Tavares and Bazzan Journal of the Brazilian Computer Society 2014, 20:15
http://www.journal-bcs.com/content/20/1/15

® Journal of
the Brazilian Computer Society

a SpringerOpen Journal

RESEARCH Open Access

An agent-based approach for road pricing:
system-level performance and implications
for drivers

Anderson Rocha Tavares” and Ana LC Bazzan

Abstract

Background: Road pricing is a useful mechanism to align private utility of drivers with a system-level measure of
performance. Traffic simulation can be used to predict the impact of road pricing policies. The simulation is not a
trivial task because traffic is a social system composed of different interacting entities. To tackle this complexity,
agent-based approaches can be employed to model the behavior of the several actors in transportation systems.

Methods: We model traffic as a multiagent system in which link manager agents employ a reinforcement learning
scheme to determine road pricing policies in a road network. Drivers who traverse the road network are
cost-minimizer agents with local information and different preferences regarding travel time and credits expenditure.

Results: The vehicular flow achieved by our reinforcement learning approach for road pricing is close to a method

where drivers have global information of the road network status to choose their routes. Our approach reaches its
peak performance faster than a fixed pricing approach. Moreover, drivers' welfare is greater when the variability of
their preferences regarding minimization of travel time or credits expenditure is higher.

Conclusions: Our experiments showed that the adoption of reinforcement learning for determining road pricing
policies is a promising approach, even with limitations in the driver agent and link manager models.

Keywords: Road pricing; Multiagent systems; Agent-based simulation

Background

Introduction

Traffic is a key topic in modern societies. To deal with
traffic congestion, two approaches can be adopted: one
is to expand the capacity of the current traffic infras-
tructure and the second is to employ methods for bet-
ter usage of the existing infrastructure. The second
approach is preferred since it does not include expen-
sive and environment-impacting changes on the traffic
infrastructure.

One issue that arises in attempts to improve usage
of traffic infrastructure is the simulation of new tech-
nologies. This issue is specially challenging because the
human behavior plays an important role in transporta-
tion systems. Traffic is a social system where millions
of people with different ages, lifestyles, mobility needs,
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and other characteristics mingle every day. One way to
tackle the issue of the simulation of new technologies in
transportation systems is to employ methods of artificial
intelligence, especially multiagent systems. In multiagent
systems, we can model the decision processes and interac-
tions of drivers, infrastructure managers, and other actors
of transportation systems.

In this work we present a multiagent road pricing
approach for urban traffic management. It is known that
road pricing is a useful mechanism to align private util-
ity of drivers with a system optimum in terms of vehicular
flow as remarked in [1]. From the side of the infrastruc-
ture, we present a decentralized adaptive road pricing
model. In this approach, the road network is modeled as a
graph where the nodes are the intersections and the edges,
or links, are the road sections between the intersections.
Each road network link has a manager agent that uses a
reinforcement learning scheme to determine the credits
that a driver has to pay to traverse it. The goal of each
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link manager is to determine a price that maximizes the
vehicular flow in its managed link.

We model drivers as agents with different preferences
regarding their haste and their willingness to pay for using
the road traffic infrastructure. Each driver has the individ-
ual goal of minimizing its travel costs, which is perceived
as a combination of credits expenditure and travel time.
With this model, the road pricing mechanism makes each
driver internalize the costs it imposes to others and to the
road network when acting greedily.

We perform experiments to compare our adaptive road
pricing approach to a fixed pricing approach and to a traf-
fic optimization method where drivers have global knowl-
edge of the road network status. In our experiments, we
employ microscopic traffic simulation models. This rep-
resents a contribution that meets our long-term agenda,
which consists in proposing a methodology to integrate
behavioral models of human travelers reacting to traffic
patterns and control measures of these traffic patterns,
focusing on distributed and decentralized methods.

The remainder of this document is organized as follows:
Section ‘Preliminary concepts’ introduces basic concepts
on reinforcement learning that are used in our link man-
ager agent model. Section ‘Related work’ discusses related
work on road pricing and some other methods for traf-
fic optimization. Section ‘Methods’ presents our proposed
approach divided in the driver agent, link manager agent,
and simulation models. The road network used in our
simulations, the generated load, the performance met-
rics and the other methods that are used in comparison
to our multiagent road pricing approach are presented
in Section ‘Studied scenario. Results of our experiments
are presented and discussed in Section ‘Results and
discussion’. Section ‘Conclusions’ presents concluding
remarks, the model limitations and opportunities for fur-
ther study.

Preliminary concepts

This section presents the basic concepts on single and
multiagent reinforcement learning (RL) that are used in
our link manager agent model (Section ‘Link manager
agents’).

Reinforcement learning
Reinforcement learning deals with the problem of making
an agent learn a behavior by interacting with the envi-
ronment. Usually, a reinforcement learning problem is
modeled as a Markov decision process (MDP), which con-
sists of a discrete set of environment states S, a discrete
set of actions A, a state transition function 7 : S x A —
I'(S), where I'(S) is a probability distribution over S and a
reward functionR : S x A — R [2].

The agent interacts with the environment following a
policy 7 and tries to learn the optimal policy 7* that
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maps the current environment state s € S to an action
a € A in a way that the future reward is maximized. At
each state, the agent must select an action a according
to a strategy that balances exploration (gain of knowl-
edge) and exploitation (use of knowledge). One possible
strategy is e-greedy, which consists in choosing a random
action (exploration) with probability € or choosing the
best action (exploitation) with probability 1 — €.
Q-learning is an algorithm for general sequential deci-
sion processes that converges towards the optimal policy,
given certain conditions [3]. In the present work, we adopt
a simplified form of Q-learning, as our MDP model of the
link manager agent is stateless (see Section ‘Link manager
agents’). Here, the Q-value of an action, Q(a), provides an
estimate of the value of performing action a. This model is
similar to other stateless settings, such as the one found in
[4]. The update rule of our simplified Q-learning is shown
in Equation 1, where (g, R) is an experience tuple, meaning
that the agent performed action a and received reward R.
The parameter o €[0, 1] is the learning rate, which weights
how much of the previous estimate the agent retains.

Q@) < (1 - a)Q(a) + a(R) (1)

For a complete description of Q-learning, the reader
may refer to [3].

