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A recent paper [Ziebell et al., Phys. Plasmas 21, 010701 (2014)] discusses a new type of radiation

emission process for plasmas in a state of quasi-equilibrium between the particles and enhanced

Langmuir turbulence. Such a system may be an example of the so-called “turbulent quasi-equilibrium.”

In the present paper, it is shown on the basis of electromagnetic weak turbulence theory that an initial

thermal equilibrium state (i.e., only electrostatic fluctuations and Maxwellian particle distributions)

transitions toward the turbulent quasi-equilibrium state with enhanced electromagnetic radiation

spectrum, thus demonstrating that the turbulent quasi-equilibrium discussed in the above paper correctly

describes the weakly turbulent plasma dynamically interacting with electromagnetic fluctuations,

while maintaining a dynamical steady-state in the average sense. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4863453]

I. INTRODUCTION

Nonlinear processes associated with the beam-plasma

instability are widely regarded as being responsible for the

emission of electromagnetic (EM) waves in a plasma,

according to a model proposed in the decade of 1950s.1 In

this paradigm, electrons in a beam excite Langmuir (L)

waves via the bump-on-tail instability, followed by non-

linear coupling processes of wave decay and scattering,

which include the generation of backward-propagating L

waves and nonlinear interactions between L waves and ion-

sound (S) waves. The eventual generation of EM radiation

results from partial conversion of electrostatic wave energy

into transverse (T) radiation. Such an elaborate process inti-

mately associated with the existence of electron beams is

known as plasma emission, and has become the bedrock

based upon which standard interpretation of bursty radio

emission phenomenon, such as the solar type II and type III

emissions, is customarily made.2–4

In a field-free and collisionless plasma, plasma emission

is the only known radio emission mechanism that can gener-

ate radio-frequency EM waves. However, when electron-ion

collisions are present in the plasma, classical Bremsstrahlung

(or free-free) emission is also operative. In magnetized plas-

mas, gyro-synchrotron radiation and the electron cyclotron

maser mechanisms may, under various conditions, also be at

work.5 �Cerenkov emission in plasmas only involves longitu-

dinal modes. As such, it does not lead to direct radiation

emission.

In a recently published paper,6 the present authors dis-

cussed a novel radiation mechanism in unmagnetized plas-

mas containing a thermal population of electrons only. In the

proposed scenario of Ref. 6, the EM wave spectrum results

from nonlinear interactions involving L and S wave spectra

and plasma particles, with the L and S spectra being in equi-

librium with the particles.

The system of particles and fluctuations described in

Ref. 6 can be described as a turbulent quasi-equilibrium

state. Treumann7,8 first discussed the notion of turbulent

equilibrium in plasmas, which involves plasma particles con-

stantly exchanging momentum and energy with enhanced

EM fluctuations, but on average the system is in dynamical

equilibrium. Later work by Treumann and Jaroschek9

showed that non-Maxwellian power-law velocity distribu-

tions may be expected to occur in collisionless plasmas in a

quasi-stationary turbulent state. More recently, the first con-

crete solution of the turbulent quasi-equilibrium was

obtained in Refs. 10–12, where electron kappa distribution

function and the concomitant Langmuir turbulence spectrum

were shown to form a set of self-consistent asymptotically

steady-state solutions of the electrostatic weak turbulence

equation.

In the present paper, we extend the analysis of Refs.

10–12 to the fully electromagnetic formalism. The main focus

is on the transition from a thermal to the turbulent equilibrium

spectrum of EM waves described in Ref. 6. The time evolu-

tion of wave and particle spectra is followed, starting from a

thermal equilibrium (Maxwell-Boltzmann) electron distribu-

tion and the spontaneously generated L and S spectral equili-

bria. It is shown that the final state of EM radiation

corresponds to the turbulent equilibrium discussed in Ref. 6.

