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Abstract. We investigate trions, paired states and quantum phase transitions
in one-dimensional SU(3) attractive fermions in external fields by means of the
Bethe ansatz formalism. Analytical results for the ground state energy, critical
fields and complete phase diagrams are obtained for the weak coupling regime.
Higher-order corrections for these physical quantities are presented in the strong
attractive regime. Numerical solutions of the dressed energy equations allow us
to examine how the different phase boundaries are modified by varying the inter-
component coupling throughout the whole attractive regime. The pure trionic
phase existing in the strong coupling regime decreases smoothly with a decrease
in this coupling, until the weak limit is reached. In this weak regime, a pure
Bardeen–Cooper–Schrieffer (BCS)-like paired phase can be sustained under
certain nonlinear Zeeman splittings.
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1. Introduction

Recent experiments on ultracold atomic systems confined to one dimension (1D) [1–4] have
attracted renewed interest in Bethe ansatz integrable models of interacting bosons and multi-
component fermions. The most recent experimental breakthrough is the realization of a one-
dimensional (1D) spin-imbalanced Fermi gas of 6Li atoms under the degenerate temperature
[5]. This study demonstrates how ultracold atomic gases in 1D may be used to create nontrivial
new phases of matter, and also paves the way for direct observation and further study of the
Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) states [6, 7].

Three-component fermions exhibit a rich scenario, revealing more exotic phases [8–15].
Notably, strongly attractive three-component ultracold atomic fermions can form three-
body bound states called trions. Consequently, a phase transition between Bardeen–
Cooper–Schrieffer (BCS)-like pairing superfluid and trionic states is expected to occur in the
strong attractive regime [10, 13, 16–22]. So far, most of the theoretical analyses have focused
on the attractive strong coupling limit. A pertinent discussion in this context is what happens at
the intermediate and weak attractive coupling regimes.

In this paper, we consider 1D three-component ultracold fermions with δ-function
interaction in external magnetic fields. From a mathematical point of view, this model was
solved long ago by Sutherland [23] and Takahashi [24] through Bethe ansatz techniques.
Recently, integrable models of three-component interacting fermions [16, 17, 25] received
renewed interest in connection with ultracold atomic gases. Advanced experimental techniques
newly developed allow us to explore the three-component Fermi gas with different phases of
trions, dimers and free atoms [26–29]. Remarkably, the direct observation of a trimer state
consisting of fermionic 6Li atoms in the three energetically lowest substates has recently been
reported in [30]. This opens up a possibility to experimentally study such novel quantum
phases of trions and pairs in 1D three-component Fermi gases, providing a physical ground
and stimulus for the investigation of their theoretical aspects.

Our aim here is to expand on the theoretic knowledge of the 1D integrable model of
three-component fermions by undertaking a detailed analysis of how the different phases are
modified as the inter-component interaction decreases, ranging from a strong to a weak regime.
We obtain analytical expressions for the critical fields and construct the full phase diagrams
in the weak coupling regime by solving the Bethe ansatz equations (BAE). We extend previous
work on this model [16, 19] to derive higher order corrections for these physical quantities in the
strong coupling regime. Numerical solutions of the dressed energy equations show that the pure
trionic phase existing in the strong coupling regime decreases as the coupling decreases and
disappears in the presence of external fields when the weak regime is approached. In contrast
to the two-component interacting fermions [31], nonlinear Zeeman splitting may sustain a
BCS-like paired phase in the three-component attractive fermions for the weak coupling
regime.

