
Run-time Reconfigurable RTOS for
Reconfigurable Systems-on-Chip

Dissertation

A thesis submited to the
Faculty of Computer Science, Electrical Engineering and Mathematics

of the
University of Paderborn

and to the
Graduate Program in Electrical Engineering (PPGEE)

of the
Federal University of Rio Grande do Sul

in partial fulfillment of the requirements for the degree of
Dr. rer. nat.

and
Dr. in Electrical Engineering

Marcelo Götz

November, 2007

Supervisors:
Prof. Dr. rer. nat. Franz J. Rammig, University of Paderborn, Germany
Prof. Dr.-Ing. Carlos E. Pereira, Federal University of Rio Grande do Sul, Brazil

Public examination in Paderborn, Germany
Additional members of examination committee:

Prof. Dr. Marco Platzner
Prof. Dr. Urlich Rückert
Dr. Mario Porrmann

Date: April 23, 2007

Public examination in Porto Alegre, Brazil
Additional members of examination committee:

Prof. Dr. Flávio Rech Wagner
Prof. Dr. Luigi Carro
Prof. Dr. Altamiro Amadeu Susin
Prof. Dr. Leandro Buss Becker
Prof. Dr. Fernando Gehm Moraes

Date: October 11, 2007

Acknowledgements

This PhD thesis was carried out, in his great majority, at the Department of Computer
Science, Electrical Engineering and Mathematics of the University of Paderborn, during
my time as a fellow of the working group of Prof. Dr. Franz J. Rammig. Due to a formal
agreement between Federal University of Rio Grande do Sul (UFRGS) and University of
Paderborn, I had the opportunity to receive a bi-national doctoral degree. Therefore, I
had to accomplished, in addition, the PhD Graduate Program in Electrical Engineering
of UFRGS. So, I hereby acknowledge, without mention everyone personally, all persons
involved in making this agreement possible.

I wish to, first, express my deep gratitude to my supervisor Prof. Dr. Franz Josef
Rammig for supervising, advising and tutoring me during my whole PhD journey. His
understanding, patience, knowhow and constant encouragements were essential to bring
me to the success of finishing this work. In the same way, I wish to thank specially my co-
supervisor, Prof. Dr. Carlos Eduardo Pereira, for his equal support, even before starting
this PhD thesis. The many fruitful talks, in which he shared with me his knowledge and
experience, had strong influence in my decision of being a researcher and starting this
PhD.

I am also glad of having being part of Prof. Rammig’s working group, of having the
opportunity to work on different research projects, to advise Bachelor and Master Stu-
dents, and to supervise students during labs of his lectures. Furthermore, I am glad of
having many chances for fruitful talks, discussions, brainstorming, that I had with my
colleagues in the great atmosphere of the working group. All these facts together, have
positively contributed to the success of this work.

My thanks go also to both examination committees: in Germany composed by Prof. Dr.
Marco Platzner, Prof. Dr. Urlich Rückert, Dr. Mario Porrmann; and in Brazil composed
by Prof. Dr. Flávio Rech Wagner, Prof. Dr. Luigi Carro, Prof. Dr. Altamiro Amadeu
Susin, Prof. Dr. Leandro Buss Becker, Prof. Dr. Fernando Gehm Moraes. They,
together with my both supervisors, spent their times reading this thesis and provided
me a positive feedback during the PhD-defense.

I wish also to thank all my former colleagues, which helped be somehow during my PhD
research. Their different points of view, wide range of interests and knowledge, were
very important to improve the level of my work. My particular thanks go to Dr. Achim
Rettberg, for spending his time in listening and discussing my research topic, and for
offering his partnership and friendship, which was always pushing me forward in several
moments. In the same way, I wish to thank Florian Dittmann, who shared with me his
great knowledge in Reconfigurable Computing. With these two colleagues, I had several
publications, which were extremely important in my research. Thank you both for your
cooperation.

iv

Further, I whish to extend my thankfulness to all my other colleagues: Dr. Sabina Rips,
Tales Heimfarth for several and fruitful discussions, Yuhong Zhao, Katharina Stahl, Peter
Janacik, Timo Kersten, Simon Oberthuer, Norma Montealegre, Dr. Carsten Böke, Dr.
Martin Kardos, Dr. Klaus Danne, Dr. Stefan Ihmor, and Prof. Dr. Christophe Bobda.
I wish to thank specially Dalimir Orfanus, which with his friendship gave me strong
support in my last part of my PhD journey.

I must not forget my working students, Stefan Finke and MSc. Tao Xie, which helped
me in implementing an important part of my concepts. Without them, this thesis would
take longer to be finished.

I will never forget my friend Arne Rolf Spiller, who had crucial importance in my first
years in Germany. With his unconditional friendship and support, I surpassed my self
on several circumstances. He and his parents, Erwin and Ursula, are my second family
now. Thank you for being so receptive and lovely.

Finally, I wish to thank my sister Fabiana and my loving mother Antônia Elvira, which
pushed me forward in my studies, since I started in the school until today. Last, but not
least, my lovely thanks go to Adriana Aparecida Paz, my girlfriend, who never abandoned
me, even having an ocean between us. She was very important for the success of this
work, due to his patience and support, and especially for her comprehensiveness and
loveliness.

November, 2007.

Abstract

Embedded systems are massively present in our lives and they are becoming omnipresent.
This has demanded strong efforts in research for providing new solutions for the chal-
lenges faced in the design of such systems. For instance, the requirements of high compu-
tational performance and flexibility of the contemporary embedded systems are continu-
ously increasing. A single architecture must be able to support, in certain cases, different
kind of applications with different requirements which can start asynchronously and dy-
namically (changing environments). Reconfigurable computing seems to be a potential
paradigm for these scenarios as it can provide flexibility and high computational perfor-
mance for modern embedded systems. Of especial interest are those architectures where
a microprocessor is tightly connected with a reconfigurable hardware (hybrid platform),
constituting a so called reconfigurable System-on-Chip (RSoC). However, the complexity
in designing such systems rises. Therefore, the usage of an Operating System (OS) is
essential to provide the necessary abstraction of the computational resources in reconfig-
urable computing. Moreover, due to the intrinsic overhead caused by the reconfiguration
activities and the potential sharing of computational resources the necessity for support
provided by an OS is unquestionable. Nevertheless, embedded system platforms lack in
computational resources. This fact requires a careful design of an OS for such a system,
since it also consumes its resources.

Along with the application tasks, the OS can profit from a RSoC based architecture
by reconfiguring itself over this hybrid platform. Thereby, the OS can make use of the
remaining resources that are not currently required by the application for its execution.
Within this context, this work presents the design of proper methodologies, strategies,
hardware and design support for a proper management of dynamic reconfiguration ac-
tivities of a Real-Time Operating System (RTOS) running on a RSoC based platform.
The intention thereby, is to promote the self-reconfiguration of the RTOS services on
this hybrid platform, so that the computational resources of this execution platform are
used in an efficient way.

Zusammenfassung

Eingebettete Systeme haben eine starke Präsenz in unseren alltäglichen Leben bekom-
men, in vielen Bereichen sind sie allgegenwärtig geworden. Dieses ist eine Heraus-
forderung für die Forschung im Bereich solcher Systeme. Ständig müssen neue adäquate
Lösungen gefunden werden. Durch die zunehmenden Anforderungen nimmt die Leistung
und Flexibilität bei eingebetteten Systemen ständig zu. Zum Beispiel, eine einzelne
Architektur muss in der Lage sein, in bestimmten Fällen, mehrere Applikationen mit
verschiedenen Anforderungen zu unterstützen, die asynchron und dynamisch ablaufen
können (dynamische Umgebungen). Rekonfigurierbare Rechensysteme scheinen ein po-
tentielles Paradigma für diese Szenarien zu sein, weil sie Flexibilität und hohe Rechen-
leistung für moderne eingebettete Systeme liefern können. Von besonderem Interesse
sind jene Architekturen, wo ein Mikroprozessor mit rekonfigurierbarer Hardware fest
verbunden ist (hybride Plattform). Eine solche hybride Plattform nennt man rekon-
figurierbares System-on-Chip (RSoC). Jedoch nimmt die Komplexität in solchen Sys-
temen ständig zu. Deshalb ist die Anwendung eines Betriebssystems (OSs) wesentlich,
um eine notwendige Abstraktion von den vorhandenen Ressourcen in rekonfigurierbaren
Rechensystemen zu ermöglichen. Weiterhin, ist durch die gemeinsame Nutzung von
Ressourcen einer solchen Architektur und deren Verwaltung in Bezug auf die Rekon-
figuration, der Einsatz eines OS zwingend notwendig. Dennoch sind die Ressourcen in
eingebetteten Systemen begrenzt. Deshalb muss beim Entwurf eines OS für ein solches
System sorgfältig vorgegangen werden, da das OS an sich schon Ressourcen verbraucht.

Zusammen mit den Applikationen kann das OS auch von den RSoC Architekturen prof-
itieren dadurch, dass das OS sich selbst auf der hybriden Plattform rekonfigurieren
kann. Somit kann das OS die übrigen Ressourcen nutzen, die nicht gegenwärtig von
der Applikation benutzt werden. In diesen Rahmen präsentiert die vorliegende Ar-
beit den Entwurf von geeigneten Methodologien, Strategien, Hardware und Entwurf-
sunterstützungen für eine geeignete Verwaltung von dynamischen Rekonfigurierungsak-
tivitäten eines Echtzeitbetriebssystems (RTOSs), das auf einer RSoC basierten Plattform
läuft. Die Intention dabei ist es die Selbst-Rekonfiguration der RTOS Dienste auf einer
hybriden Plattform zu ermöglichen, wodurch die vorhandenen Ressourcen der Plattform
effektiv ausgenutzt werden können.

Resumo

Sistemas embarcados estão cada vez mais presentes em nossas vidas e estão se tornando
onipresentes. Este fato tem demandado grandes esforços em pesquisa para criação de
propostas e soluções para os desafios gerados no desenvolvimento destes sistemas. Por
exemplo, uma arquitetura moderna de sistemas embarcados requer alto poder de com-
putação e também grande flexibilidade, e a demanda por estes requisitos tem crescido
constantemente. Uma única arquitetura deve executar, em certos casos, diferentes
aplicações com diferentes requisitos e com inicio de execução indeterminado, caracteri-
zando desta maneira um ambiente dinâmico. A computação reconfigurável aparece como
um paradigma promissor para estes casos pois consegue prover alto poder de computação
juntamente com flexibilidade requeridas pelos sistemas embarcados modernos. Espe-
cialmente interessantes são arquiteturas baseadas em System-on-Chip reconfiguráveis
(RSoC), nas quais um microprocessador está fortemente conectado a um hardware re-
configurável (plataforma h́ıbrida). Porém a complexidade no desenvolvimento destes
tipos de sistemas cresce, tornando o uso de um sistema operacional (SO) indispensável.
Entretanto, uma plataforma de execução de um sistema embarcado sofre pela escassez
de recursos. Este fato exige um cuidado especial no desenvolvimento de um SO uma vez
que este também usa os recursos desta plataforma.

Juntamente com as tarefas da aplicação, o SO também pode tirar proveito de uma
plataforma baseada em RSoC onde este é capaz de se auto reconfigurar sobre esta
plataforma h́ıbrida. Deste modo, o SO pode usar os recursos computacionais, corrente-
mente não requeridos pelas aplicações, para a sua execução. Dentro deste contexto,
este trabalho apresenta o design de metodologias, estratégias e suporte em hardware e
software para o gerenciamento apropriado das atividades de reconfigurações dinâmicas
de um sistema operacional de tempo-real (RTOS), que é executado em uma plataforma
baseada em RSoC. A intenção com isto é a de proporcionar ao RTOS meios com os quais
este é capaz de se auto reconfigurar nesta arquitetura h́ıbrida com a intenção de atingir
um uso mais eficiente dos recursos computacionais desta plataforma de execução.

Contents

List of Figures xvii

List of Tables xix

List of Algorithms xxi

List of Symbols xxiii

1. Introduction 1
1.1. Motivation . 2
1.2. Thesis Goals . 3
1.3. Thesis Contributions . 4
1.4. Thesis Outline . 4

2. Background 7
2.1. Embedded System Design . 7
2.2. Reconfigurable Computing Overview . 9

2.2.1. Coupling CPU and Reconfigurable Hardware 11
2.2.2. Reconfigurable System Design . 11

2.3. Reconfigurable Hardware Technology . 13
2.3.1. Hybrid Architecture . 14
2.3.2. Configuration Techniques . 15
2.3.3. Partial Reconfiguration Feature . 16

2.4. Chapter Conclusions . 17

3. Related Work Survey 19

xi

xii Contents

3.1. (Re)Configurable Operating Systems . 19
3.1.1. Statically Reconfigurable OS . 20
3.1.2. Dynamically Reconfigurable OS: Application Triggered 21
3.1.3. Dynamically Reconfigurable OS: System Triggered 23
3.1.4. Towards Online Reconfigurable DREAMS 24
3.1.5. Further Comments . 24

3.2. Operating System for Reconfigurable Computing 25
3.2.1. Low-level OS Support for Reconfigurable Hardware 26
3.2.2. Application Model . 29
3.2.3. OS Services for Reconfigurable Hardware 29
3.2.4. RTOS issues in High Level Design 30
3.2.5. Offline Approaches . 31
3.2.6. Run-time Support . 32
3.2.7. Multitasking Issues . 35
3.2.8. Dynamically Hybrid Architectures 36

3.3. Further Approaches . 37
3.3.1. Hardware Accelerator for RTOS 37
3.3.2. Multithreading on Hybrid Architectures 38

3.4. Chapter Conclusions . 40
3.4.1. Correlation With This Thesis . 40
3.4.2. Additional Comments . 41

4. Run-time Reconfigurable RTOS 43
4.1. System Overview . 43

4.1.1. Target Applications . 44
4.1.2. Target RTOS . 45
4.1.3. Instrumented OS API . 46
4.1.4. Run-time Reconfiguration Manager - RRM 49

4.2. Hardware Architecture . 49
4.3. Design Support . 50
4.4. Chapter Conclusions . 51

5. Modeling & Problem Formulation 53
5.1. Component Assignment . 53

5.1.1. Constraints Definition . 54
5.1.2. Objective Function Definition . 55
5.1.3. Allocation Example . 56

5.2. Reconfiguration Costs . 56
5.2.1. Temporal Specification . 58

5.3. Communication Costs . 59
5.4. Chapter Conclusions . 61

6. Run-Time Methods 63
6.1. OS Service Allocation . 63

Contents xiii

6.1.1. OS Service Assignment Phase . 64
6.1.2. OS Service Assignment Example 64
6.1.3. Balance B Improvement Phase . 65
6.1.4. Balance B Improvement Example 67
6.1.5. Reconfiguration Cost Reduction 68

6.2. Communication-aware Allocation Algorithm 69
6.3. Handling Reconfiguration Activities . 71
6.4. OS Component Reconfiguration . 72

6.4.1. Applying Total Bandwidth Server 74
6.4.2. Deriving Migration Conditions . 75
6.4.3. Software to Hardware Migration 75
6.4.4. Hardware to Software Migration 77
6.4.5. Software Service Reconfiguration 77
6.4.6. Hardware Service Reconfiguration 78
6.4.7. Migrating by Preempting . 78

6.5. Schedulability Analysis . 81
6.6. OS Components Scheduling . 82

6.6.1. Partial Schedule . 83
6.6.2. Complete Schedule . 84

6.7. Chapter Conclusions . 85

7. Methods Evaluation 87
7.1. OS Components Allocation . 87

7.1.1. OS Components Assignment . 87
7.2. Balancing Heuristic . 88

7.2.1. Reconfiguration Cost Reduction 89
7.3. Components Reconfiguration Scheduling 91
7.4. Communication costs reduction . 92
7.5. Chapter Conclusions . 95

8. Design Support 97
8.1. Hardware-Software Interface Synthesis . 98

8.1.1. OS Driver Extension . 99
8.1.2. Software Interface for Reconfigurable IPs 99
8.1.3. Integration into IFS Tool . 100
8.1.4. Further Extension for DREAMS 101

8.2. Relocatable Tasks Design . 101
8.2.1. Unified Task Representation . 102
8.2.2. A Framework for Relocatable Task Design 104

8.3. Chapter Conclusions . 107

9. Case Study 111
9.1. Target OS Service . 111
9.2. Relocatable Triple-DES . 113

xiv Contents

9.3. Testbed Set Up . 115
9.4. Quantitative Results . 116
9.5. Chapter Conclusions . 118

10.Conclusion & Outlook 121
10.1. Summary . 121
10.2. Outlook . 123

A. Further Evaluation Results 125

B. HW/SW Interface Generation 129

C. Hardware/Software Task Design 131
C.1. Hardware Task Controller Template . 131
C.2. Sequence Graphs for Two Migration Cases 131

D. TBS Server Bandwidth Estimation 135

List of Figures

1.1. Reconfigurable OS for RSoC: Overview. 3

2.1. HW/SW partitioning scheme. 9
2.2. Performance versus Flexibility tradeoff. 10
2.3. Example of dynamic reconfiguration usage [33]. 11
2.4. CPU and RH: Coupling types. 12
2.5. Typical SoC architecture (a) and a RSoC architecture (b) [38]. 13
2.6. FPGA comprises a set of CLBs. 13
2.7. Viertex-II Pro architecture overview [40]. 14
2.8. CoreConnect block diagram [40]. 15
2.9. Example of device partition for 1D (a) and 2D (b) partition models. . . . 17

3.1. Execution environment envisioned by the Reconfigurable Computing re-
search community. 26

3.2. Self-programming hardware architecture [87]. 27
3.3. Virtualized interface [90]. 28
3.4. Software and hardware threads connected through a virtualization layer

[93]. 28
3.5. A task graph on FPGA [98]. 33
3.6. OS frame and task communication block [114]. 34
3.7. Hybrid thread abstraction layer [148]. 39

4.1. System overview. 44
4.2. Proposed microkernel based architecture. 45
4.3. Call patterns experienced by an OS service. 47
4.4. System architecture. 51

xv

xvi List of Figures

5.1. System architecture highlighting the communication channels. 60
5.2. Sample of an OS component graph. 60

6.1. Example of two components being clustered. 71
6.2. Optimal arrival time âi for Jbi . 76
6.3. Worst-case arrival time âi for Jbi . 76
6.4. Migrating by preempting: software to hardware. 79
6.5. Migrating by preempting: hardware to software. 81

7.1. Unbalance average for different δ constraints. 88
7.2. Total cost assignment average for different δ constraints. 89
7.3. Number of components being reconfigured for different δ constraints.

Heuristic-2a: original balancing algorithm. Heuristic-2b: modified bal-
ancing algorithm. 90

7.4. Unbalance average for different δ constraints. 91
7.5. Payoff in U+A due to the balancing algorithm modified for reconfiguration

costs reduction. 92
7.6. Component reconfiguration scheduling: heuristic algorithm evaluation. . . 93
7.7. Evaluation results comparison. 94
7.8. Payoff in overall resource usage due to clustering process. 95

8.1. Virtex-II Pro hardware/software interface. 98
8.2. Mapping between physical and virtual registers. 99
8.3. A method foo1 HW build upon library calls. 101
8.4. State transition graph representation of a relocatable task. 103
8.5. Design flow supported by the framework. 104
8.6. Informal description of TSD. 105
8.7. Hardware task overview. 107

9.1. Triple-DES and its basic DES cipher block. 112
9.2. CBC mode for block ciphers. 112
9.3. State transition graph corresponding to Algorithm 6. 114
9.4. Basic hardware platform. 115

10.1. System overview. 122

A.1. Comparison among communication costs reduction for three different sit-
uations. 126

A.2. Comparison among payoffs in overall resource utilization for three differ-
ent situations. 127

B.1. Class Diagram of possible interface registers. 130

C.1. The controller template for a hardware task. 132
C.2. Sequence graph specifying the task migration from software to hardware. 132

List of Figures xvii

C.3. Sequence graph specifying the task migration from hardware to software. 133

D.1. Relocation from software to hardware: An Example. 135

xviii List of Figures

List of Tables

3.1. OS classification according to the reconfiguration Time and Initiator. . . 24

5.1. Different allocation possibilities for two services, and the respective overall
cost and balance values. 57

5.2. Time costs related to each migration case. 58
5.3. Service definition related to its periodic execution. 59

6.1. Example of three components and their respective costs. 65
6.2. Assignment algorithm applied in the example presented in Table 6.1. . . . 66
6.3. Example of a complete OS service allocation. 68

9.1. FPGA and memory utilization. 116
9.2. Context data transfer: average time measured. 118

xix

xx List of Tables

List of Algorithms

1. Service assignment heuristic. 65
2. Heuristic for balancing B improvement. 67
3. Improved heuristic for balancing B. 69
4. Partial schedule. 84
5. Whole schedule. 85

6. Triple-DES pseudo algorithm. 113

xxi

xxii List of Algorithms

List of Symbols

S Set of OS services

si A generic OS service

S? Subset of S representing the OS services that will undergo a reconfiguration

s?i A generic OS service that will undergo a reconfiguration

Ss Set of software services that will be changed by another software service (Ss ⊂ S?)

Sh Set of hardware services that will be changed by another hardware service (Sh ⊂
S?)

Sw Set of services that will change the execution domain (Sw ⊂ S?)

T s Set of services located in software

T h Set of services located in hardware

C1 Cost set of software services

C2 Cost set of hardware services

C Cost set of all OS services

ci,j Cost of a service si assigned to execution domain j (j = 1 : CPU; j = 2 : FPGA)

Ai Cost used by service si when assigned to FPGA (ci,2 = Ai)

xxiii

xxiv List of Symbols

Ui Cost used by service si when assigned to CPU (ci,1 = Ui)

ci Hardware and software costs of a service si (ci = {Ui, Ai})

li Sum of Ui and Ai (li = ci,1 + ci,2)

A Total cost of OS services assigned to FPGA

U Total cost of OS services assigned to CPU

B Balance between FPGA and CPU costs

w1 Tendency of application resource utilization in CPU

w2 Tendency of application resource utilization in FPGA

Amax Maximum FPGA area cost available for OS services

Umax Maximum CPU workload cost available for OS services

δ Balancing constraint: maximum allowed unbalance

X1 Assignment solution for software services

X2 Assignment solution for hardware services

X Assignment solution for all OS services

xi,j Assignment solution of a service si at execution domain j

xi Assignment solution for a service si (xi = {xi,1, xi,2})

R Complete system reconfiguration cost

Ri Relocation matrix cost (3 x 3) of a component si

ri,j Cost to relocate a service from domain i to domain j

zi Assignment difference of a service si between two different assignment solutions

Z Assignment difference set of services between two different assignment set solu-
tions

Cα Communication cost between two OS services, both located in software

Cβ Communication cost between two OS services, both located in hardware

List of Symbols xxv

Cγ Communication cost between two OS services, each one located in a different
execution domain

κ(u, v) Communication costs between two OS services, u and v (κ = {Cα, Cβ, Cγ})

(λ1, λ2) Maximum resulted component cost that is allowed when clustering two OS
services

J Set of jobs needed to perform a system reconfiguration

Ji A generic reconfiguration job associated to service si

Jai Configuration phase of a reconfiguration job Ji

Jbi Migration phase of a reconfiguration job Ji

M s “Migration” time of a component when changed by another component version
at CPU

Mh “Migration” time of a component when changed by another component version
at FPGA

Mw Migration time of a component when relocated between CPU and FPGA

Qs Configuration (programming) time of a component at CPU

Qh Configuration (programming) time of a component at FPGA

Es Execution time of a component at CPU

Eh Execution time of a component at FPGA

Pi Period of service si

Di Relative deadline of service si

di,k Absolute deadline of the kth instance of service si

d̂i Absolute deadline of migration job Jbi

ai,k Arrival time of the kth instance of service si

âi Arrival time of migration job Jbi

bi,k Starting (beginning) time of the kth instance of service si

b̂i Starting (beginning) time of migration job Jbi

xxvi List of Symbols

fi,k Finishing time of the kth instance of service si

f̂i Finishing time of migration job Jbi

η Computation ratio (0 ≤ η ≤ 1) of a migration job

σ Time distance between arrival times of a service and its related migration job Jb

CHAPTER 1

Introduction

The presence of embedded systems is massive in our lives. It is possible to identify
its usage in a great variety of products: cellular phones, Personal Digital Assistance
devices (PDAs), household appliances (e.g., washing machines, microwave ovens, DVD
players), vehicles, airplanes, missiles, medical equipments, etc.; only to cite some of them.
Some numbers show that more than 99% of the microprocessors produced nowadays are
devoted to embedded system platforms [1].

The design of embedded systems is complex and involves many interdisciplinary research
areas, from high level modeling and simulation, through software, hardware and platform
design to the hardware and software synthesis and testing [2]. Unlike a general-purpose
computer, such as a Personal Computer (PC), the design of an embedded system is
considerably more complex. Usually, when designing such system one needs to take into
account requirements such as memory and power consumption, real-time behavior, short
time to market, etc.

On the other hand, with technology advances, most of embedded system components
can be incorporated into a single chip, leading to the so called System-on-Chip (SoC) [3].
One SoC may contain one or more CPUs, memory, peripherals and dedicated hardware
components (e.g., coprocessors) specifically developed for a target application in order to
meat the performance required by the application. These solutions, however, are usually
static, meaning that adaptations and/or modifications due to application changes are
not adequately supported.

A side effect of this integration is that contemporary embedded systems are increas-

1

2 CHAPTER 1. INTRODUCTION

ingly incorporating more and more functionalities, requiring thereby higher computation
performance. Moreover, these systems are becoming multipurpose, since they need to
support more than one application which may be different in their nature. For instance,
modern PDA or mobile phones are capable to play movies, connect to the internet
and make telephone calls among other activities. In addition, the algorithm complex-
ity tends to increase in many application domains such as signal, image and processing
control. Therefore, modern embedded systems are increasingly requiring more compu-
tational performance and flexibility due to the growing complexity and dynamics of the
application domain.

In order to be able to handle this tradeoff between flexibility and high performance,
an execution platform combining reconfigurable hardware and SoC becomes an attrac-
tive solution. This new platform is usually referred as Reconfigurable System-on-Chip
(RSoC). A single RSoC based platform may provide different facilities. For instance, a
product can change or upgrade its functionality by e.g., at initialization phase, loading
different configuration data. This enables, further, to upgrade a product that has been
already assembled, or even to correct some error identified in this product after delivering
it to the market. Additionally, a RSoC based system may support run-time reconfigu-
ration. This may even allow the creation of more complex systems, with capability to
dynamically adapt to system changes.

1.1. Motivation

The duty of an Operating System (OS) is to provide the necessary abstraction of the
hardware platform and provide services to the application, like for instance, message
passing, shared resources management, etc. Given that the computational power and
size (in terms of components integration) of nowadays SoC are rapidly increasing, the
utilization of an OS is also gaining in importance. An OS easies programming activities
by providing well defined interfaces to the underlying execution platform, hiding thereby
low level details from programmers. Furthermore, it enables the portability, reusability
and protection among applications. Actually, the reasons of using an OS for a SoC are
not different from those for running an OS on any system [4].

The demand of an OS is more emphasized in the case of platforms based on RSoC. Due
to the aggregated overhead caused by the reconfiguration activities, and management
of the shared reconfigurable hardware (dynamic reconfiguration), the support given by
an OS is highly desired. The OS executing on such platforms needs to provide suitable
methods and infrastructure for managing and using the resources in an efficient manner.

The design of a SoC architecture is application dependent. Due to the necessity to reduce
costs, power consumption, etc, it is required to provide an architecture only with those
components that a specific application will require. Since an OS also uses resources from
the execution platform, it is also desirable to have a modular OS. Thus, the software

1.2. THESIS GOALS 3

designer may tailor the OS to provide only the required services that an application
needs. These solutions, however, are usually static.

Since applications of modern embedded systems do present dynamic behavior (e.g., the
PDA example mentioned above), imposing thereby dynamic requirements to the OS,
those static solutions are no longer efficient. For such scenarios, the presence of an
OS capable to be dynamically reconfigured is highly desirable, in order to provide only
the current facilities required by the application and, thereby, using the resources in an
efficient manner.

1.2. Thesis Goals

A typical RSoC architecture includes a CPU and reconfigurable hardware as main com-
putational resources, which are shared between application and OS activities. Towards
an optimal usage of the available resources, the RTOS should be able to reconfigure itself
over the underlying hybrid architecture.

In this direction, this thesis aims to provide methodologies, strategies, mechanisms, as
well as hardware and design support, which aggregates self-reconfiguration capabilities
to an embedded operating system. By this means, the used operating system can config-
ure itself over the hybrid architecture in order to use the computational resources that
are currently not being used by application programs, and similarly, freeing resources
currently demanded.

Figure 1.1 summarizes the idea of this thesis. An extra component in the system, called
RRM (Run-time Reconfiguration Manager), monitors application requirements along
with the current occupation of the execution platform. So, by continuously analyzing
the overall resource utilization it coordinates the configuration of the OS services over
the hybrid architecture.

CPU
+

FPGA

RRM OPERATING SYSTEM

APP1 APPnAPP2

M O N I T O R I N G

USES

USES

Figure 1.1.: Reconfigurable OS for RSoC: Overview.

4 CHAPTER 1. INTRODUCTION

1.3. Thesis Contributions

The main contribution of this thesis is the development of strategies and methodologies
comprising an OS extension that can be aggregated to a real-time operating system
running under a hybrid execution platform enabling, thereby, an effective usage of the
computational resources by application tasks as well as by OS services. Such OS is well
adequate for given support to the modern and future embedded systems, relying on
execution platforms with high flexibility and performance.

All main parts of this thesis have been published in several conferences, which demon-
strate the recognition of this work by the research community. Moreover, it indicates
the relevance of the investigations carried out in the scope of this thesis research.

The raw proposal and concept of a reconfigurable OS for RSoC has been published in
[5]. Then, in [6] a more sound proposal for an execution platform is presented along
with heuristic algorithms for allocation of OS services over this hybrid platform. Later
on, in [7, 8] those algorithms were improved in order to decrease the reconfiguration
overhead. A further extension to the allocation algorithms, in order to take into account
the communication costs of OS components depending on their allocations, has been
presented in [9].

Appropriated model and strategies used to assure a deterministic reconfiguration of OS
services on the hybrid platform were firstly presented in [10] and then extended to cover
all aspects of this thesis in [11]. In addition, a framework and additional infrastructure
to support the design of relocatable components was presented in [12], [13] and [14].

The use of the proposed OS adaptation mechanisms and strategies in self-optimizing
systems is presented in [15, 16]. Furthermore, an overview of the overall proposal was
published in [17] and recently accepted for journal publication [18].

1.4. Thesis Outline

This thesis is organized as follows:

Chapter 2 provides theoretical background information, necessary for a clear under-
standing of the topics discussed in the subsequent chapters.

Chapter 3 summarizes relevant related work. It includes a survey on (re)configurable
operating systems based solely in software, filtering those ones intended for embed-
ded systems domain. Then, several aspects related to reconfigurable computing
and the proper and adequate support of an operating system for such systems is
largely discussed. Comparisons between those works and the subject of this thesis
are left to the end of the chapter.

Chapter 4 discusses in more details the ideas briefly introduced in Section 1.2. Herein,

1.4. THESIS OUTLINE 5

target applications are carefully specified. In addition, the target OS, which will
be used in the validation phase of this work, as well as the reasons for choosing it,
are presented. Furthermore, the execution platform is introduced in this chapter
along with the related design assistance requirements.

Chapter 5 presents the models adopted for the execution platform, the OS components,
and the reconfiguration activities. Additionally, the main problems that the Run-
time Reconfiguration Management (RRM) needs to solve are here formulated.

Chapter 6 introduces the methodologies and strategies adopted by the RRM to deter-
ministically manage the allocation and reconfiguration of the OS services over the
hybrid architecture. These strategies are mainly based on low complexity heuris-
tic algorithms proposed to solve NP-Hard problems faced by RRM, which further
need to be executed concurrently with the normal system operation.

Chapter 7 evaluates each heuristic algorithm presented in the previous chapter. For
that purpose, the MATLAB tool was used. Results are analyzed according to
algorithm efficiency, pointing out where further research need to be spent to solve
some open questions.

Chapter 8 describes the support made available to the programmer to enable the us-
age of the proposed system, covering thereby two aspects. First, the automatic
generation of hardware-software interface using the IFS [19] (Interface Synthesis)
tool is explained. Second, a framework for generation of hybrid services/tasks that
enables their run-time relocation between CPU and FPGA is presented.

Chapter 9 shows a case study used to validate the proposed reconfiguration strategies,
the design support proposed, and to analyze the effectiveness of the underlying
architecture in carrying out the reconfiguration activities. As a target OS service,
an encryption algorithm was selected, which is an OS service (for both, embed-
ded and non embedded systems) increasingly demanded by safety and security
applications.

Chapter 10 gives a synopsis of the work presented in this thesis. Furthermore, it signals
directions on which further work can be conducted.

6 CHAPTER 1. INTRODUCTION

CHAPTER 2

Background

This chapter gives the reader the necessary background information for a complete un-
derstanding of the technical discussions in the following chapters. Fundamentals of
Reconfigurable Computing and the mainly used hardware technologies are presented.

2.1. Embedded System Design

Traditional embedded systems, those existing until middle of nineties, could be specified
as a system comprising a microcontroller, memory, analog devices and some I/O signals.
Nowadays, due to technology advances and also with the increasingly requirements from
applications supported by contemporary embedded systems, they became more complex,
which have a direct impact on the design of such systems.

Unlike a general-purpose computer, such as a Personal Computer (PC), the design of
an embedded system is considerably more complex. It is an interdisciplinary activity,
involving many research areas. It goes from abstract level modeling and simulation,
through software, hardware and platform design to the hardware and software synthesis
and testing [2].

Besides low cost and tight time to market, other constraints, like for instance the limited
amount of memory available, low power consumption requirement, etc, make the design
of such a system a challenge. Furthermore, the fact that a single “standard” execution
platform for an embedded system does not exists (differently, for instance, from the
situation of PC market) increases even more the degrees of freedom by searching complete

7

8 CHAPTER 2. BACKGROUND

solution for an embedded system.

Contemporary embedded systems are further integrating more and more functionalities
and requiring, therefore, higher computation performance. With technological advances
most of system components can be incorporated into a single silicon die leading to a so
called System-on-Chip (SoC) [3]. One SoC may contain one or more CPUs, memory, pe-
ripherals and dedicated hardware components (e.g., coprocessors) specifically developed
for a target application. A SoC offers more advantages and benefits to system designers
such as for instance, higher performance, lower power consumption, and higher reliabil-
ity, if compared with the case where a system is build by assembling various chips and
components on a circuit board.

Another trend in the development of execution platforms for embedded system is towards
multiprocessor architectures. Due to constraints in power consumption and increasing
demand in performance, some solutions in integrating multiple processors in a single
die are being currently investigated. Examples are Multi-Processors System-on-Chip
(MPSoC) and Network-on-Chip (NOC) systems [3].

Even for normal PCs this trend is observed (for instance, the Dual Core processor from
Intel [20]), or even in graphic cards used inside such architectures. Recently, NVIDIA
company released the G8 graphic chips where multithreading is used as based environ-
ment for the application design (for more details see [21] and [22]).

Another example is the Cell Multiprocessor [23], which was developed to attend the
demands of the game/multimedia industry. The Cell multiprocessor combines in a sin-
gle die one 64bit based microprocessor with eight cooperative processors, all connected
together through a high bandwidth on-chip coherent bus.

Hardware/Software Codesign

A typical SoC architecture is based on hardware and software components, and the
decision of which parts will be developed in hardware and which in software is one of
the most important parts by designing an embedded system execution platform [24].
Hardware/Software codesign defines some methodologies and strategies for designing
heterogeneous (hardware and software) systems. The goal is to find an efficient solution
for a system which meets the specified requirements and constraints. In this process, it
is important to have a unified model environment, which allows the co-simulation and
co-verification of hardware and software parts together. A considerable amount of work
has been done in this area: [25], [26], [27] and [28].