Multiagent reinforcement learning

A multiagent system can be understood as group of agents
that interact with each other besides perceiving and act-
ing in the environment they are situated. The behavior of
these agents can be designed a priori, although in some
scenarios, this is a difficult task or this pre-programmed
behavior is undesired. In this case, the adoption of learn-
ing (or adapting) agents is a feasible alternative [5].

For the single-agent reinforcement learning task, consis-
tent algorithms with good convergence are known. When
it comes to multiagent systems, several challenges arise. A
given agent must adapt itself to the environment and to
the behaviors of other agents. This adaptation demands
other agents to adapt themselves, changing their behav-
jors, thus demanding the given agent to adapt again.
This nonstationarity turns the convergence properties of
single-agent RL algorithms invalid.

Multiagent reinforcement learning (MARL) tasks can
be modeled as a multiagent Markov decision process
(MMDP), also called stochastic game (SG), which is the
generalization of the single-agent Markov decision pro-
cess. A MMDP consists of a set of agents N = {1,...,n},
a discrete set of environment states S, a collection of
action sets A = Xx;carA;, a transition function T : S x
A x --- x A, — T'(S) and a per-agent reward function
R : Sx Ay x -+ x A, — R. The transition function
maps the combined actions that each agent i € N took at
the current state to a probability distribution over S. For
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each agent j, the reward depends not only on its action at
a given state but on the actions of all other agents too.

MARL tasks modeled as MMDPs may yield very large
problem sizes as the state-action space grows very quickly
with the number of the agents, their states, and actions
available to them. Game-theoretic literature focuses on
MMDPs with a few agents and actions, because it is com-
putationally intractable otherwise. For this reason, some
MARL tasks are tackled by making each agent learn with-
out explicitly considering the adaptation of other agents.
In this situation, one agent understands other agents
learning and changing their behavior as a change of the
environment dynamics. In this approach, the agents are
independent learners [4]. It is demonstrated in [4] that in
this case, Q-learning is not as robust as it is in single-agent
settings. Also, it is remarked by [6] that training adaptive
agents without considering the adaptation of other agents
is not mathematically justified and it is prone to reach-
ing a local maximum where agents quickly stop learning.
Even so, some researchers achieved satisfactory results
with this approach.

Related work

In this section we review works proposing traffic manage-
ment methods and road pricing approaches, showing their
contributions, similarities with the present work, and lim-
itations. Henceforth, a centralized approach is understood
as one in which a single entity performs all computation
about traffic optimization or the pricing policy, or a sin-
gle entity concentrates the necessary information for the
computation. In contrast, a decentralized approach is one
in which the computation related to traffic optimization
or the pricing policy in a portion of the road network
is performed by an entity that controls only that portion
(e.g., alink).

An analysis of road pricing approaches is presented in
Arnott et al. [7]. The authors study the impact of tolls
in the departure times of drivers and the routes chosen
by them. They conclude that traffic efficiency is greatly
enhanced with fares that vary over time compared to fixed
price. In [7], the toll value is calculated in a centralized
way; there is only one origin and destination in the road
network, and individuals have identical cost functions.
In contrast, our road pricing approach is decentralized,
the road network may have multiple origins and destina-
tions, and individuals have different preferences regarding
credits expenditure and travel time.

In [8], different toll schemes are proposed and the route
choice behavior of the drivers is analyzed. With the goal
of maximizing drivers’ welfare, the authors discuss what
kind of pricing information should be given to the drivers
and the usefulness of letting the drivers know the toll price
before the route calculation versus just at the toll booth.
In contrast to the present work, in [8], the authors assume
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the existence of a control center with perfect information
about the traffic network state, and, similarly to [7], there
is only one origin and destination in the road network and
individuals have identical cost functions.

Bazzan and Junges [1] present a study on how the deci-
sion making of drivers can be affected by congestion tolls.
A control center provides drivers with the estimated cost
for a certain route. Driver agents update their knowledge
base with available information of the routes and the util-
ity received in the past episodes. The work shows that
congestion tolls are useful to align private utility with a
global optimum, but this is done in a centralized way.

A decentralized, agent-based approach to road pricing
is shown in [9], where the authors compare the perfor-
mance of autonomous links and centralized control on
capacity expansion of a highway network. Competitive
autonomous links adjust their prices in order to maximize
their profit. Also, they can invest in the expansion of their
own capacity, thus attracting more vehicles and increasing
profit. This scheme is compared to a centralized approach
where a government entity has global information and
makes decisions regarding prices adjustment and capac-
ity expansion. The authors conclude that compared to
the government entity, autonomous links generate more
revenue and provide higher road capacity, thus allow-
ing drivers to achieve higher speeds. The drawback is
that road prices are higher, thus increasing the costs for
drivers.

The study done in [9] does not consider the preferences
of the drivers and focuses on how the expansion of high-
way capacity would affect traffic pattern. In the present
work, links have fixed capacity and driver preferences are
considered.

A detailed study of the effects of congestion tolls
is found in [10]. The authors perform a large-scale
microsimulation in the city of Zurich. Citizens are mod-
eled as agents with activity plans for working, shopping,
leisure, and education throughout the day. Agents can
also plan the mode (car or public transportation), depar-
ture time, and route choice (if driving a car) for each
activity. The agents have different utility functions rat-
ing travel delays and early or late arrival for each activity.
The authors present a fixed city toll that is applied in
the afternoon rush hours. Experimental results show that
agents not only change the afternoon but also the morning
activity plans when the toll is introduced.

Thus, this presents a contribution on the effects of a
fixed toll system on citizens’ daily activities in a large-scale
urban scenario. The focus of the present work is differ-
ent: assuming that mode and departure times were already
chosen by the drivers, we want to assess the impact of an
adaptive road pricing approach on their route choices. In
our work, the routes chosen by the drivers result in the
individual costs that each driver has and in the global road
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network usage, which are the performance metrics that we
assess.

Vasirani and Ossowski [11] present a decentralized
market-based approach for traffic management. The mar-
ket consists in driver agents purchasing reservations to
cross the intersections from intersection manager agents.
Drivers can cross intersections for free too, but in this
case, they must wait for the intersection to be empty. The
authors present a learning mechanism for the intersection
managers with the goal of maximizing the global revenue.
Different driver preferences are analyzed: there are time-
based agents and price-based agents, who try to minimize
the travel time and credit expenditure, respectively.

