
 

 

 

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

INSTITUTO DE INFORMÁTICA 

CURSO DE CIÊNCIA DA COMPUTAÇÃO 

 

 

 

 

 

 

 

 

JONATHAS GABRIEL DIPP HARB 

 

 

 

 

 

Performance Evaluation of an Uncheatable Benchmark for Cloud Systems 
 

 

 

 

 

 

 

Trabalho de graduação realizado em convênio de 

dupla diplomação com a Technische Universität 

Berlin. 

 

 

Orientador: Prof. Dr. Marcus Ritt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Porto Alegre 

2014 



2 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

Reitor: Prof. Carlos Alexandre Netto 

Vice-Reitor: Prof. Rui Vicente Oppermann 

Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco 

Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb 

Coordenador do Curso de Ciência da Computação: Prof. Raul Fernando Weber 

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro 

 



3 

 

RESUMO ESTENDIDO 

 

1 COMPUTAÇÃO EM NUVEM 

A Computação em Nuvem vem ganhando cada vez mais atenção devido aos 

benefícios econômicos que ela traz por disponibilizar recursos computacionais para uso 

através da rede. Este paradigma evita a necessidade de comprar e manter hardware e software, 

uma vez que um determinado consumidor pode alocar e utilizar recursos sob um método de 

cobrança de “pague conforme o uso”. A Computação em Nuvem pode ser definida como um 

modelo para habilitar acesso conveniente e conforme a demanda, através da rede, a um 

ambiente compartilhado de recursos computacionais configuráveis, tal como servidores, 

aplicações e serviços. Para que este paradigma seja mais bem entendido, alguns conceitos 

básicos devem ser introduzidos. A “Nuvem” refere á um ambiente de tecnologia da 

informação que contém recursos computacionais que estão disponíveis remotamente, através 

da rede. Um provedor refere à entidade que provê recursos computacionais na nuvem. Um 

consumidor refere àquele que utiliza recursos computacionais na nuvem.  

Um dos modelos de serviço mais ofertados na nuvem é a infraestrutura (do inglês 

infrastructure-as-a-service, IaaS), que provê a consumidores acesso a ambientes completos 

onde o nível de controle é o maior dentre o de todos os outros serviços. Neste modelo, a 

infraestrutura corresponde a ambientes virtualizados que são disponibilizados como Máquinas 

Virtuais (MV). MVs podem ser vistas como partições logicas isoladas de um hardware físico 

que atuam isoladamente. A criação e manipulação de MVs é responsabilidade do Hipervisor. 

No contexto da Computação em Nuvem, consumidores pagam por MVS que são colocadas à 

disposição para uso. Apesar de terem total controle sobre suas MVs, consumidores não têm 

controle algum sobre a estrutura responsável pelo provimento de tais recursos, ficando esta 

sob total controle dos provedores. Como para os provedores mais recursos significam mais 

clientes e maior lucro, a motivação ao não cumprimento do que foi acordado pode ser grande. 

Afirmar que o serviço está sendo provido corretamente pode ser um problema para 

consumidores. Uma solução para tal problema é avaliar os recursos providos através do uso 

de benchmarks resistentes à adulteração, que evitam que seus resultados sejam alterados por 

provedores mal-intencionados. Entretanto, o processo de benchmarking consome recursos e 

isso significa despesas para o consumidor. No geral, é necessário decidir se o esforço do 

processo de benchmarking na nuvem vale a pena ou não. Deste fato originou-se a proposta 

deste trabalho, cujo objetivo é concluir sobre o impacto e desempenho de um benchmark 

resistente à adulteração em um sistema em nuvem através da elaboração de um experimento. 
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2 BENCHMARKING NA NUVEM 

Em computação, benchmarking é o ato de executar um programa a fim de avaliar o 

desempenho de um objeto. Um objeto pode ser tanto um computador (ou uma parte específica 

como o processador) quanto um serviço ou recurso disponibilizado na nuvem. Programas de 

benchmark têm propriedades que permitem que se conclua seguramente acerca do 

desempenho dos objetos avaliados. No contexto de Computação em Nuvem, benchmarking 

ainda é algo novo, principalmente devido ao fato de que abordagens de benchmarking 

tradicionais requerem total controle e completa informação sobre o objeto em questão. Como 

dito anteriormente, na nuvem apenas os provedores possuem esse privilégio e pouco é 

disponibilizado aos consumidores, o que torna a tarefa complicada. Para os fins deste 

trabalho, o processo de benchmarking na nuvem tem como objetivo a avaliação de 

componentes que de fato estão sob controle do provedor, como a infraestrutura virtualizada. 

Devido ao fato de terem o controle da infraestrutura, provedores podem detectar que um 

programa de benchmark está sendo executado e, ao fim da execução, adulterar o resultado 

para passar uma imagem falsa do sistema. Portanto, a propriedade de um benchmark de ser 

resistente à adulteração se torna fundamental. 

No contexto do cenário descrito até agora, Falk Köppe desenvolveu em seu trabalho 

um benchmark resistente à adulteração para sistemas na nuvem, chamado aqui de POW [20]. 

O POW baseia-se em um sistema de desafio/resposta que avalia o desempenho do 

processador. Nesses tipos de sistemas, desafios são enviados ao objeto testado para que o 

mesmo calcule a solução e retorne a resposta. Uma propriedade é que o objeto testado não 

tem outra escolha senão a de calcular o que for necessário, sem atalhos. Para os fins deste 

trabalho, assumiu-se que de fato o POW benchmark é resistente à adulteração. Apesar de ter-

se teoricamente resolvido o problema da confiança na nuvem, a execução de um benchmark 

consome recursos e avaliar o quão impactante ele pode ser para um sistema em nuvem é, 

como já mencionado, motivação para este trabalho.  

 

3 DESEMPENHO DE UM BENCHMARK RESISTENTE À ADULTERAÇÃO NA 

NUVEM 

O ponto inicial da elaboração do experimento foi a definição do objetivo, dos cenários, 

das ferramentas e da metodologia de coleta e análise de dados. O objetivo do experimento é 

avaliar o impacto do POW benchmark desenvolvido em [20] em um sistema na nuvem bem 

como avaliar a precisão de seus resultados em diferentes situações. Dois cenários foram 

definidos, o primeiro correspondendo a uma configuração na nuvem típica, onde não há 
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processo de benchmarking; Neste cenário as aplicações do consumidor executam no ambiente 

sem interferência de outras aplicações. O segundo cenário compreende a execução da mesma 

aplicação do consumidor, porém adiciona a execução do benchmark em diferentes situações: 

uma onde a execução é constante ao longo do tempo e outra onde o benchmark atua como um 

serviço em plano de fundo, com um fluxo de execução intervalado. As ferramentas 

escolhidas, necessárias à execução do experimento, foram um hipervisor, responsável pela 

criação e gerenciamento de máquinas virtuais que simularam a infraestrutura na nuvem, e 

uma ferramenta que simulou típicas aplicações de usuários, a fim de aplicar cargas de trabalho 

relevantes. As máquinas virtuais criadas possuíam configurações idênticas, exceto pelo fato 

de que uma possuía um núcleo de processamento e a outra possuía dois núcleos. A diferença 

no número de núcleos tem o intuito de observar diferenças nos resultados, uma vez que o 

POW benchmark foi desenvolvido apenas para máquinas de um núcleo. A ferramenta de 

simulação de aplicação de usuário escolhida foi a Phoronix Test Suite. A Phoronix é uma 

plataforma de benchmarks que compreende diferentes testes para diferentes objetos, incluindo 

processador. A escolha de uma plataforma de benchmarks é conveniente, pois com 

benchmarks é possível de se aplicar cargas de trabalho reais em domínios específicos, tal 

como o dos processadores. 

Com os cenários e as ferramentas definidas, foi especificada a metodologia utilizada 

no experimento para a coleta e analise de dados. Primeiramente, foi considerada a avaliação 

apenas em picos de processamento. Logo, a plataforma Phoronix utilizava praticamente toda a 

capacidade de processamento das MVs para simular os picos. O POW benchmark coletava 

medidas apenas nos picos de processamento e em intervalos de tempo predeterminados. O 

intervalo era um parâmetro em Milissegundos que deveria ser respeitado até a coleta da 

próxima medida. Note que um parâmetro de zero Milissegundo indica uma execução 

constante, e qualquer valor maior do que zero torna o POW num serviço em plano de fundo. 

A métrica coletada pelo POW era o tempo necessário para a resolução do desafio. A Phoronix 

executava um conjunto de testes de processador por dez vezes a fim de prover resultados 

precisos. A Phoronix foi executada nos dois cenários, a fim de possibilitar a comparação de 

seus resultados com e sem o impacto da execução do POW. O POW, por sua vez, foi 

executado apenas no segundo cenário, impactando a plataforma Phoronix, em diferentes 

situações, onde cada situação corresponde a um intervalo de tempo.  

Para avaliar o impacto do POW benchmark no sistema, foi realizada uma comparação 

dos resultados obtidos pela plataforma Phoronix nos dois cenários. A diferença dos resultados 

permitiu obter de fato o impacto resultante. Para avaliar a precisão fornecida pelo POW nas 
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diferentes situações, foi utilizado o coeficiente de variação. O coeficiente de variação é uma 

medida de dispersão que é utilizada para estimar o desvio padrão expresso como porcentagem 

da média. Uma vantagem do uso deste coeficiente é que permite a comparação de diferentes 

conjuntos de dados, como os das diferentes máquinas virtuais. É importante relembrar que 

todo o processo descrito até agora foi realizado para ambas as máquinas virtuais, pois a 

plataforma Phoronix se beneficia de núcleos extras e, portanto, sua execução se torna mais 

rápida e por consequência o pico de processamento é menor. Como o POW benchmark 

apenas coletava medidas nos picos de processamento, não se beneficiando de núcleos extras, é 

evidente que na máquina virtual de dois núcleos tinha-se um tempo menor para a coleta. 

 

4 ANÁLISE DOS RESULTADOS 

O primeiro ponto a ser relatado foi o tempo de execução da plataforma Phoronix. 

Como o esperado, levou-se 4 horas para a execução completa na máquina virtual de dois 

núcleos e 7 horas na de núcleo único. Isto significa que o POW benchmark teve 

significativamente menos tempo para a coleta de suas medidas no primeiro caso. Ao final da 

série de execuções, foi obtida uma quantidade de dados significativa (cerca de 4 GB) para 

análise. O primeiro resultado a se destacar é que de fato o POW benchmark produz impactos 

bem significativos que variam conforme a escolha do intervalo de tempo de espera. O gráfico 

na figura 5.1 mostra o impacto médio nas duas máquinas virtuais. 

 

Figura 5.1 – Impacto médio nas duas máquinas virtuais. 
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Visivelmente o impacto é maior quando o tempo de espera é zero. Conforme o tempo 

de espera é incrementado, maior se torna o intervalo entre a obtenção de medidas e menor se 

torna o impacto. É possível observar, com o comportamento da curva, que a tendência é que o 

impacto seja mínimo, tendendo a zero, em intervalos de tempo muito grandes. A diferença 

observada comparando-se as duas máquinas virtuais se dá pelo fato de que como a plataforma 

Phoronix se beneficia do núcleo extra e o POW benchmark não, o impacto resultando acaba 

sendo menor quando da utilização de núcleos extras.  

