
Simulating Pedestrian Behavior

with Potential Fields

Fábio Dapper1, Edson Prestes1, Marco A.P. Idiart2, and Luciana P. Nedel1

1 Instituto de Informática, Universidade Federal do Rio Grande do Sul,
2 Instituto de F́ısica, Universidade Federal do Rio Grande do Sul,

Porto Alegre – RS – Brazil
{fdapper,prestes,nedel}@inf.ufrgs.br, idiart@if.ufrgs.br

Abstract. The main challenges of realistically simulating the displace-
ment of humanoid pedestrians are twofold: they need to behave realis-
tically and they should accomplish their tasks. Here we present a field
potential formalism, based upon boundary value problems, that allows a
group of synthetic actors to move negotiating space, avoiding collisions,
attaining goals in prescribed sequences while at same time producing
very individual paths. The individuality of each pedestrian can be set
by changing its inner field parameters. This leads to a broad range of
possible behaviors without jeopardizing its task performance. Simulate
situations as behavior in corridors, collision avoidance and competition
for a goal are presented and discussed.

1 Introduction

The use of synthetic actors able of acting as autonomous agents in applications
involving virtual environments is becoming more and more common [1]. Suitable
skills for those actors (often simulating human beings) include: a realistic appear-
ance, the ability to produce natural movements, and the aptitude to reasoning
and act in an unforeseeable way.

To simulate the behavior of human beings, it is usual to consider system archi-
tectures implemented in layers. The lowest one deals with the rotation of each
body joint. The intermediary level is responsible for encapsulating composed
movements that bring together a set of single joint motions. These movements
can represent simple tasks (e.g. stand-up, sit-down, take something, give a step)
that used together can provide a higher abstraction level, so called behaviors
(e.g. open the door, walk from one position to another one, etc). Finally, the
higher abstraction motion layer (cognitive) involves a reasoning mechanism that
makes decisions and commands actions in view of the context information (e.g.
position, orientation, and distance to target) and humanoids intentions, beliefs
and desires.

In a previous work [2] we presented a well succeeded proposal for the imple-
mentation of the cognitive level using the BDI (beliefs, desires and intentions)
architecture to simulate autonomous agents reasoning. However, good solutions
for lower level behaviors may also be investigated. Such solutions should preview



not just a handy manner to specify complex tasks based on simple ones, but also
to consider the addition of expressiveness on those tasks.

The simulation of virtual humans moving into a synthetic world involves
mainly the environment specification, the definition of the agent initial position
as well as its target position in the world (also called goal). By setting those
parameters, a path-planning algorithm can be used to find a trajectory to be
followed. However, in a real world, if we consider several persons (all in the same
initial position) looking for achieving the same target position, each individual
path followed will be different. Even if we have the same task, the strategy used
for each one to reach his/her goal will depend on his/her physical constitution,
personality, mood and reasoning.

In this paper we propose a path-planning approach based on boundary value
problems to find paths between an initial and a target position in a dynamic
environment. The paths found by our algorithm are smooth and variable, de-
pending on the individual characteristics of each agent, which can be dynamically
changed.

The paper is organized as follows. In Section 2 we presented some related
work on path-planning techniques for virtual humans. Section 3 describes our
path planner based on harmonic functions and Section 4 presents our main
contribution, involving the extensions for the basic method. In Section 5 we
deeply explain the way we implemented the method and in Section 6 we present
our results. Finally, in Section 7 we present the conclusions and point out some
future work.

2 Related Work

Motion planning methods have been largely studied by the robotics community.
As in this paper our focus is on its use for simulating human beings behaviors
while walking, we limit this Section scope for the works involving humanoids
animation.

Lengyel et al. [3] have published one of the first articles on the subject of mo-
tion planning as a computer graphics problem. Their work presented a solution
for the classical Piano Movers problem based on the use of standard graphics
hardware to rasterize obstacles and generates the configuration space. The mo-
tion path produced by the planner is minimal with respect to the Manhattan
distance metric and includes rotations and translations.

In order to generate more realistic results and allows its use in real-time
applications, several authors proposed motion planning solutions based on two
steps. In general, the first step is dedicated to define a valid path, while the
second adapts this path in order to generate a more realistic movement. Kuffner
[4] proposed a technique with the first step dedicated to the path-planning and
the second to the path-following. The 3D scenario is projected in 2D and the
humanoid treated as a disc, reducing the planning problem to a 2D problem.