One key part of the hardware-software codesing, shown in Figure 2.1, is the hardware-
software partition and the correspondent interface synthesis. The partition phase is not
a trivial task. Even though there are some tools which do this in an automatic way, this
activity is done also manually [29]. Nowadays, the partition of the system in hardware
and software is influenced mainly by the designer experience and also by the availability

2.2. RECONFIGURABLE COMPUTING OVERVIEW 9

of previously designed and used architectures (also known as architecture templates).
Moreover, due to the market pressure, there is a need to deliver a product as soon as
possible, which also decreases the development costs. This short time-to-market also
emphasizes the reusability of hardware and software components in the design of new
embedded system architectures.

Software

HW/SW
Partitioning

HW/SW
Interface Hardware

System
Model

Architecture
Templates

Figure 2.1.: HW/SW partitioning scheme.

Another important aspect of hardware/software codesign is the generation of an interface
between hardware and software components. This phase is commonly left to the end part
of the design flow, mostly due to the lack of properly abstraction of HW/SW interfaces,
which makes difficult the dialog between software and hardware design teams. This
problem is highlighted even more in new architectures that are becoming multiple and
heterogeneous multiprocessing. Therefore, a hardware/software interface codesing [30]
is necessary in order to tackle the complexity of designing SoC architectures in the near
feature.

2.2. Reconfigurable Computing Overview

As previously mentioned, the required application performance is achieved by implement-
ing the computational intensive functionalities in a dedicated device, usually referenced
as a hardware accelerator. If, for instance, a hard-wired technology is used then an
Application Specific Integrated Circuit (ASIC) is designed and fabricated specially for
the purpose of this specific application.

Although an ASIC could perform very well when executing the exact computation for
which it was designed, it does not provide flexibility. In order to change the computation
performed inside an ASIC, re-design and re-fabrication are necessary. A microprocessor,
in an opposite way, offers great flexibility, since its functionalities are determined by the
software instructions stored in the memory. In terms of efficiency, however, a micropro-
cessor is by far inferior to an ASIC, since the computation is executed sequentially.

Reconfigurable systems may fill the gap between application-specific platforms based on
custom hardware functions, and software programmable systems based on traditional

10 CHAPTER 2. BACKGROUND

microprocessors [31]. The resulting system is one which can provide higher performance
by implementing custom hardware functions in reconfigurable units, and still be flex-
ible by reprogramming the hardware and/or a microprocessor (hybrid architectures).
Figure 2.2 shows the trade off between performance and flexibility related to software,
hardware and reconfigurable computing.

Flexibility

P
er

fo
rm

an
ce

Dedicated HW

Instruction set
Processor

Reconfigurable
Hardware

Reconfigurable
HW/SW

Figure 2.2.: Performance versus Flexibility tradeoff.

A reconfigurable hardware (RH) is very attractive for designing execution platforms
for modern embedded systems. One motivation is the reduction of the Non-Recurring
Engineering (NRE) costs, since the same hardware architecture may be used for more
than one product. Even the same product can be provided by a company with sev-
eral variations by reprogramming the hardware and software. Furthermore, the post-
manufacturing programmability allows upgrades or corrections of problems when the
product has been already finished.

Execution platforms based on RH may also be dynamically reconfigured, allowing the
dynamic adaptation of the system to the run-time environments [32]. Flexibility can be
added to the architecture by dynamically allocating different and dedicated processing
operators within the reconfigurable device. It also allows a configuration larger than
the available RH to be used (virtual hardware concept). This improves the resource
utilization by sharing the hardware between various applications.

The Figure 2.3 illustrates an example scenario where computations A, B, C and D are
accelerated by the RH [33]. After finishing the execution of A and B, the computation D
can replace them in the RH. Depending on the hardware support, computation C may
be kept running while the reconfiguration happens. Such platforms require, however,
more attention on the management and control.

There are two main challenges by following this approach. First, the kernel candi-
dates to be implemented in hardware need to be mutual exclusive in their execution
(no concurrency). This is also true for hardware devices that comport more than one
kernel. However, in this cases the mutual exclusivity need to be assured among the
kernel sets. To find a solution for these problems, techniques known as temporal and

2.2. RECONFIGURABLE COMPUTING OVERVIEW 11

WWWWWWWWWWWWWWWWW

WWWWWWWWWW

WWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWW
WWWWWWWWWWWW

WWW

WWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWW
WWWWWWWWW
WWWWWWWWWWWWWWWW

WWWWWWWWWWW
WW

WWW

WWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWW

WWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWW

WWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWW
WWWWWWWW

WW
WWW

WWWWWWWWWWWW
WWWWW

WW
WWWWWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWW

WWWWWWWWWWWWWWW
WWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWW

WWWWWW
WWWWWWWWWWWWW

WWWWWWWWWWWWWWWW
WWWWWWWWWWWW

WWW

WWWWWWW

WWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWW

A

B

C

D

Software
application

Hardware kernel
implementations

(a)

A

B

C

CPU

Reconfigurable
hardware

Memory system

(b)

D

C

CPU

Reconfigurable
hardware

Memory system

(c)

Figure 2.3.: Example of dynamic reconfiguration usage [33].

spatial partitioning [34, 35] are used. The second challenge is to provide a well designed
infrastructure, which needs to provide efficient methods to, e.g., swap in and out the
configurations on the RH, keep track of data exchanged between configurations, schedule
the configurations, etc.

2.2.1. Coupling CPU and Reconfigurable Hardware

A reconfigurable architecture appears normally in form of a CPU connected with a RH.
The coupling type has a strong influence in the communication costs between CPU and
RH. Furthermore, certain connection types require that the CPU is specially designed
to be connected with the RH (non standardization).

Figure 2.4 shows four different types of connections. In a really tightly coupled archi-
tecture (Figure 2.4b) the RH is deeply integrated with the CPU, so that it belongs to
the processor data-path. The RH may also be connected with the CPU in the form of
a classical coprocessor as presented in Figure 2.4c. In a middle connected architecture,
the RH is plugged to the CPU through a local bus, as in Figure 2.4d. This can be
seen also as an extended version of a coprocessor, since the RH may be accessed by the
CPU using memory mapped technique. However, such architecture may also be used
as an execution platform for a multiprocessing system. In loosely coupled architectures
(Figure 2.4a) the RH is attached to the CPU through an external bus (like PCI) which
is also an usual solution for a system architecture.

2.2.2. Reconfigurable System Design

Event though the usage of reconfigurable hardware in embedded systems is increasing
[33], there is no standard method to design such system yet. Instead, there are proposals
which are based on the extension of the traditional hardware/software codesign methods

12 CHAPTER 2. BACKGROUND

CPU Main
Memory

Reconfigurable
Hardware

Local Bus

PCI Bus

(a) Loosely coupled.

CPU Main
Memory

Reconfigurable
Hardware

Local Bus

(b) RH integrated into the processor data-
path.

CPU Main
Memory

Reconfigurable
Hardware

Local Bus

(c) RH as a classical coprocessor.

CPU Main
Memory

Reconfigurable
Hardware

Local Bus

(d) RH attached at the local bus.

Figure 2.4.: CPU and RH: Coupling types.

[36, 37], and their differences concentrate on the hardware-software partition phase.

However, the design of such system is even more complex than the traditional one due
to the necessity to evaluate the temporal and spatial utilization of the reconfigurable
hardware (which is considered as a shared resource), configuration overhead, communi-
cation infrastructure, etc. Moreover, the new approaches rely on the usage of modeling
languages, which allows the consideration of the reconfigurability aspects since the be-
ginning of the design phase.

Figure 2.5 gives an idea about the differences at execution platform between SoC and
RSoC. In Figure 2.5a HW accelerators are static components and in Figure 2.5b they
are placed in the reconfigurable fabric according to its usage.

2.3. RECONFIGURABLE HARDWARE TECHNOLOGY 13

)b()a(

SW
functions

MEM
HW

Accelerator
HW

Accelerator

SW
functions

SW
functions

CPU DMA

HW
Accelerator
functionality

SW
functions

SW
functions

CPU DMA

HW
Accelerator
functionality

Reconfigurable
fabric

MEM

(a)
)b()a(

SW
functions

MEM
HW

Accelerator
HW

Accelerator

SW
functions

SW
functions

CPU DMA

HW
Accelerator
functionality

SW
functions

SW
functions

CPU DMA

HW
Accelerator
functionality

Reconfigurable
fabric

MEM

(b)

Figure 2.5.: Typical SoC architecture (a) and a RSoC architecture (b) [38].

2.3. Reconfigurable Hardware Technology

An execution platform for a reconfigurable computing application is based typically on
a Field Programmable Gate Array (FPGA), which is a two-dimensional grid of config-
urable logic cells, called Configuration Logic Blocks (CLBs). These blocks are embed-
ded in a general routing structure (also configurable) which allows their interconnections
(inputs and outputs of each CLB). This architecture, shown in Figure 2.6a, supports a
construction of a relatively arbitrary interconnection scheme between the logic blocks in
the system.

CLB

CLB

CLBCLBCLB

CLB

CLB

CLB

CLB

CLB CLBCLB

CLBCLB

CLBCLB

IO area

Logic Blocks

Interconnect
Resources

(a) Basic FPGA architecture.

4-input
LUT

flip-flop
mux

y

q
e

a
b
c
d

(b) Simplified Configurable Logic Block
(CLB) [39].

Figure 2.6.: FPGA comprises a set of CLBs.

14 CHAPTER 2. BACKGROUND

Each CLB can implement a distinct and limited logic function. A very simplified struc-
ture of a CLB is shown in Figure 2.6b which contains a 4-input Look-Up Table (LUT)1,
a Multiplexer (MUX) and a storage element (flip-flop). A real CLB available in the
modern FPGAs usually comprises more than on of such logic blocks and more signals
for controlling, allowing the implementation of complex logic circuits.

FPGAs currently represent the most popular and mature segment of RH technologies.
Of special interest are the SRAM-based FPGAs, which are the state-of-the-art in FPGA
technology. The configuration (CLBs and interconnect resources) are stored internally
on a static RAM. Changing the content of the configuration RAM will also change the
resulting circuit running on the FPGA.

2.3.1. Hybrid Architecture

Meanwhile there are FPGA fabrics which incorporate a processor core. Figure 2.7 shows
the structure of a Virtex-II Pro FPGA used in this work. This FPGA (as well as Vir-
tex4, from the same company) is equipped with up to four hardcores PPC405 processors,
signifying also that RH and CPU are located in the same device. With these devices,
it is possible to design sophisticated architectures, where even more than one RH com-
ponent may be connected with the CPU. This provides more flexibility when designing
Reconfigurable SoC (RSoC) execution platforms.

CLB

M
ul

tip
lie

rs
 a

nd
Bl

oc
k

Se
le

ct
RA

M

Pr
oc

es
so

r B
lo

ck

Configurable
Logic

SelectIO-Ultra

DCM
RocketIO or RocketIO X
Multi-Gigabit Transceiver

CLB

CLB

CLB

Figure 2.7.: Viertex-II Pro architecture overview [40].

If a processor core is needed and not available in a FPGA, like the Virtex and Spartan3
FPGA families, one can use a softcore processor. An example available from Xilinx

1A LUT implements a combinatorial logic by storing a function truth table.

2.3. RECONFIGURABLE HARDWARE TECHNOLOGY 15

company is the so called MicroBlaze, which is a softcore processor based on RISC archi-
tecture. This processor even allows the integration of accelerators, designed inside the
FPGA, to the processor data-path [41].

In order to help the design of embedded systems based on such hybrid devices, a design
tool called EDK (Embedded Development Kit) is made available by the FPGA Company.
The architecture advised and supported by this tool, when using the hardcore PPC405, is
shown in Figure 2.8. The processor block is connected to the other components through
the CoreConnectTMbus architecture, composed by two main buses: Processor Local
Bus (PLB) and On-chip Peripheral Bus (OPB). Slow peripherals should be attached
to the OPB bus in order to offload the PLB bus, which provides low latency access to
peripherals requiring high performance.

System
Core

System
Core

System
Core

Processor
Block

Peripheral
Core

Peripheral
Core

Processor Local Bus On-Chip Peripheral Bus
Bus

Bridge

C oreC onnect B us Architecture

A
rbiterA

rb
ite

r

Instruction Data

Figure 2.8.: CoreConnect block diagram [40].

Other FPGA manufactures provide similar solutions in their products as well. For in-
stance, Altera offers the Stratix II2 and Cyclone II3 devices, which allow the usage
of NIOS softcore processors. Also ATMEL have an architecture for dynamically re-
configurable SoC, called FPSLIC (AVR processor and FPGA) [42]. Nonetheless, the
background information given in this work is concentrated on FPGAs manufactured
by Xilinx Company. This device was chosen for implementation purpose, since not all
FPGAs support a specific feature called dynamic partial reconfiguration (discussed in
Section 2.3.3).

2.3.2. Configuration Techniques

A FPGA configuration is performed by downloading a bitstream4 through a specific
configuration port. This can be done offchip assisted by an extra component connected
to the FPGA configuration port (for details please refer to [40]). Alternatively, the
configuration data can be downloaded by an internal FPGA entity (not available in all
FPGAs), called ICAP (Internal Configuration Access Port), which is mainly used for
partial reconfiguration approaches (Section 2.3.3).

2Available at: http://www.altera.com/products/devices/stratix2/st2-index.jsp
3Available at: http://www.altera.com/products/devices/cyclone2/cy2-index.jsp
4A bitstream is a configuration data used to program the FPGA in a serial manner.

16 CHAPTER 2. BACKGROUND

Furthermore, through the same port the present configuration on the FPGA can be
read. This technique, called Readback operation, is used to verify the configuration
on the FPGA and it is also used as a main technique to provide basic support for
multitasking on FPGA (more details about this subject is given in Section 3.2.7.

2.3.3. Partial Reconfiguration Feature

Some FPGAs support partial reconfiguration. In these fabrics, part of the device can
be reconfigured whilst the remaining part keeps its execution normally. This feature
allows the implementation of multitasking systems based on reconfigurable devices. The
FPGA is partially configured by downloading the related partial bitstream on the FPGA
through the same port used for the case of a complete configuration. If the system wants
to configure itself, the internal ICAP entity must be used.

Additionally, partial reconfiguration is a device dependent feature. Xilinx FPGAs are
the few ones on the market with support to partial reconfiguration. Xilinx FPGAs with
this feature goes from Virtex-4 devices to Spartan-3/E family. However, usually on these
devices the partial reconfiguration is possible in a column-wise manner [43]. In these
cases the device is divided into a number of columns. Each column spans vertically the
chip (1D partition model) and it can be independently reconfigured without affecting the
other columns (Figure 2.9a). Meanwhile, the release of new guidelines and design flows,
like Early Access Partial Reconfiguration [44, 45] and other techniques from Xilinx shall
allow a more flexible rectangle sizing (2D partition model) to be partial reconfigured on
a device (Figure 2.9b).

An architecture designed to support partial reconfiguration is similar to the one presented
in Figure 2.9. Usually, the FPGA device is divided in different parts. A static one
related to the management of configuration data and the input/output data, and one
or more parts which are reconfigured on-the-fly. The connections between the static
and dynamic parts of the FPGA must be implemented by specific interconnect device
resources. A known technique used is the so called Busmacros [43]. Therefore, all
circuits implemented inside the dynamically reconfigurable parts of the FPGA must use
the Busmacros wires to connect with other entities in the system.

The technical realization of such architectures are difficult due to the poor tool support
and strong restrictiveness of the design guidelines [43]. Therefore, the partial recon-
figuration feature is mostly used in academic research works. However, by recently
improvement in the design support (like the [44] and [45] guidelines) and recently in-
troduced design tools, which explicitly support a modular design approach (PlanAhead
[46]), this feature is going to be used commercially as well. One evidence for that is the
recently usage of partially reconfigurable FPGA based platforms for Software Defined
Radio (SDR) SoC modems [47].

2.4. CHAPTER CONCLUSIONS 17

Module
A

Module
B

Module
C

Static
Part

Configuration
PortBitstream A

Bitstream B
Bitstream C

(a)

Module
A

Module
B

Module
C

Static
Part

Configuration
PortBitstream A

Bitstream B
Bitstream C

(b)

Figure 2.9.: Example of device partition for 1D (a) and 2D (b) partition models.

2.4. Chapter Conclusions

This chapter highlights the main features of reconfigurable computing and how it can
contribute in improving the flexibility and performance for modern embedded system
execution platforms. Additionally, the FPGA device has been introduced as being the
mainstream technology in reconfigurable computing systems, keeping the focus on those
FPGAs with support for partial reconfiguration. The investigations carried out in the
scope of this work rely on this specific feature, which is still being improved by the
FPGA vendors. Evidence for that are the availability of new tools and design flow
guidelines (introduced in Section 2.3.3), which are intend to decrease the current difficult
practicability of partial reconfigurable based platforms.

18 CHAPTER 2. BACKGROUND

CHAPTER 3

Related Work Survey

This chapter starts giving a survey on reconfigurable operating systems conceived for
software-only based architectures, concentrating on those ones envisioned for embedded
systems domain. The intention thereby, is to figure out what are the trends and results
already achieved in this research field.

In the sequence, important and relevant results related to operating system support for
reconfigurable computing architectures, operating systems running on this architectures,
and some new further approaches are presented. Along that, different aspects related
to reconfigurable computing and the support required by an OS are covered, which con-
centrate on the interaction between CPU and reconfigurable hardware. Such a support
may represent a simple driver as well as more sophisticated services that are required
for managing the reconfigurable hardware in an abstract manner.

3.1. (Re)Configurable Operating Systems

An operating system with the ability to be reconfigured is not new and most OSs support
it in one form or in another. The motivation for reconfiguration of an operating system
is that by configuring it one can achieve customization of the OS to the application
requirements, allowing system upgrade, etc. Moreover, dynamic reconfiguration can
allow run-time adaptation of the OS to the current application requirements, and so
achieving a better execution environment for this application.

Such operating systems can be in a first level classified into two categories, static and

19

20 CHAPTER 3. RELATED WORK SURVEY

dynamic. Beside that, reconfigurable OS can be classified in respect to the initiator of
the reconfiguration [48], which could be triggered by:

Human This is often the case when the designer decides which components of an OS is
going to be used for the target application and this feature is supported by most
operating systems. Dynamic reconfiguration is also usual for those systems, even
at boot time (by passing some parameters to the kernel) or at run-time by loading
or unloading modules (e.g., Linux OS).

Application A reconfiguration that is triggered by an application appears only in dy-
namic case and this has received strong attention in the OS research community.
Several proposals therefore have been proposed and in the following subsection
some representative OSs of this category will be presented and discussed.

Operating System Also called Automatic or Self-Adaptation, OSs belonging to this cat-
egory are those which the reconfiguration is initiated by the OS itself. Portability
of the OS to different platforms at compile time may be seen as a feature of this
kind of OS which does not represent a significant innovation, since most of the
OSs provide this feature. The interesting approach is in dynamic scenarios, which
require more intelligence from the OS.

Most of the investigations done for dynamic reconfigurable OS are concentrated on the
cases where reconfiguration is triggered by the application, and in the majority, those
approaches accept the idea that applications know better than the OS what their needs
and requirements are. Therefore, usually the application makes requests to the OS to
change its policies on its behalf. A self-reconfiguring OS, on the other hand, needs to have
enough intelligence in order to gather sufficient and appropriated information from the
running applications. Such information is needed to make a decision regarding what and
when to reconfigure itself, in such a way to provide an optimal execution environment
for each of the applications.

Following, some OSs representative of the categories cited above are listed and briefly
discussed focusing on those ones intended for embedded system application domain.

3.1.1. Statically Reconfigurable OS

The eCos (Embedded Cygnus Operating System) [49, 50] is an open-source embeddedeCos
real-time configurable operating system currently supported by the RedHat company
(since 1999). The eCos OS can be customized at source code level, thus offline recon-
figuration. To help the designer by the reconfiguration phase a tool is made available
to select the components which will compose the kernel source and compile them to
generate the final OS footprint.

DREAMS1 [51, 52, 53, 54] is a library-based OS for embedded systems, which wasDREAMS
1DREAMS: Distributed Real-Time Extensible Application Management System.

3.1. (RE)CONFIGURABLE OPERATING SYSTEMS 21

primarily designed for offline configuration to allow customization of the OS to the
target application. Currently, DREAMS also provides some dynamic reconfiguration
which will be discussed in Section 3.1.4. DREAMS have similarities with the eCos OS
in the sense that the operating system code is composed of components selected by the
designer through a tool and finally compiled. The complete system has been designed
following the object-oriented paradigm (using C++ for coding). DREAMS differs from
eCos in the way that OS services are built as a run-time library, instead of a kernel (as
in eCos). This is achieved by allowing the customization of the objects and selecting
those objects that are really needed by the application. The customization features are
based on pre-processor techniques and are incorporated into the Skeleton Customization
Language (SCL). To help the designer in this process, a tool called TEReCS [55, 56] is
provided which further supports the design of a communication system for distributed
embedded applications.

Choices [57] is a customizable object-oriented operating systems developed at the Uni- Choices
versity of Illinois and started in 1987. It is one of the first operating systems which
configure the application and OS specific functionalities together. Choices allows a cus-
tomization of the operating system by specializing classes in the various hierarchies, and
by instantiating a specific set of objects. The application interface is a collection of
kernel objects exported through the application/kernel protection layer.

3.1.2. Dynamically Reconfigurable OS: Application Triggered

EXOKERNEL [58, 59] project is developed at the Massachusetts Institute of Technology EXOKERNEL
and basically consists of a driver for the processor which supports context management,
interrupt handling and functionalities for status information and functionality change.
It follows the microkernel2 concept where all other operating system extensions can be
loaded as pre-compiled code into the kernel during run-time by dynamic linking (in a
form of a library) at user level.

Kea [61, 62] is a kernel that has been designed for application extensibility and dynamic Kea
reconfiguration. The central unit of reconfiguration and extensibility is a service (en-
capsulated as an object). Kea provides means through which kernel services can be
reconfigured, by using the notion of portals. A portal is represented as a proxy in a
client’s domain (application) and maps onto a system data structure, which links the
proxy to a service method entry point in the kernel. In this way, portals act like agents
of indirection for a service. By altering the destination of a portal, calls to a OS service
can be transparently remapped to replacement services. Furthermore, by making this
process available during application execution time, it is possible to implement extensible
services.

2Microkernel is a small operating system core which provides only the basic functionalities (e.g., schedul-
ing, message passing and timing), and all other functionalities are provided by means of modular
extensions [60].

22 CHAPTER 3. RELATED WORK SURVEY

MMLite [63] is an object-based, modular system architecture that provides a menu ofMMLite
components for use at compile-time, link-time, or run-time. The main goal of MMLite
is to allow a system to be dynamically assembled into a full application system. The
dynamic configuration is achieved through a unique mechanism called mutation which
allows a transparent replacement of components whilst they are in use.

Mutation is the act of automically changing an ordinarily constant part of an object,
e.g. a method implementation. Each mutation is performed by a thread which is called
mutator. A mutator must translate the state of the object from the representation ex-
pected by the old implementation to the one expected by the new implementation. It
must also coordinate with worker threads and other mutators through suitable synchro-
nization mechanisms. Transition functions capture the translations that are applied to
the object state and to the worker threads execution state. In order to limit the amount
of metadata, execution transitions only happen between corresponding clean points in
the old and new implementations.

Pebble [64, 65] is a component based operating system designed to support also component-Pebble
based applications for embedded systems domain. Pebble is based on three main con-
cepts, which are (1) a minimal privileged mode nucleus, (2) a set of replaceable system
services and application components running in distinct protection domain and (3) a
code generator specialized for each possible cross-domain transfer.

As an operating system it adopts a microkernel architecture with a minimal privileged
mode nucleus that is only responsible for switching between protection domains. The
programming model is client/server where client components (applications) request ser-
vices from system components (servers). Examples of system components are the inter-
rupt dispatcher, scheduler, portal manager, device driver, file system, virtual memory,
and so on. In Pebble, it is possible to dynamically load and to replace servers to fulfill
applications requirements.

SPIN [66, 67] is an operating system designed to allow applications to dynamically spe-SPIN
cialize the kernel in order to achieve a particular level of performance and functionality.
A specialization can add new kernel services (by linking new code), as well as replace
default policies or migrate applications function to kernel address space. In SPIN a
specialization is called an extension and its behavior is defined through the execution
model.

K42 [68, 69, 70] is an open-source and scalable operating system kernel under develop-K42
ment in IBM research center. It uses the object-oriented paradigm. Even though sup-
porting extensibility, K42 is strong focusing on online upgrading of existing components
(objects). For this purpose, well defined mechanisms and methods for reconfiguration of
these objects have been defined [70]. One of those is the a hot-swaping mechanism based
upon C++ virtual function tables. This includes the definition of safety points for an
object in order to assure a safely upgrade of the object. The upgrade is even assisted by
a dynamically created object which is interposed between the caller of the object and
the object itself.

3.1. (RE)CONFIGURABLE OPERATING SYSTEMS 23

Think [71] is more a component-based framework which is used to build an operating THINK
system than an operating system itself. It provides the minimal abstraction of the
underlying hardware and services in order to allow the designer to create extra operating
system services following the component-based paradigm. One of the main goals of
the THINK project is to make an operating system as flexible as possible in order to
build dedicated and fully configurable operating system. Last investigations on THINK
operating system [72] incorporate dynamic reconfiguration as an extra feature. Here
again there is no definition about the initiator of the reconfiguration, either application
or operating system is able to start a configuration. However, the last one is possible only
with extra activities like self-monitoring which is not available in the THINK operating
system.

3.1.3. Dynamically Reconfigurable OS: System Triggered

Synthetix [73, 74, 75] operating system, and its ancestor Synthesis [76] enhances the Synthetix
application performance by providing specialized implementations of operating system
services which are generated on-the-fly. This is done through partial evaluation of ap-
plication code and its actual input data in order to recompile at run-time condition
statements part of the code. The entire procedure is executed transparently to the ap-
plication. A commercial operating system [75] has used the techniques investigated in
Synthetix. Synthetix only makes extensions at the top layers of the operating system
services, since the services existing in the low layer are required to support a system
reconfiguration. Moreover, it does not provide any means by which applications may
control their own resources, because they are entirely controlled by the operating system.

VINO is an object-oriented operating system [77, 78] and it is one of the few oper- VINO
ating systems which provides self-x capabilities, which comprises self-monitoring and
self-adaptation. By using a specific framework, the operating system is able to gather
information of the application in order to decide which extensions or modifications should
be made in the operating system itself. This automatic adaptation has not been im-
plemented in VINO. However, it has been investigated and concepts and methods have
been proposed.

The information used to automatically adapt the system is provided by static and dy-
namic sources:

• The compiler generate profiles from the system as output, which is used to build
a database.

• This database is augmented with online information gathered by periodically re-
trieving statistics maintained by each VINO module.

• Additionally, the system collects traces and logs from incoming requests and pro-
duced results.

24 CHAPTER 3. RELATED WORK SURVEY

All dynamic information is captured on-the-fly under regular system execution and used
for analysis purposes. An adaptation is performed when the system detects that the
resources required by an application is rising bigger than specified previously. Further-
more, the system shall be capable to detect some pattern activities which will guide
the system in the decision of the most appropriated service that can satisfy the current
application needs.

3.1.4. Towards Online Reconfigurable DREAMS

DREAMS operating system is being further designed towards online reconfiguration [79]
and going towards microkernel architecture (which supports properly the modularization
of the system). Currently, DREAMS provide means for the designer to give information
from the application (e.g., resource required, time interval for resource usage, etc.) in
a form of a profile. For each application more than one profile may be specified. This
allows the specification of different QoS for each application depending on the resources
required. At run-time, the system is able to choose the best combination of application
profiles depending on current applications status and an overall system quality measure-
ment. This mechanism is carried out by a Framework Resource Manager (FRM) [80]
designed for this purpose.

3.1.5. Further Comments

Other well known OSs, like for instance, QNX [81], VxWorks [82], Linux [83], and
uCLinux [84] (a lightweight version of Linux designed for processors without MMU),
also present offline and online configurability. On those OSs, for instance, device drivers
are able to be linked to the system at run-time. However, in these cases a configuration is
decided and started by the system designer. There is no direct support from the system
to help the application to decide when, why or which OS service should be loaded or
unloaded.

Initiator
Human Application Operating System

T
im

e

Static
DREAMS(1st),
Choices, eCos,
et.al.

(not applied) —

Dynamic
uCLinux, OSE,
VxWorks, et.al.

EXOKERNEL,
Kea, MMLite,
Pebble, SPIN,
K42, THINK,
et.al.

Synthetix, VINO,
DREAMS(2nd)

Table 3.1.: OS classification according to the reconfiguration Time and Initiator.

3.2. OPERATING SYSTEM FOR RECONFIGURABLE COMPUTING 25

The OSs listed above are summarized, in Table 3.1, according to the initiator of the
reconfiguration activity and to the reconfiguration time. This list is only a sample of
the numerous OSs found in the literature. Further details as well as further references
can be found in the reviews given, for instance, in [85, 48, 86]. Nevertheless, the number
of operating systems with self-x properties is not big at all. The main reason for this
fact is the assumption made by the most designers, that the application have the right
knowledge of its own needs, and therefore it is capable to decide what to change and when
this change takes place. However, a system supporting different applications requires
that each of them would have to be aware of the concurrently applications present on
the system. In this scenario, the OS is the most appropriated entity in the system which
can manage the resources being shared by the applications. Furthermore, this is the
duty of an OS by its basic definition.

3.2. Operating System for Reconfigurable Computing

As it has been shown in previous chapter, Reconfigurable System-on-Chips are inter-
esting for contemporary embedded system platforms. An increasing number of RTOSs
developers provide support for such architectures. Well known commercial RTOSs (e.g.,
VxWorks, QNX, RTAI, eCos, etc) have being ported to the PowerPC-405 CPU avail-
able in FPGAs like Virtex-II Pro and Virtex-4 FX3. The majority of these commercial
embedded systems do not support dynamic reconfiguration (particularly partial recon-
figuration), which have its main attention in the academy research. One reason for this
fact is that the configuration overhead is sometimes prohibiting by using the currently
technology.

However, as this technology becomes mature, dynamic reconfiguration is starting to be
used also commercially. One evidence for that is the recent usage of partially recon-
figurable platform FPGAs for Software Defined Radio (SDR) modems SoC [47]. Fur-
thermore, in the field of High Performance Computing (HPC), RC is starting to be
incorporated in commercial systems. Enterprises like Cray, SGI and SRC Computers
Inc. are examples of this trend. The Cray Inc. already sells Cray XD1 supercomputers
including dual core AMD processors and Virtex-II Pro FPGAs.

An optimal scenario for which an operating system for RC can provide support is the one
shown in Figure 3.1. In this case, a task pool comprising hardware tasks, software tasks
and hybrid tasks are allocated by the operating system over the hybrid architecture.
The programmer should not be aware about the location in which each task is going to
be executed. Within this section, the research efforts toward the achievement of such an
environment are presented.

In the next sections, the aggregation of services in order to support a RH in some
available OSs (as well as novel ones) will be presented and discussed. It will begin,

3An updated list of OS ported for platforms based on Xilinx FPGA can be seen in www.xilinx.com.

26 CHAPTER 3. RELATED WORK SURVEY

OS for RC

RH CPU

ABSTRACTION LAYER

SW
TASKS

HW
TASKS

HW/SW
TASKS

Figure 3.1.: Execution environment envisioned by the Reconfigurable Computing re-
search community.

in the first subsection, focusing on low level support. Then, in the sequence, it will
continue with proposals for more high level services that allow a proper abstraction of
the underlying heterogeneous execution platform.

3.2.1. Low-level OS Support for Reconfigurable Hardware

Within this subsection, approaches dealing with the abstraction of RH resources and
properly support by the OS in exchanging data between CPU and RH coprocessor are
presented.

FPGA Reconfigurable Resources Abstraction

In the work presented in [84], dynamic reconfiguration capabilities are smoothly inte-
grated into the embedded Linux version, uCLinux. In this system, the user is able to
drive a reconfiguration by using normal Unix-like shell commands. Additionally, the
configuration memory of the reconfigurable device is made accessible through this inter-
face.

In the related platform, the uCLinux is running on a soft-core CPU (MicroBlaze). A
reconfiguration is possible due to the usage of an internal entity present in the Virtex-II
and Virtex-4 FPGA device series, called Internal Configuration Access Port (ICAP). By
using a driver that wraps the ICAP entity, the OS provides to the user the capability
to read/write the configuration memory of the FPGA in an abstract manner shielding,
thus, the complexity of the underlying executing platform.

The execution platform used in this approach can be seen in Figure 3.2. The whole
platform is implemented using a single device. Because the reconfiguration triggered by

3.2. OPERATING SYSTEM FOR RECONFIGURABLE COMPUTING 27

the system is able to change the functionality of the device in which the system itself is
running, it can be categorized as a self-reconfiguration system.

Figure 3.2.: Self-programming hardware architecture [87].

A similar work is also provided by [88], [87] and [89]. In these approaches the internal
resources of the FPGA (e.g., LUTs, BRAMs, etc) are made accessible to the programmer
through the Linux File System. Thus, by simply making use of standard Linux command
shells, one can read, write or modify the FPGA configuration in a small grain manner.

Furthermore, in [87] a toolkit called XPART (Xilinx Partial Reconfiguration Toolkit)
has been presented. This tool was built on top of the ICAP API (explained above) and
provides functionalities that able the user to relocate entire modules (partial bitstreams)
presented inside the FPGA.

Those works, however, do not directly focus on the technical difficulties related to the
relocation of modules inside a FPGA considering its heterogeneity (some resources, like
BRAM and multipliers are hardcore available in the FPGA). Furthermore, to shift a
module inside a FPGA without generating it by the design tools, the bitstream read
from the device (related to the module) need to be first manipulated. This requires
deeply technical knowledge of the underlying reconfigurable hardware device.

Hardware-Software Interface

Another important aspect of an architecture based on a CPU and a coprocessor is the
communication schemes between these two components. Moreover, if the operating sys-
tem does not provide a proper abstraction of the hardware accelerator, the programmer
needs to be aware of the details about the architecture, like for instance, memory point-
ers, sending/receiving data chunks, etc. Typically, for such platforms, the programmer
is responsible for mapping the physical address space of the external device (hardware
accelerator) into the virtual space of the software task, and copying the data to and
from this device. This makes the design less portable requiring details of the underlying
architecture.

28 CHAPTER 3. RELATED WORK SURVEY

In order to increase the abstraction, a virtualization layer is proposed in [90], which
shifts the responsibility of exchanging data, between coprocessor and CPU, from the
programmer to the operating system. The authors of this work propose the extension
of the Virtual Memory Management (VMU) of the operating system by adding a small
layer in software and in hardware (adding, therefore, an extra logic to the coprocessor).
Figure 3.4 illustrates the idea, which is based on the utilization of a Dual Port Memory
for its technical realization.

Processor
and Memory

VIRTUAL
DP RAM

INTERFACE MANAGEMENT UNIT

PHYSICAL
DP RAM

FPGA
Coprocessor

OS (Virtual Interface Manager)

Figure 3.3.: Virtualized interface [90].

The software layer called Virtual Interface Manager (VIM) extends the VMU and it is
responsible to translate the virtual address (from the software program to the coproces-
sor) to a physical one. This layer has the support of the Interface Management Unit
(IMU), similar to the Memory Management Unit (MMU), which is able to generate in-
terrupts to the OS when a data request from VIM is being processed. Again, the ideas
proposed by the authors were also implemented in a system using embedded Linux as
the target OS.

In their further research, presented in [91], the authors improve the IMU hardware
support (calling it Virtual Memory Window - VMW) in order to allow the usage of
virtual addresses also for the coprocessor. By this means, portability is also provided
for hardware designs. Moreover, these new OS add-ons may provide support towards a
hybrid multithreading system [92, 93]. In such a scenario, either a software or a hardware
thread may initiate a communication. Thus, it differs from the traditional paradigm,
where RH is used only as a coprocessor.

Hardware HardwareHardware

Software and hardware thread library

System software support

Communication assistants

Software Software

Hardware

Software

Software

Figure 3.4.: Software and hardware threads connected through a virtualization layer [93].

Although the focus of these proposals are not to decrease the overhead caused by the
communication costs between processor and coprocessor, same authors shown in [94] a
concept which may hide the communication latency by prefetching memory accesses of
software threads to the hardware accelerator.