The work by Vasirani and Ossowski assumes the exis-
tence of fully autonomous vehicles that obey market rules:
they pay for reservations or stop at intersections until
they get one for free. The present work does not have the
restriction on the drivers’ movement: drivers can use any
link anytime without having to wait for a reservation, as
the present approach is not based on reservations. Also, as
we do not assume the existence of fully autonomous vehi-
cles, the approach presented here can be used with human
drivers.

A multiagent-based road pricing approach for urban
traffic management is presented in [12]. The work
presents a model for drivers with different preferences
and link managers with different ad hoc price update poli-
cies. The experiments showed that the ad hoc price update
policies enhanced the performance of the time-minimizer
driver agents, whereas the expenditure-minimizers were
penalized. Global performance of the road network is not
assessed. Also, in [12], a macroscopic traffic movement
model is used. In the present work, we introduce a more
sophisticated price update policy for the link manager
agents, which is based on reinforcement learning. Also,
we employ a microscopic traffic movement model and we
assess the global performance of the road network. The
microscopic traffic model is more realistic: we can observe
spillovers in congested links and we can also analyze the
effect of the locality of drivers’ information. This will allow
us to analyze the effect of technologies such as vehicle-to-
vehicle communication to expand the knowledge of the
drivers regarding the road network status in the future.

The work done by Alves et al. [13] presents a mechanism
to balance the reduction of drivers’ costs and the improve-
ment of road traffic efficiency without road pricing. In
[13], this is done by applying ant colony optimization to
assign routes to vehicles. The proposed approach suc-
ceeds in keeping traffic flows below bottleneck capacities
and in keeping the difference between travel times in
the fastest and slowest routes below a threshold. In their
approach, however, vehicles are routed by a centralized
traffic control entity, that is, drivers are not autonomous
agents. In the present work, in contrast, drivers are
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autonomous cost-minimizer agents, and the incentive to
improve traffic efficiency (i.e., the road pricing policy) is
calculated in a decentralized way.

An ant-inspired approach to vehicular routing where
drivers are autonomous agents can be found in [14]. The
authors propose a mechanism where drivers deviate from
links with a strong pheromone trace. The pheromone
trace of a given link grows in proportion to the load of
the link. Using the proposed approach compared to route
calculation through A* algorithm with static information
(i.e., link length), drivers achieve lower travel times in
small-scale scenarios. In a larger-scale scenario, however,
travel times were higher with the ant-inspired approach.
Compared to the present work, the pheromone trace of a
link can be seen as an analogous of its price in the sense of
being an incentive for drivers to distribute themselves in
the road network. However, in [14], authors assume that
the underlying traffic management system is able to store
pheromone traces, but it is not clear how this could be
implemented in a real-world situation, i.e., which sensors
and actuators would have to be used.

In general, the related work shows that road pricing
is a useful way to make drivers internalize the cost they
impose to other drivers and to the road infrastructure
when using their private vehicles. Besides, adaptive pric-
ing brings higher benefits to traffic efficiency compared to
fixed pricing.

Compared to the related work, the present paper
presents a decentralized approach for road pricing, as
opposed to [1,7,8,13], where a central entity concen-
trates the necessary information. In our model, similarly
to [10,11], driver agents are heterogeneous, that is, dif-
ferent drivers can evaluate costs in distinct ways (see
Section ‘Driver agent model’). In our experiments, how-
ever, the diversity of the drivers regarding their prefer-
ences is higher than in [11], where either all drivers are
homogeneous or they are divided in only two classes
(drivers who care about travel time and drivers who care
about expenses). In our experiments, we test cases where
the preference of drivers varies according to continu-
ous probability distributions (see Section ‘Generation of
drivers’ preference’). In [10], the preferences of the drivers
have a great variability as well, but there, authors evalu-
ate the effects of a fixed toll system on the activity plans of
the citizens. In the present work, we evaluate the impact
of variable road pricing on drivers’ route choice.

Methods

Proposed approach

The proposed approach consists in modeling a road net-
work as a multiagent system, where two populations of
agents (drivers representing the demand side and link
managers representing the infrastructure) interact and
have their own objectives. In our model, drivers are
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cost-minimizer agents. The cost function of drivers con-
siders both their travel time and their credits expendi-
ture. On the infrastructure side, each link manager agent
adjusts the price that a driver has to pay for using its man-
aged link through a reinforcement learning scheme. Each
link manager has the goal of maximizing the vehicular
flow in its managed link.

We assume the existence of an infrastructure that makes
drivers pay credits whenever they enter a link. Vehicles
have an identification device that communicates with the
road infrastructure without the need of reducing the vehi-
cle speed for toll collection. Such infrastructure would
be similar to Singapore’s electronic road pricing [15] that
exists in certain roads of the state-city. We assume that
such electronic toll collector exists in every link of our sce-
nario. We remark that this may be the case of important
arterials of a city.

Driver agent model
Let D be the set of drivers. Each driver d € D is modeled
as an agent whose goal is to minimize the cost of driving

between his origin (Z;) and destination (Zji) in the road

network. This cost is the sum of the costs that d perceives
for traversing each link / on its route P;, as Equation 2
shows. The cost that d perceives for traversing a link /, rep-
resented by z4, is given in Equation 3, where ¢, and p;,
are the travel time and the price that driver d knows for
link /, respectively. The coefficient p; € [0, 1] corresponds
to the preference of d, that is, if it prefers to minimize its
travel time (p, closer to 1) or its credits expenditure (py4
closer to 0).

Zg = Z Z4) (2)

lep,

z41 = (0q) t,},,« +1- pd)p;,, (3)
Each driver has a model of the road network, repre-
sented by a graph G = (N, L), where N is the set of
nodes or intersections of the road network and L are the
links between two nodes, representing the road sections
between the intersections. This means that drivers have
full knowledge of the network topology. Given the exist-
ing vehicular navigation systems, this assumption is not
far from reality.

Drivers have local knowledge of the road network sta-
tus, that is, they only know prices and travel times of the
links they have traversed. At first, when drivers have no
knowledge about the status of the network, they estimate
travel time as the link’s free-flow travel time (f;) and price
as the half of a global maximum price (Pmax) that can
be applied to a link. The knowledge of the drivers per-
sists along trips; thus, they learn about the traffic network
by exploring it. The known travel time is updated when
the driver leaves a link and the known price of a link is
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updated when the driver enters it and pays the required
credits. In our driver agent model, the values of the known
travel time and price of a link are completely overridden by
the ones the driver is collecting on its current trip. This is
formalized in Algorithm 3 that shows how drivers traverse
the road network.