A segunda parte da análise consistiu em concluir sobre a precisão dos resultados 

obtidos pelo POW benchmark. É importante ressaltar que o POW benchmark coletou um 

número diferente de medidas nas diferentes escolhas de intervalos de tempo e o intuito era 

verificar o comportamento em tais situações. O gráfico na figura 5.2 mostra o coeficiente de 

variação da precisão para ambas as máquinas virtuais.  

 

Figura 5.2 – Coeficiente de variação da precisão para as duas máquinas virtuais. 

 

A primeira observação feita é que os resultados acabaram sendo diferentes dos 

esperados. Foi suposto que o maior número de medidas coletadas em intervalos menores de 

espera fosse resultar em uma precisão maior. Isto, entretanto, não ocorreu. O que de fato 

verificou-se foi que não há uma tendência clara de comportamento. Entretanto, é possível de 

se observar, por exemplo, que o coeficiente de variação pouco muda nas duas máquinas 

virtuais. Especialmente na máquina de um núcleo os valores são bem próximos, mesmo com 

intervalos de tempo bem distantes. Uma possível explicação para a falta de uma tendência é 
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um fator de aleatoriedade presente no POW benchmark, melhor explicado em [20]. A pouca 

diferença nos coeficientes de variação para diferentes situações é explicada pelo fato de que, 

para todas as situações testadas neste experimento, o número de medidas coletadas pelo POW 

benchmark superou o número de medidas mínimo estipulado em [20] para obter uma precisão 

adequada. Este número superior de medidas só foi possível de ser obtido devido ao longo 

período dos picos de processamento. Um resultado importante disso é que tanto uma escolha 

por um intervalo menor quanto por um intervalo maior resulta em uma precisão de certa 

forma constante, porém a diferença no impacto é significativa. O pico de processamento 

considerado neste experimento foi suficientemente longo para permitir uma escolha de 

intervalo maior, diminuindo o impacto e mantendo a precisão. 

 

5 CONCLUSÃO 

O objetivo deste trabalho foi avaliar o desempenho de um benchmark resistente à 

adulteração desenvolvido para sistemas em nuvem, o que se acredita ter sido atingido com o 

experimento proposto e os resultados apresentados. Esta tese guiou o leitor através dos 

conceitos de Computação em Nuvem, benchmarking, e a relação entre eles. A motivação que 

originou este trabalho também foi detalhada: a falta de informações acerca do impacto 

causado por benchmarks resistentes à adulteração na nuvem. 

Um experimento foi elaborado a fim de verificar o impacto de um benchmark 

especifico que atende aos requisitos de ser resistente à adulteração e de ser desenvolvido para 

atuar na nuvem. A capacidade de prover resultados precisos bem como manter tal precisão em 

diferentes situações também foi avaliada. O experimento, que simulou um ambiente em 

nuvem e também cargas de trabalho que representassem aplicações reais de consumidores, 

consistiu em testar o benchmark atuando tanto continuamente quanto como um serviço em 

plano de fundo, dividindo o trabalho ao longo do tempo para minimizar os impactos. 

Observou-se que para este experimento específico uma divisão do trabalho em tempos mais 

longos não comprometeu a precisão dos resultados, porém diminuiu significativamente o 

impacto. Por fim, este trabalho mostrou resultados que podem representar a configuração de 

cenários gerais na nuvem.  
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Abstract

Cloud Computing is gaining increasing attention because of the economic
benefits it brings by making computing resources available over the network
for use in a pay-as-you-go billing strategy. This avoids the need of purchasing
and maintaining hardware and software. In the cloud, providers may have
the incentive to cheat by providing less resources than agreed and charg-
ing consumers for the full amount of resources. One solution is to evaluate
the provided resources through the use of uncheatable benchmarks, that are
resistant to tampering. However, benchmarking is resource consuming and
that means expenses to consumers that should then decide whether the effort
is worth it or not.

This work presents an experiment that allows one to assess on the perfor-
mance of an uncheatable benchmark for cloud systems and also gives an idea
to consumers on how to proceed and on what to expect. The experiment is
comprised by virtual machines that simulate typical cloud environments and
also comprised by a tool that simulates a consumer’s application. All com-
ponents are carefully chosen to provide representative results. The findings
show the impact caused by the benchmark as well as the variation in the
precision of the results produced by such a benchmark.
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Zusammenfassung

Cloud Computing gewinnt immer mehr Aufmerksamkeit wegen der wirt-
schaftlichen Vorteile, die es bringt. Cloud computing macht IT-Ressourcen
über das Netzwerk für die Verwendung in eine Pay-as-you-go-Abrechnung
verfügbar. Dies vermeidet die Notwendigkeit der Anschaffung und Wartung
von Hardware und Software. In der Cloud können die Anbieter den Anreiz
haben zu betrügen indem weniger Ressourcen als vereinbart zur Verfügung
gestellt, aber vollständig abgerechnet werden. Eine Lösung ist, die bereitge-
stellten Ressource durch den Einsatz von fälschungssichere Leistungsmessun-
gen zu bewerten. Allerdings verbrauchen Benchmarks Ressourcen, und das
bedeutet Kosten für die Verbraucher, die dann entscheiden sollten, ob der
Aufwand sich lohnt oder nicht.

Diese Bachelorarbeit stellt ein Experiment vor, das es erlaubt die Leistung
eines uncheatable Benchmark für Cloud-Systeme zu bewerten und gibt den
Verbrauchern einen Vorstellung davon, wie sie verfahren können und was
sie erwartet. Das Experiment wird auf virtuellen Maschinen durchgeführt,
die typische Cloud-Umgebungen zu simulieren. Die Werkzeuge, die die An-
wendung eines Verbraucher simulieren, werden sorgfältig ausgewählt, um re-
präsentative Ergebnisse zu liefern. Die Ergebnisse zeigen die Auswirkungen
die der Benchmark verursacht sowie seine Präzision.
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Chapter 1

Introduction

Computing has become part of people’s routine and may be delivered nowa-
days in different manners. Among them, computing delivered specifically as
a service under the term Cloud Computing is gaining increasing attentions.
Cloud computing has the potential to transform part of the IT industry by
enabling the offering of computing resources over the network and bringing
economic benefits. Users no longer need to purchase and maintain hardware
and software resources, instead, they can make use of computing resources
that are available in a pay-as-you-go billing strategy and pay only for the
time they use such resources. In this paradigm, a service provider delivers
the agreed amount of resources and at the same time starts to apply the
correspondent bill, which depends on the time of use. The contract that
stipulates the amount of resources to be provided as well as the obligations
is called the Service Level Agreement (SLA). The SLA represents the trust
relation between consumers and providers.

However, in cloud computing the possibility of cheating on the SLA causes
consumers to want to monitor and evaluate performance of the resources, in
order to check if what was agreed is being delivered. In order to achieve
that, benchmark programs should be used. More precisely benchmarks that
are resistant to tampering are preferred, as the provider may be able to
sabotage results. However, benchmarking is resource consuming and in cloud
computing it means expenses. This means that consumers may have a hard
time deciding whether to benchmark or not the provided resources.

That said, this work wants to assess on the performance of a specific
uncheatable benchmark for cloud systems in order to give an idea to con-
sumers on how to proceed and on what to expect. To achieve that, an exper-
iment comprised by two scenarios is proposed. The scenarios can be seen as
real cloud configurations and the procedures as well as the tools and choices
used to represent such scenarios are carefully chosen to provide representative
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2 CHAPTER 1. INTRODUCTION

results. In a nutshell, the experiment consists of running an application on
virtual machines that represent the cloud environments. Such application is
assumed to simulate a typical consumer’s application. The next step is then
to evaluate the virtual machines with the chosen uncheatable benchmark.
With the experiment this work gathered data that allowed one to conclude
on the impact caused by the uncheatable benchmark as well as to conclude
on the precision of its results and on the important relation impact-precision.

The first step of this work is to explain the basis regarding cloud comput-
ing and its technologies. The SLA and the need for monitoring and evaluating
cloud systems is explained and the points of interest for this work are touched
in details. This step is described in the chapter Cloud Computing.

The second step is focused on computing benchmarking and details its
goals as well as characteristics. In addition, this step consists of relating
computing benchmarking with cloud computing under the term cloud bench-
marking, which is explained in details from the point of view of this work.
Furthermore, the so-called uncheatable benchmarks are presented and also
the short theory behind them. The chapter that comprises this step is named
Benchmarking.

Afterwards, the experiment itself is described and explained as well as
everything that it comprises. This includes the specification of the scenarios
as well as the reasons for the chosen tools that together form the experi-
ment. Also in this step the methodology used to collect and analyze the
data is detailed. The chapter that comprises all this information is named
Performance of an uncheatable benchmarks for cloud systems.

Finally, the chapter named Analysis presents the findings originated from
the data gathered on the experiment. It gives an idea on how consumers can
proceed in general cases as well as on what they can expect from cloud
benchmarking.



Chapter 2

Cloud Computing

This chapter presents cloud computing, the basis for this work. It aims to
introduce the researched literature and also provide the knowledge needed to
better understand the context and the motivation of this thesis.

2.1 Cloud Definition and Concepts

Over the years, the term cloud computing has been defined differently in
several literatures, the idea of shifting infrastructure to the network has at-
tracted many users to migrate to the cloud. Among some formal definitions
proposed in the community, the one given by the US National Institute of
Standards and Technology (NIST) includes widely accepted and used terms.
The NIST defines cloud computing as “a model for enabling convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., servers, applications and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.”[1].
In addition, the cloud computing model is still composed by three service
models, four deployment models, and five characteristics. The service mod-
els and the deployment models are to be approached in a dedicated section.
The following characteristics are essential part in the definition of cloud com-
puting. Basically, one can see cloud computing as a model comprised by:[1]

• On-demand self-service: consumers can access additional computing
resources on demand without necessity of interaction with providers.

• Broad network access: computing resources are available over the In-
ternet for any device to access through standardized mechanisms

• Resource pooling: the computer resources can be hosted anywhere and
serve multiple consumers according to a demand model.

3
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• Rapid elasticity: computing resources can be elastically provided, so
that the varying consumer demand can be satisfied at any time.

• Measured Service: computing resources used by consumers are moni-
tored and measured, so that the pay-per-use model is possible.

The above definition of cloud computing as well as the characteristics
given by the NIST aim to provide a baseline for further discussions regarding
this paradigm. In fact, there are many opinions on what cloud computing
can actually mean: from renting several virtual servers and loading applica-
tions on it to just storing huge amounts of data. As one can notice, a wide
range of options could be related to this paradigm. That said, the definition
given by the NIST is considered here as covering all the relevant meanings
for this work. In addition to that, [2] refers to computing resources in the
cloud as “often virtualized resources”; Yet to be approached, cloud comput-
ing incorporates virtualization as well as several others concepts that have
already been established; By doing so, cloud computing can be seen as a
new paradigm just in the way it promotes changes on developing, deploying,
maintaining and paying for applications and underlying infrastructure[3]. In
this new model of providing computing resources as a service through the
Internet, it becomes important to have the knowledge about some basic con-
cepts and cloud computing roles; such knowledge will help in the further
understanding of the concepts presented in this work. Hereupon, [4] presents
the following concepts:

• A cloud refers to a information technology (IT) environment designed
for provisioning computing resources remotely, i.e. enabling computing
resources through the Internet.

