
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

NICOLAS SILVEIRA KAGAMI

Monotonic Buffer Insertion

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engeneering

Advisor: Prof. Dr. André Inácio Reis

Porto Alegre
November 2015

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de Engenharia de Computação: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“If you want to make an apple pie from scratch,

you must first create the universe.”

— CARL SAGAN

ACKNOWLEDGEMENT

I would like to thank my family for their love and support throughout my life.

I owe Marina Rey and her family more than thanks, for lovingly welcoming me

into their lives.

I would like to thank my advisor André Inácio Reis for sharing a bit of his wisdom

with me. A special thanks to Jody Matos, who had great patience with me, and was always

there when I needed.

I would like to thank Valter Roesler for granting me a great opportunity to work. I

have always admired your integrity.

I must thank my colleague and friend William Lautenschläger, for always being

available to bounce a few ideas off, despite the intense workload he has.

ABSTRACT

This document presents a multi-objective approach to buffer insertion. Our concept is

applied to simple-cells-based circuits, extracted from AIGs. Node count minimization in

AIGs tends to increase the logic sharing, which may imply in some fanout violations. The

subsequent fanout limiting step can be used to determine more than just a fanout abiding

cell, if few physical aspects are taken into consideration. The proposed method simultane-

ously provides preferential treatment to global critical paths and builds a placement-aware

buffer structure.

Keywords: Buffer Insertion. Logic Synthesis.

Inserção de Buffer Monotônica

RESUMO

Este documento apresenta um conjunto de algoritmos que formam uma abordagem multi-

objetivo para inserção de buffers. O conceito é aplicado a circuitos baseados em células

simples, obtidos a partir de AIGs. A minimização de nodos em AIGs costuma aumentar o

compartilhamento lógico, que pode implicar em violações de fanout. O passo de limitação

de fanout subsequente pode definir mais do que uma célula com fanout restrito, se alguns

aspectos físicos são levados em consideração. O método proposto limita o fanout da célula

enquanto provendo tratamento especial para caminhos críticos globais e construindo uma

árvore de inversores para limitação de fanout com conexões baseadas em posição.

Palavras-chave: Síntese Lógica,Inserção de Buffer,Limitação de Fanout.

LIST OF ABBREVIATIONS AND ACRONYMS

AIG And Inverter Graph

PAIG Positioned And Inverter Graph

DAG Directed Acyclic Graph

EDA Electronic Design Automation

VLSI Very Large Scale Integration

AAG ASCII AIG

PAAG Positioned ASCII AIG

SDC Synonpsys Design Constraints

LIB Liberty

DEF Design Exchange Format

LIST OF FIGURES

Figure 3.1 Pre-Processing: How the pre-delay (blue) and post-delay (green) are
propagated from the I/O associated delays (a) throughout the circuit (b→ c).19

Figure 3.2 Initial tree form, or "inverter spine"...23
Figure 3.3 Highest Delay Percentage: Disparate target delays produces a decent result.24
Figure 3.4 Highest Delay Percentage: Similar target delays produces a bad result.25
Figure 3.5 Average Delay Percentage: Disparate target delays produces a decent

result..26
Figure 3.6 Average Delay Percentage: Similar target delays produces a decent re-

sult, much better than Highest Delay Percentage results. ...26
Figure 3.7 Inverter Group Difference: Vacant slots in the first level.27
Figure 3.8 Inverter Group Difference: Trying to find the best group of four or less

targets to be deemed critical. Y axis: Post-delay. X axis: Targets.28
Figure 3.9 Inverter Group Difference: Two critical targets being allocated at the

first layer and expanding the rest of the slots as inverters...29

LIST OF TABLES

Table 4.1 Node order average delay values...36
Table 4.2 Critical allocation algorithm delay values...37
Table 4.3 Summed Inverter distances..38
Table 4.4 Summed Worst Inverter Tree distances ...39

CONTENTS

1 INTRODUCTION...11
2 CONCEPTS...13
2.1 AIG...13
2.2 Manhattan Distance..13
2.3 Timing Budget ...13
2.4 Consumers ...14
2.5 Inverter Tree..14
3 METHODOLOGY ...15
3.1 Inputs ...16
3.1.1 Cell Library: Liberty..16
3.1.2 Topology: Placed ASCII AIG and Design Exchange Format16
3.1.3 Timing Constraints: Synopsys Design Constraints ...17
3.2 Pre-Processing ...18
3.3 Order of operation ..19
3.4 Tree Formation..22
3.5 Critical Selection and Insertion ...23
3.5.1 Highest Delay Percentage Algorithm ..23
3.5.2 Average Delay Percentage Algorithm..25
3.5.3 Inverter Group Difference Algorithm ..27
3.6 Tree Expansion and Pruning ...29
3.7 Non Critical Target Allocation...30
3.8 Tree Connection ..31
3.8.1 K-Means Clustering Inspired Heuristic ...31
3.8.2 Furthest First Heuristic ..32
3.9 Inverter Positioning ..34
3.10 Post-Processing..34
4 RESULTS...35
4.1 Testing Methodology...35
4.2 Delay Experiments ..35
4.2.1 Node Order...35
4.2.2 Critical Algorithm..36
4.3 Distance Experiments ...37
4.3.1 Tree Connection...38
5 CONCLUSION ...40
REFERENCES...41

11

1 INTRODUCTION

The improvement in the semiconductor industry has been responsible for driving

the quality and ubiquity of technology, which was partly brought forth by the scaling of

transistor integration, also known as Moore’s law (MOORE, 1965). This progress comes

at the price of an increase in design complexity.

Modern Very-Large Scale Integration (VLSI) circuit design deals with this in-

crease in complexity by relying on Electronic Design Automation (EDA) tools to opti-

mally guide the design through the ever-increasing possibility space. One way to reduce

this search space is to decrease the degrees of freedom, imposing design restrictions. Such

is the way of semicustom design. A common semicustom approach is the cell-based de-

sign in which a standard cell library determines the building blocks upon which the logic

structure is mapped.