Algorithm 1 describes the drivers’ initialization
and route calculation procedures that are called in
Algorithm 3. The route calculation procedure consists in
using a shortest path algorithm with the z value of a link
(Equation 3) as its weight. The probability distribution for
pd4 selection (IT) is a parameter of the drivers’ initializa-
tion procedure as well as the probability distribution for
selecting the origin and destination links (£2).

Algorithm 1 Driver agents
procedure INITIALIZEDRIVERS(IT, €2, Ppax)
foralld € D do
<€2,Ei) <« select_OD()
04 < select_p(IT)
forall/ € L do
t;i,l <~ fi
P:,u < Prax/2
end for
end for
end procedure

procedure CALCULATEROUTES
foralld € D do
P, < shortestPath (62, @ji, {zd,l‘v’l € L})
end for
end procedure

Link manager agents

Every road network link has its respective manager agent.
Link managers are responsible for adjusting the prices for
traversing the managed links. The link managers act inde-
pendently from one another and the individual goal of
each link manager is to maximize the vehicular flow in its
managed link, that is, the number of vehicles that traverse
the link in a fixed time window.

Each link manager may adjust the price of its link as
a fraction of a global maximum pricing unit Pmax. Link
manager agents employ a reinforcement learning scheme
to update the prices of links in a learning episode. A
learning episode is a fixed time window of a day. For
example, the time window can be the morning peak hours
of the working days. The performance of the link man-
ager is assessed in the time window, its reward is cal-
culated, and the price is updated for the next learning
episode.
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Link manager agents are modeled as independent learn-
ers; thus, they do not consider joint action learning. In
the MDP model used by the link managers, the action
set A is a discrete set of fractions of the global maxi-
mum price Ppax that the link manager can apply: A =
{0,0.1,0.2,...,1}. That s, if a given link manager chooses
action 0.1, the price charged for traversing its managed
link is 0.1 - Prax.

To balance exploration (gain of knowledge) and
exploitation (use of knowledge), link managers adopt
the e-greedy action selection strategy (see Section
‘Reinforcement learning’) with two stages. In the first
stage (exploration), we start with a high € that is decreased
by a multiplicative factor A along the episodes of the explo-
ration stage. In the second stage (exploitation), the value
of € is small and the link manager agents choose the action
with the highest Q-value with a high probability. The
multiplicative factor that decreases € at the end of each
episode of the exploration stage is given in Equation 4,
where « is the number of episodes in the exploration stage
and €p and ¢ are the desired initial and final values for €,
respectively. Typically, €9 = 1.

e o7
€0

The result of multiplying € by A at each episode of the
exploration stage is illustrated in Figure 1. The value of
€ decays exponentially from € to € during « episodes.
After « episodes, the value of € is maintained.

The reward function, represented by R; is given by
Equation 5, where v; is the number of vehicles that entered
link / during the learning episode. The higher the num-
ber of vehicles that use a given link / during the learning
episode, the higher the reward R; is. As the learning
episode consists of a fixed time window, more vehicles
using a given link in the same time window result in

(4)

exploitation

exploration

€l T

I

I

I

I

I

[

|

[

|

|

|

L .
T X -
K episode
Figure 1 Value of € along the episodes of the exploration (until «)
and exploitation (after k) stages.
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increased traffic flow in the link. Thus, the objective of a
link manager is to maximize the vehicular flow in its man-
aged link. It should be noted that if the price of a given link
lis too attractive, many drivers will tend to use / and, as its
capacity is fixed, [ will be congested, enabling less drivers
to enter it, minimizing its reward in the future.

R = (5)

Our MDP model is stateless. Thus, our link manager
agents are action-value learners. The behavior of the link
managers is described in Algorithm 2, where Q; is the
Q-table (which stores the action-values) of the manager
of link /, « is the learning rate, and € is the exploration
probability.

Algorithm 2 Link manager agents
procedure INITIALIZELINKMANAGERS(€o, €f, k)

A<~ C/g (Equation 4)
€ < €
A < {0,0.1,0.2,...,1.0}
forall/ € L do
Qa) < 0VaecA
p1 < select_random(A) > randomly initialized
end for
end procedure

procedure ADJUSTROADSPRICES(i)

> i is the number of the current episode
forall/ € L do

Q) <~ A —a)Qip) +a - Ry > R; from
Equation 5
if random() < € then
p1 < select_random(A)
else
pi < argmaxges Qi(a)
end if
end for
if i < x then > decreases € in the exploration stage
€ <€A
end if

end procedure

Simulation

Contrarily to many works that use abstract macroscopic
simulation models, in this work, we use a microscopic
simulation model based on car-following, which is imple-
mented in Simulation of Urban Mobility (SUMO) traffic
simulator [16]. In this microscopic simulation model, the
behavior of a vehicle regarding acceleration or braking is
influenced by its leading vehicle. The adopted model is
accident-free and implements driving behavior regarding
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lane-changing, priorities of roads, and reaction to traffic
lights.

In SUMO, the simulation is continuous in space and dis-
crete in time so that we have the precise physical location
of the vehicles in the road network. The basic time unit of
the simulation is one timestep, which corresponds to one
second in the real world.

In our experiments, we simulate a commuting scenario.
Each learning episode is an iteration of our simulation. An
iteration consists of a fixed period of a working day. In this
period, drivers travel from their origins to their destina-
tions, possibly using different paths from previous trips,
as they accumulate knowledge of the road network status
during their trips. The simulation consists of 1 iterations.

The simulation procedure is as follows: during an itera-
tion, at each simulation timestep, the vehicles are moved
according to the rules of the underlying traffic model
and drivers update their knowledge bases when they exit
a link or enter a new one. The simulation procedure is
formalized in Algorithm 3.

Algorithm 3 is implemented in our simulation pro-
gram, illustrated in Figure 2. Our code communicates with
SUMO via TraCI [17], which provides an interface for
real-time interaction between a program implementing a
TraClI client and a traffic simulator implementing a TraCI
server. Our code implements a TraCl client that commu-
nicates with the TraCl server implemented in SUMO.

