent z = 2 and correlation length
exponent ν = 1/2. It thus turns out that the quantum criticality
of the spin-1 Bose gas belongs to the same universality class as
spin-1/2 attractive fermions [38] due to the hard-core nature
of the two coupled Tonks-Girardeau gases. We have also
shown that the quantum criticality in 1D systems involves
a universal crossover from a TLL with linear dispersion to
free fermions with a quadratic dispersion near the critical
point. These scaling forms for the thermodynamic properties
across the phase boundaries illustrate the physical origin of
quantum criticality in this system, where the singular part
of the thermodynamic properties involves a sudden change
of density of state for either pairs or unpaired single atoms.
The phase diagram, the TLL thermodynamics, and critical
properties of the bulk system can be mapped out from the
density and magnetization profiles of the trapped spinor gas
at finite temperatures. Our results open the way to further
study of such universal features of 1D many-body physics in
experiments with ultracold atoms.
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