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Microprocessador VLIW Adaptável para Eficiência Energética 

 

RESUMO 

 

 

O consumo de energia tem sido uma variável cada vez mais importante nos projetos de 

implementação de microprocessadores nas últimas décadas. A arquitetura VLIW é um 

exemplo representativo desta tendência, devido ao seu design simples e desempenho 

competitivo, resultado da exploração do paralelismo entre instruções (ILP) em tempo de 

compilação. Neste trabalho, é realizada uma análise da economia de energia obtida através da 

adaptação da microarquitetura dos processadores VLIW de acordo com as diferentes fases dos 

programas executados. Primeiramente, o potencial de otimização é abordado, através da 

execução de um grupo de benchmarks no processador configurável ρ-vex, e estudando o 

impacto da largura do processador (i.e.: número de issues) na performance, consumo de 

energia, e área.  A partir desta informação, um experimento levando em conta o caso ótimo 

(usando um oráculo) foi realizado com o objetivo de variar dinamicamente a largura do 

processador de acordo com a fase do programa, considerando duas granularidades diferentes. 

A economia de energia usando este tipo de adaptação pode ser de até 81,5% comparado com 

uma versão estática do mesmo processador executando o grupo de benchmarks MiBench. 

Com base nestes resultados, duas técnicas de power gating nas unidades funcionais são 

propostas. A primeira é baseada em lógica adicional, inserida no processador, para controlar 

os circuitos de power gating associados com cada unidade funcional. Mostra-se que estas 

unidades podem ser desabilitadas em até 63% do tempo de execução para os multiplicadores e 

30% para as ALUs, com um custo em performance de 13%, em média. A segunda técnica 

proposta propõe uma técnica para ser usada em conjunto com o compilador para aplicar 

power gating nas unidades funcionais, assim como nos blocos do banco de registradores. Esta 

operação é realizada inserindo instruções específicas em tempo de compilação, tendo em 

conta a análise das probabilidades de instruções de saltos e informação dos blocos básicos, 

obtidos através de instrumentação de código. Utilizando este tipo de estratégia, é possível 

economizar até 20% em energia com perda marginal de desempenho. 

 

Palavras chaves: VLIW. Processador Adaptativo. Consumo de energía. 

 

 



 

 

Adaptable VLIW Microprocessor for energy efficiency 

 

 

ABSTRACT 

 

 The development of energy efficient hardware has been a trend in microprocessor 

design for the last two decades.  VLIW processors are a representative example, since they 

have a simpler design and competitive performance, due to their static ILP exploitation. In 

this work, we study the energy savings that could be obtained by adapting such 

microarchitecture according to the current program phase. First we analyze the potential of 

optimization, by executing a set of benchmarks on the ρ-vex configurable softcore VLIW 

processor, and by modifying the number of issues. With this data in hand, we develop an 

oracle experiment to dynamically vary the issue width of the processor according to the phase 

behavior, considering two different phase granularities. The potential energy savings using 

this policy could be as high as 81.5% when compared with the static version, executing the 

MiBench set. Taking into account this information, two techniques for power gating the 

functional units are proposed. The first approach is based on additional hardware logic to 

control the power gating circuitry of each Functional Unit. Our results show that these units 

can be put to sleep on average 63% of the execution cycles for the multipliers and 30% for the 

ALUs, at a performance loss of 13%.  The second approach handles intelligent use of the 

compiler for power gating the Functional Units as well as blocks of the Register File. We do 

so by inserting customized instructions at compile time, based on the analysis that involves 

probabilities of conditional branches and basic block information obtained via dynamic 

profiling. By using this technique, it is possible to save up of 20% in the total energy 

consumption with marginal losses in performance. 

 

Keywords: VLIW. Adaptive processor. Energy consumption 
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1 INTRODUCTION 

 

1.1 Motivation 

The microprocessor industry witnessed the birth of a new design paradigm in the last 

decades, moving away from a design approach focused on performance towards one focused 

on energy efficiency.  This trend can be attributed to two major facts. The first one is the 

power wall that the industry faced when the raising frequency used in the new high-end 

processor designs produced higher values of power consumption (Figure 1.1), which could 

not be managed with the current packaging technology COLWELL (2013). The deep-

pipelined and aggressive out-or-order designs were discouraged since the success of these 

strategies is profoundly linked with increasing clock rates. The second fact was the prevalence 

of embedded systems in the electronics market whose energy consumption is very restricted 

due to mobile battery constraints RAKHMATOV;VRUDHULA (2003). Thus the growing 

performance that electronics market demands from new computer systems generates an 

important trade-off: the consumer needs the highest performance with the least possible 

energy consumption BECK; LISBÔA; CARRO (2012). 

This design pressure for adaptability regarding energy savings might be found in all 

levels of abstraction within any modern microprocessor. In the architectural level, it can be 

found heterogeneous systems, which are multicore systems composed of cores with different 

computer organizations KUMAR et al. (2005). Each one of them presents different values of 

power consumption and performance, representing distinct points in the design space. In these 

systems, each thread is allocated for its best possible core depending on either specific 

performance or energy requirements, making possible improvements in energy efficiency. On 

the other hand, at the gate and transistor level, technological approaches like DVFS modify  

frequency and voltage supply depending on the current performance demands or power 

constraints ISCI; BUYUKTOSUNOGLU; MARTONOSI (2005). 
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Figura 1.1 - Thirty five years of microprocessor trend data. 