At each iteration of an experiment (see Algorithm 3),
an instance of the SUMO application is launched. In the
beginning of an iteration, the routes chosen by the drivers
are sent to SUMO. During the simulation, our applica-
tion program retrieves the travel times and the occupancy
of the road network links from SUMO. The prices of the
links are communicated from the link managers module
to the drivers module internally to our simulation pro-
gram. When a new iteration starts, a new SUMO instance

Simulation program

Roads prices

I

Link . | Chosen || SUMO
managers Drivers routes > |application
A A
;Road §Travel
ioccupancy time

Figure 2 Integration of our approach and SUMO. Dashed lines
indicate information exchanged via TraCl.
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Algorithm 3 Multiagent-based road pricing

procedure EXPERIMENT(n, I, €2, €, €5 K, Prax)
InitializeDrivers (I1, €2, Pmax) > from Algorithm 1

InitializeLinkManagers(eo, €, k) > from
Algorithm 2
i<0 > starts iterations counter
while i < n do
CalculateRoutes() > from Algorithm 1
DV «— ¢
forall/ € L do
V] < 0
end for
s<0 > starts timesteps counter
repeat
moveVehicles() > apply movement rules

foralld € D — D' do
if {d left link [ in this timestep} then
tii,l < {travel time spent on [}
end if
if {d entered link / in this timestep} then
vi<—v+1
PZ{)] < pi * Pmax
end if
if {driver d arrived at its destination} then
DY <« DV U {d)
end if
end for
s<s+1
untilD — DY = ¢
AdjustRoadsPrices(i) > from Algorithm 2
i<—i+1 > increase iterations counter
end while
end procedure

> increase timesteps counter

is launched and it receives the routes chosen by the drivers
for the new iteration.

Studied scenario

In this section we present the road network, the generated
load, our performance metrics, the different probability
distributions for generation of driver preferences, and the
other traffic management methods that are compared to
our approach in Section ‘Results and discussion’

Road network

The scenario studied in the present work is an abstract
6 x 6 grid network. It consists of 36 nodes connected by
60 one-way links as shown in Figure 3. All links have one
lane with the length of 300 m, except links from B3 to E3
and E3 to E5 (thicker lines in Figure 3) which have three
lanes. As the capacities of the links are not homogeneous,
this abstract scenario becomes more realistic. The total



Tavares and Bazzan Journal of the Brazilian Computer Society 2014, 20:15
http://www.journal-bcs.com/content/20/1/15

) H Phase
1
2¢C C {g;] C
3¢ b)
\ E——a =
4C O Phase
\ 2
5¢ d & | <]
6O O O QO O—

A B € D E F

Figure 3 The 6 x 6 grid scenario. Arrows show the direction of
roads. Thicker lines are the three-lane links. Phases of the traffic light
at intersection E2 are shown in the right picture.

length of the network considering all links and lanes is
about 20.5 km. This yields a maximum stationary capac-
ity of about 4,030 vehicles, considering that the length of a
vehicle plus the gap to the next is 5.1 m (SUMO’s default).

Drivers can turn to two directions at each intersec-
tion, except in the corners of the road network, in which
there is only one direction to turn. The free-flow speed is
13.89 m/s (50 km/h) for all/ € L, resulting in a f; of 21.60 s.
Every intersection has a traffic light with a green time of
25 s for each phase. Each phase corresponds to a set of
allowed movements. In the 6 x 6 grid network, there are
two phases at each intersection, i.e., one for each incoming
link. The picture on the right in Figure 3 illustrates the two
phases of an intersection. In the movement model imple-
mented in SUMO? (see Section ‘Simulation’), traffic lights
are necessary in order to allow vehicles from all direc-
tions to cross an intersection. Otherwise, one direction
is prioritized by the simulator and the vehicles on other
directions have to wait until the intersection gets empty
to cross it. This effect could generate misleading results of
our reinforcement learning approach for road pricing.

In this scenario, the probability distribution over the ori-
gins and destinations (2 of Algorithm 3) is uniform, that
is, every link has equal chance of being selected as ori-
gin or destination for any driver. In this road network,
there are multiple origins and destinations of trips; thus,
the number of possible routes between two locations is
relatively high.

Load generation and metrics

In order to test our multiagent road pricing approach, we
ran a prior simulation in our scenario to generate the road
network load to be used in our experiments.

In the load generation simulation, we insert vehicles
in the road network following this scenario’s 2 (see
Section ‘Road network’) until 900 vehicles are simultane-
ously using the network. Prior experimentation has shown
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that 900 vehicles yield a reasonable load in the 6 x 6 grid
network. That is, with fewer drivers, traffic management
is not needed as congestions seldom occur. On the other
hand, with more drivers, no traffic management method
would be effective as the alternative routes for a driver are
congested. Whenever a vehicle finishes its trip, we insert
a new one (with new origin and destination) in order to
keep 900 vehicles simultaneously running in the load gen-
eration simulation. This load is kept during a time window
of 3600 timesteps, which corresponds to 1 h in the real
world. We mark the last timestep of the time window as
the point of assessment of our metrics.

Figure 4 shows the number of vehicles per timestep.

We mark timestep 3830 as the last of the time window.
At the end of the load generation simulation, the depar-
ture times, origins, and destinations of all drivers that
were inserted in the road network are saved. These drivers
compose the D set in our experiments.

In order to assess the performance of the link man-
agers as a whole, we measure how many trips have been
completed from the beginning of the simulation until the
end of the time window of the load-generation simula-
tion (timestep 3830). We measure the completed trips as
a metric of successfulness of the link managers as a whole
because the higher the number of completed trips, the
higher the traffic efficiency. This happens because more
vehicles were able to use the road network in the same
time window.

The performance of the drivers is assessed through
the average costs of their trips (z). This cost is given by
Equation 6, where z, is the cost function of driver d, given
by Equation 2.

ZdeD Zd (6)

zZ=
DI

The lower the value of z, the higher the drivers’ welfare.
Ideally, a traffic management method should improve the
traffic efficiency without compromising the welfare of the
drivers.

Load-generation in grid network
1050
=
o 900
H
@ 750 —
c
E 600 3600 timesteps time window
?: 450 -
$ 300
>
% 150
*
0
230 3830
0 1000 2000 3000 4000 5000 6000
Timestep
Figure 4 Load generation for the grid scenario. Note the
beginning and finish of the time window of controlled load.
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Generation of drivers’ preference

In our experiments, we apply four different probability
distributions for selection of the preference coefficient of
drivers (py), i.e., four different IT:

1. All balanced (AB): always return 0.5

2. Time or credits (TC): return 0 with probability 0.5;
return 1 with probability 0.5

3. Uniform distribution (UD): return a value in the
interval [0, 1] with uniform probability

4. Normal distribution (ND): return a value following a
normal distribution with 4 = 0.5 and 6 = 0.15

In AB, all drivers consider travel time and credits expen-
diture with the same weight when calculating the cost for
traversing a link (Equation 3). In TC, about half of the
drivers try to minimize only credits expenditure (o; =
0) and the remaining try to minimize only travel time
(pg = 1). UD and ND yield more variability in the value of
p4- These scenarios are more likely to happen in the real
world, because costs are rarely perceived in the same way
by different individuals.