The essential nonlinear processes are the same as in the

standard plasma emission. They are described by weak EM

plasma turbulence theory as found in the standard litera-

ture.13 The complete set of equations was recently reviewed

and extended in Ref. 14, describing the time evolution and

interactions among L, S, and transverse (T) waves, as well as

among plasma particles. Here, we solve the full set of EM

weak turbulence equations, and verify that an initial null

spectrum of T waves evolves toward the asymptotic solutiona)Electronic address: luiz.ziebell@ufrgs.br
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discussed in Ref. 6, thus demonstrating that once we include

weakly turbulent nonlinear processes into account, the iso-

tropic distribution of electrons spontaneously emits a spec-

trum of EM waves.

The structure of the paper is as follows: In Sec. II, we

briefly describe the theoretical formulation and the setup for

the numerical analysis. Section III presents the results of nu-

merical analysis. In Sec. IV, we discuss the physical mecha-

nism responsible for the emission of radiation. Finally, we

summarize the findings of the present paper in Sec. V.

II. THEORETICAL FORMULATION AND NUMERICAL
SETUP

For the purpose of the present paper, we start from a

general self-consistent set of equations that comprise the

electromagnetic weak turbulence theory, as they have

appeared in Ref. 14. In the Appendix, we reproduce the

entire set of equations in un-normalized form, but for the

sake of convenience here we present only the non-

dimensional forms, which are more suitable for numerical

analysis. The equation for L wave is as follows:
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For S mode, the dynamical equation is the following:
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and for T mode, it is as follows:
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The above set of equations for the three basic normal modes

of an unmagnetized plasma, namely, L, S, and T modes, are

to be solved together with the dynamical equations for the

particle distribution functions,
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In the above a¼ e denotes the electrons, and a¼ i stands for

the ions. For these equations, we have used the following

normalized quantities and definitions:

z � x
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as well as the normalized distribution functions and wave

spectra,
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The dispersion relations for plasma normal modes are

given in dimensionless form by

zL
q ¼ 1þ 3

2
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:

Here, vte ¼ ð2Te=meÞ1=2
is the electron thermal speed and kDe

is the electron Debye length, Te being the electron temperature.

Let us first comment on the terms appearing in Eq. (1),

which describe the evolution of L mode. The first term on the

right-hand side, enclosed within the large curly brackets, is

denoted by subscript Lql. It describes the spontaneous emission

and quasilinear (i.e., induced emission) effects for L mode. The

second term describes the effects of three-wave decay involving

L and S mode waves, and is denoted as LdLS. The third term

depicts three-wave decay processes involving L and and T

mode waves, and is labeled as LdLT. The fourth term describes

three-wave decay processes involving S and T modes, and is

designated as LdST. The fifth term enclosed within the large

curly brackets denotes three-wave decay processes that involve

one L mode wave and two T waves, and its designation is

LdTT. The sixth term stands for the scattering process involving

L waves, and its designation is LsLL. Finally, the seventh term

describes the effects of scattering involving L and T waves, and

is denoted as LsLT. For alternative discussions on various linear

and nonlinear wave-particle and wave-wave interaction proc-

esses, see the Appendix.
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The equation for S wave, Eq. (2), contains on the right-

hand side the first term enclosed within the large curly brack-

ets that describes the spontaneous emission and quasilinear

effects, and is denoted as Sql. The second and third terms

describe the three-wave decay terms. Specifically, the second

term involving L waves are designated by SdLL, while the

third terms that involves L and T waves are labeled as SdLT.

The evolution of T mode is described by Eq. (3). It is

seen that there is no contribution of terms related to sponta-

neous emission and quasilinear effects. This is because the

linear wave-particle resonance between T mode and the par-

ticles is impossible since no particles can have speeds greater

than the speed of light in vacuo. From such a physical

ground, the linear wave-particle resonance terms are ignored

at the outset (see the Appendix for further discussion). The

first term on the right-hand side describes the effects of

three-wave decay involving L waves, and is denoted as

TdLL. The second term describes the influence of three-wave

decay involving L and and S waves, and is denoted as TdLS.

The third term is denoted as TdTL, and it characterizes three-

wave decay interactions involving one L wave and a T

mode. The fourth term describes the nonlinear scattering pro-

cess involving L and T waves, and is labeled as TsTL.