The industry’s evolving on cell-based designs has highlighted the important role

of logic synthesis in the VLSI design flow. The logic synthesis step is the one responsible

for the most powerful transformations on the logic implementing a given design (WAG-

NER; REIS; RIBAS, 2006). The literature is used to split logic synthesis into two major

substeps: (1) technology-independent optimizations, in which the synthesis tasks are per-

formed restrictively in the Boolean domain; and (2) technology-dependent optimizations,

in which detailed information on the technology used to implement the logic elements

are also taken into account (e.g. area, power and delay estimations obtained from the

standard cell library). Examples of technology-independent optimizations can be found

in the works by Callegaro et al. (2015), Matos and Reis (2015), Possani et al. (2015)

and Neutzling et al. (2015). Concerning works on technology-dependent optimizations,

please refer to the works by Alegretti et al. (2013), Machado et al. (2012) and Machado

et al. (2013).

Regarding standard cell libraries, it is highly debated between defenders of small

cell libraries composed of simple cells and defenders of larger cell libraries composed

of more complex cells. Considering simple-cells based design, Matos et al. (2013) has

shown an interesting approach to reducing the number of transistors by minimizing the

number of nodes in an And-Inverter Graph (AIG) representation (MATOS et al., 2013).

One of the effects of building a circuit from simple cells is an increase in logic sharing, and

thus in fanout. This requires attention since a cell with fanout violations can compromise

the circuit performance. This is solved by Matos et al. (2013) by means of a buffer

12

insertion algorithm which introduces an inverter tree to limit the fanout. For a more

detailed explation on Matos el al. work, we refer the reader to Matos et al. (2013) and

Matos (2014).

One of the complicating factors in the development of VLSI circuits is the growing

importance of physical properties in the design. This is evidenced by the fact that, in

older technologies, a proper timing estimation could be achieved solely from the logic

gates, and thus, during a physically naive logic synthesis. This assessment by itself no

longer results in a suitable inference of delay, which is essential for guiding the possible

transformations in these earlier steps. According to Bakoglu (1990), when all dimensions

of a device are scaled down by a factor of S, the intrinsic delay is lowered by a factor

of S, while the local interconnect delay remains the same and the global interconnect

delay increases by a factor of S2. Along the industry’s development, this consequence of

shrinking dimensions reassigned the prevalence of intrinsic delay to interconnect delay.

There are several adjustments that can take place during logic synthesis which inevitably

influence some of the subsequent physical synthesis properties (MATOS; REIS, 2015;

MATOS et al., 2015). Consequently, an argument could be made for increasing physical

awareness during logic synthesis, especially wiring awareness.

This work presents a buffer insertion algorithm based on Matos et al. (2013), aim-

ing to consider its connective structure with a greater rigor, plainly establishing the wiring

connections necessary for its inverter tree. Such is made possible by considering the posi-

tions of nodes in a placed AIG configuration. The algorithm uses this very representation

of delays together with an associated I/O timing budget to determine the inverter tree

structure such that critically delayed targets receive preferential treatment.

The ensuing chapters are organized as follows. Chapter 2 defines some of the sig-

nificant concepts for understanding the buffer insertion algorithm. Chapter 3 displays the

inner workings of the buffer insertion algorithm. Chapter 4 shows our testing methodol-

ogy as well as the results obtained. Chapter 5 outlines our contribution.

13

2 CONCEPTS

This chapter introduces some of the fundamental concepts that will be regularly

used in the following chapters.

2.1 AIG

An And-Inverter Graph is a Directed Acyclic Graph (DAG) that represents a struc-

tural instance of a logical function. AIGs are composed of AND2 nodes, possibly negated

edges and terminal variable nodes. This concept has been found to be an efficient ap-

proach at functional representation for EDA applications (DARRINGER et al., 1981).

AIGs are highly used data structure in logic synthesis, especially during the early steps of

the design flow. At this phase, area is minimized by decreasing the total number of nodes

in the AIG, while delay is minimized by reducing the depth of the AIG graph.

Placed AIGs are AIGs where each node has an assigned (X, Y) position. Placed

AIGs allow us to consider physical layout information during the early steps of logic

synthesis (MATOS; REIS, 2015).

2.2 Manhattan Distance

The Manhattan Distance between two points is defined as the sum of the absolute

differences of their Cartesian coordinates (KRAUSE, 1987). This concept is useful for

VLSI routing, as it properly characterizes the distance between points when connecting

through horizontal and vertical segments. Keep in mind that whenever this work uses

spatial terms like "distance", "close", "closest, "far", "furthest", we will be referring to

Manhattan Distance.

2.3 Timing Budget

A timing budget is the assignment of arrival times for each I/O pin of entities

instanced in a network. This is a crucial parameter for the proposed method of buffer

insertion, as each node abstraction in the circuit keeps an associated timing budget. This

budget is composed of two values explained below.

14

• The Pre-Delay is an estimate of the worst signal arrival time in this node from the

primary inputs1.

• The Post-Delay is an estimate of the worst signal propagation time from the current

node to the primary outputs1.

2.4 Consumers

In the context of this work, a node’s consumer is an entity which requires to be fed

that node’s signal. A consumer can be positive or negative, depending on its requirements,

which are defined by circuit topology. A positive consumer requires the node’s signal

while a negative consumer requires its negated signal.

2.5 Inverter Tree

An inverter tree is the structure used in the proposed approach to limit the fanout of

the cells whilst supplying all of its consumers. An inverter tree is composed of inverters

which feed into other inverters or consumers. The degree of this tree is defined as the

inverter maximum fanout. As long as the degree is greater than one, the number of vacant

signals produced by the inverters can increase with each level, eventually allowing a tree

capable of feeding any given number of consumers.

1Since this work is focused on combinational circuits, no sequential elements are considered in this
analysis.

15

3 METHODOLOGY

In this chapter, we present the inner workings of the Buffer Insertion algorithm

developed. The main objective of such process is to compose an inverter tree capable

of supplying all node’s positive and negative consumers without violating a given fanout

limit. This imposes a decision about how to construct this inverter tree. In an effort to

minimize the critical path delay of the circuit, we will apply heuristics to determine the

connections and positions of the inverters and how they supply the targets.