 

Reference: MOORE (2011) 

 

At the architectural level, VLIW design is a microarchitecture solution for the 

demands imposed by energy efficiency requirements since complexity is moved from 

hardware to software. A superscalar processor exploits ILP (Instruction Level Parallelism) 

through expensive dynamic scheduling hardware, whereas in VLIW processors a compiler 

does most of this work, statically. It results in a simpler hardware design that still takes 

advantage of multiple execution units without incurring high resources overhead. However, 

the energy resources of a modern VLIW microprocessor are also limited and then its use must 

be intelligently managed to avoid any kind of energy waste. Therefore, VLIW 

microprocessors must also be designed to dynamically adjust the availability of resources to 

the computational demands.  

The typical commercial VLIW processors are static and the resources that are 

available in the CPU are not always in tune with the demands generated by the workload.  In 

this group of static resources, we can find the issue-width and the register file size.  The issue-

width influences the availability of execution units, which determines the ILP available for 

the compiler, whereas the register file size determines the number of registers that the 

compiler is able to manage. By choosing high values for these parameters, performance is 

likely to increase but it will also increase power consumption as a drawback. Since different 
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programs exploits the availability of functional units and registers at different levels, the 

presence of idle units in this kind of resources will most likely be a source of energy waste.   

Moreover, not only different applications present varying demands for resources: even 

the needs of a single application may vary throughout time. For instance, some parts of the 

program may exploit more ILP by computing several arithmetic operations; while others may 

present less ILP because of being memory bound sections. These intervals with similar 

behavior are defined, in this work, as phases SHERWOOD et al. (2002). If the resources are 

set to comprise the phase with the highest demand of hardware resources (in order to achieve 

the best performance), the execution of a phase with low computing demands will increase 

the energy consumption of the system since the idle resources will continuously consume 

energy. On the other hand, if the resources are set to the lowest demanding phase, the 

performance will be highly affected (and may also negatively influence energy, since it will 

take longer to finish execution). Therefore, for a given application, the presence of different 

phase behavior will very likely affect the performance and energy consumption of the system. 

Since high performance is needed in many practical problems, the implementation of a 

great quantity of FUs in a VLIW processor is sometimes obligatory. Therefore, the optimal 

scenario is to combine both performance and low energy consumption by having all the 

resources available for high ILP phases and turn off the idle hardware when a phase with low 

ILP is found. This situation demands the use of effective techniques for power management 

of idle FUs, dynamically decreasing the amount of energy consumed by parts of the circuit 

that are not useful for computing purposes. In this group of techniques, we can find prior 

circuit-level approaches like clock gating BOLZANI et al. (2009), EMNETT; BIEGEL 

(2000) and power gating HU et al. (2004). While the first one only attempts to decrease the 

dynamic power consumption, which is a result of the clock tree switching; the second one 

also reduces leakage power of the logic by disabling the power lines for specific parts of the 

circuit. The implementation of power gating is more challenging in terms of design because 

of the overhead of this technique: since the turn-on and turn-off processes of the power lines 

of the circuitry spend additional time and energy, this penalty must be taken into account by 

the power gating policy. Nevertheless, leakage power has been showing an increasing impact 

on newer technologies CHANDRAKASAN; BRODERSEN (2012). Thus, the use of power 

gating for specific parts of the die could be mandatory in the next microprocessor designs to 

avoid excessive power dissipation. 
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1.2 Objectives  

Having in mind the aforementioned scenario, the purpose of this thesis is to address 

the feasibility of an adaptable VLIW processor and propose design solutions for the 

implementation of its microarchitecture. We present results and measurements of the potential 

benefits produced by this scheme through synthesis and simulation tools. 

Summarizing, this work has three main purposes: 

• Describe quantitatively the impact of architectural design choices like issue-

width for energy consumption, performance, and area on a VLIW processor.  

• Analyze the potential energy savings that might be obtained by dynamically 

adapting the VLIW microarchitecture according to the program phase.  

• Propose, describe and implement a feasible adaptable VLIW processor for 

energy efficiency; and compare the advantages and challenges of a purely hardware-based 

approach versus a compiler-based approach. 

