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“But seek ye first the kingdom of God, and his righteousness;

and all these things shall be added unto you.”

— JESUS OF NAZARETH (MATTHEW 6:33 KJV)
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ABSTRACT

Software Defined Networks simplify network programmability by detaching the control plane

from forwarding devices and deploying it into a logically centralized controller. While this al-

lows a clearer separation of concerns, it also creates a dependency between them. Failures in

the control plane break the controller view of the network state and could render the network

unusable if forwarding devices cannot be reached. The relevance of this problem has led to

a range of proposals, including physical distribution of controller instances and delegation of

concerns to forwarding devices. This dissertation features the proposal and evaluation of an ar-

chitecture that leverages cellular data networks (4G) as control plane backup links. No previous

work has explored this idea, despite the recent research intersecting SDN and wireless networks.

The experimental evaluation provides insights towards answering three research questions: (i)

How is the behavior of control plane traffic affected by the characteristics of cellular links, (ii)

how quickly is the control plane handed over to the backup link when a failure occurs and (iii)

how well do network functions that rely on a snapshot of the network state behave on such an

architecture. Despite the expected higher latency of cellular links, this architecture maintains

partial functionality of tasks that depend on global network awareness when failures occur in

primary control links in a simple, affordable fashion. The degree to which the functionality of

these tasks is maintained is directly related to its dependency on the timeliness of control plane

reaction to network events. The main benefit of preventing control plane partition is to maintain

a consistent global view of the network.

Keywords: Software Defined Networks. Cellular Networks. OpenFlow. Control Plane. Parti-

tion. Resilience.



Evitando a Partição do Plano de Controle em Redes Definidas por Software Através de

Redes Celulares: avaliando oportunidades e limitações

RESUMO

Redes Definidas por Software ajudam a simplificar a programabilidade da rede ao desacoplar

o plano de controle dos dispositivos de encaminhamento, e implementá-lo em um controlador

logicamente centralizado. Apesar de permitir uma separação de conceitos mais clara, essa ca-

racterística cria também uma relação de dependência entre controlador e dispositivos. Falhas

no plano de controle prejudicam a visibilidade do estado da rede no controlador e podem tor-

nar a rede inutilizável caso os dispositivos de encaminhamento sejam isolados. A relevância

deste problema motivou uma série de propostas, incluindo a distribuição física de instâncias de

controle e a delegação de tarefas aos dispositivos de encaminhamento. Esta dissertação contém

a proposta e a avaliação de uma arquitetura que usa redes celulares de dados (4G) como en-

laces reservas para o plano de controle. Nenhum trabalho anterior explorou esta ideia, apesar

da pesquisa recente envolvendo Redes Definidas por Software e redes sem fio. A avaliação

experimental permite uma melhor compreensão ao responder três perguntas: (i) Como o com-

portamento do tráfego do plano de controle é afetado pelas características de enlaces celulares,

(ii) quão rapidamente o plano de controle é migrado para o enlace reserva quando uma falha

ocorre e (iii) como funções de rede que dependem do estado da rede em um instante se com-

portam em tal arquitetura. Apesar da já esperada maior latência dos enlaces celulares, esta

arquitetura mantém o funcionamento parcial de tarefas que dependem de visão global da rede

quando falhas ocorrem nos enlaces primários, de maneira simples e com custo acessível. O

grau de manutenção de tais tarefas é diretamente relacionado com sua dependência da rapidez

de reação do plano de controle a eventos de rede. O principal benefício de prevenir a partição

do plano de controle é a manutenção de uma visão global consistente da rede.

Palavras-chave: Redes Definidas por Software, Redes Celulares, OpenFlow, Plano de Con-

trole, Partição, Resiliência.
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1 INTRODUCTION

Over the past few years, the Software Defined Networking (SDN) paradigm has gained

unprecedented strength within the scientific community. The split of the control and forward-

ing (or data) planes is expected to increase development pace and to ease the job of network

operation, through the separation of concerns and logically centralized control, respectively. As

OpenFlow (MCKEOWN et al., 2008) consolidates as a de facto standard for the SDN south-

bound control plane protocol, the interoperability between compliant forwarding devices1 and

controller software allows for a vendor-neutral system. Considering these benefits, research has

been devoted to applying SDN into other areas, including wireless networks.

As a consequence of the separation between planes, a dependency relation was created

among entities which are now potentially physically separated – namely, the controller and

switches. Therefore, partitions in the network can severely disrupt functionality (AKELLA;

KRISHNAMURTHY, 2014). For instance, link failures can isolate devices from their corre-

sponding control element, preventing them from being aware of policy updates, breaking the

global visibility of the network and, in the absence of failover mechanisms, even render the

device temporarily unusable.

A common strategy for preventing the control plane partition is to deploy the network

controller as a physically distributed system. As control instances are spread over the topology,

the isolation of forwarding devices from control on the event of network partitions becomes

less likely. Nevertheless, additional challenges arise in the implementation of a logically cen-

tralized controller, as the system’s distributed instances need to perform synchronization in a

consistent and timely manner. An alternative strategy consists in delegating control plane tasks

back to switches, attempting to attenuate the consequences of isolation rather than preventing it.

However, this implies partially losing the advantage of the centralized network programmability

brought by the SDN paradigm.

Motivated by these issues, this work explores an entirely different strategy, based on

wireless links. More precisely, it evaluates the suitability of a control plane architecture fea-

turing additional cellular links for improved resilience in face of network partitions in the con-

trol plane. The evaluation is focused on opportunities and limitations based on three aspects,

namely: (a) the effects of cellular link characteristics on OpenFlow traffic, (b) the failover

mechanism from the primary wired links to the backup wireless link, and (c) the operation of a

network function that uses global network state awareness and can have a limited, configurable

1In the OpenFlow community, forwarding devices are often called simply switches, for short. The terms for-
warding device and switch are used interchangeably throughout this document.
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level of interaction between the forwarding device and the controller.

The main contribution of this dissertation is to provide a novel analysis of the operation

of OpenFlow control plane traffic over cellular links. Experimental results indicate that, in spite

of naturally providing lower bandwidth and higher latency than wired links, cellular links can

still allow an OpenFlow-based network to maintain the operation of network functions under

certain circumstances without requiring modifications to the underlying devices. Additionally,

small software modifications on the forwarding devices and the use of recent network mecha-

nisms such as Multipath TCP (PAASCH; BARRE et al., 2015) can greatly improve the handover

to the backup control links. The suitability of this architecture to network functions is shown

to depend on the level of reactivity required at the control plane. The most important benefit

introduced by backup cellular links is to prevent control plane partition and, therefore, maintain

a consistent, centralized, global view of the network, even if state awareness can be delayed by

the additional latency of event notifications.

This dissertation is organized as follows: In Chapter 2 we present a literature review

in SDN with wireless networks and control plane connectivity. In Chapter 3 we describe the

proposed architecture. In the next three chapters we explore the opportunities and limitations of

the proposed architecture by evaluating it from different perspectives. More precisely, Chapters

4, 5 and 6 are an attempt to answer important questions, respectively, how is the behavior of

control plane traffic affected by the characteristics of cellular links, how quickly is the control

plane handed over to the backup link when a failure occurs and how well do network functions

that rely on a snapshot of the network state behave on such an architecture. Finally, Chapter 7

contains concluding remarks and perspectives for future work.



13

2 LITERATURE REVIEW

This dissertation features an architecture equipped with cellular network links for pre-

venting the partition of the SDN control plane. In this chapter, related work is organized in two

sections. In Section 2.1 we review work that concerns wireless networks in the context of SDN.

In Section 2.2 we discuss proposals that share the same objective of the present work, which is

to address the loss of connectivity of the control plane, by attempting either to prevent partition

or to mitigate its impact. Finally, in Section 2.3 we compare the aforementioned works with the

content of this dissertation.

2.1 Wireless

The promising benefits of Software Defined Networks – namely, separation of the net-

work control logic from the forwarding devices, logical centralization of control, and enhance-

ment of network programmability (KREUTZ et al., 2015) – have led to a great amount of

research into applying this paradigm over various networking contexts. Wireless networks are

no exception to this trend.

Yap et al. (YAP et al., 2010) state that wireless mobile network infrastructures are ma-

jorly proprietary and closed. The objective of their proposal is to decouple the infrastructure

from the network services. The paper shows the potential benefits of using SDN and OpenFlow

for centralized control of access points, simplifying tasks such as locating non-overlapping

channels, reducing interference through power level adjustment, authenticating users and han-

dling device mobility. The deployment of a prototype of the proposal is part of the OpenRoads

project, later renamed to OpenFlow Wireless (OPEN NETWORKING FOUNDATION, 2011),

from the Stanford OpenFlow Team. The evaluation of the OpenRoads prototype included mea-

suring side effects of handover between infrastructure providers.

The criticism over the closed nature of wireless network infrastructure is echoed by Li et

al. (LI; MAO; REXFORD, 2012). Although stressing the possibility of simplifying the design

and management of cellular networks through SDN, the authors discuss scalability challenges

that the new centralized control architectures should address, such as fine-grained measure-

ments, frequent mobility and the growing number of subscribers.

Although it is not particularly related to SDN, the proposal of Zhou et al. (ZHOU et al.,

2012) precedes the work of this dissertation in the idea of leveraging wireless links for extended

connectivity. The additional links combined with reflective surfaces on the facility roof increase
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the trajectory space and allow for a greater number of simultaneous connections between pairs

of nodes in a data center environment. In this scenario, the main concern for extending the

connectivity is the additional bandwidth, not the prevention of partitions.

The work of Guimarães et al. (GUIMARAES; CORUJO; AGUIAR, 2014) features an

extension for adding Media Independent Management into the OpenFlow protocol, so that link

condition information can be used by the controlling mechanisms. For example, the controller

could query for signal strength status of a given link, or request its power saving mode to be

switched on/off. One of the objectives stated in the proposal is being oblivious to the link

network technology. For the sake of making experiments easier, the setup featured wireless

links solely in the forwarding plane. The control plane channels were established over Ethernet

wires.

Aeroflux is a hierarchical network design for a software-defined WiFi network proposed

by Schulz-Zander et al. (SCHULZ-ZANDER; SARRAR; SCHMID, 2014). The design fea-

tures a global controller and subordinate near-sighted controllers, and the evaluation of an early

prototype indicates reduction in the control traffic.

The idea of taking advantage of the locality of control operations is also explored outside

the scope of wireless networks. Examples of papers featuring this approach are among the

literature on control partition tolerance, presented in the following section.

2.2 Control Plane Partition

When partitions occur, network architectures with separate control and forwarding planes

can suffer more severe compromise of functionality than traditional architectures (i.e. with in-

tegrated planes in a black box). The consequences of the loss of communication between a

forwarding device and its controller include becoming unable to receive instructions for newly

arriving flows and being unaware of updates in the routing rules – for instance, due to changes

in access control policies.

Since version 1.1, the OpenFlow protocol (OPEN NETWORKING FOUNDATION,

2013) specifies two choices of behavior for conforming switches to perform while there is

no communication with the controller: fail-secure, where messages towards the controller are

dropped and the existing rules are applied until their own expiration times arrive, and fail-

standalone, which means that the device operates with similar autonomy to an Ethernet switch.

The problem of control plane partition can be tackled with preventive measures. In par-

ticular, physically distributing the controller reduces the likelihood that a network partition can
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cause a forwarding device to be isolated from the control plane. The literature on this archi-

tectural strategy is discussed in Subsection 2.2.1. In contrast, there are proposals that do not

prevent partitions, but instead attempt to limit the consequences of isolation. They consist of

delegating control plane concerns to the forwarding devices, and are presented later, in Subsec-

tion 2.2.2.

2.2.1 Physical distribution of the controller

In the literature, the term distributed controller often refers to architectures designed for

server clusters. In these proposals, control instances depend on some underlying mechanism

for sharing state, such as key-value stores or shared memory. Examples include open-source

controllers such as Opendaylight (OPENDAYLIGHT, 2015) and ONOS (BERDE et al., 2014),

proprietary software – e.g. HP VAN SDN (HEWLETT-PACKARD DEVELOPMENT GROUP,

2013) – and also prototypes of architectural designs such as PANE (FERGUSON et al., 2013)

and ElastiCon (DIXIT et al., 2014). The main goal of employing distribution in these proposals

is to leverage parallelism. This type of architecture also improves fault tolerance, in particular,

when controller instances in the cluster fail. As instances are often strongly connected to each

other, partitions within the cluster are unlikely. However, an edge link failure could isolate a

forwarding device outside the cluster form every single control instance.

Greater attention will be directed towards architectures that consider control instances

spread through the topology, as these help avoiding the isolation between forwarding devices

and controllers. The term distributed controller will be used throughout this document in refer-

ence to this type of proposal. In fact, positioning of distributed instances is a topic of research on

its own (ZHANG; BEHESHTI; TATIPAMULA, 2011; BEHESHTI; ZHANG, 2012; HELLER;

SHERWOOD; MCKEOWN, 2012; BARI et al., 2013; HU et al., 2013; MULLER et al., 2014;

SALLAHI; ST-HILAIRE, 2015).

One of the first proposals implementing a SDN platform control as a distributed system

was Onix (KOPONEN et al., 2010). With reliability and scalability in mind, the Onix archi-

tecture features one or more instances running on a cluster of physical servers. However, the

challenge of keeping consistency increases as both the number of distributed instances and up-

date rate grow. A trade-off between performance and scalability can be configured by choosing

one of two distribution mechanisms for a given network state: a memory-based one-hop DHT

or a replicated transactional database. The implementation was described at the time as a pro-

duction beta trial for commercial deployment, and later on it was the base for the controller
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used by Google in B4 WAN (JAIN et al., 2013). The paper has an early glimpse on exploring

node locality, but only as an example of use of its instance aggregation mechanism.

In contrast, the authors of HyperFlow (TOOTOONCHIAN; GANJALI, 2010) propose

localizing decisions to individual controller instances, both for partition tolerance and for smaller

control plane latency. State synchronization is obtained through a publish/subscribe mechanism

atop a distributed file system. This choice of design is expected to maintain a network-wide view

through selective publishing of events, based on some observations over the characteristics of

network state. HyperFlow was implemented as an application to be executed over NOX (GUDE

et al., 2008) instances. It requires the concurrent applications to be modified so as to tag events

that affect their own state – that is, the channels that they must subscribe to. Moreover, ap-

plications cannot rely on temporal ordering of events except those targeting the same network

entity (switch, link or host). Further still, the number of effective events must be bounded by

the number of entities, and not by the number of flows. Otherwise, the overhead would be pro-

hibitive. Other modifications to the applications are recommended so as to take into account

the number of controllers. For instance, measurement applications should be aware of the local

controller assignments and have their jobs partitioned, in order to avoid the linear growth of

queries towards the forwarding devices.

Kandoo (HASSAS YEGANEH; GANJALI, 2012) takes an alternative route by refrain-

ing from keeping global-view consistency between instances. Instead, it allows the applications

to leverage the locality of some control plane operations by offering a two-level controller hier-

archy tree. Applications that depend on awareness of network-wide state must run on the root

instance, while those that can operate locally (e.g. enforcement of local policies, LLDP) should

be deployed on control instances that are positioned closer to the forwarding devices. No im-

plicit synchronization between the instances is performed and, therefore, root applications can

only communicate with the ones at the lower level of the control tree through explicit event

subscription.

In the follow-up paper Beehive (HASSAS YEGANEH; GANJALI, 2014), the authors

define a programming abstraction for the control application, aimed at taking advantage of the

locality of distributed instances. Each event handler in the application should declare the en-

tries of the state dictionary that it depends on. Based on this declaration, the Beehive framework

dynamically assigns functions to specific controller instances, trying to deploy them closer to

the switches that originated these events. If the state dependencies allow, then a single function

handler can be split among the controllers, each of which running independently. The objective

is to take advantage of distributed instances while trying to limit as much as possible the com-
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munication for state synchronization. However, functions that depend on network-wide view

are still deployed in a single instance and depend on event propagation.