The targets are sorted by post-delay and divided into critical and non-critical tar-

gets. Critical targets with higher delay will be allotted preferably closer to the root, in

detriment to the delay of the non-critical targets. The tree is then expanded to be able to

supply all targets and the non-critical targets are distributed along the leaves. The targets

are appointed to inverters according to a locality heuristic.

’

Algorithm 3.1: Monotonic Buffer Insertion
1 MonotonicBufferInsertion(AIGFile,DEFFile,LIBFile,SDCFile){
2 Parse(AIGFile,DEFFile,LIBFile,SDCFile);
3 PreProcessing();
4 NodeProcessing();
5 PostProcessing();

Algorithm 3.2: Inserting buffer for a node
1 InsertBuffer(node){
2 FormTree(node);
3 CriticalAllocation(node);
4 Expand(node);
5 Prune(node);
6 NonCriticalAllocation(node);
7 ConnectTree(node);

Section 3.1 presents the information necessary to run the algorithm and how this

information is obtained. Section 3.2 details the process responsible for seeding the initial

delay values throughout the graph. Section 3.3 proposes some implications of the order of

execution. Section 3.4 describes the initial inverter tree abstraction. Section 3.5 displays

the algorithms employed to select and allocate critical targets. Section 3.6 delineates the

transformations the inverter tree goes through between the critical allocation and non-

critical allocation steps. Section 3.7 defines the method responsible for non-critical target

16

allocation. Section 3.8 demonstrates the heuristics used for defining the inverter tree con-

nections. Section 3.9 discloses the inverter positioning algorithms. Section 3.10 depicts

the process responsible for determining the final delay values throughout the graph.

3.1 Inputs

The Monotonic Buffer Insertion requires a positioned consumer graph, an I/O tim-

ing budget and the delay and maximum fanout of the nodes. The graph is determined by

the circuit topology, to be extracted either from a PAAG or a DEF file. The I/O associated

timing budget is defined by an SDC file, which also defines the target periodicity of the

design. A cell library is parsed in order to determine several pieces of information about

the cells, mainly the delay.

Algorithm 3.3: Parsing
1 Parse(AIGFile,DEFFile,LIBFile,SDCFile){
2 if (AIGFile)then
3 Topology = TopologyFromAIG(AIGFile);

4 else
5 Topology = TopologyFromDEF(DEFFile);

6 CellLibrary = ParseLIB(LIBFile);
7 TimingConstraints = ParseSDC(SDCFile);

3.1.1 Cell Library: Liberty

The LIB file defines a group of cells in terms of its pins, drive strength, area,

estimated delay and power consumption. This information is appropriate for establishing

several pertinent information about the circuit after the application of the buffer insertion.

3.1.2 Topology: Placed ASCII AIG and Design Exchange Format

The PAAG file defines an And-Inverter Graph (AIG) whose nodes are placed.

The AIG directly determines the node’s positive and negative consumers. The placed

graph is trivially extractable from AIGs by applying on it any state-of-the-art placement

algorithm. Concerning the DEF file, we are considering only a small set of DEF primitives

17

used to define placed components (instances of cells), pins (output and input) and nets

(connections). This information needs to be processed in order to extract the logical

arrangement consisting of each node’s positive and negative consumers.

3.1.3 Timing Constraints: Synopsys Design Constraints

The SDC file considered in this work defines the target clock cycle, the input pins’

arrival time relative to the clock, and the maximum delay restriction for each output,

considering different timing paths. This is crucial information for defining the timing

budget, and therefore can heavily influence the overall structure resulted from the buffer

insertion.

18

3.2 Pre-Processing

The pre-processing stage takes the input and output timing information acquired

from the file parsers and propagates it throughout the circuit. This step establishes the

initial estimates for the pre-delay and post-delay values for each node in the graph. These

values are assessed cumulatively according to the nodal delay and the outer timing con-

straints.

Algorithm 3.4: Pre-Processing
1 PreProcessing(){
2 foreach (node in Topology)do
3 node.target.pathDelay = 0;

4 EstimateDelay();

Algorithm 3.5: Estimating delay for the network
1 EstimateDelay(){
2 NodeQueue = new Queue;
3 NodeQueue.empty();
4 foreach (node in Topology.inputs)do
5 NodeQueue.push(node);

6 while (!NodeQueue.empty())do
7 foreach (target in node.targets)do
8 preDelayEstimate = computePreDelay(node,target);
9 if (preDelayEstimate > target.preDelay)then

10 target.preDelay = preDelayEstimate;
11 NodeQueue.push(target);

12 NodeQueue.empty();
13 foreach (node in Topology.outputs)do
14 NodeQueue.push(node);

15 while (!NodeQueue.empty())do
16 foreach (source in node.sources)do
17 postDelayEstimate = computePostDelay(node,source);
18 if (postDelayEstimate > source.postDelay)then
19 source.postDelay = postDelayEstimate;
20 NodeQueue.push(source);

Figure 3.1 shows how the initially I/O associated delays are propagated throughout

the circuit, taking the nodal delays into consideration.

19

Figure 3.1 – Pre-Processing: How the pre-delay (blue) and post-delay (green) are propagated
from the I/O associated delays (a) throughout the circuit (b→ c).

Source: The author

3.3 Order of operation

The order in which the nodes are processed is relevant because it affects the in-

formation available at each processing step. Every time a node goes through the buffer

insertion process we can have a better estimate of the path delay to its targets. This infor-

mation can be used to more adequately measure the post-delay of the processed node as

well as the pre-delays of its targets. Thus, after a node has been processed, its post-delay

is updated in accordance with the delay introduced by the inverter tree. Since the algo-

rithm takes only the position and post-delay of its consumers into consideration, we don’t

yet update the pre-delay of its targets. The updated post-delay values allow for a more in-

20

formed buffer insertion for neighbor nodes that use this data. Therefore the order in which

we apply the buffer insertion over the nodes can have an impact on the circuit’s maximum

delay, lest we repeat nodes. Three node navigation approaches have been developed for

this stage:

• A Simple Iteration over all the nodes in the order they are stored in memory, indif-

ferent to which of it’s neighbors have been processed. This method is very simple

and shows good results.

