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ABSTRACT

The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly
accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the
electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the
counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence
interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell
simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory,
and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but
the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding
is thus complementary to the work by Ganse et al.
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1. INTRODUCTION

Solar radio bursts (Wild 1950a, 1950b; Wild &
McCready 1950; Wild et al. 1954) have been studied
observationally and theoretically for over six decades. Of the
five different types of solar radio bursts that have been
identified to date, type-III radio bursts are perhaps the best
studied and understood. For historical and recent reviews, see,
e.g., Ginzburg & Zheleznyakov (1958), Wild et al. (1963),
Kundu (1965), Tsytovich (1967), Zheleznyakov (1970), Wild
& Smerd (1972), Stewart (1974), Fainberg & Stone (1974),
Lin (1974), Smerd (1976), Rosenberg (1976), Melrose
(1980a, 1980b, 1986), Goldman (1983), Suzuki & Dulk
(1985), Dulk (1985), Reiner et al. (1992, 2009), Robinson &
Cairns (1998a, 1998b, 1998c), Cane et al. (2002), Reid &
Ratcliffe (2014), Ziebell et al. (2014, 2015).

The general consensus is that the radiation emission
mechanism responsible for type-III bursts is plasma emission,
first proposed by Ginzburg & Zheleznyakov (1958) and
subsequently refined over the intervening decades
(Tsytovich 1967; Kaplan & Tsytovich 1968; Zheleznyakov &
Zaitsev 1970a; Melrose 1982, 1987, Cairns 1987a, 1987b,
1987c; Goldman & Dubois 1982; Robinson & Cairns 1998a,
1998b, 1998c; Li et al. 2005a, 2005b, 2006a, 2006b, 2008a,
2008b, 2009, 2010, 2011a, 2011b, 2011c; Ratcliffe et al. 2012;
Reid & Ratcliffe 2014; Ziebell et al. 2014, 2015). In addition to
theory, full particle simulations of the plasma emission process
have also been carried out (Kasaba et al. 2001; Karlický &
Vandas 2007; Rhee et al. 2009a, 2009b; Umeda 2010; Ganse
et al. 2012a, 2012b). The emission of radiation at the local
plasma frequency and/or its harmonic(s), hence “plasma”
emission, is a result of nonlinear partial conversion of kinetic
energy of electron beams into EM radiation energy, but the
process involves sophisticated intermediate steps. The first step
involves the excitation of Langmuir (L) waves via the well-
known bump-on-tail instability when the energetic electron
stream produced at the site ofthe solar flare interacts with the
background solar wind plasma as the stream flows outward
along open magnetic field lines. The next step involves

nonlinear processes of wave decay and scattering, which
eventually lead to the generation of radiation.
Type-II radio bursts are related to type-III bursts in that the

underlying radiation emission mechanism is the same for both
types of burst, namely plasma emission (Roberts 1959; Wild
et al. 1959; Cane et al. 1987). The commonly accepted scenario
for type-II bursts involves the acceleration of electrons at the
shock front generated by a coronal mass ejection (CME). The
electrons are accelerated in the CME foreshock region and
form a (generally non-gyrotropic) beam distribution, which
then undergoes the customary beam–plasma interaction
(Karlický & Vandas 2007). The ensuing nonlinear processes
are expected to be similar to those in the type-III situation.
The distinguishing characteristic associated with type-II radio

bursts is the fundamental/harmonic (F/H) two-band structure.
While some type-III bursts also feature such F/H structure, they
are more commonly observed in a single band, or at least it is
difficult to distinguish the two-band feature owing to the fast
frequency drift rate. The two-band frequency structure is
generally interpreted in terms of an electron beam accelerated
at the front of the CME shock, which then excites Langmuir
waves by the beam–plasma instability, followed by partial
nonlinear conversion to the radiation modes at the fundamental
and (second) harmonic plasma frequencies. The recent calcula-
tion of EM weak turbulence by Ziebell et al. (2014, 2015) is
consistent with such an interpretation, where it is shown that the
emissions at the fundamental (F) and harmonic (H) commonly
take place together in association with the single beam–plasma
system, but rarely just a single band, either F or H. Ziebell et al.
(2014, 2015) also demonstrate that radiation emission at the third
harmonic or higher is also extremely rare.
The present paper is concerned with an important point