1.3 Thesis Organization 

The rest of this work is organized as follows. Chapter II describes a summarized 

bibliographic review over adaptable computer architectures for energy efficiency. Chapter III 

describes work related to VLIW microprocessors and presents ρ-VEX, a VLIW processor that 

is used along this work for simulation purposes. Chapter IV shows the potential of 

optimization by analyzing the impact of design choices on performance and energy 

consumption as well as the evaluation of an oracle methodology for potential energy savings 

through issue-width adaptation. Chapter V and Chapter VI compares two main 

implementations for adaptable functional units through power gating: a hardware approach 

based on hardware counters (Chapter V) and a software approach based on power gating 

instructions (Chapter VI). Chapter VII presents a comparison in terms of results between the 

two previously mentioned strategies.  Chapter VIII summarizes our conclusions and points 

out to future directions of research and development. 
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2 ADAPTABLE COMPUTER ARCHITECTURES FOR 

ENERGY EFFICIENCY 

 

In this chapter, it is presented a survey about adaptable computer architectures for 

energy efficiency and the implementation challenges that are associated with this kind of 

design. More specifically, how we can dynamically reconfigure the behavior of modern 

microprocessors depending on the running application in order to minimize energy 

consumption. We are going to review a set of researches related with this issue and we will 

show the different practical problems that arise whenever an adaptable processor is 

implemented. The purpose of this chapter is to show the different methodologies that have 

been applied for the energy efficiency problem, presenting a wide range of paradigms, from 

Heterogeneous Systems to Reconfigurable Computing. 

The rest of this chapter is organized as follows. In section 2.1 it is presented the 

problem of power consumption in CMOS technology as well as the technological techniques 

that have been developed to decrease its impact. In section 2.2 there is an overview about 

dynamic behavior of workloads studying the variability that applications exhibit in terms of 

application metrics like IPC, branch miss prediction error rates, etc. In section 2.3 the related 

work about adaptable architectures for energy efficiency is presented, remarking the 

differences between each one of the possible approaches. Finally, section 2.4 presents the 

conclusions that can be extracted from the previous discussion and the perspectives that can 

be expected from future adaptable computer architectures. 

2.1 Managing Power consumption in CMOS technology 

The CMOS paradigm has evolved as the primary technology used to design, 

implement and verify new integrated circuits. The shift from bipolar circuits to CMOS 

brought new advances in power consumption since the energy this kind of circuits demanded 

was mainly represented by switching activity whereas static consumption was almost 

insignificant. Paradoxically, the same reason that gave impulse to CMOS technology has been 
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the primary challenge in the last years. The increasing power density as well as the increasing 

importance of leakage power have become rough challenges for hardware engineers. Since 

the advent of a new technology that replaces CMOS will not be mature within a short term, 

the efforts have been focused on the implementation of techniques for decreasing power 

consumption without essentially changing the manufacturing process. 

Since the 1990s, power consumption has been a primary requirement at the same level 

that performance and cost for any digital design.  The embedded systems and mobile 

applications, which are restricted by battery lifetime, are two big forces that have guided the 

rise of power-aware computing. In desktop machines, the key constraint is thermal, so 

currently, high performance processors have encounter a “power wall” and their operating 

frequencies have been severely restricted. 

Likewise, power consumption is becoming a main concern for the High Performance 

Computing (HPC) community, since moving from petascale to exascale demands better 

energy efficient systems HEMMERT (2010). For instance, the Titan supercomputer at Oak 

Ridge National Laboratory has 18,688 NVIDIA Tesla K20X GPUs, which demand almost 8.2 

MW of power while generating 2.14 GF/W. This energy efficiency is far from the required to 

enable exascale systems, which would have to be higher than 50GF/W VILLA, et al. (2014).  

The future process technology improvements would account for about 4.3X of the required 

energy efficiency whereas an additional 1.9X could be derived from circuit improvements like 

lower VDD operating voltage. Therefore, about 2.5X of the needed enhancements would have 

be generated by architectural and system level design decisions which, if successful, would 

allow efficient scaling-up of node performance VILLA, et al. (2014).  

The problem of low power techniques has been historically and mainly addressed by 

circuit engineers. The apparently historical unique focus on the circuit-level is understandable 

because of availability of CAD tools for power consumption estimation and a more precise 

analytical approach. However, in the recent past the importance of architecture decisions has 

gained interest, so the problem has been also managed at a higher level of abstraction. Often 

the design decisions on higher levels of abstraction produce a higher impact on system 

behavior in terms of performance and energy. The latest efforts in this direction have been 

present at the level of caches, execution units, cores, etc.   

In the next subsections the CMOS power consumption sources are explained as well 

as the specific techniques that have been developed to deal with them. 
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2.1.1 Sources of Power consumption  

Basically we can divide power consumption for CMOS into two big categories: 

dynamic and leakage power.  The first is related with energy spent during switching activity 

intervals and the second one includes all the power consumption sources when the circuit is in 

idle state. 

2.1.1.1 Dynamic Power 

Dynamic power consumption has been the most important part of the power budget 

and the primary metric that has guided the progresses in power aware computing. It is caused 

by the switching activity that CMOS gates generate when there are state changes in any of 

their outputs. In that case, the capacitances that compose the circuit are charged and 

discharged, which consumes energy in the process.  

It is given by the known equation: 

P = CV2Af 

Here, C is the load capacitance, V is the voltage that acts as supply, A is the activity 

factor and f is the operating frequency. The details of each one of these variables are 

described below. 