3.2. OPERATING SYSTEM FOR RECONFIGURABLE COMPUTING 29

3.2.2. Application Model

The majority of the authors model the input problem using a directed graph, where the
nodes may represent either simple operations (e.g., ADD, MUL, etc) or more complex
functions (like FFT, IDT, etc). In each way the nodes abstractly represent tasks. The
edges connecting the nodes represent the task dependency and the correspondent weights
(if used) denote the data transferred or data transfer costs, between them.

A task graph model has its similarity when modeling the application for a software only
environment. A single task model used in hardware (hardware task), however, has more
degrees of freedom than a software task. Aside from usual parameters, like (worst case)
execution time, arrival time, deadline (for real-time scenarios), dependency, etc., a task
in hardware also occupy some area of the FPGA, which implies in dealing with additional
constraints such as shape and area size. Furthermore, in more accurate models, the time
needed to configure a hardware task in FPGA may also be considered.

3.2.3. OS Services for Reconfigurable Hardware

One of the first proposals towards the development of an operating system for FPGA
based reconfigurable computers was presented by Brebner in [95]. With the availability
of the XC6200 FPGA from Xilinx, which allows configuration and data registers to
be memory mapped, fast and partial reconfiguration were possible. Brebner highlights
that these flexible reconfigurable hardware, seen as an additional computational resource
(together with the CPU), need to be managed by the OS.

First introduced by [96], Brebner also presents the concept of hardware virtualization
in order to produce a run-time resource allocation environment, which hides from the
programmer the complexity and details of the underlying reconfigurable hardware.

Brebner proposes the division of the application into so called Swappable Logic Units
(SLU). These units are defined as logic circuits that implement some functionality and
are position-independent tasks. Thus, the duty of the operating system is to swap in
and out these units on the FPGA. To accomplish this job, the OS uses some techniques
already known from the OS theory. For instance, by placing a task (SLU for this case)
into the FPGA it needs to first find free place for the incoming SLU. If the OS does not
find enough space it uses the Least Recently Used (LRU) strategy to choose a SLU from
the ones placed on the FPGA and remove it.

A more embracing and deeply study about the services that an OS should provide for
a FPGA-based reconfigurable computer is presented in [97] and [98]. Although there is
not a clear consensus about the terminology definition when referring to each OS service
(as in software only case), it is possible to find close similarity for these definitions.

Following, the services that were most investigated in the referenced works are listed.
The service definition used here may slightly differ depending on the author.

30 CHAPTER 3. RELATED WORK SURVEY

Partitioning This is the activity of partitioning the given task graph into sub-graphs,
which will be placed later on the FPGA. Although this activity is usually done
offline, due to the related overhead, there are some approaches where this is ex-
ecuted at run-time. The partitioning of a task graph into sub-graphs takes into
consideration the physical partition of the reconfigurable hardware which may, in
its turn, be also dynamically partitioned (for certain cases);

Placement This OS service is responsible to manage the reconfigurable hardware area.
At the arrival of a new incoming task, it needs to allocate the necessary free
resources to place this task on the device. For this purpose, it uses some strategies
to decide where to allocate the task in order to, for instance, minimize the area
fragmentation. Furthermore, depending on the capabilities of the reconfigurable
hardware, some tasks may be swapped out from the device or even relocated (in
order to free some space). This would require, however, techniques to preempt
and resume a hardware task. Additionally, issues related to partitioning, like
fragmentation of the device area (leading to not full utilization of its area) is also
a concern;

Scheduler The decision about the order in which tasks must be executed is made by
this service. Depending on some approaches, this service operates in close relation
with the Placement service. In order to avoid a non feasible scheduling, in certain
cases it is necessary to relocate other running tasks in the reconfigurable hardware.
The policy used by the scheduler depends on the application area. For instance,
the overall execution time could be the parameter to be minimized. In other cases,
however, task deadlines need to be met (real-time systems). Moreover, depending
on the device capabilities, preemption may or may not be allowed;

Communication Each task needs to read/write some amount of data. It is the duty of
the OS to provide means for data exchange among tasks, as normal for a common
OS. This has to be available for tasks being executed in the reconfigurable hardware
and/or tasks running in software environment, as well as across hardware/software
boundary.

Loader The low level support, responsible to actually configure the hardware, is carried
out by this service. Here, the knowledge and support presented in the previous
chapter are integrated;

3.2.4. RTOS issues in High Level Design

RTOS issues may also be considered at high level design phase of a system. In the project
OVERSOC (see [99]) the application is modeled as a task graph and each task may be
considered to be a software, hardware or hybrid task (able to run on both environments).
By further modeling the architecture of a RSoC platform, this proposal provides a global
methodology for a design space exploration of such system. In this environment the allo-

3.2. OPERATING SYSTEM FOR RECONFIGURABLE COMPUTING 31

cation, placement and scheduling of the tasks over the platform are easily explored and
evaluated. By this means, designers are able to tailor the RTOS towards the resources
needed as well as estimate its performance. Furthermore, RTOS services, like hardware
task preemption, task migration, message passing, reconfigurations activities etc, are
smoothly integrated into the system model (see also [100]). Concerning system level
design of a RSoC, the proposal of [36] is more embracing. From system specification
to system implementation, the proposal is able to analyze and evaluate different system
partitioning (in hardware and software) and also evaluate the run-time behavior of the
system. In this work, however, the OS is not the focus of the system model.

In [101] a complete design flow for implementing an application (represented as a directed
acyclic graph) is proposed. The flow is divided into three main stages: Application,
Static and Dynamic stages. In the first stage, the application and the design constraints
are specified. The static stage is responsible to perform a cost estimation for each task,
which is used to decide the hardware/software partitioning and, finally, synthesize these
tasks. The final stage (Dynamic Stage) is responsible for, at run-time, scheduling the
previously synthesized tasks on the RH, supported by a dedicated microarchitecture.

3.2.5. Offline Approaches

In offline approaches, scheduling and placement algorithms are executed offline, imposing
therefore a much lower overhead. Usually, offline strategies may use sophisticated models
of tasks (e.g., [102, 103]). The authors in [102] use a three dimensional (3D) model for
a hardware task: horizontal and vertical position on the FPGA area as two dimensions
and time as a third dimension. This problem approximates the 3D packing problem
and an optimal branch and bound algorithm is used to optimize the task placement
over the FPGA device respecting temporal precedence constraints. In their work, the
authors provide optimized solutions for this problem, providing as a result either a
minimal FPGA size to solve a given problem or the minimal execution time of this given
problem.

Some other approaches aim to minimize the reconfiguration overhead by allowing the
exploration of task scheduling observing the configuration overhead associated. In [104]
a framework to generate the scheduling of tasks that results on a minimized reconfig-
uration time is presented. It enables the exploration of different strategies in order to
achieve different optimization goals concerning task scheduling and configuration (i.e.,
minimization of configuration overhead).

For scenarios where hybrid architectures (comprising CPU and FPGA) are considered
and the system has not being yet partitioned, some authors prefer to use a procedure
where the partitioning, placement and scheduling are executed together. This is the case
of, e.g., [105]. In this work the application is specified as a task graph, where the edges
inform the dependency between tasks. Additionally, for each task it is known its resource
used if placed either in hardware or in software. A modified version of the Kernighan-

32 CHAPTER 3. RELATED WORK SURVEY

Lin/Fiduccia-Matheyes (KLFM) is used to solve the problem. The solution provides a
near optimal minimal execution time for the given problem taken into consideration the
heterogeneity of the FPGA device.

For a similar scenario, the work presented in [106] proposes the usage of Genetic Al-
gorithms (GA) for modeling and solving the problem. In this approach CPUs, FPGAs
and Buses (used to build the execution platform) are modeled and included into the
problem. The schedule and mapping of the task graph on the underlying architecture is
obtained by solving the GA algorithm.

In [107] a task set with asynchronous arrival and no dependencies are scheduled and
placed on a FPGA device. In order to ease the placement, task shapes are manipulated
by means of footprint transformation. For this case, tasks are assumed to be coarse grain.
Complete IP (Intellectual Property) are examples for these tasks: FFT (Fast Fourier
Transformation), Ethernet Sender, Ethernet Receiver etc. With these assumptions, this
problem is close related to 2D bin-packing problem (e.g., best-fit, first-fit and bottom-
left). In this work, heuristics algorithms used to minimize the overall execution time are
presented.

These authors further incorporate these concepts on an OS prototype, called WURM -
OS [108] which is an extension based on a standard real-time kernel for microprocessors.
It provides support for loading, executing and removing tasks and services for inter task
communication. Furthermore, hints for online scheduling and placement of tasks are
also given.

3.2.6. Run-time Support

The work presented in [109] and [110] identify and discuss the fundamental services that
an OS need to provide in order to properly manage reconfigurable resources focusing on
those required for run-time execution. These, however, do not differ so much from those
defined in Section 3.2.3. Further, in [98] an OS prototype for RC called OS4RC (Op-
erating System for Reconfigurable Computing) is described. Additionally, an extended
version of the OS has been incorporated into a complete system called ReConfigME
(described in [111]).

In the works described above, the authors define a task as being implemented in hard-
ware, which was previously synthesized having a square shape [98]. Additionally, all
tasks have the same shape and are position independent on the RH. The RH, in its turn,
can hold several of these tasks and provide means for connection among the tasks placed
on the RH device.

In order to execute a given task graph on the RH device, the OS4RC provides the
following basic services: Partitioning, Allocation, Placement and Routing. Depending
on the task dependencies and the available free space on the RH, a group of tasks may
be grouped together forming a partition (application module). This will require, further,

3.2. OPERATING SYSTEM FOR RECONFIGURABLE COMPUTING 33

the Routing (for communication) service from the OS to enable the connection of the
tasks that are inside an application module. The Allocation service searches for free
space on the RH device for a given partition. It may happen that a replacement of some
application modules will be required in order to provide the necessary space, or even a
re-partition will be required. Figure 3.5 shows an example of a task graph allocated on
a FPGA.

Application
Partition

Application
Module

(when placed &
routed at design
time becomes a
logic module)

Communication
Channel

FPGA Chip No. 1
Or Real Surface

FPGA Chip No. 2
Or Real Surface

Virtual FPGA
Surface

gure 1 –
Figure 3.5.: A task graph on FPGA [98].

A rather different approach is presented in [112] and [113]. Here, a reconfigurable hard-
ware (FPGA) is also used as the main computational resource. The reconfiguration of
the FPGA and the execution of the high level services of the OS are executed by one
CPU. The FPGA surface is partitioned in two basic parts: OS frame and User Area.

The User Area is divided into slots with homogeneous size. Each slot have the same
width and spans the device height, as it can be seen in Figure 3.6. On each slot one user
task can be placed. In [114] the same authors propose a relaxation of these dimensions
constraints by allowing a user task to occupy a multiple number of consecutive slots.
The user tasks are designed and synthesized in advance, and it is assumed that user
tasks can be allocated to any slot. In addition, the design of each task must fit a well
defined template (denoted as Task Communication Block - TCB), which specifies an
interface that a task need to provide for communication purposes. A TCB also defines
communication channels that allow the OS frame to have access to all slots on the FPGA.

The OS frame is the static part of the FPGA and provides communication services
among slots and also establishes the connection with CPU, where task management
services are executed. The work gives further hints that preemption and resumption of
hardware tasks could be done via config/readback FPGA port.

34 CHAPTER 3. RELATED WORK SURVEY

tf el
e

marf
S

O

t hgir
e

marf
S

O

L
R

A
B

ks at
y

m
mud

ks at
y

m
mud

ks at
y

m
mu d

ks at
y

m
mu d

ks at
y

m
mud

R
R

A
B

BAC

ci gol
ks at

r es u

partial reconfiguration

FPGA

static static

Task Communication
Bus (TCB)

bus wires bus macros

reconfiguration slots

w=1

ci gol
ks at

r es u

BAC

w=3

T1 T2

w=1

Figure 3.6.: OS frame and task communication block [114].

In [115] the approach is extended in order to allow the partitioning of the RH in a
fixed number of slots, where each slot may have different widths. The focus of this
work was the evaluation of certain scheduling policies well known from single processor
scheduling. Both non-preemptive schedulers (First Come First Serve and Shortest Job
First) and preemptive schedulers (Shortest Remaining Processing Time and Earliest
Deadline First) were evaluated using different FPGA partitions (varying the number
and the widths of the FPGA columns). The evaluation of the results provide some
guidance to the designers with respect to the best way to execute FPGA partition based
on the characteristics of the input tasks.

The same authors have extended the previous system by including real-time constraints
for run-time scheduling and placement of 1D and 2D tasks. By considering tasks having
arbitrary and synchronous arrival times some non-preemptive as well as preemptive
scheduling and placement algorithms were proposed in [116] and [117], respectively.
Additionally, an acceptance test is derived in order to meet deadlines of executing tasks.

Some other authors focus on the efficiency of the scheduler and placer OS services. For
instance, in [118] the Scheduler and Placer were combined together into a single method.
The work shows some improvements due to the reason that these two services have a
strong influence in each other concerning efficiency. Also, in [119] and [120] these two
methods are proposed to be implemented completely in hardware, thus, decreasing the
overhead they introduce in the system.

Different strategies to execute hardware tasks on a slotted FPGA have also been pro-
posed. For instance, the authors in [121] configure and execute tasks in slots based on
priorities. The decision of which task will be configured in each time is made based upon
priorities, which change dynamically during system execution. Higher priority tasks have
preferred occupancy of the FPGA. The priority assignment policy follows an adaptive
rule based on the reconfiguration-request-ratio and communication rate. Additionally,

3.2. OPERATING SYSTEM FOR RECONFIGURABLE COMPUTING 35

in order to avoid hardware task starvation some design rules are specified in [121].

Also in [122] and [123] a proposal is presented for a completely reconfigurable computer
running on FPGA only. The work focuses on scheduling and memory management
for time constrained hardware tasks. The system provides means for running a set of
periodic tasks over a FPGA and derives several feasibility analyses based on the resources
shared among the tasks considering partial or full reconfiguration of the reconfigurable
hardware.

3.2.7. Multitasking Issues

By allowing multitasking on reconfigurable devices one may expect to find the same issues
present in multitasking scenario of software only environments. However, some of them
may appear in a different manner or may represent a challenge for the implementation
phase of the system.

Context switching

Task switching in a preemptive scenario is discussed in [124] and [125]. The authors
specify the necessary hardware requirements which enable preemption and resumption
of a hardware task. They further define the state extraction and reconstruction based
on bitstream manipulation. However, they do not deal with partial reconfiguration.
Bitstream manipulation is also proposed in [126], where detailed methods for context
saving and restoring are explained for partial reconfigured devices.

Further approaches, requiring some extra circuit added to the user tasks, are proposed
in [127]. In this work, context data transformation was also mentioned for allowing task
state migration (e.g., between different execution environments).

Reconfiguration port exclusiveness

Most of the approaches used for multitasking on FPGA assume partial reconfigurable
devices. However, they seldom respect the sequentially reconfiguration of the FPGA
slots due to the mutual exclusive usage of the reconfiguration port. Generally this
constraint is neglected because the execution time of a task is assumed to be much
higher than the reconfiguration time. Nevertheless, for comparable reconfiguration and
execution times of a single hardware task, this may decrease the system performance for
time critical scenarios facing high reconfiguration rates. Therefore, the authors of [128]
and [129] propose the application of techniques from single processor schedule theory for
controlling the access of the FPGA reconfiguration port.

Reconfiguration latency Reconfiguration overhead has also been pointed out by some
authors. For instance, in [130] the authors present an algorithm for run-time scheduling
of partial FPGA reconfigurations in order to minimize the reconfiguration delay. By

36 CHAPTER 3. RELATED WORK SURVEY

noticing that an user task may appear more than one time in the input task graph, the
reconfiguration overhead may be reduced by keeping it into the reconfigurable device
for the next execution. Further approaches based on software techniques have being
used to reduce or even to hide the reconfiguration latency, by configuring and executing
tasks concurrently. Examples of these techniques are based on prefetching, caching and
compression of configuration data [31].

Fragmentation

Memory fragmentation appears in software environment when pages are swapped in
and out between main and secondary memories. The same concept is present in a
device supporting partial reconfiguration. When a hardware task does not completely
occupy the FPGA slot, some resources are not used, which characterizes an internal
fragmentation. The external fragmentation turns up when the remaining free device
area is split into several unconnected vertical stripes (for 1D task model) or rectangles
(for 2D task model).

In [131] specific metrics for modeling this situation is proposed, which may improve the
results of certain placement strategies. Task relocation and transformation were further
approaches presented by some other authors (e.g., in [132] and [133]).

3.2.8. Dynamically Hybrid Architectures

In the work presented in [127] the allocation and scheduling of a dynamically changing set
of tasks on a reconfigurable system is investigated. The execution platform comprises
one processor and one FPGA. Each task is able to be executed in the reconfigurable
device or in the processor. A Scheduler, which decides where a task should be placed
(software or hardware), and a Placer (to manage the reconfigurable hardware resource)
are the two main components of this system.

The work presented in [134] deals with run-time migration of a task across FPGA and
CPU boundaries. The proposal introduces the concept of a tool used to design hard-
ware and software tasks. Such a tool, should guarantee the same behavior of it in a
later implementation, regardless of its execution environment (hardware or software).
Furthermore, this feature easies the analysis of the system in high level, since it allows
the preemption and resumption of tasks across different execution environments. How-
ever, neither proper analysis in identification of context data required by a preemption,
nor further analyses using the proposed unified representation of a task was provided.
In addition, a communication infrastructure is provided, which supports an uniform
communication scheme among tasks placed on this hybrid architectures.

The same authors provide further details of the system in [135] and [136], and present an
Operating System for Reconfigurable Systems (OS4RS).As a case study a multimedia
application was chosen. A video decoder task was designed to be relocatable across

3.3. FURTHER APPROACHES 37

FPGA and CPU domains depending on the available resources and the performance
required. Nevertheless, the design of such task was so that no context data transfer was
required by the unique relocation point assumed.

Further conceptual analysis for dynamically hybrid systems is done in [137]. The authors
consider the problem of allocation of dynamically arriving tasks over an architecture
comprising CPU and FPGA. The tasks are capable to be executed in every one of these
two environments. Additionally, tasks are able to be relocatable (relocation of tasks over
the hybrid architecture by means of reconfiguration). To solve the problem, the authors
propose some algorithms for scheduling, relocation management and derive an on-line
admission check for the arriving tasks.

3.3. Further Approaches

This section will focus on other approaches where OS may appear in reconfigurable
computing. Starting with the idea about the implementation of OS services in hardware
by using static hardware (e.g., ASIC), the discussion will then cover some approaches
where reconfigurable hardware (e.g., FPGA) is used to execute some OS activities. In
addition, this section will discuss a different approach, where FPGA is not used as a
coprocessor.

3.3.1. Hardware Accelerator for RTOS

Static approach

For time critical applications where hard real-time constraints are imposed, even the
overhead caused by RTOS activities need to be considered, in order to guarantee the
feasibility of the overall system. Solutions for this problem were already proposed,
for instance, in [138] and [139] where a scheduler was proposed to be implemented in
hardware (VLSI circuit) to offload the CPU workload. Thus, a deterministic timing
behavior is achieved, which is a mandatory characteristic in hard real-time systems.

The FASTCHART project [140] goes into the same direction. The work proposes a
custom CPU that could perform a context switch in one cycle with a kernel coprocessor
called the RTU (Real Time Unit). Later on, the RTU was extracted from FASTCHART
and implemented as an ASIC [141]. This allows its appliance to a broader range of
applications by attaching this ASIC with a general purpose CPU using standard real-
time buses.

Comparisons among RTOS-kernel implemented in ASIC, hardware/software co-designed
and purely in software have being done in [142] and [143], which shows the improvement
on the determinism, caused by shifting the RTOS services execution from CPU to hard-
ware.

38 CHAPTER 3. RELATED WORK SURVEY

Configurable approach

The authors in [144] provide a hardware scheduler, which is able to dynamically change
the schedule policy among three different ones (EDF, RM and Priority Based) in a de-
terministic and fast manner. On their work, dynamically reconfiguration is not used. In-
stead, three different policies are all implemented in a FPGA and the scheduler switches
from one policy to another on-the-fly. This configurable scheduler is provided as an IP,
which may be easily integrated in a SoC design.

In [145] and [146] the co-design of a RTOS is proposed. By using a specified framework
the user can choose and evaluate the partition of the RTOS modules in hardware and
software. The main goal of the work is to help the programmer to explore and find the
most appropriated configuration of his system, taken into consideration RTOS activities.
By using the framework, the programmer may achieve a higher efficiency in resource
usage (compared to a non tailored RTOS) and a speed up in the application execution
time. The components provided by the configurable RTOS include services like Deadlock
Detection Unit, Dynamic Memory Management Unit among others.

3.3.2. Multithreading on Hybrid Architectures

An interesting approach which skips the common view of a FPGA as a coprocessor
has first been presented in [147]. In this work the authors present a framework, which
allows a unified model of programming for developers of Massively Parallel Processing
(MPP) systems when using hybrid CPU/FPGA-based execution platforms. Assisted by
a hardware/software co-designed RTOS, threads running in software and threads running
in hardware have means of synchronization and control between each other when sharing
the available resources.

The central idea of the proposal lies on the extension of the multithreading programming
paradigm for those two different execution environments. A well designed RTOS for such
environment shall provide usual services like mutex, semaphore, read-write locks etc, for
all threads, independently on their location (software or hardware).

The former authors go further in their investigations and provide more details of their
concepts and execution platform in [148] and [149]. The architecture is based on a hybrid
FPGA (in this case the Virtex-II Pro from Xilinx), which enables the implementation
of a complete system on a single chip. The abstract view of the system can be seen in
Figure 3.7.

The architecture provides the standardization and transparency for the programmer
either by designing a task for software or for hardware environment. For this purpose, the
same API interface is made available for both kinds of threads, which actually compose
the hardware and software thread interfaces. These interfaces make the connection to
the hardware/software co-designed RTOS and threads. In addition, a proposal for a

3.3. FURTHER APPROACHES 39

CPU

Software
thread 1

Software
thread 1

Software thread interface component

Hardware thread
interface

component

Hardware thread
interface

component

Hardware thread
interface

component

Hardware thread
interface

component

System bus

Hardware threads

Hybrid
thread

abstraction
layer

Figure 3.7.: Hybrid thread abstraction layer [148].

common programming language for hybrid threads is proposed in [150], which is based
on a translation from C to VHDL language.

The authors propose further the (static) migration of OS functionalities from software
to hardware with the intention to improve determinism and offload the CPU from the
RTOS execution overhead (same intention of the works related in previous section).
At the current status, thread management, thread scheduler, semaphore and thread
interrupt controller are some RTOS services already available in hardware ([151] and
[150]).

The proposed paradigm, where hardware threads are no longer simple coprocessors,
changes the paradigm usually adopted in the reconfigurable computing research area
[152]. In this new case, a hardware thread is able to initiate by itself a transaction or
request services from the underlying OS and thus interact with the software threads.

Although this new computational model may provide advantages for the contemporary
embedded systems platforms, features already investigated by the reconfigurable com-
puting area could improve this scenario. For instance, threads could be dynamically
reconfigured to allow dynamically arrival of hardware threads, achieving an equivalent
scenario of software threads. Moreover, in a more flexible scenario, threads would be
allowed to be dynamically preempted and resumed across execution environment bound-
ary. This would allow the system for dynamically adaptation in order to satisfy the
requirements of changing applications, and further use the available resources in a more
efficient manner.

Another challenge faced for this paradigm during design phase, is how to partition
the application in software and hardware when following such programming model, as
noticed in [148]. For this purpose, a first design flow concept is presented in [152].

40 CHAPTER 3. RELATED WORK SURVEY

3.4. Chapter Conclusions

This chapter summarizes relevant works related to (re)configurable operating systems
comprising those ones based solely on software, and those ones having support from
hardware. Configurable OS can help the designer to provide only those OS services
required by the application. Nevertheless, modern embedded systems are becoming multi
purpose (one single device needs to execute several and different kinds of applications).
With this increasing system complexity a static solution for an operating system is no
longer enough. Therefore, the operating system must be (dynamically) reconfigured.
Nevertheless, for embedded systems the usage of an operating system introduces an
overhead which need to be considered.

3.4.1. Correlation With This Thesis

The architecture investigated in this thesis will rely on the capabilities investigated in
[84], namely the ability to partially reconfigure the system using (in the case of a Virtex-
II Pro device) the ICAP entity. However, it is not intended to freely relocate the modules
on to the device surface. Instead, it will be previously partitioned into a number of slots,
in which circuits may be placed by means of partial reconfiguration. Furthermore, the
hardcore microcontroller is going to be used, available inside this device and further
analysis in higher level will additionally be investigated.

In [127] the authors remain on the conceptual level and do not present further imple-
mentation solutions. Similarly, the results presented in [134] and [137] cannot be used
in the present thesis, since neither strategies nor methodologies for a deterministic re-
configuration and relocation of components over the hybrid architecture are provided.
Additionally, the authors do not consider the reconfiguration overhead of the software
and hardware tasks. Moreover, the challenge related to the relocation of tasks across
hybrid execution domains are not tackled in their analyses.

The work presented in [148, 152] follows a paradigm where an OS service, regardless its
location (either software or hardware), is able to start a transaction with another com-
ponent (application task or OS service) of the system. Furthermore, application tasks
and OS services are statically allocated over the hybrid architecture (offline decision).

The work presented in this thesis differs from the previous work essentially in two as-
pects. First, the system is able to relocate OS services at run-time. Thus, the design of
an infrastructure for dynamic relocatable OS services is necessary. Second, the relocat-
able OS services are not able to start a communication transaction. Instead, they are
activated only when an application task requires its service, and consequently, do not
communicate with other OS services.

3.4. CHAPTER CONCLUSIONS 41

3.4.2. Additional Comments

The works related to reconfigurable computing area were spent mostly in the investi-
gation on how an operating system can provide efficient support and abstraction of a
heterogeneous execution platform to the executing application. However, making the
operating system also profit from the reconfigurability and from the high computational
performance of such platforms is a promising combination.

The next chapters will introduce a proposal of a run-time reconfigurable RTOS intended
to support modern and future embedded systems. This thesis has thereby, the intention
to contribute to DREAMS OS, towards aggregation of enough abstraction and seamless
integration of reconfigurable hardware in the execution platform. In addition, further
methodologies and strategies, which enable the operating system to reconfigure itself
in a stand-alone manner (without using DREAMS‘s FRM), are also investigated and
proposed.

42 CHAPTER 3. RELATED WORK SURVEY

CHAPTER 4

Run-time Reconfigurable RTOS

This chapter presents conceptual ideas and gives an overview of the proposed real-time
reconfigurable operating system devoted to RSoC systems. The OS is depicted in its
main parts and briefly explained accompanying the delineation of target applications
and target RTOS. Additionally, the hardware architecture is presented.

4.1. System Overview

Figure 4.1 gives an overview of the proposed system highlighting the main components
that were investigated inside this work. Both, application and OS, use computational
resources from the execution platform, which are provided by the presence of FPGA and
CPU in the hardware platform. The application uses the OS services through a specific
API, which is monitored by the Runtime Reconfiguration Manager (RRM). Based on the
analyses made by the RRM, the reconfiguration of the OS components over the hybrid
execution platform may be necessary in order to achieve better resource utilization.
This reconfiguration is represented by a run-time relocation of OS services over this
architecture. For a better understanding of the whole system, its main components are
explained in the following subsections.

43

44 CHAPTER 4. RUN-TIME RECONFIGURABLE RTOS

APPLICATION

OS API

HYBRID
OPERATING SYSTEM

ANALYSES

RECONFIGURATION
MANAGEMENT

Monitoring

Reconfiguration

Requirements

HYBRID
COMPUTATIONAL

RESOURCES

USES

USES

Execution
Platform

Application
+

Operating System

Run-time
Reconfiguration

Manager
(RRM)

Figure 4.1.: System overview.

4.1.1. Target Applications

The research work presented here focuses on embedded systems whose computational
resources requirements cannot be precisely specified, for each instant of time in its life-
time, at design phase. In these cases, each application may be started and/or finished
asynchronously. Additionally, one single application may be designed to attend different
Quality-of-Services (QoSs), which leads to a varying demand of system resources in time.
These situations characterize a dynamic changing environment.

In such systems, due to the changing environment, the requirement demanded by the
applications may change during system execution. Therefore, it is not possible, at design
phase, to specify an optimal set of computational resources that the system will require
during its lifetime. Examples of such embedded systems are modern mobile phones and
PDAs with support for different kind of applications: telephone call, music player, movie
players, camera, video recorder, text editor, gaming, etc.

In these scenarios, generally soft real-time requirements are necessary to be considered
(e.g., multimedia applications), which is also the type of time constraints considered
inside this thesis work. Furthermore, applications are represented by a set of tasks that
are considered to have periodic behavior. This is a model suitable and generally used
for real-time embedded systems.

Tasks may use the CPU as well as the RH (Reconfigurable Hardware) as computational

4.1. SYSTEM OVERVIEW 45

resources. However, they are mainly software based and only computation intensive
software tasks may use the RH. An application specific task that usually profit from a
hardware implementation is, for instance, a FFT (Fast Fourier Transformation) compu-
tation, which is usually needed for multimedia applications.

4.1.2. Target RTOS

The target RTOS architecture follows the microkernel concept, where application and
operating system services are seen as components running on top of a small layer that
provides basic functionalities. Figure 4.2 shows abstractly this architecture, where each
application task, as well as each OS service, is considered as a component.

OS/
HWOS/

SW
OS/
SW

APP/
SW

APP/
SW

Interface

OS/
HW

Interface

Figure 4.2.: Proposed microkernel based architecture.

The target RTOS DREAMS has been chosen for many reasons. First, because DREAMS
supports the concept of components (as presented in the Section 3.1.1). Second, DREAMS
also follows the microkernel concept and, if necessary, provides memory protection among
the components [153]. Third, the availability of detailed information concerning OS in-
ternals, due to the fact that this OS is a result from an in-house research, makes devel-
opment using DREAMS easier. Last, but not least, DREAMS has a port to the PPC405
processor available in the Virtex-II Pro FPGA, which is the target device used within
this work.

The OS reconfiguration is achieved by adding/removing, at run-time, its services and/or
relocating them during system execution. For each one of these relocatable services,
two different implementation versions are made available (technically synthesized before
system starts): one in software and another in hardware. At run-time, these services can
be attached and/or detached from the system. For hardware components this relies on
the FPGA partial reconfiguration capabilities. For software component versions, known
techniques for dynamic linking of software objects are used.

The communication layer, shown in Figure 4.2, provides the necessary support to allow

46 CHAPTER 4. RUN-TIME RECONFIGURABLE RTOS

the communication among components running over the hybrid architecture in an effi-
cient manner. Additionally, this layer provides enough transparency to the application
which should not be aware about the location (either FPGA or CPU) of OS services.

At this point a question arrives concerning which OS service is considered to be relo-
catable and which one shall belong to the application, since both use computational
resources of the system. The definition and separation between OS services and appli-
cation components is usually not clear and difficult to be made (as usual for microkernel
architectures). In this work high level OS services are considered for relocation. Ex-
amples for this classification are encryption algorithms (which will be used in the case
study presented in Chapter 9) and communication protocol stack (e.g., TCP/IP stack
protocol [154]). In summary, relocatable OS services, considered for this research, are
those services that can be used by more than one application in the system. The re-
maining OS services may belong to the microkernel layer (e.g., internal communication,
synchronization) or stay as fixed components outside this layer.

At the beginning of this thesis research, the dynamic reconfiguration of basic OS services
(like scheduling, synchronization mechanisms, communication, etc.) was also considered
as possible. However, the mechanisms developed to dynamically reconfigure the high
level OS services require the continuously availability of these basic services. Due to this
necessity, basic OS services are static and not relocatable.

4.1.3. Instrumented OS API

The observation of the OS services usage is an important and necessary feature for a dy-
namically adaptable OS. In this work, observation is done by instrumenting the OS API
in order to provide enough information about OS services (concerning computational
resource usage), which is used by the analysis and allocation system parts. With an
instrumented OS API it is possible to measure the execution time and frequency of ser-
vice, either software or hardware services, which are used to estimate the computational
resource usage.

Since applications are modeled as a periodic task set, it can be assumed that OS services
will also present a periodic behavior, when called by these application tasks. Neverthe-
less, each OS service may experience different call patterns, depending on the number
of application tasks and their temporal definitions. Different scenarios can be seen in
Figure 4.3.

For a service sy called by only one single periodic task Tx, the period of this service can
be precisely determined as being the same of the caller task: Px = Py. This situation is
illustrated in Figure 4.3a. Please note that ax,k (arrival time of instance k of Task Tx)
is not necessary equal to ay,k (instant of time when service sy is called by task Tx in its
instance k).

For a service shared among several periodic tasks, its behavior will be still periodic.

4.1. SYSTEM OVERVIEW 47

TASK X

SERVICE Y

Communication
Infrastructure

Application

Operating System

ax,k ax,k+1
P

ax,k+2

ay,k ay,k+1
P

ay,k+2

Service y

Task x
OS call

(a) OS service sy being called by a single task Tx.

TASK 1

SERVICE Y

Communication
Infrastructure

Application

Operating System

TASK n

a1,k a2,k+1 P1
a3,k+2

a2,k a2,k+1 a2,k+2 a2,k+2P2

an,k an,k+1 an,k+2Pn

Task 1

Task 2

Task n

OS call

(b) OS service sy being called by several tasks.

Figure 4.3.: Call patterns experienced by an OS service.

However, its execution pattern will be determined by the combination of the periods
of the tasks using this service. In Figure 4.3b a service sy is called by a task set T =
{T1, T2, . . . , Tn}.

Generally, if for any interval I = [t, t + I), the arrival times set Ai of Task Ti can be
determined by Equation 4.1, and so the correspondent arrival times set Ay,i of Service sy
(due to caller task Ti) determined by equation 4.2 (where ϕi denotes the time distance
between ai and ay, i) , then the arrival times experienced by service Sy in the case of
multiple tasks can be determined by Equation 4.3.

Ai(I) = {ai,k | ai,k = kPi, k ≥ 0, ai,k ∈ [t, t+ I)} (4.1)

Ay,i(I) = {ai,k | ai,k = kPi + ϕi, k ≥ 0, ai,k ∈ [t, t+ I)} (4.2)

Ay(I) =
n⋃
i=1

Ay,i(I) (4.3)

Each task Ti ∈ T is periodic, determined by a specific period Pi. The behavior of sy,
however, is not periodic in a first glance. This means, that depending on the execution
rates of each task Ti, and the interval I selected, no period Py for service sy can be

48 CHAPTER 4. RUN-TIME RECONFIGURABLE RTOS

explicitly detected. However, at every hyperperiod H of the task set T , the pattern
observed for service sy in the interval I? (where I? = H) is repeated.

Since the number of OS services is assumed to change dynamically and asynchronously
during system execution, the run-time identification of the hyperperiod of the current
task set is not a trivial job. Moreover, due to the different combinations of the tasks
periods, the hyperperiod can be very large.

In the case of hard real-time systems, worst case scenarios must be considered in the
analyses to assure system feasibility. Hence, Equation 4.3 would need to be precisely
determined, and the worst case execution time would be considered as the nominal
execution time. If a periodic behavior of an event would be required for simplification of
the analyses, then the minimal interarrival time would need to be used. In the literature,
some other approaches may be used to model such scenarios, like for instance in [155]
where a sophisticated arrival function is used to describe a bursty arrival of a method
invocation.

For a soft real-time case, one may relax this requirement and use, for instance, averages
values as a simplified metric to estimate the arrival rate and execution time. Note
that more sophisticated models for this scenarios are available depending on the target
application [156]. However, within this work each OS service is considered to present a
periodic behavior and these metrics for soft real-time events are used. Nevertheless, a
system improvement in this topic is foreseen as a future work, which is further commented
in Chapter 10.

Thus, the arrival rate (period) Py of a service sy is estimated in the following manner:

Py(I) = p̄y =
I

Ny(I)
(4.4)

Where I is a predetermined interval (I = [t, t+ I)) and Ny(I) is the amount of calls to
service sy inside the interval I.

The execution time of the service sy is assumed as being the average of the execution
times measured by the monitoring system. Thus, the execution time Ey of a service sy
is estimated in the following manner:

Ey(I) = ēy =
∑t+I

t Ly
Ny(I)

(4.5)

Where Ly is the accumulated execution time of all service calls made inside an interval
I and completely finished.