raised by Ganse et al. (2012a, 2012b), who noted that the CME
shock front spans a large spatial area, which encompasses
greatly varying local plasma frequency. If the beam-generated
plasma emission should occur at every point associated with
the CME shock front, then the type-II bursts should be
observed in a broad frequency band. Nevertheless, type-II radio
emissions are invariably narrow-band. Consequently, these
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authors theorize that the actual type-II bursts might be related
to special circumstances in the CME foreshock region where
the shock front geometry is such that it forms a double hump.
They reason that the radio emission might preferentially take
place within the depression region sandwiched between the two
shock fronts where there are counter-streaming electron beams.
In order to demonstrate their scenario quantitatively, Ganse
et al. (2012a, 2012b) carried out a particle-in-cell (PIC)
simulation and showed that the plasma emission is enhanced
for the case of counter-streaming beams when compared with a
single beam. A similar result regarding the enhancement of H
emission in the case of counter-streaming electron beams was
also obtained by Umeda (2010).

The present paper revisits the problem of plasma emission by
counter-streaming electron beams, which Ganse et al.
(2012a, 2012b) and Umeda (2010) investigated by means of
PIC code simulation, but here we employ the numerical
solution of EM weak turbulence theory. The present investiga-
tion complements the previous studies by Ganse et al.
(2012a, 2012b) and Umeda (2010). As we shall discuss, our
findings are largely consistent with the above-mentioned earlier
works, but we also provide greater details. The present weak
turbulence simulation naturally lends itself to detailed theore-
tical analysis, since unlike the brute-force method of PIC code
simulation, EM weak turbulence simulation is based upon
theoretical equations, which contain various terms that can be
identified with specific physical processes. Consequently, by
artificially turning certain terms on or off, one may unequi-
vocally identify what specific terms in the equation are
responsible for what physical process, as Ziebell et al. (2015)
have done. The EM weak turbulence method is also
computationally far more efficient than direct PIC code
simulation, and thus one may survey a larger input parameter
space, which is what we have done in the present paper.

The organization of the present paper is as follows: in
Section 2 we briefly describe the theoretical formulation and
numerical setup. Section 3 presents and discusses the results of
numerical solutions. Finally, Section 4 concludes the paper and
comments on the results obtained.

2. THEORETICAL FORMULATION
AND NUMERICAL SETUP

The basic theoretical framework and the foundational set
of equations for EM weak turbulence theory were introduced
in our recent papers (Ziebell et al. 2014, 2015). We briefly
note that we are concerned with three basic plasma
eigenmodes: Langmuir (L), ion-sound (S), and transverse (T)
modes. The energy density of the longitudinal electric field
thus consists of contributions from L and S modes,

E Ik L S k k
2
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magnetic field intensity is related to the spectral energy density
of the transverse E field by B ck Ek k

2 2 2∣ ∣d w dá ñ = á ñw w^ . Linear
dispersion relations for L, S, and T modes are given by textbook
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2 1 2( )w p= is the plasma frequency, ne, e, and me

being the electron number density, unit electric charge, and
electron mass, respectively. The Debye length is defined by
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and ion temperatures, respectively. Thermal speed
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defined, mi being the ion (proton) mass.
The basic wave kinetic equations governing the time evolution

of L, S, and T modes, as well as the particle kinetic equation for
the electron distribution function, are given in Ziebell et al.
(2014, 2015), so they will be presented here only in condensed
form. We employ the normalized quantities and definitions
introduced in Ziebell et al. (2014, 2015): z pew w= , tpet w= ,
q kvth pew= , u v vth= , 1q

Lm = , 1q
Tm = , q 2q

S 3 3 2m =

m m T T1 3e i i e( )+ , g n2 4 e De
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τ, q, and u represent normalized frequency, time, wavevector,
and velocity vector, respectively. The other quantities, q

