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“Life is like riding a bicycle.

To keep your balance you must keep moving.”

— ALBERT EINSTEIN
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ABSTRACT

Infrastructure as a Service (IaaS) clouds are becoming an increasingly common way to

deploy modern Internet applications. Many cloud management platforms are available

for users that want to build a private or public IaaS cloud (e.g., OpenStack, Eucalyptus,

OpenNebula). A common design aspect of current platforms is their black-box-like con-

trolling nature. In general, cloud management platforms ship with one or a set of resource

allocation strategies hard-coded into their core. Thus, cloud administrators have few op-

portunities to influence how resources are actually managed (e.g., virtual machine place-

ment or virtual link path selection). Administrators could benefit from customizations in

resource management strategies, for example, to achieve environment specific objectives

or to enable application-oriented resource allocation. Furthermore, resource management

concerns in clouds are generally divided into computing, storage, and networking. Ideally,

these three concerns should be addressed at the same level of importance by platform im-

plementations. However, as opposed to computing and storage management, which have

been extensively investigated, network management in cloud environments is rather in-

cipient. The lack of flexibility and unbalanced support for resource management hinders

the adoption of clouds as a viable execution environment for many modern Internet ap-

plications with strict requirements for elasticity or Quality of Service. In this thesis, a

new concept of cloud management platform is introduced where resource management is

made flexible by the addition of programmability to the core of the platform. Moreover,

a simplified object-oriented API is introduced to enable administrators to write and run

resource management programs to handle all kinds of resources from a single point. An

implementation is presented as a proof of concept, including a set of drivers to deal with

modern virtualization and networking technologies, such as software-defined networking

with OpenFlow, Open vSwitches, and Libvirt. Two case studies are conducted to eval-

uate the use of resource management programs for the deployment and optimization of

applications over an emulated network using Linux virtualization containers and Open

vSwitches running the OpenFlow protocol. Results show the feasibility of the proposed

approach and how deployment and optimization programs are able to achieve different

objectives defined by the administrator.

Keywords: Cloud Computing. Cloud Networking. Resource Management.





Gerenciamento de Recursos Flexível e Integrado para Ambientes de Nuvem IaaS

baseado em Programabilidade

RESUMO

Nuvens de infraestrutura como serviço (IaaS) estão se tornando um ambiente habitual

para execução de aplicações modernas da Internet. Muitas plataformas de gerenciamento

de nuvem estão disponíveis para aquele que deseja construir uma nuvem de IaaS privada

ou pública (e.g., OpenStack, Eucalyptus, OpenNebula). Um aspecto comum do projeto

de plataformas atuais diz respeito ao seu modelo de controle caixa-preta. Em geral, as

plataformas de gerenciamento de nuvem são distribuídas com um conjunto de estratégias

de alocação de recursos embutida em seu núcleo. Dessa forma, os administradores de nu-

vem têm poucas oportunidades de influenciar a maneira como os recursos são realmente

gerenciados (e.g., posicionamento de máquinas virtuais ou seleção caminho de enlaces

virtuais). Os administradores poderiam se beneficiar de personalizações em estratégias

de gerenciamento de recursos, por exemplo, para atingir os objetivos específicos de cada

ambiente ou a fim de permitir a alocação de recursos orientada à aplicação. Além disso,

as preocupações acerca do gerenciamento de recursos em nuvens se dividem geralmente

em computação, armazenamento e redes. Idealmente, essas três preocupações deveriam

ser abordadas no mesmo nível de importância por implementações de plataformas. No

entanto, ao contrário do gerenciamento de computação e armazenamento, que têm sido

amplamente estudados, o gerenciamento de redes em ambientes de nuvem ainda é bas-

tante incipiente. A falta de flexibilidade e suporte desequilibrado para o gerenciamento

de recursos dificulta a adoção de nuvens como um ambiente de execução viável para mui-

tas aplicações modernas da Internet com requisitos rigorosos de elasticidade e qualidade

do serviço. Nesta tese, um novo conceito de plataforma de gerenciamento de nuvem é

introduzido onde o gerenciamento de recursos flexível é obtido pela adição de programa-

bilidade no núcleo da plataforma. Além disso, uma API simplificada e orientada a objetos

é introduzida a fim de permitir que os administradores escrevam e executem programas

de gerenciamento de recursos para lidar com todos os tipos de recursos a partir de um

único ponto. Uma plataforma é apresentada como uma prova de conceito, incluindo um

conjunto de adaptadores para lidar com tecnologias de virtualização e de redes moder-

nas, como redes definidas por software com OpenFlow, Open vSwitches e Libvirt. Dois

estudos de caso foram realizados a fim de avaliar a utilização de programas de geren-



ciamento de recursos para implantação e otimização de aplicações através de uma rede

emulada usando contêineres de virtualização Linux e Open vSwitches operando sob o pro-

tocolo OpenFlow. Os resultados mostram a viabilidade da abordagem proposta e como

os programas de implantação e otimização são capazes de alcançar diferentes objetivos

definidos pelo administrador.

Palavras-chave: Computação e Comunicação em Nuvem, Gerenciamento de Recursos.
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1 INTRODUCTION

Utility computing, a concept coined almost 50 years ago, regained attention in

the late-1990’s and mid-2000’s with the dissemination of grid and afterwards cloud com-

puting (FOSTER et al., 2008). Similarly to current electric power distribution networks,

utility computing is about delivering computing resources in the form of services to users.

Today, cloud computing adopts this concept, offering all kinds of computing resources

as services. The level of abstraction on which the user perceives and interacts with such

resources is determined by a business model known as Everything as a Service (XaaS)

(LENK et al., 2009; BAUN et al., 2011). There are at least three consolidated models

to provide services over clouds: Infrastructure as a Service (IaaS), which encompasses

creating the basic abstractions to mimic physical infrastructures as sets of virtualized ele-

ments; Platform as a Service (PaaS), where programming and execution environments are

offered to users/programmers with a more abstract notion of the underlying infrastructure;

and Software as a Service (SaaS), which is an even more abstract model, where end-users

are granted with direct access applications hosted on the cloud infrastructure (usually op-

erating over IaaS or PaaS). Moreover, there are other less commonly adopted models,

such as Human as a Service (HuaaS)1 (BAUN et al., 2011) and Metal as a Service (MaaS)

(VORAS; ORLIC; MIHALJEVIC, 2013). HuaaS is a model where crowds of people are

used as resources to process or provide information – often referred to as crowdsourcing

– on a voluntary or rewarded basis, particularly useful for tasks where human intelligence

or creativity is required. MaaS, on the other hand, is a recent model which aims to provide

similar features to IaaS clouds (e.g., elasticity and reliability), but over physical servers,

i.e., not necessarily relying on virtualization.

In particular, providing IaaS through clouds has drawn much attention from key

information technology players (e.g., Amazon, Google, Microsoft, IBM, HP) in the last

few years. In general, public cloud providers adopt a pay-per-use model, where customers

can “rent” virtualized computing resources, use these resources for a given amount of

time, and release them when they are not necessary any longer. Many organizations,

however, use their own physical resources to build IaaS clouds in order to deploy their

particular applications, in a model usually referred to as private cloud. It is also possible to

combine both private and public resources forming the so-called hybrid clouds (ZHANG;

CHENG; BOUTABA, 2010). The reasons for choosing private instead of public clouds

1Sometimes also referred to as Human Provided Service (HPS)
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vary, but it commonly include situations such as: when the customer does not trust the

cloud provider to meet specific security requirements, when an organization already has

idle resources to deploy a private cloud and does not want to rent anything from third

parties, or in the case of companies or individuals running non-profit or experimental

applications, such as researchers or universities.

There are numerous cloud management platforms used for the deployment and

maintenance of both public, private, and hybrid clouds. Some platforms have been de-

signed to be used exclusively in the context of a particular cloud provider, such as Amazon

EC2 (Amazon, 2013) for Amazon’s cloud or Microsoft’s Azure (Azure, 2014). On the

other hand, other management platforms are developed by the open source software com-

munity and are free to be downloaded and used by any interested party (e.g., OpenNebula

(OpenNebula, 2008), Eucalyptus (Eucalyptus, 2009), OpenStack (Rackspace, 2010), and

CloudStack (CloudStack, 2012)). For example, HP’s public IaaS cloud2 and PayPal’s

private SaaS cloud3 are both deployed using the OpenStack platform.

In terms of resource management, a common design aspect present in most cloud

platforms is the separation of management concerns in computing, storage, and network-

ing (SOTOMAYOR et al., 2009). Computing management is tightly related to handling

virtual machines, allocating processing power and memory, and managing operating sys-

tem images. Storage management, in turn, enables the allocation of persistent – possibly

distributed – data volumes over a data center. In general, storage management is still sub-

divided into block storage (i.e., disk volumes) and object storage (i.e., media files hosted

in the cloud). Lastly, networking management is perhaps the most challenging concern,

given the variety abstractions and implementations created in every cloud management

platform. Conceptually, managing networks in clouds means enabling communication

between virtual resources, which can range from configuring IP addresses for virtual ma-

chines to creating complex virtual network infrastructures with switches, routers, and

firewalls. Ideally, these three resource management concerns (i.e., computing, storage,

and networking) should be addressed at the same level of importance, or, in other words,

platforms should support complex virtual network topology configuration as well as han-

dling live virtual machine migration. However, in practice, some platforms focus more in

one or another concern (JENNINGS; STADLER, 2014).

Resource management operations in cloud platforms need to be performed through-

out the life-cycle of cloud applications (SEMPOLINSKI; THAIN, 2010; MANVI; SHYAM,

2Further information at http://www.hpcloud.com/why-hp-cloud/openstack
3Further information at http://www.openstack.org/user-stories/paypal/
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2014). In general, in most platforms this life-cycle includes at least the following four

phases:

1. the specification phase, at which the application owner (e.g., tenant) requests a set

of virtual resources – sometimes referred to as cloud slice or just slice – which

usually includes a number of virtual machines, operating system images, storage

space, and connectivity parameters;

2. the provisioning phase, at which the cloud platform allocates the requested re-

sources from the data center and makes them available to the application;

3. the runtime phase, at which the application is running and using the provisioned vir-

tual resources, and when the slice might undergo optimization, e.g., when elasticity

is supported;

4. the termination phase, at which resources are finally released by the application

back to the platform and become available again for future allocations.

A major problem with current cloud management platforms comes from their

black-box-like centralized control design, which resembles cluster task schedulers. In

such a design, from the slice specification to the termination phase, very few opportu-

nities exist for the administrator to influence how resources are actually managed by the

platform (e.g., virtual machine placement or virtual link path selection). IaaS clouds could

benefit from customization in resource allocation strategies under two different perspec-

tives: (i) to achieve environment specific objectives and (ii) to enable application-oriented

resource management. Resource management objectives may vary from optimizing sim-

ple environmental metrics, such as minimizing energy consumption or network links uti-

lization, to complex application-related requirements, like avoiding co-location of con-

flicting types of applications to respect privacy or security concerns. Further than cus-

tomizing a platform for one specific objective, it could be even more beneficial to achieve

several coexisting objectives (one objective for each type of application, for instance)

using a single cloud management platform.

As mentioned earlier in this thesis, resource management concerns (i.e., comput-

ing, storage, and networking) should ideally be addressed at the same level of importance.

However, as opposed to computing and storage management, which have been extensively

investigated in the last few years, network management in cloud environments is rather

incipient. There is no common abstraction to provide network elements as services, sim-

ilarly to what happens to virtual machines or virtual disk volumes. Some cloud manage-
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ment platforms offer very low-level protocol dependent configurations, such as IP/DHCP

address ranges, while others offer high-level network services, such as load balancers or

firewalls. The lack of flexibility and unbalanced support for resource management in cur-

rent platforms hinders the adoption of clouds as a viable execution environment for many

modern Internet applications – particularly highly distributed and network-intensive ones

– with strict requirements for elasticity or Quality of Service (QoS) (MORENO-VOZ-

MEDIANO; MONTERO; LLORENTE, 2013).

In this thesis, a new concept of cloud management platform is introduced where re-

source allocation and optimization are made flexible. By adding concepts of programma-

bility to the core of a platform with a simplified object-oriented API it is possible to

enable administrators to write and run personalized programs for both application de-

ployment and optimization. In addition, administrators can also use this API to customize

metrics and configure events to trigger optimization whenever necessary. The proposed

API allows for more integrated resource management by offering high-level abstractions

and operations to handle all sorts of resources (i.e., computing, storage, and networking),

all at the same level of importance. Furthermore, administrators can use the API to collect

information from the monitoring system in order to use this information when deploying

or optimizing applications.

1.1 Hypothesis & Research Questions

To overcome the limitations exposed in the context of resource management among

cloud platforms, particularly in terms of flexibility, this thesis presents the following hy-

pothesis.

Hypothesis: a cloud platform incorporating the concepts of programmable and

integrated resource management can enable the flexibility required to support

modern applications and to adapt to environment specific needs

In order to guide the investigations conducted in this thesis, the following research

questions (RQ) associated with the hypothesis are defined and presented.

RQ I. How to enable clouds to deal with network as a first order manageable resource?

RQ II. How to enable the detailed specification of applications needs?

RQ III. How can a cloud platform enable flexible integrated resource management for

a wide range of applications and environments?
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One may note that the proposed research questions are intentionally broad and

could lead to a multitude of investigations and outcomes. At the end of this study, at

least one possible answer to each of the proposed research questions is identified. Of

course, the answers provided in this thesis are supported by a substantial amount of results

and analysis. However, it does not mean that different approaches could not accomplish

similar results.

The methodology employed to show the feasibility of the proposed approach is

based on the development of a cloud management platform and evaluated in two case

studies. The platform developed supports a wide range of virtualization technologies

through Libvirt (Libvirt, 2012), advanced networking through software-defined network-

ing (SDN) with OpenFlow (MCKEOWN et al., 2008), and integration with a configurable

cloud monitoring framework (CARVALHO et al., 2012). The evaluations carried out with

the platform developed are conducted on an emulated environment, using Linux Contain-

ers virtualization with LXC (LXC, 2012), Open vSwitches (Open vSwitch, 2012) running

OpenFlow, and Mininet (Mininet, 2013).

The first case study intends to show the deployment of an information-centric net-

working (ICN) application, based on the NetInf (KUTSCHER et al., 2011) architecture.

A resource management program developed within the proposed platform is implemented

to deploy this specific type of application. The results show a promising path towards end-

to-end deployment – from detailed specification and resource allocation to monitoring and

adaptation – of network-intensive applications in cloud environments.

The second case study shows that by using the proposed programmable cloud

management platform an administrator is able to write, in a just few lines of code, op-

timization programs that achieve completely distinct objectives. In this case study three

different optimization programs are implemented and executed. Results show how the

approach enables flexible resource management in cloud platforms, from deployment to

optimization of cloud slices.

1.2 Main Contributions

Throughout the development of this study many contributions are expected, both

in terms of conceptual advancements in the state-of-the-art of resource management in

the context of cloud computing and in delivering tools for overcoming technological chal-

lenges. Some of these contributions are listed as follows:
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1. Adding more flexibility in resource management to make clouds a more suitable

platform for applications and to assist administrators to achieve their environment

specific objectives;

2. Adding support for advanced network configuration and management to clouds

based on modern networking paradigms;

3. Creating a programmability environment based on an object-oriented API, which

allows high-level abstractions for all sorts of manageable resources.

1.3 Thesis Roadmap

The remainder of this thesis is organized as follows.

In Chapter 2, the most important background concepts and studies related to this the-

sis are reviewed. Initially, a brief overview of the evolution of cloud computing

is presented focusing mainly on resource management aspects. Afterwards, dis-

cussions are presented about virtualized elements and their associated operations,

cloud interfaces and standardization efforts, the most important cloud management

platforms proposed, and specific tools and libraries in the context of cloud resource

management. Finally, additional academic efforts dealing with more particular re-

search challenges in this context are presented.

In Chapter 3, the key concepts that drive this research are presented. These concepts

are organized in the form of a conceptual architecture which includes the main

components of a cloud management platform proposed to enable more flexible and

integrated resource management in the context of IaaS clouds. Overall, the concep-

tual architecture is divided into six sections: Graphical User Interface (GUI), Slice

Space, Programmable Logic, Event Space, Unified API, and Drivers. This chap-

ter also shows how the conceptual architecture interacts with a specialized external

monitoring infrastructure in order to manage both physical and virtual resources.

In Chapter 4, the cloud management platform – which is called Aurora Cloud Manager

– developed as a proof of concept is detailed. Initially, an overview of the inter-

actions between the Aurora platform with the external monitoring infrastructure is

presented. Afterwards, the initial specification of a Cloud Slice is introduced. Then,

the implementation of core components of the conceptual architecture as well as the

technology employed are discussed.
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In Chapter 5, two case studies are presented to show the feasibility of the new concept

of cloud management platform proposed in this thesis. The first case study aims to

show the deployment of a network-intensive application based on the NetInf archi-

tecture. The second case study focuses on the optimization of resources according

to different objectives and discusses the results obtained with three resource opti-

mization programs developed within the proposed platform.

In Chapter 6, some final remarks and conclusions are presented. In addition, answers to

the fundamental research questions proposed are discussed and justified. Moreover,

opportunities to develop future work are identified and detailed.
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2 BACKGROUND & RELATED WORK

Cloud computing is a term coined around 2007. Already in 2008, Vaquero et al.

(2008) were on the pursuit of a consolidated definition of the term by analyzing a large

number of previous definitions. These authors revealed a traditional approach to cloud

computing emphasizing the provisioning of virtual computing and storage resources. This

is tightly related with the fact that cloud computing initially emerged as an evolution of

clusters and grids in the high-performance computing (HPC) community. Networking

was then only considered as the means to interconnect virtual resources. Benson et al.

(2011) also highlighted some of the limitations of cloud platforms in supporting robust

networking functions. Recently, Moreno-Vozmediano et al. (2013) pointed out that cur-

rent IaaS clouds are still too infrastructure-oriented and lack advanced service-oriented

capabilities. For example, the authors emphasize the current poor support for service-

oriented QoS metrics. Also, the definition of complex elasticity rules, based on both

infrastructure-level and QoS metrics, is not well supported.

Many cloud management platforms were developed in research projects or directly

by the open source software community. Examples of some major platforms currently

available for organizations that want to build their own private or public clouds, are: Eu-

calyptus (NURMI et al., 2009), OpenNebula (SOTOMAYOR et al., 2009), OpenStack

(Rackspace, 2010), and CloudStack (CloudStack, 2012). Given this variety of platforms,

many standardization efforts also moved towards open standards besides Amazon’s pro-

prietary EC2/S3 interfaces to allow interoperability and information exchange among

platforms and with end users. This chapter discusses some of the main initiatives to-

wards providing IaaS through clouds, keeping the focus of discussions around virtualized

resource management.

The remainder of this chapter initially discusses which virtualized elements and

abstractions are commonly provided by IaaS clouds and which operations can be per-

formed to handle these elements (Section 2.1). Afterward, some of the most important

interfaces and standards used to model and exchange information among heterogeneous

cloud environments are described (Section 2.2). Then, four of the main open source cloud

platforms available and their main characteristics are detailed (Section 2.3). After, tools

and libraries that can be used to interact with cloud platforms and virtualized resources

are discussed (Section 2.4). Finally, other academic efforts targeted to design solutions

for clouds filling particular gaps usually left behind by commercial implementations are



30

presented, including a brief discussion on the use of experimental testbeds in this context

(Section 2.5).

2.1 Virtualized Elements & Operations

Virtualization plays a key role in modern IaaS cloud environments by improv-

ing resource utilization and reducing costs (BELOGLAZOV; BUYYA, 2010). Typical

elements that can be virtualized in these environments include computing and storage.

Recently, virtualization has been extended also to the networking domain in order to

overcome limitations of current cloud environments, such as poor isolation and increased

security risks (BARI et al., 2013). Also, a set of operations need to be available to interact

with and manage these virtualized elements. Conceptually, a set of virtualized resources

of any type (i.e., computing, storage, or network) allocated to a customer (a.k.a tenant)

or an application is called a virtual infrastructure, also sometimes referred to as a cloud

slice. This section describes the main elements that can form virtual infrastructures in

a cloud environment and present a non-exhaustive list of the main operations performed

over these resources derived from a plethora of existing implementations (Amazon, 2013;

Eucalyptus, 2009; Rackspace, 2010; OpenNebula, 2008; CloudStack, 2012).