4.2. HARDWARE ARCHITECTURE 49

4.1.4. Run-time Reconfiguration Manager - RRM

OS Service Assignment

In this stage the system decides to which execution environment (CPU or FPGA) each
OS service will be assigned. This decision is made based upon the computational re-
sources used by each of the OS service in the system. For a software component this is
the percentage of the CPU required and for a hardware component this is the amount of
FPGA area that it requires (static information gathered after its synthesis process). Ad-
ditionally, by an arrival of an application into the system, its requirements (OS services
needed) are also known by the assignment algorithms.

The assignment decision is driven mainly by the computational resources required by
the application. As usual for an embedded execution platform, resources are rare. The
OS (which is wanted by the benefits it provides), introduces an overhead in the system.
Therefore, the intention is always to direct the remaining resources from the platform to
the OS and leave the resources wanted by the application available to it. In summary,
the RTOS tries to adapt itself to the remaining computational resources of the hybrid
execution platform.

Reconfiguration Management

This module is responsible for the reconfiguration management of each OS service over
the hybrid architecture, and it incorporates the low level support necessary to partial
reconfigure the FPGA and to dynamically link the software components.

A system reconfiguration is necessary always when the OS service assignment algo-
rithms decides to change the allocation of the components over the platform. This
can be caused by the dynamics of the running applications or when an application ar-
rives/leaves the system. Furthermore, since it is assumed that applications are time
constrained (not necessarily all of them) the system should carry out the reconfiguration
activities in a deterministic manner. In an ideal case, the blackout1 time should be zero
or minimized [157]. Therefore, in this approach, deterministic mechanisms known from
real-time scheduling theory are adapted and used for this purpose.

4.2. Hardware Architecture

For validation purposes a target architecture based on Virtex-II Pro FPGA, from Xilinx,
has been selected. By using its partial reconfiguration capability, hardware components
may be reconfigured on the FPGA at run-time whilst the remaining part of the device
keeps on executing. Additionally, the availability of an embedded hardcore general

1Blackout is the time interval during which the system do not react due to the reconfiguration.

50 CHAPTER 4. RUN-TIME RECONFIGURABLE RTOS

processor embedded in this FPGA device, features it with the necessary heterogeneity
for accomplishment of the requirements of a hybrid reconfigurable architecture.

As noticed before, DREAMS has a port to the PPC405 processor available in the Virtex-
II Pro FPGA. Nonetheless, support for dynamically reconfiguration was not supported
by this RTOS, which actually is one of the contributions of this thesis.

The execution platform proposed can be seen in the Figure 4.4a, where details were
omitted for a better understanding. The FPGA surface is spitted into static and re-
configurable parts. The static part embraces the CPU system, where the RRM and the
OS services in software are executed. The reconfigurable part is divided into n slots
and each slot provides an OS service framework (Figure 4.4b). Additionally, each slot
can be dynamic reconfigured by means of partial reconfiguration. In this particular, the
proposed approach is similar to those found in the literature, which were discussed in
Chapters 2 and 3.

Each subsystem (software and hardware) has its own local bus for communication. These
buses are connected through a dedicated bridge to provide communication across CPU
and FPGA components. Further details of the execution platform are given in Chapter 9.

The local memory is used to support the communication between local components, and
the global shared memory is used to perform the communication with components run-
ning on the CPU. The local controller is used to manage the access to the local memory
and the global controller, which together with its counterpart in software, performs the
communication infrastructure layer mentioned previously in Section 4.1.2.

The slots are connected using Busmacros. In order to program the FPGA slots, the
reconfiguration port is used, which may be local (by using the ICAP Xilinx entity) or
an external Run-Time Reconfiguration (RTR) controller.

4.3. Design Support

In order to make the system accessible for further developments, a proper support in
the design phase needs to be made available. Related to this topic, the following points
are handled in this thesis work:

HW/SW Interface The generation of the interface between hardware and software is an
important aspect in such reconfigurable architectures. Since hardware components
may be relocated, removed or inserted dynamically into the FPGA slots, there is
a need to define in which way these reconfigurable components can establish a
communication channel with the static part of the system.

Relocatable Tasks Since a dynamic migration of components between hardware and
software domains are necessary for this approach, appropriate mechanisms are
required for its achievement. If preemption and resumption of a component across

4.4. CHAPTER CONCLUSIONS 51

S1 SnS1 Shared
Memory

Global
CTRL

LOCAL BUS
(Busmacros)

MEMORY
CPU

RTR

Virtex-II Pro FPGA

Dynamic Part

(a) Architecture overview.

Local
Mem. Comp.

CTRL

Local Bus

Slot n

(b) OS service slot template.

Figure 4.4.: System architecture.

CPU-FPGA boundaries are required, there is a need to assure a safe context
translation and migration of this component. Therefore, a suitable environment for
designing of such relocatable tasks is necessary, along with a run-time environment
to carry out these activities on-the-fly.

4.4. Chapter Conclusions

In this chapter a proposal for a real-time reconfigurable operating system was presented,
which is based upon reconfiguration of its services over the hybrid architecture. The in-
tention is to promote a flexible utilization of the computational resources, both CPU and
FPGA, by the operating system services and application tasks. Thus, an efficient usage
of the execution platform can be achieved, even if the system requirements dynamically
changes .

For its achievement, the system needs to monitor the resource utilization and, by using
appropriated analyses, decide which OS services shall be relocated. Moreover, recon-
figuration activities need to be performed in a deterministic manner, since the system
must guarantee soft-real time constraints.

A preliminary investigation towards pattern identification of operating system service
usage has been presented. Nonetheless, as already noticed, these analyses need to be
improved for a better identification of their usage profiles. This investigation is planned
as a future work.

52 CHAPTER 4. RUN-TIME RECONFIGURABLE RTOS

CHAPTER 5

Modeling & Problem Formulation

This chapter introduces the model costs for OS services, communication among services
and reconfiguration activities. These models allow a suitable formulation of the main
problems investigated in this thesis.

5.1. Component Assignment

The problem of assigning OS components over two execution environments can be seen
as a typical assignment problem. Indeed, this problem can be formulated as an Integer
Linear Program (ILP), or more specifically, as a Binary Integer Program (BIP), which
characterizes the component assignment problem as a NP-Hard one.

Let S be a set which denotes the relocatable OS services (hereafter, component and
service will be used as interchangeable terms):

S = {si, i = 1, ..., n}. (5.1)

Since the computational resources are intended to be managed between operating sys-
tem and application, they have to be measured. Therefore, every component i has an
estimated cost ci,j , which represents the percentage of computational resource from the
execution environment used by this component. On the FPGA (j = 2) it represents the
area needed by the component: Ai. On the CPU (j = 1) it represents the processor
load: Ui. Thus, for each component i that is relocatable, there are two different costs

53

54 CHAPTER 5. MODELING & PROBLEM FORMULATION

associated:

ci,j :

{
ci,1 = Ui denotes the processor work load required by component i
ci,2 = Ai denotes the FPGA area required by component i

(5.2)

Within this thesis, the component costs of a component i may also be denoted in a
shorter form:

ci = {Ui, Ai} (5.3)

The assignment of a component, to either CPU or FPGA, is represented by the variable
xi,j . It is said that xi,j = 1 if the component i is assigned to the execution environment
j and xi,j = 0 otherwise:

xi,j :

{
xi,j = 1 if component i is located on environment j
xi,j = 0 otherwise

(5.4)

For legibility reasons, the notation above may also appear in the following form:

xi =

{
{1, 0} if component i is assigned to the CPU, or
{0, 1} if component i is assigned to the FPGA.

(5.5)

Since only one distinct version of a specific component (either j = 1 or j = 2) is allowed
to be used at the same time, the component i can be assigned only to one of the execution
environments. Thus, the following equation must hold:

2∑
j=1

xi,j = 1 for every i = 1, ..., n. (5.6)

5.1.1. Constraints Definition

The computational resources that the operating system can use are bounded and depend
on the resources currently required by the application. These limits imposed to the
operating system are denoted by:

Umax Maximum CPU workload;

Amax Maximum FPGA area.

5.1. COMPONENT ASSIGNMENT 55

Thus, the total FPGA area (A) and the total CPU workload (U) used by the hardware
and software components, respectively, can not exceed their maximums. These derive
two constraints to the BIP problem:

U =
n∑
i=1

xi,1ci,1 ≤ Umax (5.7)

A =
n∑
i=1

xi,2ci,2 ≤ Amax (5.8)

Besides these constrains, an additional one is defined in order to maintain a balanced
utilization of the CPU and FPGA resources. This is necessary for two main reasons.
First, it has to be avoided that one of the execution environments would have its usage
near to the maximum. This condition improves the performance of the reconfiguration
algorithms which require enough CPU workload and FPGA area for their feasibility
(discussed further in Section 6.3).

A second reason is the need to influence the migration of operating system components
to the execution environment which are going to be less used by the application. For
instance, if the application is going to require more FPGA resources, due to the necessity
to execute high performance tasks, the operating system shall migrate to the CPU. In
an opposite way, when the CPU is mostly used by the application, the operating system
may take advantage of the FPGA for its execution.

This balancing is denoted by B and is constrained by a value δ:

B = |w1U − w2A| ≤ δ (5.9)

Where δ is the maximum allowed unbalanced resource utilization and the weights w1 and
w2 are used to proper direct the migration of the components of the operating system
as described above. Hence, the weights w1 and w2 are used to reflect the tendency of
resource utilization by the application. So, it is possible to guide the assignment of the
OS services, which shall use the resources currently discarded by the application.

5.1.2. Objective Function Definition

An operating system should use computational resources from an embedded system
execution platform as less as possible. In this way, more resources are available to
execute application tasks. Therefore, the objective function used to minimize the overall

56 CHAPTER 5. MODELING & PROBLEM FORMULATION

resource utilization is defined as:

min{
2∑
j=1

n∑
i=1

ci,jxi,j} (5.10)

The solution for Equation 5.10, subjected to the constraints defined in 5.7, 5.8 and 5.9,
are the assignment variables xi,j which are defined as being a specific system configura-
tion: Γ = {xi,j}.

5.1.3. Allocation Example

For a better understanding of the OS service allocation problem, a simple problem in-
volving two relocatable services is shown in Table 5.1. Assuming a situation where two
OS services present the estimated costs given in Table 5.1a, there are four different as-
signments of these two services to the two execution domains. If the goal is to achieve the
minimal overall computational resources usage, the solution presented in Table 5.1e is the
best one. Note that, in this example, the constraints defined in Equations 5.7, 5.8 and 5.9
are not considered.

5.2. Reconfiguration Costs

Due to the application dynamics OS requirements may change. This is represented
by changes in ci,j and the size of S (|S = n|). Moreover, the available computational
resources that are available to allocate the demanded OS components may also change.
Therefore, the assignment decision needs to be continuously checked. This implies that,
depending on the result of the new OS service assignment, some of the OS components
may need to be relocated (reconfigured) by means of migration. In other words, a
service may migrate from software to hardware or vice-versa. Additionally, services
may be replaced by new ones (in order to use less/more resources). In this case, a
reconfiguration of a service in the same execution environment occurs (hereafter also
called migration).

The reconfiguration cost of every OS component represents the time required to com-
pletely migrate a component from one execution environment to the other one. There-
fore, to every possible component migration, a correspondent cost is specified. If o is the
source environment of a component and p is its destination, the value ro,p denotes the
migration cost. So, for each component i a migration cost matrix Ri is defined. Each
entry in this matrix denotes one possible migration cost of the component.

Since a new component may arrive into the system, or a service that is no longer required
may leave, one can incorporate these services inclusions and exclusions costs in order to

5.2. RECONFIGURATION COSTS 57

CPU FPGA
c1,j 5 10
c2,j 15 10

(a) Component costs specifi-
cation.

CPU FPGA
x1,j 1 0
x2,j 1 0∑

20
B 20

(b) All components in soft-
ware.

CPU FPGA
x1,j 0 1
x2,j 0 1∑

20
B 20

(c) All components in hard-
ware.

CPU FPGA
x1,j 0 1
x2,j 1 0∑

25
B 5

(d) s1 in hardware and s2 in
software.

CPU FPGA
x1,j 1 0
x2,j 0 1∑

15
B 5

(e) s1 in software and s2 in
hardware.

Table 5.1.: Different allocation possibilities for two services, and the respective overall
cost and balance values.

get a more precise information about the overall reconfiguration costs. This situation
can be modeled by defining a third virtual environment (which can be seen as a memory
pool of OS components). For instance, ri3,p represents the cost for aggregating a new
service i into the system. Thus, the migration cost matrix has a size of 3× 3.

The cost to migrate a component i in the system can be easily calculated using the
current and new allocation of this component. Let Ri = {rij,j′}, where j and j′ are the
current and new execution environment of component i. If xi = {xi,1, xi,2, xi,3} and
x′i = {x′i,1, x′i,2, x′i,3} are the current and new assignment of the component i, then its
reconfiguration cost is calculated by the equation below:

Ri =
[
xi,1 xi,2 xi,3

] 0 r′1,2 r′1,3
r′2,1 0 r′2,3
r′3,1 r′3,2 0

x′i,1x′i,2
x′i,3

 = xTi Rix
′
i (5.11)

Where ri,i = 0, {xi,1 + xi,2 + xi,3} = 1 and {x′i,1 + x′i,2 + x′i,3} = 1.

The complete reconfiguration cost R (overall reconfiguration time) of the system is de-

58 CHAPTER 5. MODELING & PROBLEM FORMULATION

fined as:

R =
n∑
i=1

xTi Rix
′
i (5.12)

5.2.1. Temporal Specification

As usual for a dynamic reconfigurable system, reconfiguration activities represent an
extra overhead for the system. Depending on the system specifications, this overhead
may be prohibitive if not properly tackled. For real-time systems these activities must
be specially taken into account in order to guarantee temporal determinism.

Therefore, the activity ri to reconfigure a component is divided into two distinct phases,
called Programming and Migration phases. During Programming, the component is
programmed on the FPGA (by downloading the corresponding partial bitstream), or
the object code is placed in the main memory (if its software version is going to be
used).

Once having the FPGA programmed with the service’s bitstream, or the CPU software
linked with the service’s object code, the effective migration can start (Migration phase).
This phase comprises the activity of transferring the internal data of a service between
two execution environments, and afterwards its activation.

Table 5.2 presents the notations used to represent different migration costs. Based on the
implementation results, the time to execute Migration can be considered to be the same
for a task migrating from software to hardware or vice-versa (parameter Mw). More
details on technical realization concerning migration of a running component across
hardware and software will be given in Chapter 8.

Table 5.2.: Time costs related to each migration case.

Parameter Description

Qsi Programming time in software
Qhi Programming time in hardware
M s
i “Migration” time from software to software

Mh
i “Migration” time from hardware to hardware

Mw
i Migration time between hardware/software

Furthermore, to proper tackle reconfiguration activities together with the executing OS
services, an extension of the component cost model is required. Actually, their temporal
parameters need to be specified. As mentioned in Section 4.1.1, in a typical embedded
real-time system the application may be modeled as a set of periodic activities. Even

5.3. COMMUNICATION COSTS 59

sporadic tasks can also be modeled as periodic tasks through the assumption that their
minimum interarrival time being the period. Hence, it is assumed that the applications
are represented by a set of periodic tasks and that OS services present also a periodic
behavior. Thus, each OS service is characterized by temporal parameters (e.g., period,
deadline, etc.). The temporal specification of a service, related to its periodic behavior
is presented in Table 5.3.

Table 5.3.: Service definition related to its periodic execution.

Parameter Description

Esi Execution time of service i in software
Ehi Execution time of service i in hardware
Pi Period of service i
Di Relative deadline of service i
di,k Absolute deadline of the kth instance of service i
ai,k Arrival time of the kth instance of service i
bi,k Starting time of the kth instance of service i
fi,k Finishing time of the kth instance of service i

5.3. Communication Costs

Additionally to the computational resources that each component requires, it is also
desirable to take into account costs related to communication among the components.
Observing the underlying execution platform used in this work, these costs depend on the
allocation of the components over the architecture. For instance, if two communicating
components are located in the same environment, the related cost may be lower than
the case where each would be placed on a different execution environment.

For the purpose of communication cost modeling, the proposed architecture shown in
Figure 5.1, already introduced in the previous chapter, provides enough abstraction
for a proper communication cost modeling. There, communication channels available
are highlighted. It can be seen that software components can exchange data among
themselves using the SW BUS. Similarly, hardware components can use HW BUS for this
purpose. To exchange data across the hardware/software boundary, a bridge connecting
SW BUS and HW BUS need to be used, aggregating more cost for this communication.
This would be more in evidence if the two architecture parts would be implemented in
different devices.

In order to model each possible communication between each pair of components, the
system has been modeled using a undirected weighted graph G = (V, E). Each edge in E
connecting two components u and v is weighted by κ(u, v), which represents all possible

60 CHAPTER 5. MODELING & PROBLEM FORMULATION

Bridge
External
Memory
Interface

RTR
Manager

SW BUS

Slot
A

HW BUS

RAM

ServiceX.o

ServiceX.bit

ServiceY.o

ServiceY.bit

ServiceN.o

ServiceN.bit

Static Part

Slot
B

Slot
X

Reconfigurable PartMemory Pool

CFG
Port

Figure 5.1.: System architecture highlighting the communication channels.

communication costs between u and v. Note that κ depends on two main factors: a static
one, related to the architecture (time to deliver a message), and a factor related to the
amount of data exchanged between two components, which is dynamic and application
dependent. As each component may be located in one of two different execution environ-
ments, κ(u, v) represents three different communication costs (κ(u, v) = {Cα, Cβ, Cγ}):

• Cα, when both are in SW domain;

• Cβ, when both are in HW domain;

• Cγ , when each component is located in a different domain.

Figure 5.2 shows a sample of such a graph. Grey nodes in the graph may be seen as OS
services primitives (API) that are made available for application tasks. Note that such
nodes do not have allocation costs.

SW

SW,HW

Figure 5.2.: Sample of an OS component graph.

5.4. CHAPTER CONCLUSIONS 61

5.4. Chapter Conclusions

The main problems to be dealt by RRM were discussed in this chapter. It can be seen
that those problems are NP-Hard ones, which requires the development of heuristics
for their solutions. Moreover, these heuristics need to be executed at run-time, which
demands the development of algorithms that present low time complexity.

Furthermore, a model of the reconfiguration activities was introduced, which consider
the proposed underlying execution platform. Only by having all activities modeled by
its temporal characteristics, it is possible to tackle them in a deterministic manner. Such
a complete and embracing model of reconfiguration activity is not usually adopted, as
noticed from the works investigated in Chapter 3.

62 CHAPTER 5. MODELING & PROBLEM FORMULATION

CHAPTER 6

Run-Time Methods

Up to now, the main problems have being properly introduced and modeled, which
allows this chapter to present the solutions proposed to solve them.

First, an allocation algorithm, considering only the computational resource required
by each component, is introduced. Then, an attempt to indirectly reduce the overall
reconfiguration cost is presented. Furthermore, an algorithm extension is proposed, with
the aim to reduce the communication costs among OS components. By the development
of these algorithms, efforts were spent in order to achieve a low complexity due to the
fact that they need to be applied at run-time, during system execution.

Afterwards, the methods designed to handle the reconfiguration activities are presented,
considering thereby time constraints. Here, the reconfiguration activity model is further
extended enabling an efficient management. For the reconfiguration of a single OS
component, methods from real-time scheduling theory are adapted and applied for this
specific problem. Furthermore, since in a system reconfiguration situation, more than
one component may suffer a reconfiguration, it is also required to decide the order in
which these components will be reconfigured.

6.1. OS Service Allocation

The assignment problem is solved by using a greedy based heuristic algorithm. It decides
at run-time where to place each OS component taking into consideration its current
cost and the remaining available computational resources. As it has been explained

63

64 CHAPTER 6. RUN-TIME METHODS

in the previous chapter, the system has to allocate the OS components to a limited
FPGA area (Amax) and limited CPU processor workload (Umax). The heuristic tries
to minimize the objective cost function (Equation 5.10) subjected to system constraints
(Equations 5.7, 5.8 and 5.9).

The allocation algorithm is composed of two phases. The first one creates two clusters
(FPGA and CPU component sets), representing the assignment of components to ei-
ther CPU or FPGA. The second phase improves the first solution towards the balance
constraint δ.

6.1.1. OS Service Assignment Phase

In the first phase, shown in Algorithm 1, the algorithm starts selecting the component
that has the smallest cost among those currently needed by the application, and assigns
it to the corresponding execution environment. It then selects the component that has
the smallest cost among the remaining (unassigned) ones so that it tries to keep the usage
of CPU resource U equal to the FPGA resource A. This selection process is repeated
until all components have been assigned. The algorithm terminates by checking if the
CPU and FPGA resources usage constraint are fulfilled: U ≤ Umax and A ≤ Amax. If
so, the algorithm returns a valid assignment solution, or an error otherwise. It can be
seen that this algorithm has a polynomial complexity of O(n2), since there is only one
for loop (line 7) which produces n searches in a list of (maximum) n elements.

6.1.2. OS Service Assignment Example

To better understand how the proposed algorithm works, an example is presented here.
Assuming three components, which are able to be located either in CPU or in FPGA,
and having respective estimated costs as shown in Table 6.1, the algorithm will take
three steps to provide the assignment solution. At the beginning, the component having
smallest cost among them is selected, which in this case is s2 in its CPU version (j = 1).
Thus, in the first step (Table 6.2a), the assignment decision for this component is made:
x2 = {1, 0}. For the second step (Table 6.2b), the component having the smallest cost,
from those available for FPGA, is selected (since the result from first step implies in
U > A). Hence, component s1 in its FPGA version (j = 2) is selected: x1 = {0, 1}.
This leads to U = 3 and A = 5, which determines the search for the smallest cost in the
remaining unselected components of CPU versions. As, in this case only one component
remains unselected, the choose lies on service s3: x3 = {1, 0} (Table 6.2c). The resulted
overall resource utilization is

∑
= U +A = 23, with a Balance B = |U −A| = 13.

6.1. OS SERVICE ALLOCATION 65

Algorithm 1 Service assignment heuristic.
1: C1 ← {ci,1} Set of components available for CPU (j = 1)
2: C2 ← {ci,2} Set of components available for FPGA (j = 2)
3: X1 ← {xi,1} Assignment of CPU components
4: X2 ← {xi,2} Assignment of FPGA components
5: C ← C1 ∪ C2; X1← X1 ∪X2; U ← 0; A← 0
6: n← number of components
7: for k ← 1 to n do
8: if U ≤ A then
9: Find an unassigned component i among {ci,1} so that it has the smallest cost.

10: Assign this component to CPU: xi ← {1, 0}
11: else
12: Find an unassigned component i among {ci,2} so that it has the smallest cost.
13: Assign this component to FPGA: xi ← {0, 1}
14: end if
15: U ← C1X

T
1

16: A← C2X
T
2

17: if U > Umax or A > Amax then
18: Exit with error: ”Not feasible”
19: end if
20: end for
21: return X1

c1,j c2,j c3,j
CPU 10 3 15

FPGA 5 10 12

Table 6.1.: Example of three components and their respective costs.

6.1.3. Balance B Improvement Phase

In the second phase the balancing B is improved in order to meet the δ constraint which
was not considered in the first phase. It is based on Kernighan-Lin algorithm [158] and it
aims to obtain a better balancing B than the first one by swapping pairs of components
between CPU and FPGA. The algorithm receives as input the first assignment solu-
tion X1 which has nc1 =

∑n
i=1 xi,1 components assigned to CPU and nc2 =

∑n
i=1 xi,2

components assigned to FPGA. The maximum number of pairs that are possible to be
swapped is defined as: max pairs = min(nc1, nc2).

By moving a component i that was, for instance, previously assigned to CPU (xi =
{1, 0}), to FPGA (x′i = {0, 1}) a new balancing B is achieved: Bnew = |Bcurrent − li|,
where li = {ci,1 + ci,2}. Similarly, by moving a component i from FPGA to CPU, the
new balancing B will be: Bnew = |Bcurrent + li|. Thus, swapping a pair of components

66 CHAPTER 6. RUN-TIME METHODS

x1,j x2,j x3,j
∑

CPU 1 3
FPGA 0 0

(a) Step 1.

x1,j x2,j x3,j
∑

CPU 0 1 3
FPGA 1 0 5

(b) Step 2.

x1,j x2,j x3,j
∑

CPU 0 1 1 18
FPGA 1 0 0 5

(c) Step 3.

Table 6.2.: Assignment algorithm applied in the example presented in Table 6.1.

o, p the new balancing B is defined as:

Bnew =

{
|Bcurrent − lo + lp|, if xo = {1, 0} and xp = {0, 1}
|Bcurrent + lo − lp|, if xo = {0, 1} and xp = {1, 0}

(6.1)

Additionally, Gop is defined as the gain obtained in the balancing B by swapping a pair
o and p of components: Gop = Bcurrent −Bnew. A gain above 0 means an improvement
obtained in the balancing B. Observing Equation 6.1, it follows that:

Gop =

{
lo − lp, if xo = {1, 0} and xp = {0, 1}
lp − lo, if xo = {0, 1} and xp = {1, 0}

(6.2)

The balance improvement algorithms is shown in Algorithm 2. Before starting, it first
build a set M of component pairs, respecting the following: For each pair {o, p} ∈ M
it must hold either xo = {1, 0} and xp = {0, 1}; or xo = {0, 1} and xp = {1, 0}.

Afterwards, it starts trying to swap all possible pairs and storing the obtained gain by
every try. It then chooses the one that provides the greatest gain. If this gain is lower
than or equal to zero, no swapping is able to provide an improvement in the balancing B
and the algorithm stops. Otherwise, the pair that provides the greatest gain is swapped
and locked (no longer a candidate to be swapped).

The above process is repeated until all pairs have been locked or no improvement can
be obtained by any interchange or if δ constraint has been fulfilled. The algorithm
terminates by returning the new assignment solution that provides a better (or at least an
equal) balancing B than the solution provided by the first phase. The overall complexity
of the balancing improvement algorithm is (worst case) O(m2), where m is the maximum
number of pairs. The complexity of building the set M is O(m2), in its worst case, and
the search (line 10) made inside the loop (line 9) has also this complexity.

6.1. OS SERVICE ALLOCATION 67

Algorithm 2 Heuristic for balancing B improvement.
1: Xinit

1 ← {xi,1} Initial assignment of CPU components
2: Xinit

2 ← {xi,2} Initial assignment of FPGA components
3: Xinit ← Xinit

1 ∪Xinit
2

4: Xnew ← Xinit

5: Binit ← |U init −Ainit|
6: Bnew ← Binit

7: Build the set M
8: m← |M| maximum number of pairs
9: for k ← 1 to m do

10: Find the pair {o, p} ∈ M so that o and p are unlocked and Gop is maximal
11: if Gop > 0 then
12: Swap o and p changing the current assignment: Xnew ← (Xnew with o and p

swapped)
13: Bnew ← Bnew −Gop
14: Lock o and p
15: end if
16: if Gop ≤ 0 OR Bnew < δ OR all pairs are locked then
17: break
18: end if
19: end for
20: return Xnew

6.1.4. Balance B Improvement Example

Again, the algorithm can be better understood by using an example. For this case let
the input be the result achieved by the assignment phase when applied on the given
example. Table 6.3c shows a complete example of an OS service set allocation. In
Table 6.3a the OS service set input is presented, along with their respective costs and l
parameter. Table 6.3b shows the assignment result when applying Algorithm 1 on this
input example. Finally, Table 6.3c presents the balancing B improvement when applying
Algorithm 2 on the previous result.

For this case, M comprises two services pairs, which are {o, p} = {s1, s2} and {o, p} =
{s1, s3}. The second pair delivers the best gain in comparison to the first one. Hence,
changing the assignment of s1 and s3 from x1;x3 = {0, 1}; {1, 0} to x1;x3 = {1, 0}; {0, 1}
a better balancing B is achieved. However, this swap implies in a small increase in the
overall resource utilization. This situation is shown in Table 6.3c.

68 CHAPTER 6. RUN-TIME METHODS

c1,j c2,j c3,j
CPU 10 3 15

FPGA 5 10 12
li 15 13 27

(a) Example of three compo-
nents and their respective
costs.

x1,j x2,j x3,j
∑

CPU 0 1 1 U = 18
FPGA 1 0 0 A = 5

s1 s2 s3

(b) Assignment result after Algorithm 1.

x1,j x2,j x3,j
∑

CPU 1 1 0 U = 13
FPGA 0 0 1 A = 12

s1 s2 s3

(c) Assignment result after Algorithm 2.

Table 6.3.: Example of a complete OS service allocation.

6.1.5. Reconfiguration Cost Reduction

Since reconfiguration activities represent an overhead for the system, it is desired to
reduce it. For this purpose the assignment algorithm, in its second phase, was slightly
modified in order to decrease the number of components to be reconfigured. This action
indirectly decreases the overall reconfiguration cost.

Assuming that Γ and Γ′ are the current and new system configuration, let the assignment
difference zi of a component i be denoted by diff(xi, x′i). Where xi ∈ Γ and x′i ∈ Γ′.
Thus, diff is defined as follows:

zi =
{

1 : if {xi} 6= {x′i}
0 : otherwise

The new algorithm phase is shown in Algorithm 3. The original algorithm is modified
in the following manner. Instead of immediately changing and locking the position of
the pair o and p after a gain below 0 was found (line 12 of Algorithm 2), this is done
based on some rules. If, at least, one of the components from the pair keeps its position
in relation to the current system configuration (line 12 of Algorithm 3), the pair swap
is allowed.

In addition, the component that preservers its position (or both) is locked (no longer
a candidate to be swapped). However, if both components of the pair change their
positions in relation to the current system configuration, no swap occurs. Moreover, just
one component (which provides the smaller reconfiguration cost) is locked. This lock is
necessary, otherwise the algorithm would not terminate. This process is then repeated
until all pairs have been locked or no improvement can be obtained by any interchange,
similarly as in the original algorithm phase.

6.2. COMMUNICATION-AWARE ALLOCATION ALGORITHM 69

By applying those rules, the algorithm tries to reduce the number of components needed
to be reconfigured. Also note that the algorithm does not terminate if the δ constraint is
fulfilled. This enforces the search for more components (pairs) that could be kept in its
current allocation solution. In respect to its complexity, it is the same than the original
algorithm.

Algorithm 3 Improved heuristic for balancing B.
1: Xinit

1 ← {xi,1} Initial assignment of CPU components
2: Xinit

2 ← {xi,2} Initial assignment of FPGA components
3: Xinit ← Xinit

1 ∪Xinit
2 ; Xnew = Xinit

4: Binit ← |U init −Ainit|; Bnew = Binit

5: Xorig ← Current System Configuration Γ
6: m← max pairs maximum number of pairs
7: for k ← 1 to m do
8: Find the pair o, p (xo = {1, 0};xp = {0, 1} or xo = {0, 1};xp = {1, 0}) so that o

and p are unlocked and Gop is maximal
9: if Gop > 0 then

10: Swap o and p and test it ⇒ Xtry = (Xnew with o and p swapped)
11: Z= diff(Xorig, Xtry)
12: if zo = 0 OR zp = 0 then
13: Update the new configuration ⇒ Xnew = Xtry

14: Bnew = Bnew −Gop
15: if zo = 0 then Lock o end if
16: if zp = 0 then Lock p end if
17: else
18: if xTo Rox

′
o < xTpRpx

′
p then Lock o else Lock p end if

19: end if
20: end if
21: if Gop ≤ 0 OR all pairs are locked then
22: break
23: end if
24: end for
25: return Xnew

6.2. Communication-aware Allocation Algorithm

In order to take into account the communication costs when deciding the assignment of
each OS component, an additional phase is applied, preceding the appliance of the former
algorithms explained above. The idea of this phase is to group together those components
that present lower communication costs when located at same execution domain. This
idea is based on the observation of the architecture presented in Section 5.3, where two

70 CHAPTER 6. RUN-TIME METHODS

communicating components may use the local bus (when both are placed on the same
environment), or use the bus across the environmentes.

The algorithm executed in this phase is based on a clustering process and delivers new
components set, which are then used as input to the assignment algorithm. In this case
not only single components are assigned to CPU or FPGA, but also meta-components
(cluster of components) instead. The previous algorithm for balancing B improvement
(Algorithms 2 or 3) is slightly modified, in which a pair of components is allowed to
change their location only if this change will improve the balancing and concurrently
reduce the communication costs inside the execution environment. This is necessary,
because the balancing B improvement algorithm do not handle components clusters.

Previous chapter introduced the communication cost model for two components u and
v assigned to the proposed architecture: κ(u, v) = {Cα, Cβ, Cγ}. Where Cα, Cβ and
Cγ denote the communication cost between two components located both in software,
both in hardware and each one in different environment, respectively. To measure the
connection degree between these two communicating components, two further metrics
were specified. The first one is the pl (local preference):

pl =
2Cγ

2Cγ + Cα + Cβ
(6.3)

This is calculated using CM (pl = f(Cα, Cβ, Cγ)). The metric pl compares the com-
munication cost between two components when both are placed in the same execution
domain in comparison with the case where each of them are placed in different execution
domains.

The second metric is defined as pg (global preference) which is pl multiplied by a global
factor (see Equation 6.4). This metric enables the comparison of all local preferences
with each other when doing the clustering process.

pg = (
Cγ

maxV {Cγ}
)pl (6.4)

Clustering components

The clustering procedure is iteratively executed in k passes. In each pass, the algorithm
starts searching for the largest global preference value, pg′, among all edges and tries to
cluster two components, o and p, respecting two conditions:

• Components o and p have not been clustered yet (considering the current pass
only).

• (co,1 + cp,1, co,2 + cp,2) ≤ (λ1, λ2), where λ1 and λ2 are the maximum component
costs allowed when performing the combination of o and p. This criterium is used

6.3. HANDLING RECONFIGURATION ACTIVITIES 71

to avoid the efficiency deprecation of the assignment algorithm when the allocation
costs of the formed components increase.

If two components form a cluster, then they are combined and the search is executed
again. This method is repeated until no additional components are free for clustering,
which characterizes the end of a pass. The resulting clustered graph is then used as
input for the subsequent pass. This is repeated until all k passes have being executed.
The number k of passes can be adjusted previously, before system starts, which may be
dependable on the granularity and homogeneity of the component costs. Nevertheless,
in Chapter 7, evaluations made for this algorithm indicates how to correctly choose the
number k of passes.

Figure 6.1 shows an example of two components, T1 and T2, being clustered, which gen-
erates a new component T ∗. For this case, κ(T ∗, T3) is generated as follows: κ(T ∗, T3) =
κ(T1, T3) + κ(T2, T3). Thus, pg∗ is calculated as: pg∗ = f(κ(T ∗, T3)). Note that com-
munication costs, Cα and Cβ, between T1 and T2 (from the example), are no longer
considered for pg evaluation. Nevertheless, they are stored and used during the balance
improvement algorithm.

T4

T2

T5

T3

T1

T6

T4

T5

T3 T*

T6

Higher pg

pg=0.8

0.2

0.1

0.3 0.7

0.5

0.3

0.1

0.2

pg*

Figure 6.1.: Example of two components being clustered.

6.3. Handling Reconfiguration Activities

As it has been introduced in Section 4.1.4, whenever the current allocation of OS compo-
nents does not fulfill the specified constrains, which is caused by application dynamics,
a reconfiguration needs to take place. In the proposed system, this action is triggered
when an unbalanced situation is detected: |w1U − w2A| > δ. Furthermore, if new OS
services are going to be included into the system (e.g., if a new application have been
started), a new set S ′ = {s′i, i = 1, ..., n′} of services is identified. In each case, a new
assignment solution needs to be computed again, resulting in a new system configuration
Γ′.

To bring the system from the original Γ configuration to a new Γ′, a system reconfigura-
tion needs to take place. This means that a certain number of services must be relocated

72 CHAPTER 6. RUN-TIME METHODS

on the hybrid architecture, new services may be inserted, or even some services may be
deleted if no longer required.

In Section 5.2 it has been shown that reconfiguration costs may be relatively high, which
may require a large blackout time to reconfigure all components at once. This fact may
be prohibited for some systems, especially those having temporal constraints. Therefore,
the strategies developed in this thesis aims to achieve a near zero blackout time.