• A computing resource refers to physical and/or virtual IT entities, such
as physical servers and software programs.

• A cloud service is any remotely accessible computing resource through
a cloud.

• A cloud service consumer is a role that a software program incorporates
while accessing a given cloud service.

In addition to the above concepts, [4] and [5] define the following roles:

• A cloud provider is an entity responsible for providing computing re-
sources in a cloud.
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Figure 2.1: An example of a Cloud Interaction

• A cloud consumer is the final user (company and/or humans) that uses
the available computing resource provided by a cloud provider through
a contract/agreement. This agreement is referred as a cloud service
level agreement (SLA), yet to be approached in a dedicated section.

To better assimilate some of the concepts and roles described above, a
simple interaction of a cloud system is presented in the figure 2.1.

As mentioned before, cloud computing comprises different services mod-
els and different deployment models. The next subsections are dedicated
to present such models that might be related to one or more of the above
presented concepts and roles.

2.2 Cloud Service Models

The services provided in the cloud are classified into three main models,
according to the abstraction level of the offered computing resources: Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS) [6]. In general, the services models of the cloud providers
are classified into one of the three main models, although specialized varia-
tions have emerged lately (e.g. Storage as a Service, Database as a Service,
etc.)[7]. In addition, according to [8], the different levels of abstraction of
computing resources can be viewed as an integrated architecture composed
by layers, in simpler words, as a layered cloud stack. In this integrated ar-
chitecture, computing resources that have similar level of abstraction belong
to the same layer, furthermore, composability of services is possible. In this
case, services of higher layers are composed from services of the underlying
layers. One may have a view of the layered cloud stack by checking figure
2.2.
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Figure 2.2: The cloud stack

2.2.1 Infrastructure as a Service

Infrastructure as a Service represents the service model that offers virtualized
resources such as processing power, storage and networks. These virtualized
resources compose the infrastructure and therefore this model is in the bot-
tom of the cloud stack, providing the basis for the other delivery models.
By incorporating virtualization to abstract the underlying hardware, cloud
providers can manage multiple consumers in a single machine that therefore
shares its processing power [9]. As can be noted, virtualization plays an im-
portant role (as mentioned in previous sections) and will be approached in
a later subsection. In the IaaS model, the infrastructure allows on-demand
provisioning of computing resources to the consumers, that is, whenever the
consumers need more computing resources, the cloud provider is able to
quickly provide such demands. Furthermore, the infrastructure is offered in
a way that the consumers are able to deploy and run different kind of soft-
wares (for instance, operating systems) freely, in other words, the consumers
have a higher level of control compared to other service models and there-
fore they become responsible for the environment’s usage [1]. The figure 2.3,
adopted from the point of view of Microsoft Azure1, illustrates the different
levels of controls in cloud service models. Despite the control over such envi-
ronment, the consumers do not manage the underlying infrastructure, which
could raise questions as for example if the provided service (say, processing
power, storage, and so on) corresponds to what has been agreed. According
to [9], typical IaaS systems include features such as choice of pre-configured
virtual machine and operating system (OS), choice of virtual-machines with
specific pre-installed softwares, and ability to increase and decrease comput-

1http://azure.microsoft.com/en-us/services/virtual-machines/
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ing resources in order to satisfy demands from softwares and applications.
For the purposes of this thesis, Iaas is the delivery model that will be taken
in account since it provides the whole infrastructure and allows high level
of control of such infrastructure, what configures a basic scenario in which
other service models could be stacked on top.

2.2.2 Platform as a Service

The Platform as a Service model adds abstraction level to the IaaS by pro-
viding a sort of middleware, that is, an environment that is “ready for use”,
including already deployed and configured resources[9]. According to [6],
this higher level of abstraction has the goal to make the cloud “easily pro-
grammable”. Within such easily programmable environment, the consumers
can quickly develop and deploy applications without having to worry about
the underlying configured resources, in other words, they are not responsi-
ble for the environment’s usage because such environment already provides
everything they need for “programming” and therefore they are just respon-
sible for their own applications. In addition, PaaS usually offers specialized
services and interfaces for secure data access, authentication, etc.[6]

2.2.3 Software as a Service

Software as a Service represents the model in which applications running in
a cloud are provided to the consumers as a service, often over the web [9]. In
this model the consumers can access the applications from several Internet-
connected devices. The abstraction here is at its highest if compared to the
other two models and the consumers might have control just to some specific
application settings. By using SaaS, one can avoid the concerns involving
developing and testing by offering applications in the cloud, while the final
users avoid the concerns involving maintenance [6]. In his work, [10] makes it
clear how abstract the SaaS is for the consumer by stating that “the service
provider handles all of the infrastructure, all of the application logic, all
deployments, and everything pertaining to the delivery of the product or
service”.

2.3 Cloud Deployment Models

Not just cloud computing services are divided into different service models
but they are also classified into four distinguished deployment models. Dif-
ferently from the service models that are based on the abstraction of the of-
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Figure 2.3: Levels of control in the Service Models, adopted from Microsoft
Azure

fered computing resource, the deployment models represent the specific type
of cloud environment in which the computing resources are offered. Such
environment is classified in respect to factors such as ownership and access
rights. That said, they are then classified into: public clouds, private clouds,
hybrid clouds and community clouds [1].

Public clouds are computing resources that are open to any consumer. In
this type of clouds, the cloud providers have the ownership over the comput-
ing resources in a degree that depends on the service model in question. As
a consequence of such ownership, they are able to apply their own charging
model. To the consumers it is possible to make use of such computing re-
sources with respect to the provider’s privacy and charging model. [10] As
the providers have the ownership over the provided computing resources, the
consumers have no option but rely on the providers to meet the SLA, this
could be seen as one major drawback of public clouds. For the purposes of
this thesis, public clouds are the ones that will be taken into account, since
there is a strong relation between consumers and providers and such relation
highly depends on SLAs. The fact that providers could deliver something
different from what was agreed just to be capable of having more customer
and therefore more profit makes SLAs crucial component of public clouds.

Private clouds are the types that are operated and owned by a single or-
ganization for internal use . In this case, companies can make use of the cloud
computing technology to bring benefits such as a centralized environment of
computing resources. According to [10], maximize and optimize existing re-
sources, avoid security concerns and data transfer concerns constitute aspects
that could lead to the use of private clouds.
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Hybrid clouds are combination of both public and private clouds.The use
of hybrid clouds is useful whenever an owner of a private cloud wants to ex-
pand its computing resources, like creating an extension of the existing ones.
In this case, the clouds remain separated but are delimited by standardized
technology. [1]

Community cloud refers to the type of cloud that is constructed and
shared by several organizations. In this case, these organizations use the
same built cloud infrastructure and therefore they are delimited by the same
policy [10]. According to [1], Community clouds can be owned by one or more
of the organizations in question, by a third party or even by a combination
of them.

2.4 Virtualization and Cloud Computing

Virtualization is one key technology that enables cloud computing. Accord-
ing to [11], “Virtualization refers to the act of creating a virtual version of
something, including but not limited to a virtual computer hardware plat-
form, operating system, storage device, or computer network resources”. Ba-
sically, this technology abstracts the computing resources and allows multi-
ple systems to operate independently from each other into a single physical
machine; Moreover, the abstraction above-mentioned hides the complexity
of physical resources management and therefore allows scalability (which is
essential part of cloud computing). One result could be that a given soft-
ware stack (or specific operating system) could be deployed, undeployed and
redeployed as many times as needed since it would not be tied to any physi-
cal machine. As one may notice, the concepts involving virtualization seem
the very same concepts and ideas behind cloud computing, which reinforces
virtualization’s importance. In a very short description relating both, [12]
states that virtualization is responsible for the abstraction of the comput-
ing resources while cloud computing is responsible for determining how such
virtualized resources are allocated, delivered, and presented as service. Said
that, one could now see cloud computing as a model that deals with the
resulting hardware’s manipulation promoted by virtualization.

Furthermore, the notion of “hardware’s manipulation” leads to the con-
cept of virtual machine (VM). According to [3], Virtual machines have be-
come the standard unit of deployment when it comes to virtualization. A
virtual machine can be seen as an isolated logical partition of a physical
hardware, such virtual machine does not have knowledge of any kind of ac-
tivity regarding the other VMs. Moreover, the hardware’s manipulation that
results on the creation of VMs is done by the hypervisor, also called vir-
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Figure 2.4: A typical Virtualization scenario

tual machine monitor (VMM) [13][14]. A typical structure that represents a
virtualization scenario can be seen in figure 2.4, adopted from [13].

As can be noted, in the typical virtualization structure presented above
the hypervisor controls directly the hardware and manage the access of sev-
eral VMs to the resources. In the work of [13], this structure is called
hardware-layer virtualization and allows more isolation and performance,
this notion is also called in many literatures as full virtualization. Still ac-
cording to [13], there are more virtualization approaches and among them is
included paravirtualization, in which the VMs are aware of the virtualized
environment; Moreover, they have to be modified in order to operate in such
environment. As a result of paravirtualization the hypervisor becomes simple
and the performance achievable by the VMs is higher, as if the environment
were not virtualized in fact.

2.5 Cloud Service Level Agreements

In words of [15], a service level agreement is defined as a “negotiated con-
tract between the customer and the service provider”. SLAs aim at specifying
exactly what kind of services are to be delivered to the consumer, leaving
out of the question how such services are to be in fact provided. In his
work, [16] states that SLAs are critical in cloud environments because the
cloud providers have “ responsibilities on behalf of the consumers”. Such re-
sponsibilities come from the fact that in cloud environments the consumers
have limited control and management rights over the computing resources.
This delimitation requires contracts (SLAs) as a form of assurance that the
provided service will be secure and reliable over the time and that the re-
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quirements will be fulfilled.
According to the work of [15], SLAs specifically aim at achieving deter-

mined objectives such as determining the customer’s needs and providing an
understandable framework that states services and costs as well as clarifies
the responsibilities of both consumer and provider. As a way to achieve
that, SLAs record terms of understanding in which provider and consumer
are aware of. These terms are also referred as SLA’s components and cover
areas such as services, time, guarantees, credit and warranties.

Determining and recording the terms to build an SLA constitute impor-
tant steps towards the SLA management process, however, these steps are
related to the contract negotiation itself. As one may realize, another impor-
tant step is to provide a mechanism in which SLAs could be monitored in
real time, aiming at avoiding that providers cheat on the terms and also to
measure the quality of the delivered service.[16] In order to monitors SLAs
a set of metrics should be define, examples of typical metrics include CPU
speed, memory and storage size.