2.1.1 Computing

The virtualization of computing resources (e.g., CPU and memory) is achieved by

server virtualization technologies, or hypervisors (e.g., VMWare, Xen, QEMU), which

allow multiple virtual machines to be consolidated into a single physical machine. The

benefits of server virtualization for cloud computing include performance isolation, im-

proved application performance, and enhanced security (BARI et al., 2013).

Cloud providers deploy their infrastructures in data centers composed of several

servers interconnected by a network. In the IaaS model, virtual machines are instantiated

and allocated to tenants on-demand. Server virtualization adds flexibility to the cloud be-

cause virtual machines can be dynamically created, terminated, and migrated to different

locations without affecting existing tenants. In addition, the capacity of a virtual machine

(i.e., allocated CPU, memory, and disk) can be adjusted to reflect changes in tenants’

requirements without hardware changes.
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Cloud providers have flexibility to decide where to allocate virtual machines in

physical servers considering diverse criteria such as cost, energy consumption, or perfor-

mance. In this regard, several virtual machine allocation schemes have been proposed in

the literature that leverage the flexibility of virtualization to optimize resource utilization

(ZHU; AGRAWAL, 2012; FRINCU; CRACIUN, 2011; RAO et al., 2011a; ISLAM et al.,

2012; RAO et al., 2011b; LI et al., 2011).

To support the management of virtual machines a number of operations are avail-

able through most hypervisors and cloud platforms. Some of these operations are related

to basic tasks, such as creating, removing, or modifying virtual machines and their prop-

erties. In some systems it is also possible to perform cloning operations to copy the

properties from one virtual machine to another. Another set of operations are more re-

lated to provisioning of resources, such as deploying, undeploying, or migrating virtual

machines. These operations can abstract the complexity of memory, CPU, or disk (e.g.,

copying guest operating system image) allocation processes. Many operations are also

often included to manipulate the state of a virtual machine and its guest operating system,

such as start, stop, suspend, resume, snapshot, and restore (from snapshot).

Additionally, image management operations are also made available to create, re-

move, and upload guest operating system images for the subsequent deployment of virtual

machines. Properly managing image placing and transferring can significantly affect the

performance of resource provisioning as a whole in cloud environments and can be a quite

challenging task to accomplish (PENG et al., 2012).

2.1.2 Storage

Storage virtualization consists of grouping multiple (possibly heterogeneous) stor-

age devices that are seen as a single virtual storage space. There are two main abstractions

to represent storage virtualization in clouds: virtual volumes and virtual data objects. The

virtualization of storage as virtual volumes is important in this context because it sim-

plifies the task of assigning disks to virtual machines. Furthermore, many implementa-

tions also include the notion of virtual volume pools, which represent different sources of

available virtualizable storage spaces to allocate virtual volumes from (e.g., separate lo-

cal physical volumes or a remote Network File System (NFS)). On the other hand, cloud

storage of virtual data objects, enables scalable and redundant creation and retrieval of

data objects directly into/from the cloud. This abstraction is also often accompanied by
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the concept of containers, which in general serve to create a hierarchical structure of data

objects similar to files and folders on any operating system.

Storage virtualization for both volumes and data objects is of utmost importance

to enable the elasticity property of cloud computing. For example, virtual machines can

have their disk space adjusted dynamically to support changes in cloud application re-

quirements. Such adjustment is too complex and dynamic to be performed manually and,

by virtualizing storage, cloud providers offer a uniform view to their users and reduce the

need for manual provisioning. Also, with storage virtualization, cloud users do not need to

know exactly where their data is stored. The details of which disks and partitions contain

which objects or volumes is transparent to users, which also facilitates storage manage-

ment for cloud providers. Furthermore, this transparency also gives the cloud provider the

ability to decide on the best mechanisms to enable availability and redundancy to volumes

and data objects according to the needs of each application.

Regarding the context of virtualization for volume storage there are several pos-

sible associated operations to handle these virtual resources. Basic operations include

creating, removing, and resizing volumes (and pools, when supported), which depending

on the implementation would allocate the resources on physical media right away or on

demand. It should also be common to find operations to attach and detach virtual vol-

umes into/from virtual machines, since that is the customary way to provide access to

these storage spaces to end users.

In the case of storage virtualization for data objects there are similar operations to

create and delete these objects and their associated containers. Moreover, many imple-

mentations include means to transfer the actual data in and out of the cloud environment,

to allow publishing content and retrieving it back. Furthermore, advanced operations

are sometimes available to stream the content out to the general public or even options

for massive scale distribution employing concepts of Content Delivery Networks (CDN)

(PATHAN; BUYYA; VAKALI, 2008; BUYYA et al., 2009).

2.1.3 Networking

Cloud infrastructures rely on local and wide area networks to connect the phys-

ical resources of their data centers (i.e., servers, switches, and routers). Such networks

are still based on the current IP architecture that has a number of problems. These prob-

lems are mainly related to the lack of isolation, which can allow a virtual infrastructure
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or application to interfere with another, resulting in poor performance or in security prob-

lems. Another issue is the limited support for innovation, which hinders the development

of new architectures that could suit better cloud applications. As opposed to computing

and storage management, which can be considered fairly stable, networking within cloud

environments is still quite challenging.

Historically, cloud platforms have implemented solutions based on IP networks

(e.g., VLAN and MPLS) mainly trying to add a level of isolation among virtual machines.

In general, a group of virtual machines was set to belong to the same flat network segment,

which was configured to be isolated from the rest of the network, regardless of where

virtual machines were positioned in the data center. Many scattered abstractions for more

complex network elements were added on demand to these isolated virtual networks, such

as dedicated DHCP servers for IP auto-configuration, firewalls to provide a controllable

entry-point, and load balancers to distribute requests among pools of virtual machines.

Nowadays, to overcome the limitations of network architectures, network virtu-

alization is being also considered in the context of clouds. Network virtualization has

been a hot topic of investigation in recent years (KHAN et al., 2012; CHOWDHURY;

BOUTABA, 2009) mainly in Internet Service Provider (ISP) networks. Similarly, in vir-

tualized cloud networks multiple virtual networks need to share a physical substrate and

can run isolated protocol stacks. A virtual network is part of a virtual infrastructure that in-

cludes abstractions for virtual network nodes (i.e., switches and routers) and virtual links.

In the context of clouds, virtual network nodes and links are employed mainly to intercon-

nect virtual machines, but are not only limited to that. The advantages of virtualization of

cloud networks include network performance isolation (e.g., separate scheduling queues

and algorithms), improved security, and the possibility to introduce new protocols and

addressing schemes without changing the underlying substrate.

Regarding the operations available to manage virtualized network elements, there

is not one widely accepted set of standardized operations in the context of clouds. It

varies according to the complexity of network elements supported by each environment.

For example, in environments where only basic isolation is provided over ordinary IP

networks, management operations are also basic. In these environments, operations such

as, creating/configuring a flat network (e.g., assigning a VLAN tag and DHCP range)

and associating virtual machines to this network, should be commonly available. Where

more complex network virtualization abstractions are supported, at least operations for

creating/removing virtual network nodes and links and associating these elements to the
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rest of the virtual infrastructure (i.e., connecting virtual machines and storage) should

be present. Also, explicit operations for deploying, undeploying, and migrating virtual

routers and switches are desirable, since positioning these elements in relation to the

underlying substrate tend to be at least as complex as it is for virtual machines. Moreover,

operations for establishing, disabling, and configuring the communication in virtual links

should be useful to control, for example, path selection and QoS parameters.

2.1.4 Management

Offering management as a resource that can be allocated and even virtualized is not

as common as it is for computing, storage, and networking, but is certainly as important.

By analogy, one can think of when a tenant establishes a new virtual infrastructure as

acquiring a set of physical servers and network devices and installing them at a local

facility. In a traditional physical network a management infrastructure would also have

to be setup to monitor and operate the newly acquired devices. In a virtual environment

this necessity remains the same, but in this case virtual management infrastructures can

be created dynamically in association with other types of virtualized resources.

At the virtual level, each virtual infrastructure can independently operate its own

management protocols and monitoring tools. For example, one tenant can use SNMP to

manage his/her virtual infrastructure, while another can use NETCONF or Web services.

At the data center level, cloud providers need to manage their physical nodes and net-

work employing whatever tools and techniques they find most suitable. Moreover, cloud

providers can also use information from hypervisors in order to obtain status of virtualized

elements and the resources they consume. However, the effective management of virtual

infrastructures may require combining information from all three levels, i.e., physical,

virtual, and hypervisors.

Monitoring is an example of a management aspect that can be virtualized and is

particularly important in the context of this thesis. Once a new virtual infrastructure is

created, a set of monitoring tools can be configured (MONTES et al., 2013) in order to

start monitoring this set of virtual resources right away. This set of configurations and

the corresponding monitored metrics are referred to as a monitoring slice (CARVALHO

et al., 2012). Therefore, every virtual infrastructure is coupled with a monitoring slice to

monitor resource status and utilization.
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Operations are also necessary to instantiate monitoring slices associated with vir-

tual infrastructures. For example, basic operations to start and stop monitoring need to

exist in order to deploy or remove the appropriate monitoring infrastructure configura-

tions required to monitor a given virtual device. In addition, after virtual devices are

being monitored, it is also important to be able to read information about a specific device

from monitoring infrastructure. Furthermore, some advanced operations would be also

interesting to have, such as creating personalized metrics and events to be triggered in

specific situations (e.g., when a virtual machine crashes or upon virtual link saturation).

2.2 Cloud Interfaces & Standardization Efforts

Today, there are many heterogeneous cloud platforms that support the provision-

ing of virtualized infrastructures under a plethora of different specifications and technolo-

gies. Each cloud provider chooses the platform that suits them best or designs their own

platforms to provide differentiated services to their consumers. The problem with this

heterogeneity is that it hinders interoperability and causes vendor lock-in for consumers.

In order to allow the remote management of virtual elements, many platforms already of-

fer specific interfaces (e.g., Amazon EC2/S3, Elastic Hosts, Flexiscale, Rackspace Cloud

Servers, and VMware vSphere) to communicate with external applications.

To cope with this variety of technologies and support the development of plat-

form agnostic cloud applications a few proposals took basically two different approaches:

(i) employing proxy-style APIs in order to communicate with many providers using a

set of technology specific adapters and (ii) creating standardized generic interfaces to be

implemented by cloud platforms. The first approach has a drawback of introducing an

additional layer of indirection in cloud systems, which incurs in overhead and increases

latency. Nevertheless, there are libraries and tools that are widely employed, such as

Apache Deltacloud and Libcloud, which are further discussed in Section 2.4. The second

approach, on the other hand, represents a more conceptually elegant solution to the prob-

lem, when proposing some sort of lingua franca to communicate among cloud systems.

The problem in standardization is always making everyone agree onto the same standard

(ORTIZ, 2011). Ideally, a standardized interface should be open and extensible to allow

widespread usage and adoption by cloud management platforms and application devel-

opers. This section reviews some of the most important efforts towards the definition of

open standard interfaces to support virtualization and interoperability in the cloud.
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2.2.1 Virtual Infrastructure Description Language (VXDL)

The Virtual Infrastructure Description Language (VXDL)1 originated from the

HPC community, where its main purpose was to describe a Virtual Private eXecution

Infrastructure (VPXI) (KOSLOVSKI; PRIMET; CHARAO, 2009). A VPXI, in turn, is

defined as a time-limited interconnection of virtual computing resources through a vir-

tual private overlay network, which is conceptually similar to what in this thesis is called

simply as a virtual infrastructure. Initially, VXDL was mostly employed in the process of

translating the workflow of HPC applications into a description of a virtual infrastructure

that can be suitable to efficiently execute these applications (HUU et al., 2011).

Currently, VXDL is a language being considered for modeling and describing

complete virtual infrastructures also in the context of IaaS clouds. This language is being

proposed as a standard form of communication between the cloud users and providers

(KOSLOVSKI; SOUDAN; VICAT-BLANC, 2012). Moreover, VXDL is currently sup-

ported by the VXDL Forum, which is a not-for-profit consortium embodied by members

of the network industry and academia (VXDL Forum, 2011). Besides describing the ele-

ments that compose virtual infrastructures, VXDL also includes the notion of a time limit

or lifetime for these elements, allowing the representation and scheduling of changes over

time in virtual resource allocations. Nevertheless, VXDL does not intend to specify the

operations performed over virtual elements.

VXDL defines the concept of a virtual infrastructure as four key points: (i) sim-

plicity and abstraction of complex virtual infrastructures for high-level protocol and tech-

nology independent resource manipulation; (ii) interconnections to represent that virtual

elements are not independent and how they should be able to interact; (iii) timeliness to

represent the dynamic aspect of virtual infrastructures, such as time intervals or phases

where resources need to be reserved to a given application; and (iv) attributes representing

the expected requirements associated with virtual elements, such as parameters for Qual-

ity of Experience (QoE), Quality of Service (QoS), or Service-Level Agreement (SLA)

definitions.

The basic virtual elements that can compose a virtual infrastructure currently in-

cluded in the VXDL specification are: vNode used to represent computing nodes, e.g.,

virtual machines; vStorage used to represent virtual storage devices, e.g., virtual volumes;

vRouter used to represent virtual network devices, e.g., virtual switch or router; vLink

1Formerly called Virtual eXecution Description Language (VXDL)
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used to represent logical connections between two endpoints of the virtual infrastructure;

and vAccessPoint used to represent an entry point to connect the virtual infrastructure

with other networks, e.g., a virtual firewall or proxy.

2.2.2 Open Cloud Computing Interface (OCCI)

The Open Cloud Computing Interface (OCCI) (OGF, 2012) introduces a set of

open community led specifications to deal with cloud service resource management (ED-

MONDS et al., 2012). OCCI is supported by the Open Grid Forum and was originally

conceived to create a remote management API for IaaS platforms allowing interoperabil-

ity for common tasks, such as deployment, scaling, and monitoring virtual resources.

Besides the definition of an open API, this specification also introduces a RESTful Pro-

tocol to exchange all sorts of management information and actions. The current release

of OCCI is not anymore focused only in IaaS, but includes other cloud business models,

such as PaaS and SaaS.

The current version of the specification2 is designed to be modular and exten-

sible, thus it is split into three complementary documents. The OCCI Core document

(GFD.183) describes the formal definition of the OCCI Core Model. This document also

describes how renderings can be used to interact with the core model (including associ-

ated behaviors) and how it can be expanded through extensions. The second document is

OCCI Infrastructure (GFD.184), which contains the definition of the OCCI infrastructure

extension for the IaaS domain. This document also defines additional resource types, their

attributes, and actions that each resource type can perform. The third document, OCCI

HTTP Rendering (GFD.185), defines means of interacting with the OCCI Core Model

through the RESTful OCCI API. Moreover, this document defines how the OCCI Core

Model can be communicated and serialized over HTTP protocol.

The OCCI Infrastructure document describes the modeling of virtual resources in

IaaS as three basic element types: (i) Compute that are information processing resources,

(ii) Storage that are intended to handle information recording, and (iii) Network represent-

ing L2 networking elements (e.g., virtual switches). Also, there is an abstraction for the

creation of Links between resources. Links can be of two types, i.e., Network Interface

or Storage Link, depending on the type of resource they connect. It is also possible to

use this specification to define Infrastructure Templates, which are intended to be short-

2As of the ending of 2013 the current version of OCCI is v1.1 (release date April 7, 2011)
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hand to predefined virtual resource specifications (e.g., small, medium, and large virtual

machine configurations). Moreover, the OCCI HTTP Rendering document complements

these definitions by specifying management operations, such as creating, retrieving, up-

dating, and deleting virtual resources. Furthermore, it details general requirements for the

transmission of information over HTTP, such as security and authentication.

OCCI is currently implemented in many popular cloud management platforms,

such as OpenStack, OpenNebula, and Eucalyptus. There are also base implementations

in programming languages, such as rOCCI in Ruby and jclouds in Java, and automated

compliance tests with doyouspeakOCCI. One particular effort aims to improve the inter-

cloud networking standardization by proposing an extension to OCCI, called Open Cloud

Networking Interface (OCNI) (MEDHIOUB; MSEKNI; ZEGHLACHE, 2013). There is

also a reference implementation of OCNI called pyOCNI, written as a Python framework

including JSON serialization for resource representation.

2.2.3 Open Virtualization Format (OVF)

The Open Virtualization Format (OVF) (DMTF, 2013b), currently in version 2.0.1,

was introduced late in 2008 within the Virtualization Management initiative of the Dis-

tributed Management Task Force (DMTF), aiming to provide an open and extensible

standard for packaging and distribution of software to be run in virtual machines. Its

main virtue is to allow portability of virtual appliances onto multiple platforms through

so-called OVF Packages, which may contain one or more virtual systems. The OVF stan-

dard is not tied to any particular hypervisor or processor architecture. Nevertheless, it is

easily extensible through the specification of vendor-specific metadata included in OVF

Packages.

An OVF Package is a core concept of the OVF specification, which consists of sev-

eral files placed into one directory describing the structure of the packed virtual system.

An OVF Package includes one OVF Descriptor, which is an XML document containing

metadata about the package contents, such as product details, virtual hardware require-

ments, and licensing. The OVF Package may also include certificates, disk image files, or

ISO images to be attached to virtual systems.

Within an OVF Package, an Envelope Element describes all metadata for the vir-

tual machines included in the package. Among this metadata a detailed Virtual Hardware

Description (based on Common Information Model (CIM) classes) can specify all types
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of virtual hardware resources required by a virtual system. This specification can be ab-

stract or incomplete, allowing the virtualization platform to decide how to better satisfy

the resource requirements, as long as required virtual devices are realized. Moreover, OVF

Environment information can be added to define how the guest software and the deploy-

ment platform interact. This environment allows the guest software to access information

about the deployment platform, such as values specified for the properties defined in the

OVF Descriptor.

This standard is present in many hypervisor implementations and has been shown

to be very useful for migrating virtual systems information among many hypervisors or

platforms, since it allows precise description of virtual machines and virtual hardware re-

quirements. However, it is not within the objectives of OVF to provide detailed specifica-

tion for complete virtual infrastructures (i.e., detailing interconnections, communication

requirements, and network elements).

2.2.4 Cloud Infrastructure Management Interface (CIMI)

The Cloud Infrastructure Management Interface (CIMI) (DMTF, 2013a) standard

is another DMTF proposal within the context of the Cloud Management initiative. This

standard defines a model and protocol for management interactions between IaaS cloud

providers and consumers. CIMI’s main objective is to provide consumers with access

to basic management operations on IaaS resources (virtual machines, storage, and net-

working) facilitating portability between different cloud implementations that support this

standard. CIMI also specifies a RESTful protocol over HTTP using both JSON or XML

formats to represent information and transmit management operations.

The model defined in CIMI includes basic types of virtualized resources, where

Machine Resources are used to represent virtual machines, Volume Resources for storage,

and Network Resources for virtual network devices and ports. Besides, CIMI also defines

a Cloud Entry Point type of resource, which is intended to represent a catalog of virtual

resources that can be queried by a consumer. A System Resource in this standard gathers

one or more Network, Volume, or Machine Resources, and can be operated as a single

resource. Finally, a Monitoring Resource is also defined to track progress of operations,

metering, and monitoring of other virtual resources.

The protocol relies on basic HTTP operations (i.e., PUT, GET, DELETE, HEAD,

and POST) and uses either JSON of XML to transmit the message body. To manipulate
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virtual resources there are four basic CRUD (Create, Read, Update, and Delete) oper-

ations. It is also possible to extend the protocol by creating or customizing operations

to manipulate the state of each particular resource. Moreover, the CIMI specification can

also be integrated with OVF, in which case virtual machines represented as OVF Packages

can be used to create Machine Resources or System Resources.

At the time of this writing, implementations of the CIMI standard are not so com-

monly found as OCCI or OVF are. One specific implementation worth noting is found

within the Apache Deltacloud3 project, which exposes a CIMI REST API to communicate

with external applications supporting manipulation of Machine and Volume Resources

abstractions.

2.2.5 Cloud Data Management Interface (CDMI)

The Cloud Data Management Interface (CDMI) (SNIA, 2012) is a standard specif-

ically targeted to define an interface to access cloud storage and to manage data objects.

CDMI is comparable to Amazon’s S3 (SNIA, 2013), with the fundamental difference that

it is conceived by the Storage Networking Industry Association (SNIA) to be an open

standard targeted for future ANSI and ISO certification. This standard also includes a

RESTful API running over HTTP to allow accessing capabilities of cloud storage sys-

tems, allocating and managing storage containers and data objects, handling users and

group access rights, among other operations.