In order to find a reasonable solution for this problem, the reconfiguration activities
carried out over the proposed platform were further specified. In the following analysis,
at the first moment only current active services, that will undergo a reconfiguration, are
going to be considered. Afterwards, new components inserted into the system (e.g., due
to the arrival of new applications) are taken into account. So, let a subset S∗ of the
current active service set S be defined, to denote the OS components that will undergo
a reconfiguration (hereafter also called migration):

S∗ = {s?i , i = 1, ...,m} (6.5)

Where m is the number of components to be reconfigured. Please note that S∗ ⊆ S and
m ≤ n, where n is the number of currently active services present in the system.

Now, the system reconfiguration problem can be formulated in two sub-problems:

P1 The reconfiguration activities of a single component s∗i need to be performed in a
deterministic way, concurrently with the system activities. By this means, a com-
ponent reconfiguration can be accomplished without stopping system execution.

P2 Since m components are going to be reconfigured, the order in which these com-
ponents are going to be reconfigured need to be carefully determined. If after each
component reconfiguration constraints Amax and Umax are not violated, no system
stop is required.

Hence, solving P1 and P2, the system can be reconfigured concurrently with system
execution. In the subsequent sections, the solution for both P1 and P2 sub-problems are
presented.

6.4. OS Component Reconfiguration

The reconfiguration of a component implies in the execution of respective Programming
and Migration phases (introduced in Section 5.2.1). Since the arrival times of these
activities are triggered by asynchronous events (system reconfiguration), they can be
modeled as aperiodic jobs. Furthermore, if these jobs can be executed concurrently with
the running services, without causing the violation of any deadline, a deterministic and
zero blackout time reconfiguration can be accomplished.

6.4. OS COMPONENT RECONFIGURATION 73

For a more precisely model of these reconfiguration activities, let them be denoted by a
set J :

J = {Ji(Jai , Jbi), i = 1, ...,m}. (6.6)

Where Ja and Jb represents the phases Programming and Migration, respectively. The
execution times of these phases have been already introduced in Table 5.2. For a job Ja

this time may be either Qs or Qh, depending on which direction a component is being
migrated. Similarly, Jb represents one of three possible migration cases: M s, Mh or
Mw.

This scenario characterizes a situation where aperiodic jobs need to be carried out to-
gether with real-time periodic tasks. To cope with such scenarios, very efficient and
well known strategies from real-time scheduling theory can be here applied. The ba-
sic idea of these approaches is the inclusion of a new periodic task (called server) into
the system to reserve some bandwidth (CPU workload) to serve the aperiodic activities
(jobs). Thereby, the response time of these jobs can be improved with the guarantee
that deadlines of periodic tasks will not be violated. A more comprehensive and detailed
explanation of this technique is given in [159, 160].

Among different types of servers, the analysis relies on Total Bandwidth Server (TBS)
[159] due to the following reasons:

• The Earliest Deadline First (EDF) is assumed as the policy adopted by the system
scheduler;

• Among other servers, it is one of the most efficient service mechanism in terms of
performance/cost ratio [160].

According to the literature, TBS assigns a deadline dk for an aperiodic job k arriving in
the system at time ak in the following manner:

dk = max(ak, dk−1) +
Ck
Us

(6.7)

Where dk−1 represents the deadline of the aperiodic job that has arrived before job k;
Us is the server bandwidth and Ck is the execution time requested by the aperiodic job.
Deadline dk−1 is 0 if job k is the first one, or if all pending aperiodic jobs that arrived
before job k have already been finished.

74 CHAPTER 6. RUN-TIME METHODS

6.4.1. Applying Total Bandwidth Server

Preliminary Statements

The TBS server is used here as a technique to perform the migration of a component
being executed in one execution environment to the other one. Depending on the system
support, appropriated preemption/resumption facilities may or may not be available for
migration purposes. Thus, in some cases the migration need to occur only when the
service is not active or, it may be performed in the middle of the service computation.
Nonetheless, in both cases some amount of context data may be required to be transferred
across domains.

Even though there are some methods that allow preemption of hardware tasks as read-
back and scan-path (e.g., [127]), they can not be used for a preemption and posterior
resumption of a running component across hardware and software domains. Without
proper support during design phase, which needs to assure safe points of preemption/re-
sumption of a component and enough information about the reconfiguration costs, its
accomplishment would be rather difficult. Therefore, a framework for designing relo-
catable tasks across hardware and software execution domains was developed and will
be presented in Chapter 8. The proposed framework, together with a specific run-time
environment, allows the preemption of a task being executed in software and a posterior
resumption in hardware (and vice-versa).

Furthermore, it is worth to mention that due to the usage of a server, which is allocated to
CPU, the reconfiguration activities are going to be performed sequentially. However, this
fact does not represent a degradation of the hardware parallelism, since the availability
of a single configuration port on today’s FPGA serializes its programming operation.

Total Bandwidth Server Applied

The first phase Ja of a component reconfiguration is only a preparation of the execution
environment to the second phase, where the migration is actually performed. Hence, no
extra synchronization with the running tasks or services is required for its accomplish-
ment. Therefore, the appliance of the deadline assignment rule from TBS to schedule
Ja is straightforward. Differently, the mapping of Jb to the TBS rule is not that trivial
and require thereby more attention.

In the following, the deadline assignment rule from TBS is applied on Jb under different
situations. As a result, the minimal bandwidth Us for TBS server is derived so that a
migration phase can be safely performed. These following analyses will start with the
assumption that no preemption is used for migration purposes. Then, in the sequence,
the case where preemption is allowed will be derived from previous results.

6.4. OS COMPONENT RECONFIGURATION 75

6.4.2. Deriving Migration Conditions

The execution of a job Jb, related to service i, can only start in time intervals where
no instance of si is active. Thus, considering that the service has a periodic behavior,
the execution of Jb has to happen between two consecutive instances of this service.
Moreover, this has to be performed respecting the deadlines of this service.

If bi,k and fi,k represent the starting and finishing execution times of a kth instance of
service si, let b̂i and f̂i be the starting and finishing execution times of Jb. The conditions
above can be formulated in C1 and C2:

C1 b̂i 3 [bi,k; fi,k] : Job Jbi cannot start if an instance of a service si has been started or
if this instance has not been finished yet.

C2 bi,k 3 [b̂i; f̂i] : Once job Jbi has been started, it cannot be preempted by service si.

Condition C1 arises due to the absence of preemption support for migration. It avoids
that Jbi starts to transfer the internal state of an instance k of service si if this instance
k has been started and still not finished. Condition C2, in its turn, guarantees that a
service si will be started only after the finishing the execution of Jbi . Note that a job Jbi
may still be preempted by a service other than si.

In the following subsections every migration case is analyzed observing the conditions
stated above.

6.4.3. Software to Hardware Migration

In order to facilitate the following analyses, let âi and d̂i denote the arrival and deadline
times of a job Jbi , respectively. To ensure that Jbi will not start before instance si,k, Jbi
is released only when si,k has been finished: âi ≥ fi,k.

In order to provide as much time as possible to execute Jbi , the maximum time interval
between two consecutive instances of a service si could be chosen. This happens in
a specific instance k∗ where the lateness of si is minimal: â∗i = fi,k∗ | (di,k∗ − fi,k∗) =
mink(di,k − fi,k). Figure 6.2 shows such a situation.

However, to generally find the specific instance k∗ when a periodic task set is scheduled
under EDF is not trivial, and its solution would incur in the usage of more complex
algorithms, which is not desired. Furthermore, a non wanted delay in the complete
reconfiguration time would be included due to the shifting of âi from fi,k to fi,k∗ , which
actually depends on the current hyperperiod of the service set.

Nevertheless, it is possible to control the arrival time âi to be the same as the finishing
time fi,k, which can be, in a worst case, equal to the deadline di,k. Therefore, in the
analysis this case is considered in order to provide a result that can be applied to every
instance k. Hence, under this condition a minimal server bandwidth can be derived,

76 CHAPTER 6. RUN-TIME METHODS

si
in SW

TBS Jb,i

si
in HW

*
îa

*,kia *,kif 1,, ** +
=

kiki
ad

1, *+ki
d

*ˆ
id

*,ki
a 1, *+ki

a 1, *+ki
d

Figure 6.2.: Optimal arrival time âi for Jbi .

which will guarantee the non violation of conditions C1 and C2.

Figure 6.3 shows this situation, where the arrival of Jbi occurs at the arrival time of the
next service instance ai,k+1. Note that the relative deadline Di is assumed to be equal
to the period Pi.

si
in SW

TBS

si
in HW

kia , 1,, += kiki af 1, +kid

kia , 1, +kia 1, +kid

iâ
id̂

b
iJ

Figure 6.3.: Worst-case arrival time âi for Jbi .

Under EDF scheduling, the running task is always the one with the smallest absolute
deadline among the ready ones. Thus, it can be ensured that Jbi will not be preempted
by si,k+1 if d̂i ≤ di,k+1.

As the software component si will be moved to hardware, its CPU utilization factor Ui
is released and can be added to the server bandwidth. Moreover, Jbi phase needs to be
finished, in the worst-case, at di,k+1 − Ehi to allow the next instance of the service i
(running afterwards in hardware) to finish before or at its deadline. Hence, the deadline
db,i assigned to Jbi using TBS is:

d̂i = âi +
Mw
i

Us + Ui
≤ di,k+1 − Ehi (6.8)

6.4. OS COMPONENT RECONFIGURATION 77

Noting that di,k+1 = ai,k+1 + Pi and ai,k+1 = âi, the Equation 6.8 can be rewritten in
order to derive the minimal server bandwidth:

Us ≥
Mw,i

Pi − Ehi
− Ui (6.9)

Equation 6.9 shows that the bandwidth required to migrate service si is equal to Mw
i

Pi−Ehi
.

Hence, as the server uses the workload Ui released by si, Us needs to be at least equal to
the difference necessary to achieve the requested bandwidth. Although the consideration
of Ui as being part of the server bandwidth, already in the instance k, seams to be
intuitively correct, a formal prove that it can be securely made is given in Appendix D.

If the condition expressed in Equation 6.9 is fulfilled under all services that will undergo
a migration from software to hardware, it can be guaranteed that conditions C1 and C2
will be satisfied when EDF and TBS are used.

6.4.4. Hardware to Software Migration

For this migration case, the arrival time of job Jbi can be defined more precisely since
a service executing in hardware profits from the true parallelism of this environment.
Additionally, the server needs to provide additionally the workload that will be reclaimed
by si when running in software. Hence, the remaining bandwidth (Us −Ui) needs to be
big enough to support the migration of Jbi . The deadline assigned to Jbi by TBS is then
defined as:

d̂i = ai,k + Ehi +
Mw
i

Us − Ui
≤ di,k+1 (6.10)

Noting that di,k+1 = ai,k+1 + Pi and that ai,k+1 = ai,k + Pi, the equation above can be
rewritten in order to derive the minimal server bandwidth required:

Us ≥
Mw
i

2Pi − Ehi
+ Ui (6.11)

6.4.5. Software Service Reconfiguration

Similar analysis as done above can be made for the case where a service is going to be
replaced by another service, but only in software domain. In this case, using the deadline

78 CHAPTER 6. RUN-TIME METHODS

assignment rule from TBS:

d̂i = âi +
M s
i

Us + Ui − Unewi

≤ di,k+1 (6.12)

Where Unewi is the new processor load used by service si after migration.

Rearranging Equation 6.12 and solving it for Us, the minimal bandwidth required is:

Us ≥
M s
i

Pi
+ Unewi − Ui (6.13)

Note that the period Pi is not changed, only the execution time: Es,newi , which refers to
the new service that replaces the older one. It this case, the bandwidth requested by Jbi
is Ms

i
Pi

and the processor load released is Ui − Unewi .

6.4.6. Hardware Service Reconfiguration

Similarly, it may be necessary that a hardware service need to be replaced by another
one, also in hardware domain. In this case, it can be concluded that âi = ai,k + Ehi ,
since no preemption occurs in a hardware service execution. In addition, the deadline
to finish Jbi can be precisely defined as: d̂i = di,k+1 − Eh,newi . Note that here also the
period Pi is the same and only the execution time of the service si is different. Thus,
the assigned deadline to job Jbi is:

ai,k + Ehi +
Mh
i

Us
≤ di,k+1 − Enewhw,i (6.14)

As the temporal distance between ai,k and di,k+a is 2Pi, the minimal server bandwidth
for this case is:

Us ≥
Mh
i

2Pi − Eh,newi − Ehi
(6.15)

6.4.7. Migrating by Preempting

If a migration may be performed by preempting and resuming a service si from one
execution environment to the other one, a speed up in the whole system reconfiguration
may be achieved. This happens due to the fact that a migration is completed inside the
same period of a service execution.

6.4. OS COMPONENT RECONFIGURATION 79

Software to Hardware

Differently from the first scenario, the condition C1 is no longer necessary, since now
the arrival of job Jbi is allowed to be even in the middle of the execution of the service
si. The C2 however, is still necessary to avoid that a service si would start when the
related job Jbi is under execution.

For this new scenario analyses, additional notations are introduced. In Figure 6.4 these
are further illustrated. Lets assume that job Jbi arrives shifted from ai,k in a time distance
of σ so that service si is stopped. In this moment, certain amount of computation of si
would have been executed already. Let ηEsi be this amount, so that 0 ≤ η ≤ 1. Thus,
it follows that the remaining computation that will be executed in hardware afterwards
is equal to (1− η)Ehi .

si
in SW

TBS

si
in HW

σ

sE⋅η

hE⋅−)1(η

iâ
id̂

kia , 1, +kia

kia , 1, +kia

b
iJ

Figure 6.4.: Migrating by preempting: software to hardware.

The value η depends on σ and it is, therefore, defined for each instance k of a service si:

ηk =

0 : if ai,k + σk < bi,k

1 : if ai,k + σk > fi,k
ai,k−si,k+σk

Esi
: otherwise

(6.16)

For this case, deadline di,k assigned to job Jbi , arriving at ai,k + σ using TBS need to be
smaller than Pi − (1 − η)Ehi in order to guarantee the achievement of the deadline di,k
of service si. Hence, applying TBS rule for Jbi , similarly as in the scenarios explained in
above sections, the deadline d̂i is defined by:

d̂i = âi + σ +
Mw
i

Us + (1− η)Ui
≤ di,k+1 − (1− η)Ehi (6.17)

80 CHAPTER 6. RUN-TIME METHODS

Hence, as already noticed in the previous analyses, di,k+1 = ai,k+1 + Pi and ai,k+1 = âi,
the Equation 6.17 can be rewritten to solve Us as follows:

Us(η, σ) ≥ Mw
i

Pi − (1− η)Ehi
− (1− η)Esi

Pi
(6.18)

It has to be noticed that Equation 6.18 is defined only for 0 ≤ η < 1, since when
η = 1, service si has already finished its execution and the migration will be performed
in the next instance. Additionally, if job Jbi arrives in the beginning of a instance so that
σ = 0, which also implies in η = 0, the scenario will be identical to the case analyzed in
Section 6.4.3. Indeed, making σ = 0 and η = 0 in Equation 6.18, this becames identical
to Equation 6.9.

For this migration case, the minimal bandwidth required for TBS is no longer possible
to be determined alone, but it depends on values σ and η instead. Thus, it is not trivial
to specify a minimal Us, even for a worst-case scenario. Nevertheless, it is noticeable
that the bigger σ is the smaller the temporal distance available for a migration will be.
As a consequence, depending on the arrival time âi, the minimal server bandwidth Us
required may not be feasible. However, as the work presented in this thesis envisioned
soft real-time systems, a reasonable procedure would be to shift the arrival âi to the
finishing time fi,k.

Hardware to Software

Based on the analyses made above, and on the scenarios where preemption were not
allowed, the examination of a migration case of a service going from hardware to software
is deductive. For clarification, Figure 6.5 shows such a case.

Hence, by similar analyses, it follows that the deadline di, k assigned for job Jbi , arriving
at ai,k + σ is equal to:

d̂i = ai,k + ηEhi +
Mw
i

Us − (1− η)Ui
≤ di,k+1 (6.19)

Noting that di,k+1 = ai,k+1 + Pi and that ai,k+1 = ai,k + Pi, the equation above can be
rewritten to solve Us:

Us(η, σ) ≥ Mw
i

2Pi − ηEhi
+ (1− η)Ui (6.20)

Also for this case, the arrival time âi of job Jbi can be shifted to fi,k, which derives the
same results where preemption is not used.

6.5. SCHEDULABILITY ANALYSIS 81

si
in SW

TBS

si
in HW

kia , 1, +kia

kia , 1, +kia

iâ
id̂

σ

b
iJ

sE⋅−)1(η

hE⋅η

Figure 6.5.: Migrating by preempting: hardware to software.

6.5. Schedulability Analysis

All analyses made in the above sections were based on the proper assignment of arrival
time and deadline of aperiodic reconfiguration activities, and the establishment of con-
ditions for definition of the server bandwidth. These analyses were made in order to
properly represent the conditions imposed in different explained scenarios.

As a typical scenario is assumed, where services are periodic and scheduled using the
EDF policy, a standard schedulability analysis can be applied. Additionally, in the
approach here presented no modification on deadlines or arrival times of any periodic
service was performed. As a consequence, if after every migration step the sum of all
processor utilizations (used by every software component) plus the server bandwidth
does not exceed a maximum Umax, the feasibility of the schedule is guaranteed. Beside
that, there is also a hardware constraint Amax (maximum FPGA area available). Thus, it
follows that the FPGA needs to have available the area requested by each service being
transferred to it. These conditions implies that before every service migration either
enough FPGA area is available, or enough CPU workload. Furthermore, after each
service migration, the new resources available need to be enough for further migrations.
Only in this way, it can be guaranteed that the system will have be valid in terms of
schedulability.

Defining T s and T h as the services running in software and hardware, respectively,
after one migration a different configuration is achieved: T s∗ and T h∗. Thus, if for
every component migration the following conditions are fulfilled, the schedulability are

82 CHAPTER 6. RUN-TIME METHODS

guaranteed:

∑
i∈T s∗

Ui ≤ Umax ;
∑
i∈T s∗

Ai ≤ Amax (6.21)

In order to find a feasible schedule for every task migration, the service subset S? (defined
in Section 6.3) needs to be previously sorted in a proper order. In other words, the
sorting of services that will suffer a reconfiguration characterizes a schedule problem
under resources constraints.

6.6. OS Components Scheduling

Within this section, a heuristic algorithm is proposed for scheduling the order in which
components are going to be reconfigured. The components need to be sorted in such a
way that after each component migration, the constraints specified in Equation 6.21 are
not violated.

In order to tackle this problem in a proper manner, the components that will undergo
a reconfiguration in their own execution environment are separated from the ones that
will change it. Given the set S?, three new subsets are defined:

Ss Services that will be reconfigured within software;

Sh Services that will be reconfigured within hardware;

Sw Services that will be relocated between hardware and software.

Please note that Ss ∪ Sh ∪ Sw = S?.

From Equation 6.21 it can be concluded that the lower
∑
Ui and

∑
Ai are, the higher

are the chances in finding a feasible schedule. Therefore, the services from subset Ss
will be scheduled first only if this will leads to a reduction in the final CPU workload,
otherwise, they will be scheduled at the end. The same rule is applied on the components
from Sh, in respect to FPGA area. Hence, the problem is reduced by finding a schedule
for the service set Sw.

Due to the same reasons, new OS services that may arrive, are inserted (configured) into
the system only after accomplishing the reconfiguration of the complete set S?.

If |Sw| = x, the feasible solutions Sf is a subset of x! possible scheduling solutions
(permutations of components in Sw). To solve this problem, Bratley’s algorithm [161]
could be applied, in which the search space for a valid schedule is reduced. Nevertheless,
the worst-case complexity of this algorithm is still O(x · x!) (NP-Hard problem), as
x! paths of length x have to be analyzed. Because of that, a heuristic algorithm was
developed to schedule the order of components that will undergo a reconfiguration.

6.6. OS COMPONENTS SCHEDULING 83

The scheduling problem was broken down in two different problems. First, only compo-
nents that must migrate from CPU to FPGA are properly sorted, generating in this way
a so called Partial Schedule. The same procedure is applied on components that must
migrate from FPGA to CPU. Second, the complete schedule is generated by properly
merging both Partial Schedules.

6.6.1. Partial Schedule

The basic idea of this heuristic is the use of component costs (ci,j) as a criteria for
searching a solution in the tree of all possible schedules. Looking at the components
that need to leave the CPU, the strategy is the following: try to relocate the component
with the highest software cost and with the smallest hardware cost first. In this way,
after this component reconfiguration, the CPU workload will be decreased as much as
possible, and in the same way, the FPGA area used will be increased as little as possible.
Similarly, the same strategy is applied to the components that need to leave the FPGA.
Consequently, two partial schedules are generated using the strategy explained above.

Let Sa = {sa1, ..., sap} and Sb = {sb1, ..., sbq} be the components that need to leave
the CPU and FPGA, respectively, so that Sa ∪ Sb = Sw and Sa ∩ Sb = ∅. Let Ia =
{i1, ..., ip} be the index array that represents Sa sorted by decreasing software costs, so
that {ci1,1 ≥ ci2,1 ≥ ... ≥ cip,1}. Similarly, Ja = {j1, ..., jp} is defined as the index array
that represents Sa sorted by increasing hardware costs: {cj1,2 ≤ cj2,2 ≤ ... ≤ cjp,2}.

The partial schedule, PS, shown in Algorithm 4 starts comparing the first two indexes
of Ia and Ja (k = 1). If no match (same index in both arrays) is found, it expands the
search (k = 2) on the first two components of Ia and Ja (total of four components).
Hence, the search is done gradually (line 5) until a match is found. If this is the case,
the index is removed from both arrays, the schedule is updated and the search restarts
on the remaining arrays. Note that a match is always found, since the same elements
from Ia are also presented in Jb. Hence, the algorithm will always terminate.

It can be seen that for every k value the algorithm calculates, in worst-case, 2k − 1
comparisons. Thus, for a worst-case scenario when searching for a match, where the
search is done over the whole array (k = p = |Ia| = |Ja| = |Sa|), the total number of
comparisons will be 1+3+5+ ...+(2p−1) =

∑p
i=1(2i−1) = p2 (which is the maximum

number of combinations that can be done between two arrays of size p). Therefore, the
complete partial schedule algorithm has a complexity of O((n − 1)n2), since for every
index match found, the search will be applied again on a reduced index array.

If Ib and Jb are defined as the index arrays that represent Sb sorted by decreasing
hardware costs and sorted by increasing software costs, respectively, the same partial al-
gorithm is applied on Sb using these two index arrays. Both partial schedules generated,
PS(Ia, Ja) and PS(Ib, Jb), are then used to produce the complete schedule.

84 CHAPTER 6. RUN-TIME METHODS

Algorithm 4 Partial schedule.
1: Icur ← Ia; Jcur ← Ja
2: PSa← ∅
3: while |Icur| 6= 0 do
4: match← 0
5: for k ← 1, |Ia| do
6: for i← 1, (k − 1) do
7: if Icur[i] = Jcur[k] then
8: match← 1
9: break

10: end if
11: end for
12: if match = 1 then
13: break
14: end if
15: for j ← 1, (k) do
16: if Icur[k] = Jcur[j] then
17: match← 1
18: break
19: end if
20: end for
21: if match = 1 then
22: break
23: end if
24: end for
25: PSa← PSa+ i . Update the schedule
26: Icur ← Icur − i; Jcur ← Jcur − j
27: end while

6.6.2. Complete Schedule

The whole scheduleWS is generated selecting the components from the partial schedules,
similar to an interleaving manner. The algorithm, presented in Algorithm 5, starts
selecting one component from every partial schedule. However, it select first from the
larger (in size) partial schedule. The selection of the remaining components is done
respecting the following rule: The relation between the number of components that have
been selected from PS(Ia, Ja) over the ones that have been selected from PS(Ib, Jb)
should be similar to the relation between the lengths of |PS(Ia, Ja)| and |PS(Ib, Jb)|.
The complexity of this algorithm is O(n), since it has only one while loop with simple
operations.

After obtaining the complete scheduling, a check is needed to verify if this solution is
a feasible one. This is done by evaluating the

∑
Ui and

∑
Ai after every component

6.7. CHAPTER CONCLUSIONS 85

Algorithm 5 Whole schedule.
1: WS ← ∅
2: if |PSa| ≥ |PSb| then
3: PSatmp ← PSa
4: PSbtmp ← PSb
5: else
6: PSatmp ← PSb
7: PSbtmp ← PSa
8: end if
9: R← PSatmp/PSbtmp

10: WS ←WS + PSatmp[1]
11: PSatmp ← PSatmp − PSatmp[1]
12: WS ←WS + PSbtmp[1]
13: PSbtmp ← PSbtmp − PSbtmp[1]
14: r ← 1
15: s← 1
16: while (|PSatmp| 6= 0 and |PSbtmp| 6= 0) do
17: if r/s ≤ R then
18: WS ←WS + PSatmp[1]
19: PSatmp ← PSatmp − PSatmp[1]
20: r ← r + 1
21: else
22: WS ←WS + PSbtmp[1]
23: PSbtmp ← PSbtmp − PSbtmp[1]
24: s← s+ 1
25: end if
26: end while
27: WS ←WS + PSatmp + PSbtmp . If one array gets empty

reconfiguration, obeying thereby the scheduled obtained previously. If one system con-
straint is not fulfilled during one of the steps of evaluation, the solution is said to be not
feasible and the heuristic does not find a feasible solution.

6.7. Chapter Conclusions

This chapter presented the main methodologies and strategies developed and available
inside the RRM system. These comprise heuristic algorithms for allocation of OS services
on the hybrid architecture (observing thereby different goals), a well defined strategy to
reconfigure each single OS service by means of relocation between CPU and FPGA, and
heuristics for sorting the components to be reconfigure.

86 CHAPTER 6. RUN-TIME METHODS

The strategies developed to carry out the reconfiguration activities allow the achievement
of a zero blackout time. This is accomplished by several meanings. First, the FPGA
reconfiguration time is hidden completely, which is usually the most time consuming
operation in a reconfigurable computing system based on this technology. Second, by
using techniques from real-time scheduling theory, the effective relocation of the service
across CPU and FPGA is performed in a deterministic way. Last, but not least, a
heuristic was developed to assure the correct order in which the components should
undergo a reconfiguration.

Additionally, it has to be noticed that the communication-aware allocation algorithm
here developed is more appropriated for a scenario were OS services are able to call fur-
ther services, as modeled in Figure 5.2. For its application in the system here proposed,
different scheduling strategies would need to be investigated, since in this case, for in-
stance, dependencies among services would need to be considered. Hence, this algorithm
is considered as an additional feature of RRM, and further work in this direction will be
discussed in Chapter 10.

All heuristic algorithms were developed observing the requirement to present a low
computation complexity and good efficiency, since they all need be executed at run-
time. Therefore, in the next chapter, simulations will be performed with each of these
heuristics for evaluation purposes.

CHAPTER 7

Methods Evaluation

This chapter presents evaluations performed with the proposed heuristic algorithms by
means of simulations. Thereby, the performance and efficiency of proposed methods and
strategies in the previous chapter are evaluated.

The MATLAB tool was chosen for this purposes since it has the necessary features and
facilities for the required analyses as well as an environment, which promotes system
modeling. For instance, due to the availability of solvers for Linear Integer Programming
and Binary Integer Programming, results from the proposed heuristics algorithms could
be compared with optimal solutions.

7.1. OS Components Allocation

In this section, the proposed heuristic for allocation of OS components is evaluated. First,
the assignment and balancing heuristics are tested. Then, in the sequence, the modified
balancing algorithm is evaluated concerning its efficiency in reducing the number of
components being reconfigured.

7.1.1. OS Components Assignment

The testbed created for evaluating the OS component assignment algorithm has the
following configuration. A set S, having size of n = 20 was randomly generated. So,

87

88 CHAPTER 7. METHODS EVALUATION

each component has varying random costs in the range: 1% ≤ ci,1 ≤ 15% and 5% ≤
ci,2 ≤ 25%. The maximum FPGA resource was defined to be 100% (Amax = 100), as
well as for CPU (Umax = 100). The components assignment were calculated for every
system using the Binary Integer Programming solver from MATLAB (which delivers an
optimal solution), and the heuristic algorithms.The average value of total cost (U + A)
and the absolute difference cost (|w1U − w2A|) were compared for different values of δ
(the resource usage balancing restriction): 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50 and 60. These
average values were achieved by running the experiment 100 times.

The solutions provided by the assignment heuristic were very similar to the optimal one,
if δ constraint has values around 10% (δ ≈ 10%). Concerning fulfillment of δ constraint
(see Figure 7.1, Heuristic-1), it can be said that, the smaller the δ the poor the results
given by this heuristic. This was expected to be so, since the assignment heuristic does
not consider the balancing restriction.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

δ

|U
−

A
|

Unbalance

Optimal
Heuristic−1
Heuristic−2

Figure 7.1.: Unbalance average for different δ constraints.

7.2. Balancing Heuristic

The application of the balancing heuristic over the solution provided by the previous one
deliver a better balancing B. This can be seen in the Figure 7.1, Heuristic-2. However, an
increase in the total assignment cost was verified for cases where the balancing heuristic
has achieved an improvement in the balancing B (δ / 10%). Nevertheless, the total

7.2. BALANCING HEURISTIC 89

cost assignment achieved by this heuristic algorithm were quite satisfactory: maximum
of 15% bigger if compared with the optimal case (see Figure 7.2, Heuristic-2).

0 10 20 30 40 50 60
100

110

120

130

140

150

160

170

180

190

200

δ

U
+

A

Total Cost Estimation

Optimal
Heuristic−1
Heuristic−2

Figure 7.2.: Total cost assignment average for different δ constraints.

7.2.1. Reconfiguration Cost Reduction

Similarly to the evaluation made above, randomly systems were generated here. For
each case Algorithm 1 was applied and the results were used as input for two balancing
heuristics: Algorithm 2 and Algorithm 3, generating therefore two different assignment
solutions: Γ1 and Γ2. The assignment solutions Γ′1 and Γ′2 given by the same algorithms
applied to the subsequent system generated, simulates the next system configuration,
and therefore the need for system reconfiguration. The amount of components having
different allocations, which requires reconfiguration, between two subsequent assignment
generated was counted.

By comparing the results between those two kinds of balancing heuristics, it can be eval-
uated the gain obtained by the Algorithm 3 towards reduction of reconfiguration costs.
As already mentioned in previous chapter, the reconfiguration costs reduction is achieved
indirectly by trying to reduce the number of components being reconfigured. The results
achieved by the heuristics in these scenarios are presented in Figure 7.3. The number of
components required to be reconfigured when using the original balancing algorithm is
represented by the curve Heuristic-2a, and by Heuristic-2b the results provided by the
modified balancing heuristic.

90 CHAPTER 7. METHODS EVALUATION

0 10 20 30 40 50 60
7

8

9

10

11

12

13

14

15

δ

#
 c

o
m

p
o

n
e

n
ts

Heuris tic−2b

Heuristic−2a

Figure 7.3.: Number of components being reconfigured for different δ constraints.
Heuristic-2a: original balancing algorithm. Heuristic-2b: modified balanc-
ing algorithm.

In addition, the balancing achieved using the modified algorithm was also evaluated.
Figure 7.4 shows the results achieved by the original algorithm (Heuristic-2a) and the
modified one (Heuristic-2b). The improvement made in both case were satisfactory.
Note that the results achieved by Heuristic-2b, concerning balance improvement, are
quite under the constraint δ. This is due to the fact that in Heuristic-2b it still searches
for more pairs to be swapped (even with δ constraint being fulfilled) in order to reduce
the number of reconfigurations.

In order to analyze the influence of the modified algorithm in the overall resource uti-
lization, the results between these two algorithms were drawn together and presented in
Figure 7.5. It can be seen that the modified balancing algorithm presents a pay-off in
the overall resource utilization, especially for values of δ bigger than 5%.

The modified balancing algorithm did provide reduction in the number of components
being reconfigured with an acceptable incremental in the total resource utilization cost.
Additionally, depending on the individual component costs, a significant reduction of
the reconfiguration costs may be achieved. This fact should guide the designer by the
decision of its usage or not in the target system.

7.3. COMPONENTS RECONFIGURATION SCHEDULING 91

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20

δ

|U
−

A
|

Heuristic−2a

Heuristic−2b

Figure 7.4.: Unbalance average for different δ constraints.

7.3. Components Reconfiguration Scheduling

Since for each scheduling problem, more than one feasible solution may exist, the ef-
ficiency of the proposed heuristic was measured by means of its capacity in providing
one feasible solution among the existing ones. Therefore, all possible feasible solutions
were generated calculating all possible components permutations. Due to computation
complexity in this case, the system size was limited in 8 components, which may produce
a maximum of 8! possible solutions.

For this experiment, random system pairs (representing the current and new system
configuration) were randomly generated and both, Algorithm 4 and Algorithm 5 for
partial and complete scheduling, respectively, were applied on them. Every system pair
generated was tested under different system constraints: U = A = [100%, 90%, 80%,
70%, 60% and 50%]. For each pair, the component costs were generated observing the
following range: 1% ≤ ci,1 ≤ 15% and 5% ≤ ci,2 ≤ 25% for the first system, and
5% ≤ ci,1 ≤ 25% and 1% ≤ ci,2 ≤ 15% for the second one. The intention thereby, is to
cause a considerable number of components to be reconfigured. For each system pair,
the experiment was repeated 100 times.

The dashed line at Figure 7.6 shows the percentage of cases where at least on feasible
scheduling exists, by probing all scheduling combinations. The solid line shows the per-

92 CHAPTER 7. METHODS EVALUATION

0 10 20 30 40 50 60
130

140

150

160

170

180

190

200

δ

U
+A

Total Cost Estimation

First Phase

Heuristic−2a

Heuristic−2b

Figure 7.5.: Payoff in U +A due to the balancing algorithm modified for reconfiguration
costs reduction.

centage of cases when the heuristic did find at least one feasible scheduling, considering
only the cases where at least one feasible solution exists. Based on the results shown
in Figure 7.6, it can be concluded that the smaller Umax and Amax constraints are, the
poorer the efficiency of the heuristic algorithm is. Nevertheless, the efficiency of the
heuristic algorithm decreases slower than the chance of existing at least one solution,
by decreasing Umax and Amax constraints values. For instance, when U = A = 70%, in
40% of the cases, at least one feasible solution exists, and in around 80% of this cases,
the heuristic did provide a feasible solution.

7.4. Communication costs reduction

To evaluate the proposed communication-aware allocation algorithm, the same environ-
ment used in the evaluation of the allocation algorithm was created. Additionally, it was
communication graphs of size n = 20 were randomly generated respecting the following
relation: Cα < Cβ < Cγ , which reflects the characteristics of the proposed architecture
(communication costs across execution domains are the most expensive ones).

The results achieved by the allocation algorithm were compared considering in the input,
first the pure generated systems, and second using the clustered system (generated as

7.4. COMMUNICATION COSTS REDUCTION 93

5060708090100
0

10

20

30

40

50

60

70

80

90

100

U and A constraints

Pe
rc

en
ta

g
e

Chance to find at least one solution using Heuristic
Percentage of solutions found over all possibilities

Figure 7.6.: Component reconfiguration scheduling: heuristic algorithm evaluation.

described in Section 6.2).

Figure 7.7 presents the communication cost increment obtained in each execution domain
(HW: Hardware, SW: Software) and also between them (SW-HW: across CPU-FPGA).
The lines in the graphic indicate, in percentage, the amount of communication cost in-
creased when comparing the assignment results when clustering process was used against
the results when it was not used. Hence, a negative percentage value indicates that a
reduction of the communication costs was achieved when clustering process was used.
The evaluations were performed for different number of passes in the cluster process
(denoted by #folding in Figure 7.7).

The results obtained show that the amount of communication costs among the hardware
and among hardware-software components were reduced when the proposed clustering
heuristic were applied. On the other hand, the communication cost among software
components suffers from a little increase. This tradeoff is caused due to the fact that the
clustering heuristic promotes a balance among communication costs inside and across
execution domains.

The results show further that the maximum gain obtained in reducing the communication
costs stays around 10% in average. This limit comes from the fact that the clustering
algorithm avoids to merge two components that overcomes the constraints λ1, and λ2

(introduced in Section 6.2). These constraints avoid the efficiency deprecation of the

94 CHAPTER 7. METHODS EVALUATION

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

20

foldings

P
er

ce
n

ta
g

e
o

f
in

cr
ea

se

Comm. costs reduction compared to original solution

SW
HW
SW−HW

Figure 7.7.: Evaluation results comparison.

assignment algorithm due a non homogeneity distribution of the component cost values.