Metoyer and Hodgings [5] proposed a similar technique also based on two
steps. In their method, the characters have a pre-defined path to follows and



this path is smoothed and slightly changed to avoid collisions by using force
fields.

The development of randomized path-finding algorithms, specially the PRM
(Probabilistic Roadmaps) [6] and RTT (Rapidly-exploring Random Tree) [7], al-
low the use of large and most complexes configuration spaces, generating paths
most efficiently. In this way, the challenge becomes more the generation of re-
alistic movements than finding a valid path. Choi et al. [8] proposed the use
of a captured movements library associated to the PRM to generate realistic
movements in a static environment. Despite the fact the path maps should be
generated in a pre-processing phase, the results are very realistic.

Thanks to the researches in robotics, the path-planning problem is almost
solved. However, in the computer graphics domain, to find a natural and realistic
way to move a character is as important as to find a path between two points.
The most part of the works developed since now propose methods based on two
separate phases. In the next sections we present our own proposal for generating
realistic paths based on a single phase.

3 Harmonic Functions Path Planner

Whether it is a human being, a robot or a synthetic actor the action of moving
from an initial position to a goal position in space consists of at least two stages:
a planning stage when a path is devised; and an implementation stage when the
path is followed by the moving agent. The first stage deals with a combination of
concepts like efficiency, risk avoidance, computability, etc. To the second stage
belongs the series of routines or corrections that the agent has to perform to
adapt its motion when the predefined path cannot be followed due to unpre-
dictable changes in the agent’s surrounds, or in case of robotics, due to machine
limitations.

In a seminal work in the field of robotics, Khatib [9] proposed a method
that fuses these two stages in a very elegant way. He considered that instead of
looking for a good path and trying to control the agent’s movement around it a
good planner should provide a potential field, or a force field (its gradient), that
expanded the whole region of manoeuvre, producing a continuum of alterna-
tive paths. The potential field is devised to incorporate obstacles and goals, and
should guide agent at all times indicating the best direction to follow. Its most
straightforward implementation is a simple superposition of fictitious forces: ob-
stacles forces that repel the agent to prevent collisions; and target forces that
attract the agent. Such superposition is not always successful since for some en-
vironment configuration the agent can end up trapped in local minima before
reaching the target.

Up to this date, the best way to produce a potential field that is free from
local minima is through the numerical solution of a convenient partial differential
equation with boundary conditions - a boundary value problem (BVP). The
boundary conditions are central to the method indicating which regions in the
environment are obstacles and which are targets.



The first proposal in this direction was made by Connolly and Grupen [10]
and it is called the method of the harmonic functions. In their method the
potential fields are the solutions of the Laplace’s equation - whose solutions are
called harmonic functions

∇2 p(r) =
∑

i

∂2p(r)
∂x2

i

= 0 (1)

where r is the environment coordinates. The Laplace’s equation does not present
local minima, and that is why it was chosen. They also proposed boundary
conditions such that the potential should be one in the contours of the obstacles
and zero in the region of the target. Setting up the value of the function in the
boundaries is called a Dirichlet boundary condition in the language of a BVP.

The agent uses the gradient descent of this potential to determine the path
that connects its current position to the target. As there is only a minimum
defined in target position, it exists exactly one path from any point to the po-
tential to the target. This method is formally complete, i.e., if there is a path
that connects the agent position to the target it will be found. The resulting path
is smooth and safe and it minimizes the collision probability with the obstacles.

4 Beyond Path Planner based on Harmonic Functions

Laplace’s equation is not the only partial differential equation that generates
functions without local minima. In [11], Trevisan et al. came up with a framework
for exploratory navigation based on a family of potential field functions that does
not possess local minima. The authors suggest the following equation

∇2 p(r) + εv.∇p(r) = 0 (2)

for handling sparse environments, where v is a bias vector and ε is a scalar.
The addition of the term εv∇p breaks the symmetry of vector field generated
by Laplace’s equation increasing the system performance in sparse environments
during the exploration process.