Lm , q
Tm ,

and q
Sm , are auxiliary dimensionless quantities, and g is inversely

proportional to the number of particles in a sphere with radius
equal to the Debye length. This quantity must be sufficiently
small in order for the ionized gas to qualify as a plasma. The
normalized particle velocity distribution function and normalized
wave spectra are defined by
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The equations of EM weak turbulence theory in non-
dimensional forms are given as follows. First, the wave kinetic
equations for L, S, and T modes, in condensed form, are
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Detailed expressions for the different terms appearing in these
equations can be seen, for instance, in Ziebell et al.
(2014, 2015).
The particle kinetic equation in normalized form is as

follows:
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In the above a=e denotes the electrons, and a=i stands for the
ions (protons). The dispersion relations for plasma normal modes
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that appear in these equations are now given in dimensionless
form by z q1 3 2q

L 2 1 2( )= + , z qA q1 2q
S 2 1 2( )= + , zq
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c q v1 te
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In Equation (1) for the L mode, the first term, designated
as Lql, describes the spontaneous and induced emissions,
which are quasilinear effects. The second term, denoted by
LdLS, describes three-wave decay processes involving L
and S waves. The third term, denoted as LsLL, represents
the effects of nonlinear wave–particle scattering involving
two L waves and particles. The equation for an S wave in (1)
contains the first term denoted by Sql, which describes
quasilinear processes of spontaneous and induced emissions.
The second term, designated by SdLL, describes the
three-wave decay involving an S mode and two L waves.
For the T mode, the first term describes the merging of two L
waves into a T mode at approximately twice the plasma
frequency (the harmonic or H emission). This wave–wave
merging term is the opposite of a decay process, and is thus
denoted as TdLL. The second term, TdLS, describes the
influence of the decay process of an L mode into a T mode at
approximately the fundamental plasma frequency and an S
wave, which is one of the processes responsible for the
fundamental (F) emission. The third term, denoted by TdTL,
characterizes three-wave merging (the opposite of decay)
of one L mode wave and a T mode into a higher-harmonic T
mode. The last term, TsTL, describes nonlinear scattering
involving an L mode into a T mode at the fundamental
mediated by the particles. This is another process responsible
for the fundamental plasma emission. The particle
kinetic Equation (2) is given in the form of a Fokker–Planck
equation, which contains the velocity friction and
diffusion terms on the right-hand side. In both wave and
particle equations, terms associated with the parameter g
describe effects that arise owing to spontaneous thermal
fluctuations.

The numerical routine to solve the complete set of
dimensionless Equations (1) and (2) in two-dimensional (2D)
wavenumber space and 2D velocity space employs a splitting
method with fixed time step for the evolution of the distribution
and a Runge–Kutta method with the same fixed time step for
the wave equations. The initial configurations are such that ions
are considered stationary, and electrons as well as the waves
evolve in time. The ion distribution in 2D velocity space in
dimensionless form is given by
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The initial electron distribution function is assumed to be made
of a Maxwellian background population and a pair of forward
and backward beam components, with number densities
assigned by nf and nb. In 2D it is given in dimensionless

variables as follows:
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Here, v T m2te e e
1 2( )= , v T m2tf f e

1 2( )= , and vtb =
T m2 b e

1 2( ) are background, forward-beam, and backward-
beam thermal speeds, respectively, and v0, vf, and vb are
drift velocities associated with the background, forward,
and backward beams, respectively. The drift velocity for
the background v0 is chosen such that it guarantees zero net
drift velocity for the total electron distribution, i.e., v0 =

n v n v n n nf f b b f b0( ) ( )- + - - .
The intensities of L and S waves are initialized by balancing

the spontaneous and induced emissions, taking into account the
background population. The normalized spectral intensities of
the electric field are therefore given by
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The T waves are assumed to be non-existent at the initial time.
Note that the forward-propagating ( 1s = + ) and backward-
propagating ( 1s = - ) initial spectra are assumed to be the
same, that is, they are initially isotropic in q.
In the numerical analysis we adopt the normalized time

interval 0.1tD = . We employ 51×51 grids for q̂ and q,
with q k v0 0.6te pw< = <^ ^ and q k v0 0.6te pw< = <  .
For the velocities, we use 63×125 grids for
u u v v v v, ,th th( ) ( )=^ ^  , covering the velocity range

u v v0 15th< = <^ ^ and u v v15 15th- < = <  . For the
subsequent numerical solutions we assume that forward and
backward beams have the same thermal spread as the
background so that T T T T1f e b e= = . The electron-to-ion
temperature ratio of T T 7e i = is used, and the plasma
parameter n 5 10D0

