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ABSTRACT
GW Vir (PG 1159[035) is the prototype of the class of multiperiodic, nonradially pulsating hot white

dwarfs, and shows a strong pulsation mode at 516 s. All measurements to date of the secular variation of
the 516 s pulsation quote as best value s s~1. The original measurementP0 \ ([2.49 ^ 0.06) ] 10~11
gave two best solutions, and a s2 analysis indicated that the quoted value was preferred at the level of
0.97 probability. On other hand, the best-developed models for planetary nebula nuclei (PNNs), using
models from the asymptotic giant branch as starting points and simulating the observed mass loss,
provide positive values for any model with as PG 1159[035. This conÑict between thelog (L /L

_
) [ 3,

measurement and the theoretical models has been a challenge to stellar evolution theory.
Exploiting a much larger data set and computational techniques previously unavailable, we show

that the earlier analysis of the data grossly underestimated the true uncertainties due to interferences
between frequencies. Using new data along with the old, and more accurate statistical methods,
we calculated the secular period change of the 516 s pulsation, and obtained a positive value : P0 \
(]13.07^ 0.03)] 10~11 s s~1. We show that three additional methods yield the same solution.
This new value was the second best of the original possible solutions ; it was eliminated on the basis of
statistical arguments that we show to be invalid. It is an order of magnitude larger than the theoretical
predictions.

Additionally, from rotational splitting analysis, we were able to estimate, for the Ðrst time, a limit to
the secular variation of the rotational period s s~1, leading to a contractionP0 rot \ ([1.0 ^ 3.5)] 10~11
timescale upper limit of s~1 with 99.5% probability.o q

R
~1 o\ oR0 /R o\ 48 ] 10~11

Subject headings : stars : evolution È stars : individual (PG 1159[035) È stars : oscillations È
white dwarfs

1. INTRODUCTION

The preÈwhite dwarf star PG 1159[035 was Ðrst identi-
Ðed on the PG SurveyÈa survey for objects with ultraviolet
excess (Green 1977). Its variability was discovered by
McGraw et al. (1979), who showed that PG 1159[035 was
a multiperiodic variable star with at least two pulsation
periods simultaneously present in its light curve. Later,
other stars were identiÐed with similar photometric and
spectroscopic characteristics, deÐning the spectral class of
PG 1159 stars, and, for the variable ones, the GW Vir stars
or DOV class, in the nomenclature established by Sion et al.
(1983). The Kiel group (Werner 1995 ; Dreizler 1998) has
shown that the best-Ðtting model for PG 1159[035 has

K and log g \ 7.0.Teff \ 140,000
The presence of He II absorption lines in its spectrum

suggested a very high surface temperature, placing the star
on the upper left of the white dwarf sequence on the H-R
diagram. The high luminosity and temperature led
McGraw et al. (1979) to suggest that PG 1159[035 should
be evolving rapidly, causing the pulsation periods to change
in response to the changes in the internal structure of the
star ; they pointed out that the period change should be
large enough to be measurable within a few years.

In 1983, Winget, Hansen, & Van Horn (1983. hereafter
WHVH) published a preliminary study for the theoretical
estimates of the timescale of the period change, oP/P0 o ,
where P is the pulsation period and is its secular change.P0

Their main goal was to explore the competing e†ects of
radius and temperature change in determining the secular
frequency evolution of nonradial g-modes in white dwarf
and preÈwhite dwarf stars. Their estimates, based on crude
gravitationally contracting polytropes used as input to their
evolutionary code, indicated that the timescale for period
change should be of the order of 106 years. This timescale
implied that the period variation would be measurable in
one to three observation seasons, depending on the com-
plexity of the light curve, using the technique of the (O[C)
diagram employed by Kepler et al. (1982) to determine the
period changes of ZZ Ceti variable stars. They foresaw a
possible negative value for for PG 1159[035, taking intoP0
account the large uncertainties of the parameters used in
their calculations.

Observations obtained from 1979 to 1984 allowed the
identiÐcation of eight separate period groups. For the
strongest pulsation mode at 516 s, Winget et al. (1985) con-
Ðrmed its stability and estimated its secular change, TheP0 .
technique used to estimate was the classical (O[C)P0
diagram, which provides multiple solutions, due to possible
uncertainties of an integer number of pulsation cycles from
one observational season to the next. They analyzed nine
possible solutions, obtained two viable solutions (P0 \
[1.21] 10~11 s s~1 and s s~1). TheP0 \ ]6.61] 10~11
only available method which allowed them to choose
between the two solutions was based on s2 tests, using as
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uncertainties 10 times those derived by single frequency Ðts.
The best Ðt was obtained with P0 \ ([1.21 ^ 0.06)] 10~11
s s~1. The negative sign agreed with the theoretical esti-
mates of WHVH, but not with the more physically self-
consistent calculations of Kawaler (1986) and Kawaler,
Hansen, & Winget (1985a), which used evolutionary modes
as input.