The CDMI standard defines a JSON serializable interface to manage data stored

in clouds based on several abstractions. Data objects are a fundamental storage compo-

nent analogous to files within a file system, which include metadata and value (contents).

Container objects are intended to represent grouping of data, analogous to directories in

a regular file system, this abstraction links together zero or more Data objects. Domain

objects represent the concept of administrative ownership of data stored within cloud

systems. This abstraction is very useful to facilitate billing, to restrict management op-

erations to groups of objects, and to represent hierarchies of ownership. Queue objects

provide first-in, first-out access to store or retrieve data from the cloud system. Queuing

provides a simple mechanism for controlling concurrency when reading and writing Data

objects in a reliable way. To facilitate interoperability this standard also includes mech-

3 http://deltacloud.apache.org/cimi-rest.html



41

anisms for exporting data to other network storage platforms, such as iSCSI, NFS, and

WebDAV.

Regarding implementations, CDMI it also not so commonly found deployed in

most popular cloud management platforms. SNIA’s Cloud Storage Technical Working

Group (TWG) provides a Reference Implementation for the standard, which is currently

a working draft and provides support only for version 1.0 of the specification. Some

independent projects, such as CDMI add-on for OpenStack Swift and the CDMI-Serve in

Python, have implemented basic support for the CDMI standard but do not present much

recent activity.

Besides all the aforementioned efforts to create new standardized interfaces for virtual

resource management in cloud environments, other approaches, protocols, and methods

have been proposed as well and may be of interest in particular situations (ESTEVES;

GRANVILLE; BOUTABA, 2013). Moreover, many organizations, such as OASIS, ETSI,

ITU, NIST, and ISO, are currently engaged with their cloud and virtualization related

working groups on developing standards and recommendations. The interested reader

should look at DMTF’s maintained wiki page Cloud-Standards.org4 to keep track of future

standardization initiatives.

One last point to emphasize in the current picture of standardization and interfaces

for cloud management is that many platforms already support some default interoperabil-

ity interfaces, such as OCCI, CIMI, and also the current de facto standard Amazon EC2.

The use of such interfaces enables other applications to remotely send requests to a given

cloud system in order to allocate virtual resources. Nevertheless, that only eliminates the

need to access the user interface to request such resources. Still, if an administrator really

needs to change the resource allocation strategies employed at the core of a cloud platform

to map virtual resource requests into a set of physical resources, it would be necessary to

dig into the source code of such platform – which is usually accessible via open source

licenses, but not really easy to change.

2.3 Cloud Management Platforms

This section lists some of the most important efforts currently targeted to build

tools for cloud management. The following open source cloud management platforms are

4http://cloud-standards.org/
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in fact complete solutions to deploy and operate private or public, and sometimes even

hybrid clouds. The main technical characteristics of the platforms presented in this sec-

tion are summarized in Table 2.1, including programming language used for development,

compatibility with some of the interfaces and standards previously mentioned, support for

network management and monitoring, and latest releases information to indicate develop-

ment activity. In the following sections, detailed descriptions of each platform and their

main characteristics are presented.

Table 2.1: Technical characteristics of cloud management platforms
Eucalyptus OpenNebula OpenStack CloudStack

Mostly C and Java Python Mostly Java

Fully integrated with AWS

KVM, Xen, and VMWare

Internal or LDAP

Networking

Monitoring CloudWatch

First Release 1.0 (Released: May 29th, 2008) 1.0 (Released: July 24th, 2008) Austin (October 21st, 2010)

Kilo (Released: April 30th, 2015) 4.5 (Released: August 23rd, 2015)

License GPL v3.0 Apache v2.0 Apache v2.0 Apache v2.0

Programming 
Language

C++ (Integration APIs in Ruby, 
JAVA, and Python)

Compatibility 
and Interoper-
ability

AWS, OCCI, and XML-RPC 
API

Nova and Swift are feature-wise 
compatible to EC2 and S3 (appli-
cations need to be adapted 
though), OCCI support (under de-
velopment)

CloudStack REST API (XML or 
JSON)

Supported 
Hypervisors

vSphere, ESXi, KVM, any AWS-
compatible clouds

QEMU/KVM over libvirt (fully 
supported), VMware and XenAPI 
(partially supported), many others 
at non-stable development stages

XenServer/XCP, KVM, and/or 
VMware ESXi with vSphere

Identity 
Management

Role-Based Access Control 
mechanisms with Microsoft Ac-
tive Directory or LDAP systems

Sunstone, EC2, OCCI, SSH, 
x509 certificates, and LDAP

Local database, EC2/S3, RBAC, 
Token-based, SSL, x509 or PKI 
certificates, and LDAP

Resource usage 
control

Resource quotas for users and 
groups 

Resource quotas for users and 
groups 

Configurable quotas per user 
(tenant) defined by each project

Usage Server separately-installed 
provides records for billing, re-
source limits per project

Basic support with 4 operating 
modes

IP/DHCP ranges customizable 
by users, many options for ad-
ministrator require manual con-
figuration

Several options via Neutron com-
ponent, extensible with plug-ins

Two operating modes, several 
networking-as-a-service options in 
advanced configurations

Internal, gathers information 
from hypervisors

Simple customizable dashboard 
relies on information provided by 
other components

Some performance indicators 
available through the API are dis-
played to users and administrator

4.0.0-incubating (Released: No-
vember 6th, 2012)

Current Major 
Release

4.1 (Released: January 29th, 
2015)

4.12 (Cotton Candy) (Released: 
March 11th, 2015)

Source: by author (2015).

2.3.1 Eucalyptus

Eucalyptus started as a research project in the Computer Science Department at

the University of California, Santa Barbara in 2007, within a project called Virtual Grid

Application Development Software Project (VGrADS) funded by the National Science

Foundation. This is one of the first open source initiatives to build a cloud management

platform to allow users to deploy their own private clouds (NURMI et al., 2009; Euca-

lyptus, 2009). Currently, Eucalyptus is in version 4.1 and comprises full integration with

Amazon Web Services (AWS) – including EC2, S3, Elastic Block Store (EBS), Iden-
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tity and Access Management (IAM), Auto Scaling, Elastic Load Balancing (ELB), and

CloudWatch – enabling both private and hybrid cloud deployments.

Eucalyptus architecture is based on four high-level components: (i) Node Con-

troller executes at physical hosts of the infrastructure and is responsible for controlling the

execution of virtual machine instances; (ii) Cluster Controller works as a front end at the

cluster-level (i.e., Availability Zone) managing virtual machine execution and schedul-

ing on Node Controllers, controls cluster-level Service Level Agreements (SLAs), and

also as manages virtual networks; (iii) Storage Controller exists both at cluster-level and

at cloud-level (Walrus) and implements is a put/get Storage-as-a-Service solution based

on Amazon’s S3 interface, providing a mechanism for storing and accessing virtual ma-

chine images and user data; and (iv) Cloud Controller is the entry-point into the cloud

for users and administrators, it implements an EC2-compatible interface and coordinates

other components to perform high-level tasks, such as authentication, accounting, report-

ing, and quota management.

For networking, Eucalyptus offers four operating modes: (i) Managed in which the

platform manages layers 2 and 3 virtual machine isolation, employing a built-in DHCP

service. This mode requires a switch to forward a configurable range of VLAN-tagged

packets; (ii) Managed (no VLAN) in which only layer 3 virtual machine isolation is pos-

sible; (iii) Static, where there is no virtual machine isolation, employs a built-in DHCP

service for static IP assignment; and (iv) System, where there is also no virtual machine

isolation and, in this case, no automatic address handling since Eucalyptus will rely on an

existing external DHCP service. In version 4.0, Eucalyptus introduced a new functional-

ity to support network configuration through the Edge Networking Mode. In such mode,

a stand-alone component is placed at Node Controllers specifically designed to manage

network configuration upon request of the centralized Cluster Controller.

2.3.2 OpenNebula

In its early days OpenNebula was a research project at the Universidad Com-

plutense de Madrid. The first version of the platform was released open source in 2008

within the European Union’s Seventh Framework Programme (FP7) project called RESER-

VOIR – Resources and Services Virtualization without Barriers (2008-2011) (SOTOMAYOR

et al., 2009). Nowadays, OpenNebula (version 4.12 Cotton Candy released November
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3rd, 2014) is a platform used mostly for the deployment of private clouds, but is also

capable of interfacing with other systems to work as hybrid or public cloud environment.

OpenNebula is conceptually organized in a three-layered architecture (MORENO-

VOZMEDIANO; MONTERO; LLORENTE, 2012). At the top, the Tools layer comprises

higher-level functions, such as cloud level virtual machine scheduling, providing CLI and

GUI access for both users and administrators, managing and supporting multitier ser-

vices, elasticity and admission control, and exposing interfaces to external clouds through

AWS and OCCI. At the Core layer, vital functions are performed, such as accounting,

authorization, and authentication, as well as resource management for computing, stor-

age, networking, and virtual machine images. Also at this layer, the platform implements

monitoring of resources by retrieving information available from hypervisors to read the

state of virtual machines and manages federations enabling access to remote cloud infras-

tructures, which can be either partner infrastructures governed by a similar platform or

public cloud providers. At the bottom, the Drivers layer implements infrastructure and

cloud drivers to provide an abstraction to communicate with the underlying technology or

to enable access to remote cloud providers.

OpenNebula allows administrators to setup multiple zones and create federated

virtual data centers considering different federation paradigms (e.g., cloud aggregation,

bursting, or brokering), in which case each zone operates their network configurations

independently. From the user point of view, setting up a network in the OpenNebula

platform is restricted to the creation of a DHCP IP range that will in turn be automati-

cally configured in each virtual machine. The administrator can change the way virtual

machines connect to the physical ports of the host machine using one of many options,

i.e., VLAN 802.1Q to allow isolation, EBtables and Open vSwitch permit implementa-

tion of traffic filtering, and VMware VLANs which isolate virtual machines running over

VMware hypervisor. It is also possible to deploy Virtual Routers from OpenNebula’s

Marketplace to work as an actual router, DHCP, or DNS server.

2.3.3 OpenStack

OpenStack started as a joint project between Rackspace Hosting and NASA around

mid 2010, aiming to provide a cloud-software solution to run over commodity hardware

(Rackspace, 2010). Right after the first official release (beginning of 2011), OpenStack

was quickly adopted and packed within many Linux distributions, such as Ubuntu, De-
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bian, and Red Hat. Today, it is the cloud management platform with the most active

community counting on more than 13,000 registered people from over 130 countries.

OpenStack is currently developed in 9 parallel core projects (plus 4 incubated) all coor-

dinated by the OpenStack Foundation, which is embodied by 9,500 individuals and 850

different organizations.

The OpenStack architecture consists of a myriad of interconnected components,

each one developed under a separate project, to deliver a complete cloud infrastructure

management solution. Initially, only two components were present, Compute (Nova)

and Object Storage (Swift), which respectively provide functionality for handling vir-

tual machines and a scalable redundant object storage systems. Adopting an incremental

approach, incubated/community projects were gradually included in the core architec-

ture, such as Dashboard (Horizon) to provide administration GUI access, Identity Service

(Keystone) to support a central directory of users mapped to services, and Image Service

(Glance) to allow discovery, registration, and delivery of disk and server images. The cur-

rent release of OpenStack (Kilo) includes advanced network configuration with Neutron,

persistent block-level storage with Cinder, a single point of contact for billing systems

through Ceilometer, and a service to orchestrate multiple composite cloud applications

via Heat.

As for networking, a community project called Quantum started in April 2011 and

was targeted to further develop the networking support of OpenStack by employing vir-

tual network overlays in a Connectivity as a Service (CaaS) perspective. From release

Folsom on, Quantum was added as a core project and renamed to Neutron. Currently,

this component allows administrators to employ from basic networking configuration of

IP addresses, allowing for dedicated static address assignment or via DHCP, to complex

configuration with SDN technology like OpenFlow. Moreover, Neutron provides the plat-

form with the ability of adding plug-ins to introduce more complex functionality, such as

quality of service, intrusion detection systems, load balancing, firewalls, and virtual pri-

vate networks.

2.3.4 CloudStack

CloudStack started as a project from a startup company called VMOps in 2008,

later renamed Cloud.com, and was first released as open source in mid 2010. After

Cloud.com was acquired by Citrix, CloudStack was relicensed to Apache 2.0 and in-
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cubated by the Apache Software Foundation in April 2012. Ever since, the project has

developed a powerful cloud platform to orchestrate resources in highly distributed envi-

ronments for both private and public cloud deployments (CloudStack, 2012).

CloudStack deployments are organized into two basic building blocks, a Man-

agement Server and a Cloud Infrastructure. The Management Server is a central point

of configuration for the cloud (these servers might be clustered for reliability reasons).

It provides Web user interface and API access, manages the assignment of virtual ma-

chines to hosts, allocates public and private IP addresses to particular accounts, manages

images, among other tasks. The Cloud Infrastructure is composed of distributed Zones

(typically, data centers) hierarchically organized into Pods, Clusters, Hosts, Primary, and

Secondary Storage. The CloudStack Cloud Infrastructure may also optionally include Re-

gions (perhaps geographically distributed), to aggregate multiple Zones, and each Region

is controlled by a different set of Management Servers, turning the platform into a highly

distributed and reliable system. Moreover, a separate Python tool called CloudMonkey

is available to provide CLI and shell environments for interacting with CloudStack-based

clouds.

CloudStack offers two types of networking configurations: (i) Basic, which is an

AWS-style networking providing a single network where guest isolation can be achieved

through layer-3 means such as security groups and (ii) Advanced, where more sophisti-

cated network topologies can be created. CloudStack also offers a variety of Networking

as a Service (NaaS) features, such as creation of VPNs, firewalls, and load balancers.

Moreover, this tool provides the ability to create a Virtual Private Cloud, which is a pri-

vate, isolated part of CloudStack that can have its own virtual network topology. Virtual

machines in this virtual network that can have any private addresses since they are com-

pletely isolated from others.

By analyzing the evolution of cloud management platforms, one may note that their pri-

mary focus is on virtualization of computing and storage resources (SEMPOLINSKI;

THAIN, 2010). This biased evolution may be explained by the fact that platforms for

cloud computing management emerged from the cluster and grid computing communi-

ties, thus the network used to be considered only as means to transfer data or jobs rather

than an allocable type of resource. The majority of these platforms offers basic network

configuration via DHCP servers only to configure IP addresses for virtual machines. Ini-
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tially, isolation of traffic between sets of virtual machines was a primary concern, so many

platforms started supporting the configuration of VLAN tags, for instance. Only recently,

platforms started adding advanced networking capabilities based on concepts from the

network virtualization area, such as employing NaaS and CaaS models. Despite all this

recent interest in adding network-related features to already established cloud platforms,

implementations still diverge in defining the most appropriate abstractions to represent

virtual network elements.

A second aspect that is worth mentioning regards the ability of a cloud admin-

istrator to get a cloud management platform to operate resources in line with the cloud

provider’s objectives. Most of the aforementioned platforms are indeed open source,

which in theory allows their source code to be downloaded and modified to almost any

purpose. That does not necessarily mean that digging into the code of a complex platform

is an easy task to do, specially as a resource management activity on a daily basis. Ratio-

nal resource management is at the heart of the cloud business and should be placed right

in the hands of the person who understands both business and application requirements,

as well as the technicality of the underlying infrastructure. Besides adapting a platform

to the cloud provider’s infrastructure level objectives, it might also be the case that a plat-

form needs to adapt to many different application specific objectives. This thesis argues

that it is utterly important that a cloud platform allows the flexibility necessary to have its

resource management strategies easily customized for both application and environment

specific objectives.

2.4 Specific Tools & Libraries

Next, some tools and libraries mainly designed to deal with the diversity of tech-

nologies involved in cloud environments are described. Unlike cloud platforms, these

tools do not intend to offer a complete solution for cloud providers. Nevertheless, they

play a key role in integration and allow applications to be written in a more generic man-

ner in terms of virtual resource management.
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2.4.1 Libcloud

Libcloud is a client Python library for interacting with the most popular cloud

management platforms (Libcloud, 2012). This library originally started being developed

within Cloudkick (extinct cloud monitoring software project, now part of Rackspace)

and today is an independent free software project licensed under the Apache License

2.0. The main idea behind Libcloud is to create a programming environment to facilitate

developers on the task of building products that can be ported across a wide range of cloud

environments. Therefore, much of the library is about providing a long list of drivers to

communicate with different cloud platforms. Currently, Libcloud supports more than 26

different providers, including Amazon’s AWS, OpenStack, OpenNebula, and Eucalyptus,

just to mention a few.

Moreover, this library also provides a unified Python API, offering a set of com-

mon operations to be mapped to the appropriate calls to the remote cloud system. These

operations are divided into four abstractions: (i) Compute, which enables operations for

handling virtual machines (e.g., list/create/reboot/destroy virtual machines) and its exten-

sion Block Storage to manage volumes attached to virtual machines (e.g., create/destroy

volumes, attach volume to virtual machine); (ii) Load Balancer, which includes operations

for the management of load balancers as a service (e.g., create/list members, attach/detach

member or compute node) and is available in some providers; (iii) Object Storage, which

offers operations for creating an Amazon S3-like environment for handling data objects

in a cloud (list/create/delete containers or objects, upload/download/stream object) and its

extension to CDN for providers that support these operations (e.g., enable CDN container

or object, get CDN container or object URL); and (iv) Domain Name System (DNS),

allows management operations for DNS as a service (e.g., list zones or records, cre-

ate/update zone or record) in providers that support it, such as Rackspace Cloud DNS.

2.4.2 Deltacloud

Deltacloud follows a very similar philosophy compared to Libcloud. It is also

an Apache Software Foundation project – left incubation in October 2011 and is now a

top-level project – and is similarly targeted to provide an intermediary layer to let appli-

cations communicate with several different cloud management platforms. Nevertheless,

instead of providing a programming environment through a specific programming lan-
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guage, Deltacloud enables management of resources in different clouds by the use of one

of three supported RESTful APIs (DeltaCloud, 2011): (i) Deltacloud classic, (ii) DMTF’s

CIMI, (iii) Amazon’s EC2.

Deltacloud implements drivers for more than 20 different providers and offers

several operations divided into two main abstractions: (i) Compute Driver, which includes

operations for managing virtual machines, such as create/start/stop/reboot/destroy virtual

machine instances, list all/get details about hardware profiles, realms, images, and virtual

machine instances; and (ii) Storage Driver, providing operations similar to Amazon S3

to manage data objects stored in clouds, such as create/update/delete buckets (analogous

to folders), create/update/delete blobs (analogous to data files), and read/write blobs data

and attributes.

2.4.3 Libvirt

Libvirt is a toolkit for interacting with multiple virtualization providers/hypervisors

to manage virtual compute, storage, and networking resources. It is a free collection of

software available under GNU LGPL and is not particularly targeted to cloud systems.

Nevertheless, Libvirt has shown to be very useful to handle low level virtualization oper-

ations and is actually used under the hood by cloud platforms like OpenStack to interface

with some hypervisors. Libvirt supports several hypervisors (e.g., KVM/QEMU, Xen,

VirtualBox, and VMware), creation of virtual networks (e.g., bridging or NAT), and stor-

age on IDE, SCSI, and USB disks and LVM, iSCSI, and NFS file systems. It also provides

remote management using TLS encryption, x509 certificates, and authentication through

Kerberos or SASL.

Libvirt provides a C/C++ API with bindings to several other languages, such as

Python, Java, PHP, Ruby, and C#. This API includes operations for managing virtual

resources as well as retrieving information and capabilities from physical hosts and hy-

pervisors. Virtual resource management operations are divided into three abstractions:

(i) Domains, which are common virtual machine-related operations, such as create, start,

stop, and migrate; (ii) Storage, for managing block storage volumes or pools; and (iii)

Network, which includes operations such as creating and connecting virtual machines to

bridges, enabling NAT, and DHCP. Note that network operations are all performed within

the scope of a single physical host, i.e., it is not possible to connect virtual machines in

separate hosts to the same bridged network, for example.
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In summary, the first two libraries (i.e., Libcloud and Deltacloud) aim to integrate different

cloud technologies. They both operate at an even higher level of abstractions than the

interfaces and standards presented in Section 2.2, adding a level of indirection between

the cloud platform operating the resources and the application requesting them. Again,

it is possible to visualize that there is no common set of abstractions among different

libraries. Libvirt, on the other hand, is a programming interface that operates very close

to the underlying infrastructure integrating mainly different hypervisor technologies. The

person using this programming interface still needs to deal with many technology specific

parameters and there is only rudimentary support for management of virtualized network

elements.