In the equation for the particle distribution functions, the

term with g describes the effects of spontaneous fluctuations, and

the term with the velocity derivative describes the quasilinear dif-

fusion process. For details on the derivation of the above equa-

tions, the reader is referred to Refs. 14 and 15. See also, the

Appendix for un-normalized forms of the entire set of equations.

III. NUMERICAL ANALYSIS

The objective of the present paper is to investigate the

possibility of T wave emission in thermal plasmas by nonlin-

ear processes, when the initial configuration corresponds to a

quiescent thermal equilibrium state. For numerical analysis,

we consider a two dimensional approximation. We assume

an equilibrium situation, and therefore we write the initial

electron and ion distribution functions as Maxwellian distri-

butions, which are given as follows:

Faðv; 0Þ ¼
1

pv2
ta

exp � v2

v2
ta

 !
; (5)

where a¼ e for electrons and a¼ i for ions, and where

vta ¼ ð2Ta=maÞ1=2
is the thermal speed for particles of spe-

cies a. The spectrum of T waves is assumed to be non-

existent at initial time, since according to the standard

theory of plasmas in thermal equilibrium, no EM waves can

be emitted and re-absorbed. However, thermal distribution

of particles can spontaneously emit and re-absorb longitudi-

nal electrostatic modes. The intensities of L and S modes

are thus initialized by assuming that these waves are in

equilibrium with the particle distribution functions. That is,

the intensities for these modes are calculated from the

balance requirement of spontaneous emission and

re-absorption in Eqs. (1) and (2), or equivalently, by bal-

ancing spontaneous and induced emissions.16–19 The result-

ing thermal intensities can, of course, be computed on the

basis of the fluctuation-dissipation theorem. The initial

spectra thus computed are given by

ErL
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2
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(6)

The set of equations (1)–(3) for the waves and Eq. (4) for the

electrons are solved in 2D wave number space and 2D velocity

space, by employing a splitting method with fixed time step for

the evolution of the distribution and a Runge-Kutta method

with the same fixed time step for the wave equations. The ion

distribution is assumed to be fixed along all the time evolution

of the system. As noted, the T waves are initially absent.

For all the numerical examples to be discussed subse-

quently, we use the normalized time interval Ds ¼ 0:1. We

employ 51� 51 grids for q? and qk, with 0 < q? ¼ k?vte=
xp < 0:6, and 0 < qk ¼ kkvte=xp < 0:6. For the velocities,

we use a 51� 101 grid for the ðu?; ukÞ ¼ ðv?=vte; vk=vteÞ
space, covering the velocity range 0 < u? ¼ v?=vte < 12

and �12 < uk ¼ vk=vte < 12. For subsequent numerical sol-

utions, we assume different values of the plasma parameter

n̂k3
D

� ��1
, and different values of the parameter v2

te=c2, related

to electron temperature.

The first case to be considered is with the plasma parame-

ter given by n̂k3
D

� ��1 ¼ 5:0� 10�3 and v2
te=c2 ¼ 4:0� 10�3.

Right at the onset of the time evolution, the nonlinear proc-

esses that are incorporated into Eq. (3) immediately generate a

finite spectrum of T waves. Figure 1 shows the normalized

spectrum of T waves, which is obtained from the numerical so-

lution, as a function of the components of normalized wave

number, qk and q?, at normalized times s ¼ 100, 1000, 5000,

and 10 000. The spectrum at s ¼ 100 is shown in Fig. 1(a). It is

seen that at this time an isotropic spectrum has developed, with

maximum normalized intensity around 1:0� 10�7, and a mini-

mum at very small q. For comparison, the maximum of the

spectrum of L waves occurs for q! 0, and is about

4:0� 10�5. In Fig. 1(b), the case of s ¼ 1000 is depicted,

which shows that the intensity of the T wave has grown in gen-

eral, and that the minimum at q¼ 0 is not so pronounced in

comparison with the surrounding values of q as it was in panel

(a). The general tendency continues along time evolution. In

Fig. 1(c), where the case of s ¼ 5000 is shown, it can be seen

that the spectrum at q¼ 0 is almost at the same level as the

spectrum at surrounding values of q. The spectrum continues to

grow, albeit at weaker pace, indicating a tendency to saturation.