Winget & Kepler (1988) recalculated by joining theP0
1979È1984 photometric data to runs obtained in 1985 and
1987, but now used a new deÐnition for that corrects theP0
previous one by a factor of 2. This factor of 2 comes from
the recognition that is a second derivative of the phaseP0
(see Kepler et al. 1991 for more explanations about the
deÐnition of For the 1979È1984 dataP0 ). P0 \ ([2.50
^ 0.12)] 10~11 s s~1. The new result obtained with the
(O[C) diagram technique for the 1979È1987 data was P0 \

s s~1. Using this value as an initial([2.36 ^ 0.40)] 10~11
guess, they also calculated with a nonlinear least-squaresP0
(NLS) Ðtting, and the result was P0 \ ([2.44
^ 0.06)] 10~11 s s~1. The uncertainty quoted is the one
for the NLS Ðtting, which underestimates the actual uncer-
tainty because it assumes all data are uncorrelated, and this
is not the case for multiperiodic data.

In 1989 Winget and his collaborators (Winget et al. 1991)
obtained 264.1 hours of contemporaneous observations of
PG 1159[035 with the Whole Earth Telescope (Nather et
al. 1990. Winget et al. (1991) used the data to estimate the
stellar mass and a host of other structural information
about the star, and obtain another estimate of using theP0 ,
ephemeris from the 1985 Ðtting. The value then obtained
for with the classical method of (O[C) diagram wasP0

s s~1, consistent with theP0 \ ([2.49 ^ 0.06)] 10~11
earlier results. The 1989 light curve of PG 1159[035 pro-
vided a power spectrum with high enough resolution to
identify 122 individual frequencies (or periods), with 101 of
them corresponding to speciÐc, quantized pulsation modes.
The dominant period of B516 s appears as the prograde
(m\ ]1) component of a triplet (l\ 1). The rotation
period of PG 1159[035 was found to be Prot \]1.38
^ 0.01 days. The derived mass was M \ 0.586^ 0.003 M

_
.

In ° 3 we describe the methods used to compute our new
measurements of and present the results. The comparisonP0
of these results with the new theoretical models is made in
the following section. Section 5 contains a preliminary deri-
vation of the contraction timescale of PG 1159[035 from
the rotational splitting analysis. Finally, in ° 6, we sum-
marize and discuss our results in the light of stellar evolu-
tion theory.

2. THE NEGATIVE PROBLEMP0
The measurements to date of the secular change of the

dominant 516 s period were negative. These results were in
agreement with the Ðrst theoretical estimates done by
WHVH, who used evolutionary calculations with the best
treatment available at that time for the interior, envelope,
equation of state, and opacities. However, those calcu-
lations used polytropes for starting models. This neglected
the thermal history of the star from prior evolution. They
reached the neighborhood of PG 1159[035 in the H-R
diagram by gravitational contraction and heating through a
curve with a roughly constant luminosity, at the position of
the extended horizontal branch (EHB) (Winget et al. 1991).

Kawaler et al. (1985a) and Kawaler (1986) recalculated
the timescale using initial models that were the hot cores of

evolutionary asymptotic giant branch (AGB) stars. The
envelopes were artiÐcially removed to simulate mass loss
and reproduce models of planetary nebula nuclei (PNNs).
They found that for the 516 s pulsation period was alwaysP0
positive for PNN models with This resultlog (L /L

_
) [ 3.

held for any of their models evolved from the AGB; the
results were insensitive to the total stellar mass, the surface
layer mass and its chemical composition, nuclear shell
burning, and core composition. Thus, all these models dis-
agreed with the measured value of prompting the explo-P0 ,
ration of a number of possible explanations.

Kawaler et al. (1985a) tried to solve this dilemma: they
noted that if the 516 s pulsation mode were an l\ 2 or
l\ 3 mode with m\ l, then might be dominated by theP0
spin-up associated with evolutionary contraction. The rota-
tion period had to be shorter than B3000 s to make a sign
inversion of for their post-PNN models possible. TheP0
rotation period measured by Winget et al. (1991) from the
1989 data is 1.38 days, and the 516 s is an l\ 1 mode, so
this possibility had to be discarded.

Winget et al. (1991) pointed out that the only obvious
alternatives for the negative problem was if the observedP0

value did not measure the actual cooling rate, and theP0
good agreement between the observed timescale and the
cooling theory prediction was only a coincidence. Alterna-
tively, the progenitor star of PG 1159[035 could be sub-
stantially di†erent from the postÈplanetary nebula models
of Kawaler ; perhaps it evolved along the EHB, as assumed
by the WHVH models.

Kawaler & Bradley (1994) developed evolutionary
models where the negative appears because of ““ modeP0
trapping.ÏÏ As established by Kawaler (1986) and sub-
sequent investigations, it is the competing e†ects of contrac-
tion and cooling in the region of period formation that
dominate the secular period change. Kawaler & Bradley
were able to show that, for some models, mode trapping in
the (relatively) less degenerate envelope had rates of period
change dominated by contraction rather than cooling.
Hence these trapped modes had negative rates of period
change. They showed that if this were the real reason for the
negative of the 516 s period, then ““ nontrapped ÏÏ pulsa-P0
tion modes, like the 495 s and 451 s ones, should show
positive secular period variation. On the other hand, the
539 s mode, which was also trapped on their models, might
also show a negative Costa, Kepler, &Winget (1995) usedP0 .
the (O[C) algorithm developed by OÏDonoghue (1994) to
estimate the secular variation rate of the 539 s period. The
data included the B345 hours of photometric data
obtained in 1993, again obtained with the WET. The result
for this Ðrst measurement was P0 539\ ([0.82^ 0.04)
] 10~11 s s~1, consistent with the mode- trapping hypothe-
sis, but they did not study the nontrapped modes.