2.2.2 Delegation of concerns to the forwarding plane

The extreme case of leveraging locality is to delegate a function to the forwarding plane

altogether, so as to maintain its functionality even under control plane partition. As discussed in

the beginning of Section 2.2, OpenFlow specifies an optional fallback mechanism for a forward-

ing device that lost its connection with the controller. It consists in reverting to usual Ethernet

switch behavior, the so-called fail-standalone mode on a hybrid switch. For instance, the de-

vices built for Google’s B4 WAN (JAIN et al., 2013) are capable of running routing protocols

directly, but they also have a software layer for receiving OpenFlow commands from a remote

controller and translating them into the forwarding hardware.

The authors of DIFANE (YU et al., 2010) propose the modification of some devices into

authority switches. The controller proactively partitions the set of specified policies and installs

lower-level routing rules in those devices, using wildcard matching when applicable. Unmodi-

fied ingress devices handle their table misses by redirecting the packet from the offending flow

to an authority switch – the one assigned by the policy partition. Additionally, the authority

switch installs a rule matching this flow in the incoming device, keeping the process within

the forwarding plane. The consequences of failures in the control plane are diminished as the

authority switches can handle a limited set of control operations.

In the work of Liu et al. (LIU et al., 2013), routing connectivity can be ensured at

the forwarding plane by using small and fast operations that store state in the packet headers.

This mechanism is based on the properties of Directed Acyclic Graphs, by which a finite set

of all-edges-outward operations over the nodes guarantees a directed path to the destination

node. The link inversion operations are informed to the adjacent nodes through the packet

headers. Assuming that there is connectivity towards the packet destination in the forwarding

plane, packet delivery is maintained even without control plane communication. This means

that forwarding is resilient to any combination of data link failures that does not isolate the

source and destination nodes – in contrast, for example, to pre-computed backup paths, where

the number of required backup rules is usually proportional to the set of concurrent failures that

can be tolerated. However, updates in policies still depend on control plane connectivity.
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2.3 Discussion

The proposals described in Section 2.1 have the merit of employing SDN as a framework

to control the infrastructure of wireless and mobile networks or as a tool to improve provision

of services. However, those papers do not address using wireless networks for tolerance or

prevention of control plane partition.

Work discussed in Section 2.2 presents two groups of approaches regarding this issue, in

Subsections 2.2.1 and 2.2.2. The proposals in Subsection 2.2.1 address control plane partition

by deploying a logically centralized controller as a physically distributed system, eliminating

the single point of failure. However, the trade-offs of the CAP theorem (consistency, availability

and partition tolerance) apply to SDN as well (PANDA et al., 2013). This physical distribution

is characterized by a compromise between the complexity of keeping state synchronized among

the controller instances and the loss of global view of the network.

The proposals favoring state consistency between control instances resort to a variety of

sharing mechanisms, usually depending on an underlying external system. However, the use of

such a system raises its own issues (HASSAS YEGANEH; GANJALI, 2014). First, the control

application has no influence over the physical placement of state shares in the distributed store.

Secondly, interfacing between the controller and the external storage system incurs overheads

on the control plane. Finally, the storage system itself must be managed as well.

A common way to diminish the impact of losing global state awareness is to exploit

locality of control plane operations. Research towards identifying particular state distribu-

tion characteristics of a network control plane is underway (SCHMID; SUOMELA, 2013;

AKELLA; KRISHNAMURTHY, 2014; CANINI et al., 2015) and it could enable partition tol-

erance for a growing number of applications. However, as long as there are network functions

that are intrinsically dependent on a global and consistent network view, a logically centralized

controller is required. If such a controller is physically distributed, this means that state must

be consistent among instances.

When the loss of connectivity between forwarding devices and their control units cannot

be avoided, some of the consequences can be mitigated by mechanisms that delegate concerns to

the forwarding plane, as discussed in Subsection 2.2.2. Yet, these techniques are a step back in

the trend of keeping the forwarding devices simple and centralizing network programmability.

In contrast to related work, the proposal described in this dissertation requires no mod-

ifications to the forwarding devices, to the controller or to the OpenFlow protocol for keeping

control plane connectivity in the event of link failures.
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3 A PROPOSAL FOR THE SDN CONTROL PLANE WITH CELLULAR LINKS

Taking into consideration the importance of maintaining connectivity between forward-

ing devices and controller, we build on our previous work (PETRY; SILVA; BARCELLOS,

2015) in describing and evaluating a novel SDN control plane architecture where additional

cellular links (e.g. 4G, LTE) are employed as a backup resource for the control plane.

This architecture can provide partial functionality and network management activities

under failures in the primary wired control links, transparently to the network elements and

without incurring in high costs on hardware. In Section 3.1 we present three possible scenarios

for adding cellular links in SDN, the latter of which is the focus of this work. In Section 3.2

we briefly describe the three research questions that guide the evaluation of the chosen setting.

A common testbed and a set of assumptions that apply to all of the questions is presented in

Section 3.3.

3.1 Additional Cellular Links

There are three main settings in which additional cellular links could be used to extend

the network: a) for shared forwarding plane traffic and physically in-band control plane traffic,

b) for east/westbound control plane traffic among controller instances, and c) for southbound

control plane traffic between forwarding device and controller.

Figure 3.1: Cellular links in Software Defined Networks for shared forwarding plane traffic and
physically in-band control plane traffic. C stands for controller, S for switch and H for host.

C

SS

H H H H

Source: by author (2015).

The first alternative, shown in Figure 3.1, has already been suggested in some of the

works discussed in Section 2.1 (YAP et al., 2010; LI; MAO; REXFORD, 2012; GUIMARAES;
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CORUJO; AGUIAR, 2014). However, as link failures are concerned, this design features shared

fate between control and forwarding planes, and it is not in the scope of this work.

Figure 3.2: Cellular links in Software Defined Networks as backup for east/westbound control
plane traffic among controller instances. C: controller, S: switch and H: host.

C C

S S

H H H H

Source: by author (2015).

Figure 3.2 illustrates the second alternative. Albeit the architecture is promising for

preventing partition of control instances, it still depends on the convergence of an east/west-

bound standard, as well as on the evolution of open distributed controllers. As discussed in

Section 2.2.1, previous work on controllers with distributed instances either consists of closed-

source solutions or relies on non-standard synchronization frameworks such as distributed file

systems or key-value pair stores. Certain restrictions in control application behavior and policy

decisions towards state synchronization have already been noted (TOOTOONCHIAN; GAN-

JALI, 2010), notably for scalability reasons related to event handling and device probing. Al-

though this possibility is not explored here, the use of backup cellular links for keeping state

synchronized among separate controller instances has good potential inasmuch as research on

distributed controller state matures.

The third alternative, shown in Figure 3.3, is to extend the control plane connectivity

through additional wireless links between the forwarding devices and the controller. That is, the

forwarding element has two paths towards the controller: a primary wired link, in which control

plane traffic is carried under normal circumstances, and a backup 4G link from a different

network, serving as a contingency resource should a failure occur in the primary channel. This

approach is the focus of this dissertation, which is structured according to a set of research

questions to be answered.

Each question is presented in a separate chapter, with methodological aspects specific to

the experiment designed to answer it. The following section describes the research outline by
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briefly introducing each question and showing a common ground on the methodology and the

testbed for all of them.

Figure 3.3: Cellular links in Software Defined Networks as backup for southbound control plane
traffic between forwarding device and controller.

C

S S

HH H H

Source: by author (2015).

3.2 Research Questions

The aim of this research is to answer the questions: Q1. how the behavior of the control

plane is affected by characteristics of cellular links; Q2. how quickly the control plane is handed

over to a backup link when a failure occurs; and Q3. how well do network functions that rely

on a snapshot of the network state behave on such an architecture.

The first question is treated with a set of experiments measuring the mean response

time of interactions between a forwarding device and a controller. The objective is to deter-

mine the effects of the link characteristics on OpenFlow traffic for different packet sizes and a

range of simultaneous message exchanges. In short, the response time of a message exchange

is the elapsed time between sending an OpenFlow message from one end of the connection

to the other and receiving its corresponding reply, completing a round trip. The mean RTT

(Round-Trip Time) of message exchanges started at both ends of the control plane channel is

used for comparison between wired and wireless links. The metric is based on the output of

cbench (TOOTOONCHIAN et al., 2012), a tool developed for SDN controller benchmarking.

Taking the network control out of forwarding devices and moving it into a logically centralized

entity has performance implications that are recognized by the SDN community, particularly

concerning the controller resource consumption (YU et al., 2010; CURTIS et al., 2011) and

control channel overheads (YU et al., 2013; CHOWDHURY et al., 2014; ISOLANI et al.,
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2015). In the proposed architecture, it can be assumed that the cellular link represents a stricter

performance bottleneck on control plane traffic than the controller hardware itself. Therefore,

the same metrics of controller benchmarking are used for evaluating the cellular link features

– such as higher expected latency and lower available bandwidth – over OpenFlow. A detailed

description of the experiment and the results are presented in Chapter 4.

The second question concerns the handover procedure for the control plane channel.

The forwarding element is multihomed, thus being able to reach the controller through two

disjoint paths: a primary wired link and a backup 4G link. A failure is injected in the primary

link, and three handover procedure alternatives are evaluated. First, with an unmodified Open

vSwitch (OPEN VSWITCH, 2015). Second, with a slightly modified version of the software

switch for a smaller inactivity probe interval. Finally, with the original switch and a Multipath

TCP connection. The failover metric is defined as the elapsed time between the last control

message received at the controller through the defunct primary link and the first message arrived

through the backup link. Chapter 5 discusses the benefits, drawbacks and requirements for each

of the three alternatives.

The third question is answered by experimenting an application that operates over a

snapshot of the network state on the proposed architecture. A very popular choice for this kind

of application in the literature is load balancing – examples are shown in Chapter 6. There-

fore, this function is implemented with a strategy that mixes reactive installation of rules and

proactive routing of flows, based on a scheme proposed in the work of Wang et al. (WANG;

BUTNARIU; REXFORD, 2011). The behavior of the load balancer application is observed

using different statistics collection rates and flow rule granularities. The efficiency of load bal-

ancing is evaluated by measuring the server port usage, while the timeliness of packet delivery

is obtained by observing the forwarding plane throughput.

3.3 Testbed

The experiments performed to answer the three research questions share a common

testbed, illustrated in Figure 3.4, and a set of assumptions. In each of the experimental set-

tings described, the Forwarding Plane Host is a 2 GHz Core 2 Duo machine with 4GB RAM

running VMware Player 6 on Windows 7 32 bits. The virtual machine image receives a single

processor core and has 1GB RAM available. The Mininet Virtual Machine (LANTZ; HELLER;

MCKEOWN, 2010) image version 2.1.0 was used, with either the bundled Open vSwitch 1.9.0

or its recompiled version with altered lower bound for the inactivity probe. Where applicable,
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cbench is executed on this same virtual machine image.

Figure 3.4: Basic experimental environment for this dissertation. The illustration in 3.4a se-
mantically represents our proposed architecture with the OpenFlow switch, controller and the
partially disjoint paths via 4G LTE and Ethernet. The implemented testbed is shown in 3.4b.

Ethernet

4G link

Forwarding 
Plane Host Controller Host

(a) Abstract illustration

USB 
tethering

Forwarding 
Plane Host Controller Host

Router

Public 
network

poxmininet

(b) Implemented testbed

Source: by author (2015).

The Controller Host runs POX (POX, 2015) 0.2.0, carp build, on a 1.8 GHz (x 4) Core

i3 with 4GB RAM, on Ubuntu 14.04 64 bits. The machine is connected to a router through

an Ethernet cable. The router has a public fixed IP address, and it is configured to forward

incoming traffic with destination port 6633 (standard for an OpenFlow controller) towards the

same port number on the Controller Host.

The Forwarding Plane Host can reach the Controller Host either by a 4G LTE cellular

network accessed via USB tethering through the Internet or by a local wired Ethernet con-

nection to the same router. The virtual machine has bridged access to both physical network

adapters. The control plane is deployed out-of-band, which is a typical choice in SDN deploy-

ments (PANDA et al., 2013; JAIN et al., 2013). This means that control traffic is routed and

forwarded through a legacy network and is not itself managed by OpenFlow.
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The experiments were conducted in the central area of Porto Alegre, Brazil, starting

around 11 PM local time, due to the good 4G LTE signal quality found during this period of the

day. The cellular service was obtained by subscription to one of the top four mobile providers

operating in Brazil. The cellular reception signals of the carrier ranged around -75dBm and

-85dBm. Since the 4G service is obtained via the mobile provider base station, the experiments

performed over the cellular link are subject to a small additional latency as traffic reaches the

home router through the public Internet. Meanwhile, traffic over the wired channel can be

delivered directly through the home router.

The deployment of Multipath TCP required support in the kernel at both ends of the

control connection. This was achieved by installing the linux-mptcp module both on the Mininet

image and on the Controller Host operating system, provided by (PAASCH; BARRE et al.,

2015), with linux-image-3.14.0-89-mptcp kernel.

The following two assumptions are considered in the evaluation: (i) there is sufficient

signal availability on the site of the hosts (i.e. forwarding devices) connected to 4G interfaces,

and (ii) a host can reach the controller listening interface through the 4G links.

The first assumption is reasonable, given that signal coverage on metropolitan areas is

widely available. This work is focused in the three questions presented in Section 3.2, address-

ing particular aspects of an architecture with backup cellular links for the control plane, assum-

ing that the signal quality is good. As such, this work is a novel stepping stone for evaluating the

suitability of this architecture. Assessing the characteristics of signal quality throughout hours

and days and comparing the quality of service offered by different providers are very impor-

tant measures for production deployments. However, both aspects are specific to the particular

region of deployment, and thus, are out of the scope of this dissertation.

The second assumption could raise concerns about using public networks for control

traffic. However, it is feasible to apply the security measure recommended by the OpenFlow

protocol specification (OPEN NETWORKING FOUNDATION, 2013), which consists in se-

curing the control channel with SSL.

The testbed we have available and that we used throughout this evaluation has a very

limited scale if compared to the infrastructure of some production networks. However, we be-

lieve that it still allows us to obtain valuable insights towards answering our research questions,

which can be extended into conclusions that also apply to larger scale environments.
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4 EVALUATING THE EFFECTS OF CELLULAR LINKS IN OPENFLOW

Some features of cellular links – namely, latency and bandwidth – are expected to be

limiting factors to be dealt with in actual control plane network deployments. The following

set of experiments stresses the communication between controller and forwarding devices, in

an attempt to measure how strong this limitation is in comparison to wired connections and,

therefore, walk towards answering the first question of this research: Q1. How is the behavior

of control plane traffic affected by the characteristics of cellular links?

4.1 Methodology

With OpenFlow, the control plane communication is achieved through a TCP connection

between a forwarding device and a controller. To understand the effects of the underlying media

on control traffic, response times are measured for message exchanges between both ends.

Figure 4.1: Terminology for message exchanges in the RTT experiment. A single exchange (a)
refers to a pair of messages exchanged between two hosts. A single loop (b) is a sequence of
consecutive single exchanges. A number of parallel loops (c) can take place simultaneously
between the hosts.
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Source: by author (2015).

The message exchange loop used in this experiment is the same performed by cbench,

a tool for controller benchmarking (TOOTOONCHIAN et al., 2012). Three terms that help

describing the methodology are now defined, as they will be used throughout the text. Figure 4.1

illustrates each of them. The term single exchange (4.1a) is used to describe one round trip,

where host A sends a message to host B, which in turn replies with a second message. On a

single loop (4.1b), single exchanges are performed in series. Each time that host A receives a
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reply from host B, it starts another exchange by sending a new message. Additionally, many

single loops can be performed asynchronously. They will be referred to as parallel loops (4.1c).