Additionally, it can be observed in Figure 7.8 that there exists an increment in the
overall resource utilization (payoff) when clustering process is applied. This increment,
however, was always under the value of 10%, which is acceptable.

In order to examine the influence of clustering heuristic for different relations of Cα, Cβ

and Cγ , three additional evaluations were conducted, using the same testbed explained
above. So, three different relations among the component costs were respected for κ
(where κ is the average of the generated communication costs):

Case 1 κ = {Cα, 2Cα, 3Cα}

Case 2 κ = {Cα, 2Cα, 8Cα}

Case 3 κ = {Cα, 2Cα, 15Cα}

The results obtained in these three evaluations provided the same patterns shown in
Figure 7.7 and Figure 7.8. For further details, the graphics obtained in these experiments
can be seen in Appendix A.

7.5. CHAPTER CONCLUSIONS 95

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

foldings

P
ay

o
ff

 (
%

)

Payoff in component costs utilization

Total component cost utilization (U+A)

Figure 7.8.: Payoff in overall resource usage due to clustering process.

7.5. Chapter Conclusions

Within this chapter heuristics algorithms proposed in the previous chapter were eval-
uated by means of simulation and comparison with the optimal solutions provided by
MATLAB tool.

OS services allocation algorithms, comprising heuristics for assignment and different
versions of balancing improvement, did show satisfactory performances under different
conditions.

The heuristic for sorting the components under reconfiguration was tested. The results
show that its efficiency is quite satisfactory, taking into consideration the hardness of the
problem, which increases rapidly (O(n · n!)) in the number n of components undergoing
a reconfiguration.

The communication-aware allocation algorithm was also evaluated, even though it can-
not be directly applied in the proposed RRM system. Therefore, its efficiency was limited
for the gains observed in the reduction of the communication costs among the commu-
nicating components being located in the hybrid architecture. It is worth to mention
that this specific strategy has not the intention to minimize the communication costs.
If so, a multi-objective optimization problem would be characterized and, therefore, an
appropriated heuristic would be required.

96 CHAPTER 7. METHODS EVALUATION

CHAPTER 8

Design Support

An important issue in choosing a RTOS, especially in the development of embedded
systems, is the available support for designing, monitoring, debugging, etc. This depends
further on the hardware architecture used as execution platform. For instance, depending
on which CPU is going to be used, a specific cross-compiler may be required. For the
execution platform used in this work, which is based on the Virtex-II Pro FPGA device,
the main implementation support is already provided. This comprises the EDK and ISE
tools from Xilinx Company (see Section 2.3.1). Additionally, VHDL code for hardware
parts and C/C++ for the software parts are used.

With those tools it is possible to generate a complete embedded system, comprising CPU
plus the reconfigurable hardware, and the correspondent executables. Nevertheless, the
system proposed in this work is based on dynamic relocation of components both intra-
execution domain as well as inter-execution domain. This fact imposes some challenges
that cannot be easily solved only by making use of compilation tools. In this work the
solution for this problem is based in providing support in higher level, when designing
relocatable OS components (which can be used also for relocatable application tasks
design). Therefore, within this chapter two main approaches covering these aspects are
proposed.

First, an automatic interface generation strategy, for connecting software components to
dynamically reconfigurable hardware components, is introduced. Second, a framework
that allows the design of dynamically relocatable components, across CPU and FPGA,
is presented.

97

98 CHAPTER 8. DESIGN SUPPORT

Since the design support presented here is not limited for generation of OS services,
but also for application tasks, hereafter the term task is used to generically denote a
relocatable component.

8.1. Hardware-Software Interface Synthesis

Among different communication schemes for coupling hardware and software, the tra-
ditional method, Memory Mapped I/O, was selected. It is suggested and supported by
Xilinx tools along with the CoreConnect bus architecture, from IBM. This means that
each IP attached to this bus can be accessible from software side, by read/write actions
in specific memory regions. In the case of a design based on a Virtex-II Pro FPGA, such
an interface is shown in Figure 8.1, where the OPB bus is assumed.

FPGAPower PC

DREAMS
OS

OPB
Driver

TASK
(SW)

Register
File

OPB IPIF

TASK
(HW)

OPB (On-Chip Peripheral) BUS

Virtex-II Pro

Figure 8.1.: Virtex-II Pro hardware/software interface.

The EDK tool support for HW-SW interface generation, such as in Figure 8.1, is only
basic. In software side, it restricts itself in providing low level read/write functionalities
to access a certain number of software registers (a generic OPB Driver), previously
informed in the design entry. For hardware side, an address decoder is generated, called
OPB IPIF (IP Interface) [162], which is responsible to solve the write/read commands
between OPB bus and a set of hardware registers (Register File). Hence, the generation
of a basic infrastructure to interconnect OPB Driver with Register File is automated
and supported by EDK tool.

Since no further support is provided for HW-SW interface generation, it is responsibility
of the designer to integrate the Register File with the hardware task, and the OPB
Driver with the remaining software part (e.g., DREAMS OS). This limitation is due to
the fact that EDK interface generation tool do have neither appropriated knowledge of
hardware task internals, nor sufficient knowledge of software side (target OS)internals.
Thus, in this thesis, an extension of this basic interface support, both in HW and SW
sides, was created.

8.1. HARDWARE-SOFTWARE INTERFACE SYNTHESIS 99

8.1.1. OS Driver Extension

A feature included is the automatic generation of a mapping between registers present
in hardware, the Register File (from now on called physical registers), and registers
present in software (called virtual registers). Figure 8.2 shows a typical interface design
situation, where a single physical register may concatenate bit fields, each one having
different meaning. Usually, these bits need to be accessed individually in the software
side. In the example, a physical register Reg1 contain the following distinct bit fields:
ACK, RDY and DATA1. Likewise, Reg2 contain two other data: DATA2 and DATA3.
On the software side, these five bit fields are split into five virtual registers.

OPB BUS
ACK RDY DATA1-------- Reg1

Reg2DATA3DATA2

Reg1

Reg2

Reg3

Reg4 DATA2

Reg5 DATA3

DATA1

RDY

ACK

SOFTWARE HARDWARE

Figure 8.2.: Mapping between physical and virtual registers.

The interface generation creates, in addition, the necessary functionalities in software
side in order to directly access those virtual registers. Thereby, the direction (read/write)
of each register is observed and solved automatically by these functions. Moreover, these
functionalities are all automatically generated for DREAMS OS. Thus, the software
component, running on this OS, can make direct access to these virtual registers.

With this feature incorporated into the interface generation tool, the designer can gen-
erate an interface for any IP, which automatically maps n physical registers to a set of
m virtual registers. Furthermore, these registers can be directly accessed by the SW
threads running in DREAMS.

8.1.2. Software Interface for Reconfigurable IPs

The proposal of this thesis is based on dynamic reconfiguration of components running
in hardware. Since memory mapped I/O is the technique used to connect IPs to software
domain, one may think on using a flexible memory mapping management, which needs
to support a dynamic number of IPs. Moreover, each IP may require a different address
range in the memory system address.

Alternatively, it was decided to specify a fixed address range for each IP connected to the
system. Reason for this choice is the limitation of the modular design flow [43] technique,
which advises to statically partition the FPGA surface in fixed number of slots. In each

100 CHAPTER 8. DESIGN SUPPORT

slot an IP can be reconfigured. Following these guidelines, for each physical slot a
physical base address is assigned in the CPU memory address. This assignment is static
and is made in the hardware architecture design phase. In a first glance, one may think
that this fact imposes a limit in the number of physical register available for an IP (slot).
However, in the following it is shown how this limitation is overcome.

In order to allow an arbitrary amount of data to be exchanged using a fixed number
of physical registers, a communication protocol was defined. This protocol defines five
virtual registers, REG ID, DATA, READY, CMD, and START, which enables to read-
/write in any of the registers of Register File. REG ID is used to identify the register
in the Register File. DATA contains the data that will be copied to, or from, the tar-
get register, depending on the content of the register CMD. This register specifies the
action that will be performed with the register identified by REG ID. Up to now, only
WRITE and READ commands have been implemented. The remaining registers are
used to start/stop and to provide the handshake during data exchanging. These five
virtual registers are mapped into three physical registers, which do not belong to the IP
Register File.

The adoption of the above strategy has some further advantages. First, the data ex-
change scheme based upon a fixed number of physical registers overcomes the problem
of a fixed and limited IP memory range. This can become a problem depending on the
number of IPs attached to the system, or if the address range of the I/O bus system is
not big enough to embrace all IPs. Second, the overhead caused by the protocol could
be considered as a drawback in this strategy. However, due to the relative small number
of busmacros wires, which is a resource typically used in system based on partial recon-
figuration (as discussed in Section 2.3.3), the IP address decoding capability is already
limited.

8.1.3. Integration into IFS Tool

The Interface Syntheses (IFS) Design Flow is the result of a research conducted at the
University of Paderborn, in the scope of a Phd work [19]. It is intended for an auto-
matic generation of interfaces, enabling the connection of different type of components.
Furthermore, it has an adequate level of abstraction that allows it to cover different
media types and different communication protocols, in both connected endpoints. In
cooperation with the authors, IFS was extended in order to automatically generate an
interface, which connects an arbitrary reconfigurable IP to DREAMS OS, following the
strategies explained above.

To allow the creation of the data structures expected from OS driver, which need to be
DREAMS conform, C++ classes templates give the structure of the possible registers
that can be formed. For further information, in Appendix B the class diagram of the
registers templates is presented. This information, along with adequate and sufficient
knowledge of the underlying hardware architecture, was included into IFS tool. The IP

8.2. RELOCATABLE TASKS DESIGN 101

Register File specification is entered into IFS using its GUI (Graphical User Interface).
Based on these inputs, and using proper mechanisms, IFS generates an appropriate
interface for the specified IP, which is in accordance with the strategies specified above.

8.1.4. Further Extension for DREAMS

After interface generation, the designer starts the integration of the virtual register
access functions with the remaining software code in DREAMS. Since a protocol is
used to communication with the IP, access patterns when using those functions can be
observed. For instance, to write a data in one register of the Register File, according to
the specified protocol, following steps are necessary: (1) wait until READY is set to OK
(channel is idle), (2) write the ID of the related register into REG ID, (3) write the data
into DATA, (4) write the command for writing into CMD, and (5) set up the START. If
more registers are sent in sequence, then this process needs to be repeated accordingly.
Therefore, it would be adequate to provide those kinds of patterns as functionalities,
increasing the abstraction of this low-level register access. A further advantage of this
approach is that, further changes in low level access (e.g., the protocol improvement by
including burst transfers support) are hidden.

In the current implementation, this layer is incorporated into DREAMS in the form
of a library, which allows a seamless integration of the IP functionalities in a more
abstract manner. Figure 8.3 depicts the required interaction and data exchange as
previously explained, using as an example a sample code of Relocation IP Manager,
which is responsible to manage the location of the task, either in FPGA or in CPU.

...
…
_send_data (...args...);
_receive_data (...args..);
…
...

...
while(!READ(RDY);
Loop:
 _write(REG_ID,R1);
 _write(DATA..arg.);
 _write(CMD,WRITE)
 _write(START,1);
End Loop;
Loop:
 _write (REG_ID,R13);
 ...

If (_in_hw_ == 1) {
…
_foo1_HW (..args...);
…

 }
else
 …
 _foo1_SW (...args..);
 …
}

Relocatable IP
Manager

IP WRAPPER
LIBRARY

LOW LEVEL
REG ACCESS

Figure 8.3.: A method foo1 HW build upon library calls.

8.2. Relocatable Tasks Design

Task migration, in the software only execution domain, has been analyzed by several
researchers in the past and techniques are almost consolidated. The requirement for
task migration appears in distributed system scenarios. In these cases, a task may be

102 CHAPTER 8. DESIGN SUPPORT

dynamically relocated over the several computation units in order to, for instance, allow
an adequate adaptation of the computational load.

Inside the same execution unit, the relocation of a complete task was required in the
early times, when fixed or dynamic partitioning of the physical memory were the current
techniques applied for the memory management. Nowadays, virtual memory schemes
based on paging and segmentation are superior. These new methods allow the division
of the task code in several pages, which are then freely placed on the memory frames
[60].

For tasks running on FPGA this technique cannot be used, and therefore several authors
propose different approaches to handle the relocation of tasks into the RH in order to
overcome the fragmentation of the RH area. Some examples have been already analyzed
in Section 3.2.7.

When multitasking is the paradigm adopted, then an additional feature that may be
required is the support for task preemption. Standard and fast techniques are available
for software tasks and are widely used. For hardware tasks, there existing approaches
based on different techniques. Hence, as long as the preemption and resumption re-
mains inside the same execution domain (intra-domain migration), it is not a problem.
Nevertheless, the migration type demanded here needs to happen across different exe-
cution domains (inter-domain migration), whose computation paradigms are completely
different: sequential versus spatial computation. This by far imposes a big challenge to
accomplish.

As it has been already noticed in Section 3.4.1, this problem has not been completely
addressed in literature. Even though that some researchers have also identified that
task relocation/migration across domains are necessary in order to provide the required
flexibility for an execution platform, they are limited in the system level analysis. Hence,
no solutions for designing such relocatable tasks have been yet proposed.

8.2.1. Unified Task Representation

When stopping a computation being performed, for instance, by the FPGA, which will
be resumed later on in the CPU, context data has to be transferred across execution
domains. So, a mapping between these two different contexts needs to be identified. In
addition, it has to be assured that the preemption/resumption point of a computation
needs to be equivalent in both CPU and FPGA. In other words, a match between two
different implementations of a computation (CPU and FPGA) is necessary.

If both FPGA and CPU tasks are designed independently, the identification of these
match points is not trivial and sometimes impossible, since the used computation paradigms
are completely different. Therefore, the approach used in this work is based on the iden-
tification of these match points in early stages of a task design. For this purpose, the task
needs to be represented in a unified manner, where those match points can be specified.

8.2. RELOCATABLE TASKS DESIGN 103

Then afterwards, this task can be translated to hardware and software implementations
in a proper way so that these match points are kept.

In this thesis a state transition graph, similar to the one introduced in [134], is used as
a unified task representation. Figure 8.4 shows an example of such a graph, where each
state represents a computation block performed inside a task. The number of states and
their granularity is defined by the user.

State_1

check_point_1

START

FINISH

migration_point_1:
[var1, var2, ...]

Figure 8.4.: State transition graph representation of a relocatable task.

The major goal by using this representation is the ability to establish the matching points
between compiled and synthesized task versions, for CPU and FPGA respectively. Thus,
each state transition specifies a switching point that represents a possible relocation
point. Nevertheless, the state transition possibilities showed in the graph help the user
in the specification of the context data, which is associated to each matching point only
(hereafter called migration point). Thus, migration points and states are paired one to
one.

The arcs in the graph (state transition) represent the possible Switching Points for a
task. Thus, each arc carries the context information, which needs to be transferred into
the related migration, allowing the correct execution of the remaining computation in
the target domain.

In order to allow an automated code generation, the information given by the user,
represented using the proposed unified form, should be expressed in a formal manner.
By the time of writing this thesis, the specification of a proved language for a formal
description of switching points and context data was in its first steps and has not been
finished. Thus, the tool for automatic code generation in this case was not completed.
Even though, an informal specification exists, along with templates for code generation,
strategies for a hybrid task generation and a run-time infrastructure to perform task
relocation. These all together belongs to the framework for relocatable task design and
will be presented in the following sections.

104 CHAPTER 8. DESIGN SUPPORT

8.2.2. A Framework for Relocatable Task Design

The complete framework design flow consists of three steps, which are applied after
having the task represented using a state transition graph as explained above. The end
result of the framework is the hardware and software versions of the task, along with
a migration manager component. The latter is incorporated into the target operating
system as a driver, offering the necessary interface to make the usage of services related
to a task migration (e.g., preempt/resume, save/restore context, etc.). The complete
design flow of a relocatable task embraced by the framework is depicted in Figure 8.5
and will be explained in the following.

Task
Structure

Description
Code

Generation
User

Coding

Task
(HW)

Migration Manager

Xilinx

gcc

Task
(SW)

Task_
Conroller_SW

Task_
Conroller_HW

Task HW
Code

Patterns

Migration Manager

Task SW
Code

Patterns

Task_
Conroller_SW

Task_
Conroller_HW

Task.bit

Task.obj

Mig_Mng.obj

Step 3

Step 2Step 1

Figure 8.5.: Design flow supported by the framework.

Context Data Representation

In the first step switching points and context data are identified for each migration
point using the unified task representation, which are afterwards specified using an
informal description, called Task Structure Description (TSD). Figure 8.6 shows an TSD
example, which comprises two segments: Context Data Definition and Migration Points
Definition.

Instead of defining the context for each migration point individually, it was chosen to
define a set of variables comprising all context data candidates. Then, for each migration

8.2. RELOCATABLE TASKS DESIGN 105

var_1: integer;
var_2: integer;
var_3: bit_vector(64);
 .
 .
 .
 .
var_i: bit_vector(32);

(a) Context Data Definition.

migration_point_1: {0,1,1,…,0};
migration_point_2: {1,1,0,…,0};
 .
 .
 .
 .
migration_point_j: {0,0,1,…,1};

(b) Migration Points Definition

Figure 8.6.: Informal description of TSD.

point a sub set from this context set is specified, since the migration points may probably
share some common context data.

Each entry in the Context Data Definition set (Figure 8.6a) has a form of var i:variable ;,
where var i is a variable specified for the context data and variable is a unified type spec-
ification. Some commonly used are, for instance, integer, bit, bit-vector, etc. But when
they are translated by the code generation tool, to C and VHDL, the type of one variable
may have two different versions. For example, the bit-vector type has straightforward
representation in VHDL. However, in C a possible representation may be the use of
integer arrays.

In the second segment (Figure 8.6b), each migration point is specified by its context data
set, which is a subset of the previous one. The syntax of each entry in this segment has a
form of migration point j:{...x i...};, where x i is 1 if variable var i (specified in
Context Data Definition) needs to be transferred in this migration point, and 0 otherwise.

Code Generation

Based on TSD, the framework generates: code patterns for task coding; two Task Con-
trollers (one for each execution domain) that directly interfaces the task with the run-
time system; and the Migration Manager entity that is responsible to manage the mi-
gration of a task and, at the same time, provide an appropriated interface to DREAMS
OS.

The Task Controller is an interface between Migration Manager and the task to be mi-
grated. It is responsible for extraction and/or restoration of related context data, and to
drive specific signals to the task (e.g., when task preemption is required). The code gen-
erated for Task Controller is synthesized and compiled together with the hardware and
software task code, respectively. Hence, Task Controller belongs to the task component.

Furthermore, the Task Controller keeps a Register File, where context data extracted
is stored, or from which the context data are taken to be restored back. In the case
of a hardware task, the methodology explained previously in Section 8.1 is applied to

106 CHAPTER 8. DESIGN SUPPORT

generate the appropriate interface to Migration Manager.

The Migration Manager entity is responsible to coordinate the context data transfer
when a migration is being performed, communicating therefore with both Task Con-
trollers. Moreover, this component offers proper functionalities (a driver) to DREAMS
OS in order to manage a task migration. Examples of these functionalities are get context,
set context, task preemt, and task resume.

Since the behavior of both Task Controller and Migration Manager are well defined, de-
pending only on the specification given by TSD, they are stored into the code generation
repository as parametrizable templates.

Task Coding

In order to assure a correct communication between Task Controller and the task itself,
the latter must be coded following predefined code patterns and coding rules. In the
following, the procedure for hardware task coding is explained, while the application of
the same procedure for a software task is straightforward.

Figure 8.7 shows the architecture skeleton of a hardware task generated by the Frame-
work. The VHDL code generated comprises a entity - architecture pair, along with
signals for context data representation. Each Task Process is one VHDL process used
for hardware task coding. It has to be noticed that the proper mapping of states (defined
in the state transition graph) to VHDL processes is the responsibility of the program-
mer. For instance, one single state, specified in the graph, may be implemented using
more than one process. Therefore, State Synchronization Controller is used to resolve
the Task Out State signal, which indicates which state the task execution is. Task Con-
troller needs this information in order to assure a correct context data saving and/or
restoring.

A hardware task may be implemented using several Task Processes. However, each
process that make use of context data signals must be created upon a pattern shown
in Listing 8.1. It can be seen that signal enable, driven by Task Controller, is used to
indicate when a task is under normal execution (not under migration or suspension).
All meaningful task computation needs to be done only when this signal is asserted.

In order to support the programmer in solving Task State Out signal, another VHDL
process pattern, presented in Listing 8.2, is provided by the framework. It allows the
correct integration of State Synchronization Controller with the hardware task.

Additionally, the programmer needs to assure that when a task is enabled for computa-
tion, it can use only those signals specified for the migration point right before this state.
Only they have been maintained at the migration point and have thus valid values.

For information completeness, further details of Task Controller and Migration Manager
are given in Appendix C.

8.3. CHAPTER CONCLUSIONS 107

Task Out
Context

Task Out
StateContext

Task
Hardware

State Enable

State
synchronization

signals

State
Synchronization

Contoller

(Code
pattern)

(Space for
user coding)

Task ProcessTask Process

Figure 8.7.: Hardware task overview.

Binary Files Generation

In Step 3 of the the hardware and software task versions are generated, together with
the Migration Mananger. For a hardware task, a partial bitstream is generated following
the guidelines provided by Xilinx in [43]. For the software task and for the Migration
Mananger the gcc compiles is used.

8.3. Chapter Conclusions

In this chapter, the necessary design support for the proposed architecture was presented.
This support comprises two aspects: the provision of an automatic interface generation
between a hardware component and DREAMS OS; and a framework that supports
programmers in designing relocatable components for the hybrid architecture.

It has to be noticed that the framework is proposed with the intention to support the
designer in the development phase of a relocatable task. Additionally, it generates the
necessary infrastructure to enable the migration at run-time. By this means, the strate-
gies provided by RRM (explained in the last chapters) can make use of this infrastructure
to decide at run-time about the allocation of each relocatable component.

The number of switching points defined by the designer of a hardware task influences
directly the migration flexibility. Indeed, as higher the number of switching points a
higher degree of flexibility is achieved. Since each switching point represents a matching
point between the computation in software and hardware, one may think in a first glance
that this may represent a serialization of the hardware execution. This is true for an

108 CHAPTER 8. DESIGN SUPPORT

Listing 8.1: VHDL code sample for Task Process template.
1 ...
2 -- << USER CODE/
3 -- define your signals and variables here
4 -- USER CODE >>
5

6 ---
7 -- Code pattern for Task Process --
8 ---
9 process(CLK)

10 -- << USER CODE/
11 -- define your variables here
12 -- USER CODE >>
13 begin
14 if(CLK=’1’and CLK ’event) then
15 if(enable =’0’) then
16 -- << USER CODE/
17 -- reset your own variables and signals
18 -- USER CODE >>
19 else
20 -- << USER CODE/
21 -- All the computations go here
22 -- USER CODE >>
23 end if;
24 end if;
25 end process;
26 ---
27

28 -- NEXT PROCESSES GO IN THE FOLLOWING ---------------
29 ...

algorithm which presents a high degree of parallelism. However, there is always a limit
in which an algorithm can be parallelized, either because of its nature or because of the
available hardware area available for its implementation. Moreover, there is no limit
of parallelism that can be used when implementing a single computation block (state),
since a task computation can be preempted only at switching points. Hence, the designer
needs to find a proper compromise between flexibility and efficiency when searching for
a optimal mapping of the algorithm in a state transition graph.

It is worth to mention each switching points should also be selected so that the amount
of related context data would be relatively low. This will result in the generation of
a small Task Controller (i.e., less FPGA area) and will decrease the amount of time
necessary for migration (i.e., faster switching time).

Furthermore, knowing the amount of migration data required in each state transition,

8.3. CHAPTER CONCLUSIONS 109

Listing 8.2: VHDL code sample for State Synchronization Controller template.
1 ...
2 ---
3 -- Code pattern for State Synchronization Controller --
4 ---
5 process(clk)
6 -- << USER CODE/
7 -- define your variables here
8 -- USER CODE >>
9 begin

10 if(clk=’1’and clk ’event) then
11 if(enable =’0’) then
12 state_out <=0;
13 -- << USER CODE/
14 -- reset your own variables and signals
15 -- USER CODE >>
16 else
17 -- << USER CODE/
18 -- logic for determining Task_Out_State
19 -- USER CODE >>
20 end if;
21 end if;
22 end process;
23 ---
24 ...

and additionally the characteristics of the execution platform, it is possible to estimate
the time necessary for task relocation. This is important since it gives the necessary
information for the reconfiguration management strategies, as explained in Section 6.4.

110 CHAPTER 8. DESIGN SUPPORT

CHAPTER 9

Case Study

This chapter presents a case study that has been carried out to validate the core meth-
ods developed in this thesis. Nevertheless, the focus is given in the evaluation of the
framework in designing a relocatable OS service, and the practicability in relocating a
component between FPGA and CPU along with related strategies.

9.1. Target OS Service

An encryption algorithm has been selected as target OS service, since it is being increas-
ingly demanded by safety and security applications (e.g., when using a smart phone
to access a bank account). Although a hardware implementation of such an algorithm
may provide better performance compared to its software counterpart, the latter is still
commonly deployed in computer systems. Furthermore, encryption algorithms are con-
sidered an OS service, for both desktop and embedded scenarios [163].

Triple-DES

Among different kind of encryption algorithms, a Triple-DES (shortly TDES) was cho-
sen, since it is one of the most known and widely used one. The TDES, depicted in
Figure 9.1, is based upon a basic encryption-decryption block, called DES (Data En-
cryption Standard), which is an algorithm for a block cipher operating with a 64-bit key
on 64-bit plaintext blocks (in this case).

111

112 CHAPTER 9. CASE STUDY

DES Encryption

DES Decryption

DES Encryption

Plaintext

Ciphertext

Key 1

Key 2

Key 3

(64-bit)

(64-bit)

(64-bit)

(64-bit)

(64-bit)

(a) Triple-DES encryption process.

DES
Encryption

Plaintext block

Ciphertext block

Key DES
Decryption

Plaintext block

Ciphertext block

Key

(b) DES cipher block for encryption and decryp-
tion.

Figure 9.1.: Triple-DES and its basic DES cipher block.

DES Block Cipher and its Operation Mode

A single block cipher maps n-bit plaintext blocks to n-bit ciphertext blocks, where n is
equal to 64 in this case. Since each block cipher operates on blocks of fixed length, but
plaintext messages to be encrypted can be of any length, the input data (plaintext) need
to be partitioned into 64-bit blocks. From now on, there are different ways in which
the block ciphers are employed on these blocks, and they are called operation modes.
Among these modes, the CBC mode (Cipher-Block Chaining) has been chosen, which is
the most commonly mode used.

Block Cipher
Encryption

Plaintext block: pb1

Initialization Vector (IV)

Ciphertext block: cb1

Block Cipher
Encryption

Plaintext block: pb2

Ciphertext block: cb2

Block Cipher
Encryption

Plaintext block: pbt

Ciphertext block: cbt

XOR XOR XOR…...

…...

…...

Key KeyKey

Figure 9.2.: CBC mode for block ciphers.

Figure 9.2 presents the DES configured for the CBC mode used to encrypt the input, a
plaintext. If the plaintext pb is divided into t blocks, so that pb = pb1 . . . pbt, after the
encryption a number of t ciphertext blocks, so that cb = cb1 . . . cbt, will be generated as
the output (the cb ciphertext).

In the CBC mode the encryption works as follows. Every incoming plaintext block pbj is

9.2. RELOCATABLE TRIPLE-DES 113

XORed with the previous encrypted ciphertext block cbj−1 before being applied to the
block cipher algorithm. For the first block pb1 an Initialization Vector (IV) is used. In
this way, since all encryptions are chained, each ciphertext depends on all the plaintext
blocks before it. Hence, an intrinsic sequential operation is required.

In Figure 9.1a it can be seen that the final output cipher block cbj is not achieved by
applying only one time the DES encryption. Instead, each input pbj is streamed through
a chain of DES encryption/decryption blocks, using thereby three different keys (one for
each DES phase). Hence, the encryption procedure of an input plaintext using TDES
can be described as stated in Algorithm 6. Please note that for a plaintext with a length
bigger than the input specified (64-bit for this case), it needs to be partitioned in a
certain number of blocks (controlled by block count in line 17) and each of them needs
to be sequentially fed when requested (line 11).

Algorithm 6 Triple-DES pseudo algorithm.
1: define variables:
key 1, key 2, key 3, plain block, cipher block, nblock, Init V ector and block count;

2: Begin
3: read in(key 1); . State 1
4: read in(key 2); . State 1
5: read in(key 3); . State 1
6: read in(nblock); . State 1
7: read in(Init V ector); \\IV . State 1
8: block count← nblock; . State 1
9: cipher block ← Init V ector; . State 1

10: while block count > 0 do
11: read in(plain block); . State 2
12: plain block ← plain block XOR cipher block; . State 2
13: cipher block ← DES Encryption(key 1,plain block); . State 2
14: cipher block ← DES Decryption(key 2,cipher block); . State 3
15: cipher block ← DES Encryption(key 3,cipher block); . State 4
16: send out(cipher block); . State 5
17: block count← block count− 1; . State 5
18: end while
19: End

9.2. Relocatable Triple-DES

A possible representation of the TDES algorithm using the unified task representation,
is shown in Figure 9.3. Each DES block is mapped to a single state (States 2,3 and
4), since there is only one hardware instantiation of the DES encryption-decryption
algorithm. Moreover, two additional states were included: State 1 and State 5. The

114 CHAPTER 9. CASE STUDY

fist is responsible for gathering the initial data (three keys, Initial Vector, and block
numbers),and the latter is responsible to send out the ciphertext block and to decrement
block count. The initialization phase of the algorithm is not represented in this figure.
The variable nblock is used to indicate how many blocks of plaintext will be applied into
the TDES.

state_1

mp_1 : [key_1, key_2, key_3, init_vector, nblock]

state_2

mp_2 :[key_1, key_2, key_3, plain_block, block_count]

state_3

state_4

state_5
mp_i: migration_point i

[key_1, key_2, ...]: context to be transfered

mp_3 :[key_1, key_2, key_3, cipher_block, block_count]

mp_4 :[key_1, key_2, key_3, cipher_block, block_count]

mp_5 : [key_1, key_2, key_3, cipher_block, block_count]

START

FINISH

Figure 9.3.: State transition graph corresponding to Algorithm 6.

Figure 9.3 shows further the context data identified, which later was specified in the
TSD format, in order to allow the system to be generated using the framework. The
plaintext is read in State 1, thus plain block data should be transferred in the case of a
migration between States 1 and 2. The variable block count is used to count how many
blocks of plaintext are still waiting in the input. Moreover, due to the fact that a state
transition exists, from State 5 to State 1, all keys used by TDES must be transferred in
every migration case. If this transition would not exist (the case of a single TDES pass),
after each DES block one key less would be necessary to be transferred.

It is worth to mention that the chosen state graph presented chosen for this case study is
only one possibility among several others. One looking for a more coarse grain approach
may combine all three DES encryption-decryption states in a single one, so that a pipeline
approach in hardware may be used. However, this will certainly leads in an increase of
the FPGA area needed for its implementation. Another possibility is to go towards
a more fine grained approach, so that the DES decryption-decryption block could be
depicted allowing the specification of further states.

9.3. TESTBED SET UP 115

9.3. Testbed Set Up

Determinism is an important aspect of a real-time system. Therefore, it is not a good
practice to allow an application task to perform its activity with an arbitrary amount
of input data at once, since this may lead to an unbounded execution time. This may
complicate the scheduling analysis. For same cases, an approach used is to split the entire
computation in time, using therefore a periodic task. Hence, the whole computation is
accomplished after executing a bunch of instances of this task. So, by using this strategy,
it is possible to consider this task into the scheduling analyses.

This strategy was also followed in this case study. An application task was created so
that in its initialization phase it divides the data to be encrypted in several blocks, and
in each of the subsequent instances of this periodic task, one block is encrypted.

By adopting such a strategy, the TDES OS service will also present a periodic behavior,
which perfectly fits in the migration cases analyzed in the Section 6.4. Hence, the RRM
is able to relocate an OS service from software to hardware (or vice-versa), either in
between two consecutive instances of a service execution (before State 1), or preempting
it. Furthermore, this strategy allows the usage of this service by other application tasks,
which characterizes it even more as an OS service.

Basic Execution Platform

The execution platform built for the purpose of this case study is presented in Figure 9.4.
Some further details are omitted for legibility reasons. The architecture was constructed
using the Virtex-II Pro device XC2VP7, on which one PowerPC 405 hardcore micropro-
cessor was used. The system was set up so that the microprocessor was clocked internally
at 200MHz and the busses at 100MHz.

processor local bus (plb) plb2opb
bridge

on-chip peripheral bus (opb)

PPC 405

ar
bi

te
r arbiter

ddr-sdram rs232

Triple-DES
in hardware

Figure 9.4.: Basic hardware platform.

The Triple-DES OS service was designed and implemented using the framework and
the interface generation as explained in previous chapters. The hardware version was
attached to the OPB bus of the system and the software version placed into the external
memory, along with the remaining software system that is executed by the PPC405

116 CHAPTER 9. CASE STUDY

microprocessor.

For this case study a static instantiation of the architecture was used, instead of partially
configuring the FPGA. Alternatively, the partial reconfiguration was emulated by provid-
ing inside the system two dummy stubs load sw task(); and load hw task(). Nonetheless,
this fact does not compromise the results achieved by this case study, whose time cost
can be estimated by using the results presented in related work.

An additional hardware component was added to the platform, a serial interface. This
is merely used to enable an interface to the user so that the system can be started,
stopped, and debugged.

Along with the software version of Triple-DES, three other threads were created. One is a
periodic application thread that, in each instance, calls the Triple-DES OS service getting
back the results. A second thread was responsible to manage the migration/relocation of
the OS service, communication therefore with the Migration Manager. The third thread
was responsible for controlling the UART in order to provide the interface with the user.

9.4. Quantitative Results

FPGA and Memory Costs

Table 9.1 presents the FPGA area (in LUT units) and the memory (in bytes) consumed
by the main system parts, according to the report given by the EDK tool. The DES-
block HW, implemented following the templates given by the framework, consumes 2320
LUTs (23% of the total FPGA resources) and Task Controller HW uses 2108 LUTs
(21% of the total amount).

HARDWARE LUT Utilization
DES-Block HW 2320 23%

Task Controller HW 2108 21%
Entire FPGA 9856 100%
SOFTWARE Memory Utilization (bytes)

DES-Block SW +
9794

Task Controller SW
Migration Manager 18236

Table 9.1.: FPGA and memory utilization.

The majority of the FPGA resources required to implement Task Controller HW was
related to the migration controller, rather then the task itself. Thus, the resources used
by Task Controller HW is less related with the resources used by the task itself.

The values presented in Table 9.1 are resulted from a first prototype of the framework.

9.4. QUANTITATIVE RESULTS 117

Neither the system design nor its implementation has received special care in the code
optimization. Therefore, less FPGA resource utilization for the migration system can
be foreseen. Moreover, taking into consideration that a great flexibility is achieved from
the run-time relocation capability, this resource requirement increase is acceptable.

Reconfiguration Time

The FPGA reconfiguration time related to the hardware component generated (DES-
block HW plus Task Controller HW) was estimated using the results provided in [164].
This work was chosen due to its close similarity with the architecture used in this case
study. According to it, the reconfiguration time Td of a partial bitstream is given ap-
proximately by:

Td ≈ fd ×
(

1
t

+
1
wd

)
(9.1)

Where fd is the equivalent number of frames in the bitstream, t is the rate at which a
frame is transferred from memory to the OPB peripheral, and wd is the rate at which a
frame is written into the ICAP entity.