Capacitance (C): It is the capacitance that is generated by the intrinsic characteristics 

of the transistors and the contribution of wires and aggregated chip sub-structures. Since the 

capacitance due to transistor parasitics are inherent to the technology, the architecture 

decisions have not a big impact on this one. However, the load capacitance largely depends 

on the wire lengths of on-chip modules, so the variation of computer organization could 

increase or decrease the total power consumption. As an example, a processor composed of 

four simple cores would have shorter wire lengths compared with a big core since the most 

part of the connections is restricted to smaller regions. The same principle applies to 

independent banks of cache compared with a large cache since the address and data lines are 

only spanned in a relatively small region.  

Supply Voltage (V): It corresponds to the voltage of supply lines connected to CMOS 

gates. Since the contribution to P is quadratic, its changes have enormous influence on the 

total power consumption. Historically, this variable has dropped steadily with each new 

technology which has made possible higher levels of integration. 

Activity factor (A): This variable expresses the fraction of time that the wires are 

transitioning. A value of 1 would mean that the transistor outputs are switching at the same 

rate as the clock speed. There are many techniques, like clock gating, that aim to reduce 

activity factor by disabling unused logic at specific moments. 
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Frequency (f): The clock rate is a variable that is associated with operating frequency 

in any synchronous circuit. The supply voltage and frequency are not independent parameters, 

so usually they are correlated. A system that needs higher operating frequency needs higher 

supply voltage since the charge and discharge of capacitances is faster in that situation. For 

that reason, the effect of these variables (V2f) has a cubic impact on power consumption. 

Techniques like DVFS (Dynamic Voltage and Frequency Scaling) have been developed to 

reduce this effect by modifying frequency and voltage supply depending on the current 

performance demands ISCI, et al. (2005). 

2.1.1.2 Leakage Power 

The power consumption that is produced when the transistors are not changing their 

current outputs is called leakage power. The amount of its contribution is not predominant 

when it is compared with dynamic power but the trend is to increase with each new 

semiconductor fabrication improvement. As the technology scales down below 100nm, the 

channel length decreases, which increases the amount of leakage power in the total power 

dissipated KUMARI et al. (2014). 

Leakage power is divided into gate leakage and sub-threshold leakage. The first one is 

related to the amount of current that is tunneled through the transistor gate and its relative 

importance is increasing with technological shrinking. On the other hand, sub-threshold 

leakage is the most representative part of leakage power and it is caused by the non-ideality of 

gate dynamics. The ideal value of static drain current in a CMOS circuit is zero. However, 

since it behaves exponentially, there is a little contribution of current even when the voltage 

source is less than threshold voltage. Mathematically it is expressed as: 

 

 

 

Here, V is the supply voltage, Vth is the threshold voltage, T is the temperature and a, q 

and ka are constants that depend on fabrication processes. It is noted that leakage power is 

higher if Vth is lower. Since lowering threshold voltage is a necessity to achieve higher 

operating frequencies, it causes an increasing for power consumption.  

2.1.2 Techniques for power reduction 

There have been proposed many different techniques to decrease the impact that a 

variety of sources have over power consumption both as dynamic power and as static power. 

These methods span from low level techniques, like using high threshold transistors, to high 
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level approaches, like using multicore processors. In this section, we explore two specific 

methods that can be applied at the microarchitecture level and, as a result, important for the 

current research. They are clock gating and power gating. 

The first one attempts to reduce dynamic power caused by clock tree and the second 

one is focused on decreasing leakage generated by idle circuits. Each one resolves different 

problems so they can be applied orthogonally. 

2.1.2.1 Clock Gating 

One of the main methods to reduce dynamic power consumption is to disable 

switching activity that does not have a direct influence on the results of a computation. In the 

case of clock gating, the main purpose is to prune those parts of the clock tree that arrive to 

flip flops and latches which are not changing their outputs. Therefore, this action reduces 

dynamic power generated by clock switching activity. It could be applied to simple circuits, 

modules an even at the core level, depending on the granularity that is being addressed.  

At the circuit level, the process of clock gating is depicted in Figura 2.1.  When an 

AND gate is introduced, the flip flop input capacitance is replaced by the AND gate 

capacitance. Since this value is lower than the former one, the energy that is spent discharging 

and charging it is much smaller. 

 

Figura 2.1 - Clock gating circuitry for a flip flop.  The clock is controlled by the behavior of enable 

signal. 

 

One specific technique for clock gating is Deterministic Clock Gating, which enables 

and disables the clock tree for execution units or different stages of a pipeline some amount of 

cycles in advance LI et al. (2004). So if one specific module is not used during a part of the 

execution, its clock signals could be pruned. The idleness of a structure must be known some 
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cycles in advance to reduce problems of performance drop. The enable and disable signals for 

clock gating are transmitted like a bubble through the pipeline. 

Although the idea had been conceived a long time ago, the first real application on a 

superscalar pipeline was not made until 2003. By applying deterministic clock gating LI et al. 

(2003) disabled and enabled latches and stages of the pipeline according to the ideas 

presented here. They reduced power in 21% and 19%, on average, for floating point and 

integer SPEC2000 benchmarks, respectively. 