The methodology of this experiment is described according to the following structure:

in Subsection 4.1.1, the metrics for the RTT measurement are presented in detail. Then, three

scenarios are described in Subsection 4.1.2, featuring the differences in the message pair of

single exchanges and the tools employed to perform the experiment. The input parameters are

discussed in Subsection 4.1.3.

4.1.1 Metrics

The diagrams in Figure 4.2 illustrate the parallel loops for each of the three experimental

scenarios. Messages with varying payload are written in capitals and are represented by thicker

arrows. A total of n parallel loops occur simultaneously over 30 seconds, split into slots of

one second. The single exchanges are not bounded within a given time slot. For instance, the

starting host can send a message near the end of time slot ti and receive the reply already during

time slot ti+1. In any case, an exchange is considered to belong to the time slot in which the

response is received back at the initiating host.

Let rt[e] be the number of replies received by the starting host within single loop e during

time slot t. Let r̄t be the mean number of replies received within the n parallel loops during

time slot t, as in Equation (4.1).

r̄t =
1

n

n∑
e=1

rt[e] (4.1)

The mean round-trip time during a single slot is given by the inverse of the mean number

of replies received during that slot (4.2).

RTTt =
1

r̄t
(4.2)

The average exchange times featured in the plots (4.3) are measured over 30 consecutive

time slots of one second each, based on the number of replies received within each slot per loop.

For the error bars, the chosen confidence interval is 99%, using Student’s t distribution with 29

degrees of freedom (T = 2.756).

RTT =
1

30

30∑
t=1

RTTt (4.3)
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Figure 4.2: The Forwarding Plane Host reaches the Controller Host either by a wired connec-
tion or by a 4G link. In each single exchange of conversations initiated at the Forwarding Plane
Host (4.2a, 4.2b), packet in messages are sent with cbench, and the POX controller at the op-
posite host responds with flow mods. In the single exchanges of the opposite sequence (4.2c),
the control application at the Controller Host sends flow stats requests, and a single switch on
Mininet reacts with flow stats replies. Each of the three timelines illustrate n parallel loops, over
30 time slots of one second for the experiments a, b and c. Messages with varying payload are
written in capitals and are represented by thicker arrows.
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This metric is aimed at assessing the average round trip time of control plane traffic

with each underlying link media, featuring some variations in the exchange pattern through the

choice of input parameters. As parallel loops take place asynchronously, it is often the case that

some of the single loops are able to perform more exchanges than others in a given time slot.

Occasionally, a single loop may even remain in starvation for a while. The interleaving among

parallel loops is not in the scope of this evaluation. Therefore, the average elapsed time for

an exchange to complete from all parallel loops is taken as an indicator of the performance of

control traffic over a given channel.

4.1.2 Message exchange scenarios

The performance of the control plane message exchange on a cellular link is influenced

particularly by the higher latency and the lower bandwidth obtained with this media. Therefore,

the experiments consist in filling the channel either with more parallel loops or with increasingly

larger packets. Additionally, the characteristics of the evaluated architecture and the testbed

require considering differences between the upstream and downstream data rates, which are

usually asymmetric in LTE service (LTE, 2015). Most clients served by retail mobile providers

are also behind NATs, making it difficult for an external server to directly initiate communi-

cation, as unidentified packets tend to be filtered out (CHEN et al., 2013). As the OpenFlow

connection is established by the switch to a fixed IP address assigned to the controller (OPEN

NETWORKING FOUNDATION, 2013), this means that the cellular interface must be attached

to the Forwarding Plane Host. Consequently, messages sent by the Controller Host are always

on the downstream direction, which has a higher data rate, and messages sent by the Forwarding

Plane Host have a more restrict data rate in the upstream direction.

In order to assess the impact of these features, three evaluation scenarios are proposed,

based on the message exchange loop described earlier. As cbench is intended as a controller

benchmark tool, it poses itself as a switch from the controller’s point of view, sending packet in

messages and measuring the mean response time. Two scenarios follow this same scheme, fea-

turing message exchanges initiated at the Forwarding Plane Host. In the first one, the channel is

filled with increasingly larger messages upstream in each execution, while in the second one the

message length variation occurs downstream. The third scenario is aimed at evaluating message

exchanges started at the opposite end of the connection. Since the cellular interface is fixed at

the Forwarding Plane Host and the packet in - flow mod pair cannot be flipped, the statistics

collection message exchange is used instead. Table 4.1 summarizes the three scenarios.
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Table 4.1: Overview of the RTT experimental scenarios
Exchange diagram Figure 4.2a Figure 4.2b Figure 4.2c

RTT plot Figure 4.3a Figure 4.3b Figure 4.3c

Generating host Forwarding Plane Host Forwarding Plane Host Controller Host

Message pair
packet in
flow mod

packet in
flow mod

flow stats request
flow stats reply

Message with
varying size

packet in flow mod flow stats reply

Source: by author (2015).

Packet in and flow mod. This message pair is one of the fundamental OpenFlow pro-

cesses. It consists in the reactive rule installation procedure, triggered by the arrival of a flow

that is not currently matched by any rule at the forwarding device table. After processing

the message according to the policies programmed into the control applications, the controller

replies with a message instructing the device what to do with the flow or with that individual

packet. This message could be a flow mod, which tells the device to install a rule in its table.

In order to change the size of the packet in messages sent upstream by the Forwarding

Plane Host for the first scenario, this work includes an extension to cbench that allows configu-

ration of the payload length of generated forwarding plane packets embedded into the packet in.

The source code differences are displayed in Appendix B.1. The controller application reacts

to each received packet in by sending an actionless flow mod.

In the second scenario, the size of the messages sent by the Controller Host is adjusted

by attaching an action set to the flow mod. This set is comprised of a number of 8-byte output

actions and a single 4-byte strip VLAN instruction, obtained with a small modification in POX

for removal of four additional padding zeroes (as shown in Appendix B.2). This is to assure

that the payload size is consistent among every RTT experiment. In these two scenarios, control

traffic is generated by cbench with N parallel loops, which corresponds to one of the parameters

of the tool that defines the number of emulated switches.

Flow stats request and reply. The message exchange for the third scenario is started

at the controller. It is part of the statistics collection mechanism. The controller queries the

statistics of each flow that has a rule installed at the forwarding device flow table with a flow

stats request message. The device answers with a flow stats reply, including statistics about

each individual flow, such as the rule duration and the number of transferred packets and bytes.
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The control application manages the size of the device response message. Statistics for

each installed rule have a fixed length. Thus, the size of the flow stats reply is a function of the

number of rules installed by the controller into the flow table of the device. The Forwarding

Plane Host runs an emulated network environment within Mininet. As the focus of the experi-

ment is the control plane traffic, the forwarding plane topology is kept as simple as possible, in

order to limit the processing overhead. Therefore, a single switch is deployed. Before starting

measurements, the control application proactively installs a set of 1 to 10 rules, each with a

different match. In this experiment, the choice is to use distinct matching values for the data

link layer protocol header. The size of this rule set is defined to achieve the desired response

packet length. After the installation of the rules, the control application sends N concurrent flow

stats requests and accounts for the replies sent by the emulated switch.

It is worthy of note that the change of the initiating host and message pair required for

the third scenario implies in limitations in the experiment, as additional processing is performed

both at the Forwarding Plane Host and Controller Host. In the first two scenarios the Forward-

ing Plane Host executes cbench, which is specialized for generating packet in messages and

accounting for the replies. Additionally, it can perform basic OpenFlow interaction for estab-

lishing a number of concurrent TCP control connections and answering to eventual controller

queries with dummy answers. In contrast, the third scenario features a full-featured software

switch emulated in Mininet. As for the Controller Host, the control application running in POX

for the first two scenarios simply replies to a packet in from any control plane connection with

an empty flow mod. In the third scenario, the application manages the N parallel loops and

the measurement of replies, however maintaining a single control connection with the emu-

lated switch. While these limitations cause a lower performance on the hosts, the results show

that the control channel media is the stricter bottleneck, particularly as the values of the input

parameters increase.

4.1.3 Input parameters

The number of parallel loops is the first input parameter. In the result plots, each choice

of value is represented on a separate series. The second variable is the size of the payload of the

messages, corresponding to the horizontal axis of the plots.

Increasing the number of parallel loops or the payload of the messages going in one

direction result in filling the control channel. The difference lies in the number of messages

traveling the other way around. For instance, changing the number of loops from N to 2N or
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doubling the payload of messages upstream would seem to equally fill the upstream bandwidth.

However, each single loop has synchronous exchanges. The choice of doubling the number

of parallel loops incurs in doubling the number of downstream messages, while doubling the

payload does not. In summary, an experiment with double the number of loops is more sensitive

to link latency than an experiment with double the payload.

In each of the three scenarios, the number N of parallel loops ranges from 32 to 160. The

generating host initiates the N loops. For each completed single exchange inside a loop, a new

one is started. Within a warm up period of one second, the number of parallel loops stabilizes

as N.

Table 4.2: TCP payload and Ethernet frame size of flow stats reply as a function of the number
of flow rules installed. In the other two RTT experiments, packet in or flow mod messages are
set to the same sizes.

Flow rules r 1 2 3 4 5 6 7 8 9 10

TCP payload p(r) (4.4) 108 204 300 396 492 588 684 780 876 972

Ethernet frame f(r) (4.5) 178 274 370 466 562 658 754 850 946 1042

Source: by author (2015).

The range of packet sizes for each RTT experiment is based on the payload of flow stats

replies covering from 1 upto 10 flow rules, as shown in Table 4.2. The OpenFlow header of

this message has 12 bytes, and statistics for each rule have 96 bytes. The TCP payload p as a

function of the number of rules r is, therefore:

p(r) = 96r + 12 (4.4)

The bottom row of Table 4.2 shows the layer 2 Ethernet frame length, including additional

70 bytes: 14-byte Ethernet, 20-byte IP and 32-byte TCP headers and a 4-byte Ethernet Frame

Check Sequence. Summing up the OpenFlow header, the frame size f as a function of the

number of rules r is:

f(r) = 96r +

Ethernet︷︸︸︷
14 +

IP︷︸︸︷
20 +

TCP︷︸︸︷
32 +

OF︷︸︸︷
12︸ ︷︷ ︸

Headers

+ 4︸︷︷︸
FCS

= 96r + 82 (4.5)

As described earlier, the payload is controlled (i) with the additional cbench parameter in the

switch-initiated exchange with varying packet in length, (ii) with an attached set of actions by
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the control application when varying flow mod size and (iii) with preliminary installation of

flow rules in the statistics exchange.

The effects of the underlying media on control plane traffic generated in these scenarios

will be compared between the Ethernet and the 4G LTE link in the following section. While it

is expected that the communication over the wireless link will have a higher latency, the intent

of this experiment is to identify whether there is a stable, bounded time for these exchanges and

what are the effects of having concurrent exchanges with varying message sizes. An example of

this scenario is to have several forwarding devices simultaneously performing such interactions

on a shared link. Furthermore, cellular links often have different upstream and downstream

connection characteristics. Comparing a message exchange by varying the packet size in one

direction at a time can help assessing the impact of this difference.

4.2 Experimental Results

As shown in the first two plots of packet in and flow mod exchange (Figures 4.3a and

4.3b) the cellular link in this experimental environment has a base RTT of around 120ms. While

lower latency values for operations such as ping and file download over 4G LTE have already

been published (CHEN et al., 2013) – with mean RTTs below 100ms – this difference is in great

part due to the characteristics of the carrier networks and the service offered in each region. This

is supported by consistent results between OpenFlow message exchanges with small payloads

and ping RTTs, both performed in the experimental testbed described here. In any case, this

lower bound is significantly higher than the one achieved with a direct Ethernet wire.

Additionally, the RTT increases as the channel bandwidth is filled either by increasing

packet sizes or by adding parallel loops. It can be seen in the 4G 32 exchanges line of Fig-

ure 4.3b that the mean latency is consistent among all payload sizes along the horizontal axis.

Also, the same line in both Figures 4.3a and 4.3c shows but a slight slope upwards as the pay-

load is increased. However, as the number of parallel loops is linearly increased, the RTT line

slope gradually becomes steeper. The occupation of the channel bandwidth causes some mes-

sages to be buffered and delayed. In fact, when using smaller payloads – left-hand size of the

horizontal axis in each plot – the mean RTT for any number of parallel loops over the same

media is quite similar.

One important consequence of the impact of bandwidth occupation on the message RTT

is that, when the volume of data is large enough, a same volume has different latency values

upstream and downstream, proportionally to the bandwidth difference between them.
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Figure 4.3: Average RTT for both media in each scenario.
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This is supported by the comparison between Figures 4.3a and 4.3b. The only relevant

difference between both scenarios is the direction in which the payload is changed – upstream

with packet in in Figure 4.3a and downstream with flow mod in Figure 4.3b. All the 4G lines in

both plots are lower bounded, as discussed eariler. However, as either the payload or the number

of parallel loops increase, the lines gradually indicate the 1/2 ratio between the upstream and

downstream bandwidth reflected into the RTTs.

In Figure 4.3c, the RTT behavior of the flow stats exchange over the cellular link be-

comes similar to the first exchange with varying packet in size (Figure 4.3a) as either the num-

ber of parallel loops or the payload are increased. Both experiments fill up the channel with

Forwarding Plane Host messages towards the Controller Host over the upstream connection.

The lower bound, however, is quite higher in the flow stats exchange, with the RTT around

200ms.

The statistics exchange experiment has overheads such as having an emulated switch on

Mininet assembling flow statistics instead of the purpose-built cbench on the Forwarding Plane

Host, and a proactive loop for sending statistics requests implemented in the control application

instead of only an event-driven handler promptly replying a fixed message on the Controller

Host. This difference is shown by the reference Ethernet lines, as the RTT grows faster in

Figure 4.3c. Nonetheless, in the 4G lines, it can be seen that it is no longer the bottleneck when

packet sizes or concurrent exchanges are increased. The channel features are the dominating

factor.

In summary, on a cellular network OpenFlow control plane, (i) the latency lower bound

is significant, (ii) both the packet size and the number of concurrent exchanges can increase the

latency as messages are buffered and the bandwidth occupation is reached, at which point (iii)

the bandwidth difference between the downstream and the upstream connection proportionally

affects the message RTTs.

The severity of the impact of the higher latency varies between different network func-

tions, according to their reliance on the timeliness of the propagation of network events. Never-

theless, the measurements underline that, with the latency achieved nowadays, cellular networks

can be seen only as a contingency mechanism for the control plane in scenarios where, other-

wise, the network would be partitioned.

The latency penalty caused by high volume of control plane traffic is likely to occur in

more reactive setups. For instance, a churn of unmatched flows triggering several packet in mes-

sages may not only fill the control plane channel bandwidth, but also overflow the forwarding
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device buffer. Then, the switch might send the whole packet embedded into the control plane

message instead of an arbitrary number of header bytes. This can be prevented with particular

configuration of the device behavior for table misses and installation of wild card rules, usually

at the cost of conceding fine grain control.

The same idea applies to statistics collection. The volume of traffic can be reduced by

the control application by decreasing the rate of requests, on a compromise with the timeliness

of the network visibility.
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5 EVALUATING THE FAILOVER TO THE BACKUP CELLULAR LINK

The evaluation of the RTT of OpenFlow message exchanges presented in the last chapter

helps to characterize the behavior of a SDN control plane operating over a cellular network.

However, the current state of technology and services indicate that this architecture is a better

fit for a contingency resource, rather than for a primary control plane deployment, in particular

because of the latency lower bound.

For a better characterization of the proposed backup mechanism, this chapter discusses

the handover procedure from a primary wired control plane connection that fails to a backup

cellular link. Guaranteeing a fast failover time on the control plane is crucial for minimizing

the impact on forwarding plane operation. Three handover alternatives are described, and an

experiment is conducted with each one of them in order to help answering the second question:

Q2. How quickly is the control plane handed over to the backup link when a failure occurs?