2.5.1 The need for monitoring

As already mentioned, SLAs are of critical importance in cloud environments
and should somehow be monitored as way of guarantee that they are being
fulfilled. In order to so, a set of metrics should be defined, examples of
typical metrics include CPU speed, memory and storage size. One example
of its importance is the billing model, which might be in some cases really
attached to the SLA’s metrics and terms. From the providers perspective,
as cloud services are mainly profit-based, more available resources means
more potential consumers and therefore higher profit. That said, providers
may have the incentive to violate the SLA by supplying consumers with less
resources than agreed.

To solve this problem of SLA cheating, the consumers could then as-
sume the monitoring process as their responsibilities, however, two factors
can make such process really difficult: the first one is the lack of control over
the underlying infrastructure, which limits consumers in running any kind of
monitoring tool on the cloud; The second factor are the resources usage them-
selves, since adding extra processes for monitoring purposes could consume
the very same resources that the user has paid for [17]. Furthermore, as the
providers have the control over the underlying infrastructure, they could also
identify such monitoring process and tamper the results. Tampered results
would give the wrong notion to the consumer that the service is success-
fully being delivered as agreed. Another way of cheating on the SLA would
be allocating more resources specifically when a given monitoring process is
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ongoing.
In summary, not only SLA should be monitored but this process might

be consumer’s responsibility. Moreover, providers might be able to cheat
on SLA and tamper results of monitoring process. Bringing it all together,
consumers have to find a way of applying some kind of uncheatable tool to
assess the cloud environment and therefore if the SLA is being fulfilled or
not.

2.6 Cloud Providers

Currently several offerings of different cloud service models are available
for cloud consumers for use, examples include Amazon’s Elastic Computing
Cloud (EC2)2, GoGRID3, Microsoft’s Azure platform4 and Google’s App En-
gine5. The service offered by these providers comprise IaaS, PaaS and SaaS.
Also, despite the fact that nowadays these providers also make it possible to
set up a private cloud, they can be mainly classified as public solutions since
their services are “made available in a pay-as-you-go manner to the public”
[18]. Furthermore, each provider may be related to more than one service
model and for the purposes of this thesis just the IaaS options offered by
such providers will be taken in account.

Amazon EC2 is perhaps the most famous cloud provider. In the work of
[19], this service as well as GoGRID are considered as examples of “server-
hosting” offers. In fact, both services allow the consumers to rent virtual
machines and to freely configure, run and store whatever they want on them.
These virtual machines are usually referred as servers and are comprised of
“compute capacity”, the amount of compute capacity used over the time
basically defines the price of the service; In addition, the consumers can
quickly scale the compute capacity to their demands.

Although both Amazon EC2 and GoGRID seem to offer really similar
services (renting virtual machines), much difference can be found between
them and all other providers when comparing the prices related to compute
capacity as well as SLAs terms and additional features [18]. For example,
Amazon EC2 works with “on-demand instance prices”, where the instances
are categorized into general purpose, compute optimization and memory op-
timization, among others. Within each category there are several choices
of processing power, memory and storage capacity. Microsoft’s Azure plat-

2http://aws.amazon.com/ec2/
3http://www.gogrid.com/
4http://azure.microsoft.com/en-us/
5https://cloud.google.com/products/app-engine/
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form provides its “virtual machines” in similar categories: general purpose,
compute intensive and memory intensive. Google’s App Engine also sticks
to the same principle and provides “machines” classified into standard, high
memory and high CPU. Differently, GoGRID offers “server pricing” that are
classified from X-small until XXX-Large, each category differs from another
in processing power, memory and storage capacity. In addition to the above-
mentioned services, each provider offers different operating systems and ad-
ditional features to complement the infrastructure, so the final scenario could
be a mix of different service models.

Regarding SLAs, the above-mentioned providers share some common
terms as for example the guaranteed service uptime percentage of 99.9 %
(GoGRID states 100%), if the service uptime is below expected, customers
can request credits. Furthermore, GoGRID seems to be the only provider
that really offers terms for performance of its service, the other providers
either do not mention performance at all or slightly refer to it along with a
long list of exclusions. By all means, one could infer that the providers focus
on protect themselves by creating a wide range of exclusion terms, which
delimits the scope of responsibilities in cases of failure; In addition to that,
verifying if the provider meets the SLA’s terms is in most cases responsibil-
ity of the consumer. Nevertheless some providers offer their own monitoring
tools or monitoring team6789.

2.6.1 The need for evaluation

The fact that some providers have similar approaches to offer their services
does not mean that a comparison is possible. When looking for the most
appropriate service, one may find a hard time equating virtual machines and
their related prices; Moreover, each provider has its own SLA with peculiari-
ties that might not be clear to consumers. In words of [19], “today’s cloud ser-
vices differ among others by cost, performance, (...), SLA and programming
language. System architects and developers are confronted with this variety
of services and trade-offs.” Therefore, this scenario of “non-standardization”
raises questions on how one could really verify which service fits better the
needs. One solution for such questions would be benchmarking targeted ser-
vices in order to evaluate and assess how well they fit such needs, therefore
helping consumers to choose the right service. Benchmarking is a well-known
approach to evaluate and compare performance of systems. That said, bench-

6http://aws.amazon.com/ec2/sla/
7http://azure.microsoft.com/en-us/support/legal/sla/
8https://developers.google.com/appengine/sla
9http://www.gogrid.com/legal/service-level-agreement-sla
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marking could also assess whether the providers are really fulfilling the SLA’s
terms regarding resources and performance, working as a sort of monitoring
mechanism as described in the previous section.

As one may notice, evaluating cloud services is a pertinent subject. Al-
though benchmarking seems a simple solution that would solve the main
problems, customers would have to trust that the benchmark’s results are
not, again, tampered by the provider. For example, Amazon does not offer
any benchmarking tool but instead it offers its own monitoring tool called
CloudWatch10. With such tool consumers can “collect and track metrics”,
but then the consumer must trust on “Amazon monitoring Amazon’s ser-
vices” and therefore consumers face the same problems described in section
2.5.1. In addition to this problem, benchmarking cloud services to collect
and track metrics would require such services to be benchmarked with cer-
tain frequency. However, in relation to what was stated in 2.5.1, adding
benchmarks as monitoring tools can consume a big parcel of the computing
resources that the consumer is paying for. As a consequence, the two new
questions that summarize the main problems faced are how benchmarking
can avoid result’s tampering and specially how would benchmarking impact
the overall performance of the computing resources. Both questions are to be
approached in the next section but specifically the second question is the one
that this work aims to approach. The question regarding result’s tampering
is addressed in [20] and discussed in the next chapter.

This chapter provided the basis for cloud computing. In addition, the
need for monitoring cloud services with respect to SLAs was elucidated as
well as the need for evaluating the service provided. Also, benchmarking was
cited as a possible solution for such needs.

10http://aws.amazon.com/cloudwatch/



Chapter 3

Benchmarking

This chapter aims to clarify the notion of benchmarking and point out the
direction of this work. In order to do so, the basics about benchmarking
and the relation with cloud computing are explained; Furthermore, a specific
section is dedicated to explain the so-called uncheatable benchmarks.

3.1 Definition and Goals

The term benchmarking applies to many areas. In computing, a benchmark
”is the act of running a computer program, a set of programs, or other op-
erations, in order to assess the relative performance of an object” [21]. Such
object can be seen as computer hardware, a software, a database, or conve-
niently as a system under test. In the work of [22], a system under test is
a collection of components that are needed in order to run a benchmark, it
includes not only the component of interest but also extra ones. For instance,
one given benchmark program can run against a computer CPU with the goal
of stressing it and afterwards assessing how many floating point operations it
can handle, in this case the component of interest in question is the CPU and
it composes the system under test together with any other component that
allowed such benchmark to run. Furthermore, not just benchmark programs
assess performance but they aim at comparing the results against similar sys-
tems. Nowadays, given the variety of systems that can be tested, the varying
workloads and the constant growing computing industry, a wide range of
benchmarking tools are available aiming at comparing/evaluating systems.
For instance, SPEC CPU2006* benchmark assesses systems regarding CPU,
memory subsystem and compiler, SPEC virtTMsc2013* assesses datacenter
servers running in virtualized platforms regarding all components: hardware,
virtualization platform, guest operating system and applications). The two

15
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above-mentioned benchmarks are well-known tools to compare systems sim-
ply regarding those specific aspects, say there are still extra components in
the systems, then they should be evaluated with different tools.

Besides having the view of what benchmarking means in computing, it is
important to have a view on how benchmarks actually work. According to
[22], benchmarks create a ”representative scenario for a given domain”. Basi-
cally, they should define a set of rules on how such scenario should be created
and on how the results should be obtained (through a choice of performance
evaluation criteria and evaluation metrics). In a typical scenario-like assess-
ment, several configurations and parameters can be settled in different forms
to provide a comparison of scenarios and afterwards identify the best settings
for a given system. Moreover, as the process of creating scenarios requires
the participation of those extra components that compose the system under
test, the benchmark should be able to isolate information from the compo-
nent of interest from the extra components [22]. In a nutshell, benchmarks
can be considered useful only if they are able to create a proper scenario that
represents a system’s expected behavior.

In order to reach the goal of assessing performance and comparing similar
systems in a manner considered useful and satisfactory, not just traditional
benchmarks should create a representative scenario but they should include
desirable characteristics, some of them presented in [23] and [22]:

• Relevant – The benchmark should reflect the typical operation in the
purposed problem domain. In addition, it should comprise meaning-
ful and well defined metrics to bring important information about the
problem domain.

• Repeatable – There should be confidence that the benchmark can run
more then one time and deliver the same (at least very similar) results.

• Economical – The costs generated by running a benchmark should be
affordable. In this sense, it might be of high importance for specific
situations to conclude on the performance of a given benchmark to
determine whether it worth being utilized or not.

• Secure – There should be confidence that the benchmark’s result is not
tampered, i.e., that the results in fact represent the system.

Still according to [23], there are more key characteristics that qualify a
benchmark as ”good” in fact. However, addressing extra characteristics such
as relevant metrics and portability might run out of the scope of this work.
Therefore, the characteristics mentioned in this section are the ones that
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seem to cover better the needs for understanding the next sections. Specially
the last two mentioned characteristics are the most relevant ones. Although
different benchmarks may evaluate different systems in multiple ways regard-
ing several aspects, they should include at least those characteristics so that
one has the possibility to satisfactorily compare/test given systems in an
affordable way.

3.2 Cloud Benchmarking

The term Cloud Benchmarking is quite complicated to be defined in a way
that it leaves no remaining questions. However, the purpose of benchmarks
were elucidated in 3.1 as well as the way they work. Based on that, the
definition adopted in this work is the one given in [22], in which one can
see cloud benchmarking simply as a benchmark ”in which the system under
test contains a Cloud service as component of interest”. Unfortunately, the
idea of cloud benchmarking is not as simple as the definition itself. The first
point to be considered is that the service models described in 2.2 delimit the
types of benchmarking that can be done in a cloud environment. There is
no sense (and it may be not possible) in benchmarking CPU or Memory in
a PaaS or SaaS environment, while benchmarking CPU or memory is more
related to IaaS, PaaS and SaaS are more associated to benchmarking focused
on applications. However, IaaS consumers might also want to specifically
benchmark their applications and therefore there is a variety of combinations
of components of interest that can be benchmarked in cloud environments
with respect to the service model’s restrictions.