3. NEW MEASUREMENT OF P0
The importance of understanding this rapid evolutionary

phase demands a reinvestigation of the rate of period
change with new numerical analysis techniques and the new
extensive data sets. To recalculate the secular variation of
the 516 s period, we use four methods. We call the Ðrst one
the direct method (DM), and discuss it in ° 3.1 . The second
method is based on the maximum likelihood estimation and
is discussed in ° 3.2 . The third method is a variant of the
(O[C) algorithm proposed by OÏDonoghue (1994), which
we describe in ° 3.3 , pointing out the important factors that
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must be taken into account on any measurement of rates of
period change. Finally, in ° 3.4 we discuss the nonlinear
least-squares (NLS) method.

3.1. T he Direct Method
Because the value of for the 516 s period is of orderP0

10~11 s s~1, in 10 years (1983È1993) PG 1159[035 should
have a period change o*P o of order 10~3 s. A change of
this size can be measured directly from the power spectra of
the annual time series, if the periods have beenMPŒ

i
N
i/1, . . . ,Ndetermined with enough precision, i.e., if the standard devi-

ations of the periods, are much smaller thanMp
Pi
N
i/1, . . . ,N,

the total period variation (p
Pi

>o *P o ).

3.1.1. Phase Dispersion Minimization

One way to calculate the standard deviations isp
Pithrough the method of phase dispersion minimization

(PDM) (Stellingwerf 1978). To use this method, it is neces-
sary to segment the total time series of each year into a set
of individual parts and calculate the phase of a sinusoidal
signal of period This segmentation reduces the precisionP

i
.

of the phase estimate. Also, beating between the com-
ponents of the multiplets introduces systematic
(nonrandom) biases in the measured phases, so the formal
standard deviations of the phases, derived from the leastpÕi

,
squares method, underestimate the true values (Winget et
al. 1985). This occurs, at least in part, as a result of corre-
lation between the sinusoidal components present on the
data (Schwarzenberg-Czerny 1989). On the other hand, the

derived from the PDM method tends to overestimatep
Pithe actual values.

3.1.2. Monte Carlo Simulations

We derive more realistic values for using a methodMp
Pi
N

based on Monte Carlo simulations (MCSs) (Costa 1996 ; see
Press et al. 1986 for a general discussion of Monte Carlo
techniques). From Fourier analysis of the photometric data,
we derive estimates for the parametersÈperiods, ampli-
tudes, and phasesÈof the detected pulsation modes. For
each MCS we vary the values of all the parameters within

predeÐned ranges. So, for each MCS we have a new set of
parameters with actual values known, and an artiÐcial light
curve is constructed. Then Fourier analysis is applied to
derive estimates for the parameter values. The estimated
values are compared with the true (known) values. The dif-
ferences are the actual errors. Repeating his process many
times, we obtain an empirical error distribution for each
one of the parameters. The standard deviation of the error
distribution of a given parameter is the standard deviation
for the estimated value of that parameter.

The MCS method also allows us to test the performance
of the least-squares or any other method on the determi-
nation of the standard deviations of amplitudes and phases

and To illustrate this, we calculate 1000 simula-(p
A

pÕ).tions, using as a model the time series of PG 1159[035
obtained in 1989 (Winget et al. 1991). For each simulation,
we calculate how many times the actual error of an estimate
of amplitude, or of phase, was greater than the stan-v

A
, vÕ,dard deviation derived from the least-squares process, p

A
LS

or The histograms in Figure 1 show the number ofpÕLS.occurrences of values of (a) and (b) withinv
A
/p

A
LS vÕ/pÕLScertain ranges. For a Gaussian distribution, the maximum

expected value for or for 1000 simula-o v
A
/p

A
LS o o vÕ/pÕLS otions is 3.48. The histograms clearly show that both rates

greatly exceed the limit of 3.48, justifying also the use of the
MCS method to calculate pÕ.All least-squares procedures calculate p

x
2\ £ (xobswhere is the number of uncor-[ xcalc)/(Nunc[ k), Nuncrelated data points and k is the number of parameters in the

Ðt. The problem is to estimate the number of uncorrelated
points. Most of the calculations assume all the data points
are uncorrelated, which is not true for multiperiodic data.
As a minimum, we have to subtract from the real number of
points, the number of implicit parameters, 2 for eachNtot,periodicity known.

3.1.3. T he Sinusoidal Subtraction Technique

It is possible to reduce the errors in the estimates of a
given period (and also of phase and amplitude) by subtrac-
ting from the original time series dataÈthe light curveÈthe

FIG. 1.ÈFor each simulation, we calculated how many times the actual error of an estimate of amplitude, or phase, was greater than the standardv
A
, vÕ,deviation derived from the least-squares process, or The histograms above show the number of occurrences of values of (a) and (b)p

A
LS pÕLS. v

A
/p

A
LS vÕ/pÕLSwithin certain ranges. For a Gaussian distribution, the maximum expected value for or for 1000 simulations is 3.48. The histograms clearlyo v

A
/p

A
LS o o vÕ/pÕLS oshow that both rates surmount the limit of 3.48.
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largest possible number of other known periods that are
present in the data set. This technique is usually called
““ prewhitening.ÏÏ Figure 2 shows the error distributions for
the estimates of (a) the period, (b) the phase, and (c) the
amplitude of the 516 s component of the 1989 data set. The
histograms on top show the error distributions before the
subtraction, and the lower histograms show the error dis-
tributions after the subtraction of the other 121 resolved
frequencies identiÐed in the 1989 power spectrum of PG
1159[035 (Winget et al. 1991).