2. The model

We consider a δ-function (contact potential) interacting system of N fermions with equal mass
m, which can occupy three possible hyperfine levels (|1〉, |2〉 and |3〉) with particle number N 1,
N 2 and N 3, respectively. They are constrained to a line of length L with periodic boundary
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conditions. The Hamiltonian reads [23]

H = −
h̄2

2m

N∑
i=1

∂2

∂x2
i

+ g1D

∑
16i< j6N

δ(xi − x j) + EZ. (1)

The first and second terms correspond to the kinetic energy and δ-interaction potential,
respectively. The last term denotes the Zeeman energy EZ =

∑3
i=1 N iεi

Z(µ
i
B, B), with the

Zeeman energy levels εi
Z determined by the magnetic moments µi

B and the magnetic field B.
For later convenience, the Zeeman energy term can also be written as EZ = −H1(N 1

− N 2) −

H2(N 2
− N 3) + N ε̄, where the unequally spaced Zeeman splitting in three hyperfine levels can

be specified by two independent parameters H1 = ε̄ − ε1
Z(µ

1
B, B) and H2 = ε3

Z(µ
3
B, B) − ε̄, with

ε̄ =
∑3

σ=1 εσ
Z (µi

B, B)/3 the average Zeeman energy.
The spin-independent contact interaction g1D remains between fermions with different

hyperfine states and preserves the spins in each hyperfine state, i.e. the number of fermions in
each spin state is conserved. Although these conditions seem rather restrictive, it is possible
to tune scattering lengths between atoms in different low sublevels to form nearly SU(3)
degeneracy Fermi gases via broad Feshbach resonances [1, 26, 27, 32]. Consequently, the
model still captures the essential physics relevant in the discussion of multiple phases in
three-component ultracold Fermi gases. The inter-component coupling g1D = −h̄2c/m with
interaction strength c = −2/a1D is determined by the effective 1D scattering length a1D [33].
It is attractive for g1D < 0 and repulsive for g1D > 0. Here we will focus on the attractive case.
For simplicity, we choose the dimensionless units of h̄ = 2m = 1 and use the dimensionless
coupling constant γ = c/n with linear density n = N/L .

The Hamiltonian (1) exhibits spin SU(3) symmetry and was solved long ago by means
of the nested Bethe ansatz [23, 24]. In this approach its spin content was incorporated
via the symmetry of the wavefunction. The energy eigenspectrum is given in terms of the
quasimomenta {ki} of the fermions through

E =

N∑
j=1

k2
j , (2)

satisfying the following set of coupled BAE [23, 24]

exp(ik j L) =

M1∏
`=1

k j − 3` + ic/2

k j − 3` − ic/2
,

N∏
`=1

3α − k` + ic/2

3α − k` − ic/2
= −

M1∏
β=1

3α − 3β + ic

3α − 3β − ic

M2∏
`=1

3α − λ` − ic/2

3α − λ` + ic/2
,

M1∏
`=1

λµ − 3` + ic/2

λµ − 3` − ic/2
= −

M2∏
`=1

λµ − λ` + ic

λµ − λ` − ic
,

(3)

written also in terms of the rapidities for the internal hyperfine spin degrees of freedom 3α and
λµ. Above j = 1, . . . , N , α = 1, . . . , M1, µ = 1, . . . , M2, with quantum numbers M1 = N2 +
2N3 and M2 = N3. For the irreducible representation [3N32N21N1], a three-column Young tableau
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encodes the numbers of unpaired fermions (N1 = N 1
− N 2), bound pairs (N2 = N 2

− N 3) and
trions (N3 = N 3).

3. Ground states

For attractive interaction, the BAE allow charge bound states and spin strings. In particular,
the SU(3) symmetry carries two kinds of charge bound states: trions and pairs. In principle,
different numbers of unpaired fermions, pairs and trions can be chosen to populate the ground
state by carefully tuning H1 and H2.