In Fig. 1(d), we show the spectrum at s ¼ 10 000, with the

prominent intensity at very long wavelengths (q ’ 0).

It is important to note that wave kinetic equations for

both L and S mode wave spectral intensities are numerically

solved together with that of T wave. The electron particle ki-

netic equation is also numerically solved in a self-consistent

manner. However, the dynamical changes in L and S mode

intensities as well as that of the electron velocity distribution
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function are almost non-existent, which shows that over the

range of dimensionless temporal variable considered in the

present numerical analysis, the system remains largely in

equilibrium, except for the EM wave spectrum.

Figure 2 shows a reduced view of the spectrum of T

waves, obtained after integration along component q?. It

shows the reduced T wave normalized intensity vs qk, for

s ¼ 100, 200, 500, 1000, 2000, 3000, 4000, 5000, 6000,

7000, 8000, 9000, and 10 000. A tendency for saturation and

the reduction of the wave growth is clearly noticeable, indi-

cating that the situation at s ¼ 10 000 can be considered as

approaching the asymptotic state. Figure 2 also shows the

curve corresponding to the approximated analytical solution

that has been reported in Ref. 6.

In order to investigate the influence of the electron tem-

perature on the nonlinear emission of transverse waves, we

consider a case with the same plasma parameter as the previ-

ous case, namely, n̂k3
D

� ��1 ¼ 5:0� 10�3, but with a differ-

ent value of the parameter v2
te=c2, by choosing v2

te=c2

¼ 1:0� 10�3. Figure 3 shows the reduced view of the spec-

trum obtained for the T waves, i.e., the spectrum integrated

along component q?, vs qk, for the same values of s as in

Fig. 2, except that we now consider v2
te=c2 ¼ 1:0� 10�3.

We also consider a case with the same electron tempera-

ture as the original case, but with a different plasma density, by

FIG. 1. Normalized T wave intensity,

vs q? ¼ k?vte=xp and qk ¼ kkvte=xp,

in vertical logarithmic scale. (a)

s ¼ 100; (b) s ¼ 1000; (c) s ¼ 5000;

(d) s ¼ 10000. Input parameters

arevf =vte ¼ 5:0; Tf =Te ¼ Tb=Te ¼ 1:0;
Te=Ti ¼ 7:0; n̂k3

D

� ��1 ¼ 5:0 � 10�3,

and v2
e=c2 ¼ 4:0 � 10�3.

FIG. 2. Reduced T wave intensity vs qk ¼ kkvte=xp, in vertical logarithmic

scale, for several values of the reduced time s corresponding to s ¼ 100

(bottom-most curve shown in red), 200, 500, 1000, 2000, 3000, 4000, 5000,

6000, 7000, 8000, 9000, and s ¼ 10 000 (the rest in blue). The figure also

shows the approximate analytical solution (13) (topmost red curve) for the

asymptotically steady-state (i.e., the turbulent equilibrium EM spectral in-

tensity). Parameters are as in Fig. 1.

FIG. 3. Reduced T wave intensity vs qk ¼ kkvte=xp, in vertical logarithmic

scale, for several values of the reduced time s: s ¼ 100 (bottom-most red

curve), 200, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000,

and s ¼ 10 000 (the rest in blue). The figure also shows the asymptotic solu-

tion (13) (topmost red curve). The plasma parameter is given by n̂k3
D

� ��1

¼ 5:0 � 10�3, and the electron temperature corresponds to v2
te=c2

¼ 1:0� 10�3. Other parameters as in Fig. 1.
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assuming the plasma parameter to be n̂k3
D

� ��1 ¼ 5:0� 10�4,

and with v2
te=c2 ¼ 4:0� 10�3. The spectrum obtained for the

T waves, integrated along component q?, is shown in Fig. 4, vs

qk, for the same values of s as in Fig. 2 or Fig. 3.