5.1 Methodology

Using a cellular network device as a backup link implies defining a handover mechanism

to be applied when a failure occurs in the primary wired link. The quality of such a mechanism

is determined by the impact observed in the delivery of control plane messages during failure

detection and recovery. OpenFlow control messages are exchanged over a classic TCP connec-

tion. Therefore, the natural way to accomplish the handover when a link failure partitions the

subnetwork which the primary interface belongs to is to somehow detect that the connection is

down and then to establish a new one using the backup interface.

However, the time for detection and recovery can be smaller if the backup connection

is set up earlier, before the failure event. The OpenFlow specification (OPEN NETWORKING

FOUNDATION, 2013) provides for the configuration of backup controllers – i.e. on a different

address and port – but not for backup paths to a same controller.

Since version 1.3, the OpenFlow protocol also presents a feature called Auxiliary Con-

nection. However, this feature is not designed to provide a backup connection that takes over

the control plane when the Primary Connection fails. It is rather intended to allow dividing

tasks between parallel connections (e.g. rule installations and new flow notifications on the pri-

mary connection, and statistics collection on the auxiliary one). In fact, the protocol specifies

that once a conforming switch detects that the main connection to a controller is broken, it must

immediately close all its auxiliary connections to that same controller, enabling it to properly
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resolve Datapath ID1 conflicts (OPEN NETWORKING FOUNDATION, 2013).

5.1.1 Experimental setup

The objective of the experiment is to measure the down time in control plane traffic after

the failure on the primary wired link. As shown in Figure 5.1, Mininet is deployed with a single

host connected to a forwarding device. The emulated host sends an UDP packet to the emulated

switch every 100 ms to trigger packet in events, changing the destination port each time in order

to cause different flow matches. The control application always responds with an actionless flow

mod which exactly matches the packet flow, so that packet in messages keep being generated.

Figure 5.1: In this experiment, emulated host and switch run in Mininet at the Forwarding Plane
Host and POX at the Controller Host. As before, there are two links between the hosts, and the
Ethernet one is deactivated during communication to measure how long it takes for the control
plane to recover.
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Source: by author (2015).

1A Datapath ID uniquely identifies a datapath from the controller’s point of view. It is usually composed from
the switch MAC address and additional bits at the choice of the implementer.
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The failover metric is the mean time between the last packet in received at the controller

before the wired link is deactivated and the first one received afterwards, over 30 runs. Note that

this metric is an upper bound to the actual failover time. There can be a small interval between

the last message received and the failure, and another one just after the reestablishment of the

channel and before the arrival of the next packet in.

First, the experiment is conducted on an unmodified Open vSwitch included in the

Mininet image, to be presented in Subsection 5.1.2. As the analysis of the experiment will

show that the majority of the down time is due to an implementation detail, the experiment is

performed on a recompiled version of the software switch – as it will be described in Subsec-

tion 5.1.3 – removing a hard-coded lower threshold for the controller probe interval. Although

the failover time is dramatically reduced, it is still limited by the probe intervals, as the pro-

cedure depends on detecting channel inactivity by timeout. Finally, in Subsection 5.1.4 we

present an alternative approach that takes advantage of Multipath TCP, so that a same connec-

tion is maintained through disjoint paths2 and the failure recovery can be accomplished quickly

via the cellular link. While the latter option decreases the down time even further, it is subject

to some extra requirements on both ends and on the underlying network.

5.1.2 Handover on Unmodified Open vSwitch

The Forwarding Plane Host is prepared for the failover by having gateways configured

both for the wired and wireless media, with the route command. A lower metric is set on the

gateway corresponding to the wired interface, to ensure that traffic will be primarily directed

through it. A failure is inserted by taking down the Ethernet network interface of the Forwarding

Plane Host during the loop of generation of UDP packets on the emulated host, forcing the new

connection to be established through the gateway assigned to the surviving interface.

In this experiment, the link failure is always inserted in the first hop, for the sake of

simplicity. Other failures along the path causing partition in the primary subnetwork could be

detected on the TCP connection with an auxiliary mechanism, out of the scope of this work. For

instance, an user space script could be configured to probe the controller with a ping command

and then to alter the gateway setup with arbitrary periodicity and probe interval, establishing

the control plane communication over the disjoint backup path.

2Throughout the text, this term does not necessarily mean an entirely disjoint path. It is enough to think that, at
some point, the paths split into different subnetworks – namely, one of the paths goes through the cellular provider
network.
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The mean down time of the control plane was 12.487s. A careful analysis of the exper-

iment execution and of the Open vSwitch source code indicated that the dominating factor of

this down time was the inactivity probe interval.

Open vSwitch allows the inactivity probe interval for the control plane channel to be

configured. When the communication is idle for the configured amount of time, the switch

probes the controller. If no answer is received after this same amount of time, it tries to reestab-

lish the connection. However, the implementation enforces the probe interval to a minimum of

5 seconds, which is also the default value. This is true for Open vSwitch version 1.9.0, bun-

dled in the Mininet 2.1.0, as well as up to its most recent build (by the time of writing), 2.3.0.

The relevance of this feature motivated a repetition of the experiment with a modified software

switch. The timeline in Figure 5.2 illustrates the failover process.

Figure 5.2: The time between t0 − t1 is the idle control plane time, after which the device
probes the controller with an echo request. It waits for the same amount of time for an echo
reply (t1 − t2). Finally, on t2 the switch tries to reach the controller through the backup link
and the first packet in message arrives on t3.

t

t0 t1 t2 t3inactivity probe inactivity probe recovery time

primary
link fails

sends echo
request

tries to
reconnect

connected to
controller

Source: by author (2015).

5.1.3 Handover on Open vSwitch with Lower Probe Interval

The 5-second lower threshold for the probe interval is enforced by two lines of code in

the OpenFlow connection manager of Open vSwitch. Appendix B.3 shows the lines changed in

the source files, bringing the limit down to 1 second.

Reducing the minimum inactivity probe interval increases the probability of false posi-

tives in detecting loss of the control plane connection. Nevertheless, this is a trade-off that can

be determined by the network administration. This modification simply allows the inactivity

probe interval to be set down to 1 second, but it does not prevent it from being configured to a

higher value.

The failover timeline is the same from Figure 5.2. The probe interval is configured to

the new lower threshold of 1 second, affecting both t0 − t1 and t1 − t2. The result is that the
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mean failover time dropped to 3.56s. While the handover is lower-bounded to 10 seconds –

i.e. twice the inactivity probe interval – with the original Open vSwitch, the small modification

described here brings down this limit to 2 seconds. In fact, the handover time exceeding this

lower bound is the sum of the time spent in the OpenFlow connection procedure and the interval

from completing the connection establishment to the first packet in arrival. The basic handshake

which takes place at t2 − t3 is illustrated at Figure 5.3.

Figure 5.3: When the primary connection is lost and the inactivity probe interval expires
(t0 − t2), a new OpenFlow conenction is established using the backup gateway. A switch
starts the connection by sending a hello message, to which the controller replies. This exchange
negotiates the protocol version to be used in the channel. The controller then queries the switch
about information such as the Datapath ID, its capabilities and number of tables, with the fea-
tures request and reply exchange. Next, the controller configures switch parameters, such as the
number of bytes to be embedded in packet in messages, with set config. Finally, a barrier mes-
sage exchange completes the handshake and separates the connection procedure from normal
operation (t3).
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Source: by author (2015).

5.1.4 Handover with Multipath TCP

Although the recovery time is greatly improved by reducing the inactivity probe interval,

it is still limited by a fixed lower bound of twice the configured time plus the initial handshake

of Figure 5.3 when reconnecting. A more sophisticated way to perform the handover is to create

the backup connection in advance. However, as described earlier, the OpenFlow provision for
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backup controllers supposes that the multiple connections are each to a different controller. In

fact, the protocol specification stresses that the coordination among control instances is on their

own behalf, and describes a set of roles – e.g. Master, Slave, Equal – to which the instances

must assign themselves.

One can think of a scenario where a single controller is multihomed, with each of its

interfaces on a separate network, providing disjoint paths for a switch to establish its control

plane channels upon. Therefore, a switch could be configured to have Master and Slave role

controllers assigned to the addresses corresponding to each one of the multihomed interfaces.

Ideally, this would provide for a shorter handover time, as the backup connection would be

already established before an occasional failure.

There are two obstacles to this approach, though. First, both addresses of the controller

would have to be accessible for incoming connections. As mentioned before, mobile clients are

usually behind NATs, and this is the case for the cellular link in our testbed. Second, and more

importantly, the controller would have to be able to identify that the parallel connections were

intended to provide redundancy. Controllers usually rely on a unique Datapath ID that identifies

a switch on incoming control plane connections. This is useful for maintaining state in the case

of a temporary connection failure. While using the same ID on both connections could allow

the opposite end to identify a given switch, it would also mean that this ID would no longer

be unique, and that the controller’s connection manager would have to drop that assumption.

For instance, in the event of a second connection for a given Datapath ID arriving, the first one

should not be dropped as obsolete.

However, a similar approach can provide the early establishment of the backup connec-

tion on a disjoint path through a multihomed environment by leveraging a recent development

placed at the Transport layer. With Multipath TCP (PAASCH; BARRE et al., 2015) installed at

both ends, separate connections – called subflows – can be created for any pair formed by one

IP address from each of the two ends of the path. As the subflows are transparent to the upper

layer, the multihomed host can be on the switch end or, as usually referred to in our testbed,

the Forwarding Plane Host. Either end of the connection can start new subflows and advertise

alternative IP addresses to the opposite end. Therefore, the mechanism can operate even with

the cellular interface behind a NAT.

The implementation of Multipath TCP is described in RFC 6824 (FORD et al., 2013).

The protocol identifies multiple paths by the presence of multiple addresses at hosts. As in

the previous handover experiments, both Forwarding Plane Host interfaces have their gateways

configured, only with the cellular interface being signaled as a backup path to the MPTCP
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module. Therefore, when the control plane multipath connection is established, two subflows

are initiated – one for each path, as illustrated in Figure 5.4 – but traffic is not directed through

the wireless interface, except in the event of a failure that causes it to be the only remaining

active subflow. This is to avoid unnecessary extra latency due to a share of the control plane

packets being sent via the cellular network, as Multipath TCP allows traffic to be balanced

among available paths.

Figure 5.4: Despite the fact that both ends of the path must have a kernel with MPTCP support
in the transport layer, the multipath connection is transparent to the upper layers. Both the
switch and the controller are oblivious to the multiple paths. Within the connection, the cellular
link is configured as a backup interface. The wireless subflow is established, but receives no
traffic unless the other subflow fails.

primary subflow with eth1, over Ethernet: 192.168.0.3 to 187.105.5.196

backup subflow with eth0, partially over 4G LTE: 192.168.42.1 to 187.105.5.196

Multipath TCP

eth0 interface (4G LTE)
IP 192.168.42.1

eth1 interface (Ethernet)
IP 192.168.0.3

187.105.5.196
Router Public IP

Backup interface configuration with Multipath TCP:
> ip link set dev eth0 multipath backup

Source: by author (2015).

The use of this mechanism is very promising, as shown by the mean failover time being

brought down to 1.584s. However, it is still under development, with the RFC in Experimen-

tal status. Additionally, there are some restrictions on the behavior of middleboxes along the

path. The signaling for multipath management is performed with an optional TCP header field.

Middleboxes should ideally forward packets without changes to the TCP options. However, it

is known that some elements such as NATs, PEPs, traffic normalizers, firewalls or IDSs can

behave differently, either by stripping options, dropping packets with new options, replicating

an option when doing segmentation or dropping options when coalescing segments (FORD et

al., 2013). Since the protocol is designed to fall back to single-path TCP behavior when facing
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these issues, the primary control plane operation would be maintained when passing through

these middleboxes, but the handover mechanism would be lost.

5.2 Experimental Results

Table 5.1: Failover process results (s)
Description Minimum Average Maximum Std. Dev.

5.1.2 Open vSwitch 5 seconds probe 11.491 12.487 14.864 0.865

5.1.3 Open vSwitch 1 second probe 2.600 3.560 8.673 1.434

5.1.4 Open vSwitch with MPTCP 1.017 1.584 3.871 0.517

Source: by author (2015).

Table 5.1 compares the experiments by showing the minimum, mean, maximum time

and standard deviation between the last received communication from the OpenFlow switch

and the first packet in message after recovery in (a) an unmodified Open vSwitch 1.9.0 with a 5

second inactivity probe interval, (b) in a 1 second probe deployment and (c) in an unmodified

switch on a Multipath TCP environment.

In summary, the experiment results show that the failover time is dominated by probe

interval on both single-path TCP scenarios. The handover is possible on an original Open

vSwitch, but the down time can be greatly reduced if the minimum inactivity probe interval

is lowered. No changes are needed in the controller, and there are no additional requirements

on the underlying network elements. However, it depends on some additional failure detection

mechanism to trigger the change of gateway. Likewise, the inverse procedure should be per-

formed when the connectivity is restored in the primary control plane channel, which is not

covered in this work.

Multipath TCP allows for a quicker recovery, as the OpenFlow connection is not inter-

rupted and there is no need to perform a new handshake. Although the controller application

software can be oblivious to it, the underlying kernel in both ends – switch and controller –

must implement Multipath TCP. The additional module might incur in additional overheads in

the switch, in particular if the device has a modest processing unit. Additionally, for the han-

dover to be available, there are some requirements on the behavior of middleboxes towards TCP

option headers.
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6 EVALUATING A NETWORK FUNCTION ON A CELLULAR CONTROL PLANE

One of the most attractive features of OpenFlow is the ability to perform decisions based

on a global view of the network, simplifying network programmability and consequently the

deployment of network policies. The proposed architecture, enhanced with wireless links, is an

effort towards the maintenance of network visibility within the controller. Even if the control

plane partition can be prevented and the global view maintained with this architecture, some

performance limitations have been shown in Chapter 4, and they might have an impact on the

operation of network functions. This leads to the third question: Q3. How well do network

functions that rely on a snapshot of the network state behave on such an architecture?

After obtaining a baseline of the cellular channel behavior and experimenting with the

control plane handover procedure from the wired primary to the wireless backup link, this

chapter evaluates a load balancing application that relies on network state awareness operating

on the proposed architecture.

6.1 Methodology

The third and final question attempts to verify whether network applications which de-

pend upon global visibility can still perform well under the conditions imposed by this alter-

native medium. Load balancing is usually employed in the literature as an example of net-

work function that can leverage the benefits of SDN, such as global visibility (LEVIN et al.,

2012; SCHULZ-ZANDER; SARRAR; SCHMID, 2014), flexible switches replacing some of

the purpose-built hardware (KOERNER; KAO, 2012; GANDHI et al., 2014), grain control of

rules (WANG; BUTNARIU; REXFORD, 2011; CURTIS et al., 2011; BREDEL et al., 2014)

and statistics collection (LI; PAN, 2013). Even in solutions that argue for returning some of

the functionality to the forwarding plane, such as employing network programmability and vis-

ibility with packet instrumentation (JEYAKUMAR et al., 2014), load balancing is one of the

use cases. The scheme for balancing will be described at Subsection 6.1.1, followed by the

experimental setup for traffic generation and measurements on Subsection 6.1.2.
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6.1.1 Network Function: Load Balancing

In this experiment, an address prefix load balancing scheme inspired in the work of

Wang et al. (WANG; BUTNARIU; REXFORD, 2011) is evaluated comparatively in both con-

trol plane media. A binary tree for partitioning the space of source IP addresses among different

server instances is built reactively, according to the latest readings on the usage of switch ports,

and wildcarded rules are installed in the flow table for the forwarding plane traffic.