Another crucial point, and perhaps the most challenging one, is that tra-
ditional benchmarks usually rely on known hardware and software configura-
tion [24].In other words, they have a knowledge of the system configuration
which allows the key characteristics presented in the previous section to be
more easily reached. Back to the figure 2.3, one can note that in cloud envi-
ronments, due to the varying level of control that the user has from model to
model, the knowledge of the underlying infrastructure is compromised. In-
dependent of the service model there are precious information being hidden,
which makes the task of benchmarking really complicated. Additionally, as
the services are provided on-demand, resources can be allocated and unallo-
cated at anytime and therefore there might be a constant system configura-
tion changing. The work presented in [22] approaches this lack of knowledge
of the underlying infrastructure when arguing about system under tests in
cloud environments. In such work, it is said that a common benchmark re-
quirement is to ”lay open all properties of the involved system under test
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components”. As there is limited control over cloud environments, one is
dependent on which properties are exposed by the cloud providers.

As one may notice, benchmarking the cloud is not as simple as bench-
marking normal systems and there exists many points of view on how it
should be done. Based on what was presented so far regarding the vary-
ing level of control, lack of infrastructure’s knowledge, the wide range of
components of interest and also based on the ideas presented in [20], it is
possible to summarize two ways/motivations of benchmarking a given cloud
environment to the point of view of this work, as follow:

• First case: benchmarking a component that is in fact under control of
the cloud provider. In this case, the goal is to verify the environment
provided to the consumer in order to assess weather it really offers what
the consumer is paying for. Within this possibility one can benchmark
for instance the performance of virtual machines, memory and CPU
power. Benchmarking the environment in which the consumer’s solu-
tions is deployed on could spot possible cheating on resources or poor
resource administration. Note that generally in this case the consumer
is using IaaS. In fact, this way of benchmarking a cloud environment
is the most relevant because strongly deals with the trust relation be-
tween consumers and providers through SLAs. Therefore, this is the
way of cloud benchmarking that this work will consider from now on
when stating about cloud benchmarking.

• Second case: benchmarking a component that is under control of the
cloud consumer. In this case, the goal is to verify the behavior of the
consumer’s deployed solution in regard to several aspects such as appli-
cation’s communication and configuration. In this way of benchmark-
ing the components are directly affected by the consumer and therefore
the provider plays a secondary role (if any at all, since it is assumed no
infrastructure interference). As a consequence, there is no such strong
relation between consumers and providers as there is in the first case.
If consumers assume that any bad behavior of their solution is due to
poor infrastructure provision, then they fall on the first case.

As one may notice, in benchmarking either in one way or in another,
there is still the need to deal with the specific features of cloud computing
that require an approach other than the one used for traditional benchmark-
ing. Taking in account what was elucidated about benchmarking in 3.1, it
is possible to identify and summarize two major cloud benchmarking chal-
lenges that are relevant for this work. More precisely, some of the desirable
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characteristics of traditional benchmark programs are strongly challenged by
some of cloud computing features, as follow:

• Challenge of being Economical - In cloud environments the consumer
pays for computing resources and part of such resources should be allo-
cated specifically for benchmarking. Therefore, complex and long-time
run benchmarks would consume more resources for longer time and this
implies in more costs for the cloud consumers. In [25], this challenge is
refereed as Experiment compression: ”Long setup times, (...) , and/or
long periods of continuous evaluation add the disadvantage in clouds
of greatly and visibly increasing the cost of benchmarking”. On the
one hand, it is obvious that a new approach to avoid high resources
consuming and long time running benchmarks should come up. On the
other hand, assessing how current benchmarking approaches with its
complexities affect the system to conclude about the economical factor
is important subject of work. Therefore, this work is focused on this
point, it aims to partially conclude on the impact of benchmarking a
cloud environment. In more details, it aims to conclude on the per-
formance of a given benchmark that specifically has the characteristic
of being secure. As already mentioned, the benchmarking approach
considered in this work is the one that aims to verify the provided en-
vironment. In this sense, being secure is important to guarantee that
the results really reflect the system and because if a benchmark can
have its results tampered than the evaluation of its performance might
be biased and might not reflect what a secure benchmark would look
like in terms of performance.

• Challenge of being Secure – As cloud providers may have the motivation
to tamper results to either improve profit or create a fake image of
quality, security on benchmarking raises as an important issue since
the providers might have not just the motivation but also the tools
to cheat. Again, they control the infrastructure and may hide crucial
information (not exposing all properties for benchmarking), making
the task of tampering results easier and the task of creating secure
benchmarks harder. This problem is the focus of the work of [20].
In such work, a benchmark for verifying CPU performance in cloud
environments is developed with the partial property of being secure.
As yet to be approached, the results of [20] constitute part of this
work.

It is clear that cloud benchmarking is an open issue. The cloud computing
paradigm claims for new approaches other than traditional benchmarking.
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In this section it was possible to show some of the reasons for these claims;
Additionally, two specific challenges that relates to this work were identified.
The first one is the focus of this thesis; The second one was the focus of
the work presented by [20], in which this thesis aims to contribute. The
next section clarifies uncheatable benchmarks, a notion that comes from the
traditional benchmarking theory and can be used in solving the problem of
computing benchmarking cheating.

3.3 Uncheatable benchmarks

There is no formal definition for the term uncheatable benchmarks. Never-
theless, for this work uncheatable benchmarks are considered as benchmark
programs that can evaluate systems without being cheated, therefore produc-
ing a reliable result in the end, i.e, a result that really represents the system.
The background regarding uncheatable benchmarks points to the work of
[26], where this kind of benchmarks is described as ”resistant to tampering
and hence more trustworthy”. In such work, it is stated something that was
observed during the research part of this work: much effort has been done
in order to create highly representative benchmarks, with relevant metrics
and workloads that can simulate a systems closely to what it is; However,
there is less effort than the adequate in answering questions such as if the
benchmark’s results are tampered or not. Still according to [26], uncheat-
able is a term seen as a property that a benchmark can satisfy; In addition,
another important presented property is that it must be drastically easier
to prepare and check the results than running the benchmark. In this case,
there is an advantage for the one benchmarking over the one being bench-
marked. To create benchmarks that supposedly satisfy such properties, [26]
uses modern cryptography and complexity theory. Its proposed benchmarks
are The Power Benchmark, which is based on the ”power function modulo a
composite number” (prime numbers), and The One-way Benchmark, which
is based on one-way functions chosen by the one benchmarking. Details of
both proposals can be found in the work aforementioned.

As already mentioned, not much work has been done which relates to
uncheatable benchmarks. In cloud computing the situation would not be
different. As to the knowledge of this work, ways of benchmarking the cloud
through use of uncheatable benchmarks have received little to none effort,
while new approaches for identifying relevant metrics and evaluation criteria
that lead to a proper cloud benchmarking have received significantly much
more effort. Nevertheless, there are works that focus specifically on cloud
cheating - the possibility of cloud providers to cheat on resources. Such
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works deal with the problem more as a violation/cheating on the SLA and
they aim at presenting approaches to detect if any cheating if being done.
As one may realize, these works have something in common with the goal of
benchmarking the cloud in a secure manner: they present approaches that
aim to be secure. The difference is that the techniques/proposals to detect
SLA cheating are not really classified as benchmarks because they do not
fulfill specific benchmark’s requirements, goals and results. The work of [17]
proposes a SLA verification framework that includes a third party auditor.
It presents a testing algorithm that is able to detect memory size violation
on VMs in respect to a given SLA. In addition, it shows experiments that
demonstrate cheating detection and also avoids that a provider could hide
the SLA violation. In [27], the focus is on detecting CPU speed cheating.
In order to achieve that, the work proposes a lightweight ”stealthy test algo-
rithm” for video batch processing applications that can detect CPU cheating
with low computation overhead. Also, [28] proposes a user-based CPU veri-
fication scheme that detects cloud cheating on CPU resources. The scheme
is based on task execution time comparison, where a given task with known
execution time is given to a cloud service to execute and then the differences
are compared.

However, the works aforementioned are not really in the context of bench-
marks because they do not assess about the performance of any object . That
said, to the knowledge of this work, perhaps the only approach that focuses
on benchmarking cloud environments in the sense it tries to satisfy the prop-
erty of being uncheatable is the work of Falk [20]. In his approach, cloud
consumers cannot verify whether providers really deliver what was agreed or
not and therefore there is the possibility of benchmarking the service. How-
ever, the control over the infrastructure gives the possibility to the provider
to tamper benchmark’s results. Therefore, [20] identifies four attack vectors
for result tampering and implements proof-of-work functions in a prototype
benchmark that can disable three of them. In a nutshell, ”Proof-of-work
functions are challenge response systems, where it is simple to generate a
challenge and verify the result while solving the challenge is compute inten-
sive”. As one may notice, this approach satisfies the previously mentioned
property presented in [26] in the sense that the one benchmarking has the
advantage over the one being benchmarked. By disabling most of the possi-
bilities of tampering results, this approach presents itself as partially uncheat-
able. Therefore, for the purposes of this thesis, it will be assumed that the
benchmark suite implemented by [20] constitutes a uncheatable benchmark
for cloud environments.

As mentioned in 3.2, assessing how benchmarks affect cloud systems is
important subject of research. As in the cloud higher usage of computing re-
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sources means more expenses to consumers, benchmarks that consume a lot
of resources lead to high costs. As to the knowledge of this work, no specific
work was done to assess about the performance and consequent impacts of
uncheatable benchmarks in the proposed scope of cloud computing. Also,
the approaches aforementioned either do not present enough information to
let one conclude about performance. The work of [27] claims to detect CPU
cheating with low overhead when stating that ”the testing tasks are part of
the original computation tasks, which need to be run in the cloud anyway”.
However, neither such claim is clarified in details and neither the approach
itself aims to benchmark. Therefore, the next chapters describe the contri-
bution of this thesis regarding this lack of knowledge on the performance of
(uncheatable) benchmarks for cloud environments.

3.4 Summary

Up to this point, it was given the necessary background to understand the
concepts involving this work. The basis of cloud computing and benchmark-
ing were explained and the relevant points for this thesis were elucidated.
Furthermore, the way this work approaches the relation between these two
areas was explained in details. In a nutshell, Infrastructure-as-a-Service,
with help of virtualization, is the environment that might raise trust ques-
tions between providers and consumers regarding the fulfillment or not of the
established SLAs. In respect to that, benchmarking the provided environ-
ment becomes important and even more important is to guarantee that the
results represent the truth and are not tampered. As a way to cope with that,
uncheatable benchmarks and their insertion on cloud systems were presented.

Unfortunately, benchmarking the cloud implies in extra use of comput-
ing resources and as a consequence it generates extra costs to consumers.
Therefore, evaluating the performance of uncheatable benchmarks for cloud
environments and their impacts on the system becomes as important as guar-
anteeing that results are not tampered. Therefore, through an experiment,
this work aims to assess the performance and impact of an uncheatable bench-
mark for cloud systems. The experiment description is explained in the next
chapter in details and comprises the goals, the requirements to accomplish
them and the methodology applied.