On the basis of results shown in Figs. 1–3, we may thus

conclude that the system of thermal electron distribution and

longitudinal electrostatic fluctuations, when subject to nonlin-

ear interactions, will induce nonlinear response to the sponta-

neously emitted thermal electrostatic fluctuations, with the net

result being the emission of EM fluctuations. This finding can

be interpreted in the following two alternative ways: The first

is that such a process constitutes a novel radiation mechanism

for a thermal plasma, since this implies that a thermal distribu-

tion of electrons not only emits and reabsorbs longitudinal

fluctuations spontaneously, but they also must generate trans-

verse EM fluctuations. Such an emission mechanism has not

been discussed in the literature, and Ref. 6 emphasizes the

ramification in such a light. The second interpretation, which

is the focus of the present paper, is that for a collision-free

plasma interacting through collective force, the thermal equi-

librium is not a true steady-state solution, but rather, the sys-

tem must make a transition to a quasi-equilibrium state

dictated by the fundamental equations of weak turbulence

theory, where there must exist a finite level of EM radiation.

Such a new asymptotic state can be termed the turbulent equi-

librium. In what follows, we further elucidate on the primary

physical process that leads to the emission of EM fluctuation.

IV. DISCUSSION: PHYSICAL MECHANISM OF EM
EMISSION

The primary physical mechanism responsible for the

generation of the T mode can be investigated by consider-

ing each term among the weak turbulence equations, and

determine the highest relevance. By turning each term on

and off artificially and comparing the outcome against the

full solution, we concluded that the most relevant term is

the scattering term denoted as TsLT in Eq. (3). We have

verified this by keeping the term TsLT, while turning other

terms off in Eq. (3). The spectrum of T mode generated

thusly turned out to be virtually indistinguishable from that

obtained by considering the full equation. Similar tests per-

formed by keeping either the TdLL term only or the TdLT
term only led to the development of a spectrum with much

lower intensity. When keeping only the effect of the TdTL
term in Eq. (3), the T wave spectrum does not evolve at all,

since the three wave decay process in this context requires

the presence of T mode at the outset to be operative. From

this, we may conclude that the scattering process is the

most effective term in the generation of EM wave spec-

trum, starting from an equilibrium situation with zero T

mode intensity. This finding corroborates the assumption

that has been employed in an approximated analytical

approach in Ref. 6.

In what follows, we discuss some details concerning

the scattering term in Eq. (3), specifically, the term desig-

nated by TsTL, and show that, after suitable approxima-

tions, it can be written in a very simple form, which can

ultimately lead to an approximate asymptotic solution as

has been reported in Ref. 6. The approximate treatment of

the scattering term starts by assuming that the electron and

ion distributions do not evolve appreciably over the tempo-

ral range of the computation. We thus assume that they are

described by the initial Maxwellian distribution. In the

case of two dimensions in wave number and velocity

space, the resonance condition can be used to eliminate

one of the velocity integrals, and the remaining velocity in-

tegral can be performed analytically considering the

Maxwellian distributions. We then use the symmetry prop-

erties of the integrand in order to write the wave-number

integrals only in terms of positive wave numbers. By intro-

ducing s1 and s2 as the signs of q0x and q0z, respectively, it

can be shown that the scattering term TsTL simplifies as

follows:

fscattering term in Eq: ð3ÞgTsTL ¼
n�
ne

1ffiffiffi
p
p

rzT
q

q2

X
r0;s1;s2¼61

ð1
0

dqx
0
ð1

0

dqz
0Mðq; q0Þ

�
�

g�

�
r zT

q Er0L
q0 � s2r

0zL
q0
ErT

q

2

	�
T�
Te

	1=2

exp

�
� T�

Te
f2ðq; q0Þ

	

þ
�

g�

�
r zT

q Er0L
q0 � s2r

0zL
q0
ErT

q

2

	
� 2

T�
Ti
ðrzT

q � s2r
0zL

q0 Þ Er0L
q0
ErT

q

2

�

�
�

mi

me

T�
Ti

	1=2

exp

�
� mi

me

T�
Ti

f2ðq; q0Þ
	�

; (7)

FIG. 4. Reduced T wave intensity vs qk ¼ kkvte=xp, in vertical logarithmic

scale, for several values of the reduced time s: s ¼ 100 (bottom-most red

curve), 200, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, and

s ¼ 10 000 (the rest in blue). The asymptotic solution (13) is also plotted (top-

most red curve). The plasma parameter is n̂k3
D

� ��1 ¼ 5:0� 10�4, and the tem-

perature is specified by v2
te=c2 ¼ 4:0� 10�3. Other parameters as in Fig. 1.
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where