Figure 6.1: IP prefix-based binary tree. Server replicas are R1, R2 and R3, with assigned weights
α[1] = 3, α[2] = 4 and α[3] = 1. In (a), leaf nodes are mapped to a total of 8 flow ranges. But
the number of wildcard rules can be smaller for the same weight assignment (b).

Source: Wang, Butnariu and Rexford (2011).

A fully reactive scheme in which the controller interferes at each incoming flow would

certainly suffer a greater performance impact when operating over a cellular network control

plane. However, such a scheme is usually considered impracticable in terms of throughput and

latency (GANDHI et al., 2014), due to the overhead of processing such a fine grain fully on

software. As illustrated by related work cited at the start of this section, the trend in the area

is to limit as much as possible the use of a reactive scheme in the software-defined part of

the system. For example, this is achieved with proactive installation of rules, or with hybrid

approaches that manage the trade-off between the performance of a hardware load balancer and

the flexibility of a programmable switch controlled by an application with global visibility.

Conversely, a fully proactive rule installation scheme would hide most of the effects of

the control plane latency, except for some delay in the controller’s view of the network state. In

the strategy chosen for this experiment, rules are still installed reactively in the first occurrence

of a flow. However, the new rule is set to match a range of IP addresses adjacent to the source

address of the incoming packet. Any traffic from this range arriving during the live time of the
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rule will be matched and forwarded without control plane intervention. Additionally, each rule

has an idle timeout of 1s. If no packet matching the range of a rule arrives during this interval,

the switch automatically removes the rule from its flow table. The next time a packet from that

range reaches the switch, a new reactive rule installation will take place. In contrast to a fully

reactive scheme, this strategy does not concentrate all the consequences of control plane latency

on forwarding delay, but rather shares this impact with the effectiveness of the load balancing –

for instance, flow rules based on stale state are more susceptible to perform unequal balancing.

Figure 6.1 illustrates the binary tree scheme proposed by Wang et al. (WANG; BUT-

NARIU; REXFORD, 2011). One of the objectives of the authors was to keep the number of

flow rules to be installed as low as possible. In the example, the IP address space is divided

into 8 flow ranges, each identified by a prefix of 3 bits. Three server replicas have weights

assigned to them, indicating their proportional share of address ranges to receive traffic from.

Two possible mappings are shown between flow ranges and server replicas. The left hand side

mapping is sub-optimal in terms of minimizing the number of rules, even if some of the rules

could be merged – for instance, 000∗ with 001∗ becoming 00∗ towards R1, and 100∗ with 101∗
as 10∗ to R2. In contrast, the right hand side mapping assigns the server replicas to a set of flow

ranges that takes full advantage of wildcard rules. In fact, the reason for grouping IP addresses

by prefix is an OpenFlow limitation that restricts the use of wildcards in the lower order bits of

an address match. The authors claim that, ideally, the mapping should be based on the suffix,

as those bits have greater entropy, but they settled with the IP prefix as a workaround.

In the experiment performed in this dissertation, the server weights are reassigned pe-

riodically, according to the traffic directed to the replica in the latest time slot. Let f be the

number of flow ranges in which the IP address space is divided. The number of server replicas

to which incoming traffic is balanced is given by s. The number of bytes transferred in a server

replica r, 1 ≤ r ≤ s during time slot t is represented as bt[r]. Let ct be a normalization coef-

ficient obtained from the flow ranges term f divided by the sum of the inverses of the traffic

passed through all servers:

ct =
f

s∑
i=1

bt[i]
−1

(6.1)

The weight αt[r] assigned to replica r, 1 ≤ r ≤ s in time slot t is given by:

αt[r] =

⌊
ct−1

bt−1[r]

⌋
(6.2)
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The weight assigned to a server for a given time slot is the floor of the division of

the normalization coefficient by the number of bytes directed to it during the latest time slot.

Basically, server weights are the inverses of the relative traffic directed through them in the

previous interval. The weight is truncated towards zero to become an integer value so as to

obtain a direct mapping between a server’s weight and the number of flow ranges assigned to

it. When the floor function causes the sum of the integer weights to be less than f , the single

server with the top weight αt[arg maxr αt[r]] is incremented by f −
s∑

i=1

αt[i].

6.1.2 Experimental Setup

Figure 6.2 shows three emulated hosts connected to the emulated switch. One host

produces traffic directed to a given destination IP address, which must be balanced among the

server replicas.

Figure 6.2: CH (client host) produces traffic with different IP sources towards either emu-
lated host server replicas (R1 or R2), passing through the emulated switch. Routing rules are
configured according to the load balancer running at POX at the Controller Host.

Ethernet

4G link

Mininet

POX

Forwarding Plane Host

Controller Host

CH R1 R2

Source: by author (2015).

A total of 6000 UDP packets are sent, scheduled according to a Poisson process with a

mean interval of 10ms between consecutive packets. The size of each packet is exponentially

distributed with a mean of 1024 bytes, upper-bounded by the Ethernet frame payload limit (1500

bytes including IP and UDP headers). The source IP is spoofed from a range of 1024 sequential

addresses, simulating the same number of distinct clients, in order to allow the range-based

load balancing to take place. For all conducted experiments, the generated load is the same.

Each incoming packet incurs either in a table miss on the switch, causing a rule to be reactively
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installed by the controller, or in a rule match. Traffic is directed towards two server replicas,

according to matching rules defined by the load balancing application policy.

The set of parameters on the control application configures the load balancer timeliness

features. This refers to the speed of reaction of the controller to a change in state, building an

appropriate matching between addresses and servers and being less prone to perform unequal

balancing. The controller periodically sends stats requests to the OpenFlow switch, becoming

aware of the current state of the servers corresponding ports. At each stats reply arrived, the

server weights are recalculated according to Equation (6.2) and the tree is adjusted. The interval

between each statistics request message is varied between 0.5s, 1s and 2s. A longer interval

decreases control traffic at the cost of possibly reacting too late, due to stale state. Timeliness

is particularly configured by adjusting the granularity of the rules. Since the generated load

is repeated, the granularity is set by splitting the source IP address space of the experiment

(1024) into 32, 64 and 128 flow ranges. For each input value, Table 6.1 shows the minimum

rule granularity (i.e. number of IP addresses matched by a single rule) and the range of rules

installed when using an optimal tree mapping for two servers.

Table 6.1: The top row shows the number of flow ranges in which the address space is sub-
divided. The minimum rule granularity defines the number of addresses matched by a rule
assigned to a single flow range. The optimal number of rules to be installed is minimal when
both weights are the same and maximal when the top weight equals f − 1.

Flow ranges f 32 64 128

Mininum rule granularity 1024/f 32 16 8

Optimal number of rules with 2 servers [2 . . . 1 + log2 f ] [2 . . . 6] [2 . . . 7] [2 . . . 8]

Source: by author (2015).

A more timely controller should perform more efficient load balancing at the cost of

higher control link occupancy. The objective of this experiment is to evaluate the impact of

using a cellular control link over forwarding plane services, in particular due to the added delay

in receiving port statistics reports and in the reactive installation of rules. The negative impact to

load balancing is measured by comparing the relative usage of the server ports. Measurements

of port usage are taken at the Forwarding Plane Host using Open vSwitch ovs-ofctl dump-ports

interface, since the controller readings are dependent on the periodicity of statistics collection –

which is one of the input parameters – and are part of the object of evaluation.

Additionally, the mean forwarding plane throughput is obtained to assess whether the

control reaction time for forwarding decisions causes a significant delay in packet delivery. The
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statistics request interval is fixed at 1s. The address space is divided into 32, 64, 128, 256 and

512 flow ranges. A greater number of flow ranges tends to decrease the rule granularity (i.e.

each rule matches a smaller number of addresses). Given that each rule is installed reactively,

the higher the number of flow ranges, the higher the probability of flow table misses.

6.2 Experimental Results

In Figure 6.3, the results for relative usage of server ports along the experiment duration

are presented in box plots. For instance, a value of 0% means that the load is equally balanced

among the two servers. 100% stands for a case where the load is completely forwarded to one

of the servers. The usage is measured in intervals of 0.5s.

Figure 6.3: Relative usage of two server ports with a control plane link over (6.3a) Ethernet and
(6.3b) 4G. In each plot, the number of IP address subranges and the periodicity of port status
querying by the controller are varied to change the timeliness of the load balancing function.
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Source: by author (2015).
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In summary, load is balanced seamlessly and, on average, efficiently. The higher latency

in the 4G control plane links has caused occasional late reactions in the load balancing process,

as illustrated by the outliers in Figure 6.3b. The experiments conducted with an Ethernet control

link feature a more consistent behavior (Figure 6.3a). Nevertheless, the average load balancing

effectiveness is very similar in both cases. Since the variation in the number of flow sub-ranges

and in the periodicity of statistics collection shows little significance in the measured results,

it can be observed that the major drawback of using 4G links in the control plane for this load

balancing function is the occasional mistaken forwarding decision due to a delayed view of the

forwarding plane state.

Table 6.2: Effect of control latency on data throughput. Statistics request interval is fixed at 1s.

Flow ranges 32 64 128 256 512

Ethernet
kb/s 587.01 593.98 584.46 568.98 590.72

Rules 156 880 2211 3700 4650

4G
kb/s 593.44 574.25 596.31 588.68 588.55

Rules 224 1078 2328 3719 4624

Source: by author (2015).

An analysis of the throughput measurements indicates that the load balancing applica-

tion has little or no impact in the timeliness of forwarding plane packet delivery. Table 6.2

shows that, even with much higher rate of flow installations due to smaller address sub-ranges,

the resulting throughput is consistent among all measurements in both media.

It is worthy of note that this rather favorable behavior is due in part to two factors: the

limited size of the testbed and the policy chosen for the installation of flow rules. Topologies

were kept simple in order to avoid additional overheads from the emulated environment. During

the development of the evaluation of our paper (PETRY; SILVA; BARCELLOS, 2015) and this

dissertation, we observed that the shared CPU time between the hosts and switches within

Mininet had a significant impact in the results. This is the reason why the generated traffic

was kept within a single host with IP source address spoofing, rather than a set of hosts with

distinct assigned IP addresses. The set of servers for which the load is balanced was also kept

on a minimal size. In spite of the fact that the chosen policy features a reactive installation of

flow rules, each one of them matches a set of addresses. The coverage of the rule match varies

according to both the flow ranges parameter and the mapping between addresses and servers,

performed with the binary tree scheme. Therefore, in practice, some of the generated packets
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find a matching rule that was installed proactively, even if it is the first time that a packet with

that source address is generated.

The latency lower bound obtained with current 4G LTE technology is still significantly

high, whether it is around 120ms as measured in the experiments of Chapter 4 or below 100ms

as documented in the literature in other regions of the world (CHEN et al., 2013). For network

applications designed to rely heavily on reactive installation of rules, the use of the backup links

in the control plane imposes a significant performance drawback on the forwarding plane due

to the latency lower bound.

Fortunately, the use of an appropriate load balancing scheme allows to avoid most of

the impact of the control plane latency over the forwarding plane latency and throughput, rather

trading it for occasionally losing efficiency in the load balancing. The ability of adapting a

given network function to the higher control plane latency defines the suitability of this backup

architecture for that network function.
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7 CONCLUSION

To the best of the author’s knowledge, this work features the first analysis of the oper-

ation of OpenFlow control traffic over cellular links, that being the main contribution of this

dissertation. The experimental study provides insights towards answering the questions regard-

ing the effects of cellular links in OpenFlow traffic, the failover procedure to the backup links

and the operation of a network function with a cellular control plane channel.

Among the insights of the analysis, it is worth noting that the experiments show evidence

that backup cellular links on the control plane allow an OpenFlow-based network to maintain

operation of network functions under certain circumstances, in spite of providing lower band-

width and higher latency than wired links. Nevertheless, this architecture is not currently suit-

able for completely replacing an out-of-band wired control plane network. Instead, it can be

seen as a simple, non-expensive backup control architecture for maintaining a consistent global

network state view and limited reactiveness for control plane decisions. With proper configura-

tion and the help of handover technologies like Multipath TCP, this backup architecture is able

to quickly come to action when failures happen in the primary links.

The suitability of the resilient architecture proposed in this dissertation is closely related

to the requirements of the network functions and to the way that control applications are pro-

grammed. As a rule of thumb, the more a network function blocks on events that depend on

controller intervention, the more this function is affected by the latency of a cellular network

control plane. Additionally, the effect can be worsened by control traffic churn, due to a large

number of concurrent events.

In comparison to related mechanisms that attempt to tackle control plane partitions, this

architecture is intended to maintain a consistent, centralized, global visibility of the network,

even if somewhat delayed. Distributed controller instances often feature a trade-off between the

timeliness of state and such global visibility, which is also prone to delays due to consensus

algorithms. When favoring timeliness, techniques usually rely on locality of operations, which

is also subject to the way control applications are programmed. Forwarding plane mechanisms

in general are designed to accomplish tasks without relying on global visibility, and are there-

fore complementary to the other approaches. Nevertheless, this implies separating some of the

network functionality from the logically centralized behavior.

As future work is concerned, applying the concept of wireless links for communication

between physically distributed modules of logically centralized controllers or for interconnect-

ing different controller instances could be explored. While the former alternative should evolve
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in the pace that new flavors of open-source distributed controllers become available and novel

control plane distribution insights are discovered, the latter would depend on the convergence

of an east/westbound API standard.

Another possible line of work is to explore the cellular link placement in a control plane

topology. This could include sharing a backup cellular link for the control channel of several

nearby switches, considering a trade-off between the link occupation by shared control traffic

and the cost of installation and services. The architecture proposed and evaluated here has cellu-

lar interfaces attached to the switch end of the connection, due to the restrictions of the available

testbed and reflecting the most common scenario on mobile networks. However, mobile service

providers in some regions of the world do offer public reachable interfaces for an additional

fee, which in turn could be used at the controller end as a backup interface for the control plane.

This option tends to be strengthened as IPv6 networks spread.

The natural extension to the evaluation of the effects of a cellular link on OpenFlow traf-

fic would be to waive the assumptions made on signal quality. In particular, this would include

performing a long-term experiment (e.g. covering all periods of the day, comparing different

week days, during several months, with different mobile network operators) in an attempt to

identify patterns of variation in the signal quality and characterize its effects. Another possible

extension is to augment the experiment, for instance, by exploring features of alternative control

plane evaluation tools (such as OFCProbe (JARSCHEL et al., 2014)) or by obtaining OpenFlow

traces of production environments.

The handover experiments were based on Open vSwitch, which is a popular choice as

the base system of OpenFlow forwarding devices. The gateway configurations for multihoming

and the use of Multipath TCP could be generalized to other switches inasmuch as their cor-

responding implementations either natively support these mechanisms or allow the proposed

configurations or modifications. Multipath TCP connections share the packet delivery guar-

antees of single-path TCP, given that at least one of the subflows remains active. While this

assures there are no packet losses on the control plane, a deeper assessment on the impact of a

handover on forwarding plane operation would be an interesting extension to this experiment.

Load balancing is frequently chosen as an use case of application based on global net-

work view. It allows for a wide space of schemes and configurations that result in different

controller reactivity requirements. Notwithstanding, the evaluation of a cellular link control

plane could be extended to include more complex network functions, such as IDSs or dynamic

policy-based routing. The first challenge would be to identify how does staleness of state affect

the functions in question.
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In general, the experiments would benefit from a testbed more resembling to production

networks, for instance, using larger topologies deployed outside of an emulation environment

and featuring multiple OpenFlow switches, including retail (not only virtual) devices.
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APPENDIX A — RESUMO ESTENDIDO DA DISSERTAÇÃO

A.1 Introdução

O paradigma de Redes Definidas por Software vem sendo um tema de pesquisa intenso

da comunidade científica nos últimos anos. A separação dos planos de controle e de dados

promete acelerar o ritmo de desenvolvimento, o controle logicamente centralizado tende a fa-

cilitar a operação da rede, e a consolidação de OpenFlow (MCKEOWN et al., 2008) como

padrão de fato para o protocolo do plano de controle cria condições para interoperabilidade de

dispositivos de vários fabricantes.