In the strong coupling regime L|c| � 1, the imaginary parts of the bound states become
equal spaced, i.e. a trionic state has the form {k j = 3 j ± i|c|, λ j} and for the bound pair
{kr = 3r ± i|c|/2}. Substituting these root patterns into the BAE (3), we find their real parts,
from which the ground state energy in the strongly attractive regime can be obtained [16]:

E

L
≈

π 2n3
1

3

(
1 +

8n2 + 4n3

|c|
+

12

c2
(2n2 + n3)

2

)
−

n2c2

2

+
π 2n3

2

6

(
1 +

12n1 + 6n2 + 16n3

3|c|
+

1

3c2
(6n1 + 3n2 + 8n3)

2

)
− 2n3c2

+
π 2n3

3

9

(
1 +

12n1 + 32n2 + 18n3

9|c|
+

1

27c2
(6n1 + 16n2 + 9n3)

2

)
. (4)

Here na = Na/L (a = 1, 2, 3) is the density for unpaired fermions, pairs and trions, respectively.
This state can be considered as a mixture of unpaired fermions, pairs and trionic fermions,
behaving basically like particles with different statistical signatures [34]. For strong attractive
interaction, trions are stable compared to the BCS-like pairing and unpaired states. From (4)
we can obtain the binding energy for a trion, given by εt = h̄2c2/m and the pair binding energy,
which is εb = h̄2c2/4m.

In the weak coupling regime L|c| � 1, the imaginary parts iy of the charge bound states

are the roots of Hermite polynomials Hk of degree k. Specifically, Hk(
√

L
2|c| y) = 0, with k = 2, 3

for a bound pair and a trion, respectively [35]. The real parts of the quasimomenta deviate
smoothly from the values evaluated for the c = 0 case. With this root configuration, the ground
state energy in the weak attractive regime can be obtained:

E

L
≈

π 2

3
(n3

1 + 2n3
2 + 3n3

3) + π 2(n1(n2 + n3)(n1 + n2 + n3) + 2n2n3(n2 + n3))

− 2|c|(n1n2 + 2n1n3 + 4n2n3 + n2
2 + 3n2

3). (5)

The ground state energy (5) is dominated by the kinetic energy of composite particles
and unpaired fermions and has an interaction energy consisting of density–density interaction
between charge bound states and between charge bound states and unpaired fermions. From
equation (5) we can obtain the binding energy for a trion, given by εt = 3h̄2

|c|/mL , and the
pair binding energy, which is εb = h̄2

|c|/mL . For weak attractive interaction, the trionic state
is unstable against thermal and spin fluctuations. This becomes apparent in the weak coupling
phase diagrams presented in figures 1(d), 2(c) and 3(c).
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Figure 1. Ground state energy versus Zeeman splitting for different coupling
values: (a) strong interaction |γ | = 10, (b) |γ | = 5, (c) |γ | = 1 and (d) weak
interaction |γ | = 0.5. The white dots correspond to the numerical solutions of
the dressed energy equations (6). The black lines in (a) and (d) are plotted from
the analytical results (10) and (11), respectively. Good agreement was found
between the analytical results and the numerical solutions in the strong and
weak regimes. The pure trionic phase C , present in the strong coupling regime,
decreases smoothly as |γ | decreases and is suppressed in the weak limit.

4. Dressed energy formalism

In the thermodynamic limit, i.e. L , N → ∞ with N/L finite, the grand partition function
Z = tr(e−H/T ) = e−G/T is given in terms of the Gibbs free energy G = E + EZ − µN − T S,
written in terms of the Zeeman energy EZ, chemical potential µ, temperature T and entropy
S [16, 36–38]. The Gibbs free energy can be expressed in terms of the densities of particles and
holes for unpaired fermions, bound pairs and trions, as well as spin degrees of freedom, which
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Figure 2. Phase diagram showing the polarization n1/n versus the fields H1

and H2 for different coupling values (a) |γ | = 5, (b) |γ | = 1 and (c) weak
interaction |γ | = 0.5. The white dots correspond to the numerical solutions of the
dressed energy equations (6). Good agreement is found between the analytical
results (11) (black lines) and the numerical solution in the weak regime. At
intermediate coupling regimes, the pure trionic phase decreases by decreasing
the coupling and it is not present in the weak regime. A zoom around the origin
is presented in figure 2(b) (2(c)) to show the presence (absence) of the trionic
phase.