3 1 3( )l = ´- - is adopted. We also assume
v c 4.0 10te

2 2 3= ´ - .
The sizes of the grids used for the numerical analyses are

chosen as a compromise between the resolution obtained and
the performance of the numerical code. In wavenumber space
the grid allows for a resolution that is sufficient to show
fundamental features of the wave spectra, such as the primary
and backward peaks of L waves and the peaks in the T wave
spectra that are identified as the fundamental and harmonic
emissions. In velocity space, the grid used allows for a smooth
description of the background distribution function and of the
beam. Using these grid sizes, the code needs to run for a few
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days in a personal computer in order to obtain the results
presented here. For 2D applications, a twofold increase in
resolution would require nearly a fourfold increase in
computational time. We have reached the conclusion that such
costly enhanced resolution is not necessary to describe the
relevant features of the time evolution of the system under
investigation.

3. NUMERICAL ANALYSIS

For our numerical analysis we consider the case of a
Maxwellian distribution for the background and a pair of
counter-streaming beams, with total beam density
N N nf n n 1 10f b b 0

3( )+ = + = ´ - , and normalized
velocity of the forward beam U v v 8.0f f te= = .

The spectra of L and S waves are initialized according to
Equation (5). The T waves are initially absent. In Figures 1 and
2 we show the normalized wave intensity for the T waves as a
function of normalized wavenumber q, by integrating d q q

Tò q ,

where q qcos 1q = -
 and q q q2 2 1 2( )= +^  . In Figure 1, we

show the results obtained in the case of a forward beam with a
number density that is 50% higher than the number density of
the backward beam, by assuming N 6.0 10f

4= ´ -

and N 4.0 10b
4= ´ - .

We investigate the effect of the variation of the velocity
of the less dense beam, assuming Uf=8.0 and considering
three values of backward beam velocity, namely, Ub =
v v 6.0b te = - , −8.0, and −10.0.

Figure 1(a) shows the normalized spectrum of T waves, q
T ,

obtained at 100t = , for the three backward beam speeds. Even
though the present runs assumed zero initial T mode intensities,
very early on a background radiation spectrum is generated,
spanning the entire frequency range. This is the result of a
newly discovered radiation emission mechanism that results
from the nonlinear wave–particle scattering term TsTL, which
is operative even for thermal electrons without beams (Ziebell
et al. 2014, 2015). For the relative early time 100t = , the
growth of the peak corresponding to the fundamental emission
of T waves first appears. At this state, the fundamental emission
is very weak, and the intensities are similar for the two cases of
weaker beams, namely,U 6b = - andU 8b = - , so that the two
small peaks corresponding to these cases almost overlap. The
case of U 10b = - , on the other hand, displays F emission that
is more enhanced compared to the cases of weaker backward
beams. At this early time in the evolution, there is no indication
of harmonic emission.
Figure 1(b) shows the result at 500t = . The peaks

corresponding to F emission continue to grow with behavior
similar to that observed in Figure 1(a), in the sense that the
peaks corresponding to U 6b = - and U 8b = - are similar in
height and spectral width, and that the peak for U 10b = - is
almost an order of magnitude higher than the other two. Note
that H emission is already quite significant at 500t = . The
harmonic emission is only incipient for the case of U 6b = -
(blue curve), but in the case ofU 10b = - (black), the harmonic
mode attains an amplitude about 3–4 times higher than the case
for U 6b = - . For U 8b = - (red), on the other hand, the H