A.2 Contexto e Motivação

A separação dos planos, entretanto, criou uma forte relação de dependência entre o con-

trolador e os dispositivos de encaminhamento, de maneira que partições na rede podem causar

graves problemas de funcionamento (AKELLA; KRISHNAMURTHY, 2014). Falhas de en-

lace podem acabar isolando os dispositivos e o controlador, impedindo a difusão na alteração

de políticas, rompendo a visão global da rede e, na falta de mecanismos de recuperação ade-

quados, até tornar os dispositivos de encaminhamento temporariamente inoperantes.

A implantação do controlador como um sistema distribuído é uma estratégia frequente

para prevenção da partição do plano de controle. O posicionamento de instâncias de controle

em diversos pontos da topologia diminui a chance de isolamento entre dispositivos e contro-

lador. Entretanto, essa estratégia traz desafios próprios de sistemas distribuídos no que diz

respeito à sincronização das instâncias, de maneira a manter uma visão atualizada e consis-

tente do estado da rede. Uma estratégia alternativa consiste em delegar aos dispositivos de

encaminhamento tarefas que estão associadas ao plano de controle, buscando atenuar as conse-

quências do isolamento ao invés de prevenir a partição. Porém, isso implica abdicar em parte

da programabilidade centralizada da rede que é própria do paradigma de Redes Definidas por

Software.
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A.3 Arquitetura Proposta

Motivado pela importância da questão da partição do plano de controle, este trabalho

avalia a viabilidade de uma arquitetura de plano de controle com enlaces adicionais em rede

celular de dados, para maior resiliência à partições. Embora haja na literatura trabalhos que

envolvem tanto Redes Definidas por Software como Redes sem fio, este é o primeiro trabalho

que investiga o uso da rede sem fio como recurso de contingência para prevenir a partição

do plano de controle. Para tanto, é possível imaginar estes enlaces mantendo a conectividade

entre instâncias de controle (east/westbound), no caso de controladores distribuídos, ou entre

dispositivos de encaminhamento e o controlador (southbound). O foco da dissertação está nessa

última opção. Devido às características do ambiente de teste, a interface sem fio é associada

ao dispositivo de encaminhamento. Uma vez que os serviços de rede celular costumeiramente

mantém o dispositivo servido atrás de um NAT (Network Address Translation), é difícil iniciar

uma conexão a tal dispositivo partindo de fora da subrede. Como em OpenFlow a conexão

é tipicamente iniciada pelo dispositivo de encaminhamento, este é o ponto conveniente para

posicionar a interface celular.

A avaliação toma duas premissas: (i) há boa qualidade de sinal para a interface celular

4G e (ii) o controlador é alcançável por tal interface. A primeira premissa é razoável em regiões

metropolitanas. A segunda premissa levanta questões quanto a trafegar mensagens de controle

pela rede pública, mas é possível aplicar medidas conhecidas de segurança como criptografia

e SSL (Secure Sockets Layer) no canal de controle, conforme recomendado pela especificação

do protocolo OpenFlow (OPEN NETWORKING FOUNDATION, 2013). A avaliação é focada

em oportunidades e limitações desta arquitetura, baseada em três aspectos: (a) os efeitos das

características de enlaces celulares sobre o tráfego OpenFlow, (b) o mecanismo de recuperação

de falhas e migração de um enlace primário cabeado para um enlace sem fio, e (c) a operação

de uma função de rede que depende de visão global da rede e que tenha um nível de interação

limitado e configurável entre o dispositivo de encaminhamento e o controlador.

A.4 Avaliação

Para determinar os efeitos das características do enlace sem fio em tráfego OpenFlow, o

primeiro conjunto de experimentos é realizado com trocas de mensagens do protocolo, variando

a quantidade de conexões simultâneas e o tamanho das mensagens em ambas as direções. A

métrica de tempo de ida e volta de cada troca de mensagens é baseada na saída da ferramenta
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cbench (TOOTOONCHIAN et al., 2012), desenvolvida com vista a avaliar o desempenho de

controladores.

Este conjunto de experimentos corrobora a ideia de que o limitante inferior de latência

em enlaces sem fio é significativo. Além disso, tanto o tamanho dos pacotes como o número de

trocas de mensagem concorrentes pode aumentar a latência ao passo que a ocupação de banda

é alcançada, ponto a partir do qual a diferença de banda entre o upload e o download afeta

proporcionalmente o tempo de ida e volta das trocas de mensagens.

O procedimento de migração do plano de controle é experimentado com o desligamento

da interface primária cabeada, em três condições: (a) com o dispositivo de encaminhamento

em software Open vSwitch (OPEN VSWITCH, 2015) sem modificações, (b) com o dispositivo

ligeiramente modificado para permitir a configuração de um intervalo menor para verificação

de inatividade do canal de controle e (c) com o mesmo dispositivo e apoio de uma conexão

de controle com Multipath TCP (PAASCH; BARRE et al., 2015). Nos dois primeiros casos, a

migração depende de reconexão pela interface sem fio, enquanto o uso de múltiplos caminhos

sob a abstração de MultipathTCP permite o preestabelecimento de subfluxos por ambas as in-

terfaces. A métrica de tempo de migração considera a diferença entre o último pacote recebido

pelo controlador antes de desativar a interface primária por cabo e o primeiro pacote recebido

pela interface de contingência sem fio.

Este experimento deixa claro que o tempo de migração é dominado pelo intervalo de

verificação de inatividade do plano de controle nas conexões de caminho único. Somado a ele,

há um tempo adicional de restabelecimento da conexão OpenFlow pela interface de contingên-

cia. Com Multipath TCP, é possível realizar uma recuperação mais rápida, livre do tempo de

reconexão. Entretanto, o seu uso depende de módulos de kernel que suportem a tecnologia nas

duas pontas da conexão, e está sujeito ao comportamento dos dispositivos de rede ao longo do

caminho em relação aos cabeçalhos de opção TCP, usados para controle de conexão Multipath

TCP.

Para avaliar o funcionamento de uma aplicação de rede que dependa da visão global,

o terceiro conjunto de experimentos é realizado sobre uma função de balanceamento de carga

inspirada em (WANG; BUTNARIU; REXFORD, 2011). A capacidade de reação da aplicação é

configurada com diferentes taxas de coleta de estatísticas e granularidades de regras de fluxo. A

avaliação se baseia na eficiência do balanceamento, medida na ocupação das portas ligadas aos

servidores para os quais a carga balanceada é direcionada, e na rapidez de entrega dos pacotes

no plano de dados, medida pela vazão neste plano.

Com esta aplicação operando sobre o enlace sem fio, a carga é balanceada sem grande
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impacto na entrega dos pacotes de dados, e o balanceamento é, em média, eficiente. Entretanto,

este comportamento favorável se deve em parte à política de balanceamento escolhida, que

procura limitar o impacto da latência sobre o tempo de entrega de pacotes e desviá-lo para uma

possível perda de eficiência no balanceamento. Para aplicações que dependem fortemente da

instalação reativa de regras, o impacto de desempenho é mais significativo devido ao limiar

inferior de latência dos enlaces sem fio.

A.5 Contribuições

A principal contribuição deste trabalho é fornecer uma análise da operação de tráfego

OpenFlow em enlaces de rede celular que é pioneira, de acordo com o conhecimento do autor.

Dentro dessa análise, merece destaque a indicação de que os enlaces de contingência sem fio

permitem manter o funcionamento de funções de rede sob certas circunstâncias, a despeito da

banda mais limitada e de latência superior aos enlaces cabeados. Entretanto, esta arquitetura

atualmente não se credencia a substituir completamente uma infraestrutura cabeada de plano de

controle. Sua aplicação é mais apropriada como uma arquitetura simples e de baixo custo para

contingência do plano de controle, que visa manter uma visão global consistente do estado da

rede e uma reatividade limitada para decisões de controle. Com a devida configuração e com o

auxílio de tecnologias como Multipath TCP, os enlaces de contingência podem entrar em ação

rapidamente na ocorrência de falhas nos enlaces primários.

A aplicabilidade da arquitetura resiliente proposta nesta dissertação é fortemente rela-

cionada aos requisitos das funções de rede e à maneira como as aplicações de controle são

programadas. Como regra geral, quanto mais uma dada função de rede bloqueia na ocorrência

de eventos que dependem da intervenção do controlador, mais ela é afetada pela latência de um

plano de controle em rede celular. Ademais, o impacto pode ser agravado em caso de tráfego

intenso de controle, ocasionado, por exemplo, por um grande número de eventos concorrentes.

Em comparação com os mecanismos que visam tratar de partição no plano de controle,

esta arquitetura tem por objetivo manter uma visão consistente, centralizada e global da rede,

ainda que com eventual atraso. Controladores com instâncias distribuídas normalmente lidam

com um compromisso entre oferecer o estado mais recente e manter tal visão global consistente,

que também está sujeita a atraso devido à execução algoritmos de consenso. O favorecimento

da visão mais recente é normalmente obtida ao se tirar proveito da localidade de algumas oper-

ações, que também está sujeita à maneira como as aplicações de controle são programadas. Os

mecanismos de plano de dados são geralmente projetados para realizar tarefas sem depender de
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visão global, sendo assim complementares às demais propostas. Porém, isso implica tirar do

controlador logicamente centralizado tal tarefa.

A.6 Trabalhos Futuros

Entre oportunidades de trabalhos futuros, pode-se destacar o potencial de aplicar o con-

ceito de enlaces sem fio para comunicação entre módulos distribuídos de controladores logica-

mente centralizados ou para interconexão de diferentes controladores. A primeira opção está

relacionada ao amadurecimento da pesquisa sobre características próprias de um plano de con-

trole distribuído e à disponibilidade de controladores distribuídos de código livre, enquanto a

segunda dependeria da convergência de algum padrão para comunicação entre controladores

(east/westbound).

Outra linha possível é a exploração do posicionamento dos enlaces sem fio na topolo-

gia do plano de controle, considerando possibilidades como compartilhamento de enlace para

canais de controle de diversos dispositivos, levando em conta o custo dos serviços e ocupação

dos canais. O posicionamento do dispositivo sem fio em uma estação de controle é uma

outra opção que pode estender este trabalho, condicionada à popularização no oferecimento

de serviços de acesso a dispositivos celulares pela rede pública (isto é, com um endereço IP

público e alcançável).

Dentre os experimentos realizados neste trabalho, a extensão natural da avaliação dos

efeitos do enlace sem fio seria enfraquecer as premissas de qualidade de sinal, realizando uma

avaliação a longo prazo para identificar padrões de variação do sinal e caracterizar seus efeitos.

Outro adendo seria a troca do recurso de geração de mensagens por traços de tráfego OpenFlow

obtido em ambiente de produção, quando disponíveis. Para os experimentos de migração, a

extensão mais interessante seria observar e avaliar o impacto da migração em operações do

plano de dados.

A avaliação do impacto em funções de rede foi baseada em uma aplicação de balancea-

mento de carga, que depende de visão do estado global e pode ser projetada com variado nível

de dependência à reatividade do controlador. Ainda assim, a avaliação pode ser enriquecida com

a exploração de outras funções que tiram proveito de visão global da rede, tais como sistemas

de detecção de intrusão ou roteamento dinâmico baseado em políticas. O desafio começaria

por identificar o grau de impacto de um possível atraso na visão do estado da rede sobre essas

funções.
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APPENDIX B — SOURCE CODE EXCERPTS

B.1 Source Code of Changes to cbench

This appendix presents the output of the diff command between each original repository

file and our modified version. These changes enable a new command-line parameter specifying

the size of the payload of an IP packet embedded inside each packet in. The original repository

is hosted at: git://gitosis.stanford.edu/oflops.git

Diff to oflops/cbench/cbench.c
47 a48

> { " pay load−s i z e " , ’ z ’ , " Pay load s i z e i n t h e IP p a c k e t embedded i n t h e packe t−i n " ,

MYARGS_INTEGER, { . i n t e g e r = 64}} ,

258 a260

> i n t p a y l o a d _ s i z e = m y a r g s _ g e t _ d e f a u l t _ i n t e g e r ( my_opt ions , " pay load−s i z e " ) ;

328 a331 , 3 3 3

> case ’ z ’ :

> p a y l o a d _ s i z e = a t o i ( o p t a r g ) ;

> break ;

347 a353

> " p a y l o a d s i z e i s %d b y t e s \ n "

361 a368

> p a y l o a d _ s i z e ,

391 c398

< f a k e s w i t c h _ i n i t (& f a k e s w i t c h e s [ i ] , d p i d _ o f f s e t + i , sock , BUFLEN, debug , de lay , mode ,

t o t a l _ m a c _ a d d r e s s e s , l e a r n _ d s t _ m a c s ) ;

−−−
> f a k e s w i t c h _ i n i t (& f a k e s w i t c h e s [ i ] , d p i d _ o f f s e t + i , sock , BUFLEN, debug , de lay , mode ,

t o t a l _ m a c _ a d d r e s s e s , l e a r n _ d s t _ m a c s , p a y l o a d _ s i z e ) ;

Diff to oflops/cbench/fakeswitch.c
28 c28

< s t a t i c i n t make_packe t_ in ( i n t s w i t c h _ i d , i n t xid , i n t b u f f e r _ i d , char ∗ buf , i n t b u f l e n , i n t

mac_addres s ) ;

−−−
> s t a t i c i n t make_packe t_ in ( i n t s w i t c h _ i d , i n t xid , i n t b u f f e r _ i d , char ∗ buf , i n t b u f l e n , i n t

mac_address , i n t p a y l o a d _ s i z e ) ;

54 c54

< void f a k e s w i t c h _ i n i t ( s t r u c t f a k e s w i t c h ∗ f s , i n t dpid , i n t sock , i n t b u f s i z e , i n t debug , i n t

de lay , enum t e s t _ m o d e mode , i n t t o t a l _ m a c _ a d d r e s s e s , i n t l e a r n _ d s t m a c )

−−−
> void f a k e s w i t c h _ i n i t ( s t r u c t f a k e s w i t c h ∗ f s , i n t dpid , i n t sock , i n t b u f s i z e , i n t debug , i n t

de lay , enum t e s t _ m o d e mode , i n t t o t a l _ m a c _ a d d r e s s e s , i n t l e a r n _ d s t m a c , i n t p a y l o a d _ s i z e )

65 c65 , 6 6

< fs −>p r o b e _ s i z e = make_packe t_ in ( f s −>id , 0 , 0 , buf , BUFLEN, f s −>c u r r e n t _ m a c _ a d d r e s s ++) ;

−−−
> fs −>p a y l o a d _ s i z e = p a y l o a d _ s i z e ;

> f s −>p r o b e _ s i z e = make_packe t_ in ( f s −>id , 0 , 0 , buf , BUFLEN, f s −>c u r r e n t _ m a c _ a d d r e s s ++ , f s
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−>p a y l o a d _ s i z e ) ;

293 c294

< s t a t i c i n t make_packe t_ in ( i n t s w i t c h _ i d , i n t xid , i n t b u f f e r _ i d , char ∗ buf , i n t b u f l e n , i n t

mac_addres s )

−−−
> s t a t i c i n t make_packe t_ in ( i n t s w i t c h _ i d , i n t xid , i n t b u f f e r _ i d , char ∗ buf , i n t b u f l e n , i n t

mac_address , i n t p a y l o a d _ s i z e )

296 a298 , 3 0 1

> p a y l o a d _ s i z e = p a y l o a d _ s i z e < 34 ? 34 : p a y l o a d _ s i z e ;

> i n t i p _ s i z e = p a y l o a d _ s i z e − 1 4 ;

> i n t f r a m e _ s i z e = i p _ s i z e + 1 4 ;

> i n t p a c k e t i n _ s i z e = f r a m e _ s i z e + 1 8 ;