2.5 Additional Related Work

This section starts discussing the need to translate application goals to an actual

allocation of virtual resources. Afterwards, some academic efforts that aim to make cloud

platforms more customizable are presented. Finally, the use of experimentation testbeds

as a solution to manage virtual resources is also discussed.

2.5.1 Application Goal Translation

Although the focus of this thesis is mainly on providing IaaS, it is important to

keep in mind that what runs over these virtualized infrastructures is actually an applica-

tion. Many approaches have been proposed to “translate” the initial specification of an ap-

plication – the input from the user to the cloud platform – into actual resource allocation.

Most of the aforementioned commercial platforms adopt an oversimplified approach, us-

ing forms or wizards, asking questions like: how many virtual machine instances? how

much RAM memory? how much disk space? and which operating system image should

be deployed? Then, the cloud platform finds a way to allocated virtual resources onto the

available physical ones.

Some recent studies propose ways to allow a high-level specification of application

constraints (SUN et al., 2012; WUHIB; STADLER; LINDGREN, 2012; ESTEVES et al.,
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2013) and complex methods of translation to resource allocation. In this thesis, allowing

the application to be specified in very high levels of abstraction is not a major concern.

However, means are included for the user to specify a detailed virtual infrastructure where

the application can be deployed – further explained in Chapter 3.

2.5.2 Customizability and Elasticity

To turn cloud platforms more customizable, Guo et al. (2010) take a service com-

position approach to create cloud platforms by employing a process description language

called Lightweight Coordination Calculus (LCC) to coordinate system components. Re-

source allocation and optimization are performed respectively by the Scheduler and SLA

& Billing Manager components, which can interact with other components in any way

the developer decides to implement. Although interesting, the approach does not yet con-

sider networking as a first-order resource. Moreover, the notion of virtual infrastructure

composed of a set virtual devices is vague. It is not possible to specify, for example, a

virtual topology or allocation of network resources such as links or virtual routers. Net-

work configuration is done via DHCP and virtual machines reside inside the same subnet

as they belong into the same virtual machine pool.

As an evolution of Guo et al.’s work, a lightweight approach to provisioning re-

sources based on application containers, instead of heavy virtualization, was proposed by

He et al. (2012). This approach shows promising performance improvements to certain

types of applications, because of the fast virtualization schema adopted. However, to scale

up an application, the authors assume that when a container has consumed all allocated

resources, creating a new container will improve application performance. In fact, that

is the most common approach, and many authors consider that scaling up and down is

a matter of allocating more or less resources, i.e., when an application is overloaded the

straightforward solution is to spawn new virtual machines (ALI-ELDIN; TORDSSON;

ELMROTH, 2012). This thesis argues that the need for optimization may depend on the

application specific behavior and on the conditions of underlying infrastructure. More-

over, auto-scaling is not only necessary for virtual machines, but for all sorts of virtual

resources that may help on optimizing applications (HASAN et al., 2012). Thus, this the-

sis advocates for easily programmable optimization strategies and metrics inside the core

of cloud platforms.



52

2.5.3 Experimentation Testbeds

There is a number of testing platforms (testbeds) that provide IaaS for researchers

to run all sorts of experiments in large scale infrastructures. OFELIA Control Frame-

work (OCF) (OCF, 2011), from the FP7 OFELIA project (KÖPSEL; WOESNER, 2011),

allows researchers to reserve resources and run experiments over OpenFlow networks

(MCKEOWN et al., 2008). Another example is ProtoGENI (ProtoGENI, 2012), from the

GENI project (GENI, 2011), which allows the creation of a virtual infrastructure of inter-

connected virtual resources, aggregating physical resources available from many partner

federations.

Although these platforms are able to provide complex virtual infrastructure alloca-

tions, they do not strictly follow the cloud computing model. The notion of an application

to run on a cloud is rather vague, the approach is much more resource oriented. On the

other hand, they do implement more complex network configuration functionality than

most of the previously mentioned platforms, following a NaaS model. Also, resources

are “leased” for testing purposes and there is usually much bureaucracy and strict rules

to access them. It is important to notice that, in most cases, the user/researcher has many

options to choose in terms of where they want their resources to be positioned. Usually,

researchers have a notion of the underlying topology and hardware resources available

too. That is generally not the way most cloud providers would operate; cloud providers

usually try to optimize resource placement according to well-defined objectives (e.g., low

energy consumption) and hide such placement details from users.

2.6 Summary

This chapter presented the state-of-the-art of resource management in IaaS clouds

both in terms of fundamental concepts of virtualization and tool support to operate virtual

elements in real life systems. It is possible to notice that many solutions address a specific

set of problems and tools present an overlapping set of features, while many issues remain

only marginally or not addressed. For example, cloud platforms lack integrated support

for all types of resources (computing, storage, and networking) developed at a level that

allows complex configuration and optimization of them all. Moreover, management as an

allocable resource to allow end users to gain full control of their virtualized elements is

rarely mentioned. Further than that, despite the fact that many open source platforms are
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available, reprogramming the core of resource allocation strategies in those platforms can

be a complex task and is something a cloud administrator would certainly not want to do

on a daily basis. Therefore, the next chapter presents the conceptual building blocks of our

proposed solution to add more flexibility to cloud environments providing administrators

with new means of customizing resource management for their specific environment or

applications’ needs.
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3 KEY CONCEPTS & ARCHITECTURE

This chapter presents the main concepts that drive this research. Figure 3.1 de-

picts the conceptual architecture that organizes the main components of a cloud manage-

ment platform proposed to enable more flexible and integrated resource management in

the context of IaaS clouds. Overall, the conceptual architecture is divided into six sec-

tions (light gray boxes): Graphical User Interface (GUI), Slice Space, Programmable

Logic, Event Space, Unified API, and Drivers. Each of these sections groups together

conceptually similar components. Moreover, the architecture interacts with a specialized

external Monitoring Infrastructure (dark gray box) in order to obtain advanced monitor-

ing features. Also, both the conceptual architecture – through its drivers section – and

the Monitoring Infrastructure interact to manage the physical and virtual elements at the

Managed Infrastructure. All components of the architecture and interactions among them

are detailed throughout this chapter.

The remainder of this chapter presents the concepts involved in the architecture of

Figure 3.1 from a top-down perspective, following closely the typical process of request,

establishment, and maintenance of virtual infrastructures over IaaS clouds. Initially, Sec-

tion 3.1 describes the main parties involved in this process and discusses a few variants in

the business relationship between these parties. Section 3.2 details how an Initial Spec-

ification document should describe a virtual infrastructure to be deployed over an IaaS

cloud environment. Section 3.3 discusses how Resource Management Programs & Met-

rics are structured, whilst Sections 3.4 and 3.5 argue on how these programs and metrics

play their role in the management cycle of virtual infrastructures. Finally, the proposed

Unified API and Drivers that implement technology specific protocols and commands are

described respectively in Sections 3.6 and 3.7.

3.1 Involved Parties

There are at least two parties involved in the process of request, establishment, and

maintenance of virtual infrastructures over IaaS clouds: a tenant and a cloud provider. In

the conceptual architecture depicted in Figure 3.1 the tenant is represented by the End-

user actor and the cloud provider by its Administrator. The tenant is the person or or-

ganization interested in “buying” virtual resources from a cloud provider for deploying a

service or application on top of a cloud-based infrastructure.
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Figure 3.1: Conceptual architecture of a cloud management platform
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Cloud service business models offer a number of variations for the interaction

between tenants and cloud providers (STRØMMEN-BAKHTIAR; RAZAVI, 2011), de-

pending on how the tenant perceives and interacts with the service and the level of trust

between parties. In some situations – such as in IaaS private clouds – both provider and

tenant are part of the same organization, in which case access control and billing mecha-

nisms may be relaxed. Moreover, in situations like this further details on the underlying

infrastructure may be exposed to the End-user to be used at virtual infrastructure level.

Since the focus of this thesis is on making resource management more flexible and inte-

grated from the cloud Administrator point of view, this relationship is kept as simple as

possible. Some aspects, such as billing or protecting the cloud provider from the tenant

and vice-versa, are left out of scope. The sole responsibility of End-users is to describe

their resource needs in the form of an Initial Specification (further detailed in Section 3.2)
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and it is up to the cloud provider to allocate and maintain the requested virtual resources

accordingly.

Regarding the organization of cloud providers, again business models are flexi-

ble to accommodate a wide range of possibilities to providing virtual infrastructures as

services to tenants (BUYYA et al., 2009). Some contexts consider, for example, the exis-

tence of service brokers that act on behalf of tenants to submit requests, often composing

services from many providers as an integrated solution to their clients. Another example

appears in the context of IaaS hybrid clouds, in which part of the resources are under the

responsibility of the local provider and another part can be obtained from third parties. In

this thesis the model for service providing is also simplified. A single provider scenario is

assumed (i.e., the provider has full control over all the resources available for provision-

ing services) and the tenant interacts directly with the provider using the platform’s GUI.

Integrating service provisioning with other cloud management platforms, for example via

standardized interfaces (e.g., OCCI or CIMI), to form a hybrid cloud scenario would not

be impracticable. However, the level of control over resource management allowed by

such platforms via remote interfaces is reduced, so Resource Management Programs &

Metrics (see Section 3.3) would have to operate with limited capabilities.

In general, the primary role of an Administrator in any cloud environment is to

maintain both virtual and physical infrastructures up and running. In this thesis the Ad-

ministrator is also attributed with the task of writing or editing Resource Management

Programs & Metrics (further detailed in Section 3.3). Depending on each scenario and

the complexity that these programs and metrics might acquire this task can be in fact per-

formed by an Administrator or a third actor, say a Cloud Developer, could be envisioned.

This actor would be the type of professional with extensive working knowledge from both

application and infrastructure levels, thus capable of being the interface between the End-

user and the Administrator for matters of adapting the service management according to

the tenant’s demand. The addition of this Cloud Developer role is very much in line with

the emerging DevOps development philosophy (HÜTTERMANN, 2012).

3.2 Initial Specification of a Cloud Slice

As a first step to establish a virtual infrastructure over an IaaS cloud, the End-user

needs to specify what are the resource requirements for his/her application or service to be

carried out properly. Figure 3.2 details in a sequence diagram the interaction between the
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End-user and the conceptual architecture of a cloud platform in order to input an Initial

Specification of the resources required by an application or service.

Figure 3.2: Sequence diagram for the initial specification of a cloud slice
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Source: by author (2015).

Initially, the End-user interacts with the GUI to enter log in information in order

to gain access to the system. Afterwards, the End-user is able to input an Initial Specifi-

cation document. This document should reflect, as much as possible, the requirements of

the service or application that will run over the virtual infrastructure it describes. In the

context of this thesis the contents of an Initial Specification are expected to be a descrip-

tion of all the resources that compose a single virtual infrastructure, including all possible

types of allocable resources (e.g., computing, storage, and networking) and their intercon-

nections. A few standards are under way that can be used for describing complete virtual

infrastructures, such as VXDL, OCCI, and CIMI, which have been extensively discussed

in Section 2.2 of this thesis. Of course, not all applications have obvious requirements that

can be easily mapped to a virtual infrastructure setup. Therefore, an intuitive interface to

help with the specification of such requirements is desirable, but it is also out of the scope

of this thesis. Recent studies are actually focused in finding means to describe high-level

application requirements to be then decomposed into cloud resource allocations, some of

which have been briefly discussed in Section 2.5.

This description of resources provided by the End-user is called Initial Specifica-

tion because it is used only as a first description of the set of resources to be allocated. The

actual allocation may differ from what has been specified depending on decisions taken

during the deployment phase (further detailed in Section 3.4). Likewise, other information

can be added or edited by the End-user or the Administrator once the Initial Specification

is loaded into the system (e.g., additional information on the management infrastructure
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required by the application). Moreover, optimizations may occur after the resources are

allocated in order to enable elasticity, for example (further detailed in Section 3.5).

After the submission of the Initial Specification document, the Cloud Slice Man-

ager component of the architecture parses this document, turning it into an internal rep-

resentation. In this work this internal representation is called a Cloud Slice. The concept

of slice is well known in both server and network virtualization environments, but among

cloud related proposals this concept varies in interpretation. In the specific context of this

research a Cloud Slice is defined as an aggregation of all different kinds of resources that

compose the virtual infrastructure over which an application is deployed (i.e., computing,

storage, networking, and management resources). A Cloud Slice is dynamic by principle.

It can be created and destroyed upon request of an End-user at anytime. Also, a Cloud

Slice can be modified by moving, adding, or removing virtual resources during applica-

tion runtime, which is desirable for resource optimization or to improve the performance

of the application itself.

At the end of this step, the Cloud Slice is created and all internal control structures

are ready for the actual deployment. The End-user is granted with access to all the infor-

mation related to his/her Cloud Slice through the GUI. This is the time to check resource

configuration, topology, and any other Cloud Slice information that has been submitted

in the Initial Specification is received correctly. It is important to notice that, at this mo-

ment, no resource is yet allocated. Actual resource allocation happens only later at the

deployment phase (detailed in Section 3.4).

3.3 Resource Management Programs & Metrics

After the creation of a Cloud Slice, the components in sections Programmable

Logic, Event Space, and Slice Space of the architecture interact to organize resource man-

agement throughout the life-cycle of the application. The three main components of the

architecture, which add flexibility to the core of the cloud management platform, are

Deployment Engine, Optimization Engine, and Metrics Engine. To operate, these three

components depend on Resource Management Programs & Metrics written by the Admin-

istrator. Figure 3.3 depicts the sequence diagram of interaction between the Administrator

and the cloud platform to customize resource management via programmability.

First of all, the Administrator logs in to the Administrative GUI providing the

appropriate credentials. After gaining access to the system, the Administrator is able to
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Figure 3.3: Sequence diagram for installation of resource management programs and
metrics
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upload Resource Management Programs & Metrics through the same interface. These

programs are of three distinct types: Deployment Programs, Optimization Programs, and

Metric Programs. Each program is plugged in to a specific component of the platform as

a regular software module and will be available for execution at the appropriate moment.

Deployment Programs are intended to calculate and allocate the resources required

to deploy one particular Cloud Slice at a time. The logic employed by the program to

calculate the resource allocation can be based on any algorithm one can implement with

a standard programming language supported by the cloud platform. There are no specific

constraints on how the program performs the deployment, the only requirement is that the

program implements a specific interface for receiving information from the platform and

returns, at the end of deployment, the expected return format to inform the final status

of the deployment operation. When a Deployment Program is loaded and executed, the

Deployment Engine is responsible for informing which Cloud Slice needs to be deployed

– therefore no scheduling among Cloud Slices needs to be implemented in these programs

– and controlling the execution of the program until its end. To retrieve information from

the current status of the infrastructure (both virtual and physical) and to perform resource

allocation operations Deployment Programs rely on direct calls to the Unified API (further

detailed in Section 3.6).

Optimization Programs are implemented and installed by the Administrator simi-

larly to how Deployment Programs are. The main difference between these two types of

programs is their purposes. Optimization Programs are installed into the Optimization En-

gine component to be executed whenever the need to optimize resource allocation arises,

as opposed to Deployment Programs that execute only during Cloud Slice deployments.
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Moreover, Optimization Programs can operate under two different scopes: slice specific

or global. Slice specific Optimization Programs need to be associated with a particular

Cloud Slice and will perform changes only to the virtual resources allocated to this partic-

ular Cloud Slice, even though these programs can read information from any resource of

the infrastructure. Global scope Optimization Programs can be used to optimize resource

allocation across several Cloud Slices. These programs are mostly useful to optimize the

overall resource consumption regarding the needs of the provider. Determining when an

Optimization Program needs to be executed is part of the Cloud Slice Optimization Cycle

(described in Section 3.5).

Metric Programs are intended to allow the Administrator to write customized met-

rics to be used specifically for monitoring resources and help gathering relevant informa-

tion during Cloud Slice deployment or optimization. Similarly to other types of programs,

Metric Programs need to implement a specific interface to be loaded and executed so that

the metric value can be collected. However, the return value of a metric can be of any

kind, ranging from numbers, booleans, or text, to lists or serializable information objects.

To calculate the value of a metric, the program can employ any algorithm and rely on any

information available from the Unified API to gather the state of one or more resources

or even aggregate information from other Metric Programs. The conceptual architecture

(Figure 3.1) also comprises the remote access to metric values. Therefore, a web service-

like interface is made available, so that Metric Programs can have their computed values

collected from outside the platform (from the external Monitoring Infrastructure, for ex-

ample). Similarly to Optimization Programs, Metric Programs can as well be of global or

slice specific scope. Slice specific metrics can be employed even to get information from

inside the running application to be used, for example, to optimize resource allocation

considering a particular application-oriented objective.

It is worth noting that writing and installing Resource Management Programs &

Metrics can happen either before or after the Initial Specification of a Cloud Slice de-

scribed earlier in this thesis. The existence of these programs is only required before the

deployment or optimization of Cloud Slices. Even slice specific programs, after installed,

can be associated at anytime with one or many Cloud Slices to fulfill their purpose. An-

other practical aspect regarding programs is to avoid having the Administrator to write

all Resource Management Programs & Metrics from scratch, which could be a cumber-

some task to perform. Ideally, a cloud management platform following the concepts of

the proposed architecture should be shipped already with a basic set of general purpose
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programs and metrics. Therefore, only customizations to these already installed programs

and metrics would be necessary to adapt resource management to fit environment or appli-

cation specific needs. More detailed examples on how Resource Management Programs

& Metrics are written are presented in Chapter 5.

3.4 Cloud Slice Deployment

Having fulfilled the first two steps to establish a virtual infrastructure over an IaaS

cloud – creation of a Cloud Slice from an Initial Specification and completing the instal-

lation of at least one Deployment Program – it is then possible to allocate actual resources

to run the End-user’s application. For the deployment of a Cloud Slice to be accomplished

several components of the proposed conceptual architecture need to interact, as depicted

in the sequence diagram of Figure 3.4.

Figure 3.4: Sequence diagram for deployment of Cloud Slices using resource manage-
ment programs
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Although in this step most of the work is performed by customizable programs

within the Deployment Engine component, the Administrator still plays a central role in

selecting an appropriate program to deploy a specific Cloud Slice. Therefore, to start the
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deployment procedure, the Administrator needs to indicate one Cloud Slice that he/she

wants to deploy and which Deployment Program should be employed for this procedure.

This need for manual intervention is one side effect of having the flexibility to work with

many resource management programs within a single platform. It is, of course, important

to provide Administrators with the ability to interact and influence the process of resource

management. However, for scalability reasons it is also fundamental to ensure that manual

labor will not become a bottleneck to the system as a whole.

To make this part of the whole process more automated there are at least two pos-

sible alternatives: (i) having only one “default” Deployment Program active at a time or

(ii) associating a class of applications to a specific Deployment Program. The first alter-

native can be considered the easy way out and may be used only to follow the specific

objectives of the environment (i.e., not application-specific). If the Administrator needs

to change this objective, it is only a matter of selecting a new Deployment Program to

be the “default” active one. The second alternative, on the other hand, adds further com-

plexity to the process. First, it would be necessary to define classes of applications and

appropriate programs to deploy each of them. Then it is also necessary to define which

application falls into which class. For the sake of simplicity, this task could be attributed

to someone with knowledge about the application’s characteristics, i.e., the End-user or

to a Cloud Developer (in a scenario where one exists). Otherwise, a method to automat-

ically determine the class of the application based, for example, on information of the

Initial Specification could be proposed. So far in this research, the Administrator is as-

sumed to be responsible for this manual selection. Future versions of the architecture may

consider adding another component to perform the Deployment Program selection logic

accordingly.

After the selection of a Deployment Program, the Deployment Engine component

is responsible for loading and running the indicated program. As mentioned earlier in this

thesis, the logic to deploy a Cloud Slice depends on the implementation the Administra-

tor chooses to use, there is no specific method or algorithm enforced. Nevertheless, in

general, a Deployment Program needs to perform at least the operations presented as an

example in the shaded area of Figure 3.4. Initially, there are a set of calls to the Unified

API in order to read the current status of the infrastructure and resource consumption.