3.1.4. Application to PG 1159[035

For the direct method (DM), we use all the photometric
data obtained during 1983, 1985, 1989, and 1993. The data
sets of 1979, 1980, 1981, and 1984 are too small to provide
accurate periods. We determine the periods from power
spectra calculated with the DFT algorithm (Deeming 1975)
after the subtraction of the largest possible number of sinus-
oidal curves from the original data sets. It was signiÐcant to
subtract 121 sinusoidal curves from the 1989 time series, 14
from 1993, and 7 for 1983 and 1985. The were calculatedp

Piwith the MCS method. Table 1 shows our results, and
Figure 3 shows the period of the 516 s mode over time.
Assuming a linear period variation,

P(t)\ P
r
] (*P/*t)(t [ t

r
) , (1)

where is a reference date and we obtaint
r

P
r
\ P(t

r
),

P
r
\ 516.0271^ 0.0008 s , (2)

P0 \ *P/*t \ (]13.0^ 2.6)] 10~11 s s~1 , (3)

with BJDD (1983). The measuredt
r
\ 2,445,394.86339

*P/*t for the 516 s period is therefore positive, and an order
of magnitude greater than the previous measurement based
on (O[C) methods. The pulsational timescale isq

P

q
P
\ P/P0 \ (1.26^ 0.25)] 105 yr . (4)

This positive solution for was present in the Winget et al.P0
(1985) calculations, but was discarded as being of much
lower probability then the negative solution.

3.2. Maximum L ikelihood Estimation
Another way to estimate the values and that betterP

r
P0

Ðt the data of Table 1, is calculating a functionMt6
i
, PŒ

i
N,

that gives the density of probability that a givenÕ
g
(P

r
, P0 )

couple Ðts the data. The function is calculated for(P
r
, P0 )

each point of a grid of values of against (see Fig. 4),P
i

P0
jand the point that maximizes the function is the solution.

This form of parameter estimation is a maximum likelihood
estimation (MLE).

The probability that the actual value of PÕ
g
(P, P0 )dP dP0

is in the range [P[ dP/2, P] dP/2] and that the actual
value of is in the range is given byP0 [P0 [ dP0 /2, P0 ] dP0 /2]
(see Fig. 4) :

Õ
g
(P, P0 )dP dP0 \ <

i/1

N G 1

J2np
Pi

exp
C
[ (P

i
[ PŒ

i
)2

2p
Pi
2

D

]
1
2

[dP] (t6
i
[ t6

r
)dP0 ]

H
, (5)

with where is the average of theP
i
\P ] P0 (t6

i
[ t6

r
), t6

itimings of the series S
i
\ Mt

m
, f (t

m
)N

m/1, . . . ,Mi
(t6
i
\St

m
T)

and and are the measured period and its standardPŒ
i

p
Pideviation derived from the time series Figure 5 shows aS

i
.

plot of the probability density function, for theÕ
g
(P, P0 ),

four points of Table 1. The surface is a Gaussian, and its
maximum occurs at

P\ P
r
\ 516.0264^ 0.0004 s , (6)

P0 \ (]13.26^ 0.52)] 10~11 s s~1 . (7)

The pulsational timescale is :

q
P
\ (1.23^ 0.05)] 105 yr . (8)

Note that each point over the grid deÐnes a straight(P
i
, P0

j
)

line, on the graphic of Figure 3.P(t) \ P
i
] P0

j
t,

3.3. T he ModiÐed (O[C) Algorithm
The (O[C) diagram may be deÐned as a method of phase

dispersion minimization of second order with respect to the
number of cycles, E. We use it to reÐne the results obtained
with the direct method. Usually the phases of a periodic
signal of period P are deÐned as the timings of pulse
maxima. If we assume that the period is changing linearly
with time (eq. [1]), then the calculated phase (or time of
maxima), for the time series is given byC

i
, S

i

C
i
\ T

r
] P

r
E

i
] 12 P

r
P0 E

i
2 , (9)

where is a time of maximum adopted as the referenceT
rdate, and is the actual period at the date (Kepler et al.P

r
T
r1991).

If is the observed phase, the dispersion of the observedO
iphases with respect to equation (9) is given by

s2(P
r
, P0 ) \ ;

i/1

N (O
i
[ C

i
)2

p
i
2 , (10)

where The number of cycles is calculatedp
i
2\p

Oi
2 ] p

Ci
2 . E

ifrom the positive root of equation (9) as andC
i
\O

i
T
r
\

The (O[C) diagram method consists in Ðnding theO
r
.

values of and that minimize equation (10). One wayT
r
, P

r
, P0

is to calculate for all points over a grids2(P
j
, P0

k
) (P

j
, P0

k
)

(OÏDonoghue 1994 ; de Jager, Meintjes, & OÏDonoghue
1994). For a given value of s2, the probability Q that a value
of s2 as poor as the value of equation (10) should occur by
chance is given by the incomplete gamma function (Press et
al. 1986) :

Q(P
j
, P0

k
) \ !