Other methods for comparison

In the global aspect (number of finished trips), our
multiagent-based road pricing approach is compared to
two other approaches: fixed road pricing and an iterative
dynamic user equilibrium® (DUE) method already imple-
mented in SUMO. In the individual aspect (average driver
costs), our approach is compared only to the fixed pricing
approach. This happens because the iterative DUE calcu-
lation method does not include the credits expenditure in
its model so that we cannot assess the performance of the
drivers regarding their credits expenditure.

In the fixed road pricing approach, the price of a given
link is initialized in proportion to its capacity, which is
calculated by its length times the number of lanes it has.
The link with the highest capacity receives the maximum
price Pmax. The price of the remaining links is a fraction
of Pmax. This fraction is the ratio of the capacity of the link
over the highest capacity among the road network links.
For instance, if a link has half of the maximum capacity, its
price is 0.5 - Pmax- In the fixed pricing approach, the prices
of the links do not change over the iterations. In this sit-
uation, any performance improvement obtained is due to
the adaptation of drivers to the road network.

The iterative DUE calculation method used in this work
is Gawron’s simulation-based traffic assignment [18]. In
this method, each driver d has a set of routes (P,) with
an associated probability distribution. At each iteration,
drivers choose their routes according to the probabil-
ity distribution over P;. When the iteration finishes,
the probability distribution is updated. The probability
of a route with low travel times increases, whereas the
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probability of a route with higher travel times decreases.
In the next iteration, drivers choose their routes according
to the updated probability distribution over P,. This pro-
cess is repeated until the distribution of the route choice
probabilities will become stationary for each driver or the
maximum number of iterations is reached. Hereafter, this
approach is called Gawron’s method.

In Gawron’s method, a driver d updates the travel times
of all routes in P; (and the probability associated with
each one) when an iteration finishes. Equation 7 illustrates
the update rule for the travel times of the routes in P;. In
this equation, Tz/i (S) is the travel time that driver d knows
for a route S € Py, 7(S) is the travel time of route S mea-
sured in the current iteration, P, is the route that driver
d has traversed in the current iteration and 8 € [0,1] is a
parameter that weights the travel time update of the routes
that driver d has not traversed.

T, (Pg) = t(Py)
(S =Bt +A—=B) -1 (S)VSePs\{Pd}

@)

For the route that the driver has traversed (P,), it uses
the actual travel time experienced in the current itera-
tion to update its cost. For the remaining, it weights the
travel time in the current iteration and the old travel time
recorded for the given route using a factor g.

Gawron’s method has two important parameters: the
number of routes each driver has in its set (|P4]) and
B that weights the travel time update of the routes that
the driver has not traversed. In our experiments, we used
the default values of Gawron’s method implemented in the
SUMO simulator: |P;| = 5and 8 = 0.9.

In Gawron’s method, drivers have global information of
the road network status, as the travel time update rule
for driver d routes (P;) uses updated information of the
routes that driver d has not traversed. For a complete
description of Gawron’s method, the reader should refer
to [18].

Results and discussion

In this section we present and discuss the results of our
experiments. Each experiment consists of n = 400 itera-
tions (or learning episodes) of Algorithm 3. Regarding the
parameters of the link manager agents, we configured the
duration of the exploration stage as x = 200 iterations.
This way, the link managers will gain knowledge during
the first half of an experiment and they will exploit it in the
next half. In the exploration stage, ¢ = 1 and € = 0.01.
With these values, the link managers have a high explo-
ration rate in the beginning of the exploration stage and
a low exploration rate at its end. The learning rate « is
set to 0.3. Prior experimentation has shown that this value
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yielded the best results for the link managers in the 6 x 6
grid scenario.

The maximum price Pny is set to 100 units of an arbi-
trary currency. This way, the link managers can choose
the prices of the links as one of the values in the set
{0,10,...,100}.

In our results, for each performance metric we plot
four charts, one for each probability distribution (/7) for
the selection of the preference coefficient of drivers (o).
The four probability distributions (explained in Section
‘Generation of drivers’ preference ’) are all balanced (AB),
time or credits (TC), uniform (UD), and normal (ND).

Performance of link managers and drivers

The global performance of the link managers is measured
as the number of finished trips in a given time window.
The performance of the drivers is assessed through the
average costs of their trips. Both performance metrics
were introduced in Section ‘Load generation and metrics’

Figure 5 shows the number of finished trips along
the iterations for the Gawron’s method, the fixed pric-
ing approach and our multiagent based road pricing
approach. Figure 6 shows the average costs of drivers
along the iterations for fixed pricing and our approach.

For the global performance (Figure 5), Gawron’s method
yields the best results. As its model does not include the
credits expenditure in the cost function of the drivers, its
results are the same for all /7. Gawron’s method is taken as
the baseline for the assessment of the global performance
due to the advantage it has over the other methods, i.e.,
the drivers have global information of the road network
status (see Section ‘Other methods for comparison’).

For the individual performance, Gawron’s method is
not included because we cannot compare the drivers’
costs obtained with Gawron’s method against the other
two methods. In the used implementation of Gawron’s
method, the cost function of the drivers considers only the
travel time whereas in fixed pricing and in our approach,
the drivers’ cost function is a combination of travel time
and credits expenditure.

A general aspect of the fixed pricing and our approach
in the global performance (Figure 5) is the initial decrease
in the number of completed trips followed by an increase
that reaches a level that is higher than the initial one. This
is more visible when IT is AB, UD or ND. This happens
because drivers’ adaptation involves an initial exploration
of the road network. Drivers’ known travel times are ini-
tialized optimistically as the free-flow travel time (see
Algorithm 1). For this reason, the unexplored links are
more attractive for the drivers. This also explain why this
decrease is less perceived when [T is ‘time or money. In
this case, about half of the drivers (the ones with p = 0)
do not care about travel time, thus, the optimistic travel
time initialization has no effect on them.
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After the decrease in the global performance, it rises to a
higher level than the initial. This happens because drivers
have gained knowledge about the road network thus being
able to build better routes than the initial. This alleviates
congestions in the road network, allowing more drivers
to complete their trips in the same time window. Drivers’
welfare also increases, as their costs decrease along the
iterations.