Figure 1. Normalized wave intensity for T waves, q
T , as a function of normalized T wave frequency, zq

T . Ratios of beam densities are N 6 10f
4= ´ - and

N 4 10b
4= ´ - , forward beam speed is Uf=8, and three cases of backward beam speeds are used:U 6b = - (blue),U 8b = - (red), andU 10b = - (black). The four

panels are for different normalized time steps: (a) 100;t = (b) 500;t = (c) 1000;t = and (d) 2000t = .
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mode is almost an order of magnitude higher than forU 6b = - .
This shows that H emission grows more efficiently in the case
of counter-propagating beams of equal speed rather than
asymmetric speeds, while the efficiency of Femission seems to
be higher when the lower density beam has a greater speed than
the higher density beam.

In the case of Figure 1(c), which corresponds to 1000t = ,
the overall behavior is similar to that of Figure 1(b). The F peak
continues to grow, and the case of U 10b = - (black) is still
higher than the other cases, but the magnitude is now only 5–6
times higher, instead of almost 10 times in the case of
Figure 1(b). The harmonic emission also continues to grow in
amplitude, and the trend seen in Figure 1(b) still holds, that is,
the case of equal beam speeds,U U 8b f= - = - (red), seems to
have the highest peak, but the other cases also show a
continued increase in the peak of the H mode, so that the
differences are not so significant as in Figure 1(b). It is seen
that the H peak generated in the case U 10b = - (black)
approaches that generated in the case U 8b = - .

Figure 1(d) depicts the time step at 2000t = . It is seen that
the F peak continues to increase when compared to 1000t = ,
but not by very much. The case of U 10b = - (black) still
maintains the highest magnitude among the three cases. The F
mode peaks for U 6b = - and U 8b = - are quite comparable,
however, with a slight dominance of the peak obtained with
U 8b = - . The H mode peaks feature magnitudes that are
comparable with those of the F mode peaks. Now the H mode
peak is most pronounced in the case of U 10b = - (black) so
that it exceeds the H mode peak for U 8b = - . This shows that

while the symmetric beam promoted faster excitation of H
emission, the asymmetric case with higher backward beam
speed eventually catches up and exceeds the symmetric case,
since the latter has more free energy. It is also interesting to
note that by the time the system has evolved to 2000t = even
the third harmonic has begun to grow, with a magnitude that is
higher for the higher backward beam speed.
In Figure 2, we investigate the effect of variation on the

relative density associated with the counter-propagating beams.
We consider equal counter-propagating beam speeds,
U U 10f b= - = , and vary relative densities, using four
different combinations of the relative beam densities: (i)
N 10f

3= - and Nb=0, (ii) N 8 10f
4= ´ - and

N 2 10b
4= ´ - , (iii) N 6 10f

4= ´ - and N 4 10b
4= ´ - ,

(iv) N N 5 10f b
4= = ´ - .

The first case corresponds to a single forward beam, while
the last case depicts symmetric beams with equal beam
densities and equal magnitudes for the beam speed.
Figure 2(a) shows the time evolution at 100t = . Again, note
the broadband background radiation, which is already well
established by this time, even though the initial level of T mode
is zero. The peak corresponding to fundamental emission is
also evident. The peak is highest for the case of a single beam
and decreases progressively as the backward beam density
increases and the forward beam density decreases.
For 500t = , the results are shown in Figure 2(b). At this

time the harmonic peak is quite considerable, but the case of
equal densities (black curve) exhibits the fastest growth, which

Figure 2. Normalized T wave intensity, q
T , as a function of normalized T wave frequency, zq

T . Forward and backward beam speeds are equal in magnitude, Uf=10
and U 10b = - , but four different combinations of the number density ratios are used: N 1 10f

4= ´ - and Nb=0 (blue), N 0.8 10f
4= ´ - and N 0.2 10b

4= ´ -

(red), N 0.6 10f
4= ´ - and N 0.4 10b

4= ´ - (green), and N 0.5 10f
4= ´ - and N 0.5 10b

4= ´ - (black). The four panels are for different normalized time steps: (a)
100;t = (b) 500;t = (c) 1000;t = and (d) 2000t = .
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is opposite to the behavior observed for the fundamental
emission. The cases of 60% forward (and 40% backward) beam
and equal densities show very similar results (black and green
curves) such that the two curves almost overlap. For increasing
difference between the beam densities, the H peak continues to
decrease, so that in the case of a single beam the magnitude is
almost an order of magnitude less than that attained in the case
of beams of equal (or nearly equal) density.