As2
2

,
N
2
B

. (11)

This makes Q an estimate of the goodness of Ðt of the
data. Typically, if Q is larger than 0.1, the goodness of Ðt is
believable. If it is larger than 0.001, then the Ðt may be
acceptable if the uncertainties do not obey a normal dis-
tribution or have been moderately underestimated. If Q is
less than 0.001, then the results and/or estimation pro-
cedure are doubtful (Press et al. 1986).

Note that the observed phase is a function of theO
iperiod via Therefore, a small error in theP

i
O

i
\/LS(Si

, P
i
).
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FIG. 2.ÈHistograms show the error distributions in the estimates of (a) period, (b) phase, and (c) amplitude of the 516 s component before (top) and after
(bottom) the sinusoidal subtractions.

period, causes an error in the phase wheredP
i
, dO

i
, dO

i
^

In other words, uncertainties in period compli-(d/
i
/dP)dP.

cate interpretation of uncertainties in phase. This problem
may be aggravated if is large. Figure 6 shows theo d/

i
/dP o

TABLE 1

MEASUREMENTS OF THE PERIODS

Date (Tmax) Period p
P(MCS)

Year (BJDD) (s) (s)

1983 . . . . . . 2,445,394.86339 516.0264 0.3 ] 10~3
1985 . . . . . . 2,446,179.97375 516.0372 3.9 ] 10~3
1989 . . . . . . 2,447,592.55883 516.0514 2.8 ] 10~3
1993 . . . . . . 2,449,073.82019 516.0691 1.5 ] 10~3

FIG. 3.ÈVariations of the 516 s period of PG 1159[035. The period
variation is well Ðtted by a straight line with a slope of
(]13.0^ 2.6)] 10~11 s s~1.

functions for PG 1159[035 data from the years of/(S
i
, P)

1980È1993 between 516.0 and 516.1 s. For small ranges of P,
the curves are roughly straight lines and their/(S

i
, P)

slopes depend on several factors, such as the(d/
i
/dP)

number of data points in each data set, the length, and the
size of the daily gaps. Obviously, the problem is more
serious for large slopes, and for small slopes it may be
neglected. The MCS method takes into account the e†ect of
the uncertainty on the period determination on the esti-
mates of pÕ.As was seen in ° 3.2, the points over the grid do not have
the same probability of being true. So it is necessary to

FIG. 4.ÈGrid of vs. The spacing between two consecutive valuesP
r

P0 .
of and are dP and respectively.P

r
P0 dP0 ,
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FIG. 5.ÈProbability density function, Õ
g
(P, P0 )

multiply Q from equation (11) by dP from equationÕ
g

dP0
(5) :

Õ(P, P0 )dP dP0 \ Q(P, P0 )Õ
g
(P, P0 )dP dP0 . (12)

The graph of equation (12) is shown in Figure 7. The Ðve
best results obtained with this variant of the (O[C) method

FIG. 6.ÈPhase as a function of period PB 516 s for each annual time
series The term is chosen so that forS

i
, /(S

i
, P) [ b

i
. b

i
/(S

i
, P) [ b

i
\ 0

P\ 516.0 s. Note that the largest data sets occur in 1983, 1989, and 1993.

are shown in Table 2. All other solutions have less thanÕ
1020. The best solution is

P\ P
r
\ 516.02679^ 0.00007 s , (13)

P0 \ (]13.07^ 0.03)] 10~11 s s~1 , (14)

with a pulsational timescale of

q
P
\ P

P0
\ (1.25^ 0.05)] 105 yr . (15)

Figure 8 shows the (O[C) diagram for this result (solid
line) and for the result obtained by Winget et al. (1991)
(dashed line). The solid points are the average one-cycle alias
for each one of the seven epochs involved.

3.4. Nonlinear L east-Squares Analysis
The fourth method used to measure the rate of change of

the 516 s pulsation period of PG 1159[035 was the nonlin-
ear least-squares analysis (NLS), where a model of the form

f (t
i
) \ A sin M[u] 12u5 (t [ tu)](t [ tu)N (16)

is Ðtted to the whole original (not prewhitened) data set.
The algorithm searches on the neighborhood of initial
values for the values of A, u, and The method is veryu5 , tu.

TABLE 2

BEST RESULTS FROM THE MODIFIED (O[C) ALGORITHM

P P0
Number (s) (]10~11 s s~1) Q Õ

g
Õ

1 . . . . . . . . 516.02679 ]13.07 0.010 1.9 ] 1028 2.0 ] 1025
2 . . . . . . . . 516.02722 ]13.86 0.224 2.0 ] 1026 4.5 ] 1024
3 . . . . . . . . 516.02661 ]14.69 0.143 1.1 ] 1026 1.6 ] 1024
4 . . . . . . . . 516.02563 ]12.73 0.009 4.8 ] 1026 4.2 ] 1023
5 . . . . . . . . 516.02740 ]12.21 0.014 3.8 ] 1025 5.5 ] 1022
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FIG. 7.ÈProbability density function obtained with the modiÐed (O[C) method. The four best solutions are indicated.Õ(P, P0 )

sensitive to initial values, and the computed standard devi-
ations are, in general, much smaller than those for all other
three methods. They assume each individual data point is
uncorrelated from any other, untrue for multiperiodic data.