Mðq; q0Þ ¼ 1

qx
02 þ qz

02

� q2ðqx
02 þ qz

02Þ � ðs1qxqx
0 þ s2qzqz

0Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqx � s1qx

0Þ2 þ ðqz � s2qz
0Þ2

q ;

f2ðq; q0Þ ¼
ðrzT

q � s2r0zL
q0 Þ

2

ðqx � s1qx
0Þ2 þ ðqz � s2qz

0Þ2
:

Note that the integrand within the integrals over wave

number components is dominated by the exponential func-

tions, which contain in the argument the quantity

ðrzT
q � s2r0zL

q0 Þ
2
. Owing to the dependence on the exponen-

tial functions, the most significant contributions to the inte-

grand are from the terms in which s2r0 ¼ r. Moreover, the

most significant region of integration is around q0 ¼ q�,
where zL

q�
¼ zT

q . That is,

q� ¼
2

3

c2

v2
e

 !1=2

q: (8)

For q near the middle of the numerical grid in our numerical

analysis, for instance, q ’ 0:2, say, the interaction due to

scattering will involve an L mode with q0 ¼ q� > 1. Owing

to the fact that c=ve � 1, the resonant wave number will lie

outside the computing grid. In the numerical code, however,

we make use of the analytical L mode spectrum (6), which is

assumed to be non-evolving.

Taking into account the condition s2r0 ¼ r, and the fact

that the dispersion relations depend on the absolute value of

the wave number, we write Eq. (7) in polar coordinates,

Eq: ð7Þ ¼ n�
ne

zT
qffiffiffi
p
p

X
r0s1¼61

ðp=2

0

d/0
ð1

0

dq0M

�
g�

�
zT

q Er0L
q0 � zL

q0
ErT

q

2

	�
T�
Te

	1=2

exp

�
� T�

Te
f2

	

þ
�

g�

�
zT

q Er0L
q0 � zL

q0
ErT

q

2

	
� 2

T�
Ti
ðzT

q � zL
q0 Þ Er0L

q0
ErT

q

2

��
mi

me

T�
Ti

	1=2

exp

�
� mi

me

T�
Ti

f2

	�
; (9)

where

M ¼
q0 1� ðs1 sin / sin /0 þ rr0 cos / cos /0Þ2
h i

R
;

f2 ¼
ðzT

q � zL
q0 Þ

2

R2
;

R2 ¼ ðq sin /� s1q0 sin /0Þ2 þ ðq cos /� r0rq0 cos /0Þ2:
(10)

Further approximations can be made. We expand in

Taylor series the expression in the argument of the exponen-

tial function,

f2 ’ � 3

2

q�
ðzT

q Þ
ðq0 � q�Þ

R2
:

Using this expression, we can write�
ma

me

T�
Ta

	1=2

exp

�
� ma

me

T�
Ta

f2

	

’
�

ma

me

T�
Ta

	1=2

exp

�
� ma

me

T�
Ta

9

4

q2
�

ðzT
q Þ

2

ðq0 � q�Þ2

R2

	

) 2
ffiffiffi
p
p

3

ðzT
q Þ

q�
R dðq0 � q�Þ:

Making use of the above delta-function approximation, it is

now trivial to perform the integral over q0. It turns out that

the electron and ion contributions are the same so that their

respective contributions in the scattering term TsTL become

the following:

n�
ne

4

3
ðzT

q Þ
3g�

X
r0s1¼61

ðp=2

0

d/0

� 1� ðs1 sin / sin /0 þ rr0 cos / cos /0Þ2
h i

�
�
Er0L

q� sin /0;q� cos /0 �
ErT

q

2

	
: (11)

The integrand in the expression above can be rewritten by ex-

plicitly considering the signs of r0 and s1, for given r. The dif-

ferent terms can be added, making use of trigonometric

identities, and finally the term corresponding to the spontaneous

scattering in the equation for T mode may be written as follows:

n�
ne

4

3
ðzT

q Þ
3g�

ðp=2

0

d/0 1� cosð2/Þcosð2/0Þ
 �

� ðEþL
q� sin /0;q� cos /0 þ E

�L
q� sin /0;q� cos /0 � E

rT
q Þ: (12)

One may carry out a similar analysis with the term that

corresponds to the contribution from the induced scattering.