• The Input Propagation is a queue which starts at the inputs and only processes

nodes whose sources have been processed.

• The Output Propagation is a queue which starts at the outputs and only processes

nodes whose targets have been processed.

Algorithm 3.6: Node Processing
1 NodeProcessing(){
2 switch (ProcessingOrder)do
3 case (Iteration)
4 IterateNodes();

5 case (InputPropagation)
6 InputPropNodes();

7 case (OutputPropagation)
8 OutputPropNodes();

Algorithm 3.7: Iteration node processing
1 IterateNodes(){
2 foreach (node in Topology)do
3 InsertBuffer(node);

Considering we take the post-delay into account to construct the inverter tree, the

propagation from the outputs should have an advantage because every node will always

have its targets’ post delay determined. By the same logic the queue which starts at the

inputs will lose that advantage. The input propagation option was developed not only to

show this effect, but also for a possible future enhancement where the buffer insertion

takes its target’s pre-delay into account.

21

Algorithm 3.8: Input Propagation node processing
1 InputPropNodes(){
2 NodeQueue = new Queue;
3 NodeQueue.empty();
4 foreach (node in Topology)do
5 Expanded[node] = false;

6 foreach (node in Topology.inputs)do
7 NodeQueue.push(node);

8 while (!NodeQueue.empty())do
9 node = NodeQueue.pop();

10 InsertBuffer(node);
11 Expanded[node] = true;
12 foreach (target in node.targets)do
13 Ready = true;
14 foreach (source in target.sources)do
15 if (Expanded[source] == false)then
16 Ready = false;

17 if (Ready == true)then
18 NodeQueue.push(target);

Algorithm 3.9: Output Propagation node processing
1 OutputPropNodes(){
2 NodeQueue = new Queue;
3 NodeQueue.empty();
4 foreach (node in Topology)do
5 Expanded[node] = false;

6 foreach (node in Topology.outputs)do
7 NodeQueue.push(node);

8 while (!NodeQueue.empty())do
9 node = NodeQueue.pop();

10 InsertBuffer(node);
11 Expanded[node] = true;
12 foreach (source in node.sources)do
13 Ready = true;
14 foreach (target in source.targets)do
15 if (Expanded[target] == false)then
16 Ready = false;

17 if (Ready == true)then
18 NodeQueue.push(source);

22

3.4 Tree Formation

The first step in the buffer insertion is the formation of the tree. The initial tree

representation considers only the circumstances of each level’s slots. These slots represent

places where an inverter or a target can be supplied. Therefore, each level maintains the

amount of vacant slots, the amount taken by inverters and the amount taken by targets.

The rest of the inverter tree information, such as the position of each inverter and the

targets and/or inverters it supplies, will be defined later in the process. The tree starts at

the minimum height required by the number of positive and negative consumers.

Algorithm 3.10: Tree Formation
1 FormTree(node){
2 minHeight = computeMinimumHeight(node);
3 tree = new inverterTree(minHeight);
4 tree.levels[0].vacant = CellMaxFanout -1;
5 tree.levels[0].inverterTaken = 1;
6 for (h=1;h<minHeight;h++)do
7 tree.levels[h].vacant = InverterMaxFanout -1;
8 tree.levels[h].inverterTaken = 1;
9 tree.levels[h].signalTaken = 0;

10 node.inverterTree = tree;

Notice that this will likely not be the actual height of the final inverter tree since

the critical allocation algorithms will usually insert the priority targets as close to the root

as possible. This will effectively increase the height of the tree and the number of inverters

in the path to the non-critical targets. By the very fact the critical algorithms will begin

delegating targets to the levels closer to the root, we must reserve slots to ensure the tree’s

capability of feeding all of its targets. This is accomplished by having each level start

with feeding an inverter to the next level. The result is a so called "inverter spine" as can

be seen in figure 3.2. After this process, the tree is ready to receive its targets.

23

Figure 3.2 – Initial tree form, or "inverter spine".
Source: The author

3.5 Critical Selection and Insertion

The critical selection determines which of the consumers deserve special treat-

ment. Three techniques were developed to both assess the criticality and designate the

level the targets occupy in the inverter tree. All of them depend on the post-delay of the

target. For this reason, the targets are arranged in the order of highest to lowest before

running these heuristics.

Algorithm 3.11: Critical Selection and Insertion
1 CriticalAllocation(node){
2 node.targets.sort();
3 switch (CriticalAllocationAlgorithm)do
4 case (HighestDelayPercentage)
5 HighestDelayAlgorithm();

6 case (AverageDelayPercentage)
7 AverageDelayAlgorithm();

8 case (InverterGroupRelative)
9 InverterGroupAlgorithm();

3.5.1 Highest Delay Percentage Algorithm

This algorithm deems a target critical if its post-delay is within a percentage of

the highest target delay. Consequently, this technique will always generate at least one

24

critical. The critical targets are then individually assigned in order of criticality from the

root up. This is a fast and simple method which has weaknesses. If all targets are close

in terms of post-delay they will all be considered critical and this approach will generate

a considerably worse scenario than if none were critical. Figure 3.3 shows an example

of Highest Delay Percentage critical selection when the targets have disparate post-delay

values. Figure 3.4 shows an example of critical selection when the targets have similar

post-delay values. Notice that multiple targets have been selected as critical.

Algorithm 3.12: Highest Delay Percentage Critical algorithm
1 HighestDelayAlgorithm(node){
2 highestDelay = node.targets[0].postDelay;
3 foreach (target in node.targets)do
4 if (target.postDelay >= highestDelay*delayPercentage)then
5 node.inverterTree.insertCritical(target);

Figure 3.3 – Highest Delay Percentage: Disparate target delays produces a decent result.
Source: The author

25

Figure 3.4 – Highest Delay Percentage: Similar target delays produces a bad result.
Source: The author

3.5.2 Average Delay Percentage Algorithm

This algorithm deems a target critical if its post-delay is more than a certain factor

above the average post-delay of the node’s targets. The critical targets are then individu-

ally assigned in order of criticality from the root up.