The central contribution of this paper is to use the Equation 2 for generating
different behaviors (illustrated in this work through the path followed by each
agent) for several agents in a known environment. As discussed before, if the
agent is controlled by a vector field produced by harmonic functions, it will
always tend to follow a path that minimize the collision probability with the
obstacles, i.e., in an indoor environment the agent will tend to follow a path
equidistant to the walls, as shown in Figure 1(a). This behavior is not always
adequate to simulate humanoid motion since it looks very stereotyped.

The adjustment of the vector v can produce a path close to the walls, as
shown in Figures 1(b) and (c). The vector v, also called behavior vector, can
be seen as an external force field that counteract the natural tendency of agent
moving away from the obstacles. The parameter ε can be understood as the



w
al

l

w
al

l

start position

goal position

(a) (b) (c) (d)

Fig. 1. Different paths followed by agents using Equation 2: (a) path produced by
harmonic potential, i.e., with ε = 0; (b) with ε = 0.8 and v = (1, 0); (c) with ε = 0.8
and v = (−1, 0); and using the same vector v = (1, 1) and different values to the
parameter ε (0.4, 0.8, 1.2, 1.6, 2.0, 2.4 and 7.2).

strength or influence in following the direction defined by vector v instead of the
direction produced by harmonic functions.

Figure 1(d) shows the results obtained in several experiments that use differ-
ent ε and the same vector v = (1, 1). This flexibility allows to develop different
and interesting behaviors to generate realistic humanoid motion during the nav-
igation process. In our case, we simulated several agents with different v and
ε and put them into a known environment to perform a couple of navigation
tasks.

5 Implementation

In this section, we present the global environment representation, the structure
of the agents that act on the environment, as well as the mechanisms used to
control each agent behavior.

5.1 Environment Global Map

The environment is represented by a set of homogenous meshes {mk}, where
each mesh mk is associated to a target ok and has Lx × Ly cells, denoted by
{ck

i,j}. Each cell ck
i,j corresponds to a squared region centered in environment

coordinates r = (ri, rj) and stores a particular potential value pk
i,j . These maps

are used by the harmonic path planner (see Section 3) to assist the agent to
reach a specific target.

Each mesh mk has the potential values of its cells relaxed independently using
the Equation 1. After the convergence, the map mk stores a potential field that
is used to reach the target ok. This procedure is performed before the simulation
starts and we consider that the environment is surrounded by obstacles in order
to delimit the agent navigation space.



5.2 Agent Local Map

Each agent ak has one map amk that stores the current local information about
the environment obtained by its sensors. This map is centered in the current
agent position and represents a small fraction of the global map, nearly 10% of
the total area covered by the global map.

The map amk has lkx × lky cells, denoted by {ack
i,j} and can be divided in

three regions: the update zone (u-zone); the free zone (f-zone) and the border
zone (b-zone), as shown in Figure 2(a). In a similar way, each cell corresponds
to a squared region centered in environment coordinates r = (ri, rj) and stores
a particular potential value apk

i,j.

Fig. 2. (a)Agent Local Map. The white, light gray and dark gray cells comprise the
update, free and border zones, respectively. (b,c)Agents acting in the real environment.
Each agent senses the environment, updates its local map (b) and navigates towards
the target o1 (c).

The area associated to each agent map cell is smaller than the area associated
to the global map cell. The main reason is that the agent map is used to produce
a refined motion, hence, the smaller cell size the better the quality of motion;
while the global map is used only to assist the long-term agent navigation.

5.3 Updating Local Maps using Global Maps

Each agent ak has a well determined goal ogoal(k) (the function goal maps the
agent number k into its current target number. In this description, we will con-
sider that each agent must reach only one target. The extension to multiple



targets is straightforward and will be commented in Section 5.5), a particular
vector vk, that controls its behavior, and a εk that determines the influence of
vk. The same goal, v and ε can be designated to several agents.

When the agent ak navigates the environment, it uses its sensors to perceive
the environment and to update its local map with the information about the
obstacles and other agents. The agent sensors set a view cone with aperture α.

Figure 2(b) sketches a particular instance of the agent local map. The u-zone
cells {ack

i,j}, inside the view cone, with obstacles or agents have their potential
value set to 1. Obstacles are not considered in the u-zone out of the view cone.
This procedure assures that dynamic or static obstacles behind the agent do not
interfere in its future motion.