Then, resource allocation is calculated considering the information obtained (e.g., find

the best host for a virtual machine or the best route for a virtual link). Ideally this alloca-

tion should be somehow optimized according to an objective, either of the infrastructure
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or the application. Of course the allocation can be optimized later with Optimization

Programs, but changes in a running application can always lead to service disruption.

Finally, resources will be provisioned also issuing calls to the Unified API (e.g., start a

virtual machine or establish a virtual link). This process can naturally be also interactive,

for example, where the program allocates a set of resources and reads again the status to

recalculate future allocations.

While the deployment procedure is carried out, the Deployment Engine is mainly

responsible for two tasks: (i) invoking the Deployment Program informing which Cloud

Slice needs to be deployed and (ii) controlling the execution of the program. This in-

vocation is performed through the interface mentioned in Section 3.3. Controlling the

deployment execution means restraining the access to resources that the program can ac-

cess for reading information or making changes. It is important that the deployment of

one Cloud Slice does not affect others already deployed, although information from other

Cloud Slices can be obtained and used for resource allocation calculations. Moreover,

the Deployment Engine should also detect and report failures that can happen during the

deployment procedure. The deployment of a Cloud Slice should be treated as an atomic

operation, i.e., the required resources should not be partially provisioned. For example, in

concurrent deployments, one program might gather information about a set of resources

right before a second program performs an allocation, which might cause the first pro-

gram to run with outdated information and fail totally or partially. Despite the importance

of fault control, mechanisms to provide such atomicity feature are currently left out of

the scope of this thesis. Finally, at the end of deployment, the Deployment Program may

gather and return statistics to the Deployment Engine, which in turn, will return these

statistics along with overall updated information about the deployed Cloud Slice back to

the Administrator.

3.5 Cloud Slice Optimization Cycle

After the deployment, the virtual infrastructure is ready to support the End-user’s

application. During application runtime, the need for optimization of resource alloca-

tion may arise. For example, when an application experiences performance degradation,

virtual machines can be migrated closer to one another to reduce network latency. Dif-

ferently from the deployment of Cloud Slices, which happens only once for the initial

allocation of resources, optimization is a continuous process that forms a cycle with two
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main phases: (i) Events need to be configured and monitored to indicate the conditions

under which optimization is necessary (Figure 3.5) and (ii) whenever that condition is sat-

isfied, an Optimization Program comes into play in order to reorganize resource allocation

accordingly (Figure 3.6).

Figure 3.5: Sequence diagram for event configuration using the external monitoring in-
frastructure (first phase of the optimization cycle)
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Source: by author (2015).

The first phase of the optimization cycle starts with the Administrator setting up

an Event by interacting with the Administrative GUI as depicted in the flow diagram of

Figure 3.5. A typical Event is composed of a condition (e.g., a given metric has exceeded

a certain threshold) and an associated Optimization Program (e.g., rearrange virtual re-

sources aiming to reduce the value of this metric). Conditions are expressed as one Metric

Program, one relational operator (e.g., greater than, equals to, less than) or comparison

function (e.g., contains, starts with, in/not in list), and one assigned value to be compared

against. Whenever the condition holds (i.e., evaluates to a true value), the Optimization

Program associated with the Event needs to be triggered. This type of mechanism re-

sembles Event-Condition-Action (ECA) systems commonly employed in Policy-based

Network Management (PBMN) (TWIDLE et al., 2008). In addition, similarly to Metric

Programs and Optimization Programs, Events can also belong to slice specific or global

scope. Slice specific Events, are limited to use only Metric Programs and Optimization

Programs that are also associated with the same Cloud Slice as the Event at hand.
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The Event Manager component also needs to configure the appropriate settings

within the Monitoring Infrastructure so that the condition can be periodically monitored

and evaluated. As mentioned before, in Section 3.3 of this thesis, metrics in the proposed

architecture are implemented as programs, which allows metric values to range from sim-

ple numerical measures gathered from the virtual or physical infrastructure (e.g., the load

average of a server), to very complex ones (e.g., average server load per virtual machine

ratio of the whole data center), including information from the running application (e.g.,

load of a Web server running inside a virtual machine). Moreover, metrics are exposed as

Web services so they can be collected directly from the Monitoring Infrastructure. When

the Monitoring Infrastructure accesses this Web service the Metric Program is loaded and

run similarly to other types of programs. The main difference is that a Metric Program

will only be able to read information from the infrastructure using the Unified API and

calculate its own value to return it at the end of execution. The computed value is re-

ported by the Metrics Engine back to the Monitoring Infrastructure to generate statistics

and evaluate the associated Event condition.

Figure 3.6: Sequence diagram for optimization of Cloud Slices using resource manage-
ment programs (second phase of the optimization cycle)
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The second phase of the optimization cycle starts when a metric collected by the

Monitoring Infrastructure reports a value that makes a condition hold. When that hap-
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pens, the Monitoring Infrastructure automatically triggers an alarm informing that the

condition for a particular Event has been satisfied. The Event Manager then starts the ac-

tual optimization of the infrastructure by loading and running the associated Optimization

Program. These programs follow a similar execution flow as Deployment Programs, ex-

cept that Optimization Programs can modify resources (e.g., migrating virtual machines

or rerouting virtual links), create new ones (scale up), or remove those already allocated

(scale down).

Global scope Optimization Programs are not limited to changing only resources

associated with any particular Cloud Slice. Of course, this situation can generate con-

flicting allocation decisions among different Optimization Programs. For instance, the

Administrator can write a global program to move virtual machines to a small set of hosts

and another one to optimize a specific Cloud Slice based on an application level metric

that moves the same virtual machines apart again. To minimize the chance of conflicting

or circular resource allocation decisions, three simple rules are followed in this thesis:

(i) there is only one global scope Optimization Program active at any given moment, (ii)

each Cloud Slice has only one active slice specific Optimization Program associated, and

(iii) any Cloud Slice that is associated with an active slice specific Optimization Program

will not be modified by a global scope Optimization Program. Finally, as opposed to what

happens with the deployment of a Cloud Slice, no feedback after optimization is returned

to the Administrator at the end of the process.

3.6 Unified Application Programming Interface (API)

All operations regarding handling of virtual resources performed during deploy-

ment and optimization of Cloud Slices make use of the proposed Unified API. This API

aims to provide a simple interface with high-level abstractions for manipulating all types

of resources that may compose a Cloud Slice at the same level of importance. Achieving

this objective is fundamental to allow provisioning of virtual infrastructures with inte-

grated support for different types of virtual resources and means to manage them, enabling

the cloud platform to accommodate a wide range of applications. The proposed Unified

API follows closely the concepts exposed in Section 2.1 and is organized into four main

components: Computing, Storage, Networking, and Monitoring. Figure 3.7 displays in

a class diagram the main abstractions and relationships included in each of these com-
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Figure 3.7: Class diagram of the main abstractions and relationships provided by the
Unified API organized into its four components
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ponents, while Table 3.1 presents the main operations that can be performed over each

abstraction.

The Computing component takes care of basic functionalities for handling three

virtual resource abstractions: virtual machines, guest operating system images, and tem-

plates. A virtual machine is the main abstraction available through this component, which

allows allocating primarily CPU cores and RAM memory from hosts of the data center.

Any virtual machine needs to be hosted at a physical server of the infrastructure, whereas

choosing an appropriate location to deploy these virtual resources is one of the main

objectives of resource management programs. Virtual machines can also have virtual in-

terfaces and attached virtual storage volumes (described next). From the API it is also

possible to control the status (e.g., starting, stopping, suspending) of the guest operating

system of a virtual machine, among other operations detailed in Table 3.1.
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Table 3.1: Unified API operations, parameters, and return values
Abstractions Operations Parameters Return

C
om

p
u

ti
n

g

--none-- Success or failure

A destination node Success or failure

--none-- Success or failure

--none-- Success or failure

--none-- Success or failure

--none-- Success or failure
--none-- Success or failure
--none-- Success or failure
A destination node Success or failure

Guest Images Path or URL
--none-- Success or failure

Templates
--none-- Success or failure

S
to

ra
ge

--none-- Success or failure

Reference to a virtual machine Success or failure

Reference name, node, type
--none-- Success or failure

N
et

w
or

k
in

g

Virtual Links
--none-- Success or failure

--none-- Success or failure

--none-- Success or failure

--none-- Success or failure
A destination node Success or failure
--none-- Success or failure

M
on

it
or

in
g

The virtual device to monitor Success or failure

The monitored virtual device Success or failure

The monitored virtual device

Events --none-- Success or failure
--none-- Success or failure
--none-- Success or failure

Physical --none--

The monitored physical device

Virtual 
Machines

Create: defines the internal representation of a virtual machine with its specified 
characteristics (e.g., CPU, memory, guest image).

VXDL description (CPU, 
memory, disk, interface, etc.)

Reference to virtual 
machine created

Remove: undefines a virtual machine previously created.
Deploy: defines a virtual machine within the hypervisor of a node of the cloud 
infrastructure, including the transferring of the image file.
Undeploy: undefines a previously deployed virtual machine from a hypervisor, including 
the removal of the image file.
Start: powers up a virtual machine, allocating the required resources, and starting the 
booting up process of its guest operating system.
Stop: powers off a virtual machine, releasing the resources back to the hypervisor, and 
forcing the guest operating system down.
Shutdown: signals the guest operating system to gracefully shutdown and then stops the 
virtual machine.
Suspend: suspends the guest operating system and keeps resource allocated.
Resume: resumes operation of a previously suspended virtual machine.
Migrate: undeploys a virtual machine in one node and deploys it in another.
Create: defines a guest operating system image at the main repository of the platform, 
including the file transfer.

Reference to image 
created

Remove: undefines a previously created image, removing the file from the repository.
Create: defines a template of virtual machine, including the resource configurations (i.e., 
CPU and memory) and an associated guest image.

CPU, memory, and image or 
VXDL description

Reference to template 
created

Remove: undefines a template of virtual machine.

Virtual 
Volumes

Create: allocates chunks of storage on nodes.
VXDL description (capacity, 
destination pool, etc.)

Reference to virtual 
volume created

Remove: deletes chunks of storage previously created.

Attach to Virtual Machine: attaches a virtual volume to a given virtual machine.

Virtual 
Volume Pools

Create: defines a pool for storing virtual volumes (typically a local or remote/NFS 
directory).

Reference to virtual 
pool created

Remove: undefines a previously created virtual pool and all virtual volumes it contains.
Create: defines the internal representation of a virtual link, which connects point-to-point 
two virtual interfaces of two virtual devices (i.e., interfaces of virtual machines or virtual 
routers).

VXDL description (endpoints 
source and destination, and 
QoS parameters)

Reference to virtual 
link created

Remove: undefines a previously created virtual link.
Establish: establishes the virtual link within the network enabling traffic to flow between 
the connected devices.
Disable: disables a previously created virtual link connection, stopping traffic flow 
between connected devices.

Virtual 
Routers

Create: defines the internal representation of a virtual router, which has many virtual ports 
to interconnect many virtual interfaces of virtual devices.

VXDL description (type, ports, 
controller, etc.)

Reference to virtual 
router created

Remove: undefines a previously created virtual router.
Deploy: deploys the virtual router into a node of the infrastructure.
Undeploy: undeploys a previously deployed virtual router from the infrastructure.

Virtual 
Devices

Monitor: deploys the monitoring infrastructure required to monitor a given virtual device.

Unmonitor: undeploys the monitoring infrastructure associated with a given virtual device.
Get Monitoring Information: fetches monitoring information within the monitoring 
system for a given virtual device.

FlexACMS XML 
information

Create: defines the internal representation of an event, which may belong to a specific slice 
or operate in global scope.

Metric, operation, threshold, 
program, and cloud slice

Reference to event 
created

Remove: undefines a previously created event.
Deploy: deploys an event on the monitoring infrastructure to be triggered on demand.
Undeploy: undeploys a previously deployed event from the monitoring infrastructure.
Discover Resources: discover nodes and network topology available on the infrastructure. 
This collection also retrieves information about resource allocation on these physical 
elements.

List of nodes, links, 
switches, and resource 
allocations

Get Monitoring Information: fetches monitoring information within the monitoring 
system for a given physical device (e.g., node or switch).

FlexACMS XML 
information

Source: by author (2015).

Every virtual machine has a copy of one guest operating system image, which is

another abstraction that can be handled through the Unified API. These images contain a

pre-installed operating systems and can be used to facilitate the deployment of complex

virtual appliances (e.g., a virtual machine configured to act as a web server or a packet

inspector). Templates are a third abstraction that are handy to size virtual appliances by

combining a resource configuration (e.g., amount of RAM and CPU) with a guest image

and to create several virtual machines with the same characteristics.

The Storage component deals with two abstractions: virtual volumes and storage

pools. Virtual volumes are capable of storing data up to a certain defined capacity and
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can be attached to virtual machines. Similarly to virtual machines, virtual volumes also

need to be allocated from physical hosts of the infrastructure, except that they are not

created from a hypervisor but allocated from a storage pool. Therefore, for performance

reasons, positioning virtual volumes in relation to the virtual machines to which they will

be associated is a fundamental decision resource management programs need to make.

The required operation to associate a virtual volume with a virtual machine is available

through the proposed API as detailed in Table 3.1. Storage pools are containers to store

virtual volumes. This abstraction can be used to define different types of storage (e.g.,

NFS share, local folder, SSD device) from which chunks of data (virtual volumes) can

be drawn. In general, every physical host of the infrastructure that is capable of holding

virtual volumes should contain at least one storage pool. Moreover, usually only virtual

volumes will be part of Cloud Slices and there will be a number of available storage pools

pre-defined by the Administrator.

The Networking component implements interfaces for creating two types of ab-

stractions: virtual routers and virtual links. The virtual router abstraction is intended to

mimic a network device, containing a set of virtual interfaces, and capable of connect-

ing and forwarding traffic among other virtual devices. There are many possible types of

virtual forwarding devices that can be implemented depending on the drivers available in

the Drivers section of the architecture. Virtual routers based on software platforms (e.g.,

Open vSwitch (Open vSwitch, 2012) or Click Modular Router (KOHLER et al., 2000))

need to be deployed at a physical host of the infrastructure using the deployment operation

of the API. Virtual links are an abstraction used to establish a logical connection between

two virtual endpoints. Without a virtual link, for example, two virtual machines are not

allowed to communicate, even if they belong to the same Cloud Slice. Virtual links can

also connect a virtual machine to a virtual router interface or two virtual routers directly.

It is also possible to configure QoS parameters of virtual links, whereas some of these

parameters are possible to configure within the infrastructure (e.g., maximum and com-

mitted bandwidth rates) others depend on resource management programs to be assessed

and satisfied (e.g., average latency in communication).

The proposed conceptual architecture includes a fourth component as part of the

Unified API to enable Monitoring to be considered as an “allocable” type of resource.

This is quite unusual in most cloud platform designs; however, it is important to provide

valuable information about resources, specially for deployment and optimization pro-

grams. Whenever a Cloud Slice is deployed, the corresponding monitoring infrastructure
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can also be configured with the appropriate calls to the API. Monitored information can be

retrieved directly from each virtual device abstraction (e.g., from virtual machines or vir-

tual routers). Also, this component provides two abstractions to read information from the

physical infrastructure: hosts and switches. Physical hosts may be able to support virtual

computing, storage, or networking (i.e., software routers/switches) devices. From hosts

it is possible to retrieve information about their capabilities, hypervisors, and resource al-

locations. From switches and their connections it is possible to gather information about

topology and network traffic. Moreover, this component also implements an event ab-

straction, which sets up alarms to be triggered from within a Monitoring Infrastructure

back into the Event Manager component of the architecture (detailed in Section 3.5). The

interactions between the proposed architecture and the associated Monitoring Infrastruc-

ture that can be performed with the abstractions described are presented in Chapter 4.

One last point that is worth mentioning is that other information models exist

in the literature for representing virtualized infrastructures such as the ones included in

DMTF’s CIMI and OVF standards. CIMI is particularly complex for the intended usage

of the proposed Unified API which strives for simplicity, while OVF is very much fo-

cused in computing resources. Although the information model presented in this section

is not strictly aligned with a particular standard, it is heavily based on concepts earned

from VXDL and Libvirt. In addition, the Unified API model is carefully designed to

include just enough information to remain simple, while providing an adequate level of

abstraction for managing the virtualized infrastructure objects in detail. Also, regarding

the operations included in the proposed API, there are standards being discussed in the

context of the cloud research community and standardization bodies (e.g., OCCI) that in-

clude a similar set of remote-call type of resource management operations. However, such

standards are intended to be used from the End-user (or the user-owned application) point

of view, remotely sending resource requests from outside a given cloud system. Although

the operations are similar, the Unified API is intended for a slightly different purpose, i.e.,

to be used by the cloud Administrator, which requires higher levels of detail and advanced

control mechanisms over both virtual and physical resources.

3.7 Technology Specific Drivers

All virtual device abstractions described in the previous section (e.g., virtual ma-

chines, virtual routers, and virtual links) are implemented on the underlying infrastructure
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by a set of Drivers available at the bottom section of the architecture introduced through-

out this chapter. Each Driver module is a technology specific piece of code that plays two

main conceptual roles: (i) to abstract the complexity of technology specific configuration

parameters and communication protocols from the Unified API and (ii) to make the cloud

management platform more portable, i.e., Driver modules can be replaced as technology

evolves, as long as the provided set of functionalities remains the same.

As Figure 3.1 indicates, one Driver can implement a set of abstractions from

different components of the architecture, as well as one abstraction may require many

Drivers combined in order to be realized. For example, to establish virtual links, more

than one Driver module may be necessary to connect two endpoints attached to differ-

ent network technologies. Moreover, the Administrator is responsible for choosing and

configuring beforehand the appropriate Driver modules that will be employed in each sit-

uation. This is important to avoid resource management programs having to choose what

type technology should be used to materialize abstractions (e.g., whether a virtual ma-

chine should be deployed using XEN or KVM). One last important point to emphasize is

that, the set of Driver modules displayed in the conceptual architecture in Figure 3.1 are

merely examples of technologies – which have been actually implemented in the platform

detailed in Chapter 4 – that allow the establishment of the virtual device abstractions over

a real infrastructure.

3.8 Summary

This chapter presented an overview of the conceptual architecture proposed in this

thesis, which organizes the components that are fundamental to achieve more flexible and

integrated resource management in IaaS cloud platforms. The main novelty of this re-

search is not the architecture itself, but in the new functionality added by some of the

components arranged within its sections. Some concepts, like separating resource man-

agement concerns into computing, storage, and networking, are commonly employed in

almost every cloud platform architecture. However, three components of the architec-

ture are mainly responsible for adding flexibility in resource management to the core of

the platform are: Deployment Engine, Optimization Engine, and Metrics Engine. In these

components, customizable Resource Management Programs & Metrics are installed, loaded,

and executed. In addition, the bottommost sections of the architecture, Unified API and

Drivers combined allow both integrated resource management through high-level abstrac-
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tions of virtual devices and portability for the platform to cope with heterogeneous types

of environments and technologies. Finally, the proposed architecture also interacts with a

specialized external Monitoring Infrastructure in order to obtain advanced monitoring.

It is worth noting that no components are included in the proposed conceptual

architecture specifically to manage physical resources. The underlying physical infras-

tructure forms an important part of the whole IaaS provisioning environment, whereby

managing virtual resources encompasses understanding and handling information from

both physical and virtual levels (e.g., underlying topology, switching capabilities, disk

access speed). Although management of physical resources is not explicitly considered,

operations such as monitoring resource usage and allocating shares of computing, stor-

age, and networking resources are present. In this thesis, these physical resources are

assumed to be managed by any external system, although components to assist in boot-

strapping, configuring, and optimizing physical hosts and switches may be included in

future versions of the architecture. One last point worth of note is that the whole in-

frastructure is assumed to be controlled by the same administrative entity. Therefore,

there is no information available from the managed infrastructure that cannot be used by

the platform because of policy or security matters. Of course in a multi-provider or multi-

datacenter scenario, which is not considered in this thesis, this assumption would not hold

and interesting challenges could arise in making distributed management of resources and

collaboration among platforms possible.
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4 CLOUD MANAGEMENT PLATFORM IMPLEMENTATION

As a proof of concept, a cloud management platform – which is called Aurora

Cloud Manager1 – has been implemented following the design aspects of the conceptual

architecture presented in Chapter 3. Most of the implementation has been performed us-

ing the Python programming language. Moreover, several third party tools, libraries, and

systems have been brought together in order to materialize the proposed concepts. The

decision not to rely on a complete platform, such as OpenStack or OpenNebula, was taken

to avoid inheriting the internal complexity of such platforms. Lower level libraries and

APIs, such as Libvirt and OpenFlow, provide sufficiently powerful abstractions for node

virtualization and networking operations that the Aurora platform requires. This chap-

ter presents, at a first moment, an overview of the interactions of the Aurora platform

with other external systems. After that, the initial specification of a Cloud Slice based on

VXDL is detailed. Following, the implementation of the core components to allow execu-

tion of Resource Management Programs & Metrics, the proposed API and its operations,

and technology specific drivers are discussed.