298 ,299 c303 , 3 0 8

< 0x97 , 0 x0a , 0 x00 , 0 x52 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x01 ,

< 0x01 , 0 x00 , 0 x40 , 0 x00 , 0 x01 , 0 x00 , 0 x00 , 0 x80 , 0 x00 , 0 x00 , 0 x00 ,

−−−
> 0x97 , 0 x0a ,

> ( char ) ( ( p a c k e t i n _ s i z e >> 8) & 0 x f f ) , ( char ) ( p a c k e t i n _ s i z e & 0 x f f ) , / / p a c k e t i n

s i z e was 0x00 , 0 x52 ,

> 0x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x01 ,

> 0x01 ,

> ( char ) ( ( f r a m e _ s i z e >> 8) & 0 x f f ) , ( char ) ( f r a m e _ s i z e & 0 x f f ) , / / f rame l e n g t h was

0x00 , 0 x40 ,

> 0x00 , 0 x01 , 0 x00 , 0 x00 , 0 x80 , 0 x00 , 0 x00 , 0 x00 ,

301 ,302 c310 , 3 1 5

< 0x00 , 0 x00 , 0 x32 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x40 , 0 x f f , 0 xf7 , 0 x2c ,

< 0xc0 , 0 xa8 , 0 x00 , 0 x28 , 0 xc0 , 0 xa8 , 0 x01 , 0 x28 , 0 x7a , 0 x18 , 0 x58 ,

−−−
> 0x00 ,

> ( char ) ( ( i p _ s i z e >> 8) & 0 x f f ) , ( char ) ( i p _ s i z e & 0 x f f ) , / / i p l e n g t h was 0x00 , 0 x32

,

> 0x00 , 0 x00 , 0 x00 , 0 x00 , 0 x40 , 0 x f f ,

> 0x00 , 0 x00 , / / checksum was 0 x f7 , 0 x2c ,

> 0xc0 , 0 xa8 , 0 x00 , 0 x28 , 0 xc0 , 0 xa8 , 0 x01 , 0 x28 } ;

> /∗ , 0 x7a , 0 x18 , 0 x58 ,

306 c319 , 3 3 2

< a s s e r t ( b u f l e n > s i z e o f ( f a k e ) ) ;

−−−
> ∗ /

> char p a y l o a d [ p a y l o a d _ s i z e − (14 + 20) ] ;

> i n t i ;

> f o r ( i = 0 ; i < s i z e o f ( p a y l o a d ) ; i ++) {

> p a y l o a d [ i ] = 0x00 ;

> }

> a s s e r t ( b u f l e n > ( s i z e o f ( f a k e ) + s i z e o f ( p a y l o a d ) ) ) ;

> long sum = 0 ;

> f o r ( i = 3 2 ; i < (32 + 20) ; ) {

> sum += ( f a k e [ i ++] & 0 x f f ) << 8 ;

> sum += ( f a k e [ i ++] & 0 x f f ) ;

> }

> sum = ( ~ ( ( sum & 0 x f f f f ) + ( sum >> 16) ) ) & 0 x f f f f ;

> c o n s t char checksum [ 2 ] = { ( sum >> 8) & 0 x f f , sum & 0 x f f } ;
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307 a334 , 3 3 5

> memcpy ( buf + 42 , checksum , 2 ) ;

> memcpy ( buf + s i z e o f ( f a k e ) , pay load , s i z e o f ( p a y l o a d ) ) ;

319 c347

< re turn s i z e o f ( f a k e ) ;

−−−
> re turn ( s i z e o f ( f a k e ) + s i z e o f ( p a y l o a d ) ) ;

497 c525

< c o u n t = make_packe t_ in ( f s −>id , f s −>x i d ++ , f s −>c u r r e n t _ b u f f e r _ i d , buf , BUFLEN, f s

−>c u r r e n t _ m a c _ a d d r e s s ) ;

−−−
> c o u n t = make_packe t_ in ( f s −>id , f s −>x i d ++ , f s −>c u r r e n t _ b u f f e r _ i d , buf , BUFLEN, f s

−>c u r r e n t _ m a c _ a d d r e s s , f s −>p a y l o a d _ s i z e ) ;

Diff to oflops/cbench/fakeswitch.h

41 a42

> i n t p a y l o a d _ s i z e ;

55 a57

> ∗ @param p a y l o a d _ s i z e

57 c59

< void f a k e s w i t c h _ i n i t ( s t r u c t f a k e s w i t c h ∗ f s , i n t dpid , i n t sock , i n t b u f s i z e , i n t debug , i n t

de lay , enum t e s t _ m o d e mode , i n t t o t a l _ m a c _ a d d r e s s e s , i n t l e a r n _ d s t m a c ) ;

−−−
> void f a k e s w i t c h _ i n i t ( s t r u c t f a k e s w i t c h ∗ f s , i n t dpid , i n t sock , i n t b u f s i z e , i n t debug , i n t

de lay , enum t e s t _ m o d e mode , i n t t o t a l _ m a c _ a d d r e s s e s , i n t l e a r n _ d s t m a c , i n t p a y l o a d _ s i z e ) ;

B.2 Source Code of Changes to POX

This appendix presents the output of the diff command between the original repository

file and our modified version. These changes are based on release 0.2.0, branch carp. It simply

truncates the strip-VLAN action to four bytes by removing the padding zeroes. The original

repository is hosted at: https://github.com/noxrepo/pox

Diff to pox/pox/openflow/libopenflow_01.py

1643 c1643

< packed = s t r u c t . pack ( " ! HHi" , s e l f . type , l e n ( s e l f ) , 0 )

−−−
> packed = s t r u c t . pack ( " !HH" , s e l f . type , l e n ( s e l f ) )

1649 c1649

< o f f s e t = _ s k i p ( raw , o f f s e t , 4 )

−−−
> o f f s e t = _ s k i p ( raw , o f f s e t , 0 )

1655 c1655

< re turn 8

−−−
> re turn 4
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B.3 Source Code of Changes to Open vSwitch

This appendix presents the output of the diff command between each original repository

file and our modified version. These changes are based on release v1.9.0. They enable configur-

ing the probe interval down to 1 second, instead of the original lower bound of 5 seconds. The

original repository is hosted at: https://github.com/openvswitch/ovs

Diff to ovs/lib/rconn.c
243 c243

< rc−>p r o b e _ i n t e r v a l = p r o b e _ i n t e r v a l ? MAX( 5 , p r o b e _ i n t e r v a l ) : 0 ;

−−−
> rc−>p r o b e _ i n t e r v a l = p r o b e _ i n t e r v a l ? MAX( 1 , p r o b e _ i n t e r v a l ) : 0 ;

Diff to ovs/ofproto/connmgr.c
1138 c1138

< p r o b e _ i n t e r v a l = c−>p r o b e _ i n t e r v a l ? MAX( c−>p r o b e _ i n t e r v a l , 5 ) : 0 ;

−−−
> p r o b e _ i n t e r v a l = c−>p r o b e _ i n t e r v a l ? MAX( c−>p r o b e _ i n t e r v a l , 1 ) : 0 ;
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Abstract—Software Defined Networks simplify network pro-
grammability by detaching the control plane from forwarding
devices and deploying it into a logically centralized controller.
While this allows a clearer separation of concerns, it also creates a
dependency between them. Failures in the control plane break the
controller view of the network state and could render the network
unusable if forwarding devices cannot be reached. The relevance
of this problem has led to a range of proposals, including physical
distribution of controller instances and delegation of concerns
to forwarding devices. In this paper, we propose and evaluate
an architecture that leverages cellular data networks (4G) as
control plane backup links. No previous work has explored this
idea, despite the recent research intersecting SDN and wireless
networks. Our experiments answer three research questions:
(i) How is the behavior of control plane traffic affected by the
characteristics of cellular links, (ii) how quickly is the control
plane handed over to the backup link when a failure occurs and
(iii) how well do network functions that rely on a snapshot of
the network state behave on such an architecture. Our evaluation
shows that, despite the expected higher latency of cellular links,
this architecture maintains partial functionality of tasks that
depend on global network awareness when failures occur in
primary links in a simple, affordable fashion.

I. INTRODUCTION

Over the past few years, the Software Defined Networking
(SDN) paradigm has gained unprecedented strength within the
scientific community. The split of the control and data planes
is expected to increase development pace and to ease the job
of network operation, through the separation of concerns and
logically centralized control, respectively. As OpenFlow [1]
consolidates as a de facto standard for the SDN control plane
protocol, the interoperability between compliant forwarding
devices – commonly referred to as OpenFlow switches – and
controller software allows for a vendor-neutral system. Con-
sidering these benefits, research has been devoted to applying
SDN into other areas, including wireless networks.

As a consequence of the separation between the planes, a
dependency relation was created among entities which are now
potentially physically separated – namely, the controller and
the switches. Therefore, partitions in the network can severely
disrupt functionality. For instance, link failures can isolate
devices from their corresponding control element, preventing
them from being aware of policy updates, breaking the global
visibility of the network and, in the absence of failover
mechanisms (e.g. fail standalone mode in hybrid switches),
even render the device temporarily unusable.

Motivated by these issues, this work evaluates the suit-
ability of a control plane architecture featuring additional

cellular data links for improved resilience in face of network
partitions in the control plane. We focus our evaluation on
three aspects, namely: (a) the effects of the cellular link
characteristics on OpenFlow traffic, (b) the failover mechanism
from the primary wired links to the backup wireless link, and
(c) the operation of a network function that uses global network
state awareness and can have a limited, configurable level of
interaction between the forwarding device and the controller –
a feature that we refer to as reactiveness.

The main contribution of our work is to provide a novel
analysis of the operation of OpenFlow control plane traffic
over cellular links. We find evidence that, in spite of providing
lower bandwidth and higher latency than wired links, cellular
links can still allow an OpenFlow-based network to maintain
the operation of network functions under certain circumstances
without requiring modifications to the underlying devices.

The remainder of the paper is organized as follows: in
the next section we discuss related work (II) in SDN with
wireless networks and control plane connectivity. Section
III describes our proposed architecture. The methodology is
briefly presented in Section IV. Then, we analyze our approach
according to the three questions introduced in the abstract in
Sections V, VI and VII. Finally, Section VIII contains our final
remarks and planned future work.

II. RELATED WORK

In this paper, we evaluate an architectural setup that em-
ploys cellular network links in the maintenance of control
plane connectivity in SDN. We organize related work in
two broad topics. First, those that concern wireless networks
in the context of SDN. Second, those that tackle the loss
of connectivity of the control plane by attempting either to
prevent such a loss or to attenuate its consequences.

A. Wireless networks and SDN. There have been differ-
ent approaches combining wireless infrastructure and SDN.
OpenRoads [2] proposes decoupling the infrastructure from
the network services into wireless mobile networks. In [3],
the idea is to simplify the design and management of cellular
networks using SDN. The work of [4] employs wireless links
and reflective surfaces on the facility roof to increase the
trajectory space and allow for more simultaneous connections
between pairs of nodes.

In [5], an extension for adding Media Independent Man-
agement into the OpenFlow protocol is proposed, so that link
condition information (e.g. signal strength, power save mode)
can be leveraged by the controlling mechanisms. It is worth
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Fig. 1. Cellular links in SDN: (1a) shared data plane traffic and physically in-band control plane traffic, (1b) east/westbound control plane traffic among
controller instances, (1c) southbound control plane traffic between forwarding device and controller. C stands for controller, S for switch and H for host.

noticing that, while the work at [5] aims at being independent
to the link network technology, the experimental setup was
deployed with wireless links solely in the data plane – the
control channels were wired Ethernet. Aeroflux [6] presents
a hierarchical network design for a software-defined WiFi
network, featuring a global controller and subordinate near-
sighted controllers. The evaluation of a prototype indicates
reduction in the control traffic.

B. Control plane connectivity. The loss of control plane
connectivity could potentially compromise network function-
ality. For example, a forwarding device incapable of communi-
cating with its controller is neither able to receive instructions
for new flows nor become aware of updates in access control
policies. Current methods proposed in the literature to address
these issues can be categorized into two architectural strategies:
1) physical distribution of the controller and 2) delegation of
concerns to forwarding devices.

B1. Physical distribution of the controller. Although the
proposals of physically distributed controllers often highlight
scalability as its main contribution [7], partition tolerance is
still an important consideration [8], [9]. In fact, the positioning
of the distributed instances is a topic of research on its own
[10]–[13]. Keeping a logically centralized behavior means
synchronizing the state among control instances, and the trade-
offs of the CAP theorem (consistency, availability and partition
tolerance) apply to SDN as well [14]. The synchronization
mechanisms are particular to each proposal, ranging from
replicated relational databases to key-value stores. In addi-
tion, despite the increasing attention and interest seen in this
area, the offer of open-source distributed controllers is still
limited. Worthy of note, however, are OpenDaylight [15] and
ONOS [16], both featuring shared state among cluster nodes.

B2. Delegation of concerns to forwarding devices. The
switches built for Google’s B4 WAN [17] have an OpenFlow
software layer atop hardware that is able to directly run
routing protocols, in the trend of OpenFlow’s optional fail-
standalone mechanism [18] (since version 1.1). DIFANE [19]
proposes turning some devices into authority switches that can
react to incoming flows in unmodified devices. In [20], ideal
forwarding connectivity can be achieved at the data plane by
using small and fast operations that store state in the packet
headers, based in the properties of Directed Acyclic Graphs.
In contrast to these solutions, in the proposed approach no
modifications to the forwarding devices, to the controller or to
the OpenFlow protocol are required for keeping control plane
connectivity in the event of failures in primary wired links.

III. OFF THE WIRE CONTROL PLANE

Considering the aforementioned aspects of dependency
among controllers and forwarding devices, we propose a novel
architecture for the SDN control plane consisting of additional
cellular links (e.g. 4G, LTE) between forwarding devices and
controller. This approach improves avoidance of control plane
network partitions in a transparent fashion to the network
elements, using low cost, off-the-shelf hardware. By keeping
control plane connectivity under failure of the primary link,
the architecture allows for maintaining network management
activities and partial functionality.

There are three settings in which additional cellular links
could be used to extend the network: a) for shared data
plane traffic and physically in-band control plane traffic, b)
for east/westbound control plane traffic among controller in-
stances, and c) for southbound control plane traffic between
forwarding device and controller. These alternatives are de-
picted in Figure 1.

The first alternative, shown in Figure 1a, has already been
explored in works such as [3] and [5], though the approach
assumed network infrastructures built exclusively with cellular
links. A similar approach is to leverage the SDN benefits to
control and manage very dense heterogeneous wireless net-
works [21] – for instance, by employing a multi-tier controller
hierarchy for a more efficient management of medium usage.

The second alternative (Figure 1b), albeit promising, still
depends on the convergence of an east/westbound standard,
as well as on the maturing of open distributed controllers.
As discussed in Section II, previous work on controllers with
distributed instances either consists of closed-source solutions
(e.g. [7]) or relies on non-standard synchronization frameworks
such as distributed file systems or key-value pair stores. Works
such as [8] have already noted certain restrictions in terms
of control application behavior and policy decisions towards
state synchronization, notably for scalability reasons related
to event handling and device probing. Although we do not
explore this possibility in the present paper, the use of backup
cellular links for keeping state synchronized among separate
controller instances has good potential.

The third alternative, shown in Figure 1c, is to extend the
control plane connectivity through additional wireless links
between the forwarding devices and the controller. We focus
our study on this approach, and describe the methodology to
perform the evaluation in the next section.
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IV. METHODOLOGY

In our study, we aim to answer three research questions:
how the behavior of the control plane is affected by char-
acteristics of cellular links; how quickly the control plane
is handed over to a backup link when a failure occurs; and
how well do network functions that rely on a snapshot of the
network state behave on such an architecture. We consider
the following two assumptions for the evaluation: (i) there
is sufficient signal availability on the site of the hosts (i.e.
forwarding devices) connected to 4G interfaces, and (ii) a host
can reach the controller listening interface through the 4G
links. It is reasonable to consider the first assumption given
that signal coverage on metropolitan areas is widely available.
While the second assumption might raise concerns about using
public networks for the control traffic, it is feasible to apply
known security measures such as cryptography and SSL, as
recommended by the OpenFlow protocol specification [18].