Figure 2(c) shows the situation at 1000t = , where it is seen
that both F and H emission peaks continue to develop, reaching
comparable levels. The magnitude of the H peak is still lower
in the case of a single beam, but the magnitude is closer to that
of opposite beams with similar densities, which becomes
apparent when it is compared with Figure 2(b) for 500t = .

Figure 2(d) corresponds to 2000t = , where the third
harmonic peak becomes visible and is dominant in the case
of a single, denser, beam. It is seen that at 2000t = the H peak
is higher in the case of a single beam, in contrast to what has
been observed at earlier times. It seems that the occurrence of
opposite beams of comparable densities hastens the growth of
the H peak, compared to the case of a single beam, but the final
intensity attained at the harmonic tends to be larger for a more
intense single beam.

The total wave energy density for each mode as a function of
τ can be obtained by integrating the normalized intensity a ( ) ta

over pitch angle θ and wavenumber q,

d dq q .q( ) ( ) ò òt q t=a
a

In Figure 3 we show the time evolution of the total wave
energy densities for each mode. Shown in the left-hand panels,
from top to bottom, are the time evolution of L, S, and T waves,
for which we fixed N 6.0 10f

4= ´ - , N 4.0 10b
4= ´ - ,

Uf=8.0, and varied the backward beam speed, U 6.0b = - ,
−8.0, and –10.0, as in Figure 1. The right-hand panels are
the same in that, going from top to bottom, we plotenergy
densities of L, S, and T waves as a function of time, except
that for these panels we fix the beam velocities as Uf= 10.0,
U 10.0b = - , and vary the relative beam densities: (i) N N,f b( )

0.5 10 , 0.5 104 4( )= ´ ´- - , (ii) N N, 0.6 10 ,f b
4( ) (= ´ -

0.4 10 4)´ - , (iii) N N,f b( ) 0.8 10 , 0.2 104 4( )= ´ ´- - , (iv)
N N,f b( ) 1.0 10 , 0.0 104 4( )= ´ ´- - . These cases are the same
as in Figure 2.

The top two panels of Figure 3 show the time evolution of
the energy density of L mode waves, which displays an
exponential increase and quasi-saturation around 300t » or
so. It is seen that the case of higher backward beam speed
U 10.0b = - produces the highest saturated L mode wave
energy, which is expected, but the variation of relative beam
densities does not show any appreciable change in the saturated
L mode wave energy. Instead, the top-right panel shows that a
single beam leads to the fastest exponential growth of the L
mode and that the symmetric counter-streaming beams lead to
the slowest onset of instability. For the energy densities of S
mode waves, the middle panels show that the relative growth is
much smaller than that of the L mode. The middle panel on the
left shows that the increase in the energy in the S waves is more
pronounced if the speed of the backward beam is equal to that
of the forward beam, with the smaller growth occurring for the
slower backward beam (U 6.0b = - , in the case depicted in
Figure 3). The middle panel on the right of Figure 3 shows that

the growth of S wave energy tends to be faster in the case of a
single beam than in the case of opposite beams where the total
number density of beam particles is shared.
The bottom panels of Figure 3 show the time evolution of T

waves. It is seen that the T mode grows from zero initial
intensity to a finite value almost immediately. This is the onset
of the spontaneous emission of background radiation as
predicted by the nonlinear wave–particle scattering term (TsTL)
(Ziebell et al. 2014, 2015). The overall trend in the time
evolution of radiation energy is in agreement with the time
evolution of longitudinal modes, L and S. For the highest
backward beam velocity, U 10.0b = - , more particle free
energy is available, and so the radiation is most intense. In
the case of fixed beam speeds, changing the relative beam
densities again does not lead to any perceivable change in the
radiation energy, but the onset time is slightly earlier for the
case of a single beam.
On the basis of the findings thus far one may infer that the