Algorithm 3.13: Average Delay Percentage Critical algorithm
1 AverageDelayAlgorithm(node){
2 averageDelay = 0;
3 foreach (target in node.targets)do
4 averageDelay += targets.postDelay;

5 averageDelay /= node.numTargets;
6 foreach (target in node.targets)do
7 if (target.postDelay >=

averageDelay*(1+delayPercentage))then
8 node.inverterTree.insertCritical(target);

This method is almost as fast as the last one, but is immune to its most critical flaw.

A group of similarly delayed targets will, by definition, not be a considerable factor above

the average. This factor can be defined relative to the proportion of the inverter delay to

the cell delay. Such that a target deserves to be treated specially if its delay exceeds this

factor above average. This algorithm could possibly generate some negative results if

some of the node’s targets have very small post-delays, bringing the average post-delay

26

down and hence assuming a few more criticals than ideal. 3.5 shows an example of

Average Delay Percentage critical selection when the targets have disparate post-delay

values, while figure 3.6 shows an example of when the targets have similar post-delay

values. Notice this latter result is quite different when compared to the Highest Delay

Percentage.

Figure 3.5 – Average Delay Percentage: Disparate target delays produces a decent result.
Source: The author

Figure 3.6 – Average Delay Percentage: Similar target delays produces a decent result, much
better than Highest Delay Percentage results.

Source: The author

27

3.5.3 Inverter Group Difference Algorithm

This algorithm relies in the difference between the targets’ post-delay measured in

inverter delay units. In theory, a target “deserves” to be placed a layer above other targets

if its difference is greater than the delay of the layer. This difference is two times the

inverter delay, as we must match the polarity of the consumer with its assigned layer, and

so, the "next available layer" is always two inverters away.

Algorithm 3.14: Inverter Group Relative Critical algorithm
1 InverterGroupAlgorithm(node){
2 averageDelay = 0;
3 tree = node.inverterTree;
4 foreach (target in node.targets)do
5 averageDelay += targets.postDelay;

6 foreach (level in tree.levels)do
7 groupSize = level.vacant;
8 for

(n=tree.numCritical+groupSize;n>tree.numCritical;n−−)do
9 if ((tree.targets[n].postDelay - tree.targets[n+1].postDelay)

> 2*InverterDelay)then
10 for (c=tree.numCritical;c<n;c++)do
11 tree.insertCritical(tree.targets[c]);

Figure 3.7 – Inverter Group Difference: Vacant slots in the first level.
Source: The author

28

This algorithm iterates over the levels of the inverter tree, starting at the root.

At each level the algorithm calculates the number of vacant slots v and tries to find the

biggest group with size smaller or equal to v such that every target belonging to this group

has a post-delay greater than this standard distance. The remaining slots are filled with

inverters, generating more vacant slots in the next level.

Figure 3.8 – Inverter Group Difference: Trying to find the best group of four or less targets to be
deemed critical. Y axis: Post-delay. X axis: Targets.

Source: The author

29

Figure 3.9 – Inverter Group Difference: Two critical targets being allocated at the first layer and
expanding the rest of the slots as inverters.

Source: The author

Figure 3.7 depicts four vacant slots in the first layer. Figure 3.8 shows the algo-

rithm determining the best group of critical targets. Figure 3.9 displays the result of this

selection, two critical targets and two inverters to feed more signals in the next layer.

3.6 Tree Expansion and Pruning

After the critical targets have been assigned to specific levels the tree is left at a

state where it will probably need more leaves to supply the non-critical targets. Thus,

the tree goes through a process where inverters are added from the root wherever there

are vacant slots. This growth is maintained until it reaches a level whereby all remaining

targets can be supplied. Even though the tree has reached its now requisite height, not all

non-critical targets need to be arranged at the last two levels. A pruning algorithm follows

the expansion to get rid of the excess inverters brought about by the expansion.

Algorithm 3.15: Tree Expansion
1 Expand(){
2 while (positiveConsumersLeft<positiveSlotsAvailable &&

negativeConsumersLeft<negativeSlotsAvailable)do
3 tree.addLevel();
4 calculateBestCaseAvailableSlots();

30

Algorithm 3.16: Tree Pruning
1 Prune(){
2 do
3 invSaved = 0; for (l=tree.numLevels;l>0;l −−)do
4 invSaved += tree.level[l].removeExcess();

5 rearrangeTargets();
6 while (invSaved > 0);

3.7 Non Critical Target Allocation

The non critical targets get distributed along the available slots on the tree, from

the root up, in the order of highest to lowest delay. And now we have a level assigned to

each of the targets. If this step didn’t take the targets’ delays into consideration it would

be equivalent to a less informed buffer insertion.

Algorithm 3.17: Non-Critical Selection and Insertion
1 NonCriticalAllocation(){
2 for (h=0;h<minHeight;h++)do
3 if ((h%2)==0)then
4 for (t=0;t<node.inverterTree.levels[h].vacant;t++)do
5 node.inverterTree.insertNextPositiveTarget(h);

6 node.inverterTree.levels[h].vacant = 0;
7 node.inverterTree.levels[h].signalTaken += t;

8 else
9 for (t=0;t<node.inverterTree.levels[h].vacant;t++)do

10 node.inverterTree.insertNextNegativeTarget(h);

11 node.inverterTree.levels[h].vacant = 0;
12 node.inverterTree.levels[h].signalTaken += t;

31

3.8 Tree Connection

This stage defines the structure of the inverter tree to a greater detail. It is responsi-

ble for defining which targets will be fed by which inverters and which inverters will feed

those inverters and so forth until the root. The main objective of this step is to quickly

and roughly connect targets by locality such that similarly placed targets get fed by the

same inverter, avoiding long connection delays. Two algorithms were developed to carry

out this task.