We used as initial values the values provided by the
(O[ C) method, and the obtained results were

T0\ 2,447,593.341310^ 0.000014 BJDD , (17)

P\ 516.051986^ 0.000004 s , (18)

P0 \ (]13.298^ 0.003)] 10~11 s s~1 . (19)

The pulsational timescale is :

q
P
\ (1.2297^ 0.0002)] 105 yr . (20)

The quoted uncertainties are the formal (internal) uncer-

FIG. 8.È(O[C) diagram for the best result (I) and for the solution
obtained by Winget et al. (1991) (I). The solid points are the average
one-cycle alias for each one of the seven epochs involved.

tainties, and are too small for the reasons stated, but are
included here to demonstrate the danger they represent.

4. COMPARISON WITH THE MODELS

Kawaler & Bradley (1994) developed a new grid of
““ quasi-standard ÏÏ stellar evolutionary models (hereafter KB
models) appropriate for PG 1159 stars, and studied the
e†ect of various model parameters on the rate of period
change. The parameters of the models were the mass (M

|
),

e†ective temperature surface helium layer thickness(Teff),in stellar masses), and surface composition Com-(q
Y
, (Tsurf).parison of the KB models with the observed pulsational

spectrum of PG 1159[035 yields a best Ðt with a mass of
0.59^ 0.01 an e†ective temperature of B136,000 K,M

_
,

and a He-rich layer of D0.004 with TheM
|

Ysurf ^ 0.27.
nearest model period from 516 s was P\ 519 s with a rate
of change s s~1, 1 order of magnitude lessP0 ^ 1 ] 10~11
than our value.

The KB models are very sensitive to stellar mass and
e†ective temperature. The magnitude of for a givenP0 /P
period generally decreases for increasing stellar mass
between 0.50 and 0.80 when the other model param-M

_eters are maintained constant, because more massive
models have greater ages, hence larger evolutionary time-
scales. The magnitude of also decreases with decreasingP0 /P

especially for less massive models. Core compositionTeff,also a†ects the rate of period change : models with core
composition with O-rich mixtures generally have larger P0 /P
values than models with C-rich mixtures. This is caused by
the increased neutrino emissionÈand faster evolutionary
timescalesÈof the O-rich models. The behavior of isP0 /P
also sensitive to the helium surface layer, especially for the
trapped modes, because for thinner surface layers the trap-
ping resonance is stronger, resulting in smaller (and poss-
ibly negative) values (Kawaler & Bradley 1994). Thus,P0 /P
small variations in the parameters may accommodate the
large observed P0 .
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5. THE CONTRACTION TIMESCALE

The frequency splitting observed in the power spectra of
nonradial pulsating stars can be caused by two di†erent
physical e†ects : slow rotation and magnetic Ðelds. When
the cause is essentially slow rotation, the rotation period
may be inferred from the observed frequency splitting as

where is the average di†erence betweenProt D 1/dl
l
, dl

ltwo successive frequencies of the same multiplet. The data
analysis shows that this is the case of PG 1159[035
(Winget et al. 1991). In this section we demonstrate the use
of the rotational splitting analysis to estimate roughly the
contraction timescale of a pulsating white dwarf and show
preliminary results for PG 1159[035.

5.1. Observations of *P/*t in the 516 s Multiplet
The 516 s period appeared in the analysis of the data of

1979È1985 as a singlet (Winget et al. 1985 ; Winget & Kepler
1988). In the high-resolution power spectrum obtained with
the 264.1 hr of quasi-continuous photometric data of 1989
(Winget et al. 1991), the band of power at 516 s became a
triplet of l\ 1 modes, with the previously studied period at
516 s appearing as the m\ ]1 component. This triplet is
also clear in the power spectrum obtained in 1993. The two
other members of the triplet, with periods at B517 s (m\ 0)
and B518 s (m\ [1), were of sufficiently low amplitude
until 1987 that they had little or no e†ect on the apparent
phase and frequency of the 516 s band (Winget et al. 1991).

Figure 9 shows the 516 s triplet in the 1989 (top) and 1993
(bottom) power spectra. As we can clearly see, the three
modes of the triplet appear to be stable with respect to
pulsation period, but only the m\ ]1 mode is stable with
respect to amplitude. Furthermore, Winget et al. (1985,
1991 and Winget & Kepler 1988) have pointed out that the
data show that many of the other pulsation periods, includ-
ing the m\ 0 and m\ [1 modes of the 516 s triplet are
unstable over the period of time covered by the obser-
vations, which is conÐrmed by the data from 1993. In Table
3 we present the measurements of the periods of the three
components of the triplets. Their standard deviations come
from the MCS method. The rates of period variation from
1989 to 1993, *P/*t, are in the last row. The rates of varia-
tion of the periods of 517 s and 518 s are of the same order
of magnitude as the 516 s period, but the present errors are
too large for *P/*t to be signiÐcant.