Figure 3. Phase diagram showing the polarization n2/n versus the fields H1

and H2 for different coupling values (a) |γ | = 5, (b) |γ | = 1 and (c) weak
interaction |γ | = 0.5. The white dots correspond to the numerical solutions of
the dressed energy equations (6). The black lines plotted from the analytical
results (11) are in good agreement with the numerical results in the weak regime.
At intermediary coupling regimes, the pure trionic phase decreases by decreasing
the coupling and it is not present in the weak regime. A zoom around the origin
is presented in figure 3(b) (3(c)) to show the presence (absence) of the trionic
phase.
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are determined from the BAE (3). Thus the equilibrium state is established by minimizing the
Gibbs free energy with respect to these densities. This procedure leads to a set of coupled
nonlinear integral equations, from which the dressed energy equations are obtained in the limit
T → 0 (see [16, 38] for details)

ε(3)(λ) = 3λ2
− 2c2

− 3µ − a2 ∗ ε(1)(λ) − [a1 + a3] ∗ ε(2)(λ) − [a2 + a4] ∗ ε(3)(λ),

ε(2)(3) = 232
− 2µ −

c2

2
− H2 − a1 ∗ ε(1)(3) − a2 ∗ ε2(3) − [a1 + a3] ∗ ε(3)(3), (6)

ε(1)(k) = k2
− µ − H1 − a1 ∗ ε(2)(k) − a2 ∗ ε(3)(k).

Here ε(a), a = 1, 2, 3 are the dressed energies for unpaired fermions, bound pairs and trions,
respectively, and a j(x) =

1
2π

j |c|
( jc/2)2+x2 . The symbol ‘∗’ denotes the convolution a j ∗ ε(a)(x) =∫ +Qa

−Qa
a j(x − y)ε(a)(y) dy with the integration boundaries Qa given by ε(a)(±Qa) = 0. The

Gibbs free energy per unit length at zero temperature can be written in terms of the dressed
energies as G =

∑3
a=1

a
2π

∫ +Qa

−Qa
ε(a)(x) dx .

The dressed energy equations (6) can be analytically solved just in some special limits. In
particular, they were solved in [16] for strongly attractive interaction through a lengthy iteration
method. Here we numerically solve these equations to determine the full phase diagram of
the model for any value of the coupling. This allows us to examine how the different phase
boundaries deform by varying the coupling from the strong to weak regime. The numerical
solution is also employed to confirm the analytical expressions for the physical quantities and
the resulting phase diagrams of the model in the weak coupling limit (for a similar discussion
in the strong regime see [19]).

5. Full phase diagrams

Basically, there are two possible Bethe ansatz schemes to construct the phase diagram of the
system. One possibility is to handle it with the dressed energy equations (6). This approach was
discussed for the strong attractive regime in [16], where expressions for the fields in terms of the
densities were obtained up to the order of 1/|c|. Alternatively, one can handle it directly with its
discrete version (equations (2) and (3)) by solving the BAE. We adopt this second strategy here.
In order to obtain the explicit forms for the fields in terms of the polarizations, we consider the
energy for arbitrary population imbalances

E/L = µn + G/L + n1 H1 + n2 H2, (7)

which coincides with the ground state energy (2) obtained by solving the BAE (3). Then the
fields H1 and H2 are determined through the relations

H1 =
∂ E/L

∂n1
, H2 =

∂ E/L

∂n2
(8)

together with the constraint

n = n1 + 2n2 + 3n3. (9)
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In the strong coupling regime, using the ground state energy (4) we find

H1 = π 2n2
1

(
1 −

4n1

9|c|
+

8n2

|c|
+

4n3

|c|
+

12

c2
(2n2 + n3)

2
−

8n1

3c2
(2n2 + n3)

)

−
π2n2

3

9

(
1+

4n1

3|c|
+

32n2

9|c|
+

4n3

3|c|
+
(6n1 + 16n2 + 9n3)

2

27c2
−

2n3(6n1 + 16n2 + 9n3)

9c2

)

