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A b s t r a c t 
A maximum weighted matching in a graph can be computed in polynomial 

time. In this paper we show that a variant, where the matching lias to respect 
additional ordering constraints between the vertices makes the problem NP-
complete. 

1 Introduction 

To calculate a maximum matching in general, weighted graphs is one of the cornerstone 
algorithmic problems for which we know a polynomial solution (Edmonds, 1965) with 
many practical applications. Consider an undirected graph G — {V, E) with edge weights 
w : E Q. A matching in G is a subset M Ç E oí the edges such that every vertex 
in V is incident to at most one edge in M. Then, the problem is to find a matching of 
maximum weight in G, where the weight of the matching is the sum of its edge weights 
w{M) = Yle&M c ( e ) ' ^ formulation as a binary integer program of the problem is 

max imize ^ wexe 

e e E 

s u b j e c t t o xe < 1, Vi» G V, 
e€S(v) 

xe G {o, 1}, Ve G -E, 

where 5{v) is the set of edges incident at vertex v. Variants of the matching problem 
known to be NP-complete include minimal maximum matching, which is to find the 
smallest matching which cannot be extended to a larger matching (Garey and Johnson, 
1979), and two-stage stochastic matching (Kong and Schaefer, 2006). Both, minimal 
maximum matching and two-stage stochastic matching can be approxirnated within a 
factor of two. Minimal maximum matching has been shown to be APX-hard (Yannakakis 
and Gavril, 1980). 

Motivated by an application in mapping binary to quaternary circuits, we consider 
additional ordering constraints between the vertices, defined by a directed acyclic graph 
(DAG) on the same vertex set as the matching. In the following, we focus on the 
unweighted case. A matching is said to respect the ordering constraints, if there is no 
directed cycle larger than two in the graph defined by the matching itself and the edges of 
the DAG, where the undirected edges of the matching can be traversed in any direction. 
Figure 1 shows an example of an instance where the maximum matching has size two, 
but a maximum matching respecting ordering constraints has size one. The matching of 
size two shown in Figure l(b) does not respect the ordering constraints, since it generates 
the directed cycle ACDBA. 
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Figure 1: (a) Example for a maximum matching with ordering constraints. Arrows show 
dependencies between the vertices, and wavy edges show which vertices can 
be matched. We cannot match vertices A and B and simultaneously C and 
D, without violating the ordering constraints. (b) Maximum matching with-
out ordering constraints. (c) and (d) The two possible maximum matchings 
respecting ordering constraints. 

We can state the problern in compact form hke follows: 

M A X I M U M MATCHING WITH ORDERING CONSTRAINTS ( M O M ) 

Input An undirected graph G = (V, E) and a set of directed edges over D Ç V x V 
over the same vertex set. 

Solution A matching M Ç E, which respects the ordering constraints given by D. 

Goal Maximize the carcUnahty of M. 

2 Completeness of MOM 

In this section we consider the decision problern associated with MOM, i.e. the problem 
to decide if MOM has a sohjtion larger than a given value. We are going to show that 
this version of MOA-I is NP-complete. We first sirow the hardness of tlie problem, and 
next its membership in NP. 

L e r a m a 2.1 
MOM is NP-hard. 

P r o o f . The proof will be by reduction from 3-SAT. Let = Ci A C2 A • • • A C m be an 
instance of 3-SAT over variables X = { x \ , . . . , x n } and m clauses C7; = cn V Ci2 V for 
literais Cjj. The idea of the reduction is to represent each variable Xi by a cycle C4m (of 
length 4?7'Í-). This graph has a ma-ximum matching of size 2m,n) since in each cj^cle at 
inost 2rn edges can be matched. There are exactly two possible maximum matchings, 
which represent the Boolean value "true" or "false" of a variable (see Figure 2). To 
represent the clauses, we add ordering constraints between the variables in such a way 
that there exists a cycle in the graph iff the clause is unsatisfied. Figure 3 shows an 



Figure 2: Representation of a variable. Top: Graph with ali candidate eclges. Middle and 
bottom: the two possible maximurn matchings, representing Boolean values 
true and false. 

exarnple for the clause xi V 0:2 V -'X5. Ordering constraints are added for each clause 
separately. Each clause is represented by four adjacent edges in the cycle, and the inner 
two edges are used for constructing the ordering dependencies of the clause. This makes 
sure that the cycles corresponding to the clauses are kept separate. Therefore, if (p has 
a satisfying assignrnent, we can construct a matching of size 2mn + m which respects 
the ordering constraints in this graph: for each cycle representing a variable choose the 
matching corresponding to the value of that variable. Since in each clause at least one 
literal is satisfied, the corresponding cycle has an unmatched edge at some variable, and 
therefore we can include the additional edge corresponding to the clause in the matching. 
Conversely, if there exists a matching of size 2nm + m, every cycle has to contribute its 
maximum of 2m edges, and the extra edges corresponding to the clauses have to be part 
of matching. If we choose the value of each variable corresponding to one of the two 
possible matchings in each cycle, </? has to be satisfied: in each clause at least one literal 
is true, since otherwise the graph would have a cycle. The whole construction can be 
done in polynornial time. • 

L e m m a 2.2 
MOM is in NP. 

Proof . Evidently, we can guess any subset of edges in polynomial time, and verify that it 
is indeed a matching. Therefore, it suffices to show that the ordering constraints can be 
verified in polynornial time. To check that EUD has no directed cycle, where the edges in 
E can be traversed in any direction is equivalent to say that the graph G = {V, E\JD) has 
no strongly connected component larger than two. (We write D = {('u, u) | {^,11} € D ] 
for the set where each undirected edge of D has been replaced by a pair of directed edges 
in both directions.). This can be checked in time 0 ( | y | + ji?!) by an algorithm which 
determines the strongly connected components of G (Cormen et al., 2001), and verifies 
that none of them is larger than two. • 

T h e o r e m 2.1 
MOM is NP-complete. 

P roof . By lemma 2.1 and 2.2. • 
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Figure 3: Representation of the clause xi V.X2 V-1X5. The matching with singly or double 
wavy edges represents the vtiriable being true and false, respectively. 

3 Conclusions 

We have shown a variation of the maximum matching problem with ordering constraints 
to be NP-complete. This problem has an application in matching binary to quaternary 
circuits. It remains an open question, if we can find other application of this problem, 
For example in scheduling or assignments. Another open question is the approximability 
of this problem. 
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