A number of commercial processors implement some kind of clock gating to take 

advantage of the reduction in dynamic power without significant losses in performance. In the 

following paragraphs some of the most remarkable ones are presented.  

Intel XScale: It is a low power processor that, besides its extensive DVFS features, 

implements deterministic clock gating CLARK et al. (2001). The most basic units that are 

controlled via clock gating are the Local Clock Buffers (LCBs), which generate clock pulses 

that are fed into pulse-clocked latches. Each LCB has enable signals that stops the production 

of those signals and consequently disables the clock tree for some parts of the processor. Each 

LCB must control at least five latches to avoid losses due to power overhead associated with 

extra-circuitry. 

Power5: The power savings obtained via clock gating in this processor are about 25% 

without losses in performance CLABES et al. (2004). All the clock gating domains are 

programmable, so there is a big control over the dynamics of the mechanisms.    

2.1.2.2 Power Gating 

The main idea behind Power gating is to decrease static power by dynamically 

disabling the power lines of specific parts of the circuit when there is no switching activity. 

To achieve this objective a global policy controls the dynamics of power gating signals and, 

likewise, some additional and special circuits carry out the connection and disconnection of 

power lines. 

The circuitry for each domain is composed of a header and/or footer transistor and the 

corresponding logic (see Figura 2.2). When a sleep signal is asserted, the sleep transistors 

disconnect Vdd and the virtual Vdd. Likewise, when it is de-asserted the power supply is 

available again. 
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Figura 2.2 - Power gating circuitry. The sleep signal controls the availability of power lines for each 

transistor. 

 

Refernce: SAHA et al. (2013) 

 

Since the charge and discharge of power lines is not currently accomplished within 

one single clock cycle, there is a time penalty for each one of these processes. This kind of 

penalty is manifested as a potential performance loss when a specific circuit is needed for 

computational purposes and its functionality is not available at that moment.  

The process of power gating has a set of phases that it is important to mention briefly 

(See Figura 2.3).  The inactivity period begins at T0, and at T1. The Power gating control unit 

takes a decision and produces the signals to disable the domain. From T1 to T2, the signal is 

distributed to the header and it consumes an overhead energy of Eoverhead1. At T2 the 

connection between Vdd and virtual Vdd is asserted and the latest one begins to decrease. The 

process continues until T4, when the virtual Vdd is completely discharged. Although the 

reduction in leakage power begins at T2, it is only zero at T4.  At T5, it is detected busy 

activity again and the signals for the header are enabled, which produces an overhead energy 

cost equals to Eoverhead2. At T6, the virtual Vdd begins its process of recharging until T7. 
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Figura 2.3 - Key intervals in the power gating cycle. 

 

Reference: HU et al. (2004) 

 

The break-even point T3 is defined as the point when the amount of power savings 

equals the amount of energy overhead that the reconfiguration demands: 

Eoverhead = Eoverhead1 + Eoverhead2 

Depending on the specific characteristics of the header, the block size, the decoupling 

capacitances, etc. this value could vary. There have been several researches about this topic. 

For instance, in DROPSHO et al. (2002) the worst-case leakage behavior relative to the 

dynamic energy is modeled; whereas in HU et al. (2004) an analytical model is developed for 

the calculation of break-even point, finding a value of 10 cycles for break-even point using 

some typical technological parameters. 

Due to the overhead of power and performance that power gating produces, it 

generates more modifications at the architectural level when compared with clock gating.  An 

intelligent policy must be implemented to avoid applying power gating in all situations and 

restricting its use only for those cases when the potential savings are better than the incurrent 

cost. Many commercial products for low power markets implement power gating through the 

intervention of Operating System, like the Intel Atom Processor E5xx. This kind of 

processors are designed with optimized power utilization, being capable of applying power 

gating for Video Decode (VDX), Video Encode (VED), Graphics (GFX), and Display (DSP) 

modules in runtime YEO et. al (2011).  
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Therefore, power gating has been implemented through two main approaches: by 

microarchitectural techniques, which use hardware logic to measure, decide and apply power 

gating at the circuitry level; and by software techniques, which use the knowledge about the 

behavior of the program to carry out power gating decisions.  In the first group we can find 

researches based on an accurate measurement of idle periods FLAUTNER et al. (2002),  

KAXIRAS; HU; MARTONOSI (2001). The efforts are focused on memory resources like 

SRAM hardware, measuring intervals of time when some sub-modules are not currently being 

used and applying power gating when these periods of time are detected. HU et al. (2004) 

proposes the use of hardware counters to detect idle periods and apply power gating when 

these intervals surpass a specific threshold. Two strategies are analyzed: time based power 

gating and branch prediction power gating. On the other hand, RELE et al. (2002) use 

compiler technology to detect low ILP segments of the execution to generate power gating 

directives for rarely used FUs on a superscalar MIPS processor. Park et al. PARK et al. 

(2010) use profile information of functional units to insert ON/OFF instructions during the 

code execution of an out-of-order ARM processor. ROY et al. (2006) describe the insertion of 

sleep instructions at the entry point of specific iterative code segments by capturing the 

nesting loop properties of the program.  