In each of the experimental settings we describe, Host 1
is a 2 GHz Core 2 Duo machine with 4GB RAM running
VMware Player 6 on Windows 7 32 bits. The virtual machines
receive a single processor core and have 1GB RAM available.
Cbench [22] is installed on Ubuntu 14.04. We used Mininet
VM [23] image version 2.1.0 (with Ubuntu 13.04), with either
the bundled Open vSwitch 1.9.0 or its recompiled version with
altered lower bound for the inactivity probe. Host 2 runs the
POX [24] controller 0.2.0 (carp) on a 1.8 GHz (x 4) Core i3
with 4GB RAM, on Ubuntu 14.04 64 bits.

V. EFFECTS OF CELLULAR LINK IN OPENFLOW TRAFFIC

A. How is the behavior of control plane traffic affected by the
characteristics of cellular links?

Some features of cellular links – namely, latency and band-
width – are expected to be limiting factors to be dealt with in
actual control plane network deployments. We devised a set of
experiments that stress the communication between controller
and forwarding devices, in an attempt to measure how strong
this limitation is in comparison to wired connections.

With OpenFlow, the control plane communication is
achieved through a TCP connection between each forwarding
device and the controller. To understand the effects of link
latency and bandwidth, we measure the response times for
OpenFlow exchanges in two scenarios, each with the conver-
sation initiated at either one of the sides. In the first scenario,
we use the sequence of messages required to install a rule
which will match a new flow arriving at a device, as follows.
A packet-in message describing the new flow – typically,
containing the header of the first packet in the flow – is sent to
the controller. The controller is then responsible for processing
the message, and sending a reply with instructions of what the
device should do with the packet. For instance, this reply could
be a packet-out – instructing where to forward the packet.
For this experiment we use cbench, a tool for evaluation of
controller performance through generation of OpenFlow traffic.
Figure 2 illustrates the setup for this experiment.

In order to avoid adding processing overhead to our exper-
iment, we run the controller using a synthetic application with
a simple behavior: once the controller receives a packet-in, the
control application immediately sends a reply with a packet-out

POX
Controller

Host 2

Ethernet

4G link
Host 1 cbench

H H H

S1 S2 Sn

packet-in packet-out

Fig. 2. Two hosts are used in this and the following experiments. They are
connected either by Ethernet or a 4G link (one at a time). A set of n switches
generating messages is emulated by running cbench at Host 1, and the POX
controller responds from Host 2.

message with no actions, regardless of the packet-in content –
essentially an instruction to drop that packet. The cbench tool
runs in latency mode and emulates the data plane. It performs
N concurrent message exchanges. In each of them, a packet-in
message is sent to the controller, and the corresponding packet-
out message is then waited for. Thus, N represents the number
of concurrent message exchanges (one per forwarding device
emulated).

We linearly increase the number of simultaneous packet-in
– packet-out exchanges, all sharing the same connection with
the controller. We measure the mean time for completing each
exchange over 50 seconds, both using 4G and Ethernet for the
control plane link. While it is expected that the communication
over the wireless link will have a higher latency, we intend
to identify whether there is a stable, bounded time for this
exchange and what are the effects of having several devices
simultaneously performing such interactions.

POX
Controller

Host 2

Ethernet

4G link
Host 1 Mininet

H H H

S1 S2 Sn

port stats reply port stats request

Fig. 3. In this experiment, Host 2 runs POX, while Mininet is used at Host
1 to emulate a set of switches receiving requests originated at the controller.

We evaluate the latency of exchanges originated at the
controller through the mechanism of statistics collection pro-
vided by OpenFlow. In the experiment, the controller sends a
port-stats-request message to a forwarding device and waits
for a port-stats-reply, as illustrated in Figure 3. Similarly to
the previous experiment, we vary the number of forwarding
devices – they are connected in series, under Mininet – and
measure the mean round trip time using the two types of
channel, over 50 seconds.

B. Latency lower bound is significant, packet size matters

Results in Figures 4 and 5 indicate that the exchange time
for packet-in conversations grows steadily with the number of
emulated switches, in a similar rate for both the wired and
wireless link experiments. The exchange time is clearly lower
bounded by the channel latency, as the difference between the
two media for each set of parameters varies between 115 and
130 ms. This is not true for the second experiment, as the
mean exchange time grows much faster with a 4G control
plane. While there is a difference in the experiment setup –
with a network being emulated instead of only switches – this
is not the bottleneck, as we observe a much lower difference
between the Ethernet measurements of both experiments.
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Fig. 4. OpenFlow message exchanges started at the switch.
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Fig. 5. OpenFlow message exchanges started at the controller.

As expected, the packet size plays a more prominent role in
the measured results. By observing the packets on the control
interface, we find that both the packet-in and the packet-
out messages exchanged in the first experiment have smaller
payload size than their counterparts in the same direction in
the second experiment – respectively, port stats reply and port
stats request. In the case of messages sent by the switches, the
payload of each packet-in is 82 bytes long, against either 324 or
428 bytes of the port stats reply payload (switches in both ends
of the serial topology have one less port, and therefore send
messages with smaller payloads). As for messages originated
at the controller, the payload difference is small – 16 bytes
for the packet-out and 20 bytes for port stats requests. Packet
size variation is the most likely cause for the higher latency
impact in the port statistics exchange experiment. In addition,
frequently the packet-in payloads are grouped into a single
TCP message, reducing the overhead of lower layer header
bytes. Conversely, no grouping occurs in the port stats replies.

VI. FAILOVER TO THE BACKUP CELLULAR LINK

A. How quickly is the control plane handed over to the backup
link when a failure occurs?

Recall that the scenario we are investigating is aimed
towards ensuring connectivity between forwarding devices and
controller instances in the face of network partitions. For a
wide variety of applications that rely on SDN networks, it is
of great importance to ensure good responsiveness of the un-
derlying network devices, and guaranteeing fast failover times
on these devices is crucial for minimizing the impact on data
plane operation (e.g. packet losses, unacceptable latencies).

Considering that the cellular link is to be employed as a
backup for a wired control plane channel, we need to evaluate
how quickly the control plane is healed through the wireless
link when the primary link ceases to operate. We measure the
total time, or how long it takes for the forwarding device to
start operating over the backup link.

Host 1 Mininet

H
POX

Controller

Host 2

Ethernet

4G link
S

Fig. 6. In this experiment, emulated host and switch run in Mininet at Host 1,
and the POX controller at Host 2. As before, there are two links between the
hosts, and the Ethernet one is deactivated during communication to measure
how long it takes for the control plane to recover.

As shown in Figure 6, we deploy a single host connected
to a switch on Mininet. The emulated host sends a packet to
the emulated switch every 100 ms to trigger packet-in events.
The control application always responds with an actionless
flow-mod, so that packet-in messages keep being generated.

Failover is attained by configuring gateways for both me-
dia. We use a lower metric on the gateway corresponding to the
wired interface, to ensure that traffic will be primarily directed
through it. We insert a failure by taking down the Ethernet
network interface. In our experiments, we insert the failure in
the first hop for the sake of simplicity. Failures along the path
could be detected on the TCP connection with an auxiliary
mechanism, out of the scope of this work – for instance, an user
space script could be configured to probe the controller with
ping and alter the gateway setup with arbitrary periodicity and
probe interval, establishing the control plane communication
over the disjoint backup path. Over 30 runs, we measure at the
controller the time between the arrivals of the last packet-in
from the primary connection and the first packet-in from the
new one, established through the 4G link.

Open vSwitch allows the configuration of an inactivity
probe interval for the control plane channel. When the commu-
nication is idle for the configured amount of time, the switch
probes the controller. If no answer is received after this same
amount of time, it tries to reestablish the connection. Open
vSwitch has both a default and minimum value of 5 seconds
probe interval – this is true for the default Open vSwitch
version 1.9.0, bundled in the Mininet VM 2.1.0, as well as
up to its most recent build (by the time of writing), 2.3.0.
We compare the failover times between an unmodified Open
vSwitch and a recompiled version with the probe interval lower
bound reduced to 1 second.

B. Failover time is dominated by probe interval

The failover time is lower bounded to 10 seconds when
using an unmodified version of the software switch. The
timeline in Figure 7 illustrates the failover process. By altering
two lines of code in the OpenFlow connection manager of the
switch, we brought this hard-coded limit down to 1 second. We
are aware that reducing the inactivity probe interval increases
the probability of false positives in detecting loss of the control
plane connection. Nevertheless, this is a trade-off that can
be determined by the network administration – reducing the
lower bound does not prevent configuring the actual inactivity
probe to a higher value. We measured the perceived down time
from the controller point of view. Table I shows the minimum,
mean, maximum time and standard deviation between the last
received communication from the OpenFlow switch and the
first packet-in message after recovery in (a) an unmodified
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TABLE I. FAILOVER PROCESS RESULTS (S)

Minimum Average Maximum Std. Dev.

Open vSwitch 5 sec. probe 11.491 12.487 14.864 0.865

Open vSwitch 1 sec. probe 2.600 3.560 8.673 1.434

t

t0 t1 t2 t3inact. probe inact. probe recover time

primary
link fails

sends echo
request

tries to
reconnect

connected to
controller

Fig. 7. The failover measurements in Table I refer to the highlighted interval
between t0 – t3, including twice the configured inactivity probe. t0 – t1 is the
idle control plane time, after which the device probes the controller with an
echo request. It waits for the same amount of time for an echo reply (t1 – t2).
Finally, on t2 the switch tries to reach the controller through the backup link
and the first packet-in message arrives on t3.

Open vSwitch 1.9.0 with a 5 second inactivity probe interval
and (b) in a 1 second probe deployment.

The experiment result shows that, once a failure in the
primary connection is detected (twice the probe interval), the
time for reestablishing the connection with the controller stays
within 10 seconds. Each part of the message exchange speci-
fied by the OpenFlow protocol upon connection establishment
(e.g. features request and reply) can be affected by varying
latency of the backup link, resulting in the showcased range
of recovery times. It must be noted that this architecture is
expected to provide a backup link for keeping global visibility,
and not to be suitable for extremely reactive network functions.

VII. NETWORK FUNCTION & OFF THE WIRE CONTROL

A. How well do network functions that rely on a snapshot of
the network state behave on such an architecture?

One of the most attractive features of OpenFlow is the
ability to perform decisions based on a global view of the net-
work, simplifying network programmability and consequently
the deployment of network policies. The proposed architecture,
enhanced with wireless links, can also be seen as an effort
towards the maintenance of such network visibility within
controller instances. The third and final question attempts to
verify whether network applications which depend upon global
visibility can still perform well under the conditions imposed
by this alternative medium.

We use a load balancing application as a means to answer
the third question. Load balancing is a network function
usually employed as an example of application that can be
based on global network state awareness [6], [25], [26]. We
follow an address prefix scheme, similar to that of [25], where
a binary tree is built for partitioning the space of source IP
addresses among different server instances. Wildcarded rules
are then used to configure the virtualized Open vSwitch.

Figure 8 shows three emulated hosts connected to the
emulated switch. One host produces traffic directed to a given
destination IP address, which must be balanced among the
server hosts. A total of 6000 UDP packets are sent, scheduled
according to a Poisson process with a mean interval of 10
ms. The size of each packet is exponentially distributed with
a mean of 1024 bytes, upper-bounded by the Ethernet frame

payload limit (1500 bytes including IP and UDP headers). The
source IP is spoofed from a range of 1024 sequential addresses,
in order to allow the range-based load balancing to take place.
For all conducted experiments, the generated load is the same.
The traffic is directed towards two server hosts, according to
the load balancing policy enforced by the control application
on the forwarding device.

The set of parameters on the control application configures
the load balancer reactiveness features. The controller period-
ically requests statistics to the OpenFlow switch, becoming
aware of the current state of the servers corresponding ports.
The interval between each statistics request message is varied
between 0.5s, 1s and 2s. A longer interval decreases control
traffic at the cost of possibly reacting too late, due to stale
state. Reactiveness is particularly configured by adjusting the
granularity of the rules. The full range of distinct source IP
addresses of the experiment (1024) is subdivided in 32, 64
and 128 sub-ranges. For instance, dividing the range in 128
sub-ranges causes each installed rule to match 8 addresses.

Intuitively, a more reactive controller should perform load
balancing better than a more proactive one, at the cost of higher
control link occupancy. In this experiment, we attempt to assess
the degree of reactiveness the control instance can reach before
data plane services become visibly degraded under the effects
of a cellular control link. We measure the negative impact to
load balancing by comparing the relative usage of the server
ports. Additionally, we obtain the mean data plane throughput,
to assess whether the control reaction time for forwarding
decisions causes a significant delay in packet delivery.

Host 1 Mininet

HC HS1 HS2
POX

Controller

Host 2

Ethernet

4G link
S

Fig. 8. HC produces traffic with different IP sources towards either emulated
host server (HS1 or HS2), passing through the emulated switch. Routing rules
are configured according to the load balancer running at POX in Host 2.
HC/HS stand for client/server.

B. Load is balanced seamlessly and, on average, efficiently

The results for relative usage of server ports are presented
as RMSE (Root-Mean-Square Error) box plots (Figure 9). For
instance, a value of 0% means that the load is equally balanced
among the two servers. Meanwhile, 100% stands for a case
where the load is completely forwarded to one of the servers.
The usage is measured in intervals of 0.5s.

The higher latency in the 4G control plane links has caused
occasional late reactions in the load balancing process, as
illustrated by the outliers in Figure 9b. The experiments con-
ducted with an Ethernet control link feature a more consistent
behavior (Figure 9a). Nevertheless, the average load balancing
effectiveness is very similar in both cases. Since the variation
in the number of flow sub-ranges and in the periodicity of
statistics collection show little significance in the measured
results, we observed that the major drawback of using 4G
links in the control plane for a load balancing function is the
occasional mistaken forwarding decision due to a delayed view
of the data plane state.
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Fig. 9. RMSE of the relative usage of two server ports with a control plane link over (9a) Ethernet and (9b) 4G. In each plot, the number of IP address
subranges and the periodicity of port status querying by the controller are varied to change the reactiveness of the load balancing function.

TABLE II. EFFECT OF CONTROL LATENCY ON DATA THROUGHPUT

Flow ranges 32 64 128 256 512

Ethernet
kb/s 587.01 593.98 584.46 568.98 590.72

Rules 156 880 2211 3700 4650

4G
kb/s 593.44 574.25 596.31 588.68 588.55

Rules 224 1078 2328 3719 4624

Analyzing the throughput measurements, we see that the
load balancing application has little or no impact in the
timeliness of data plane packet delivery. Table II shows that,
even with much higher rate of flow installations due to smaller
address sub-ranges, the resulting throughput is consistent
among all measurements in both media.

VIII. CONCLUSION

To the best of our knowledge, this work features the
first analysis of the operation of OpenFlow control traffic
over cellular links. It is challenging to answer the discussed
questions generally, and our experimental study provides the
first insights towards the answers. Our evaluation shows that,
in spite of providing lower bandwidth and higher latency
than wired links, cellular links can allow an OpenFlow-based
network to maintain operation of network functions under
certain circumstances. In particular, a wireless backup control
architecture is a simple, inexpensive way of maintaining global
network state awareness and limited reactiveness requirements
for control plane decisions.

As for future work, we see great potential in applying the
concept of wireless links for communication between physi-
cally distributed modules of logically centralized controllers
or for interconnecting different controller instances. While the
former alternative should emerge as soon as new open-source
distributed controllers become available, the latter would de-
pend on the convergence of an eastbound API standard.
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