Chapter 4

Performance of an uncheatable
benchmark for cloud systems

As already stated, the general goal of this thesis is to assess on the perfor-
mance of an uncheatable benchmark designed for cloud systems. In order to
do that, an experiment was done. Such experiment is based on the impact
evaluation of a given uncheatable benchmarks on a simulated cloud system.
That said, the next sections are dedicated to give detailed information about
the experiment that composes this work in order to clarify the aims as well
as the procedure used to achieve the goal.

4.1 The scenarios

The starting point for the practical part of this work is to establish the ba-
sis for the experiment, that is, the scenarios that correspond to real cloud
configurations in which it is desirable to perform the experiment. Since all
requirements and choices are dependent on the scenarios, starting by defin-
ing and explaining each scenario clarifies the next sections and helps one
to firstly understand the main idea on what the experiment is all about
before introducing specific details. That said, two general scenarios were
identified. Their difference is given exactly by the addition of the necessity
of benchmarking the target system and not by the difference on solutions,
infrastructure offerings or by any other factor (as stated in previous chap-
ters, Infrastructure-as-a-Service is the delivery model relevant for this work).
This allows to focus only on the interesting point which is the uncheatable
benchmark. Furthermore, as it is desirable to collect correct data to provide
meaningful results, both scenarios must ensure that no cheating is being
done and therefore the established amount of resources are correctly deliv-
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ered. This is achieved by the fact that everything related to the scenario
is fully controlled and managed by the author of this work. For simplicity,
the scenarios are named scenario one and scenario two and are described as
follow:

• Scenario one: Corresponds to a typical cloud configuration where bench-
marking has little to no importance. Here, the cloud consumer has a
given solution deployed on a given cloud environment. Their relation
is based on the SLA and the consumer trusts the provider. As a con-
sequence of the trust relation, there is no need of benchmarking the
infrastructure delivered by the provider. This scenario is crucial be-
cause the results produced here are compared to the ones from the
scenario two in order to generate the final results, yet to be described.
As one may notice, the basic activity on this scenario is limited to
the execution of the consumer’s solution. In addition, the performance
evaluation of such solution on the cloud environment is the contribution
of this scenario. Since it is assumed that the performance here is free of
interferences (either by other applications or by benchmark programs),
its evaluation corresponds to the real performance that the consumer
can expect on the agreed infrastructure. Furthermore, it is desirable
that the infrastructure does not provide any extra resources other than
the required by the consumer’s solution. That is, such solution must
allocate (at least for the processing peaks) all or close to all available
resources in its execution. This situation of full allocation is relevant
for this work and will be better understood in the description of the
scenario two. In summary, the scenario one represents the basic cloud
configuration and it is responsible for providing the performance evalu-
ation of a given solution on the cloud environment with respect to the
restriction that either the solution must basically allocate all available
resources or the evaluation should be done on processing peaks. As to
be described later, the choice of the consumer’s solution (application)
is heavily based on this restriction.

• Scenario two: Corresponds to a cloud configuration where benchmark-
ing plays an important role. In contrast to the scenario one, here
the consumer does not really trust the provider and wants to assess
the delivered infrastructure. Therefore, there is the addition of the
uncheatable benchmark tool that is used by the consumer to assess the
cloud. Basically, this scenario has exactly the same characteristics as
described in the first one plus the extra that here the benchmark tool
impacts the performance of the system and therefore the consumer’s
application. As mentioned before, the restriction that all or close to all



4.1. THE SCENARIOS 25

available resources are allocated by the consumer’s application should
be respected. This allows to evaluate how such benchmark tool can
really impact the system. If, for instance, such restriction would not
exist, one would be able to assess about the impact of such benchmark
on a system that could be in idle state and not really being used by the
application, providing incorrect results. That said, the contribution
of this scenario is to provide the performance evaluation of the con-
sumer’s solution that is being affected by the run of the uncheatable
benchmark. In the end, one is able to compare how the uncheatable
benchmark affects the application by comparing the data collected here
with the data collected in the scenario one. Furthermore, this scenario
provides information on how the uncheatable benchmark behaves in
different situations. With the basic description given, it is important
to explain the different situations involving the consumer’s application
and the benchmark tool. Firstly, it was defined that the benchmark
tool must run during the entire time that the application is running (or
the entire time it is on its processing peak). This already gives the im-
pact that such benchmark has on the system. In order to collect more
data, observe different behaviors and see the benchmark tool acting as
a background service, the benchmark must be able to split the job over
the time, that is, after every x time units, the benchmark should be
able to perform part of the job so that in the end it accomplishes the
task (in this experiment, to collect enough number of measurements).
Every different choice of the parameter x represents one configuration
of the scenario two. As one may notice, all data from the different
configurations can be compared to the data collected by the scenario
one with the goal of creating a more complete view of the benchmark’s
impact.

In this section the scenarios were described as well as their relation. The
procedures that are part of each scenario were detailed and characteristics
were given. Nevertheless, some basic remarks and extra information should
be given. First, each one of the two scenarios was simulated in two environ-
ments, one comprised by a one-core processor and the other one comprised
by a two-cores processor. The remaining configuration is the same. Further
details on the environment simulation is given in section 4.3. The choice
of adding both one-core and two-core machine to the experiment is due to
the fact that, as yet to be described, the consumer’s application might have
benefits from the extra core while the benchmark might not.
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4.2 Experiment requirements

With the scenarios already described, it is important to define the require-
ments that must be satisfactorily fulfilled to provide a meaningful experiment
and therefore generate relevant results. Taking the scenarios into account,
the following requirements were defined:

• It is necessary to simulate a cloud environment providing Infrastructure-
as-a-Service. This environment will be evaluated by the given bench-
mark. In addition, it should allow one to represent as close as possible
workloads of typical cloud systems. This allows one to assume that the
collected data is close to the reality both in relation to the performance
and the impact.

• It is necessary to choose and use relevant tools and technologies to
achieve the aforementioned points. More specifically it is important to
define which tool is used as the consumer’s solution as well as which
uncheatable benchmark is used.

• It is necessary to define relevant metrics that allow one to conclude
about the points that constitute this work as well as to define the
procedure to collect the measurements.

• It is necessary to present the collected raw data in a relevant and easy
to understand manner, so that one is able to see the results generated
by the experiment.

With the above points as well as the description of the scenarios, one has
the main idea regarding the purposes of the practical part. Also, it becomes
important to explain the choices and the process adopted in this work to
satisfy those requirements. Each one of the key points demands detailed
information on how it can be achieved, this is important to make the process
clear. Therefore, the next sections are dedicated on explaining in details the
choices adopted in this work.

4.3 Environment simulation

A typical environment offered by cloud providers providing Infrastructure-
as-a-Service is based on virtualization. As virtualization leads to the notion
of virtual machines (VMs), it makes sense to assume that VMs can simulate
cloud environments. In fact, this is the technology used by cloud providers.
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Therefore, the environment simulation was done through the use of a hyper-
visor that creates and controls pre-configured VMs.

With that defined, the next step is to choose the hypervisor. In this
regards, the Xen hypervisor1 presents itself as a reasonable choice, since it
runs on the top of the hardware allowing multiple virtual machines to run
simultaneously. The choice of a hypervisor that runs on the hardware instead
of running as a normal application in a given operating system fits better to
this work, since creating dependency to the operating system might heavily
impact the isolation between the virtual machines as well as other parts of
the system. To support the choice of xen, it is important to mention that
Amazon’s EC2, perhaps the most famous and used cloud service, uses Xen
virtualization to instantiate its VMs. The last but also important factor
to take in account is what type of virtualization should be used. The Xen
hypervisor allows roughly full and para virtualization, although it is possible
to use a mix of them. Despite the fact that para virtualization may provide
optimal performance, the use of full virtualization excepts the need of support
from kernel and allows the use of all set of hardware as well as provides a
better isolation. Therefore, it was the type of virtualization used to create
the VMs in this work.

That said, the physical machine on which the Xen hypervisor was installed
comprised the following attributes:

• Processor: Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHz

• Memory: 8 GB RAM

• Kernel Version: Linux centos 3.10.43-11.el6.centos.alt.x86-64

Two virtual machines were created for the experiment. Each VM sim-
ulated both scenario one and scenario two. The configuration addressed to
each VM comprised:

• Processor: Intel Core 2 Quad Q9400 @ 2.67GHz (1 and 2 Cores)

• Motherboard: Xen HVM domU

• Memory: 1 x 1024 MB RAM

• Operating System: Ubuntu 14.04

• Kernel: 3.13.0-24-generic (x86-64)

• System Layer: Xen HVM domU 4.2.4-33.el6

1http://www.xenproject.org/developers/teams/hypervisor.html
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Figure 4.1: Virtual Machines - remote control

As one may notice, the only difference in the VMs is the number of core (1
and 2). The remaining configuration is exactly the same, as described above.
The choice for the operating system is due to the easy of manipulation it
provides, since the time remaining for the completion of this work was short.
No need to state that both VMs were fully controled and therefore cheating
played no role on the experiment, as desired. As the underlying machine
was not physically accesible, the procedures on the VMs were done remotely,
through the use of a SSH tunnel and the TigerVNC2 viewer. The figure 4.1
illustrates the VMs running.

4.4 Choice of the tools

The next step consists of the choice of the tools that will run on the simulated
environments (in this case, the VMs). As the goal comprises evaluating an
uncheatable benchmark, the first tool is the benchmark itself. Afterwards,
it is necessary to overload the VMs with specific workloads. This step is
important because it is assumed in this work that cloud systems are not
in standby mode waiting for workloads but they are constantly processing
incoming loads from the consumer’s application. Furthermore, it is desirable
that the benchmark be able to split its job and run as a background service.
To conclude, as the simulated environments do not include any application
able to generate proper workloads, the need of a tool that acts as a main
application is crucial.

2http://tigervnc.org/
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4.4.1 The uncheatable benchmark

There are two points from the last chapter that must be remembered before
going into further details. The first point is that, as stated in 3.2, this work
aims in part to contribute to the work presented in [20], which implements a
benchmark for cloud systems based on proof-of-work (POW) functions. The
second point is that, as stated in 3.3, such POW benchmark disables most
of the possibles ways of tampering results and therefore it is considered as
an uncheatable benchmark. In addition, there is little to none work relating
uncheatable benchmark and cloud computing. That said, it becomes obvious
that the POW benchmark is the one used in this experiment. In a nutshell,
the benchmark program is a processor-focused command-line Java tool that
runs the three implemented Proof-Of-Work functions: the HashCash, the
HashCashLin and the Extracting Square Roots. The benchmark suite is able
to measure the execution time of all functions and the execution rate of
the functions. The execution time measurement consists of checking how
long the function needs to find a solution, the execution rate measurement
consists of checking how many solutions can be found by the function in a pre-
determined time. These two metrics therefore are responsible for representing
the performance of a given machine. The detailed information regarding the
POW functions can be found in [20]. Although the POW benchmark is
composed by three POW functions, it is interesting to take the best out
of the benchmark offerings to use in the experiment. Firstly, the analysis
of such POW suite has shown that the most suited function to be used as
a benchmark is the HashCashLin implementation, even though all functions
share similarities. This choice was based on the tests presented in the related
work in question. Therefore, the HashCashLin is the function that will be
taken in account in this experiment.