Other researches have addressed the issue in VLIW processors.  UCHIDA et al. 

(2012) proposes a scheduling technique for fine-grained power gate on VLIW processors. 

LIAO; BASILE; HE (2002) use power gating through Virtual power/ground rails Clamp 

(VRC) and Multithreshold CMOS (MTCMOS). It is based on a microarchitecture technique 

that counts the active frequency of cache ways and specific components of the datapath in a 

given time window. This information is used to determine which idle units could be disabled 

via power gating. NIEDERMEIER et al. (2010) present an analysis of fine-grain power 

gating. The processor is partitioned into three power domains and they are controlled through 

control registers that determines the activation or deactivation of the different resources. 

2.2 Dynamic Behavior of Workloads 

The sections of code processed by a generic microprocessor changes depending on the 

current state of execution. It means that one specific time segment could be focused on certain 

parts of the application whereas other could be rarely executed. It makes the CPU exhibits 

disparate behaviors in terms of performance and use of resources in different moments. This 

characteristic is not only evident when the applications are compared between each other but 

even when the analysis is carried out between specific time intervals of the same program. 
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Most part of the applications that are normally executed in a computing system exhibit 

a series of phases along time SHERWOOD et al. (2002). Each phase is characterized by a 

group of variables that are relatively constant for that period of time. For instance, during one 

part of the execution the program could be showing memory bounded behavior, in another it 

could be repeatedly stall on branch miss-predictions, and in others the arithmetic operations 

could be the most part of the processed instructions and the processor performance would be 

higher. One key observation which must be noted here is that since this behavior is a product 

of the way the processor  executes different segments of the code,  large scale phases could be 

detected just by measuring the ratio in which different parts of the program are being executed 

DHODAPKAR; SMITH (2003). For example, if a program is composed by two main 

segments of code A and B, a phase 1 could be characterized by a high proportion of executed 

code A and a low proportion of B whereas a phase 2 could be primarily composed by 

executed code B and a low proportion of code A. 

Even though the existence of phases is very intuitive and evident (see Figura 2.4), the 

justification about when a new phase begins, and even its quantitative and qualitative 

definition, is not trivial. Program phases show fractal-like behavior, so large phases are 

composed of lower level phases and in the limit each instruction could be classified as a 

distinctive phase HIND; RAJAN; SWEENEY (2003). It remarks the idea that a program 

phase is not an absolute concept but it is only a model to classify the behavior of a program at 

different levels of granularity. Phase detection algorithms are not methods for direct detection 

of phases but for detecting changes in program behavior that are interpreted as a change in 

current program phase. 

SHERWOOD; SAIR; CALDER (2003b) simulated a set of programs from SPEC95 

benchmark and obtained measurements of IPC, branch prediction, address prediction, value 

prediction, cache performance and reorder buffer occupancy. It was found that programs 

exhibit phase and cyclic behavior in a large scale and this inherent pattern is repeated along 

time. The method that was used to discriminate between phases was Basic Block Vectors 

(BBV), which is based on saving information about each basic block of the program within 

each time interval. A record of all the basic blocks executed by a specific interval is saved so 

that a distribution of BB is obtained. If two time intervals belong to the same phase they 

would have a similar distribution of basic blocks use and conversely, if they are not part of the 

same phase, the Manhattan Distance between the two BBV would be higher. 
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Figura 2.4 - Time varying behavior for wave5 program from SPEC95 benchmark.  The X axis is in 

terms of 100 million of executed instructions. 

 

Reference: SHERWOOD et al. (2002) 

 

Since the number of executed basic blocks within a time window of millions of 

instructions is very large, recording the complete information about the use of all the basic 

blocks is almost impractical in terms of hardware and software. For this reason it was used 

compression of the BBVs to reduce their high dimensionality. The results remark the great 

variability of the program metrics between different phases and the similarity that could be 

found when the measurements comparisons are done within different parts of the same phase. 

In a similar work, DHODAPKAR; SMITH (2002) use the specific set of instructions 

that are executed within a time window to classify phases.  Program changes are detected 

when the dissimilarity between two consecutive instruction working sets are greater than a 

preset threshold. Likewise, as the approach that was earlier described by SHERWOOD; 

SAIR; CALDER (2003b), a compression phase allows to retain only the information 

necessary for classification and to obtain a digital representation with a minimal number of 

bits.  

Other strategies like HUANG; RENAU; TORRELLAS (2003) use subroutines to 

identify phase behavior. It uses a hardware call stack to measure the time that each part of the 

code is using the CPU, taking into account nesting. If time that is spent in each sub-routine is 

greater than a preset value, it is detected as a new phase. 

DWARKADAS et al. (2010) implement a system that uses the amount of conditional 

branches to detect phase changes. One of the arguments that is used by this kind of approach 

is that the quantity of branches throughout a phase remains relatively constant and a major 
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change for this value represents a modification of the current phase. For this purpose, it is 

used a threshold that indicates the maximum value of difference between two adjacent time 

windows to be classified as belonging to the same phase. The threshold is modified 

dynamically throughout the execution of the program. 

