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Abstract We have studied the color dipole picture for the description of deep inelastic process,
mainly the structure functions which are driven directly by the gluon distribution. Estimates are
obtained using the Glauber-Mueller dipole cross section in QCD encoding the corrections due to the
unitarity effects which are associated with the saturation phenomenon. Frame invariance is verified
in the calculations when analysing the experimental data.

INTRODUCTION

In the kinematical region of small proton momentum fraction x, the gluon is the main
parton driving the behavior of the deep inelastic quantities. The standard QCD evolution
[1] furnishes a powerlike growth for the gluon distribution and related observables. This
result leads, at first glance, to the unitarity violation at asymptotic energies, requiring
a sort of control In the partonic language, at the infinite momentum frame, the small
x region corresponds to the high parton density winsdom. The latter is connected with
the black disk limit of the proton target and with the parton recombination phenomenon.
These issues can be addressed through a non-linear dynamics beyond the usual DGLAP
formalism. The complete knowledge about the non-linear dynamical regime plays an
important role in the theoretical description of the reactions in the forthcoming experi-
ments RHIC and the LHC, where these effects are enhanced by the high energies reached
or by nuclear probes.

The description of DIS in the color dipole picture is somewhat intuitive, providing
with a simple representation in contrast to the involved one from the Breit (infinite
momentum) frame. Considering small values of the Bjorken variable x, the virtual
photon fluctuates into a qq pair (dipole) with fixed transverse separation r at large
distances upstream of the target and interacts in a short time with the proton. More
complicated configurations should be considered for larger transverse size systems, for
instance the photon Fock state qq 4- gluon. An immediate consequence from the lifetime
of the pair (lc = l/2mpx) to be bigger than the interaction one is the factorization
between the photon wavefunction and the cross section dipole-proton in the y*/? total
cross section. The wavefunctions are perturbatively calculable, namely through QED for
the qq configuration [2] and from QCD for the qqG one [3]. The effective dipole cross
section should be modeled and it includes perturbative and non-perturbative content.
However, since the interaction strength relies only on the configuration of the interacting
system the dipole cross section turns out to be universal and may be employed in a wide
variety of small x processes.
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We have taken into account a sound formalism providing the unitarity corrections to
the DIS at small x, namely the Glauber-Mueller approach in QCD. It was introduced
by A. Mueller [4], who developed the Glauber formalism to study saturation effects in
the quark and gluon distributions in the nucleus considering the heavy onium scattering.
Later developments obtained an evolution equation taking into account the unitarity cor-
rections (perturbative shadowing), generating a non-linear dynamics which is connected
with higher twist contributions. Its main characteristic is to provide a theoretical frame-
work for the saturation effects, lying on the multiscattering of the pQCD Pomeron. In
this contribution we report our studies considering the parton saturation formalism to
describe the observables driven by the gluonic content of the proton at the color dipole
picture [5]. The inclusive structure function F2 is calculated, disregarding the fairly ap-
proximations commonly considered in previous calculations [6]. The structure functions
FL and F2

CC are also presented using the Glauber-Mueller approach and rest frame in
comparison with the experimental data.

THE DIS AT THE REST FRAME AND GLAUBER-MUELLER
APPROACH

The rest frame physical picture is advantageous since the lifetime of the photon fluc-
tuation and the interaction process are well defined [7]. The more simple case is the
quark-antiquark state (color dipole), which is the leading configuration for small trans-
verse size systems. The well known coherence lenght is expressed as lc = l/(2xmp),
where x is the Bjorken variable and mp the proton mass. An important consequence of
this formulation is that the photoabsortion cross section can be derived from the expec-
tation value of the interaction cross section for the multiparticle Fock states of the virtual
photon weighted by the light-cone wave functions of these states [2]. That cross section
can be cast in the quantum mechanical factorized form,

= fd2r f dz |¥rx(z, r)|2 ddiP°le(x,z,r) , (1)

The formulation above is valid even beyond perturbation theory, since it is determined
from the space-time structure of the process. The *¥TL(z, r) are the photon wavefunc-
tions (for transverse T, and longitudinal L, polarizations) describing the pair configura-
tion; z and 1 — z are the fractions of the photon's light-cone momentum carried by the
quark and antiquark of the pair, respectively. The transverse separation of the pair is r.
The explicit expressions for the wavefunctions are well known,

(3)