After the initial exploration stage, the adaptation of the
drivers stops almost completely. In this situation, traffic
flow in the road network becomes stationary. As prices
do not change, drivers have no incentive for using dif-
ferent routes. With our approach, performance oscillates
greatly during the exploration stage of the link managers
(which goes from iteration 1 to 200), especially in the
initial iterations where the exploration coefficient (¢) is
high.

In general, even without an explicit coordination mech-
anism among link managers, our approach enhances the
global performance without compromising drivers’ wel-
fare. Especially when IT is AB or UD, global performance
is greatly enhanced. In such cases, our approach success-
fully provides drivers with an incentive to spread them-
selves over the road network, thus allowing more drivers
to complete their trips in the same time window.

In all cases, the global performance of our approach
almost reaches the baseline (Gawron’s method). When IT
is TC, global performance with fixed pricing is very sim-
ilar compared to our approach. In this case, the drivers
were able to improve global performance by themselves.
This also happens when IT is ND, but, in this case, the
convergence takes more iterations. When I7 is TC and the
pricing is fixed, the expenditure-minimizer drivers avoid
the main roads of the road network (see Section ‘Road
network’) as they have greater capacity thus are initial-
ized as the more expensive links in the fixed pricing
approach. This facilitates the route choice of the time-
minimizer drivers as they do not dispute the fastest roads
with the remaining drivers. This explains the good global
performance of the fixed pricing approach when 1T is TC.

Regarding the performance of the drivers, it varies for
different I1. It can be seen in Figure 6 that the perfor-
mance of the drivers is better (costs are lower) when the
variability of their preference is higher: costs when IT is
UD or ND are lower compared to the cases when IT is
AB or TC. For all I7, drivers’ costs are lower with fixed
pricing compared to our approach. However, these losses
of the drivers are not as high as the gains achieved in
the global aspect, when IT is AB or UD. In such cases,
the number of completed trips is at least 40% higher with
our approach whereas drivers’ costs, on average, are about
16% higher from iteration 200 onwards. When IT is ND,
gains in global performance with our approach are similar
to the losses in drivers’ costs, compared to fixed pricing:
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the number of completed trips with our approach is 4%
higher and the drivers’ costs are 4% higher as well, from
iteration 290 onwards. Also, when I7 is ND, the stabiliza-
tion of global performance is faster with our approach: it
takes about 40 iterations to stabilize whereas with fixed
pricing, stabilization is achieved after 290 iterations. Only
when [T is TC that the losses in drivers’ costs are not
compensated by gains in global performance: the num-
ber of completed trips with fixed pricing is very close to
our approach, whereas drivers’ costs are about 12% higher
with our approach from iteration 100 onwards.

Cases of higher variability of drivers’ preferences (UD
and ND) are more realistic and in these cases our
approach vyielded satisfactory results: the global perfor-
mance almost reached the baseline, whereas the per-
formance of the drivers did not decreased significantly
compared to the fixed pricing approach. In terms of traf-
fic efficiency, this result is desirable, as more drivers are
able to use the road network and none of them have a high
decrease in performance compared to when fewer drivers
used the road network.

Alignment of local and global rewards

Results in Section ‘Performance of link managers and
drivers’ have shown that the reinforcement learning
scheme for road pricing is useful for the improvement of
traffic efficiency on the studied scenario. However, as the
reward of a link manager is based on local information
(the number of vehicles that pass through its managed
link), an investigation on how the performance of individ-
ual link managers is aligned to the global improvement of
traffic efficiency is useful.

For an initial assessment on how individual and global
performance are aligned, we plot the maximum, mini-
mum, and average reward of the link managers along the
experiment iterations, for each /T in Figure 7.

The average performance of all link managers improves
along the iterations in all charts of Figure 7. This con-
firms the results in Section ‘Performance of link managers
and drivers’ As the reward is a measure of the vehicular
flow in a link, an increase in the overall traffic flow in the
road network will result in more trips being completed by
the drivers. Besides, the maximum and minimum rewards
also increase along the iterations. This means that the per-
formances of the best and worst link managers are aligned
to the average performance. However, the link managers
whose performance are the best and the worst are not
necessarily the same throughout the experiment as the
distribution of the load in the road network changes along
the iterations. Table 1 shows which link managers had the
best and worst performance in the first and last iterations
for each IT.

The performance of the best and worst link managers is
aligned to the average performance of the link managers,
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Table 1 Maximum and minimum rewards of link managers
in first and last iterations for each IT

I1=AB no=TC Im=uD I =ND
Min first F4-E4 F4-E4 F4-E4 F4-E4
Min last F4-E4 F4-E4 E4-D4 B2-A2
Max first A4-A5 A4-A5 A4-A5 C3-D3
Max last F3-F2 F3-F2 F3-F2 F3-F2

as shown in Figure 7. Also, the reward of all link managers
is higher in the last iteration compared to the first. This
could be observed after an analysis of the reward of each
link manager. This means that there is no link manager
whose performance drops while the average performance
of other link managers improves, comparing the first and
last iterations.

It should be noted, however, that there are iterations
where the average rewards of the link managers drop. For
example, during the exploration phase (the first 200 iter-
ations), Figure 7 shows that the rewards of the link man-
agers drop several times, but they rise again in subsequent
iterations.

In general, the local and global performances are
aligned. In the studied scenario, this does not mean that
a link manager should set a price to become very attrac-
tive in order to a high number of vehicles try to use it,
because in this case, this could create jams near the exit of
its link. This would congest the link itself, because if cars
are not able to exit the link, a queue is created and this
would reduce traffic flow and the reward of the link, as
well as decrease the global performance. Rather, the align-
ment of the local and global performances means that the
increase of traffic flow on a link depends on the capac-
ity of its outbound links to receive this flow. With the
proposed reinforcement learning scheme, link managers
could figure out which price would result in an attrac-
tiveness for drivers that generates a traffic flow that its
outbound links could handle. These outbound links, on
their turn, had to adjust their prices to disperse the drivers
they are receiving in an efficient way. This is done without
an explicit coordination mechanism.