2.3 Adaptable Architectures to minimize Energy consumption 

The idea of an adaptable computing system suitable for the specific characteristics of 

the workload has been developed in several previous researches. Firstly, it is presented a 

heterogeneous system perspective with two focuses: approaches which optimize power 

limited by performance constraints and others whose most important metric is performance 

whereas power is restricted to a budget. Secondly, it is presented the concept of 

reconfigurable computing and the main papers that have been related with this field. Finally, 

there is a review about self-adaptable microarchitecture and the challenges that this 

perspective presents in comparison with other techniques.  

2.3.1 Heterogeneous Systems 

Heterogeneous System is a design approach proposed to improve the energy efficiency 

on multicore chips. In this kind of systems, the workload is scheduled among a group of cores 

with different computer organization complexities. The objective is allocating the threads to 

the best core in terms of performance or energy efficiency. For instance, if an application has 

high thread level parallelism, the workload could be divided into a set of simple cores, taking 

advantage of its inherent parallel algorithm. However, if one part of the workload is strictly 

sequential, it is not useful using many cores since a single thread could be allocated to a more 

complex processor (e.g, out-of-order core). Having in mind Amdahl’s Law, this decision 

decreases the impact that a strictly sequential segment of code produces over the total 

execution time. 

Many strategies have been proposed to adapt thread allocation policy in heterogeneous 

systems. In the following sub-sections it is presented some of the most relevant researches, as 

well as the advantages and the challenges for each approach. The related work is divided into 

two groups: those researches that attempt to obtain power savings according to performance 

constraints; and others that optimize performance constrained by a constant power budget. 

2.3.2.1 Optimizing power with performance constraints 

KUMAR et al. (2004) present one of the first researches focused on saving energy via 

dynamically scheduling in heterogeneous systems. It used a simulation of a multi-core system 

to evaluate how the optimal core for energy efficiency changes along execution time. It was 



 

28 

 

used a group of cores with different complexity levels, namely four Alpha cores – EV4 

(Alpha 21064), EV5 (Alpha 21164), EV6 (Alpha 21264), and a single threaded version of 

EV8 (Alpha 21464). The physical organization is depicted in Figura 2.5. 

  

Figura 2.5 - Relative sizes of the cores used for simulation. 

 

Reference: KUMAR et al. (2004) 

As can be seen, the increasing complexity of the core microarchitecture is the reason 

behind the big difference between the area used by EV4 and EV8. The former approximately 

has only 10% of the total area allocated for the second one. All the cores share a single ISA 

which reduces problems due to binary compatibility. 

In all simulations it was assumed that a single thread was running in one core at a 

time. Power and area were calculated from application statistics collected in real applications. 

By running the same thread for all cores it was found which core was the best option for each 

phase depending on two objective functions: energy-delay (the product of energy and delay) 

and energy-delay2 (the product of energy and the square of delay).  

Using the best core for each application phase and following the mentioned 

methodology, it was obtained a reduction about 63% and 50% for energy-delay and energy-

delay2 respectively. This oracle experiment for a specific application can be observed in 

Figura 2.6, where it is represented for each phase the best core in terms of energy efficiency. 
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Figura 2.6 - (a) Performance of application applu on the four cores. (b) Oracle using energy metric (c) 

Oracle using energy-delay product. 

 

Reference: KUMAR et al. (2004) 

 

Recent technological and commercial devices are based on the heterogeneous 

processing architecture like the Big.LITTLE Technology JEFF et al. (2012).  The referred 

system uses two types of processor: “LITTLE” processors, which are designed for maximum 

power efficiency; and “big” processors, which are designed to provide maximum performance 

(Figura 2.7). These two kinds of processors use the same instruction set, which provides 

coherence for their programmability. Depending on the performance required for the executed 

threads, each one can be allocated to a big or LITTLE core. Its use has been mainly present in 

the Mobile market. 
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Figura 2.7 - Context Switching for big.LITTLE architecture. The demanding tasks are allocated to the 

more complex Cortex-A15 while the others are executed by the Cortex-A7. 

 

Reference: JEFF et al. (2012) 

 

LI; MARTINEZ (2006) present, in the context of optimization algorithms for 

minimizing power consumption in heterogeneous systems, a group of heuristics for dynamic 

optimization using a design space composed of two main dimensions: the number of active 

processors and voltage/frequency scaling.  A group of benchmarks was simulated with 

different values for these two variables. The results of power and performance can be 

observed in Figura 2.8. 
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Figura 2.8- Power consumption and execution time of CMP configurations with varying number of 

processors N and voltage/frequency levels for an instance of BSOM’s parallel region (a parallel data 

mining application). Target execution time and power are 40 ms and 30 W respectively. 

 

Reference: LI; MARTINEZ (2006) 

 

As normally, an exhaustive search is beyond the scope of any design exploration. 

Therefore, a hill climbing method was used to find the optimal number of processors in terms 

of power consumption. Taking into account the results of performance and power obtained 

via simulation, binary search was applied to the number of processors. A variable DVFS was 

set to accomplish the minimal performance target. Software support is required to schedule 

the applications to the right number of processors during optimization phase and steady phase. 