The agent ak calculates the global descent gradient on the cell in the global
map mgoal(k) containing its current position. The gradient direction is used to
generate an intermediate goal in the border of the local map setting the potential
values to 0 of a couple of b-zone cells. While the other b-zone cells are considered
as obstacles having their potential values set to 1. In Figure 2(c), each agent
calculates the global gradient in order to project an intermediate goal in its local
map. As the agent local map is delimited by obstacles, the agent is pulled towards
the intermediate goal using the direction of its local gradient. The intermediate
goal helps the agent ak to reach its target ogoal(k) while allowing it to produce
its particular motion.

In some cases, the target ogoal(k) is inside both the view cone and the u-zone,
and consequently, the local map cells associated are set to 0. The intermediate
goal is always projected even if the target is mapped onto the u-zone otherwise
the robot can easily get trapped because the robot would be taking into con-
sideration only the local information about the environment, in a same way as
traditional potential fields [9].

The f-zone cells are always considered free of obstacles, even when there are
obstacles there. The absence of this zone may close the connexion between the
current agent cell and the intermediate goal due to the mapping of obstacles in
front of intermediate goal. When this occurs, the robot gets lost because there
is no information coming from the intermediate goal to produce a path to reach
it. The f-zone cells handle the situation permitting always that the information
about the goal is propagated to the cells associated to the agent position.

After the sensing and mapping steps, the agent updates the potential value
of its map cell using a discrete version of Equation 2,

apk
i,j =

1
4
(apk

i−1,j + apk
i+1,j + apk

i,j−1 + apk
i,j+1) +

εk

8
((apk

i+1,j − apk
i−1,j)v

k
x + (apk

i,j+1 − apk
i,j−1)v

k
y ) (3)

where vk = (vk
x, vk

y ) is the vector that controls the behavior of agent ak and
εk ∈ [−2, +2] and represents the influence of vector vk. The local potential is
partially relaxed [12] and the agent calculates the gradient descent of its position



in the local map amk by

dgradk =
(
(ack

px+1,py
− ack

px−1,py
)/2, (ack

px,py+1 − ack
px,py−1)/2

)

where px = �lkx/2� and py = �lky/2�, and it follows the direction θk calculated
by θk = arctan(dgradk

x, dgradk
y) where arctan(., .) is the inverse tangent taken

in the interval [−π, +π].

5.4 Characterizing the Agent Behavior

In the real world, even if several people have the same goal, the strategy used
for each one to reach it will depend on different factors as: physical constitution,
personality, mood, and reasoning. In Figure 1 we shown we can simulate differ-
ent behaviors by setting both the behavior vector v and ε differently for each
agent. In this first example we kept the variables constant during the animation,
however we can produce more interesting behaviors dynamically changing vector
v and ε. For instance, the vector v can be controlled by a function defined by
the user, as in Figure 3. Even with this new complex behavior, which simulates
a drunk agent, the resulting potential guarantees that the robot reaches safely
the target.

(a) (b)

Fig. 3. Paths followed by agents using different equations that control the behavior
vector v: (a) v = (1, sin(ω ∗ t)); (b) v = (1, sin(ω ∗ t) + sin(ω/2 ∗ t)), with ω = π/18
and t the current simulation step.

We can change v in a regular periodic fashion, as shown above, but it does
not need always to be the case. We can consider an agent that randomly changes
its behavior vector. Each new value of v is kept constant during an also random
time interval.

5.5 Algorithm

In this section we present the algorithm that implements the concepts shown
before and produce the humanoids simulation.

1. computes all the environment global maps (one for each possible goal ok)
2. for each agent ak, defines the behavior vector vk and εk. Each variable can

be either static or dynamic. If a variable is chosen to be dynamic then the
function that controls it must be specified.