However, the induced scattering term is much less significant

than the spontaneous scattering terms, and we will not write it

here explicitly, for the sake of economy of space. Assuming

that in the asymptotic state the spectra of forward and back-

ward propagating waves are the same and independent of /,

and considering that the evolution of T mode is approximately

governed by the scattering term, the approximate form given

by Eq. (12) shows that the asymptotic state is given by

ET
q ’ 2EL

q�
¼ g

1þ 3q2
�
; (13)

as recently shown in Ref. 6.
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V. SUMMARY

In the present paper, we have utilized the equations of fully

electromagnetic weak turbulence theory, which include quasilin-

ear and spontaneous effects, three-wave decay, and scattering, to

address the problem of transition from thermal equilibrium to an

alternative equilibrium state characterized by the presence of fi-

nite level of electromagnetic radiation spectrum. We first demon-

strated this by a numerical analysis in which we started from a

thermal equilibrium situation, in which ions and electrons are

described by Maxwellian velocity distribution functions and the

spectra of L and S waves are specified by the balance condition

between the quasilinear effects (induced emission) and the spon-

taneous emission effects. It is important to note that in such a

classical thermal equilibrium, the spectrum of transverse radia-

tion (T mode) is absent at the initial time.

The numerical analysis showed that nonlinear processes, in

particular, scattering involving particles and L waves, generate a

finite level of T mode waves over the entire range of wave-

lengths. At the initial stage, the maximum of this spectrum

occurs for wavelengths that are larger than the electron Debye

length, but as time progresses, the region of very long wave-

lengths continues to evolve, until for sufficiently long time scale,

the spectrum of T mode radiation attains a quasi-asymptotic state

with maximum intensity at very long wavelengths (normalized

wave number q ’ 0). The characteristics of this quasi-

asymptotic state conform to the approximate analytical solution

discussed in Ref. 6. We also performed an approximate analyti-

cal treatment of the most important nonlinear process, namely

the scattering term involving particles and L mode wave, repro-

ducing the approximate asymptotic T mode radiation spectrum.

The present finding implies that for a collision-free plasma

interacting through collective force, the thermal equilibrium is

not a true steady-state solution, but rather, the system must

make a transition to an alternative quasi-equilibrium state where

there must exist a finite level of EM radiation. Such a new as-

ymptotic state can be termed the turbulent equilibrium.6–12

ACKNOWLEDGMENTS

This work has been partially supported by the Brazilian

agencies CNPq and FAPERGS. P.H.Y. acknowledges NSF

Grant No. AGS1242331 to the University of Maryland, and

the BK21-Plus grant to Kyung Hee University, Korea, from

the National Research Foundation (NRF) funded by the

Ministry of Education of Korea.

APPENDIX: EQUATIONS OF EM WEAK TURBULENCE
THEORY

This section presents the basic equations of EM weak tur-

bulence theory in un-normalized form. The detailed derivations

can be found in Refs. 14 and 15. The wave intensities for the

plasma normal modes are defined by their electric field energy.

For longitudinal modes, the intensities Ira
k for a ¼ L; S, are

defined by hdE2
kik;x ¼

P
r¼61

P
a¼L;S Ira

k dðx� rxa
kÞ. The

transverse mode has both electric and magnetic fields, but it is

sufficient to define the spectral wave intensity in terms of elec-

tric field, hdE2
?ikx ¼

P
r¼61 IrT

k dðx� rxT
kÞ, as the magnetic

field intensity is trivially given by hdB2ikx ¼ jck=xj2hdE2
?ikx.