Algorithm 3.18: Tree connection algorithms
1 ConnectTree(node){
2 switch (TreeConnectionAlgorithm)do
3 case (Lloyds)
4 LloydsConnection();

5 case (FurthestF irst)
6 FurthestF irst();

3.8.1 K-Means Clustering Inspired Heuristic

The K-means clustering is a problem of partitioning a number of points into k clus-

ters. A commonly applied algorithm gets called K-means algorithm or Lloyd’s algorithm.

Our implementation was roughly based on this algorithm. These k points will represent

the k inverters and the associated points represent the targets. It starts by positioning k

points on top of random existing targets. Then every target is assigned to its closest k point

respecting the inverter’s maximum fanout. Then every inverter is repositioned according

to its associated targets. The last two steps can be repeated until an arbitrary condition is

met. For example, when there is a net decrease in the sum of distances between the targets

and their appointed inverter drops below a certain threshold. A weakness this approach

presents is that there is no guarantee that the furthest point from the source will manage to

reach its best positioned inverter before its fanout is full, possibly aggravating an already

onerous connection.

32

Algorithm 3.19: Lloyds tree connection algorithm
1 LloydsConnection(node){
2 foreach (level in node.inverterTree.levels)do
3 for (i=0;i<level.numInverters;i++)do
4 inverter[i] = new Inverter;
5 inverter[i].position = level.targets[random].position;

6 for (iteration=0;iteration<NumIterations;iteration++)do
7 for (i=0;i<level.numInverters;i++)do
8 inverter[i].clearTargets();

9 foreach (target in level.targets)do
10 inv = findClosestInverter(target.position);
11 inv.addTarget(target);

12 for (i=0;i<level.numInverters;i++)do
13 inverter[i].positionInverter();

3.8.2 Furthest First Heuristic

The furthest first inverter allocation is a quite simple heuristic that tries to ensure

that the furthest target from the source gets a good chance at an inverter slot. It starts

by determining the furthest target and positions an inverter there, connected to the target.

This inverter then searches for its closest targets until it supplies its quota. We repeat these

last two steps, disregarding the supplied targets.

33

Algorithm 3.20: Furthest First tree connection algorithm
1 FurthestFirst(node){
2 foreach (level in node.inverterTree.levels)do
3 for (i=0;i<level.numInverters;i++)do
4 foreach (target in level.targets)do
5 supplied[target] = false;

6 worstDistance = 0;
7 foreach (target in level.targets)do
8 if ((supplied[target] == false) && (worstDistance <

distance(target.position,node.position)))then
9 worstDistance =

distance(target.position,node.position);
10 furthestTarget = target;

11 inverter[i] = new Inverter;
12 inverter[i].position = furthestTarget.position;
13 inverter[i].addTarget(furthestTarget);
14 for (i=1;i<InverterMaxFanout;i++))do
15 closestDistance = worstDistance;
16 foreach (target in level.targets)do
17 if ((supplied[target] == false) && (closestDistance >

distance(target.position,inverter.position)))then
18 closestDistance =

distance(target.position,inverter.position);
19 closestTarget = target;

20 inverter[i].addTarget(closestTarget);

21 inverter[i].positionInverter();

34

3.9 Inverter Positioning

Both of the tree connection algorithms developed require a phase whereby an in-

verter must be positioned according to its target points. Two simple methods were desig-

nated to define the inverter position.

• The Centroid point, defines the position as the average of its targets coordinates.

• The Delay Weighted Centroid point, which defines the position as a weighted aver-

age of the target coordinates according to each targets’ post-delay.

3.10 Post-Processing

The post processing stage aims to determine the pre-delay and post-delay values

now that the delay from producer node to consumer node is more accurately represented.

In a process much like the pre-processing, delays are propagated and recalculated in order

to determine the critical path delay, which is defined as the highest individual sum of pre-

delay and post-delay.

Algorithm 3.21: Post-Processing
1 PostProcessing(){
2 EstimateDelay();
3 worstDelay = 0;
4 foreach (node in Topology)do
5 summedDelay = node.preDelay + node.postDelay + NodalDelay;
6 if (summedDelay > worstDelay)then
7 worstDelay = summedDelay;

35

4 RESULTS

This chapter presents the results obtained when trying to determine the effective-

ness of some of the algorithms developed, as well as the testing methodology. The meth-

ods studied in this chapter include the Critical Insertion algorithms, the Tree Connection

algorithms and the Node Navigation algorithms.

4.1 Testing Methodology

The test set selected to apply the buffer insertion algorithms consists of ten com-

binational benchmark circuits which were rewritten after being transformed into PAIGs

(BRGLEZ; FUJIWARA, 1985).

4.2 Delay Experiments

This experiment calculated the critical path delay, measured in delay units. Both

the cells and the inverters contributed one unit to the delay. Multiple instances of the buffer

insertion algorithms were applied to the test set, considering all possible combinations of

the critical allocation algorithms as well as the processing order of nodes. The objective

of this experiment is to compute the influence of applying these algorithms as opposed to

treating all consumers indifferently.

4.2.1 Node Order

The table 4.1 shows the average critical delay resulted from applying different

orders of node processing permutated over all critical allocation algorithms.The column

entitled "Random" represents the values obtained without applying a critical allocation

algorithm and randomly distributing the targets along the leaves of the inverter tree. The

"Iteration" column shows the results of processing the nodes in the order they appear in

the memory. The "Input Prop" column shows the result of starting at the nodes connected

to inputs and only propagating to other nodes when its sources have been processed. The

"Output Prop" column shows the result of starting at the nodes connected to output and

only propagating to other nodes when its consumers have been processed. The "Gain"

36

columns show the percentage gains of the values in the respective left column in relation

to the "Random" values.