4.1 Aurora Platform Interactions Overview

Figure 4.1 shows an overview of the interactions between the Aurora platform and

two other systems that compose the Monitoring Infrastructure. As previously indicated

by the disposition of components in the conceptual architecture, monitoring functions are

not implemented directly into the platform’s core, since there are complete solutions for

that. Instead, Aurora relies on a tool called Flexible Automated Cloud Monitoring Slices

(FlexACMS) (CARVALHO et al., 2012) that builds Monitoring Slices automatically to

reflect a Cloud Slice creation. This configures a scenario where management is taken as

an allocable type of resource (as explained in Section 2.1), more specifically a Monitoring

as a Service scenario. Therefore, a Monitoring Slice reflects the corresponding monitoring

metrics and configurations in diverse monitoring systems that are necessary to properly

monitor all resources of a Cloud Slice.

FlexACMS uses a specifically designed gatherer to collect an XML description

from Aurora, containing information about Cloud Slices. The received information is

used to detect changes that impact on Monitoring Slices (e.g., a Cloud Slice creation),

1Source code available at: <https://github.com/ComputerNetworks-UFRGS/Aurora>

https://github.com/ComputerNetworks-UFRGS/Aurora
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Figure 4.1: Interactions between the Aurora platform and the Monitoring Infrastructure
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Source: by author (2015).

then FlexACMS instructs configurators to deploy or update the corresponding Monitoring

Slice. Monitoring Slices are built based on predefined rules and are able to monitor any

type of metric to be used by resource management programs, such as CPU consumption

or network interface statistics. FlexACMS also provides several predefined templates

for monitoring virtual elements, which can be synchronized with Template abstraction of

the proposed API to inform how virtual machines should be monitored. For example, if

a virtual machine is an HTTP or mail server, there will be specific related metrics that

should be monitored in order to assure the correct operation of the specific service. This

information can also be passed through the XML description for automatic configuration

of the monitoring infrastructure accordingly.

In this implementation, FlexACMS builds the configuration of Monitoring Slices

and their metrics based on Nagios (NAGIOS, 2013). Nagios was chosen to be the sys-

tem that actually monitors both virtual and physical layers of the Managed Infrastructure.

This monitoring system has been chosen mainly because (i) it is widely employed in

large scale real infrastructures, (ii) it has all the built-in features needed to trigger events

and configure polling intervals, and (iii) it is easily extensible via plug-ins. Nagios was
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also configured to monitor the underlying physical infrastructure. This configuration was

performed through FlexACMS using the same XML specification, but with specific tem-

plates for physical nodes and switches. As shown in Figure 4.1, the Administrator needs

to interact with all three systems to access and configure different platforms. So far, this

configuration allows only the Administrator to access visual monitoring information (e.g.,

charts, alerts, and tables) regarding managed physical and virtual resources. In future ver-

sions of the Aurora platform, relevant monitoring information should be made available

through GUIs, in order to provide both End-users and Administrators with handy infor-

mation associated with Cloud Slices.

4.2 VXDL-based Initial Specification

Before presenting details on the implementation of the core components of the

Aurora platform, this section introduces the End-user’s input to the system. The Ini-

tial Specification of a virtual infrastructure is described in this platform according to

an extension of the Virtual Infrastructure Description Language (VXDL) (VXDL Fo-

rum, 2011; KOSLOVSKI; SOUDAN; VICAT-BLANC, 2012). This language allows

the detailed specification of many types of virtual elements, such as virtual machines

(vNode), storage (vStorage), routers (vRouter), links (vLink), and access points

(vAccessPoint). Based on these elements, it is possible to create a complete topology

of virtual elements. Currently, Aurora does not include a graphical interface to design the

virtual topology, which means the End-user (or the Administrator in his/her behalf) needs

to prepare a VXDL file elsewhere and then submit it to the platform.

Figure 4.2 presents sample pieces of VXDL files that an End-user can use to spec-

ify a virtual topology. On the left side, the piece of XML shows how to define a virtual ma-

chine (vNode) with 1 CPU, 128MB of RAM, and 500MB of maximum storage capacity.

Moreover, this piece of VXDL code also specifies the OpenWRT (Backfire release) image

used to deploy the virtual machine and some properties of the virtual network interface to

be created. The VXDL code on the right is used to define a virtual link (vLink) between

two vNodes (source/destination). Link properties, such as upload/download bandwidth

and latency, may also be specified with this language. In the implemented platform, this

information can be used by resource management programs to compute link utilization

in terms of allocated bandwidth, for example. Also virtual routers (vRouters), which

are not included in the VXDL samples, are supported by the platform and are imple-
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mented as Open vSwitches. A previous investigation has exploited the dynamic creation

of virtual routers as OpenFlow switches controlled from outside the platform (JESUS;

WICKBOLDT; GRANVILLE, 2013).

Figure 4.2: Sample of initial specification with VXDL

<vNode id="Node0"> 

  <cpu> 

    <cores> 

      <simple>1</simple> 

    </cores> 

    <frequency> 

      <simple>1</simple> 

      <unit>GHz</unit> 

    </frequency> 

  </cpu> 

  <memory> 

    <simple>128</simple> 

    <unit>MB</unit> 

  </memory> 

  <storage> 

    <interval> 

      <min>500</min> 

    </interval> 

    <unit>MB</unit> 

  </storage> 

  <image>OpenWrt-Backfire</image> 

  <interface> 

    <alias>net0</alias> 

    <type>bridge</type> 

  </interface> 

</vNode>

<vLink id="Link0"> 

  <bandwidth> 

    <forward> 

      <interval> 

        <min>10.0</min> 

      </interval> 

      <unit>Mbps</unit> 

    </forward> 

    <reverse> 

      <interval> 

        <min>5.0</min> 

      </interval> 

      <unit>Mbps</unit> 

    </reverse> 

  </bandwidth> 

  <latency> 

    <interval> 

      <max>2.0</max> 

    </interval> 

    <unit>ms</unit> 

  </latency> 

  <source> 

    <vNode>Node0</vNode> 

    <interface>net0</interface> 

  </source> 

  <destination> 

    <vNode>Node1</vNode> 

    <interface>net0</interface> 

  </destination> 

</vLink> 

Source: by author (2015).

4.3 Core & Resource Management Programs

The core of the Aurora platform is written in Python and implemented as a Web-

based application. A three-layered Model-View-Template (MVT) design model based on a

framework called Django (Django, 2013) has been employed to organize the main com-

ponents implemented. Figure 4.3 shows how every section of the conceptual architecture

proposed in Chapter 3 fits in each layer of the design model chosen. Templates are used to

create GUIs, most of the logic for resource management is implemented as Views, while

the API abstractions and technology drivers are implemented as Models.

The Template layer holds the implementation of GUIs, where both Administrators

and End-users are able to perform operations over virtual resources, such as checking

virtual machine status, establishing virtual links, or requesting the creation of a Cloud

Slice based on a VXDL description. Some samples of these interfaces are presented in
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Figure 4.3: Conceptual architecture sections organized in the Model-View-Template de-
sign model
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Source: by author (2015).

Figures 4.4 and 4.5. Figure 4.4 shows Aurora’s slice management interface used by both

End-user and Administrator to handle virtual resources and visualize the virtual topology

of a Cloud Slice.

Figure 4.5 presents the interface for editing optimization programs. The edition

of programs and metrics through the platform is currently performed in plain text. Future

versions of the platform may be enhanced with IDE-like features, including integration

with the API calls and debugging options, which can assist in writing resource manage-

ment programs and metrics.

The View layer is where most of the logic of the platform is implemented, in-

cluding basic functions for managing individual virtual and physical resources (i.e., start-

ing, stopping, migrating virtual machines, configuring access to hypervisors and network

controllers). Also at this layer, the base framework for loading and running Resource

Management Programs & Metrics is implemented. The implementation of Deployment

Engine, Optimization Engine, and Metrics Engine components encompasses the selection

of the appropriate programs for each specific situation (i.e., deployment or optimization

of Cloud Slices), as well as loading these programs and controlling their execution. Con-

trolling the execution of a resource management program involves restraining scope of

access to resources and handling exceptions that can happen during operations. More-

over, specifically for Metric Programs a JSON-based Web service access is implemented

within the Metrics Engine component to allow remote calls to collect metric values.

Resource Management Programs & Metrics are implemented in Python and in-

stalled directly into the platform’s core components. For the person who designs these
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Figure 4.4: Screenshot of the cloud slice graphical user interface

Source: by author (2015).

programs and metrics, the platform provides at the Model layer a high-level object-oriented

API that includes all sorts of resource management operations. In fact, most platforms in-

clude remote-call types of APIs (e.g., REST or SOAP) to request cloud resources. In

general, these APIs differ greatly from the one proposed in this thesis because they are in-

tended to be used by someone from outside the cloud platform domain (e.g., an End-user’s

application requesting resources), so they usually hide many internal details of resources.

The decision to use a programming language instead of remote calls is intended to pro-

vide easier access to both physical and virtual resources, their attributes, and operations

to the Administrator. This allows, for example, the Administrator to try out individual

commands of the API at runtime using an interactive auto-complete console interface of
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Figure 4.5: Screenshot of the optimization program graphical user interface

Source: by author (2015).

the platform. On the other hand, this decision limits the usability of the API to a specific

programming language. To work that around, bindings to other popular programming

languages can be added in future versions of the platform.

4.4 Implemented Technology Specific Drivers

To implement the Drivers section of the conceptual architecture, a set of pieces

of code that rely on specific libraries and systems has been developed in order to “trans-

late” high-level API calls into actual management actions on the underlying infrastruc-

ture. A lot of effort has been put to wrap technology specific parameters inside the driver

implementation, abstracting this complexity from the Unified API. This is important to
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allow the Administrator to focus on developing his/her deployment and optimization pro-

grams and metrics only, rather than memorizing several configuration parameters. Ideally,

configuration files should be used to tweak these drivers according to the setup of each

environment.

For the Networking abstraction of virtual link, a driver for SDN based on the Open-

Flow technology has been implemented. OpenFlow is suitable for the task, since the

whole network can be controlled from a logically centralized element, called controller.

Thus, to establish virtual links, the Aurora platform communicates with a Floodlight con-

troller (Floodlight, 2014) pushing the appropriate OpenFlow forwarding rules. Therefore,

in the current implementation scenario, the managed infrastructure is assumed to be a

fully connected network with OpenFlow enabled switches. Moreover, virtual links are

established considering layer 2 connectivity to have minimum interference on the choices

for guest operating systems and communication protocols. In other words, the Aurora

platform does not impose that deployed applications run necessarily on TCP/IP, like most

platforms do.

For the virtual router abstraction, the technology used is Open vSwitch, with the

restriction that all virtual machines connected to a virtual router need to be hosted at

the same physical node. The deployed virtual router may have OpenFlow capabilities

and the controller may be placed either inside or outside the Aurora platform (JESUS;

WICKBOLDT; GRANVILLE, 2013). Another form of implementing virtual routers is by

deploying virtual machines running router images (SANTOS et al., 2015); however, the

provisioning time could be significantly higher. So far, no layer 3 routing is implemented

within the virtual router abstraction.

For all Computing and Storage abstractions (except for guest images) the current

development is based on Libvirt (Python binding) (Libvirt, 2012). Libvirt is a very pop-

ular library for virtualization management and is also used by other platforms, such as

OpenStack. This library implements communication with several different hypervisors

and all the abstractions needed by these two components of the proposed Unified API

are sufficiently provided by Libvirt. The guest image abstraction is implemented and

deployed based on simple file copy operations with rsync. Monitoring drivers were im-

plemented based on FlexACMS and Nagios plug-ins, as explained in the beginning of this

chapter.
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4.5 Summary

This chapter presented a proof of concept cloud management platform called Au-

rora Cloud Manager. This platform has been developed following the conceptual aspects

presented in Chapter 3 and combines several tools and libraries in order to manage vir-

tual resources. Initially, an overview of the interactions of the proposed platform with the

systems that compose the Monitoring Infrastructure was presented. Afterwards, the use

of VXDL as a description language to trace the Initial Specification of a Cloud Slice was

detailed. Then, the mapping of the conceptual architecture to the MVT design model and

the implementation of core components to execute Resource Management Programs &

Metrics was discussed. Finally, implementation of the proposed API abstractions and op-

erations, as well as the technology specific drivers needed to materialize these abstractions

were presented.

In order to obtain the results presented in the remainder of this thesis, the platform

described in this chapter was employed to manage an emulated infrastructure created to

reproduce slightly complex data center topologies. Further details on the setup of the

experiments and the case study are presented in Chapter 5, focusing both on deployment

and optimization of virtual infrastructures.
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5 CASE STUDIES & EXPERIMENTS

To show the feasibility of the new concept of cloud management platform intro-

duced in this thesis, this chapter presents two case studies conducted to cover different

aspects of resource management in IaaS clouds. The first case study, presented in Section

5.1, intends to show the deployment of a network-intensive type of application based on

concepts of Information-Centric Networking (ICN) and relying on the NetInf architec-

ture (KUTSCHER et al., 2011). In addition, Section 5.2 presents the second case study

focusing on optimization of resources according to different objectives and discusses the

results obtained with three resource optimization algorithms implemented as programs

within the proposed platform.

5.1 NetInf: Case Study & Experiments

For evaluation purposes this section presents a case study considering the deploy-

ment of an application based on the NetInf1 architecture using the cloud platform pro-

posed in this thesis. NetInf is a novel ICN architecture initially conceived in the FP7

project called 4WARD: Architecture and Design for the Future Internet (4WARD, 2008)

and then further developed during another FP7 project called Scalable and Adaptive Inter-

net Solutions (SAIL) (SAIL, 2010). The NetInf architecture envisions routing information

through a network based on the content itself, instead of relying on regular network ad-

dressing schemes. One of NetInf’s assumptions is that, in the future, network devices will

ship with native support for the NetInf architecture. This assumption is obviously not yet

satisfied by current networks, so NetInf-based applications will rely on cloud platforms,

such as the one proposed in this thesis, that can meet their unusual communication needs

for large scale deployment.

5.1.1 Scenario Description

The scenario considered in this case study for using the NetInf-based application

is the following. A worldwide video producer (e.g., TV channel) produces all kinds of

video (e.g., news, TV series, cartoons) in a central office. The producer company wants to

1<http://www.netinf.org/>

http://www.netinf.org/
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stream its videos on demand over the Internet to people that may come from all countries

at any time. NetInf routers are able to receive video stream requests from clients, routing

them through the network until these requests reach a router that has the demanded object.

Once the object is found in the network, it is routed back to the client and cached by

all NetInf routers in the path. With this caching system upcoming requests placed by

clients for the same object may hit a cache along the path, avoiding the transmission

again from the source and improving network utilization. The topology for this kind of

content distribution network (interconnections of caches) should be preferably a multi-

level tree, as shown in Figure 5.1. NetInf will rely on the topology to route content, as

opposed to using router IP addresses.

Figure 5.1: NetInf application deployed topology

Cache Level 0

Cache Level 1

Cache Level 2

NetInf Router

NetInf Client

Source: by author (2015).

In this case study, a set of virtual machines running NetInf routers as well as

NetInf clients are deployed over the cloud infrastructure. In a real world application,

clients would be expected to come from outside the cloud, but to simplify the scenario

clients are deployed within the same Cloud Slice as routers in this case study. All 7 NetInf

routers and 4 NetInf clients are deployed from a cloud optimized version of Ubuntu Server

14.04 guest operating system images sizing near 213 MB, expansible up to 2 GB. Once

deployed, the NetInf router in the root of the tree (Cache Level 0) already has published all

the objects available for download. Clients will start placing requests for random objects

nearly every minute as soon as they start up.

5.1.2 Deployment Program Implementation

For the deployment of the NetInf-based application, a simple program has been

designed for the specific situation. The general concept of the implemented deployment

program encompasses the calculation of resource allocation by analyzing pairs of virtual

machines connected with a virtual link, instead of allocating one virtual resource at a time.

Placing connected virtual machines close together in a data center is generally desirable
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to reduce communication latency and also to save network resources. The deployment

program implemented is divided into three main phases: (i) resource discovery, (ii) rea-

soning, and (iii) resource allocation. The main structure of the program is presented in

Algorithm 5.1, while most of the reasoning phase is presented in Algorithm 5.2.

Algorithm 5.1 Distance-aware deployment program
Require: C ← cloud slice to be deployed

1: H ← set of physical hosts of the infrastructure
2: V ← set of virtual machines belonging to C
3: L← set of virtual links belonging to C
4: host_hops← [ ]
5: for each host ∈ H do
6: host_hops[host]← distances(host,H)
7: end for
8: deployment_pairs← [ ]
9: for each link ∈ L do

10: pair ← [null, null]
11: pair[0]← link.start.attached_device
12: pair[1]← link.end.attached_device
13: deployment_pairs.append(pair)
14: end for
15: for each p ∈ deployment_pairs do
16: if p[0].host <> null and p[1].host <> null then
17: continue
18: end if
19: if p[0].host == null and p[1].host == null then
20: calculate_allocation(null, p[0], H, host_hops)
21: calculate_allocation(p[0], p[1], H, host_hops)
22: else
23: if p[1].host == null then
24: calculate_allocation(p[0], p[1], H, host_hops)
25: else
26: calculate_allocation(p[1], p[0], H, host_hops)
27: end if
28: end if
29: end for
30: for each vm ∈ V do
31: vm.deploy()
32: vm.start()
33: end for
34: for each link ∈ L do
35: link.establish()
36: end for

As mentioned in Section 3.3, deployment programs are intended to calculate and

allocate the resources for one particular Cloud Slice. Therefore, the input for this program
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is the specific Cloud Slice that is set to be deployed (requirement of Algorithm 5.1). In the

first phase, the deployment program makes use of the Unified API to gather information

about the physical resources available at the infrastructure (e.g., set physical hosts) and

also gathers information about the Cloud Slice to be deployed (Algorithm 5.1, lines 1 to 3).

Moreover, in this phase, the deployment program needs to calculate the distances between

all hosts of the infrastructure (Algorithm 5.1, lines 4 to 7). This procedure is abbreviated

in the algorithm – enclosed in function distances() – , but in summary it is performed

with the aid of topology discovery methods available at the Physical abstraction of the

Unified API. It is important to note that calculating routes between nodes on any type

of graph can be a costly operation, thus it might not scale for large infrastructures. For

example, with the best known implementation of Dijkstra’s algorithm, the time to find the

best path between nodes of a graph grows in the order of O(|E|+ |V |log|V |), where |E|

and |V | are the number of edges and nodes in the graph respectively. Finally, the resource

discovery phase ends by preparing a list of pairs of virtual machines based on the virtual

links that belong to the Cloud Slice being deployed (Algorithm 5.1, lines 8 to 14).

In the second phase, the deployment program computes where to place virtual

machines based on very specific heuristics (Algorithm 5.1, lines 15 to 29). As mentioned,

instead of trying to allocate one virtual machine at a time, this program allocates pairs of

virtual machines based on deployment_pairs list generated in the previous phase. The

general idea is to select one virtual machine out of the pair to be placed first and work as a

pivot for the operation, while the second virtual machine (called free) needs to be placed

close to the pivot. When both virtual machines have not been allocated yet (Algorithm

5.1, lines 19 to 21) it does not matter which virtual machine of the pair is the pivot, so the

first one will be allocated anywhere in the data center and will be the chosen pivot of the

pair. When one virtual machine of the pair is already placed, it will be the pivot while the

other is considered free (Algorithm 5.1, lines 22 to 28).