+
10π 2n3

2

27|c|

(
1 +

6n1 + 3n2 + 8n3

|c|

)
+

2c2

3
,

H2 =
π2n2

2

2

(
1 +

4n1

|c|
+

40n2

27|c|
+

16n3

3|c|
+

(6n1 + 3n2 + 8n3)
2

3c2
−

14n2(6n1 + 3n2 + 8n3)

27c2

)

−
2π 2n2

3

9

(
1 +

4n1

3|c|
+

32n2

9|c|
+

8n3

9|c|
+

(6n1 + 16n2 + 9n3)
2

27c2

−
10n3(6n1 + 16n2 + 9n3)

27c2

)
+

16π 2n3
1

9|c|

(
1 +

6(2n2 + n3)

|c|

)
+

5c2

6
. (10)

These equations provide higher order corrections to those derived in [16] using the dressed
energy equations. To determine the full phase boundaries, we also need the energy–field transfer
relation between the paired and unpaired phases H1 − H2/2, which can be extracted from the
underlying two-component system with SU(2) symmetry [31, 34]. These equations determine
the full phase diagram and the critical fields activated by the fields H1 and H2.

Figure 1(a) shows the ground state energy versus Zeeman splitting parameters H1 and
H2 determined from equation (4) with the densities n1 and n2 obtained from (10). There
are three pure phases: an unpaired phase A, a pairing phase B and a trion phase C and
four different mixtures of these states. For small H1, a transition from a trionic state into a
mixture of trions and pairs occurs as H2 exceeds the lower critical value H c1

2 . When H2 is
greater than the upper critical value H c2

2 , a pure pairing phase takes place. Trions and BCS-
like pairs coexist when H c1

2 < H2 < H c2
2 . These critical fields, derived from equation (10),

are given by H c1
2 ≈ n2(

5γ 2

6 −
2π2

81 (1 + 8
27|γ |

−
1

27γ 2 )) and H c2
2 ≈ n2(

5γ 2

6 + π2

8 (1 + 20
27|γ |

−
1

36γ 2 )). The
phase transitions from B → A + B → A induced by increasing H1 are reminiscent of those in
the two-component systems [34, 41]. Basically, in this region the highest level is far away from
the other two levels, so the system reduces to the spin-1/2 fermion case. The mixed phase
containing BCS-like pairs and unpaired fermions can be called an FFLO phase. We mention
that a discussion on the pairing nature of 1D many-body systems can be found in, for instance,
[39, 40]. For small H2, a phase transition from a trionic to a mixture of trions and unpaired
fermions occurs. Using equation (10), we find that the trionic state with zero polarization n1/n =

0 forms the ground state when the field H < H c1
1 , where H c1

1 ≈ n2(
2γ 2

3 −
π2

81 (1 + 4
9|γ |

+ 1
9γ 2 )).

When H1 is greater than the upper critical value H c2
1 ≈ n2(

2γ 2

3 + π 2(1 −
4

9|γ |
)), all trions are

broken and the state becomes a normal Fermi liquid.
At intermediate coupling regimes, it is not possible to construct the full phase diagrams

analytically. However, they can be determined by numerically solving the dressed energy
equations (6), as illustrated in figures 1(b) and (c), figures 2(a) and (b) and figures 3(a) and (b),

New Journal of Physics 14 (2012) 013008 (http://www.njp.org/)

http://www.njp.org/


9

for the intermediate values of the coupling |c| = 5 and |c| = 1, respectively. The different phase
boundaries are modified slightly by varying the inter-component coupling through the whole
attractive regime. In particular, the pure trionic phase existing in the strong coupling regime
decreases smoothly by decreasing this coupling until it is completely suppressed. A careful
numerical analysis of the phase diagrams for n = 1 and different values of |c| between |c| = 1
and |c| = 0.5 indicates that the critical coupling value at which the trionic phase disappears
is around cc ≈ 0.6. Other mixed phases involving trions, especially the phase (B + C), also
decrease by decreasing |c|.