overall dynamics of the beam–plasma system does not depend
too critically on whether there exists a single beam or whether
there is a secondary beam, which is related to more subtle
differences in the time evolution of the system. As we shall see
next, these more subtle effects of the presence of counter-
streaming beams can be seen most clearly if we analyze the
time evolution of the radiation intensity at each harmonic.
Thus in Figure 4 we show the time evolution of radiation

energy at each harmonic of the T wave spectrum. The panel
layout is the same as in Figure 3, namely, the left-hand panels
show the dependence on the backward beam speed, while the
right-hand panels display variations with relative beam
densities. However, unlike Figure 3, the top two panels now
depict the “fundamental” (F) emission, with wave frequency
close to pew , while the middle and bottom panels depict the
second and third harmonic modes, with frequencies close to
2 pew and 3 pew , respectively.

First, it is apparent from the top panels that as far as F
emission is concerned, for fixed beam densities, the backward
beam with highest speed leads to the highest radiation level,
and for fixed beam energy, the single beam leads to the fastest
generation of radiation. Regarding the H emission, in the left-
middle panel one can clearly see that the case ofU 8.0b = - has
the fastest growth rate when compared with the other two cases
(although the case of strongest backward beam U 10.0b = -
eventually exceeds the case ofU 8.0b = - in radiation intensity
over a long time). Since the forward beam has Uf=8.0, the
backward beam with U 8.0b = - (red curve) represents the
situation with identical counter-streaming beams. The right-
middle panel, which shows the dependence on the relative
beam densities, shows that the fastest growth occurs with two
opposite beams of similar characteristics, but that the
asymptotic state is such that the higher H emission occurs for
the case of a single, more intense, beam. In fact, the case of
equal beam densities, shown in blue, corresponds to the fastest
H emission in time. The third harmonic emission, appearing in
the bottom panels of Figure 4, on the other hand, displays
almost no dependence on the variation in backward beam speed
and a small change due to the relative beam densities.

4. SUMMARY AND CONCLUSIONS

It is commonly accepted that the fundamental radiation
emission mechanism responsible for both type-II and type-III
solar and interplanetary radio bursts is plasma emission. While
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type-III bursts are associated with the flare-generated energetic
electrons streaming out of the source region along open
magnetic field lines, it is generally thought that type-II sources
are related to the CME shock and the accelerated electrons in
the foreshock region. Recently, Ganse et al. (2012a, 2012b)
noted that the CME shock front spans a large spatial area that
encompasses varying local plasma frequency. This implies that
the type-II bursts should have a broad frequency band, which is
in contrast to observed narrow-band type-II emissions. They
proposed a model where actual type-II sources might be
confined to a special CME foreshock region that has a double
hump structure. The counter-streaming electrons that may exist
between the two structures may preferentially excite radiation
because the nonlinear coalescence processes are facilitated by
the presence of two beams. Ganse et al. (2012a, 2012b) carried
out particle-in-cell (PIC) simulations to demonstrate this point.
Note that Umeda (2010) also compared the property of H
emission for single versus counter-streaming beams, but his
work stands alone as a fundamental study of plasma emission,
rather than within the context of type-II radio bursts.

Nevertheless, Umeda’s finding is consistent with Ganse et al.
(2012a, 2012b).
In the present paper we addressed the same problem based

upon EM weak turbulence theory. We found that in an overall
sense, neither the plasma emission nor the beam–plasma
interaction process that involves Langmuir and ion-sound
turbulent dynamics shows any great dependence on the
presence of the secondary beam. However, if we break down
the radiation emission into individual harmonics, then the
numerical solution reveals the subtle dependence on the details
of the counter-streaming beams. To be specific, we found that
the fundamental emission increases in intensity if the density
and the forward beam speed are fixed and simply the backward
beam speed is increased. Similarly, if the beam speeds are
fixed, the fundamental emission is most intense when there is
only one beam. The second harmonic emission, on the other
hand, shows that the fastest development occurs when the
counter-streaming beams are identical in density and speed, but
not in the direction of the beam, although the final level of
emission shows that a single beam with larger density can
overcome the emission due to two opposite and less dense