Lets define the auxiliary variable e2 = z( 1 — z) Q2 + m^ , with mq the light quark mass,
and K0 and K^ are the Me Donald functions of rank zero and one, respectively. The
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quantity crdlP°le is interpreted as the cross section of the scattering of the effective dipole
with fixed tranverse separation r [2]. The most important feature of the dipole cross
section is its universal character, namely it depends only on the transverse separation
r of the color dipole. The dependence on the external probe particle, i.e., the photon
virtuality, relies in the wavefunctions. In general, an ansatz for the effective dipole cross
section is obtained and the the process is analized in the impact parameter space. The
main feature of the current models in the literature is to interpolate the physical regions
of small transverse separations (perturbative QCD picture) and the large ones (Regge-
soft picture). Here we have used the Glauber-Mueller approach to determine the dipole
cross section, with the advantage of providing the corrections required by unitarity in an
eikonal expansion. For the large r region, we choose to follow a similar procedure from
the saturation model (GBW) [8], namely saturating (r-independent constant value) the
dipole cross section at this region.

Now, we shortly show the main results from the Glauber-Mueller approach. Consid-
ering the scattering amplitude dependent on the usual Mandelstan variables s and t, now
written in the impact parameter representation b,

a(s,b) = ̂ - /</2qe- iq-b^(s,t=-q2). (4)2n J
the corresponding total and elastic cross sections (from Optical theorem) are rewritten
in the impact parameter representation (b) as

atot = 2 j d2b Im a(s, b); ael = j d2b \a(s, b) |2, (5)

The most important property when treating the scattering in the impact parameter space
is the simple definition for the unitarity constraint [6]. If the real part of the scattering
amplitude vanishes at the high energy limit, corresponding to small x values, the solution
to the that constraint is

i _ , . , n /* _ r i _ , . ^ n

(6)

where the opacity Q is an arbitrary real function and it should be determined by a de-
tailed model for the interaction. The opacity function has a simple physical interpreta-
tion, namely e~n corresponds to the probability that no inelastic scatterings with the
target occur. To realize the connection with the Glauber formalism, the opacity function
can be written in the factorized form Q(,s,b) = £l(s) S(b), considering S(b) normalized
as fd2bS(b) = 1 (for a detailed discussion, see i.e. [9]).

We identify the opacity £l(s & Q2/x;r) = dnucleon(x,r). The (qq pair) dipole-proton
cross section is well known [6, 9] and in double logarithmic approximation (DLA) has
the following form

with the r-dependent scale Q2 = r^/r1. Considering Eq. (7) one can connect directly
the dipole picture with the usual parton distributions (gluon), since they are solutions
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of the DGLAP equations. In our case, we follow the calculations in Ref. [6, 9] and
consider the effective scale Q2 = 4/r2. From the above expression, one obtains a dipole
cross section satisfying the unitarity constraint and a framework to study the unitarity
effects (saturation) in the gluon DGLAP distribution function. Hence, hereafter we use
the Glauber-Mueller dipole cross section given by

^ dipole (g)

In order to perform numerical estimates one needs to define the profile function S(b).
This function contains information about the angular distribution in the scattering. We
have chosen a simple gaussian shape in the impact parameter space, S(b) = ̂ r^2^*
where A is the atomic number and RA is the target radius. We will keep this notation
although we are only concerned with the nucleon case. The RA value should be deter-
mined from the data, ranging between 5 — 10 GeV~2 for the proton case [6]. Here, we
have used the value (RA = 5 GeV~2) obtained from a good description of both inclu-
sive structure function and its derivative [10]. Such a value corresponds to significative
unitarity corrections to the standard DGLAP input even in the current HERA kinematics.

In the calculations we have used the GRV94 parametrization [11]: bearing in mind
that Q2 = 4/r2, its evolution initial scale QQ = 0-4 GeV2 allows to scan dipole sizes
up to rcut = -JJ- GeV"1 (= 0.62 fm). For recent parametrizations, where Q$ ~ 1 GeV2

(rcut ~ 0.4 fm), the uncertaint due to nonperturbative content in the calculations would
increase. An additional advantage is that GRV94 does not include non-linear effects to
the DGLAP evolution since it was obtained from rather large x values, i.e. this ensures
that GRV94 does not include unitarity corrections in the initial scale. To proceed, for the
large r region, we choose the following ansatz: the gluon distribution is frozen at scale
rcut, namely xG(x, Scut)- Then, for the large distance contribution r < rcut the gluon
distribution reads as

leading to the correct behavior xG(x,Q2) ~ Q2 as g2 ->> 0.