In the weak coupling regime, we obtain the expressions between the fields and the
polarizations using equations (5), (8) and (9):

H1 =
π 2

3
(2n2

1 + n2
2 + 4n1n2 + 4n1n3 + 2n2n3) +

2|c|

3
(2n1 + n2),

H2 =
π 2

3
(n2

1 + 2n2
2 + 2n1n2 + 2n1n3 + 4n2n3) +

2|c|

3
(2n2 + n1).

(11)

These equations together with the energy–field transfer relation H1 − H2/2 determine the full
phase diagram and the critical fields activated by the Zeeman splitting H1 and H2. We observe
that the density of trions n3 does not appear independently in equations (11), in contrast to the
corresponding equations in the strong regime (10). Figure 1(d) presents the ground state energy
versus the fields H1, H2, while figures 2(c) and 3(c) show the polarizations n1/n and n2/n in
terms of Zeeman splitting, respectively. Now in the weak coupling regime there are just six
different phases in the H1–H2 plane: we observe the disappearance of the pure trionic phase C
in the presence of the fields, i.e. the trionic state is unstable against thermal and spin fluctuations.
This behavior is in contrast to the strong coupling regime, where the phase C is robust and trion
states populate the ground state for a considerable interval of the fields. In addition, the phase
where trions and pairs coexist (B + C) decreases significantly compared to the strong coupling
regime. Interestingly, in contrast to the weak attractive spin-1/2 fermion system, a pure paired
phase can be sustained under certain Zeeman splittings. For certain tuning H1 and H2, the two
lowest levels are almost degenerate. Therefore, the paired phase naturally occurs and is stable.
The persistence of this phase is relevant for the investigation of phase transition between BCS-
like pairs and FFLO states. All these boundary modifications occur smoothly, as shown by a
numerical analysis of the phase diagrams for different values of the coupling across all regimes.
This indicates that all phase transitions in the vicinity of critical points are second order. This
conclusion is consistent with previous analytical results [34, 41]. We also mention that quantum
phase transitions between different superfluid phases have been discussed in [42].

We perform a similar analysis as in the previous strong case to extract the critical fields.
Since the trionic phase C disappears for non-vanishing fields, less critical fields are found
compared to the strong coupling case. For small H1 a transition from a mixture of trions and
pairs to a pure paired phase occurs as H2 exceeds the critical value H c

2 ≈ n2(
2γ

3 + π2

6 ). The
transition from a mixture of trions and unpaired fermions to a normal Fermi liquid phase occurs
as H1 exceeds the critical value H c

1 ≈ n2(
4γ

3 + 2π2

3 ). The phase transitions B → A + B → A
are reminiscent of those in spin-1/2 fermion systems. However, in the weak attractive two-
component case the pure BCS-like paired phase is suppressed [31] and consequently it is not
possible to investigate the phase separation between a BCS-like paired phase and an FFLO state,
in contrast to the three-component case, where this study is still possible in a weak regime.
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6. Conclusion

We have studied the three-component attractive 1D Fermi gas in external fields through the
Bethe ansatz formalism. New results for the critical fields and complete zero-temperature phase
diagrams have been presented for the weak coupling regime. Previous work on this model
has been extended to derive higher order corrections to these physical quantities in the strong
regime. We have further confirmed that the system exhibits exotic phases of trions, bound
pairs, a normal Fermi liquid and a mixture of these phases in the strongly attractive limit. We
have also shown how the different phase boundaries deform by varying the inter-component
coupling across the whole attractive regime. In particular, the trionic phase that may occur
in the strong coupling regime for certain values of the Zeeman splittings decreases smoothly
by decreasing the coupling, until the weak limit is approached, when the trionic phase is
suppressed. Interestingly, in the weak regime, a pure paired phase can be maintained under
certain nonlinear Zeeman splittings, in contrast to the two-component attractive 1D Fermi
gas. Our high precision of critical phase boundaries paves the way for further investigation of
quantum criticality in the three-component interacting Fermi gas through the finite-temperature
Bethe ansatz.
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