3. for each agent ak do (asynchronously)
(a) reads its sensors in order to detect static and dynamic obstacles
(b) updates its map with local information about the obstacles and other

agents
(c) computes the global gradient descent and generates the intermediate

goal
(d) updates the potential field
(e) computes the local gradient descent and follows the gradient direction
(f) while not reaching the target ogoal(k) repeat the steps from (a) to (f),

otherwise stops moving

The first two steps are performed in a pre-process phase. In relation to the
step 3, each agent executes independent and asynchronously the actions from (a)
to (f). This algorithm considers each agent must reach only one target. However,
the agent can be in charge of reaching several targets orderly. In this case, the
step (f) must be changed to

(f) while not reaching the target ogoali(k) repeat the steps from (a) to (f), oth-
erwise if goali(k) = goallast(k) then stops moving. Else repeats the process
with the next target ogoali+1(k)

6 Results

In order to illustrate the potentialities of our path-planning approach we made
some experiments considering a realistic situation. Taking into account the sce-
nario described bellow, we have induced some agents’ behaviors to verify some
considerations made before, as: how to accomplish the same task in different
ways; or how different agents avoid collisions, for example. In another set of
tests we have ran the algorithm considering a variable number of agents with
random objectives, behaviors and velocities. Our goal with these experiments
was to verify the motion diversity. Finally, we made some considerations about
performance.

We consider a small park in a town (see Figure 4). It has five accesses, a lake
in the middle and a popcorn-cart in the south. Characters in the simulation can
simply cross the park or stop to buy a popcorn bag and continue their walking.
It is a quite familiar real scenario; the large open area makes easy and clear
the simulation of different agents behaviors that will not be constrained by an
excessive amount of obstacles; by simulating a group of agents walking in the
park it is easy to verify the collision avoidance with dynamic obstacles (here
represented as other agents).

The set up for this scenario involves the statement of six possible goals, one
for each park access and another in front of the popcorn-cart. We will need to
compute 6 environment global maps. In our tests, we used a matrix with 60x60
cells to represent global maps and a matrix with 11x11 cells for the agent local
maps.



The first situation induced by us consists in simulating the behavior of 4
agents while accomplishing the same task. The agents are initially disposed some-
where in the park access west and their task consists on go to the popcorn-cart
and after, to quit the park by the access north. Figure 4 illustrates the results
of animation. Each agent accomplishes its task individually without the inter-
vention of the others. The small square specifies the moment where the agent 3
changes its behavior vector v.

Figure 4(b) shows the same task of Figure 4(a), but in this case all the agents
are moving at the same time, therefore they compete for the targets. The paths
drawn in these two figures are slightly different and these differences are duo the
collision detection and avoidance between the agents.

Target o2

Target o1

Target o2

Target o1

(a) (b) (c)

Fig. 4. Four agents individually accomplishing the same task (a) and accomplishing
the same task concurrently (b). Agent 1: v = (−0.707,−0.707), ε = 0.8 and step = 0.6
cells per frame; agent 2: v = (0.707, 0.707), ε = 0.8 and step = 0.5 cells per frame; agent
3: initially v = (sin(ω ∗ t), 1), changing to v = (0.707, 0.707) after some time, ε = 0.8
and step = 0.35 cells per frame; agent 4: ε = 0, and step = 0.46 cells per frame.(c)
Simulation of a set of 12 agents walking around the park with random behaviors.

Figure 5 shows two frames of the animation of two agents. One agent walks
from the north to the south while the other one walks from the south to the
north. Using our algorithm we automatically avoid the collision between the
two agents, since each agent is considered as a dynamic obstacle by the other.
However, the final path definition can be more or less natural, depending on the
parameters definition. In the sequence presented on Figure 5(a), we set ε as 0.
In this way, the behavior vector v is not considered. For the animation shown in
Figure 5(b), both agents begins the animation with ε = 0.0. When the proximity
is detected, the behavior vector v of each agent is oriented orthogonally to the
collision direction, forcing the movement to its right direction. At the same time,
the ε becomes equal to 0.6.

Finally, we generated some animation sequences without searching to repro-
duce any specific behavior. In those sequences we used 12 agents, ε = 0.8 for
all agents and the components of v randomly varying between -1 and 1. The



(a) (b)

Fig. 5. Two collision avoidance animation sequences produced with different values for
the behavior vector and ε.

agents step size are also randomly defined between 0.3 and 1.0 cells per frame.
The initial and final positions for the agents are arbitrarily chosen. The agents
can begin its movement from any valid position in the environment and its goal
is one of the 6 possible target positions described before. Figure 4(c) shows a
frame of one of the animation generated by us.