OBTAINING THE STRUCTURE FUNCTIONS

The structure function F2

First, we perform estimates for the structure function F2 at the rest frame considering
the Glauber-Mueller dipole cross section [5]. The expression, with the explicit integra-
tion limits on photon momentum fraction z and transverse separation r is,

x,!-2). (10)
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FIGURE 1. The Glauber-Mueller (GM) result for the F2(x,Q2) structure function. It is shown the
transverse contribution (dot-dashed), the longitudinal one (dashed) and total one (solid line).

In the Fig. (1) one shows F2 for representative virtualities Q2 from the latest HI
Collaboration measurements [12]. The longitudinal and transverse contributions are
shown separately. An effective light quark mass (u. d, s quarks) was taken, with the value
mq = 300 MeV, and the target radius is considered R^ = $ GeV~2. It should be stressed
that this value leads to larger saturation corrections rather than using radius ranging
over R^ ~ 8 — 15 GeV~2. The soft contribution comes from the freezing of the gluon
distribution at large transverse separation as discussed at the previous section.

From the plots we verify a good agreement in the normalization, however the slope
seems quite steep. This fact is due to the modeling for the soft contribution and it sug-
gests that a more suitable nonperturbative input should be taken. To clarify the role
played by the soft nonperturbative contribution to F2, in the Fig. (2) we plot separately
the perturbative contribution and parametrize the soft contribution introducing the non-
perturbative structure function F2

soft = ^softx~a°8 (1 -x)10 [13], which is added to the
perturbative one. The soft piece normalization is ̂ soft = 0.22. Accordingly, we have used
just shadowing corrections for the quark sector, taking into account only the transverse
photon wavefunction and zero quark mass. The integration on the transverse separation
is taken over 1/g2 < r2 < 1/gg, with gg = 0.4 GeV2 for leading order GRV94 gluon
distribution. This leads to a residual contribution to the soft piece which would come
from the transverse separations r2 < 1/Q2. It is again verified that the soft contribution
is important at small virtualities and decreasing as it gets larger. The data description is
quite successful.

Concluding, we have a theoretical estimate, i.e. no fitting procedure, of the inclusive
structure function F2(x, Q2) through the Glauber-Mueller approach for the dipole cross
section, detecting a non negligible importance of a suitable input for the large dipole size
region.
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FIGURE 2. The Glauber-Mueller prediction for the F2 structure function in the rest frame. For sake of
comparison, one uses quark sector (R^ = 5 GeV~2, mq — 0) and only transverse wavefunction. Radius
integration 1/g2 < r2 < l/g§ and soft Pomeron added (F2

soft = ^soft*~0-08(l -*)10).

The structure function FL

From QCD theory, the structure function FL has a non-zero value due to the gluon
radiation, as is encoded in the Altarelli-Martinelli equation (see [14]), considering the
Breit frame. Experimentally, the determination of the FL is quite limited, providing
few data points. Most recently, the HI Collaboration has determined the longitudinal
structure function through the reduced double differential cross section, where the data
points were obtained consistently with the previous measurements, however being more
precise and lying into a broader kinematical range [12].

In Fig. (3) we present the estimates for the FL structure function, in representative
virtualities as a function of x [5]. For the calculations, it was considered light quarks
(M, rf, s) with effective mass mq = 300 MeV and the target radius Rj± = 5 GeV~2. The
large r region is considered by the freezening of the gluon distribution at this region.
Our expression for the observable is then,

(11)

The behavior is quite consistent with the experimental result, either in shape as in
normalization. The quantity is less sensitive to the non-perturbative content than F2.
A better description can be obtained by fine tunning the target size or the considered
gluon distribution function, however it should be stressed that the present prediction
is parameter-free and determined using the dipole picture taking into account unitarity
(saturation) effects in the effective dipole cross section [5]. We verify that the rest frame
calculation, taking into account the dipole degrees of freedom and unitarity effects
produces similar conclusions to those ones using the Breit system. For instance, in
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FIGURE 3. The Glauber-Mueller estimates for the FL structure function. One uses light quarks (mq =
300 MeV), target size R^ = 5 GeV~2 and frozen gluon distibution at large r. Data from HI Collaboration
[12].

a previous work [14], the unitarity corrections to the longitudinal structure function
were estimated in the laboratory frame considering the Altarelli-Martinelli equation,
with unitarized expressions for F2 andxG(x, Q2), obtaining that the expected corrections
reach up to 70 % as ln(l/x) = 15, namely on the kinematical corner of the upcoming
THERA project.