For example, consider a simple Cloud Slice with 3 virtual machines, VM1, VM2,

and VM3, connected by two virtual links VM1↔VM2 and VM2↔VM3. This virtual

infrastructure would be deployed in two pairs (VM1, VM2) and (VM2, VM3). When

the first pair is being processed, both virtual machines are considered free to be placed

anywhere in the data center, so the program will choose a host with low resource utiliza-

tion (previous memory and CPU allocations) to deploy VM1 of the pair. Since there is

a virtual link between VM1 and VM2, one may assume that these virtual machines will

communicate often, therefore VM1 and VM2 should be placed close together in the net-
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Algorithm 5.2 Calculate Allocation procedure
Require: vm_pivot← virtual machine to be the pivot of the operation
Require: vm_free← virtual machine to be allocated close to pivot
Require: H ← set of physical hosts of the infrastructure
Require: host_hops← calculated distances among hosts of the infrastructure

1: candidate_hosts← [ ]
2: for each h ∈ H do
3: mem_total← h.get_memory()
4: mem_allocation← h.get_memory_allocation()
5: mem_free← mem_total −mem_allocation
6: mem_percentage← mem_free/mem_total
7: cpu_total← h.get_cpu()
8: cpu_allocation← h.get_cpu_allocation()
9: cpu_free← cpu_total − cpu_allocation

10: cpu_percentage← cpu_free/cpu_total
11: if mem_free < vm_free.memory then
12: continue
13: end if
14: if cpu_free < vm_free.cpu then
15: continue
16: end if
17: hop_count← 1
18: if vm_pivot <> null then
19: hop_count← host_hops[vm_pivot.host][vm_free.host]
20: end if
21: coefficient← (cpu_percentage ∗mem_percentage)/hop_count
22: candidate← [h, coefficient]
23: candidate_hosts.append(candidate)
24: end for
25: vm_free.host← get_best_coefficient(candidate_hosts)

work. Thus, for the placement of VM2, the program will prioritize physical hosts that

have low resource utilization and are not too far away from the first one chose for VM1.

For the next pair, VM2 would be already placed, so the program would only have to find

a host for VM3 and the Cloud Slice would be ready for deployment.

The actual calculations to decide where each virtual machine will be placed are

performed by a specific procedure presented in detail in Algorithm 5.2. This procedure

receives two virtual machine objects (pivot and free), the set of physical hosts of the

infrastructure, and the already calculated distances among hosts. Overall, for each host

of the managed infrastructure (Algorithm 5.2 line 2) that has the resources required to

deploy the free virtual machine (Algorithm 5.2 lines 11 to 16), a coefficient is calculated

(Algorithm 5.2 line 21) representing how good of a candidate this host is to place this

virtual machine. This coefficient takes into consideration the percentage of free resources
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(CPU and memory) at the candidate host and also – in the case where a pivot has been

specified (Algorithm 5.2 lines 18 to 20) – the distance to the host where the pivot virtual

machine is. All candidate hosts along with their calculated coefficients are added to a list

(Algorithm 5.2 lines 22 to 23), which will be used to select the best host at the end of this

phase (Algorithm 5.2 line 25).

In the last phase, the program deploys all virtual machines on the hosts assigned

in the previous phase. This deployment encompasses copying guest operating system im-

ages, defining virtual machines in hypervisors, and starting them (Algorithm 5.1 lines 30

to 33); these are operations all carried out by the Unified API. Finally, with all the virtual

machines in place, the program establishes all the necessary virtual links (Algorithm 5.1

lines 34 to 36). It is important to emphasize that it is not the objective of this case study to

claim that this is an optimal program for resource allocation. Nevertheless, it has shown

to be efficient enough for the deployment of the specific application at hand and, more

importantly, it was easily implemented in a few hours with the proposed platform.

In addition to this distance-aware program just described, another simple random

deployment program was implemented to serve as comparison basis. This second pro-

gram performs the same phases as the former, however the resource discovery phase does

not need to calculate distances between hosts because they are not necessary. Moreover,

the reasoning phase is also simplified in such a way that for every individual virtual ma-

chine of a Cloud Slice the program simply picks a random host with the resources required

to store it. The actual algorithm for the random deployment program is trivial, thus it is

not further discussed in this thesis.

5.1.3 Emulated Infrastructure & Virtual Topologies

Figure 5.2 shows the emulated topology created for experimentation with 20 Open

vSwitches running the OpenFlow protocol and being coordinated by a Floodlight con-

troller. Also, every one of the 32 hosts of the infrastructure is emulated by a Linux

virtualization container based on LXC. The topology chosen for experimentation is or-

ganized into 4 zones and a core network. Each zone defined represents a “small data

center” with a highly redundant local mesh network and two independent connections

to different switches of the core network. The ring-structured core network contains 4

switches allowing communication to flow between zones and represents a backbone for

interconnecting the “small data centers”. This emulated topology is interesting for this
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specific experimentation because of the amount of independent paths that can be used

to establish virtual links, which gives the deployment program plenty of opportunities to

optimize resource allocation.

Figure 5.2: Emulated physical topology based on LXC and Open vSwitches
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Source: by author (2015).

This setup is started as a Mininet (Mininet, 2013; LANTZ; HELLER; MCKE-

OWN, 2010) script on one Dell PowerEdge R815 server with 4 AMD Opteron Processor

6276 Eight-Core processors and 64GB of RAM memory. The Aurora platform runs also

on this physical machine and all LXC hosts run one independent instance of Libvirt to

receive commands from the platform. The Floodlight controller is provided with a dedi-

cated connection to every switch of the infrastructure, although, for the sake of presenta-

tion, Figure 5.2 only displays one connection per zone. A separate management network

was also set up (also not shown in Figure 5.2) with a direct connection to every host so that

Libvirt traffic to manage virtual machines can flow without affecting production traffic.

To obtain the results presented in the next subsection, statistics have been gath-

ered from the deployment of the NetInf-based application, which encompasses creating

11 virtual machines and 10 virtual links (topology of Figure 5.1). For comparison pur-

poses, three additional topologies using the same guest operating system images of the

NetInf routers have been deployed, as shown in Figure 5.3. A ring topology with 4 vir-

tual machines and 4 virtual links (Figure 5.3-(c)) and two other tree topologies, like the

one in Figure 5.1, but without the NetInf clients. One tree with 7 virtual machines and 6
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links (Figure 5.3-(b)) and another with 15 virtual machines and 14 links (Figure 5.3-(a)).

These different virtual topology sizes have been deployed to allow a first glimpse on the

scalability of the deployment program and the platform implemented. Although these

experiments target a specific application, creating virtual topologies can be beneficial for

many kinds of applications in the context of content distribution systems or information-

centric networking, for example (AHLGREN et al., 2012).

Figure 5.3: Virtual infrastructure topologies deployed

(b) Tree topology with 7 virtual machines (c) Ring topology with 4 virtual machines

(a) Tree topology with 15 virtual machines

Source: by author (2015).

5.1.4 Deployment Statistics

For this experiment, both the distance-aware and random deployment programs

described earlier have been monitored in each phase of their execution. A load of 5 Cloud

Slices of each 4 different topologies described in Figures 5.1 and 5.3 (referred henceforth

simply as NetInf, Ring 4, Tree 7, and Tree 15) have been deployed using each program.

The specification of virtual machine memory requirements were also varied to generate

a more heterogeneous memory allocation distribution. For Ring 4 and Tree 7 topologies

each virtual machine memory was set to 512 MB and 256 MB respectively, whereas

for the NetInf and Tree 15 topologies a smaller memory size of 128 MB was set. The

total of 20 Cloud Slices deployed with each program sum up to a rough total of 35 GB

of memory allocated, which accounts for around 55% of the emulated data center total

memory capacity. In terms of guest images, there were 185 deployments with a total

of roughly 36 GB of data transfered, while 170 virtual links with varied lengths were

established by each program.
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The results in terms of average deployment time achieved by each program for

the scenario just described are presented in Figures 5.4 and 5.5. The stacked bars in

these figures represent the average time spent in each phase (i.e., resource discovery,

reasoning, and resource allocation) of the deployment programs for each virtual topology.

The resource allocation phase is further narrowed down into specific deployment events

(i.e., image copy, virtual machine defining and starting, and link establishment) to provide

a deeper understanding of the share of time that each of these events plays into the overall

resource allocation phase. For the sake of presentation, error bars are not shown in these

stacked bar charts. However, each individual deployment phase and event was performed

enough times so that the estimated error values were kept below 10% of each absolute

measure, with a confidence interval of 95%.

Figure 5.4: Average deployment time for the random program
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In Figure 5.4, the results obtained with the random deployment program are pre-

sented. It is possible to see a nearly linear increase in the time to deploy a Cloud Slice as

the number of virtual resources grows. The total deployment time of a Cloud Slice varies

from around 7 seconds for the Ring 4 topology (4 virtual machines and 4 virtual links) up

to 25 seconds for the Tree 15 (15 virtual machines and 14 virtual links). It is remarkable

that most of the program execution time is actually spent on copying images and starting

virtual machines. The resource discovery phase in this program is negligible since there

is no much information that needs to be acquired before deploying virtual resources. The

reasoning time is also insignificant for this program, since it only needs to find a random

host with enough resource capacity to instantiate each virtual machine. Finally, the link
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establishment time also accounts for a large portion of the total time spent in deploying

a virtual infrastructure. This time encompasses the communication between the Aurora

platform and the Floodlight controller to discover the path for the virtual link, plus the

time to install OpenFlow rules in each switch of the path.

Figure 5.5: Average deployment time for the distance-aware program
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Figure 5.5 shows the results obtained while monitoring the deployment of the same

load of 20 Cloud Slices using the distance-aware program. It is also possible to visualize

that the time to deploy each virtual infrastructure grows near linearly with the size of it

(i.e., number of virtual resources). Virtual machine related operations (e.g., image copy,

starting, and defining) present the same results obtained with the random program, since

these times are influenced mostly by the number of operations performed. However, the

reasoning time in the distance-aware program increases more than tenfold in comparison

with the random deployment. This behavior is expected, since this program needs to

gather much more information to decide how to allocate every pair of virtual machines

connected with virtual links (i.e., a resource coefficient including memory, CPU, and

distance requirements). Moreover, the resource discovery time now accounts for a more

significant part of the total deployment time of any virtual infrastructure. During the

resource discovery phase the algorithm calculates the distances between every host of the

infrastructure and, since there is a fixed number of hosts, the amount of effort to perform

this phase is always the same. Finally, the link establishment time decreases significantly

with the distance-aware program. This behavior is due to the length of routes chosen by

the algorithm which are much shorter in average than they were in the random deployment
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program, thus a smaller number of OpenFlow rules will have to be installed to deploy each

virtual link. Just to provide an estimate, the average established virtual link length with the

random deployment program is in the order of 6.7 hops, whereas with the distance-aware

program this length is decreased down to 1.8.

5.2 Optimization: Case Study & Experiments

The experiments presented in the previous section were targeted to demonstrate

the use of deployment programs to achieve specific objectives while establishing a virtual

infrastructure for the first time. On the other hand, the main purpose of the experiments

described in this section is to show how an Administrator can benefit from the approach to

cloud resource management introduced in this thesis by easily writing optimization pro-

grams. This second class of programs can be employed to reorganize already established

resource allocations in order to achieve various distinct objectives.

5.2.1 Emulated Infrastructure & Virtual Topologies

The experiments presented in this section are also based on a topology emulated

with Mininet. The topology created for this set of experiments is depicted in Figure

5.6 containing 20 Open vSwitches running OpenFlow protocol and being coordinated by

a Floodlight controller. Also, this topology contains 32 hosts forming an emulated in-

frastructure based on Linux virtualization containers with LXC. The emulated topology

chosen for these experiments is slightly different from the one employed in the previous

section. This topology is a classical Fat-tree as described by Al-Fares et al. (2008). Fat-

trees are commonly employed in data centers to provide increased throughput with link

aggregation and high levels of redundancy. These topologies can be structured according

to one input parameter – number of pods –, which in this case study was set to 4 pods.

Each pod includes two layers of switches, edge and aggregation, with pods/2 switches per

layer. In addition, (pods/2)2 core switches are included in the topology to interconnect

pods. As for connections, every edge switch connects to pods/2 aggregation switches,

while aggregation switches also connect to pods/2 core switches. According to the defi-

nition of a Fat-tree topology, pods/2 hosts are connected to every edge switch. However,

this number of hosts was doubled in these experiments only to increase the proportion
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of computing resources in relation to the amount of network resources and to match the

same infrastructure size used in the previous case study.

Figure 5.6: Emulated physical topology based on LXC and Open vSwitches
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Source: by author (2015).

The hardware description of the server where experiments are conducted is the

same presented in Section 5.1. The Aurora platform is also installed on this machine and

communicates with the LXC hosts through a separate management network (not shown

in Figure 5.6). The monitoring infrastructure with FlexACMS and Nagios runs on an-

other physical machine and the communication between the systems goes over HTTPS

connection on an ordinary LAN. Finally, the virtual topologies employed in this experi-

ment where the same displayed in Figures 5.1 and 5.3 in the previous section (i.e., Ring 4,

Tree 7, NetInf, Tree 15).

5.2.2 Optimization Programs Implemented

Three optimization programs have been defined for this case study: Optimize-

Balance, OptimizeGroup, and OptimizeHops. First, it is important to point out that the

programs introduced in this section are not completely novel. Instead, they are inspired in

algorithms found in the literature. OptimizeBalance, for example, aims to spread virtual

machines of a Cloud Slice over the managed infrastructure, which is the same load balanc-

ing objective of the algorithm proposed by Chowdhury et al. (2012) for virtual network

embedding. OptimizeGroup, in turn, uses migration to concentrate virtual machines on a

small set of physical hosts, which was envisioned by the VROOM architecture (WANG

et al., 2008), in the context of virtual routers. Similar to the work proposed by Meng et al.
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(2010), the OptimizeHops program aims to reduce the communication cost by reducing

the distance between virtual machines.

Algorithm 5.3 describes the behavior of the OptimizeBalance program. For each

virtual machine deployed over managed infrastructure, the program selects the physi-

cal host with the highest residual capacity in terms of memory (line 4) and migrates

the virtual machine to it (line 6). By selecting the host with the highest residual ca-

pacity, OptimizeBalance maps a virtual machine to the least loaded host. In an infras-

tructure of homogeneous physical hosts (i.e., same total memory capacity), this program

ends up creating a nearly even memory allocation across the whole infrastructure. To

minimize the number of migrations performed during the optimization procedure, the

get_highest_residual_capacity_host() function makes sure never to select a candidate

host that will have the its residual capacity reduced below vm.host’s residual capacity

after the migration.

Algorithm 5.3 OptimizeBalance program
1: H ← set of physical hosts
2: V ← set of virtual machines
3: for each vm ∈ V do
4: candidate← get_highest_residual_capacity_host(H, vm)
5: if candidate != vm.host then
6: migrate(candidate, vm)
7: end if
8: end for

The second program, called OptimizeGroup (Algorithm 5.4), goes into the oppo-

site direction by mapping virtual machines into the smallest possible subset of physical

hosts. This is done by migrating virtual machines to the set of hosts with the lowest resid-

ual capacity in terms of memory. If physical hosts have the same initial capacity, this

program chooses the same host to receive a number virtual machines until the selected

host runs out of capacity; in which case, a new host is selected. The OptimizeGroup pro-

gram also never selects a candidate host that will have the its residual capacity increased

above vm.host’s residual capacity after the migration to minimize the number of migra-

tion operations. If associated with an energy management mechanism that can turn hosts

on/off on demand, the OptimizeGroup program can be used for energy-saving purposes,

since a smaller number of hosts will actually receive many virtual machines while others

completely become idle.

The third program, called OptimizeHops (Algorithm 5.5), reduces the number of

hops between linked virtual machines. This is achieved by analyzing pairs of virtual
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Algorithm 5.4 OptimizeGroup program
1: H ← set of physical hosts
2: V ← set of virtual machines
3: for each vm ∈ V do
4: candidate← get_lowest_residual_capacity_host(H, vm)
5: if candidate != vm.host then
6: migrate(candidate, vm)
7: end if
8: end for

machines connected by a virtual link (line 4), fixing one of them as a pivot, and moving

the other (referred to as free) onto a host located at a shorter distance in the physical

network (similar method used in Algorithm 5.1). To decide which virtual machine is the

pivot and which one is free to move, the total number of virtual links connecting these

virtual machines is considered (lines 5 to 10). This decision is based on the assumption

that migrating a virtual machine that has a smaller number of connections seems to cause

less disruption to the service running on the Cloud Slice. Afterward, the program will

find a list of hosts with capacity to store free (line 12) and record the sum of distances

to all neighbors of free at its original location (line 13). Then, for each candidate host,

the program will find the best host to store free considering the sum of distances to its

neighbors at the new candidate location (lines 14 to 21). The idea behind this operation

is trying not to migrate free to a location closer to pivot and farther from most of its other

neighbors. Finally, if the best distance to all neighbors of free found in the previous step

improves over its current location (line 22), then free will be migrated to best_candidate

(line 23).

The main benefit of optimization programs to the cloud Administrator is flexi-

bility and adaptability to different situations. The first two implemented programs are

mainly focused in optimizing the infrastructure for load balancing and energy consump-

tion, which are conflicting objectives and choosing one of them can depend on many

factors, such as budget constraints and internal administrative policies. The third pro-

gram can be considered an optimization of both infrastructure and application dimen-

sions. From the infrastructure perspective, the benefit of OptimizeHops is minimizing the

overall traffic in network. For the application, reducing the physical distance of virtual

links will most likely also reduce delay in communication between connected virtual ma-

chines. Besides adding flexibility, programs are quite simple to write using the proposed

Unified API. Just to provide a rough idea, OptimizeBalance and OptimizeGroup programs
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Algorithm 5.5 OptimizeHops program
1: H ← set of physical hosts
2: L← set of virtual links
3: P ← set of pairs (vm_from, vm_to) ∈ L
4: for each p ∈ P do
5: if link_count(p.vm_from) > link_count(p.vm_to) then
6: pivot← p.vm_from
7: free← p.vm_to
8: else
9: pivot← p.vm_to

10: free← p.vm_from
11: end if
12: candidates← get_list_of_hosts_with_capacity(H, free)
13: original_distance← distance_neighbors(free, free.host)
14: best_distance← original_distance
15: for each candidate ∈ candidates do
16: new_distance← distance_neighbors(free, candidate)
17: if new_distance < best_distance then
18: best_distance← new_distance
19: best_candidate← candidate
20: end if
21: end for
22: if best_distance < original_distance then
23: migrate(best_candidate, free)
24: end if
25: end for

are less than 40 lines of code long. The OptimizeHops program, which includes all pair

processing and distance calculations, is still only 125 lines long.

5.2.3 Events & Optimization Scenario

Next, the scenarios designed to illustrate the benefits of optimization programs are

presented. The optimization programs used in this case study are activated by a set of

triggering events. Whenever a triggering event occurs, the active optimization program

is executed. It is important to notice that only one optimization program is active in the

Aurora platform at a time. The Administrator has to manually load another program

when the optimization objective changes. The triggering events currently supported by

the platform and used in this case study are listed in Table 5.1.

Initially, 20 Cloud Slices (5 of each virtual topology described in the previous

section, i.e., Ring 4, Tree 7, NetInf, Tree 15) are randomly deployed over the emulated
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Table 5.1: Triggering events

Event name Description
Slice creation A new slice is created and can affect the already deployed ones
Slice termination The life of the cloud slice has ended and it is no longer active
Slice modification The slice is modified by adding or removing virtual machines
Capacity adjustment The slice owner can modify the capacity (e.g., increasing the

memory of a virtual machine) of his/her slices
Administration The platform Administrator can manually trigger the optimiza-

tion program to perform administrative tasks (e.g., mainte-
nance)

Source: by author (2015).

infrastructure of Figure 5.6 with no optimization whatsoever. This reaches a load of 55%

of the total data center capacity in terms of memory consumption, which leaves plenty of

room for OptimizeBalance and OptimizeGroup programs to rearrange memory allocation.

Regarding virtual link allocations, a Fat-tree topology allows for a vast number of possible

routes anywhere in the network with distinct lengths (number of hops). Considering that

each physical host adds an additional hop (hosts connect virtual machines to an extra local

virtual switch) two virtual machines positioned in the same host are actually 1 hop away

from each other. Virtual machines positioned in two different hosts, but in the same edge

switch are 3 hops away; whereas a pair of virtual machines connected at different edge

switches of the same pod are 5 hops away. Finally, two virtual machines positioned at

hosts in different pods are 7 hops away, which is the farthest distance possible for this

topology (considering only optimal routes). Statistically, it is very likely that the random

deployment program will establish very long links, since the probability of two virtual

machines connected by a virtual link falling by chance into the same host, for example,

is very low. This will provide the OptimizeHops program with the many opportunities to

optimize link allocations by migrating virtual machines to different locations of the data

center.