5.2. Estimation of the Contraction T imescale
The rotational splitting of g-modes depends on the rota-

tion law. For slow rotation the expression for(Prot ?Ppuls),the rotational splitting is given by (Hansen, Cox, & Van
Horn 1977 ; Kawaler, Winget, & Hansen 1985b ; Winget et
al. 1991)

p
klm

\ p
kl

] m(1[ C[ C1))rot ] O()rot2 ) , (21)

where the last term indicates terms of second order in the
rotation frequency, C [\ C(k, l)] is the uniform rota-)rot ;

FIG. 9.ÈThe 516 s triplet (l\ 1) at the 1989 (top) and 1993 (bottom)
power spectra. The 516 s period is the prograde component (m\ ]1), the
517 s period is the central component (m\ 0), and the 518 s period is the
retrograde component (m\ [1).

tion coefficient ; l, om o )] contains the nonuni-C1 [\ C1(k,
form rotation e†ects ; is the angular frequency ofp

klmpulsation with (m\ 0). The value of dependsp
kl

\ p
kl0 C1on the adiabatic pulsation properties, the equilibrium struc-

ture of the star, and the rotation law.
If we neglect second-order terms in di†erentiate, and)rot,transform the frequencies to periods, we obtain (Kawaler et

al. 1985b)

P0
m

P
m
2 \P0 0

P02
] m(1[ C[ C1)

P0 rot
Prot2 ] m(C0 ] C0 1)

1
Prot

, (22)

where is the rotational period at the pole. In the asymp-Prottotic limit of high radial overtones, i.e., large values of k
(Brickhill 1975), the uniform rotation coefficient can be
approximated by

C^
1

l(l] 1)
. (23)

If we assume uniform rotation as a Ðrst approximation,
then and For l\ 1, equation (22)C1\ 0 C0 \ C0 1\ 0.
becomes

P0
m

P
m
2 \ P0 0

P02
] 1

2
m

P0 rot
Prot2 . (24)

For a star with uniform rotation, the angular momentum
is If the angular momentum is conserved,J P MR2)rot.

TABLE 3

THE 516 s TRIPLET

P1989 P1993 *P\ P1993[ P1989 P0
m

\ *P/*t
m (s) (s) (s) (]10~11 s s~1)

]1 . . . . . . 516.0514 ^ 0.0028 516.0691 ^ 0.0015 ]0.0177 ^ 0.0032 ]13.83 ^ 2.50
0 . . . . . . . 517.1569 ^ 0.0185 517.1863 ^ 0.0231 ]0.0294 ^ 0.0296 ]22.97 ^ 23.13

[1 . . . . . . 518.2932 ^ 0.0355 518.2884 ^ 0.0327 [0.0050 ^ 0.0482 [3.91 ^ 37.66
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dJ/dt \ 0, and

R2)rotM0 ] 2MR)rot R0 ] MR2)0 rot \ 0 , (25)

where and are the temporal derivatives of theM0 , R0 , )0 rotmass (M), radius (R), and rotation frequency of the()rot)star. If mass loss in the present stage is negligible (M0 ^ 0),
then equation (25) becomes :

R0
R

^
1
2

P0 rot
Prot

. (26)

As the star evolves and cools, it will contract and(R0 \ 0),
therefore the rotational period will decrease to(P0 rot \ 0)
conserve the angular momentum. A negative accordingP0 rot,to equation (24) implies which is consistentP0

m/1\ P0
m/0,with Table 5 but this result is not signiÐcant.(P0 516 \P0 517),As we have estimated and we can use equation (24)P0 0 P0

m
,

to obtain a rough estimate for the secular variation of the
rotational period :

P0 rot \ ([1.0^ 3.5)] 10~5 s s~1 , (27)

i.e., the rotational period changes by an amount of the order
of a few minutes per year. Using this result, we can now
estimate from equation (26) the timescale for radius change,
q
R
~1\ R/R0 :

R0
R

\ 1
m

Prot
AP0

m
P
m
2 [ P0 0

P02
B

(mD 0) , (28)

R0
R

\ ([4.2^ 14.7)] 10~11 s s~1 . (29)

If we use the radius predicted by the evolutionary models
for PG 1159[035 of Kawaler & Bradley (1994), which is
R\ 0.025^ 0.005 the radius change rate would beR

_
, R0

R0 \ [0.073^ 0.256 cm s~1 (30)

or

R0 \ [23 ^ 80 km yr~1 . (31)

More realistic models must assume di†erential rotation,
at least for the outer layer of the star. Detailed models of
di†erentially rotating white dwarfs were constructed by
Ostriker & Bodenheimer (1968), and for all studied models,
di†erential rotation is never very extreme, since

This means that the estimated value of)equator/)center [ 0.2.
for a uniformly rotating star model must be con-oR0 /R o

sidered as an upper limit. Thus, for PG 1159[035
(admitting a deviation of 3 p)

o q
R
~1 o\

K R0
R
K
\ 48 ] 10~11 s s~1 , (32)

and hence

oR0 o\ 263 km yr~1 . (33)

Note also that the estimate above assumes no frequency
locking due to resonant coupling. Buchler, Goupil, &
Hansen (1997) show that frequency locking can occur for
the most unstable mode or modes that predominantly
sample the region of slower rotation in white dwarfs.

6. SUMMARY AND CONCLUSIONS

The secular variation of the 516 s period and its timescale
was calculated by four methods described above, and the
results are given in Table 4. All four methods give the same
result within 1 p, but we emphasize that the most reliable
method is the direct method, for the reasons mentioned in
° 3. The secular variation of the 516 s period is positive as
predicted by the earlier theoretical models of Kawaler et al.
(1985a) and Kawaler (1986) and by some models of Kawaler
& Bradley (1994). The magnitude, by contrast, is larger then
predicted by any model calculated to date. This may be the
Ðrst hint that cooling by neutrino emission is far more e†ec-
tive than current models describe, for these very hot, very
dense stars.