The higher twist corrections to the longitudinal structure function have been pointed
out. For instance, Bartels et aL [15] have calculated numerically the twist-four correc-
tion founding they are large for FT and FL, however having opposite signs. This fact
leads to remaining small effects to the inclusive structure function by almost complete
cancellation between those contributions. The higher twist content is analyzed consid-
ering the model [8] as initial condition. Concerning FL, it was found that the twist-four
correction is large and has negative signal, concluding that a leading twist analysis of
FL is unreliable for high Q2 and not too small x. The results are in agreement with the
simple parametrization for higher twist (HT) studied by the MRST group in Ref. [16],
where F£T(X, Q1) = F^T(x, g2)(l + ^gr^). The second term would parametrize the
higher twist content. In our case, the unitarity corrections provide an important amount
of higher twist content, namely it takes into account some of the several graphs deter-
mining the twist expansion.

The structure function F£c

In perturbative QCD, the heavy quark production in electron-proton interaction oc-
curs basicaly through photon-gluon fusion, in which the emitted photon interacts with
a gluon from the proton generating a quark-antiquark pair. Therefore, the heavy quark
production allows to determine the gluon distribution and the amount of unitarity (satu-
ration) effects for the observable. In particular, charmed mesons have_been measured at
deep-inelastic at HERA and the corresponding structure function F2

cc(x, Q2) is defined
from the differential cross section for the cc pair production.
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Experimentally, the measurements of the charm structure function are obtained by
measuring mesons D*± production [17]. The function F2

cc(x, Q2) shows an increase
with decreasing x at constant values of Q2, whereas the rise becomes sharper at higher
virtualities. _The data are consistent with the NLO DGLAP calculations. Concerning
the ratio Rcc = F2

C/F2, the charm contribution to F2 grows steeply as x diminishes. It
contributes less than 10% at low Q2 and reaches to about 30 % for Q2 > 120 GeV2 [17].

Once more the color dipole picture will provide a quite simple description for the
charm structure function in a factorized way. Now, the Glauber-Mueller dipole cross
section is weighted by the photon wavefunction constituted by a cc pair with mass mc.
Our expression for the charmed contribution in deep inelastic is thus written as

(*, r)|2 + pF?(z,r)|2) (^(xr2) (12)

where *¥j?L (z, r) |2 is the probability to find in the photon the cc color dipole with
the charmed quark carrying fraction z of the photon's light-cone momentum with T, L
polarizations. For the correspondent wavefunctions, the quark mass in Eqs. (2,3) should
be substituted by the charm quark mass mc. Here, we should take care of the connection
between the Regge parameter x = (W2 4- 22)/(22 + 4 m2) and the Bjorken variable xBj.
For calculations with the light quarks these variables are equivalent, however for heavier
quarks the correct relation is [ 1 8] : xBj = x ( Q2 / Q2 + 4 m2 ) .

In Fig. (4) we show the estimates for the charm structure function as a function
of xB: at representative virtualities [5]. In our calculations, it was used charm mass
mc = 1.5 GeV, target size R^ = 5 GeV~2 and frozen gluon distibution at large r. We
have verified small soft contribution, decreasing as the virtuality rises. There is a slight
sensitivity to the value for the charm mass, increasing the overall normalization as mc
diminishes. Such a feature suggests that the charm mass is a hard scale suppressing the
non-perturbative contribution to the corresponding cross section. This conclusion is in
agreement with the recent BFKL color dipole calculations of Nikolaev-Zoller [18] and
those from Donnachie-Dosch [19].

Regarding the Breit system description, in Ref. [14] it was found strong corrections
to the charm structure function, which are larger than those of the F2 ones. Considering
the ratio RC

2 = F2
cGM(x, ̂ )/F2

cDGLAP(x, g2), the corrections predicted by the Glauber-
Mueller approach would reach up to 62 % at values of ln(l/x) & 15 (THERA region).
Then, an important result is a large deviation of the standard DGLAP expectations at
small x for the ratio Rcc = F2

C/F2 due to the saturation phenomena (unitarization). With
our calculation [5] one verifies that it is obtained a good description of data in both
reference systems, suggesting a consistent estimation of the unitarity effects for that
quantity.
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FIGURE 4. The Glauber-Mueller result for the F2
CC structure function as a function of Bjorken variable

x at fixed virtualities (in GeV2). One uses charm mass mc = 1.5 GeV, target size R^ = 5 GeV~2 and frozen
gluon distibution at large r. Data from ZEUS Collaboration [17] (statistical errors only).
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