With the proper choices made, the next step was to adapt the POW
benchmark to the needs of this work. In this regard, the suite was modified
to satisfy the purposed scenarios. Firstly, the suite was changed to run
just the HashCashLin implementation. In addition, the warm-up phase was
taken out of the execution flow because that would not make difference in
the experiment, specially if taking in account the long time it keeps running
on the virtual machines. Furthermore, the Java class TimeUnit3 was used
through the call of the function sleep and allowed to run the benchmark as
a background service splitting the job for every x (sleep) time units . In
order to automatize that, an additional parameter was added to the call of
the suite, which is the sleep time in Milliseconds. The function itself was
called after each collected measurement. This allowed the POW benchmark

3http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/TimeUnit.html
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to collect one measurement and wait a determined amount of time before
collecting another one. Without this change the suite would keep collecting
measurements until the end is reached. Another important point is that the
POW benchmark was modified to run in a loop, that is, to run the benchmark
for as many times as desired so that the application is impacted during its
entire runtime.

4.4.2 The main application

The tool used as the main application is the one that represents the con-
sumer’s application that is deployed on virtualized environments and that
is affected by the POW benchmark. To make a decision in this regards,
it is important to firstly take into account the proper scope in which the
POW benchmark works. As it is a benchmark to evaluate performance of
processors, it is convenient to have an application that heavily makes use of
the processing power. As the experiment wants to verify the performance
and impact of a processor-focused benchmark, it would not make sense for
instance to choose as main application any network-based tool. As a conse-
quence, it is desirable a processor-focused application that is able to generate
relevant workloads that require a high parcel of the processing power so that
the difference can be noticed and correctly related to the POW benchmark.
In addition, such application should be able to perform in the simulated en-
vironment (therefore in a cloud environment). As one may imagine, bench-
marks are known by evaluating performance through relevant workloads in
the domain in question. The use of a processor-focused benchmark as a
main application would not just apply the desirable workload but would also
perform an evaluation of the system in different situations (for example, in
scenarios with and without the POW benchmark). That said, the experi-
ment had a benchmark acting as a main application so that it fulfills the
needs aforementioned and also facilitates the process of impact evaluation.

The chosen benchmark (from now on called just application) is the Phoronix
Test Suite4. ”The Phoronix Test Suite is the most comprehensive testing and
benchmarking platform available ... designed to effectively carry out both
qualitative and quantitative benchmarks in a clean, reproducible, and easy-
to-use manner”. These are important attributes, since it is not convenient to
work with tools that might be difficult to deal with and also may not apply
qualitative workloads to the processor. Furthermore, the fact that the suite
is composed by several benchmarks allows different workloads to be applied
to a given system and therefore have an impact evaluation view of not just

4http://www.phoronix-test-suite.com/
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one single component as parameter. As an open-source offering compatible in
many operating systems (specially Linux), the suite enables automated and
repeatable runs, allowing the creation of different scenarios without the need
of user’s interaction all the time. A complete repeatable run can be created as
simple as by running one command in a Linux terminal. Another important
characteristic that helps in the choice of the Phoronix suite is its adaptability
to run on different platforms such as cloud computing infrastructures. This
characteristic allows one to use the tool into virtual machines without loss
of any of its attributes or efficiency. Before starting with the specific details
on how the suite was used, it is important to highlight and clarify here two
features that came in handy:

• The Phoronix suite incorporates statistical accuracy, that is, for any
test it detects whether the calculated standard deviation between runs
exceeds a predefined threshold defined by the user. If so, the suite
automatically adds calls to the test so that it is executed as many ad-
ditional times as needed to ensure that the reported result is accurate.
The number of additional times is up to a limit of time defined by
the user (to avoid an infinity number of calls). This feature not only
automatically generates important information as well as it allows the
user to define which rate of accuracy the results should respect in a
trade-off with the execution time since it may require a considerable
higher amount of time to reach a given accuracy rate.

• The Phoronix suite offers environment variables that can be adjusted
in the calls to adapt the runs to the user’s needs in a fast and easy
way. There are variables to force tests to run a certain number of
times, without having to edit the test’s configuration file. There is also
possible to adjust the time of the run as well as many other parameters
that can be found in the respective documentation.

At this point, one has the necessary view regarding the application that
is used in the experiment. The exact procedure used to run the Phoronix
suite will be described later. To have a more detailed view, the benchmarks
that are part of the processor suite and that together compose the whole
application are listed below:

• NAS Parallel Benchmarks - Test / Class: MG.B

• OpenSSL - RSA 4096-bit Performance

• Apache Benchmark - Static Web Page Serving
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• TSCP - AI Chess Performance

• John The Ripper - Traditional DES

• John The Ripper - Blowfish

• TTSIOD 3D Renderer - Phong Rendering With Soft-Shadow Mapping

• x264 - H.264 Video Encoding

• GraphicsMagick - HWB Color Space

• GraphicsMagick - Local Adaptive Thresholding

• GraphicsMagick - Sharpen

• GraphicsMagick - Resizing

• Himeno Benchmark - Poisson Pressure Solver

• 7-Zip Compression - Compress Speed Test

• C-Ray - Total Time

• Parallel BZIP2 Compression - 256MB File Compression

• Smallpt - Global Illumination Renderer; 100 Samples

• Crafty - Elapsed Time

• FLAC Audio Encoding - WAV To FLAC

• LAME MP3 Encoding - WAV To MP3

• FFmpeg - H.264 HD To NTSC DV

• Tachyon - Total Time

• Timed MAFFT Alignment - Multiple Sequence Alignment

The 23 benchmarks comprise different kind of tests such as encoding, com-
pression, rendering, parallel execution and floating point calculation among
others. In addition, some of the tests make use of multi-core machines in
contrast with the uncheatable benchmark, that is designed for one-core ma-
chines and has no benefits from any extra core. This fact justifies the choice
of running the scenarios in two different VMs and compare the impact on
both cases. Further information regarding each one of the tests can be found
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in the Openbenchmarking.org5 website. This platform comprises the whole
set of tests of the Phoronix Suite as well as a description of them.

4.5 Analysis Methodology

This section aims to explain how the collected data is further compared and
analyzed as well as in which form it is presented to provide a clear view.
This covers the two last requirements as defined in 4.2. The first point that
should be taken into account is that the application and the POW benchmark
have distinct metrics and procedures to obtain their results. That said, it is
convenient to explain each one of them separately.

The POW benchmark stores the collected data in date-stamped log files
in .csv format. Each full run (which may include several runs in a loop) gen-
erates a unique log file that represents the results correspondent to the choice
of the parameter sleepTime. Again, this parameter determines the interval in
which the benchmark waits before going further in completing another part of
the task (one part of the task means to collect one more measurement). The
task is finished when the application(Phoronix processor suite) has finished
its job. Therefore, the POW benchmark runs exclusively during the period
that the application is running. This impacts the system during the entire
time and also allows the storage of data collected just during such period.
Moreover, as already stated before, The POW benchmark metric is the exe-
cution time and the execution rate. This allows a series of statistical values
to be derived such as maximum and minimum values, the sample arithmetic
mean, the standard deviation and the coefficient of variation among others.
The metric that is taken in account for the POW benchmark is the execu-
tion time, since it is not convenient to analyze both metrics again as in [20].
From now on when this work refers to precision of the POW benchmark it
is taking into account just the precision regarding the execution time. In
addition, the statistical value that better fits the needs of this work is the
coefficient of variation and therefore it is the one to be used. Following [29],
”The coefficient of variation (CV) is a normalized measure of dispersion. It
is defined as the ratio of the standard deviation to the mean and known as
the variation coefficient”. The CV tells one how some values (in this case,
execution time) can be dispersed from the mean value (which is the desirable
value for all measurements). The higher the coefficient the less accurate the
results are. Using the CV as statistical value allows one to also compare
different sets of data (in this experiment, the sets generated by two different
VMs).

5http://openbenchmarking.org/
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The application stores the data in a set of files (including XML files)
that allows a graphic visualization through any web browser. However, the
suite also allows one to convert the results to .csv, .pdf and .txt files and
this comes in handy. The use of .csv files eases the processing of data. The
metrics used by the application varies among the tests. Metrics include
interactions per second, time spent for execution, frames per second and
number of operations. For some tests lower values are better and for other
higher are better. For each run of the application, the whole set of tests
evaluate the system in their particular procedures and the results of all tests
compose the final stored file. Each single test was set to run for 10 times
and in case the result is not inside the threshold determined for the standard
deviation, the test would run more times up to a limit of 30 minutes running.
In addition, multiple result files can be merged into a single file, this eases
even more the processing of data generated by multiple runs, which is the case
of this experiment. Note that, as mentioned before, during the entire time
of each run of the application the POW benchmark is running as well. If we
consider the sleepTime as zero then the POW benchmark is running without
breaks and this generates the maximum impact on the system. As we increase
the parameter, the POW benchmark waits longer to collect measurements
and therefore the system might be less impacted. We consider the total time
the one needed by a full run of the application.

Note that the parameter sleepTime and its possible different impacts on
the system is exactly the interesting point. This works aims to check the
changes generated by the choice of such parameter (if any) and therefore
assess on the impact. The evaluation of the impact is done through a sim-
ple comparison. It is considered that the performance of the application
running alone represents the 100 % value. In the cases the POW bench-
marking is running as well (scenario two) the performance evaluation is done
by determining the difference between the two values and calculating its cor-
respondent percentage, which is lower or equal to 100 % (It does not make
sense if the application has a better performance while running in parallel
with the benchmark rather than running alone). Furthermore, each single
choice of the sleepTime produces a different log file of the POW benchmark
with a different number of measurements that might produce higher or lower
precision if compared to the others. In fact, a relation of the impact and
the precision of the POW benchmark for a given sleepTime can be created.
To create and analyze such relation is the main goal of this work. The set
of the application’s results can also generate statistical values such as mean,
maximum and minimum value. To obtain the variation on the precision
this work merges the coefficient of variation generated by each log file of the
POW benchmark into one single file. This ends the description on what the
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analysis is based on and on how it is done.
With the whole set of data collected and processed, the results can be

presented through graphics and tables as well as images when applicable.
This is the way this work presents the results. These options, in opposite
to raw text, make the understanding process easier and softer. Since the
analysis design was described. The next step is to go further into the run of
the experiment and present the results.
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Chapter 5

Analysis

This chapter presents the results obtained within the experiment and as-
sesses on the performance of the POW benchmark based on such results. To
automatize the whole process of running the scenarios a script was created.
Roughly, the script was responsible for running the application for m times,
each time with a different sleepTime argument that was increased by t units
after every run. Both the application and the POW benchmark were run
at the same time. They were started at the same time and as soon as the
application finished the POW benchmark was stopped too. This ensured
that the POW benchmark was collecting measurements and impacting the
system during the application’s runtime and not longer or shorter than that.