Figure 3. Integrated wave intensity, d dq q q ò òq=a
a, as a function of normalized time, τ. Top left- and right-hand panels are for Langmuir waves L ;( )a = the

middle two panels plot ion-sound wave intensity S ;( )a = and the bottom panels correspond to transverse waves T( )a = . The left-hand column shows the case of
fixed beam densities, N N, 6.0 10 , 4.0 10f b

4 4( ) ( )= ´ ´- - and fixed forward beam speed, Uf=8.0, while the backward beam speed is varying: U 6.0b = - (blue),
U 8.0b = - (red), and U 10.0b = - (black). The right-hand column shows the variation in relative number densities: N N,f b( ) 0.5 10 , 0.5 104 4( )= ´ ´- - (blue),
N N,f b( ) = 0.6 10 , 0.4 104 4( )´ ´- - (red), N N, 0.8 10 , 0.2 10f b

4 4( ) ( )= ´ ´- - (green), N N,f b( ) 1.0 10 , 0.0 104 4( )= ´ ´- - (black), for Uf=10.0, U 10.0b = - .
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beams. The weak third harmonic emission, on the other hand,
shows no clear dependence on either the variation in the
backward beam speed or the variations in relative beam
density.

These findings are somewhat consistent with earlier findings
by Ganse et al. (2012a, 2012b) and also Umeda (2010), who
found an overall increase in wave emission for the counter-
streaming situation, but did not clearly distinguish the
difference between the fundamental and harmonic modes.

The implication of the present work is that while our work
largely confirmed and conforms with the suggestion by Ganse
et al. (2012a, 2012b), the effects of counter-streaming beams
on the general plasma emission are not as pronounced as
envisioned by Ganse et al. (2012a, 2012b). This means the
problem of why the type-II bursts are observed in relatively
narrow bands while the CME shock encompasses a large
spatial area with greatly varying local density remains largely
unresolved.

It is worthwhile to comment on some questions related to the
velocity distribution functions. One of the results of many years
of in situ observations in the space environment is the
knowledge that the velocity distributions of ions and electrons

are frequently non-Maxwellian, featuring power-law tails that
can be described by isotropic or anisotropic kappa distribu-
tions. Some theoretical results have been obtained, which show
that the power-law distributions may be the outcome of
nonlinear processes that are described by weak turbulence
theory (Yoon 2011, 2012). For the present investigation, our
interest has been the understanding of the effect of the presence
of opposite beams on the evolution of the beam–plasma system
in more than one dimension, and we decided to start from the
conventional equilibrium state described by Maxwellian
distributions. However, different configurations are under
investigation, including cases where the equilibrium is already
characterized by a kappa-like distribution, prior to the injection
of the beam. We intend to report on the results of these
investigations in the near future.
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Figure 4. Integrated radiation intensity, d dq qT q
T ò òq= , at each harmonic, as a function of normalized time, τ. The top two panels are for fundamental emission

F ;( ) the middle two panels represent (second) harmonic H( ) emission; and the bottom panels correspond to third harmonic emission H3( ). The left-hand column
shows the case of fixed beam densities, N N, 6.0 10 , 4.0 10f b

4 4( ) ( )= ´ ´- - and fixed forward beam speed, Uf=8.0, while the backward beam speed is varying:
U 6.0b = - (blue), U 8.0b = - (red), and U 10.0b = - (black). The right-hand column shows the variation with relative number densities: N N,f b( )

0.5 10 , 0.5 104 4( )= ´ ´- - (blue), N N,f b( ) = 0.6 10 , 0.4 104 4( )´ ´- - (red), N N,f b( ) = 0.8 10 , 0.2 104 4( )´ ´- - (green), N N,f b( ) 1.0 10 , 0.0 104 4( )= ´ ´- -

(black), for Uf=10.0, U 10.0b = - .
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