Using the results shown in Table 9.1, the partial bitstream corresponds to 2320+2108 =
4428 LUTs. From the official information given by Xilinx Company in [40], the XC2VP7
FPGA device (the same used in this case study and in the related work) has a total of
1320 frames and 9856 LUTs. Hence, it can be concluded that 4428 LUTs represent
roughly 593 frames in this device. Using t = 7.86 frames/ms and wd = 117 frames/ms,
since the buses frequency are the same as in [164], the reconfiguration time of the OS
service component would be:

Td ≈ 593× (
1

7.86
+

1
117.0

) = 81ms (9.2)

Following the model proposed in this thesis for a reconfiguration activity, (see Chap-
ters 5 and 6), this is the execution time Qh of job Ja (Programming phase).

Migration Time

The time spent to transfer the context date during one component relocation was not
estimated, but measured using specific physical outputs available in the development
board used for this testbed. The value measured corresponds to the complete time spent
since the moment in which the component recognizes the signal sent from Migration
Manager for preemption, until finishing the complete reconstruction of the context data
in the target execution domain. The average values measured are presented in Table 9.2.

118 CHAPTER 9. CASE STUDY

SW ⇒ HW HW ⇒ SW
10µs 8µs

Table 9.2.: Context data transfer: average time measured.

The migration times observed are rather the same for each one of the possible preemption
points. This is due to the fact that the amount of context data specified in Figure 9.3
is the same, even though the different variables in each case. These values even incor-
porate the overhead caused by the usage of the communication protocol (specified in
Section 8.1.2).

9.5. Chapter Conclusions

In this chapter a case study was performed, in which the main mechanisms for enabling
the incorporation of flexibility together with efficiency could be analyzed. As a target
OS service, a specific encryption algorithm was chosen, which fits well in the scope of
the work proposed in this thesis.

Based on the quantitative results, especially on those related to the resource utilization,
it could be identified that a relative big amount of resources are spent only for the
management of the relocation activities. This is more evident when looking to the
FPGA area utilization. Nonetheless, one can argue that this resource is traded in favor
of the great flexibility obtained from the capability to relocate hybrid components at
run-time.

Reconfiguration and migration times need to be considered separately for a reasonable
analysis. In certain systems the FPGA reconfiguration time, which stays in the range of
dozens of milliseconds, may represent an obstacle for some target applications, especially
when it needs to happen in a relatively short time. In the system proposed in this thesis,
this time is hidden by executing it concurrently with the application.

These results are caused by, first, properly choosing the migration points, so that in each
migration case, a low amount of data is required to be transferred. A second reason is
that the context data do not contain any data processed by the component. In this
case study, plaintext and ciphertext are not included into the context data. Instead, the
application task transmits and receives the plaintext and ciphertext, respectively, using
the same communication channel, regardless the allocation of the OS service (hardware
or software).

This approach is beneficial, since transparency is achieved for the application tasks
that do not need to be aware of the execution environment of the required OS service.
However, this solution may impose an obstacle for some applications requiring very
high performance. Alternatively, the hardware architecture could be incremented with

9.5. CHAPTER CONCLUSIONS 119

another bus, interconnecting the hardware components and the main memory (where
the data processed would be stored), so that both software and hardware components
may have access to them, without loosing communication efficiency.

120 CHAPTER 9. CASE STUDY

CHAPTER 10

Conclusion & Outlook

10.1. Summary

This thesis work presents a set of methodologies, strategies, and mechanisms that, when
incorporated into a reconfigurable RTOS, promotes its self-reconfiguration over the ex-
ecution platform. The main goal, thereby, is to enable an efficient utilization of the
hybrid computational resources, shared among application tasks and OS services. By
allowing a flexible management of the OS services, the proposed system is capable to
assign those operating system services to the computational resources not currently used
by application tasks.

The focus of this thesis is on embedded systems requiring flexibility, high computation
capability, and soft-real time constraints. Some contemporary products in the marked
already provide such characteristics, like modern mobile phones or PDAs. In such de-
vices, applications may enter or leave the system dynamically, characterizing in this way
a changing environment.

In order to achieve the proposed goals, two research fields were combined: reconfigurable
computing (RC) and self-reconfigurable operating systems (self-x OS). Therefore, an
extensively survey of relevant works from both areas was made. Thereby, it was identified
that an OS can also profit from a reconfigurable architecture along with the application,
instead of only providing support to the application.

Following the tendency towards fine-grained RC architectures, this work bases its exe-
cution platform on a FPGA device. Its reconfigurable capabilities, especially the partial

121

122 CHAPTER 10. CONCLUSION & OUTLOOK

reconfiguration, make it well suited for the purposes of this work. Based on the results
presented in Chapter 2, it can be concluded that even though the technical realization of
the partial reconfiguration of a FPGA is still a problem, some tendencies were identified
towards improvement of tools and support from the side of the FPGA suppliers.

System Overview

The main system parts can be summarized in Figure 10.1, which provides an overview
of the whole scenario. In this figure, it is shown that both OS and application use the
computational resources of the hybrid architecture for their execution.

APPLICATION

OS API

HYBRID
OPERATING SYSTEM

ANALYSES

RECONFIGURATION
MANAGEMENT

Monitoring

Reconfiguration

Requirements

HYBRID
COMPUTATIONAL

RESOURCES

USES

USES

Execution
Platform

Application
+

Operating System

Run-time
Reconfiguration

Manager
(RRM)

Figure 10.1.: System overview.

The main contributions of this thesis concentrate in the RRM part that provides several
heuristic algorithms necessary to tackle NP-Hard problems identified in the proposal,
methodologies to conduct the reconfiguration activities in deterministic manner, and a
preliminary proposal towards run-time profiling of OS services. Besides that, proper
models of the reconfigurable components along with an extended model for enabling an
efficient management of reconfiguration activities were proposed.

The Analyses subsystem acquires dynamic information about the usage of OS services
by the application through API calls monitoring. Here, a preliminary analysis regarding

10.2. OUTLOOK 123

the recognition of usage profiles of the OS services was performed. However, for the
analyses made in the thesis, a simplified version of those metrics was used. Addition-
ally, this subsystem receives off-line information from the possible applications of the
system, regarding their requirements. These are used when starting the application in
the system, giving the information about new OS services that may be required. Using
this information, the Analyses decides where each OS service needs to be placed, either
on FPGA or on CPU.

The Reconfiguration Management administrates the reconfiguration activities, compris-
ing the relocation/reconfiguration of each single component and the ordering of compo-
nents undergoing a reconfiguration, respecting thereby time constraints. To accomplish
this administration, a proper model of these activities was provided that allows the
appliance of specific techniques from real-time scheduling theory.

Besides, the relocation of hybrid components across FPGA/CPU boundaries was deeply
investigated in this thesis. As a result, a novel framework, comprising a run-time execu-
tion environment and a design flow that guides the programmer by designing relocatable
components, was developed and implemented. Furthermore, the interface between soft-
ware and dynamically reconfigurable hardware components was automatically generated
by taking advantage of a previous developed Interface Synthesis (IFS) tool in [19]. For
this purpose, the IFS tool was properly augmented with the information of the platform
(target OS adopted, FPGA internals information, etc.), so that desired interfaces could
be automatically generated for the underlying architecture.

In order to promote a verification of main contributions in the practice, a study was
conducted by setting up a basic architecture and choosing therefore an appropriated
target OS service, which was an encryption algorithm. Furthermore, this component
was implemented using the proposed framework allowing, hence, its dynamic relocation
across CPU/FPGA. The tests performed have enabled the identification of some topics
that may be further explored in a future work.

10.2. Outlook

As pointed out in Chapter 4, run-time profiling of OS service usage by the application
may improve the quality of the decision related to the placement of OS services. By
identifying patterns in which a service may be called, and furthermore, by identifying
relation among these services, the allocation result may be more efficient. For instance,
using the near past information concerning the usage of a certain service, the system
would be able to infer, for the near future, the pattern expected by other services.
Furthermore, these results may even avoid unnecessary reconfiguration activities that
cannot be foreseen by a system that uses only current information.

Another aspect that may have direct impact, in the system presented by this thesis, is
the frequency in which the system is required to reconfigure. This depends on which

124 CHAPTER 10. CONCLUSION & OUTLOOK

specific target embedded system the proposed techniques are going to be used. In the
case of a system where the reconfiguration is directly influenced by human inputs (mobile
phone where the user randomly starts/stops applications), the reconfiguration frequency
cannot be precisely determined. So, as a future work, different case studies should be
investigated in order to estimate the system reconfiguration frequency. This information
may be used to avoid unnecessary reconfigurations and also to avoid the system to
become inoperable (a big reconfiguration frequency).

Concerning a hardware service of an operating system, some comments are worth to be
made. First, the area vs. speed trade-off, intrinsically related to a hardware implementa-
tion of an algorithm, could be further exploited in order to make available more versions
of the same service to the allocation algorithms, and so possibly achieving better results.
This would have nevertheless direct impact in the framework proposed in this thesis.

Additionally, as long as enough space is available in the FPGA, replication of OS services
may also be considered. This could increase the reliability of the system, or even allow
heavy loaded services to be supported by the system.

The flexibility incorporated into the operating system by means of reconfiguration, as
proposed in this thesis, could be expanded in order to promote the relocation and re-
configuration of applications tasks. Considering that the system architecture is based
on microkernel concept, this approach should not be a problem, since both application
tasks and operating system services are seen as components connected to the microkernel
level. Nevertheless, most of proposed heuristic algorithms must be adapted in order to
consider the dynamic relocation of application tasks.

It is worth to mention that more focus could be incorporated into the strategies and
methods presented here concerning power consumption, since this is one of the most im-
portant factors that influence the design of an embedded system, along with performance
and flexibility.

In spite of these future research directions, a question may also be opened concerning
the appropriateness of using a FPGA as a mainstream technology for the execution
platform envisioned within this thesis. Further efforts should be spent in investigations
towards evaluation of, for instance, platforms based on coarse-grained reconfigurable
architectures.

APPENDIX A

Further Evaluation Results

Additional evaluations were performed with the communication-aware allocation algo-
rithm. For this experiment, three different relations of Cα, Cβ and Cγ were used to
generate the input graphs.

Figures A.1a, A.1b and A.1c show the gain in the communication cost reduction in
each case.The related payoff in the overall resource usage utilization is shown in Fig-
ures A.2a, A.2b and A.2c.

It can be seen that there is no significant difference in the gains obtained in Case 2 and
Case 3 when compared to the gain obtained in Case 1. Thus, for larger differences in
communication costs between inter and across domains, the algorithm do not achieve
better results, even when the number of passes is increased.

125

126 APPENDIX A. FURTHER EVALUATION RESULTS

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

20

foldings

P
er

ce
n

ta
g

e
o

f
in

cr
ea

se

Comm. costs reduction compared to original solution (Case 1)

SW
HW
SH−HW
Total

(a) Case 1: κ = {Cα, 2Cα, 3Cα}

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

20

foldings

P
er

ce
n

ta
g

e
o

f
in

cr
ea

se

Comm. costs reduction compared to original solution (Case 2)

SW
HW
SH−HW
Total

(b) Case 2: κ = {Cα, 2Cα, 9Cα}

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

20

foldings

P
er

ce
n

ta
g

e
o

f
in

cr
ea

se

Comm. costs reduction compared to original solution (Case 3)

SW
HW
SH−HW
Total

(c) Case 3: κ = {Cα, 2Cα, 15Cα}

Figure A.1.: Comparison among communication costs reduction for three different situ-
ations.

127

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

foldings

P
ay

o
ff

 (
%

)

Payoff in component costs utilization (Case 1)

Total component cost utilization (U+A)

(a) Case 1: κ = {Cα, 2Cα, 3Cα}

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

foldings

P
ay

o
ff

 (
%

)

Payoff in component costs utilization (Case 2)

Total component cost utilization (U+A)

(b) Case 2: κ = {Cα, 2Cα, 9Cα}

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

foldings

P
ay

o
ff

 (
%

)

Payoff in component costs utilization (Case 3)

Total component cost utilization (U+A)

(c) Case 3: κ = {Cα, 2Cα, 15Cα}

Figure A.2.: Comparison among payoffs in overall resource utilization for three different
situations.

128 APPENDIX A. FURTHER EVALUATION RESULTS

APPENDIX B

HW/SW Interface Generation

Figure B.1 illustrates the class diagram of possible interface registers used in the auto-
matic interface generation process for DREAMS OS.

129

130 APPENDIX B. HW/SW INTERFACE GENERATION

<
<

S
in

gl
et

on
>

>

M
em

o
ry

M
ap

−n
oO

fP
hy

sR
eg

s:
sh

or
t

−n
oO

fR
eg

s:
sh

or
t

−p
hy

sR
eg

A
rr

ay
[n

oO
fP

hy
sR

eg
s]

:P
hy

si
ca

lR
eg

is
te

r<
in

t>
*

−r
eg

is
te

rA
rr

ay
[n

oO
fR

eg
]:R

eg
is

te
r<

cl
as

s
D

at
a>

*

<
<

vi
rt

ua
l>

>
+

~
M

em
or

yM
ap

()
:v

oi
d

+
In

st
an

ce
()

:M
em

or
yM

ap
*

+
in

it(
):

vo
id

<
<

te
m

pl
at

e
>

>
+

ge
tR

eg
is

te
r(

na
m

e:
ch

ar
*)

:R
eg

is
te

r<
D

at
a>

*

+
do

W
rit

e(
re

g:
R

eg
is

te
r<

in
t>

*)
:v

oi
d

+
do

R
ea

d(
re

g:
R

eg
is

te
r<

in
t>

*)
:R

eg
is

te
r<

in
t>

*

#M
em

or
yM

ap
()

:v
oi

d

#M
em

or
yM

ap
(

:c
on

st
 M

em
or

yM
ap

&
):

vo
id

#M
em

or
yM

ap
&

 o
pe

ra
to

r
=

 (
 :c

on
st

 M
em

or
yM

ap
&

):
vo

id

+
in

st
an

ce
()

:M
em

or
yM

ap
*

<
<

te
m

pl
at

e
>

>

R
eg

is
te

rO
u

t

+
R

eg
is

te
rO

ut
(n

am
e:

ch
ar

*,
ad

dr
:R

eg
is

te
rT

):
vo

id

#r
ea

d(
):

D
at

a*

+
w

rit
e(

da
ta

:D
at

a*
):

vo
id

<
<

te
m

pl
at

e
>

>

P
h

ys
ic

al
R

eg
is

te
r

+
P

hy
si

ca
lR

eg
is

te
r(

na
m

e:
ch

ar
*,

ad
dr

:R
eg

is
te

rT
):

vo
id

<
<

te
m

pl
at

e
>

>
+

re
ad

(r
eg

:R
eg

is
te

r<
D

>
*,

of
fs

et
:in

t)
:R

eg
is

te
r<

D
>

*

<
<

te
m

pl
at

e
>

>
+

w
rit

e(
re

g:
R

eg
is

te
r<

D
>

*,
of

fs
et

:in
t)

:v
oi

d

+
re

ad
()

:D
at

a*

+
w

rit
e(

da
ta

:D
at

a*
):

vo
id

<
<

te
m

pl
at

e
>

>

R
eg

is
te

rI
n

O
u

t

+
R

eg
is

te
rI

nO
ut

(n
am

e:
ch

ar
*,

ad
dr

:R
eg

is
te

rT
):

vo
id

+
re

ad
()

:D
at

a*

+
w

rit
e(

da
ta

:D
at

a*
):

vo
id

<
<

te
m

pl
at

e
>

>

R
eg

is
te

rI
n

+
R

eg
is

te
rI

n(
na

m
e:

ch
ar

*,
ad

dr
:R

eg
is

te
rT

):
vo

id

+
re

ad
()

:D
at

a*

#w
rit

e(
da

ta
:D

at
a*

):
vo

id

<
<

te
m

pl
at

e
>

>

R
eg

is
te

r

#r
eg

N
am

e:
ch

ar
*

#r
eg

A
dd

r:
un

w
or

d

#d
at

a:
D

at
a*

+
R

eg
is

te
r(

na
m

e:
ch

ar
*,

ad
dr

:R
eg

is
te

rT
):

R
eg

is
te

r<
D

at
a>

+
ge

tN
am

e(
):

ch
ar

*

+
ge

tR
eg

A
dd

r(
):

R
eg

is
te

rT

+
ge

tR
eg

S
iz

e(
):

sh
or

t

+
se

tD
at

a(
da

ta
:D

at
a*

):
vo

id

+
ge

tD
at

a(
):

D
at

a*

<
<

vi
rt

ua
l>

>
#r

ea
d(

):
D

at
a*

<
<

vi
rt

ua
l>

>
#w

rit
e(

da
ta

:D
at

a*
):

vo
id

R
eg

is
te

r
m

it
C

od
eg

en
er

at
or

1.
.*

1.
.*

1.
.*

1.
.*

Figure B.1.: Class Diagram of possible interface registers.

APPENDIX C

Hardware/Software Task Design

C.1. Hardware Task Controller Template

Figure C.1 shows the template of a hardware task controller. The signals located at the
upper part of this figure are connected to the hardware task, and the signals at the lower
part are connect with Migration Manager.

C.2. Sequence Graphs for Two Migration Cases

The following two sequence graphs present the actions performed in two different migra-
tion cases, specifying concrete interface-callings that are performed across them. Fig-
ure C.2 shows a migration case from CPU to FPGA, and Figure C.3 the opposite case.

131

132 APPENDIX C. HARDWARE/SOFTWARE TASK DESIGN

C
rfc_com

m
and

C
rfc_reg_id

C
rfc_status

C
rfc_data_in

C
rfc_data_out

Task Out
Context

Task Out
State

Task
Controller
Hardware

Task Context Manager

State Enable

Task Status
Contoller

Task
Synchronization

Control

Task
Status

Context Ready

Task
Control

Commnad

Task
Control
Status

Context Suspended

Suspending

Task In
Context

Figure C.1.: The controller template for a hardware task.

Migration Manager Hardware task Drivers

send_context()

resume_task()

Software Task Thread

set_command_suspend()

task_suspended()

Task Control Interface

get_command()

save_context()

execute_task()

(partial-reconfigure-hardware-task)

Figure C.2.: Sequence graph specifying the task migration from software to hardware.

C.2. SEQUENCE GRAPHS FOR TWO MIGRATION CASES 133

Migration Manager Hardware task Drivers

suspend_task()

retrieve_context()

Software Task Thread

set_command_resume()

task_started()

Task Control Interface

get_command()

execute_task()

restore_context()

(load-software-task)

Figure C.3.: Sequence graph specifying the task migration from hardware to software.

134 APPENDIX C. HARDWARE/SOFTWARE TASK DESIGN

APPENDIX D

TBS Server Bandwidth Estimation

This appendix presents the prove that the bandwidth Ui released by a component si,
which is undergoing a migration from software to hardware, can be added to the TBS
server bandwidth Us, to schedule this migration.

Figure D.1 shows the scenario that is considered, similar to the one faced in Section 6.4.3,
highliting the scheduling of the service that undergo a migration and the TBS server.

s1
in SW

TBS

s1
in HW

kia , 1,, += kiki ad 1, +kid

kia , 1, +kia 1, +kid

b
iJ

iâ
id̂

Figure D.1.: Relocation from software to hardware: An Example.

The whole system, considering all n OS services together with TBS, is schedulable under

135

136 APPENDIX D. TBS SERVER BANDWIDTH ESTIMATION

EDF if:

Us +
n∑
i=1

Esi
Pi
≤ K were K ≤ 1, (D.1)

where Esi is the execution time of a service si in software, Pi is the period of this service,
and K is the CPU workload available for both OS service set and TBS. Please note
further that Ui = Esi /Pi.

Without loss of generality, lets assume that s1 is the service undergoing a relocation,
and let Equation D.1 shown above be rewritten as:

Us +
Es1
P1

+
n∑
i=2

Esi
Pi
≤ K. (D.2)

Looking to the equation above, it can be concluded that the workload Ui can be seen
as the bandwidth of a second TBS server (hereafter called second server). Moreover,
assuming that at time a1,k+1 no job is waiting to be executed by second server, since
service s1 from that time on is no longer scheduled in software (see Figure D.1), its
related job queue is free. Thus, its bandwidth Ui can be used to carry out further
aperiodic jobs. In this scenario, let the aperiodic job Jb1 represent the migration activity,
and M1 its correspondent execution time.

Applying TBS

Due to conditions already introduced in Section 6.4.2, the deadline d̂1 assigned to the
incoming job Jb1 at time a1,k+1 need to be smaller than the deadline d1,k+1 of service si.
Furthermore, the maximum value assigned to this deadline must be d1,k+1− Eh1 , which
assures that the deadline of the (k + 1)th instance of service s1 will be respected.

Instead of letting job Jb1 be completely executed by TBS, let M1 be split into two parts,
ρM1 and (1 − ρ)M1, where 0 ≤ ρ ≤ 1, so that each part is carried out by a different
server. Letting d̂s1 be the deadline assigned by TBS when scheduling (1 − ρ)M1, and
respecting the conditions explained above, it follows that

d̂s1 = a1,k+1 +
(1− ρ)M1

Us
≤ d1,k+1 − Eh1 , (D.3)

which can be rewriting to solve Us. Thus, knowing additionally that d1,k+1 = a1,k+1+P1:

Us ≥
(1− ρ)M1

P1 − Eh1
. (D.4)

137

Similarly, let d̂s2 be the deadline assigned by second server when scheduling the remain-
ing part ρM1:

d̂s2 = a1,k+1 +
ρM1

U1
≤ d1,k+1 − Eh1 . (D.5)

Solving Equation D.5 to ρ, it follows that

ρ ≤ U1

M1

(
P1 − Eh1

)
. (D.6)

Now, lets second server carry out the maximum amount of M1. For this case ρ must be
the maximum:

ρ =
U1

M1

(
P1 − Eh1

)
. (D.7)

By making now a simple substitution of Equation D.7 in Equation D.8, it follows that

Us ≥
M1

P1 − Eh1
− U1, (D.8)

which is essentially the same as the Equation 6.9 derived in Section 6.4.3.

138 APPENDIX D. TBS SERVER BANDWIDTH ESTIMATION

References

[1] MASSA, A.; BARR, M. Programming Embedded Systems. 1.ed. Sebastopol,
CA, USA: O’Reilly, 2006.

[2] MARWEDEL, P. Embedded System Design. 1.ed. Boston, Dordrecht, London:
Kluwer Academic Publishers, 2003.

[3] JERRAYA, A. A. Long Term Trends for Embedded System Design. In: EUROMI-
CRO SYSTEMS ON DIGITAL SYSTEM DESIGN (DSD), 7., 2004, Rennes, France.
Proceedings. . . Washington: IEEE Computer Society, 2004. p.20–26.

[4] ENGEL, F. et al . Operating Systems on SoCs: a good idea? In: EMBEDDED
REAL-TIME SYSTEMS IMPLEMENTATION (ERTSI) WORKSHOP, 2004, Lisbon,
Porgutal. Proceedings. . . [S.l.: s.n.], 2004.

[5] GÖTZ, M. Dynamic Hardware-Software Codesign of a Reconfigurable Real-Time
Operating System. In: CONFERENCE ON RECONFIGURABLE COMPUTING
AND FPGAS (RECONFIG), 1., 2004, Colima, Mexico. Proceedings. . . Mexico:
Mexican Society of Computer Science, 2004. p.330–339.

[6] GÖTZ, M.; RETTBERG, A.; PEREIRA, C. E. Towards Run-time Partitioning of
a Real Time Operating System for Reconfigurable Systems on Chip. In: INTERNA-
TIONAL EMBEDDED SYSTEMS SYMPOSIUM (IESS), 1., 2005, Manaus, Brazil.
Proceedings. . . [S.l.: s.n.], 2005. p.255–266.

[7] GÖTZ, M.; RETTBERG, A.; PEREIRA, C. E. A Run-time Partitioning Algorithm
for RTOS on Reconfigurable Hardware. In: INTERNATIONAL CONFERENCE IN
EMBEDDED AND UBIQUITOUS COMPUTING (EUC), 2005, Nagasaki, Japan.
Proceedings. . . Berlin: Springer, 2005. p.469–478.

139

140 References

[8] GÖTZ, M.; RETTBERG, A.; PEREIRA, C. E. Run-Time Reconfigurable Real-
Time Operting System For Hybrid Execution Platforms. In: IFAC SYMPOSIUM ON
INFORMATION CONTROL PROBLEMS IN MANUFACTURING (INCOM), 12.,
2006, Saint-Etienne, France. Proceedings. . . Oxford: Elsevier, 2006. v.I - Informa-
tion Systems, p.81–86.

[9] GÖTZ, M.; RETTBERG, A.; PEREIRA, C. E. Communication-aware Component
Allocation Algorithm for a Hybrid Architecture. In: IFIP WORKING CONFER-
ENCE ON DISTRIBUTED AND PARALLEL EMBEDDED SYSTEMS (DIPES),
5., 2006, Braga, Porgutal. Proceedings. . . Boston: Springer, 2006. p.175–184.

[10] GÖTZ, M.; DITTMANN, F. Scheduling Reconfiguration Activities of Run-time Re-
configurable RTOS Using an Aperiodic Task Server. In: WORKSHOP ON APPLIED
RECONFIGURABLE COMPUTING (ARC), 2., 2006, Delft, The Netherlands. Pro-
ceedings. . . Berlin: Springer, 2006. p.255–261.

[11] GÖTZ, M.; DITTMANN, F.; PEREIRA, C. E. Deterministic Mechanism for Run-
Time Reconfiguration Activities in an RTOS. In: INTERNATIONAL IEEE CON-
FERENCE ON INDUSTRIAL INFORMATICS (INDIN), 4., 2006, Singapore. Pro-
ceedings. . . Washington: IEEE Computer Society, 2006. p.693–698.

[12] GÖTZ, M.; XIE, T.; DITTMANN, F. Dynamic Relocation of Hybrid Tasks: a com-
plete design flow. In: INTERNATIONAL WORKSHOP ON RECONFIGURABLE
COMMUNICATION-CENTRIC SYSTEMS-ON-CHIP (RECOSOC), 3., 2007, Mont-
pellier, France. Proceedings. . . Montpellier: University of Montpellier II, 2007.
p.31–38.

[13] XIE, T. A Programming Framework Enabling Runtime Task Migrations
Between CPU and FPGA. 2007. Master Thesis (Master of Computer Science) —
Heinz Nixdorf Institute, University of Paderborn, Paderborn, Germany.

[14] FINKE, S. Schnittstellensynthese für HW/SW-migrierbare Dienste eines
Realzeitbetriebssystems. 2006. Bachelor Work (Bachelor of Computer Science) —
Heinz Nixdorf Institut, Universität Paderborn, Paderborn, Germany.

[15] RAMMIG, F. J. et al . Real-time Operating Systems for Self-coordinating Em-
bedded Systems. In: IEEE INTERNATIONAL SYMPOSIUM ON OBJECT AND
COMPONENT-ORIENTED REAL-TIME DISTRIBUTED COMPUTING (ISORC),
9., 2006, Gyeongju, Korea. Proceedings. . . Washington: IEEE Computer Society,
2006. p.382–392.

[16] RAMMIG, F. J. et al . Real-time Operating Systems for Self-coordinating Embedded
Systems. In: DAGSTUHL-WORKSHOP MBEES: MODELLBASIERTE ENTWICK-
LUNG EINGEBETTETER SYSTEME II, 2006, Wadern, Germany. Tagungs-
band. . . Germany: TU Braunschweig, 2006. p.95–104.

References 141

[17] GÖTZ, M.; DITTMANN, F. Reconfigurable Microkernel-based RTOS: mechanisms
and methods for run-time reconfiguration. In: INTERNATIONAL CONFERENCE
ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 3., 2006, San
Luis Potosi. Proceedings. . . Washington: IEEE Computer Society, 2006. p.12–19.

[18] GÖTZ, M. et al . Run-time Reconfigurable RTOS for Reconfigurable Systems-on-
Chip. Journal of Embedded Computing, [S.l.], 2007. To Appear.

[19] IHMOR, S. Modelling and Automated Synthesis of Reconfigurable Inter-
faces. 2006. PhD Thesis (Dr. rer. nat.) — Heinz Nixdorf Institute, University of
Paderborn, Paderborn, Germany.

[20] GOCHMAN, S. et al . Introduction to Intel Core Duo Processor Architecture. Intel
Technology, [S.l.], v.10, n.2, p.89–97, May 2006.

[21] GPGPU.ORG. General-Purpose computation on GPUs (GPGPU). Avail-
able at <http://www.gpgpu.org>. Accessed in: jan 2007.

[22] NVIDIA. G8 Graphics Devices. Avaliable at <http://www.nvidia.com>. Ac-
cessed in: nov 2006.

[23] KAHLE, J. A. et al . Introduction to the Cell Multiprocessor. IBM Journal of
Research and Development, Riverton, NJ, USA, v.49, n.4/5, p.589–604, 2005.

[24] ERNST, R. Codesign of Embedded Systems: status and trends. IEEE Design and
Test of Computers, [S.l.].

[25] BUCHENRIEDER, K. Hardware/Software Codesign an Annotated Bibli-
ography. 1.ed. Chicago, USA: IT Press Hartenstein, 1994.

[26] HARDT, W. HW/SW-Codesign auf Basis von C-Programmen unter
Performanz-Gesichtspukten. 1996. PhD Thesis (Dr. rer. nat.) — Heinz Nixdorf
Institute, University of Paderborn, Paderborn, Germany.

[27] HARDT, W.; CAMPOSANO, R. Specification Analysis for HW/SW-Partitioning.
In: GI/ITG WORKSHOP IN ANWENDUNG FORMALER METHODEN FüR DEN
HARDWARE-ENTWURF, 3., 1994, Passau, Germany. Proceedings. . . Aachen:
Shaker Verlag, 1994. p.1–10.

[28] KAMDEM, R.; NJIWOUA, P. Galois Lattice Approach to Hardware/Software
Partitioning. In: INTERNATIONAL CONFERENCE ON PARALLEL AND DIS-
TRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS (PDPTA), 1999,
Las Vegas, USA. Proceedings. . . Nevada: CSREA Press, 1999. p.3029–3036.

[29] BALARIN, F. et al . Hardware-software co-design of embedded systems:
the polis approach. 1.ed. Norwell, MA, USA: Kluwer Academic Publishers, 1997.

[30] JERRAYA, A. A.; WOLF, W. Hardware/Software Interface Codesign for Embedded
Systems. Computer, Los Alamitos, CA, USA, v.38, n.2, p.63–69, 2005.

142 References

[31] COMPTON, K.; HAUCK, S. Reconfigurable Computing: a survey of systems and
software. ACM Computing Surveys, New York, NY, USA, v.34, n.2, p.171–210,
2002.

[32] LACH, J.; BAZARGAN, K. Editorial: special issue on dynamically adaptable em-
bedded systems. ACM Transactions on Embedded Computing Systems, New
York, NY, USA, v.3, n.2, p.233–236, 2004.

[33] GARCIA, P. et al . An Overview of Reconfigurable Hardware in Embedded Sys-
tems. EURASIP Journal on Embedded Systems, New York, NY, United States,
v.2006, p.1–19, 2006.

[34] PLESSL, C.; PLATZNER, M. Virtualization of Hardware - Introduction and Sur-
vey. In: INTERNATIONAL CONFERENCE ON ENGINEERING OF RECONFIG-
URABLE SYSTEMS AND ALGORITHMS (ERSA), 4., 2004, Las Vegas, USA. Pro-
ceedings. . . Nevada: CSREA Press, 2004. p.63–69.

[35] BOBDA, C. Synthesis of Dataflow Graphs for Reconfigurable Systems us-
ing Temporal Partitioning and Temporal Placement. 2003. PhD Thesis (Dr.
rer. nat.) — Heinz Nixdorf Institute, University of Paderborn, Paderborn, Germany.

[36] VOROS, N. S.; MASSELOS, K. System Level Design of Reconfigurable
Systems-on-Chip. 1.ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[37] ADRIATIC Project IST-2000-30049 Deliverable D2.2. Definition of ADRI-
ATIC High-Level Hardware/Software Co-Design Methodology for Re-
configurable SoCs. Available at: <http://www.imec.be/adriatic>. Accessed in:
aug 2006.

[38] QU, Y.; SOININEN, J.-P. SystemC-based Design Methodology for Reconfigurable
System-on-Chip. In: EUROMICRO CONFERENCE ON DIGITAL SYSTEM DE-
SIGN (DSD), 8., 2005, Porto, Portugal. Proceedings. . . Washington: IEEE Com-
puter Society, 2005. p.364–371.

[39] MAXFIELD, C. The Design Warrior’s Guide to FPGAs. 1.ed. Burlington,
MA, USA: Newnes, 2004.

[40] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: complete data sheet (v.4.5).
San Jose, CA, USA: Xilinx Inc., 2005.

[41] XAPP529 (v1.3): connecting customized ip to the microblaze soft processor using
the fast simplex link (fsl) channel. San Jose, CA, USA: Xilinx Inc., 2004.

[42] ATMEL. FPSLIC (AVR with FPGA). Available at: <http://
www.atmel.com/products/FPSLIC/>. Accessed in: dec 2006.

[43] XAPP290 (v1.2): two flows for partial reconfiguration: module based or difference
based. San Jose, CA, USA: Xilinx Inc., 2004.

References 143

[44] Early Access Partial Reconfiguration User Guide (v1.1). San Jose, CA, USA: Xilinx
Inc., 2006.

[45] LYSAGHT, P. et al . Enhanced Architectures, Design Methodologies and CAD Tools
for Dynamic Reconfiguration on XILINX FPGAS. In: INTERNATIONAL CONFER-
ENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 16.,
2006, Madrid, Spain. Proceedings. . . Washington: IEEE Computer Society, 2006.
p.1–6.

[46] DORAIRAJ, N.; SHIFLET, E.; GOOSMAN, M. PlanAhead Software as a Platform
for Partial Reconfiguration. Xcell Journal, San Jose, CA, USA, p.68–71, Febru-
ary 2005.

[47] UHM, M. Software-Defined Radio: the new architectural paradigm - reduce system
power and cost with a shared resources soc. DSP magazine, San Jose, CA, USA,
v.1, n.1, p.40–42, October 2005.

[48] DENYS, G.; PIESSENS, F.; MATTHIJS, F. A Survey of Customizability in Op-
erating Systems Research. ACM Computing Surveys, New York, NY, USA, v.34,
n.4, p.450–468, 2002.

[49] MASSA, A. J. Embedded Software Development with eCos. 1.ed. Upper
Saddle River, NJ, USA: Prentice Hall, 2002.

[50] REDHAT. eCos Operating System. Available at: <http://
sources.redhat.com/ecos/>. Accessed in: jun 2006.

[51] DITZE, C. DReaMS - Concepts of a Distributed Real-Time Management System.
In: IFIP / IFAC WORKSHOP ON REAL-TIME PROGRAMMING (WRTP), 20.,
1995, Fort Lauderdale, Florida. Proceedings. . . The Netherlands: Elsevier, 1995.

[52] DITZE, C. A Customizable Library to Support Software Synthesis for Embedded
Applications and Micro-kernel Systems. In: ACM SIGOPS EUROPEAN WORK-
SHOP ON SUPPORT FOR COMPOSING DISTRIBUTED APPLICATIONS, 8.,
1998, Sintra, Portugal. Proceedings. . . New York: ACM Press, 1998. p.88–95.

[53] DITZE, C. A Step towards Operating System Synthesis. In: ANNUAL AUS-
TRALIAN CONFERENCE ON PARALLEL AND REAL-TIME SYSTEMS (PART),
5., 1998, Adelaide, Australia. Proceedings. . . USA: IEEE, 1998.

[54] DITZE, C. Towards Operating System Synthesis. 1999. PhD Thesis (Dr. rer.
nat.) — Heinz Nixdorf Institute, University of Paderborn, Paderborn, Germany.

[55] BÖKE, C. Combining Two Customization Approaches: extending the customiza-
tion tool terecs for software synthesis of real-time execution platforms. In: WORK-
SHOP ON ARCHITECTURES OF EMBEDDED SYSTEMS (AES), 2000, Karlsruhe,
Germany. Proceedings. . . [S.l.: s.n.], 2000.

144 References

[56] BÖKE, C. Automatic Configuration of Real-Time Operating Systems and
Real-Time Communication Systems for Distributed Embedded Applica-
tions. 2003. PhD Thesis (Dr. rer. nat.) — Heinz Nixdorf Institute, University of
Paderborn, Paderborn, Germany.

[57] CAMPBELL, R. H. et al . Designing and Implementing Choices: an object-oriented
system in c++. Communications of the ACM, New York, NY, USA, v.36, n.9,
p.117–126, 1993.