To start, the application was run alone on both VMs. This successfully
concluded the scenario one. To get a better accuracy it ran about four times
on each VM. All the results were stored in .csv files and served as basis for
comparison since they represent the 100 % performance of the application
as stated in 4.5. The application took about 4 hours to run on the two-core
virtual machine and about 7 hours to run on the one-core virtual machine.
The first remark is that, as desirable, the processor was being fully allocated
for the execution of the application. This can be seen in the figure 5.1,
which shows the CPU usage for each VM controlled by the Xen hypervisor.
This ensured that there were no extra resources that could be allocated
exclusively for the POW benchmark and therefore could sabotage the results.
In the figure it is possible to see the one-core VM (VM1-1) and the two-core
VM (VM2-2). The Domain-0 is the physical machine controlled by the Xen
hypervisor. Furthermore, the different runtime in both VMs already shows
that the application has benefits from the extra core, that is, it runs faster
on the two-cores machine. This finding is important because helps to explain
much of the results further described in this chapter.

That said, it is a good way to start by showing the results referent to
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Figure 5.1: CPU usage by the application running alone

the application. The first conclusion is that in fact the POW benchmark
impacts the system in a varying manner which depends on the sleepTime
value. The performance achieved by the application alone is not reached
when the POW benchmark is acting as a background service. The chart on
figure 5.2 shows the average impact as well as the maximum value observed
for each choice of the sleepTime on the one-core virtual machine. Remember
that such parameter determines the interval that the POW benchmark should
wait until it collects one more measurement. During such waiting interval
the CPU is required just by the application. In general lines, as higher the
interval is, higher is the time that the CPU is not being used by the POW
benchmark and vice versa.

As it is possible to see in the figure 5.2, the time is given in Millisec-
onds and the values in percentage, since they are mathematically obtained
by subtracting them from the value correspondent to the 100 % perfor-
mance(scenario one). The first point to observe is that when the parameter
is set to 0 Milliseconds, which means no interval between measurements, the
average impact is in its highest value which corresponds to approximately 49
%. This is easily explained by the fact that in this case the application and
the POW benchmark are sharing the processor during the entire runtime. In
opposite to that, any waiting interval greater than zero (even the smallest
one) already decreases the average impact. Still, the difference in the first
interval (0-250 Milliseconds) is higher than in the other ones. Furthermore,
the behavior of the line shows that the difference is getting lower as we com-
pare intervals referent to higher sleepTime values up to the point where it
is possible to notice the tendency to zero, both on difference and on the im-
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Figure 5.2: Maximum and Average Impact on the one-core VM

pact. At this point it can be observed that increasing such parameter even
more would decrease the impact up to a point where no significant difference
would be noticed. As to be described later, the number of measurements
collected and also the precision of the POW benchmark have a relation with
the behavior observed in this chart. Another point to be highlighted is that,
as in the average approach, the difference regarding the maximum impact is
also one of the highest in the first interval. This shows that such interval
is the one in which decisions for the sleepTime makes more difference and
where a wrong decision taken by the consumer could cause a significantly
higher impact. This finding is important specially regarding the line repre-
senting the maximum impact because the values that compose such line in
every interval are originated from one single benchmark and not from the av-
erage. As the 23 benchmarks that compose the Phoronix suite have different
methods to evaluate the system, say a given consumer’s application shares
behaviors (that is, it is similar in the way it runs) with a single benchmark
representing a certain interval in the chart, then that would mean a quite
similar impact (which is maximum) to be expected by the consumer.

The next remark to be done is that, according to what was thought, it
turned out that the results regarding the two-core VM are quite similar to the
ones presented so far. In fact, the behaviors described in the last paragraph
are the same observed for both VMs. The only point that deserves to be
highlighted is the comparison of the average impact for both machines, which
can be seen in the chart on the figure 5.3.

With the behaviors and tendencies being the same, what is clear is that
the overall impact on the two-core VM is lower. This can be explained by the



40 CHAPTER 5. ANALYSIS

Figure 5.3: Average Impact on both VMs

fact that, as briefly cited here and explained in [20], the POW benchmark
has no support for multi core processors. Furthermore, tests in the respective
work have shown that the benchmark ”runs on one core ignoring the shift
towards multi core processors”. As the POW benchmark has no benefits
from the extra core, the difference on performance exists and it was stated
previously the runtime difference regarding the application, it seems that in
fact the application includes tests in which certain procedures take advantage
of the extra core. Therefore the performance is higher (as it was in this
experiment) and one consequence is such lower impact.

Regarding the results from the POW benchmark, it is important to ob-
serve the number of measurements collected as well as the difference on the
precision in each choice of the sleepTime, as explained in 4.5. To start, the
table on figure 5.1 shows, for each VM and for each case, the number of
measurements collected in Millions (remember that the POW benchmark
collected measurements during the entire application’s runtime).

Table 5.1: Number of measurements collected (in Millions)

0 250 500 750 1000 1500 6000
One-core 2,2 1,6 1,55 1,2 1,1 0,68 0,06
Two-cores 2,3 1,2 0,83 0,62 0,45 0,3 0,025

As expected, obviously the number of measurements collected differs in
each case (being greater at 0 and lower as the parameter increases), since
the POW benchmark had to wait longer in every new case, it also had a
shorter runtime collecting measurements. Also, the difference between the
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VMs is due to the fact that the application runs faster on the two-cores VM
and therefore the POW benchmark is stopped earlier, having collected less
measurements in the end.

The main conclusion that can be drawn with all the data collected and
shown so far is that as greater the number of measurement is, also higher
is the impact on the system. Choosing a low value as parameter (say 0)
allows the POW benchmark to run longer and therefore collect more mea-
surements, however it was shown that at 0 the impact on the performance is
at its highest value. Another point to be highlighted in this experiment is the
huge set of data generated by the POW benchmark. About 2GB was stored
as measurements for each VM, which totals 4GB. This differs in much with
the tests and results shown in [20]. There, it was taken a ”higher” number
of measurements (512) in order to mitigate the effect of randomness, which
is characteristic to the POW benchmark. However, that produced a much
smaller file which eases the processing. Still according to [20], that number of
measurements was necessary because the less the POW benchmark collects
to form the mean value, the more inaccurate the results are since the random-
ness might generate a high standard deviation. With that said and with the
greater number of measurements collected by this experiment, it is plausible
to suppose that the precision here is equal or greater than the one seen in
[20] and therefore such precision is acceptable. To compare such difference
was not the main goal of this work. However, to verify how the precision
behaves in the different cases may lead to a better understanding on how
to take a wise decision regarding the adjustments of the POW benchmark
(adjustment of the sleepTime parameter).

As mentioned before, the coefficient of variation was chosen to represent
the variation in the precision of the results. In this regard, as lower the
coefficient is, higher is the precision. The first remark is that the results
turned out to be completely different from what was thought initially. It
was supposed that the greater number of measurements in some cases would
represent in the end a more precise result. That did not happen. As it can
be seen in the chart on figure 5.4, there is no pattern on the behavior of the
results.

Sometimes the coefficient of variation is getting lower but that suddenly
changes and it gets higher again. This randomness can be observed for
both VMs. One explanation for that is the randomness nature of the POW
benchmark itself, even the higher number of measurements collected in this
experiment was not able (in this specific case) to minimize such characteristic.
However, one should put aside such fact and observe that, within the range
of variation, the difference for all choices of the sleepTime is small and that
such difference does not follow any clear tendency. Therefore, if choosing
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Figure 5.4: Coefficient of Variation for the collected measurements

either 0 or 6000 as parameter generates similar results in terms of precision,
in terms of impact on the system the choices are completely different.

With everything that was drawn so far, it is just matter of putting every-
thing together and see that for the scenarios presented in this experiment the
better situation for a given consumer would be choosing the highest possible
value for the parameter sleepTime. This puts the POW benchmark to wait
longer before collecting one more measurement. It was seen that longer pe-
riods mean lower impacts on the system, therefore the longest period is the
desirable choice. However it should be analyzed if such choice is still able to
produce precise results. In this regards, all cases presented very small differ-
ences on the precision and no clear tendency. This means that the consumer
can easily keep the choice for the longest period (highest sleepTime value)
and have the lowest impact on its system without really compromising the
precision. One important remark is that this situation is valid for the scenar-
ios and situations presented in this specific experiment. As the application
ran for several hours, the POW benchmark was still able to collect enough
number of measurements in each one of the cases (much more than 512 as
stipulated in [20]), so that the precision had not really changed between the
cases. This implies that one could choose the longest period and minimize
the impact.

That said, for a general scenario and a given environment, consumers
could first analyze the total runtime in which their solution must allocate all
the available resources (processing peaks). This is the situation where cheat-
ing might have its worst effect and where benchmarking comes in handy. Af-
terwards, consumers could draft how their chosen (uncheatable) benchmarks
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must be configured. To find out such configuration it should be taken into
account the minimum requirements necessary to provide enough precision.
In addition, the corresponding impact generated by this given configuration
should be analyzed. With this analysis done, consumers could then decide
whether it is worthing or not to give up on a given % of the performance in
order to benchmark the system and ensure that no cheating is being done.

This chapter has shown the findings of the experiment as well as the
relation they have with each other. Explanations for each one of the findings
were given as well as a suggestion on how to proceed in general scenarios.
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Chapter 6

Conclusion

This chapter sums up the work done as well as the results obtained. The
goal was to assess on the performance of an uncheatable benchmark for cloud
systems, what is believed to have been reached through the proposed exper-
iment and its findings. Obviously that the results are originated from one
single experiment, however, the proposed scenarios do not differ in much
from the real ones in which providers and consumers interact.

This work has lead the reader through the basics of cloud computing to
the definition and goals of computing benchmarking. In addition, the need
for monitoring as well as evaluating cloud systems in order to check whether
they meet the SLA was presented. Afterwards, two motivations for cloud
benchmarking were identified and discussed. Benchmarking a cloud compo-
nent that is under control of the cloud provider could spot possible cheating
on the SLA. However, benchmarks are designed for traditional systems and
therefore may not deal well with the new cloud computing paradigm. Also
providers can design ways of tampering benchmark’s results to promote a
false good image. As a solution, uncheatable benchmarks come in handy as
they are resistant to tampering and may make the effort of cheating not wor-
thing. However, one drawback is that benchmarking may demand resources
that are allocated to the consumer’s solution, therefore impacting the system.
From this situation the motivation of this work was originated.

An experiment was designed to verify the impact of an uncheatable bench-
mark on cloud systems as well as its capability to provide precise results.
Such experiment simulated a cloud environment and also workloads that
could represent real consumer’s applications. The uncheatable benchmark
used was conveniently the one designed by [20] in order to also contribute
to such work. The idea was to test the benchmark as a background service,
splitting the job over the time to possibly minimize impacts. In this specific
case, splitting the job means to collect a new measurement after a given pre-
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determined interval of time. In addition, such benchmark ran just during the
time the workloads were being processed in order to prevent biased results.
The findings showed that as longer the interval between jobs is, lower is also
the impact on the system and vice versa. However, splitting the job on such
way resulted on less measurements collected and that could produce varia-
tion in the precision of the results. This was surprisingly not the case for this
experiment due to the fact that the total runtime was still able to provide
enough measurements and therefore the precision had not changed much. In
summary, this work showed results that can represent the configuration of
general scenarios in cloud environments.
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