Table 4.1 – Node order average delay values

Circuit Random Iteration Gain Input Prop Gain Output Prop Gain
C432 61.00 59.67 2.19% 59.00 3.28% 59.67 2.19%
C499 57.00 55.67 2.34% 55.67 2.34% 55.67 2.34%
C880 79.00 60.33 23.63% 60.33 23.63% 60.33 23.63%
C1355 57.00 52.33 8.19% 54.33 4.68% 52.00 8.77%
C1908 77.00 73.00 5.19% 73.33 4.76% 73.00 5.19%
C2670 61.00 56.33 7.65% 56.00 8.20% 56.33 7.65%
C3540 104.00 88.00 15.38% 88.67 14.74% 87.67 15.71%
C5315 74.00 69.00 6.76% 69.33 6.31% 69.33 6.31%
C6288 223.00 225.00 -0.90% 228.33 -2.39% 222.33 0.30%
C7552 108.00 109.67 -1.54% 109.67 -1.54% 108.67 -0.62%

Average Gain: 6.89% 6.40% 7.15%

Source: The author

The results displayed in the table 4.1 show that, on average, performance was a

little bit worse propagating from the inputs relative to simply iterating over the nodes.

Propagation from the outputs was the best option. This makes sense, considering that

the buffer insertion algorithm takes into consideration the estimated delay posterior to its

consumers. This delay is updated everytime a node is processed. Consequently a node

whose consumers have been processed operates over more accurate data. Propagating

from the outputs maximizes this effect and propagating from the inputs minimizes it.

4.2.2 Critical Algorithm

The table 4.2 shows the average critical delay resulted from applying different crit-

ical allocation algorithms permutated over all net order algorithms. The column entitled

"Random" represents the values obtained without applying a critical allocation algorithm

and randomly distributing the targets along the leaves of the inverter tree. The "High-

est" column shows the results of applying the Highest Delay Percentage algorithm. The

"Average" column shows the result of applying the Average Delay Percentage algorithm.

The "Inv Difference" column shows the result of applying the Inverter Group Difference

algorithm. The "Gain" columns show the percentage gains of the values in the respective

left column in relation to the "Random" values.

37

Table 4.2 – Critical allocation algorithm delay values

Circuit Random Highest Gain Average Gain Inv Difference Gain
C432 61.00 62.00 -1.64% 59.33 2.73% 57.00 6.56%
C499 57.00 57.00 0.00% 54.00 5.26% 56.00 1.75%
C880 79.00 59.00 25.32% 59.00 25.32% 63.00 20.25%
C1355 57.00 53.33 6.43% 52.67 7.60% 52.67 7.60%
C1908 77.00 73.33 4.76% 73.00 5.19% 73.00 5.19%
C2670 61.00 55.67 8.74% 56.00 8.20% 57.00 6.56%
C3540 104.00 87.67 15.71% 87.00 16.35% 89.67 13.78%
C5315 74.00 68.00 8.11% 68.00 8.11% 71.67 3.15%
C6288 223.00 235.00 -5.38% 220.33 1.20% 220.33 1.20%
C7552 108.00 103.00 4.63% 122.33 -13.27% 102.67 4.94%

Average Gain: 6.67% 6.67% 7.10%

Source: The author

The results shown in 4.2 demonstrate that the Inverter Group Difference algorithm

had the best results on average. In spite of both the Highest and Average algorithms having

a better performance in some cases, there are instances where this approach resulted in

a longer critical path than the one produced by randomly distributing the targets. The

Inverter Group Difference algorithm was the only one to guarantee a better result than

the random alternative. This is likely due to a more cautious approach taken by the Inv

Difference algorithm. The other algorithms had clear vulnerabilities, perhaps more clearly

observed in a few considerably negative contributions.

4.3 Distance Experiments

This experiment measured distances between the inverters and their targets. The

objective of this experiment is to determine the efficiency of the tree connection algo-

rithms. The "Random" column depicts the outcome of randomly delegating targets to

inverters at each layer of the inverter tree. The "Kmeans" column shows the results of

applying our K-means inspired algorithm. The "WorstFirst" column shows the results of

applying the Worst First algorithm. The "Gains" columns show the percentage reduction

of the value on the respective left column in relation to the "Random" column.

38

4.3.1 Tree Connection

The table 4.3 below presents the accumulated distances between all inverters and

their targets. It paints a clear picture that the K-means is substantially better than the

random alternative. The Worst First, on the other hand, performed considerably worse at

the sum of all inverter differences.

Table 4.3 – Summed Inverter distances

Circuit Random Kmeans Gain WorstFirst Gain
C432 442608 392941 11.22% 777280 -75.61%
C499 2392242 2234692 6.59% 3089320 -29.14%
C880 2361505 2046822 13.33% 2843920 -20.43%

C1355 2480707 2153005 13.21% 2911200 -17.35%
C1908 2016797 1947048 3.46% 2583280 -28.09%
C2670 3456561 2876101 16.79% 4474310 -29.44%
C3540 9955270 8780764 11.80% 14504920 -45.70%
C5315 12274852 9888368 19.44% 14611150 -19.03%
C6288 15066244 13245504 12.08% 27546660 -82.84%
C7552 12087289 8882203 26.52% 15320250 -26.75%

Average Gain: 13.44% -37.44%

Source: The author

39

The table 4.4 shows the accumulated worst distances between inverters and their

targets for each inverter tree. In this case we can see that the WorstFirst heuristic was bet-

ter than random, in spite of being considerably worse at the total inverter-target distance.

This is consistent with its concept, which tries to insure the furthest targets get a decent

chance at an inverter. However, the K-means heuristic was even better at the worst delay.

Table 4.4 – Summed Worst Inverter Tree distances

Circuit Random Kmeans Gain WorstFirst Gain
C432 155790 152650 2.02% 154425 0.88%
C499 608260 574051 5.62% 590327 2.95%
C880 448967 424502 5.45% 479397 -6.78%

C1355 562710 519378 7.70% 546550 2.87%
C1908 525952 493628 6.15% 519850 1.16%
C2670 652231 596555 8.54% 646941 0.81%
C3540 1605380 1454501 9.40% 1583125 1.39%
C5315 2134803 1894941 11.24% 2101363 1.57%
C6288 3938003 3325698 15.55% 3691227 6.27%
C7552 2021727 1987956 1.67% 1955881 3.26%

Average Gain: 7.33% 1.44%

Source: The author

40

5 CONCLUSION

This work presents a multi-objective buffer insertion approach to limiting fanout

in simple-cells-based circuits taking into consideration the initial positions as well as an

I/O timing budget. This approach was based on Matos et al. fanout limiting algorithm,

presented in Matos et al. (2013) and Matos (2014), expanding it to include critical path

allotment and locality dependent inverter wiring allocation.