After this initial state of random deployment, each of the optimization programs

described in this case study was set active in the Aurora platform and was responsible for

reorganizing the managed infrastructure according to their specific objectives, reacting to

the following list of changes:

1. Four of the previously allocated Cloud Slices expire (one of each type) and release

resources. In this case, other active slices can be reconfigured to benefit from the

changes in the infrastructure (Slice termination event);
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2. Four new virtual machines are instantiated and connected to each of two NetInf

Cloud Slices. Here, optimization is required to prevent that the placement of the

new virtual machines conflicts with the active policy (Slice modification event);

3. Two virtual machines are removed from each of two Ring 4 Cloud Slices, which

makes room for reconfigurations similarly to item 1 (Slice modification event);

4. The Administrator performs maintenance in the infrastructure, for example, to in-

stall software updates in a host. Therefore, virtual machines need to be temporarily

migrated to a different location (Administration event);

5. The Administrator replaces equipment to increase the capacity of the infrastructure,

which may require optimizations to allow deployed Cloud Slices to take advantage

of the new resources made available (Administration event).

Finally, it is worth mentioning that the events generated in this experiment are

artificially triggered in a controlled environment, so that they happen always in the same

order and affecting the same set of resources. Of course, in a real environment events

will happen randomly and at arbitrary rates. For example, in a large setup a Cloud Slice

could expire every minute or so, which could create a situation where resources are in

constant state of optimization. Therefore, it is up to the Administrator to understand the

consequences of optimization procedures (e.g., the impact of migrating virtual machines

too often) and configure the handling of events in the managed infrastructure accordingly.

5.2.4 Optimization Statistics

Changes and optimizations of the managed infrastructure have been monitored

during experimentation for all three optimization programs previously explained. The

charts presented in Figures 5.7 and 5.8 show statistics about the residual memory capac-

ity of the infrastructure respectively for OptimizeBalance and OptimizeGroup programs.

The residual memory capacity represents how much memory is not allocated for virtual

machines, i.e., memory that is available to be allocated by new virtual machines or mi-

grations. The maximum memory of a host defined in this experiment is 2 GB; therefore,

the Max value never surpasses this amount. The Instant axis represents the time span of

the experiment, where changes and optimizations happen. The Start instant is the initial

configuration of the infrastructure (20 Cloud Slices randomly deployed). Every Op instant
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represents the residual memory capacity right after an optimization occurred, while Ch*

are instants that succeed a change, according to the list of changes previously explained.

Figure 5.7: Residual memory capacity statistics using OptimizeBalance program

Start Op Ch1 Op Ch2 Op Ch3 Op Ch4 Op Ch5 Op

Instant

R
es

id
ua

l M
em

or
y 

(M
B

)

0
50

0
10

00
15

00
20

00

Start Op Ch1 Op Ch2 Op Ch3 Op Ch4 Op Ch5 Op

Instant

R
es

id
ua

l M
em

or
y 

(M
B

)

0
50

0
10

00
15

00
20

00

Min Max Avg Dev

0
50

0
10

00
15

00
20

00

Source: by author (2015).

In Figure 5.7, it is possible to note how the OptimizeBalance program was able

to influence the behavior of memory allocations to keep the infrastructure well balanced.

In the Start instant of experimentation, there is quite some difference between Max, Min,

and Avg residual memory capacity, which means that there are hosts heavily loaded while

others have only one or two virtual machines instantiated. Also, Dev (standard deviation)

is high at this instant, which indicates high variation between residual memory capacity

of hosts. At the first Op instant, the OptimizeBalance program was already able to dis-

tribute the load among hosts, dropping Dev drastically and leading Max, Min, and Avg

values much closer to one another. After every change, some degree of unbalancing is

introduced in memory allocations, which is reflected in the disturbance of Max, Min, and

Avg values and the increase of Dev. For example, in Ch5 an Administration event happens

in which the Administrator replaces a host of the managed infrastructure that was set to

maintenance in Ch4, which increases Max residual memory allocation to its peek during

the whole experiment. Afterward, the subsequent optimization conducts the infrastructure

back to an optimized state.

Figure 5.8 shows the same measures as Figure 5.7, but employing the Optimize-

Group program to manage resource allocation. Considering this program, for the infras-

tructure to be considered optimized, Min and Max values need to be as far apart as pos-

sible, while Dev needs to be high. This means that there are hosts with a lot of residual

memory (high Max) and others with their capacities almost fulfilled (low Min). That is a
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Figure 5.8: Residual memory capacity statistics using OptimizeGroup program
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behavior that can be observed right after the first optimization. Having many hosts with

their total capacity as residual/free memory means they can be considered idle and could

be turned off to save energy. However, this program stumbles upon a fragmentation prob-

lem, for example, in this case study, it was never able to reduce the Min residual memory

below 94 MB because none of the instantiated virtual machines was small enough to fit in

this much memory. Another important fact to note in Figures 5.7 and 5.8 is that the Avg

residual memory at any given instant of the results for both OptimizeBalance and Opti-

mizeGroup programs is always exactly the same. This happens because the experiment

was designed in such a way that the total amount of memory allocated is the same at every

particular instant to provide a fair comparison standpoint between both programs.

The difference between OptimizeBalance and OptimizeGroup programs is more

clearly visible in Figures 5.9 and 5.10. These charts show memory allocations per host

throughout the experiment. The x axis presents Host IDs for every one of the 32 hosts

of the managed infrastructure The y axis (Instant) – just like in Figures 5.7 and 5.8 –

represents the time span of experiments. The area of each bubble in these charts represents

the total memory allocated in every host for virtual machines at a given moment.

In Figure 5.9 it is easy to visualize that at the beginning (Start instant) memory

allocations seem unbalanced. Optimizations (Op instants) tend to consistently bring all

bubbles to similar sizes, whereas changes (Ch* instants) reintroduce disturbance in allo-

cations. It is interesting to note that in Ch4 the Administrator removes Host 1 from the

infrastructure to perform some maintenance tasks, which becomes unavailable for alloca-

tion (bubble disappears). Because of this change, the Administrator manually migrated
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Figure 5.9: Memory allocations per host using OptimizeBalance program
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virtual machines from Host 1 to hosts Host 15 and Host 18. The following optimization

redistributed the load from Host 15 and Host 18 within other 6 hosts. After that, the next

change (Ch5) reintroduces Host 1 and, on the optimization next to this change, Host 1

receives a load of virtual machines again.

Figure 5.10: Memory allocations per host using OptimizeGroup program
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In Figure 5.10, it is possible to see that the behavior of memory allocations guided

by the OptimizeGroup program is completely opposite to OptimizeBalance. After the

first optimization, for example, all the load is distributed among only 21 hosts, making

all others idle. This is an interesting result because, although 55% of the total data center

memory capacity is allocated while 45% is idle, only around 35% of the managed in-
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frastructure or 11 hosts have their full amount of residual memory and can be considered

actually idle to be turned off. This phenomenon happens because of the memory frag-

mentation problem mentioned earlier. In the 21 hosts heavily loaded there is actually an

aggregated total of nearly 2 GB of memory that cannot be allocated because of the size of

virtual machines.

Figures 5.11, 5.12, and 5.13 show the results achieved with the OptimizeHops

program. The bar chart of Figure 5.11 is very similar to the ones presented in Figures 5.7

and 5.8. However, instead of residual memory, the length of virtual links (i.e., number

of hops) connecting pairs of virtual machines is displayed on the Link Length axis. As

explained earlier, in this experiment every switch is considered as one network hop, plus

the extra virtual switch included inside each host. Therefore, hop counts for virtual links

in this experiment will always be in the range of 1, 3, 5, or 7.

Figure 5.11: Virtual link length statistics using OptimizeHops program
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One may note from Figure 5.11 that at the beginning of the experiment (Start

instant), because of the random deployment, the longest virtual links connect virtual ma-

chines 7 hops apart from each other, while the Avg hop count is as high as 6.35 hops. This

behavior is expected for random deployment in a Fat-tree topology since the majority of

links are expected to have the maximum length for probabilistic reasons, as explained be-

fore. After the first optimization, the OptimizeHops program was able to reduce more than

twofold the Avg hop count down to 2.9. However, this program was unable to reduce the

Max link length below 7 throughout the whole experiment, which means there is always

at least one virtual link that connects virtual machines across two separate pods. The 4

virtual topologies chosen (i.e., Ring 4, Tree 7, NetInf, and Tree 15) are very intricate and
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the program finds difficulty in moving around virtual machines with a large number of

connections. It is important to emphasize that the OptimizeHops program is not optimal,

i.e., it does not consider every possible allocation for all links to find the best configura-

tion. Instead, it tries to optimize link-by-link moving connected virtual machines closer

on the physical topology. For most cases the result was satisfactory, since after the first

round of optimization the Avg hop count remains always below 3, reaching 2.5 by the end

of the experiment.

Figure 5.12: Percentage number of virtual links of each possible length

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Instant

N
um

be
r 

of
 L

in
ks

 (
%

)

Start Op Ch1 Op Ch2 Op Ch3 Op Ch4 Op Ch5 Op

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

● ●

●
●

● ● ●

●

● ● ●

● Link Length 1
Link Length 3
Link Length 5
Link Length 7

Source: by author (2015).

The high value of Dev in Figure 5.11, even after optimizations, also indicates

that there is a significant amount of long links (possibly 7 hops-long) and another large

set of short links (possibly 1 hop-long). Therefore, Figure 5.12 shows in the y axis the

number of virtual links with each length as a percentage of the total number of virtual

links. A percentage is used in this chart because the absolute total amount of virtual links

increases or decreases depending on the change (Ch*) performed in the infrastructure,

thus the absolute number of virtual links of each length may also vary arbitrarily at instants

succeeding a change. As expected, at the Start instant, it is possible to see that more than

80% of all virtual links are of length 7. Then, as inferred by the high Dev value in the

previous chart, after the first optimization instant, 7 hop-long links still account for 20%

of the total; the percentage of 1 hop-long links increased significantly to almost 55%

though. Intermediate length virtual links, i.e., lengths 3 and 5, are less “attractive” to the

optimization program because of the reduced number or possible routes to reallocate a

virtual machine within the same edge switch or pod, and still the length of these routes

are higher than the prioritized 1 hop-long ones. Although less numerous, virtual links of
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length 5 seem to decrease very slightly from the beginning of the experiment towards the

end, while 3 hop-long links increase at the first optimization instant and remain stable

until the last optimization instant. It would be nice if this optimization program could

be improved to explore more of the 3 and 5 hop-long routes to minimize even more the

number of virtual links of length 7.

Figure 5.13: Resource consumption in terms of OpenFlow rules installed in switches
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An interesting dimension of optimizing link lengths is the potential improvement

in network resource consumption. Thus, Figure 5.13 shows the total number of Open-

Flow rules installed in all switches of the infrastructure during the experiment with the

OptimizeHops program. For every virtual link, a number of OpenFlow rules need to be

installed in order to instruct switches on how to forward traffic from one virtual machine

to another. Every virtual link will install 2 OpenFlow rules (one for ongoing traffic and

another for returning) in each switch of its path, thereby a virtual link of length equal

to 7 hops will install 14 OpenFlow rules, for instance. At the beginning of the exper-

iment (Start) an approximated total number of 2150 rules are installed in the network,

being the vast majority due to virtual links of length 7. Since after the first optimization

more than half of the virtual links are established with length 1 (as seen in Figure 5.12),

the OptimizeHops program could reduce the total number of installed OpenFlow rules to

nearly 1000. Also, although 1 hop-long links are more numerous throughout the rest of

the experiment, they contribute with a very small portion of the total resource consump-

tion in terms of OpenFlow rules installed given their short lengths. This last chart helps

in clarifying the actual impact an optimization program can have on the overall network



108

resource consumption. One needs to consider that not only the amount of OpenFlow rules

each switch can handle is limited and needs to be carefully managed, but also longer links

force traffic to be forwarded through a larger number of devices wasting other resources,

such as bandwidth and energy.

5.3 Summary

This chapter presented two case studies to exemplify how resource management

in IaaS clouds can be made flexible through the use of deployment and optimization pro-

grams. The first case study, presented in Section 5.1, focused on demonstrating how a

deployment program can be used to rationally allocate the resources required to establish

virtual infrastructures considering a specific ICN application based on the NetInf archi-

tecture. The results obtained by monitoring the deployment of 20 Cloud Slices of varied

sizes and topologies showed that, despite the increase in resource discovery and reason-

ing times, of the distance-aware deployment program was able to reduce the length of

virtual links and consequently the time spent in establishing them in the network. The

second case study, presented in Section 5.2, on the other hand, was designed to show the

potential benefits of employing optimization programs to reorganize resource allocation

of already deployed Cloud Slices. Again, 20 Cloud Slices of varied sizes and topologies

were deployed using a random deployment program, later to be optimized by one of three

optimization programs, namely: OptimizeBalance, OptimizeGroup, and OptimizeHops.

Afterward, a series of events simulating everyday resource management tasks where trig-

gered, changing the state of resource allocations and forcing each optimization program

to reorganize virtual infrastructures according to their specific objectives. The results

achieved showed how an Administrator can – with a few dozen lines of code – design an

optimization program that is able to drive resource management towards entirely different

objectives.
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6 CONCLUSION

This thesis has discussed the state-of-the-art of providing IaaS over clouds and

the limitations found in this context, such as the black-box-like centralized control de-

sign of cloud management platforms and the lack of integrated resource management to

handle all sorts of resources (i.e., computing, storage, and networking) at the same level

of importance. A new concept of cloud management platform was introduced where re-

source management is made flexible by the addition of programmability at the core of

the platform and the introduction of a simplified object-oriented API. In addition, with

the proposed API, resource allocation and optimization programs can be written to orga-

nize how resource management is performed in a more integrated fashion (all resource

handling functions at one place).

Given the limitations exposed in the context of resource management in IaaS cloud

environments and the proposal to rely on programmability to make resource management

in this context more integrated and flexible, extensive research, development, and experi-

mentation has been conducted aiming to verify the following hypothesis.

Hypothesis: a cloud platform incorporating the concepts of programmable and

integrated resource management can enable the flexibility required to support

modern applications and to adapt to environment specific needs

The investigations conducted and the results presented in this thesis set a clear path

towards supporting the proposed hypothesis. The first of two case studies presented has

demonstrated how deployment programs may be written to establish complex and par-

ticularly network-intensive applications on top of a cloud infrastructure. This case study

presented the deployment of a complete ICN application based on the NetInf architec-

ture, with different virtual topologies in under a minute of total deployment time. Besides

instantiating a set of virtual machines, like most cloud platforms would support today,

the Aurora platform created the virtual topology for the application based on the config-

uration of virtual links leveraging SDN and OpenFlow. The use of VXDL as the input

specification language enabled the deployment of an application in different topologies

and with specific resource requirements. The benefits of the distance-aware deployment

program implemented could be evidenced by the reduction in the average length of virtual

links and a consequent reduction in total link establishment time.

The second case study presented in this thesis aimed to demonstrate that optimiza-

tion programs written by Administrators can really influence how resource management
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is performed, optimizing the infrastructure according to the desired objectives. To show

the benefits of the proposed platform in terms of flexibility and adaptability to different

situations, three optimization programs based on well-known algorithms from the liter-

ature have been developed. The OptimizeBalance program was able to keep maximum

and minimum residual memory capacities really close to the average and the standard

deviation as low as possible. On the other hand, the OptimizeGroup program gathered all

the load in 21 hosts of the infrastructure most of the time leaving 35% of the resources

idle. The last program, OptimizeHops, brought connected virtual machines close to each

other considering the network topology of the underlying infrastructure. The average

virtual link length was reduced more than twofold, although the maximum length was

never reduced to a value lower than 7 hops. Moreover, the benefits in network resource

consumption, in terms of the total amount of OpenFlow rules installed in the network,

were also evidenced by the experiments with the OptimizeHops program. In summary, a

single platform – incorporating the proposed concepts of programmability and integrated

resource management – was able to accommodate a network-intensive application with

unusual requirements and to adapt to environment specific objectives.

Based on the work presented in this thesis, it is possible to identify evidences to

answer the three research questions (RQ) associated with the hypothesis that have been

posed to guide this study. The answers to each question are following detailed.

RQ I. How to enable clouds to deal with network as a first order manageable resource?

Answer: Historically, cloud platforms have implemented diverse network func-

tionality and configuration options, most of the time aiming to achieve basic

isolation and connectivity needs for virtual machines. There is no single set of

abstractions widely used for virtualization of network elements in clouds, like

there is for computing and storage (e.g., virtual machines, storage volumes,

and operating system images).

In this thesis, concepts of network virtualization have been employed to allow

Cloud Slices to form complex virtual topologies including two fundamental

types of virtual network elements, i.e., virtual routers and virtual links. Ab-

stractions of these elements are made available through the proposed Uni-

fied API, which provides the required operations to handle virtual network

elements at the same level of importance of other types of virtual resources.

Furthermore, the platform implemented included drivers to materialize these
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conceptual elements using modern enabling technologies, such as SDN with

OpenFlow and Open vSwitches.

RQ II. How to enable the detailed specification of applications needs?

Answer: Specifying and specially achieving particular application needs in terms

of resource allocation is a major concern of End-users of cloud systems. Re-

cent studies aimed to allow high-level specification of application goals (SUN

et al., 2012; WUHIB; STADLER; LINDGREN, 2012; ESTEVES et al., 2013)

and proposed complex methods to translate them to actual resource allocation

needs. Therefore, such translation was left out of the scope of this thesis. In

addition, several attempts have been made to create standard models and inter-

faces for representing virtual elements and to define the operations to manage

them as discussed in Chapter 2.

In this thesis, the initial specification of application needs in terms of virtual

resources are expressed through VXDL. This language was chosen because

it allows the specification of complete virtual network topologies including

all sorts of resources (e.g., virtual routers, virtual links, and virtual machines)

in a simple way. The platform developed was able to interpret this language

and, with a deployment program, materialize the necessary resource alloca-

tions indicated in the initial specification. Moreover, elasticity needs can also

be expressed and achieved by resource optimization programs specifically de-

signed to enhance the performance of the deployed application.

RQ III. How can a cloud platform enable flexible integrated resource management for

a wide range of applications and environments?

Answer: Aligning resource management strategies to the requirements of each

specific environment or application is a primary concern for Administrators

of cloud systems. Normally, cloud management platforms ship with one or

a set of resource allocation strategies hard-coded into their core. Throughout

the life-cycle of cloud applications few opportunities are presented for Ad-

ministrators to influence how resource management is performed.

In this thesis, resource management in cloud environments is made flexible

through programmability. The programming framework included in the pro-

posed conceptual architecture and implemented in the Aurora platform al-

lowed easy creation of programs for both deployment and optimization of
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Cloud Slices. In addition, the introduced Unified API enabled network vir-

tualization to meet server virtualization granting Administrators with an in-

tegrated set of abstractions for all sorts of virtual resources, even including

high-level management tasks, such as monitoring performance indicators of

physical and virtual elements. The effectiveness of the programming frame-

work and the Unified API have been shown in the two case studies presented,

where both application and environment specific needs have been considered

while managing resources.

Based on the studies conducted it is possible to identify a few open issues in the

investigated topic, which can be subject of future work. For example, the selection of de-

ployment programs could be performed dynamically considering specific types of appli-

cations or the current configuration of the cloud environment. The proposed programming

framework could also be enhanced by the inclusion of IDE-like features to assist writing

and debugging code of deployment, optimization, and metric programs. To facilitate fault

handling it would be interesting to have transaction control at the API level, thus resource

management programs could include operations such as reservation, commit, and roll-

back during virtual resource allocation. Furthermore, future investigations can help better

evaluating the proposed approach. Optimization programs could be used to improve the

performance of running applications, possibly based on metrics personalized by the End-

user and collected from inside the application. Also, further evaluations of scalability and

measurements of the impact of optimizations (specially migrations) on the performance

of running applications can be performed. Finally, the proposed management platform

has been designed considering a single cloud provider scenario, where all the resources

available are under control of the platform and its management programs. As a possible

extension work, a multi-provider or multi-datacenter scenario could be explored, where

possibly new challenges will arise in the distributed management of resources and collab-

oration among multiple platforms.
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