7 Conclusions and Future Work

This article presents a new approach for generating pedestrian behavior using
path planning based on numerical solution of boundary value problems. We
demonstrate that the correct adjustment of behavior vector and the parameter
ε, that determines the vector influence, can produce interesting behaviors, as
illustrated in Figures 1 and 3. These behaviors can be interchanged to produce
complex motions, as shown in Figure 4, oriented to the agent personality. In
this work, we do not implement the agent personality. This step is actually in
progress and will be shown in our future submissions.

The guiding potential of Equation 2 is free of local minima what constitutes a
great advantage when compared to the traditional potential fields. Furthermore,
the method proposed is formally complete and generates smooth and safe paths
that can be directly used in mobile robots. The local information gathered by
agent sensors allows treating the dynamic obstacles, as other agents navigating
in the environment.

We handle the usual costs associated to BVP calculations by using small
local maps, instead of a large map that cover all the environment, for each
agent. This permits to have several agents acting in the environments while
keeping an acceptable running time. Even with only local information about the
environment, the intermediate goals computed from the environment maps add
global information about the agent target in order to treat conveniently local
minima and to allow the agent to reach its target.

Another drawback is that the potential gets flat far from the target position
due to numerical precision. In these regions, the gradient is very small to provide
useful information to guide the robot. In this case, the robot can easily get lost.



We have successfully overcome this problem by using intermediate goals in the
flat region.

In the future, we intend: to test different path planners to minimize the
computational cost associated to the environment global map; to develop an
architecture to be implemented into the GPU to reduce the potential time com-
putation; and to develop an efficient data structure to compact the environment
information, such as quadtree, and an efficient algorithm to access this informa-
tion in real-time.

Acknowledgments

We would like to thank FAPERGS and CNPq for financial support and Renato
Oliveira for helping with the figures.

References

1. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: ACM SIG-
GRAPH/Eurograph symposium on Computer Animation. (2005) 19–28

2. Torres, J.A., Nedel, L.P., Bordini, R.H.: Using the bdi architecture to produce
autonomous characters in virtual worlds. In: Intelligent Virtual Agents. Volume
2792 of Lecture Notes in Artificial Intelligence., Springer Verlag (2003) 197–201

3. Lengyel, J., Reichert, M., Donald, B.R., Greenberg, D.P.: Real-time robot motion
planning using rasterizing computer graphics hardware. Computer Graphics 24(4)
(1990) 327–335

4. James J. Kuffner, J.: Goal-directed navigation for animated characters using real-
time path planning and control. In: International Workshop on Modelling and Mo-
tion Capture Techniques for Virtual Environments, London, UK, Springer-Verlag
(1998) 171–186

5. Metoyer, R.A., Hodgins, J.K.: Reactive pedestrian path following from examples.
The Visual Computer 20(10) (2004) 635–649

6. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps
for path planning in high-dimensional configuration space. IEEE Transactions on
Robotics and Automation 12(4) (1996) 566–580

7. LaValle, S.: Rapidly-exploring random trees: A new tool for path planning. Tech-
nical Report 98-11, Computer Science Dept., Iowa State University (1998)

8. Choi, M.G., Lee, J., Shin, S.Y.: Planning biped locomotion using motion capture
data and probabilistic roadmaps. ACM Trans. Graph. 22(2) (2003) 182–203

9. Khatib, O.: Commande dynamique dans l’espace opérational des robots ma-
nipulaters en présence d’obstacles. PhD thesis, École Nationale Supérieure de
l’Aéronatique et de l’Espace, France (1980)

10. Connolly, C., Grupen, R.: On the applications of harmonic functions to robotics.
International Journal of Robotic Systems 10 (1993) 931–946

11. Trevisan, M., Idiart, M.A., Prestes, E., Engel, P.M.: Exploratory navigation based
on dynamic boundary value problems. accepted for publication in Journal of In-
telligent and Robotic Systems (2006)

12. Prestes, E., Engel, P.M., Trevisan, M., Idiart, M.A.: Exploration method using
harmonic functions. Robotics and Autonomous Systems 40(1) (2002) 25–42