The L mode wave kinetic equation is given by
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where

lS
k ¼ jkj

3k3
De

�
me

mi

	1=2�
1þ 3Ti

Te

	1=2

: (A2)

Note that the first velocity integral term on the right-hand

side of Eq. (A1) that contains the resonance factor

dðrxL
k � k � vÞ (i.e., linear wave-particle interaction) repre-

sents the spontaneous and induced emissions of L waves;

the second k0-integral term dictated by the three-wave res-

onance condition dðrxL
k � r0xL

k0 � r00xS
k�k0
Þ (nonlinear

three-wave interaction) represents the decay/coalescence

involving L mode with another L mode and an S mode; the

next k0-integral associated with dðrxL
k � r0xL

k0 � r00xT
k�k0 Þ

represents the decay/coalescence of two L modes into a T

mode at twice the plasma frequency; the third k0-integral

associated with dðrxL
k � r0xT

k0 � r00xT
k�k0 Þ represents the

decay/coalescence of two T modes into an L mode.; the

fourth k0-integral with the factor dðrxL
k � r0xS

k0
� r00xT

k�k0 Þ
corresponds to the decay/coalescence process involving L, S,

and a transverse mode T at the plasma frequency; the double

integral term
Ð

dv
Ð

dk0 � � � dictated by the nonlinear wave-

particle resonance condition d½rxL
k � r0xL

k0 � ðk� k0Þ � v�
represents the spontaneous and induced scattering processes

involving two Langmuir waves and the particles, and the

similar term which contains d½rxL
k � r0xT

k0 � ðk� k0Þ � v�
corresponds to spontaneous and induced scattering processes

involving L and T modes and the particles.

For the ion-sound mode, a ¼ S, the wave kinetic equa-

tion is given by
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The first velocity integral term on the right-hand side of Eq. (A3) that contains the resonance factor dðrxS
k � k � vÞ repre-

sents the spontaneous and induced emissions of S waves; the first k0-integral term dictated by the three-wave resonance

condition dðrxS
k � r0xL

k0 � r00xS
k�k0
Þ corresponds to the decay/coalescence involving S mode with two L modes; the next

k0-integral associated with dðrxS
k � r0xL

k0 � r00xT
k�k0 Þ represents the decay/coalescence involving an S and L modes and a T

mode.

For the transverse mode T, the wave kinetic equation is given by
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The first velocity integral term on the right-hand side of

Eq. (A4) that contains the resonance factor dðrxT
k � k � vÞ

corresponds to the spontaneous and induced emissions of T
waves. However, since the particles cannot have velocity

higher than the speed of light in vacuo, while the transverse

waves are superluminal modes, the wave-particle resonance

cannot be satisfied. For this reason, this term can be ignored

at the outset. However, this term is included here only

for the sake of completeness. The second k0-integral

terms dictated by the three-wave resonance condition

dðrxT
k � r0xL

k0 � r00xL
k�k0 Þ represents the coalescence of

two L modes into a T mode at the second harmonic plasma

frequency; the next k0-integrals associated with the factor

dðrxT
k � r0xL

k0 � r00xS
k�k0
Þ describe the merging of L and S

modes into a T mode at the fundamental plasma frequency.

The third k0-integrals with dðrxT
k � r0xT

k0 � r00xL
k�k0 Þ

depict the merging of a T mode and an L mode into the next

higher harmonic T mode. The double integral termÐ
dv
Ð

dk0 � � � dictated by the nonlinear wave-particle reso-

nance condition d½rxT
k � r0xL

k0 � ðk� k0Þ � v� represents

spontaneous and induced scattering processes involving T
and L modes and the particles.

The linear dispersion relations for electrostatic

(Langmuir L and ion-sound S) and transverse electromag-

netic (T) modes are given by

xL
k ¼ xpe ð1þ 3k2k2

D=2Þ;
xS

k ¼ kcS ð1þ 3Te=TiÞ1=2 ð1þ k2k2
DÞ
�1=2;

xT
k ¼ ðx2

pe þ c2k2Þ1=2;

(A5)

where xpe ¼ ð4pn̂e2=meÞ1=2
is the plasma frequency, kD ¼

½Te=ð4pn̂e2Þ�1=2
is the Debye length, Te and Ti are electron

and ion temperatures, respectively, and cS ¼ ðTe=miÞ1=2
rep-

resents the ion-sound speed.
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