The approach was applied to a set of ten combinational circuits (BRGLEZ; FU-

JIWARA, 1985), and was shown to produce circuits with smaller critical paths when

compared to Matos’s initial algorithm. Three critical selection and insertion algorithms

were developed and compared. The critical selection was found to be crucial for reduc-

ing delay by means of heuristically rearranging delays in the inverter trees. Two inverter

wiring algorithms were presented and compared. The inverter target delegation defined a

decent locality-based wiring, which also served to more accurately estimate the circuit-

wide delays. The methodology for applying the buffer insertion throughout the circuit

was also discussed and tested. This work has shown a way of taking physical information

into consideration during logic synthesis in order to further optimize the circuit topology.

Several modifications could be made to improve this work. The way we currently

assess criticality and, consequently, select critical paths may be changed to consider tim-

ing slacks. Together with the critical selection algorithms presented herein, we should

also consider those paths with worst negative slack as critical (or maybe optimize the

total negative slack as well). The initial delay estimation could add one inverter delay

to negative consumers. The Inverter Group Difference algorithm could take the inverse

polarity targets into consideration. The prune could eventually leave a few more inverters

than necessary if it could save a bit of some target’s delay. The target pre-delay could be

taken into account during buffer insertion. The pre-delay could reveal that some targets

depend on a slower signal and therefore its delay could not be improved despite its best

efforts. Multiple passes could be done in each node. Every time the buffer insertion runs

on a node, its information is updated and the circuit-wide delay estimation is more accu-

rate. This could result in a virtuous cycle of iterative refinement. Hopefully this work was

just the first step of many in this direction.

41

REFERENCES

ALEGRETTI, C. et al. Analytical logical effort formulation for minimum active area
under delay constraints. In: Symposium on Integrated Circuits and Systems Design
(SBCCI). [S.l.: s.n.], 2013.

BAKOGLU, H. Circuits, Interconnections, and Packaging for VLSI. Reading, MA:
Addison-Wesley Publishing Company, 1990.

BRGLEZ, F.; FUJIWARA, H. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran. In: International Symposium on Circuits
and Systems (ISCAS). [S.l.: s.n.], 1985.

CALLEGARO, V. et al. A bottom-up disjoint-support decomposition based on Boolean
difference analysis. In: International Workshop on Logic and Synthesis (IWLS).
[S.l.: s.n.], 2015.

DARRINGER, J. A. et al. Logic synthesis through local transformations. IBM Journal
of Research and Development, v. 25, n. 4, p. 272–280, 1981.

KRAUSE, E. F. Taxicab geometry: an adventure in non-Euclidean geometry. New
York: Dover Publ., 1987.

MACHADO, L. et al. Logic synthesis for manufacturability considering regularity and
lithography printability. In: International Symposium on VLSI (ISVLSI). [S.l.: s.n.],
2013.

MACHADO, L. et al. KL-cut based digital circuit remapping. In: NORCHIP. [S.l.:
s.n.], 2012.

MATOS, J. M. Graph-Based Algorithms for Transistor Count Minimization in VLSI
Circuit EDA Tools. Dissertation (Master) — PGMicro/UFRGS, March 2014.

MATOS, J. M. et al. A Benchmark Suite to Jointly Consider Logic Synthesis and
Physical Design. In: International Symposium on Physical Design (ISPD). [S.l.: s.n.],
2015.

MATOS, J. M.; REIS, A. Placed AIGs as a Logical-Physical Data-Structure for VLSI
Circuit Design. In: International Workshop on Logic and Synthesis (IWLS). [S.l.:
s.n.], 2015.

MATOS, J. M. et al. Deriving Reduced Transistor Count Circuits from AIGs. In:
Symposium on Integrated Circuits and Systems Design. [S.l.: s.n.], 2013.

MOORE, G. Cramming More Components onto Integrated Circuits. Electronics, p.
82–85, 1965.

NEUTZLING, A. et al. Threshold Logic Synthesis Based on Cut Pruning. In:
International Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 2015.

POSSANI, V. et al. Towards Optimal Area Synthesis of Small Combinational Circuits.
In: International Workshop on Logic and Synthesis (IWLS). [S.l.: s.n.], 2015.

42

WAGNER, F. R.; REIS, A. I.; RIBAS, R. P. Fundamentos de circuitos digitais. [S.l.]:
Sagra Luzzatto, Porto Alegre, 2006.

	Acknowledgement
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Concepts
	2.1 AIG
	2.2 Manhattan Distance
	2.3 Timing Budget
	2.4 Consumers
	2.5 Inverter Tree

	3 Methodology
	3.1 Inputs
	3.1.1 Cell Library: Liberty
	3.1.2 Topology: Placed ASCII AIG and Design Exchange Format
	3.1.3 Timing Constraints: Synopsys Design Constraints

	3.2 Pre-Processing
	3.3 Order of operation
	3.4 Tree Formation
	3.5 Critical Selection and Insertion
	3.5.1 Highest Delay Percentage Algorithm
	3.5.2 Average Delay Percentage Algorithm
	3.5.3 Inverter Group Difference Algorithm

	3.6 Tree Expansion and Pruning
	3.7 Non Critical Target Allocation
	3.8 Tree Connection
	3.8.1 K-Means Clustering Inspired Heuristic
	3.8.2 Furthest First Heuristic

	3.9 Inverter Positioning
	3.10 Post-Processing

	4 Results
	4.1 Testing Methodology
	4.2 Delay Experiments
	4.2.1 Node Order
	4.2.2 Critical Algorithm

	4.3 Distance Experiments
	4.3.1 Tree Connection

	5 Conclusion
	References