Conclusions

Overview

In this work we modeled a transportation system as an
heterogeneous multiagent system with agents with differ-
ent goals: a link manager agent has the goal of maximiz-
ing the vehicular flow in its managed link, and a driver
agent has the goal of minimizing its own travel costs.
Drivers have different preferences regarding their cred-
its expenditure and travel time. We modeled different
probability distributions for the assignment of the drivers’
preferences.
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The reinforcement learning scheme used by our link
managers to update road prices was tested in a road
network where a constant load of vehicles is kept for
approximately 1 h. In this time window, our experiments
showed that our approach is useful as more drivers were
able to complete their trips compared to the fixed pricing
approach. Even without an explicit coordination mech-
anism among the link managers, a global performance
improvement was observed in the road network. More-
over, with our approach, drivers’ costs remained close
to the costs obtained with fixed pricing, and a higher
variability on the drivers’ preference yielded better perfor-
mance for the drivers.

In our experiments, the load that populated the road
network was the same between iterations. This con-
tributed to the results obtained with the fixed pricing
approach. As the price does not change with the load,
its performance may be compromised if the load varies,
whereas our approach is adaptive and should be able
to deal with varying load. This is a generalization from
the fact that with our approach, the global performance
improves faster compared to fixed pricing in most of the
tested cases. In all tested cases, our approach reached a
global performance close to a method where drivers have
global information of the road network status. This was
not the case for the fixed pricing approach.

Model limitations

Our driver agent is limited in relation to the update rule
of drivers’ knowledge. The values of the known travel
time and price of a link are completely overridden by
the ones that the driver collects on its current trip (see
Algorithm 3). This can lead to an everlasting aversion
to a single bad experience. For example, if a link is usu-
ally not congested but get congested in the day that a
given driver tests it, the given driver may never return to
the link. However, even with this limitation in our driver
agent model, our results are satisfactory, as the link man-
agers were able to improve traffic efficiency, compared to
a fixed pricing approach, without significant losses for the
drivers.

Our link manager agent model is limited with rela-
tion to the convergence of the adopted learning mecha-
nism. The adopted mechanism to balance exploration and
exploitation (see Section ‘Link manager agents’) does not
have a convergence guarantee. This happens because the
environment is nonstationary for the link managers and
they do not build a model of the environment dynam-
ics. The adoption of a model-free learning mechanism
is done for an initial evaluation of reinforcement learn-
ing as a mean to calculate a road pricing policy. Our
experimental results (see Section ‘Results and discussion’)
show that an approach based on reinforcement learning is
promising. The results obtained by the adoption of more
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complex learning mechanisms can be compared to the
ones obtained here.

Future work

In our experiments, drivers’ costs obtained with road
pricing via reinforcement learning remained close to the
costs obtained with fixed pricing and a higher variabil-
ity on the drivers’ preference yielded better performance
for the drivers. A scenario with higher variability on the
drivers’ preference is more realistic than the case when
all drivers have few preference values to be assigned.
However, to determine a probability distribution for the
selection of drivers’ preference that accurately reflects
the human behavior is an open challenge, although some
works geared towards the analysis of human route choice
behavior can be found. For example, [19] and [20] present
reinforcement learning approaches to reproduce human
decision making in corresponding experimental studies.
However, these studies are based on two-route scenarios.

Another interesting point for investigation would be
the existence of competitive link management companies
where each company would manage a portion of the road
network. In the present work, the whole road network
is managed by independent link managers. A complex
scenario with competitive link management companies
would be an extension of the work done by Vasirani
and Ossowski [21]. The authors investigated whether
two competitive companies managing two links in par-
allel could learn the optimal pricing policy calculated
analytically.

The limitation of our driver agent model discussed in
Section ‘Model limitations’ can be tackled by making the
route choice probabilistic, such as in [1,10,18], where the
probability of a route to be chosen is inversely propor-
tional to its cost. Also, a more accurate driver agent model
in relation to the knowledge update rule can be used.
This could be done by making drivers retain part of the
past experience by adopting a memory update parameter,
which would be similar to a learning rate, for the update
of known link costs.

Another extension of the driver agent model is related
to its cost function: currently, it is a linear relation of travel
time and credits expenditure. This can be changed to a
nonlinear relation, as in a case where the cost component
related to travel time would increase quadratically past
a threshold. This could capture situations where arriving
at work ‘2x” minutes late would be ‘4 times worse’ than
arriving ‘x’ minutes late, for example.

The limitation of our link manager model discussed in
Section ‘Model limitations’ is related to the absence of
guarantees to deal with the nonstationarity of the environ-
ment by the link manager agents. The nonstationarity of
the environment comes in two ways: by the route choice
made by drivers and by the actions of other link managers.

Page 14 of 15

In the first case, drivers changing routes even when link
prices do not change can result in different rewards for
the same action of the link managers. This issue can be
tackled by the adoption of a reinforcement learning mech-
anism with context detection [22], for example, where link
managers would be able to capture the dynamics of the
environment. In the second case, as link managers do not
learn the value of joint actions, when a link manager acts,
this generates a new traffic pattern that is perceived by
the other link managers. A coordination mechanism that
could be adopted by the link managers can be based in
difference reward [23], such as in [11]. The mechanism of
difference reward considers the contribution of an agent
in the global outcome, and in [11], it yielded better results
compared to reward based in local perception.

In the present work, our driver agent is modeled regard-
ing route choice only. Future work could investigate not
only the drivers route choice but the trip planning as a
whole, that is, departure times, mode and route choices
when a road pricing scheme is being used. Arnott et al.
[7] study the choice of routes and departure times in
a single origin-destination scenario. Several works fol-
lowed up since then, and we remark the comprehensive
study presented in [10], where citizens have daily activity
plans and have to decide departure times, transporta-
tion modes, and routes. Future work can extend this by
implementing and assessing the impact of variable pricing
approaches.

The microscopic traffic simulation model adopted in the
present work provides a precise representation of the road
network and the physical location of the drivers in it. In
future studies, this will allow us to implement features
such as route recalculation during a driver’s trip under a
given road pricing scheme. Also, we will be able to analyze
the effect of technologies such as vehicle-to-vehicle com-
munication to expand the drivers’ knowledge of the road
network status.

Endnotes

2Experiments in this paper were performed with
SUMO 0.16.0.

bIn equilibrium, no agent can decrease its cost by
unilaterally changing its route. Dynamic equilibrium
refers to the situation where the costs of the links are
time-dependent.
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