[58] ENGLER, D. R.; KAASHOEK, M. F.; O’TOOLE, J. Exokernel: an operating sys-
tem architecture for application-level resource management. In: ACM SYMPOSIUM
ON OPERATING SYSTEMS PRINCIPLES (SOSP), 15., 1995, Copper Mountain
Resort, USA. Proceedings. . . New York: ACM Press, 1995. p.251–266.

[59] KAASHOEK, M. F. et al . Application Performance and Flexibility on Exoker-
nel Systems. In: ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES
(SOSP), 15., 1997, Saint Malo, France. Proceedings. . . New York: ACM Press,
1997. p.52–65.

[60] STALLINGS, W. Operating Systems: internals and design principles. 4.ed.
Upper Saddle River, NJ, USA: Prentice-Hall Int., 2001.

[61] VEITCH, A. C.; HUTCHINSON, N. C. Kea - A Dynamically Extensible and Config-
urable Operating System Kernel. In: INTERNATIONAL CONFERENCE ON CON-
FIGURABLE DISTRIBUTED SYSTEMS - ICCDS, 3., 1996, Annapolis, USA. Pro-
ceedings. . . Washington: IEEE Computer Society, 1996. p.236–242.

[62] VEITCH, A. C. A Dynamically Reconfigurable and Extensible Operating
System. 1998. PhD Thesis (Doctor of Philosophy) — University of British Columbia,
Vancouver, Canada.

[63] HELANDER, J.; FORIN, A. MMLite: a highly componentized system architecture.
In: ACM SIGOPS EUROPEAN WORKSHOP ON SUPPORT FOR COMPOSING
DISTRIBUTED APPLICATIONS, 8., 1998, Sintra, Portugal. Proceedings. . . New
York: ACM Press, 1998. p.96–103.

[64] GABBER, E. et al . The Pebble Component-Based Operating System. In: USENIX
ANNUAL TECHNICAL CONFERENCE, 24., 1999, Monterey, USA. Proceed-
ings. . . Berkley: USENIX Association, 1999. p.267–282.

[65] MAGOUTIS, K. et al . Building Appliances Out of Components Using Pebble. In:
ACM SIGOPS EUROPEAN WORKSHOP, 9., 2000, Kolding, Denmark. Proceed-
ings. . . New York: ACM Press, 2000. p.211–216.

[66] BERSHAD, B. N. et al . Extensibility Safety and Performance in the SPIN Oper-
ating System. In: ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES
(SOSP), 15., 1995, Copper Mountain, USA. Proceedings. . . New York: ACM Press,
1995. p.267–283.

References 145

[67] PARDYAK, P.; BERSHAD, B. N. Dynamic Binding for an Extensible System. In:
USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMEN-
TATION (OSDI), 2., 1996, Seattle, USA. Proceedings. . . New York: ACM Press,
1996. p.201–212.

[68] SOULES, C. A. N. et al . System Support for Online Reconfiguration. In: USENIX
ANNUAL TECHNICAL CONFERENCE, 28., 2003, San Antonio, USA. Proceed-
ings. . . Berkley: USENIX Association, 2003. p.141–154.

[69] APPAVOO, J. et al . Experience with K42, an Open-Source, Linux-Compatible,
Scalable Operating-System Kernel. IBM Systems Journal, Riverton, NJ, USA,
v.44, n.2, p.427–440, 2005.

[70] BAUMANN, A.; APPAVOO, J. Improving Dynamic Update for Operating Systems.
In: ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (SOSP), 20.,
2005, Brighton, UK. Proceedings. . . New York: ACM Press, 2005. p.1–11.

[71] FASSINO, J.-P. et al . THINK: a software framework for component-based operating
system kernels. In: USENIX ANNUAL TECHNICAL CONFERENCE, 27., 2002,
Berkeley, USA. Proceedings. . . Berkley: USENIX Association, 2002. p.73–86.

[72] POLAKOVIC, J. Dynamic Reconfiguration in THINK: design and imple-
mentation. 2004. Diplomarbeit (Diplom-Informatik) — Universität Karlsruhe, Karl-
sruhe, Germany.

[73] COWAN, C. et al . Fast Concurrent Dynamic Linking for an Adaptive Operat-
ing System. In: INTERNATIONAL CONFERENCE ON CONFIGURABLE DIS-
TRIBUTED SYSTEMS (ICCDS), 3., 1996, Annapolis, USA. Proceedings. . . Wash-
ington: IEEE Computer Society, 1996. p.108–115.

[74] COWAN, C. et al . Specialization Classes: an object framework for specialization. In:
INTERNATIONAL WORKSHOP ON OBJECT ORIENTATION IN OPERATING
SYSTEMS (IWOOOS), 5., 1996, Seattle, USA. Proceedings. . . Washington: IEEE
Computer Society, 1996. p.72–77.

[75] PU, C. et al . Optimistic Incremental Specialization: streamlining a commercial op-
erating system. In: ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES,
15., 1995, Copper Mountain Resort, USA. Proceedings. . . New York: ACM Press,
1995. p.314–321.

[76] MASSALIN, H. Synthesis: an efficient implementation of fundamental op-
erating system services. 1992. PhD Thesis (Doctor of Philosophy) — Columbia
University, New York, NY, USA.

[77] SELTZER, M. I. et al . Dealing with Disaster: surviving misbehaved kernel ex-
tensions. In: USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND
IMPLEMENTATION (OSDI), 2., 1996, Seattle, Washington, United States. Pro-
ceedings. . . New York: ACM Press, 1996. p.213–227.

146 References

[78] SELTZER, M.; SMALL, C. Self-Monitoring and Self-Adapting Operating Systems.
In: WORKSHOP ON HOT TOPICS IN OPERATING SYSTEMS (HOTOS-VI), 6.,
1997, Cape Cod, USA. Proceedings. . . Washington: IEEE Computer Society, 1997.
p.124–129.

[79] OBERTHÜR, S.; BÖKE, C.; GRIESE, B. Dynamic Online Reconfiguration for
Customizable and Self-Optimizing Operating Systems. In: ACM INTERNATIONAL
CONFERENCE ON EMBEDDED SOFTWARE (EMSOFT), 5., 2005, Jersey City,
USA. Proceedings. . . New York: ACM Press, 2005. p.335–338.

[80] BOEKE, C.; OBERTHUER, S. Flexible Resource Management - A Framework
for Self-Optimizing Real-Time Systems. In: CONFERENCE ON DISTRIBUTED
AND PARALLEL EMBEDDED SYSTEMS (DIPES), 18., 2004, Toulouse, France.
Proceedings. . . The Netherlands: Kluwer Academic Publishers, 2004. p.177–186.

[81] HILDEBRAND, D. An Architectural Overview of QNX. In: WORKSHOP ON
MICRO-KERNELS AND OTHER KERNEL ARCHITECTURES, 1., 1992, Berkeley,
USA. Proceedings. . . Berkley: USENIX Association, 1992. p.113–126.

[82] WIND RIVER. VxWorks. Available at <http://www.windriver.com>. Accessed
in: jun 2006.

[83] CARD, R.; DUMAS, È.; MÈVEL, F. The Linux Kernel Book. 1.ed. New York,
NY, USA: John Wiley & Sons, Inc., 1998.

[84] WILLIAMS, J. W.; BERGMANN, N. Embedded Linux as a Platform for Dynami-
cally Self-Reconfiguring Systems-on-Chip. In: INTERNATIONAL CONFERENCE
ON ENGINEERING OF RECONFIGURABLE SYSTEMS AND ALGORITHMS
(ERSA), 4., 2004, Las Vegas, USA. Proceedings. . . USA: CSREA Press, 2004.
p.163–169.

[85] FRIEDRICH, L. F. et al . A Survey of Configurable, Component-Based Operating
Systems for Embedded Applications. IEEE Micro, Los Alamitos, CA, USA, v.21,
n.3, p.54–68, 2001.

[86] TOURNIER, J.-C. A Survey of Configurable Operating Systems. Albu-
querque, NM, USA: University of New Mexico, 2005.

[87] BLODGET, B. et al . A Self-Reconfiguring Platform. In: INTERNATIONAL CON-
FERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL),
13., 2003, Lisbon, Portugal. Proceedings. . . Berlin: Springer, 2003. p.565–574.

[88] DONLIN, A. et al . A Virtual File System for Dynamically Reconfigurable FPGAs.
In: INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC
AND APPLICATIONS (FPL), 14., 2004, Leuven, Belgium. Proceedings. . . Berlin:
Springer, 2004. p.1127–1129.

References 147

[89] BLODGET, B.; MCMILLAN, S.; LYSAGHT, P. A Lightweight Approach for Em-
bedded Reconfiguration of FPGAs. In: DESIGN, AUTOMATION AND TEST IN
EUROPE (DATE), 2003, Munich, Germany. Proceedings. . . Washington: IEEE
Computer Society, 2003. p.10399–10401.

[90] VULETIĆ, M. et al . Operating System Support for Interface Virtualisation of Re-
configurable Coprocessors. In: CONFERENCE ON DESIGN, AUTOMATION AND
TEST IN EUROPE (DATE), 2004, Paris, France. Proceedings. . . Washington:
IEEE Computer Society, 2004. p.748–749.

[91] VULETIĆ, M.; POZZI, L.; IENNE, P. Virtual Memory Window for Application-
Specific Reconfigurable Coprocessors. In: DESIGN AUTOMATION CONFERENCE
(DAC), 41., 2004, San Diego, USA. Proceedings. . . New York: ACM Press, 2004.
p.948–953.

[92] VULETIĆ, M.; POZZI, L.; IENNE, P. Programming Transparency and Portable
Hardware Interfacing: towards general-purpose reconfigurable computing. In: IEEE
INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS,
ARCHITECTURES AND PROCESSORS (ASAP), 15., 2004, Galveston, USA. Pro-
ceedings. . . Washington: IEEE Computer Society, 2004. p.339–351.

[93] VULETIĆ, M.; POZZI, L.; IENNE, P. Seamless Hardware-Software Integration
in Reconfigurable Computing Systems. IEEE Design & Test of Computers, Los
Alamitos, CA, USA, v.22, n.2, p.102–113, 2005.

[94] VULETIĆ, M.; POZZI, L.; IENNE, P. Dynamic Prefetching in the Virtual Memory
Window of Portable Reconfigurable Coprocessors. In: INTERNATIONAL CONFER-
ENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 14.,
2004, Leuven, Belgium. Proceedings. . . Berlin: Springer, 2004. p.596–605.

[95] BREBNER, G. J. A Virtual Hardware Operating System for the Xilinx XC6200. In:
INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND
APPLICATIONS (FPL), 6., 1996, London, UK. Proceedings. . . Berlin: Springer,
1996. p.327–336.

[96] LING, X.-P.; AMANO, H. WASMII: a data driven computer on a virtual hardware.
In: IEEE WORKSHOP ON FPGAS FOR CUSTOM COMPUTING MACHINES, 1.,
1993, Napa Valley, USA. Proceedings. . . Washington: IEEE Computer Society,
1993. p.33–42.

[97] DIESSEL, O.; WIGLEY, G. Opportunities for Operating Systems Research
in Reconfigurable Computing. Mawson Lakes, Australia: Advanced Computing
Research Centre, School of Computer and Information Science, University of South
Australia, 1999.

[98] WIGLEY, G.; KEARNEY, D. The Development of an Operating System for Re-
configurable Computing. In: IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE

148 References

CUSTOM COMPUTING MACHINES (FCCM), 9., 2001, Napa Valley, USA. Pro-
ceedings. . . Washington: IEEE Computer Society, 2001. p.249–250.

[99] VERDIER, F. et al . Exploring RTOS Issues with a High-Level Model of a Re-
configurable SoC Platform. In: INTERNATIONAL WORKSHOP ON RECONFIG-
URABLE COMMUNICATION-CENTRIC SYSTEMS-ON-CHIP (RECOSOC), 1.,
2005, Montpellier, France. Proceedings. . . Montpellier: University of Montpellier
II, 2005. p.71–78.

[100] SEGARD, A.; VERDIER, F. SOC and RTOS: managing ips and tasks commu-
nications. In: INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE
LOGIC AND APPLICATIONS (FPL), 14., 2004, Leuven, Belgium. Proceedings. . .
Berlin: Springer, 2004. p.710–718.

[101] NOGUERA, J.; BADIA, R. M. Multitasking on Reconfigurable Architectures:
microarchitecture support and dynamic scheduling. ACM Transactions on Em-
bedded Computing Systems, New York, NY, USA, v.3, n.2, p.385–406, 2004.

[102] FEKETE, S.; KÖHLER, E.; TEICH, J. Optimal FPGA Module Placement with
Temporal Precedence Constraints. In: CONFERENCE ON DESIGN, AUTOMA-
TION AND TEST IN EUROPE (DATE), 2001, Munich, Germany. Proceedings. . .
Washington: IEEE Computer Society, 2001. p.658–667.

[103] TABERO, J. et al . Task Placement Heuristic Based on 3D-Adjacency and Look-
Ahead in Reconfigurable Systems. In: CONFERENCE ON ASIA SOUTH PACIFIC
DESIGN AUTOMATION (ASP-DAC), 2006., 2006, Yokohama, Japan. Proceed-
ings. . . New York: ACM Press, 2006. p.396–401.

[104] MAESTRE, R. et al . A Framework for Reconfigurable Computing: task scheduling
and context management. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Piscataway, NJ, USA, v.9, n.6, p.858–873, 2001.

[105] BANERJEE, S.; BOZORGZADEH, E.; DUTT, N. Physically-Aware HW-SW Par-
titioning for Reconfigurable Architectures With Partial Dynamic Reconfiguration. In:
DESIGN AUTOMATION CONFERENCE (DAC), 42., 2005, San Diego, USA. Pro-
ceedings. . . New York: ACM Press, 2005. p.335–340.

[106] MEI, B.; SCHAUMONT, P.; VERNALDE, S. A Hardware-Software Partitioning
and Scheduling Algorithm for Dynamically Reconfigurable Embedded Systems. In:
PRORISC WORKSHOP ON CIRCUITS, SYSTEMS AND SIGNAL PROCESSING,
11., 2000, Veldhoven, Netherlands. Proceedings. . . [S.l.: s.n.], 2000.

[107] WALDER, H.; PLATZNER, M. Non-preemptive Multitasking on FPGAs: task
placement and footprint transform. In: INTERNATIONAL CONFERENCE ON EN-
GINEERING OF RECONFIGURABLE SYSTEMS AND ALGORITHMS (ERSA),
2., 2002, Las Vegas, USA. Proceedings. . . Nevada: CSREA Press, 2002. p.24–30.

References 149

[108] PLESSL, C. et al . Reconfigurable Hardware in Wearable Computing Nodes. In:
INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (ISWC), 6.,
2002, Seattle, Washington. Proceedings. . . Washington: IEEE Computer Society,
2002. p.215–222.

[109] WIGLEY, G.; KEARNEY, D. Research Issues in Operating Systems for Recon-
figurable Computing. In: INTERNATIONAL CONFERENCE ON ENGINEERING
OF RECONFIGURABLE SYSTEMS AND ALGORITHMS (ERSA), 2., 2002, Las
Vegas, USA. Proceedings. . . Nevada: CSREA Press, 2002. p.10–16.

[110] WIGLEY, G.; KEARNEY, D. The First Real Operating System for Reconfig-
urable Computers. In: AUSTRALASIAN CONFERENCE ON COMPUTER SYS-
TEMS ARCHITECTURE (ACSAC), 6., 2001, Queensland, Australia. Proceed-
ings. . . Washington: IEEE Computer Society, 2001. p.130–137.

[111] WIGLEY, G. B.; KEARNEY, D. A.; WARREN, D. Introducing ReConfigME: an
operating system for reconfigurable computing. In: INTERNATIONAL CONFER-
ENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 12.,
2002, Montpellier, France. Proceedings. . . Berlin: Springer, 2002. p.687–697.

[112] WALDER, H.; PLATZNER, M. Reconfigurable Hardware OS Prototype.
Zurich: Computer Engineering and Networks Laboratory, ETH, 2003.

[113] WALDER, H.; PLATZNER, M. Reconfigurable Hardware Operating Systems:
from design concepts to realizations. In: INTERNATIONAL CONFERENCE ON EN-
GINEERING OF RECONFIGURABLE SYSTEMS AND ALGORITHMS (ERSA),
3., 2003, Las Vegas, USA. Proceedings. . . USA: CSREA Press, 2003. p.284–287.

[114] WALDER, H.; PLATZNER, M. A Runtime Environment for Reconfigurable
Hardware Operating Systems. In: INTERNATIONAL CONFERENCE ON FIELD-
PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 14., 2004, Leuven, Bel-
gium. Proceedings. . . Berlin: Springer, 2004. p.831–835.

[115] WALDER, H.; PLATZNER, M. Online Scheduling for Block-Partitioned Recon-
figurable Devices. In: DESIGN, AUTOMATION AND TEST IN EUROPE (DATE),
2003, Munich, Germany. Proceedings. . . Washington: IEEE Computer Society,
2003. p.10290–10295.

[116] STEIGER, C. et al . Online Scheduling and Placement of Real-time Tasks to Pari-
tally Reconfigurable Devices. In: INTERNATIONAL REAL-TIME SYSTEMS SYM-
POSIUM (RTSS), 24., 2003, Cancun, Mexico. Proceedings. . . Washington: IEEE
Computer Society, 2003. p.224–235.

[117] STEIGER, C.; WALDER, H.; PLATZNER, M. Operating Systems for Reconfig-
urable Embedded Platforms: online scheduling of real-time tasks. IEEE Transac-
tions on Computers, Los Alamitos, CA, USA, v.53, n.11, p.1393–1407, Novem-
ber 2004.

150 References

[118] HANDA, M.; VEMURI, R. An Integrated Online Scheduling and Place-
ment Methodology. In: INTERNATIONAL CONFERENCE ON FIELD-
PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 14., 2004, Leuven, Bel-
gium. Proceedings. . . Berlin: Springer, 2004. p.444–453.

[119] MERINO, P.; JACOME, M.; LÓPEZ, J. C. A Methodology for Task Based Par-
titioning and Scheduling of Dynamically Reconfigurable Systems. In: IEEE SYM-
POSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES
(FCCM), 6., 1998, Napa Valley, USA. Proceedings. . . Washington: IEEE Com-
puter Society, 1998. p.324–325.

[120] MERINO, P.; LÓPEZ, J. C.; JACOME, M. F. A Hardware Operating System
for Dynamic Reconfiguration of FPGAs. In: INTERNATIONAL CONFERENCE ON
FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 8., 1998, Tallinn,
Estonia. Proceedings. . . Berlin: Springer, 1998. p.431–435.

[121] ULLMANN, M. et al . On-Demand FPGA Run-Time System for Dynamical Re-
configuration with Adaptive Priorities. In: INTERNATIONAL CONFERENCE ON
FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 14., 2004, Leu-
ven, Belgium. Proceedings. . . Berlin: Springer, 2004. p.454–463.

[122] DANNE, K.; MUEHLENBERND, R.; PLATZNER, M. Executing Hardware Tasks
on Dynamically Reconfigurable Devices under Real-Time Conditions. In: INTERNA-
TIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICA-
TIONS (FPL), 16., 2006, Madrid, Spain. Proceedings. . . Washington: IEEE Com-
puter Society, 2006. p.1–6.

[123] DANNE, K.; PLATZNER, M. An EDF Schedulability Test for Periodic Tasks
on Reconfigurable Hardware Devices. In: ACM SIGPLAN/SIGBED CONFERENCE
ON LANGUAGES, COMPILERS, AND TOOLS FOR EMBEDDED SYSTEMS
(LCTES), 2006, Ottawa, Canada. Proceedings. . . New York: ACM Press, 2006.
p.93–102.

[124] SIMMLER, H.; LEVINSON, L.; MÄNNER, R. Multitasking on FPGA Copro-
cessors. In: INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE
LOGIC AND APPLICATIONS (FPL), 10., 2000, Villach, Austria. Proceedings. . .
London: Springer, 2000. p.121–130.

[125] LEVINSON, L. et al . Preemptive Multitasking on FPGAs. In: IEEE SYM-
POSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES
(FCCM), 8., 2000, Napa Valley, CA, USA. Proceedings. . . Washington: IEEE Com-
puter Society, 2000. p.301–302.

[126] KALTE, H.; PORRMANN, M. Context Saving and Restoring for Multitasking
in Reconfigurable Systems. In: INTERNATIONAL CONFERENCE ON FIELD-
PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 15., 2005, Tampere, Fin-
land. Proceedings. . . Los Alamitos: IEEE, 2005. p.223–228.

References 151

[127] BOBDA, C. et al . Task Scheduling for Heterogeneous Reconfigurable Comput-
ers. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN
(SBCCI), 17., 2004, Pernambuco, Brazil. Proceedings. . . New York: ACM Press,
2004. p.22–27.

[128] DITTMANN, F.; GÖTZ, M. Applying Single Processor Algorithms to Schedule
Tasks on Reconfigurable Devices Respecting Reconfiguration Times. In: RECON-
FIGURABLE ARCHITECTURES WORKSHOP (RAW), 13., 2006, Rhodes Island,
Greece. Proceedings. . . Washington: IEEE Computer Society, 2006.

[129] DITTMANN, F. Reconfiguration Time Aware Processing on FPGAs. In: DY-
NAMICALLY RECONFIGURABLE ARCHITECTURES, 2006, Dagstuhl, Germany.
Proceedings. . . Schloss Dagstuhl: Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), 2006. n.06141. (Dagstuhl Seminar Proceedings).

[130] GHIASI, S.; NAHAPETIAN, A.; SARRAFZADEH, M. An Optimal Algorithm for
Minimizing Run-Time Reconfiguration Delay. ACM Transactions on Embedded
Computing Systems, New York, NY, USA, v.3, n.2, p.237–256, 2004.

[131] HANDA, M.; VEMURI, R. Area Fragmentation in Reconfigurable Operating Sys-
tems. In: INTERNATIONAL CONFERENCE ON ENGINEERING OF RECON-
FIGURABLE SYSTEMS AND ALGORITHMS (ERSA), 4., 2004, Las Vegas, USA.
Proceedings. . . Nevada: CSREA Press, 2004. p.77–83.

[132] COMPTON, K. et al . Configuration Relocation and Defragmentation for Run-time
Reconfigurable Computing. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, Piscataway, NJ, USA, v.10, n.3, p.209–220, 2002.

[133] BURNS, J. et al . A Dynamic Reconfiguration Run-time System. In: IEEE SYM-
POSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES
(FCCM), 5., 1997, Napa Valley, USA. Proceedings. . . Washington: IEEE Com-
puter Society, 1997. p.66–75.

[134] MIGNOLET, J.-Y. et al . Infrastructure for Design and Management of Relocatable
Tasks in a Heterogeneous Reconfigurable System-on-Chip. In: DESIGN, AUTOMA-
TION AND TEST IN EUROPE (DATE), 2003, Munich, Germany. Proceedings. . .
Washington: IEEE Computer Society, 2003. p.10986–10993.

[135] NOLLET, V. et al . Hierarchical Run-Time Reconfiguration Managed by an Oper-
ating System for Reconfigurable Systems. In: INTERNATIONAL CONFERENCE
ON ENGINEERING OF RECONFIGURABLE SYSTEMS AND ALGORITHMS
(ERSA), 3., 2003, Las Vegas, USA. Proceedings. . . Nevada: CSREA Press, 2003.
p.81–87.

[136] NOLLET, V. et al . Designing an Operating System for a Heterogeneous Recon-
figurable SoC. In: INTERNATIONAL SYMPOSIUM ON PARALLEL AND DIS-
TRIBUTED PROCESSING (IPDPS), 17., 2003, Nice, France. Proceedings. . . Was-
ington: IEEE Computer Society, 2003. p.174–180.

152 References

[137] PELLIZZONI, R.; CACCAMO, M. Adaptive Allocation of Software and Hardware
Real-Time Tasks for FPGA-based Embedded Systems. In: IEEE REAL-TIME AND
EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS), 12.,
2006, San Jose, USA. Proceedings. . . Washington: IEEE Computer Society, 2006.
p.208–220.

[138] STANKOVIC, J. A.; RAMAMRITHAM, K. The Spring Kernel: a new paradigm
for real-time operating systems. ACM SIGOPS Operating Systems Review,
New York, NY, USA, v.23, n.3, p.54–71, 1989.

[139] BURLESON, W. et al . The Spring Scheduling Co-Processor: a scheduling accel-
erator. In: IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN
(ICCD), 11., 1993, Cambridge, USA. Proceedings. . . Washington: IEEE Computer
Society, 1993. p.140–144.

[140] LINDH, L.; STANISCHEWSKI, F. FASTCHART - A Fast Time Determinis-
tic CPU and Hardware Based Real-Time-Kernel. In: EUROMICRO WORKSHOP
ON REAL-TIME SYSTEMS, 3., 1991, Paris, France. Proceedings. . . Washington:
IEEE Computer Society, 1991. p.36–40.

[141] LINDH, L. FASTHARD - A Fast Time Deterministic HARDware Based Real-
Time Kernel. In: EUROMICRO WORKSHOP ON REAL-TIME SYSTEMS, 4., 1992,
Athens, Greece. Proceedings. . . Washington: IEEE Computer Society, 1992. p.21–
25.

[142] LEE, J. et al . A Comparison of the RTU Hardware RTOS with a Hardware/Soft-
ware RTOS. In: ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFER-
ENCE (ASP-DAC), 8., 2003, Kitakyushu, Japan. Proceedings. . . New York: ACM
Press, 2003. p.683–688.

[143] KOHOUT, P.; GANESH, B.; JACOB, B. Hardware Support for Real-Time Op-
erating Systems. In: IEEE/ACM/IFIP INTERNATIONAL CONFERENCE ON
HARDWARE/SOFTWARE CODESIGN AND SYSTEM SYNTHESIS, 1., 2003,
Newport Beach, USA. Proceedings. . . New York: ACM Press, 2003. p.45–51.

[144] KUACHAROEN, P.; SHALAN, M.; III, V. J. M. A Configurable Hardware Sched-
uler for Real-Time Systems. In: INTERNATIONAL CONFERENCE ON ENGI-
NEERING OF RECONFIGURABLE SYSTEMS AND ALGORITHMS (ERSA), 3.,
2003, Las Vegas, USA. Proceedings. . . USA: CSREA Press, 2003. p.95–101.

[145] LEE, J.; RYU, K.; III, V. J. M. A Framework for Automatic Generation of Config-
uration Files for a Custom Hardware/Software RTOS. In: INTERNATIONAL CON-
FERENCE ON ENGINEERING OF RECONFIGURABLE SYSTEMS AND ALGO-
RITHMS (ERSA), 2., 2002, Las Vegas, USA. Proceedings. . . USA: CSREA Press,
2002. p.31–37.

References 153

[146] III, V. J. M.; BLOUGH, D. M. A Hardware-Software Real-Time Operating System
Framework for SoCs. IEEE Design and Test of Computers, Los Alamitos, CA,
USA, v.19, n.6, p.44–51, 2002.

[147] ANDREWS, D.; NIEHAUS, D. Architectural Frameworks for MPP Systems on a
Chip. In: INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED
PROCESSING (IPDPS), 17., 2003, Nice, France. Proceedings. . . Washington:
IEEE Computer Society, 2003. p.265.2.

[148] ANDREWS, D. L. et al . Programming Models for Hybrid FPGA-CPU Computa-
tional Components: a missing link. IEEE Micro, Los Alamitos, CA, USA, v.24, n.4,
p.42–53, 2004.

[149] JIDIN, R.; ANDREWS, D. L.; NIEHAUS, D. Implementing Multi Threaded
System Support for Hybrid FPGA/CPU Computational Components. In: INTER-
NATIONAL CONFERENCE ON ENGINEERING OF RECONFIGURABLE SYS-
TEMS AND ALGORITHMS (ERSA), 4., 2004, Las Vegas, USA. Proceedings. . .
USA: CSREA Press, 2004. p.116–122.

[150] ANDERSON, E. et al . Enabling a Uniform Programming Model Across the Soft-
ware/Hardware Boundary. In: IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE
CUSTOM COMPUTING MACHINES (FCCM), 14., 2006, Napa Valley, CA, USA.
Proceedings. . . Washington: IEEE Computer Society, 2006. p.89–98.

[151] ANDREWS, D. et al . hthreads: a hardware/software co-designed multithreaded
rtos kernel. In: IEEE INTERNATIONAL CONFERENCE ON EMERGING TECH-
NOLOGIES AND FACTORY AUTOMATION, 10., 2005, Catania, Italy. Proceed-
ings. . . Los Alamitos: IEEE, 2005. v.2, p.19–22.

[152] ANDREWS, D. et al . The Case for High Level Programming Models for Recon-
figurable Computers. In: INTERNATIONAL CONFERENCE ON ENGINEERING
OF RECONFIGURABLE SYSTEMS AND ALGORITHMS (ERSA), 6., 2006, Las
Vegas, USA. Proceedings. . . USA: CSREA Press, 2006. p.21–32.

[153] KERSTAN, T. Konzeption und Entwicklung einer konfigurierbaren
Mikrokernarchitektur für ein komponentenbasiertes Echtzeitbetriebssys-
tem. 2006. Diplomarbeit (Diplom-Informatik) — Heinz Nixdorf Institut, Universität
Paderborn, Paderborn, Germany.

[154] GRIESE, B.; OBERTHÜR, S.; PORRMANN, M. Component Case Study of a Self-
Optimizing RCOS/RTOS System: a reconfigurable network service. In: INTERNA-
TIONAL EMBEDDED SYSTEMS SYMPOSIUM (IESS), 1., 2005, Manaos, Brazil.
Proceedings. . . [S.l.: s.n.], 2005. p.267–277.

[155] WANG, S. et al . Real-Time Component-Based Systems. In: IEEE REAL-TIME
AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS),

154 References

11., 2005, San Francisco, CA, USA. Proceedings. . . Washington: IEEE Computer
Society, 2005. p.428–437.

[156] BUTTAZZO, G. et al . Soft Real-Time Systems: predictability vs. effi-
ciency. 1.ed. New York, NY, USA: Springer US, 2005.

[157] BRINKSCHULTE, U.; SCHNEIDER, E.; PICIOROAGA, F. Dynamic Real-time
Reconfiguration in Distributed Systems: timing issues and solutions. In: IEEE
INTERNATIONAL SYMPOSIUM ON OBJECT-ORIENTED REAL-TIME DIS-
TRIBUTED COMPUTING (ISORC), 8., 2005, Seattle, USA. Proceedings. . .
Washington: IEEE Computer Society, 2005. p.174–181.

[158] ELES, P.; KUCHCINSKI, K.; PENG, Z. System Synthesis with VHDL: a
transformational approach. 1.ed. Norwell, MA, USA: Kluwer Academic Publishers,
1998. p.114–119.

[159] BUTTAZZO, G. C. Hard Real-Time Computing Systems: predictable
scheduling algorithms and applications. 1.ed. Norwell, MA, USA: Kluwer Aca-
demic Publishers, 1997.

[160] BUTTAZZO, G. C. Rate monotonic vs. EDF: judgment day. Real-Time Sys-
tems, Norwell, MA, USA, v.29, n.1, p.5–26, 2005.

[161] BRATLEY, P.; FLORIAN, M.; ROBILLARD, P. Scheduling with Earliest Start
and Due Date Constraints. Naval Research Logistics Quarterly, New York,
p.511–519, December 1971.

[162] User Core Templates Reference Guide (v1.4). San Jose, CA, USA: Xilinx Inc.,
2003.

[163] KEROMYTIS, A. D. et al . Cryptography as an Operating System Service: a case
study. ACM Transactions on Computer Systems, New York, NY, USA, v.24,
n.1, p.1–38, 2006.

[164] SEDCOLE, N. P. Reconfigurable Platform-Based Design in FPGAs for
Video Image Processing. 2006. PhD Thesis (Doctor of Philosophy) — Department
of Electrical and Electronic Engineering, University of London, London, UK.

	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goals
	1.3 Thesis Contributions
	1.4 Thesis Outline

	2 Background
	2.1 Embedded System Design
	2.2 Reconfigurable Computing Overview
	2.2.1 Coupling CPU and Reconfigurable Hardware
	2.2.2 Reconfigurable System Design

	2.3 Reconfigurable Hardware Technology
	2.3.1 Hybrid Architecture
	2.3.2 Configuration Techniques
	2.3.3 Partial Reconfiguration Feature

	2.4 Chapter Conclusions

	3 Related Work Survey
	3.1 (Re)Configurable Operating Systems
	3.1.1 Statically Reconfigurable OS
	3.1.2 Dynamically Reconfigurable OS: Application Triggered
	3.1.3 Dynamically Reconfigurable OS: System Triggered
	3.1.4 Towards Online Reconfigurable DREAMS
	3.1.5 Further Comments

	3.2 Operating System for Reconfigurable Computing
	3.2.1 Low-level OS Support for Reconfigurable Hardware
	3.2.2 Application Model
	3.2.3 OS Services for Reconfigurable Hardware
	3.2.4 RTOS issues in High Level Design
	3.2.5 Offline Approaches
	3.2.6 Run-time Support
	3.2.7 Multitasking Issues
	3.2.8 Dynamically Hybrid Architectures

	3.3 Further Approaches
	3.3.1 Hardware Accelerator for RTOS
	3.3.2 Multithreading on Hybrid Architectures

	3.4 Chapter Conclusions
	3.4.1 Correlation With This Thesis
	3.4.2 Additional Comments

	4 Run-time Reconfigurable RTOS
	4.1 System Overview
	4.1.1 Target Applications
	4.1.2 Target RTOS
	4.1.3 Instrumented OS API
	4.1.4 Run-time Reconfiguration Manager - RRM

	4.2 Hardware Architecture
	4.3 Design Support
	4.4 Chapter Conclusions

	5 Modeling & Problem Formulation
	5.1 Component Assignment
	5.1.1 Constraints Definition
	5.1.2 Objective Function Definition
	5.1.3 Allocation Example

	5.2 Reconfiguration Costs
	5.2.1 Temporal Specification

	5.3 Communication Costs
	5.4 Chapter Conclusions

	6 Run-Time Methods
	6.1 OS Service Allocation
	6.1.1 OS Service Assignment Phase
	6.1.2 OS Service Assignment Example
	6.1.3 Balance B Improvement Phase
	6.1.4 Balance B Improvement Example
	6.1.5 Reconfiguration Cost Reduction

	6.2 Communication-aware Allocation Algorithm
	6.3 Handling Reconfiguration Activities
	6.4 OS Component Reconfiguration
	6.4.1 Applying Total Bandwidth Server
	6.4.2 Deriving Migration Conditions
	6.4.3 Software to Hardware Migration
	6.4.4 Hardware to Software Migration
	6.4.5 Software Service Reconfiguration
	6.4.6 Hardware Service Reconfiguration
	6.4.7 Migrating by Preempting

	6.5 Schedulability Analysis
	6.6 OS Components Scheduling
	6.6.1 Partial Schedule
	6.6.2 Complete Schedule

	6.7 Chapter Conclusions

	7 Methods Evaluation
	7.1 OS Components Allocation
	7.1.1 OS Components Assignment

	7.2 Balancing Heuristic
	7.2.1 Reconfiguration Cost Reduction

	7.3 Components Reconfiguration Scheduling
	7.4 Communication costs reduction
	7.5 Chapter Conclusions

	8 Design Support
	8.1 Hardware-Software Interface Synthesis
	8.1.1 OS Driver Extension
	8.1.2 Software Interface for Reconfigurable IPs
	8.1.3 Integration into IFS Tool
	8.1.4 Further Extension for DREAMS

	8.2 Relocatable Tasks Design
	8.2.1 Unified Task Representation
	8.2.2 A Framework for Relocatable Task Design

	8.3 Chapter Conclusions

	9 Case Study
	9.1 Target OS Service
	9.2 Relocatable Triple-DES
	9.3 Testbed Set Up
	9.4 Quantitative Results
	9.5 Chapter Conclusions

	10 Conclusion & Outlook
	10.1 Summary
	10.2 Outlook

	A Further Evaluation Results
	B HW/SW Interface Generation
	C Hardware/Software Task Design
	C.1 Hardware Task Controller Template
	C.2 Sequence Graphs for Two Migration Cases

	D TBS Server Bandwidth Estimation