The negative value obtained by Winget et al. (1985)P0
resulted from the classical (O[C) diagram method, using
underestimated values for the standard deviations of the
phases, derived by least squares. This method masked the
statistical signiÐcance of the result, aggravated by small-
number statistics, even though Winget et al. were conserva-
tive with the treatment of the uncertainties, going so far as
to multiply the uncertainty derived from least squares by a
factor of 10. All later estimates (Winget & Kepler 1988 ;
Winget et al. 1991), though using larger data sets, used this
Ðrst negative value as the initial value in their calculations,
which explains the agreement between the results. These
considerations also apply to the measurement of the secular
variation of the 539 s period done by Costa et al. (1995),
which used the same process, therefore perpetuating the
cycle count miscalculation.

This erroneous result means that one should exercise
extreme caution in estimating the precision of a measure-
ment of phases of a sinusoidal signal in a multiperiodic data
set. Estimates done from the least-squares process are, in
general, much smaller than the actual values. More realistic
values for the standard deviations must, if possible, be cal-
culated using other techniques, such as the Monte Carlo
simulations method. We also point out the advantage of
using the direct method, at least for the case of pulsating
stars whose periods vary rapidly enough, as is the case of
DOV stars. Cycle count errors have plagued most estima-
tions of secular period changes.

The Ðrst attempt to model the observed PG 1159[035
pulsational spectrum with the KB models provides P0 \
]2.2] 10~11 s s~1 (Kawaler & Bradley 1994). But, as the
models are very sensitive to variation of the model param-
eters, some models yield values for of order 10~10 s s~1.P0

TABLE 4

MEASUREMENTS OF THE 516 s P0 a

P0 q
P

Method (]10~11 s s~1) (]105 yr)

Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]13.0 ^ 2.6 1.26 ^ 0.25
Maximum likelihood estimation . . . . . . ]13.26 ^ 0.52 1.23 ^ 0.05
ModiÐed (O[ C) algorithm . . . . . . . . . . ]13.07 ^ 0.03 1.25 ^ 0.05
Nonlinear least squares . . . . . . . . . . . . . . . . ]13.298 ^ 0.003a 1.2297 ^ 0.0002a

a Internal errors quoted to show the extreme overoptimism of the method.
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TABLE 5

VALUES (] 10~11 s s~1) FROM KB MODELSP0

Parameters ib593b ib593i ib593x ib593y ib603h

P0 Values

P \ 450 s (k \ 19) . . . . . . 3.32 5.21 7.24 1.80 7.75
P \ 493 s (k \ 21) . . . . . . [3.15 6.90 0.29 0.72 7.48
P \ 516 s (k \ 22) . . . . . . [0.64 2.70 10.67 [0.05 10.04
P \ 539 s (k \ 23) . . . . . . 2.91 [0.81 11.52 1.39 7.78

Other Parameters

MHe (]10~3 M
|

) . . . . . . . . 0.531 4.7 2.06 2.67 6.22
C:O core . . . . . . . . . . . . . . . . . . 55 :45 20 :80 20 :80 20 :80 20 :80
He :C:O surface . . . . . . . . . . 78 :21 :1 78 :21 :1 58 :27 :15 58 :27 :15 78 :21 :1
M/M

_
. . . . . . . . . . . . . . . . . . . . 0.59 0.59 0.59 0.59 0.60

Table 5 shows the values derived from KB models withP0
K (P. Bradley 1998, private communication).Teff ^ 140,000

The sequences ib593x and ib603h present larger values,P0
close to our value, indicating that high values for fromP0
KB models are possible. The models with large mode trap-
ping show that values are oscillatory with overtoneP0
number k. Models with an essentially monotonic sequence
of values indicate that mode-trapping e†ects on areP0 P0
swamped by cooling. Therefore, it is important to measure
the rates of change of other pulsational periods of PG
1159[035 to study mode trapping. We are working on the
estimates of the secular variation of the largest possible
number of periods present on PG 1159[035 pulsational
spectra.

The analysis of the rotational splitting of the 517 s mode,
though not statistically signiÐcant, provides some inter-
esting results. The central component of the triplet shows an
apparent variation from 1989 to 1993 of P0 517 \ (]23 ^ 23)
] 10~11 s s~1, consistent with the expectation that the
prograde component (m\ ]1) of the triplet has a secular
variation smaller than that of the central component
(m\ 0), because the star is contracting. From this estimate,
we can constrain the rate of change of the rotational period :

s s~1, or less than a few minutesP0 rot \ ([1.0^ 3.5) ] 10~5
per year.

Although the rate of rotation period change is only a
rough estimate, it demonstrates the potential of this tech-
nique. The importance of the new technique arises because
rotation changes are sensitive to radius change and insensi-
tive to temperature change. The examination of these
changes separately o†ers the exciting possibility of under-
standing this rapid but mysterious evolutionary phase in
detail. Rotational splitting period change analysis allows us
to derive radius change timescales, important parameters in
stellar evolutionary theory. For statistically signiÐcant
results, new observations of PG 1159[035 with WET will
be necessary. This will also allow us to infer the rotational
law and thereby to improve the determination of evolution-
ary timescales. Furthermore, new theoretical models for PG
1159[035 using the estimates must be calculated.P0 516

We deeply appreciate Paul BradleyÏs very useful sugges-
tions, which improved the presentation of the paper. Most
of the calculations were made using the Cray YMP-2E
computer at the Centro Nacional de daSupercomputacÓ a8 o
Universidade Federal do Rio Grande do Sul.
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