2.3.2.2 Optimizing performance with a given power budget 

ISCI et al. (2006) describe a homogeneous system, which aimed to maximize 

performance under a power budget by applying per-core DVFS (Dynamic Voltage and 

Frequency Scaling).  Different policies and objective functions were used to evaluate how 

several heuristics impact on the overall results of power and performance. It was obtained a 

degradation of 1% of performance compared with an ideal oracle, constrained to a specific 

power budget. The concept of a global power manager is shown, which uses different 

frequencies and voltages for each core instead of a generic policy for all the cores. This has an 

enormous advantage over other approaches because it allows adjusting the power level to the 

performance requirements of each core, producing a better granularity management. 



 

32 

 

KOUFATY; REDDY; HAHN (2010) analyze the problem of selecting the core that 

best suits the resource needs of each thread in a heterogeneous system.  They evaluate key 

metrics to find the best core, allowing the scheduler to be aware of such characteristics for a 

better performance. Two big contributions can be obtained from this work. First, it is based on 

online application monitoring without sampling performance metrics on each core or offline 

profiling. Secondly, the cores, unlike many other researches, exhibited different 

microarchitectures which allows better understanding of heterogeneous system in the context 

of multithreading. One of the assumptions that this work used was the correlation between 

stalls and bias core (Figura 2.9). Bias, in this research, is defined as the affinity of a thread to a 

core type. A thread has big core bias if its big/small core speedup is large and conversely, a 

thread has small core bias if its big/small core speedup were small. Taking into account this 

concept, often the applications that present a high amount of external or internal stalls have 

smaller performance gains when they are running on a big core, when compared with others 

which do not have this characteristic. Therefore, a system that measures the number of stalls 

was simulated along with an algorithm for estimation of bias application depending on the 

number of stalls and CPI. The results showed the benefits of a policy that takes into account 

the hardware metrics derived from applications for efficient thread scheduling. 

 

Figura 2.9– Big/Small Core Speedup for different applications. A thread has big core bias if its 

big/small core speedup is large. Conversely a thread has small core bias if its big/small speedup is 

small 

 

Reference: KOUFATY; REDDY; HAHN (2010) 
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GHIASI; GRUNWALD (2003) present the use of an asymmetric multicore approach 

to deal with thermal emergencies. The management is accomplished through the use of 

multiple operation frequencies for the different units, so the general policy attempts to 

optimize performance taking into account the constraints that impose the exceptions 

generated by abnormal temperature behavior.  

ANNAVARAM; GROCHOWSKI; SHEN (2005) implement a real design of an 

asymmetric multiprocessor with multithreading applications. Both static and dynamic 

environments are simulated, and it is measured the performance gain under fixed power 

budgets. This is evaluated on a physical 4-way Xeon SMP Server and using a big group of 

multi-threaded benchmark programs. It was found 38% wall clock speedup for the AMP 

(Asymmetric multiprocessor) compared to a standard SMP (Symmetric Multiprocessor) that 

uses the same power. 

Although the benefits that heterogeneity brings to microprocessor design are clear, the 

implementation of real systems face new challenges in terms of software development which 

are not present in homogeneous systems.   

Usually software engineers develop code with the assumption that all cores have the 

same performance and capabilities, but this is not true when a heterogeneous multicore 

system is being used. This implies that if software design is not aware of microarchitecture 

features, maybe there will be problems for scalability and predictability.  

BALAKRISHNAN et al. (2005) show a work about these issues and how they could 

be managed to take advantage, in terms of performance and energy efficiency, of 

heterogeneous systems without generating new problems due to asymmetry.  It was used a 4-

way 2.8 GHz Intel Xeon multiprocessor (Shasta series), hyper threading was disabled in all 

processors and heterogeneity was achieved via DVFS for each core. Running a set of SPEC 

benchmarks, the conclusions that were found from this work can be summarized as: 

• Asymmetry affects predictability when there are shared memory resources for 

a specific application.  

• With some workloads, the problems that arise with asymmetry could be 

mitigated with an operating system aware of heterogeneity. In other applications, it is 

necessary the application itself to be aware of the available microarchitecture features. 

• The sequential performance of a heterogeneous system with a fast core is better 

than a homogeneous one, as can be expected from previous discussions.   
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Finally, it is noted the big importance of the development of mechanisms for 

exchanging information between hardware and software counterparts for good predictability 

and scalability results.  New tools and interfaces need to be developed to expose the operating 

system and the scheduler to the varying features of the cores that are part of a heterogeneous 

system. 

2.3.2 Reconfigurable Computing 

Reconfigurable Computing is an approach aimed to adapt the computer organization 

of the system depending on the varying behavior of the workload. The computer organization 

is modified to exploit application particularities, improving the performance of specific code 

segments or modifying the availability of computing resources for energy efficiency 

CARDOSO; DINIZ; WEINHARDT (2010).  In this kind of solution, reconfigurable hardware 

can be modified on-the-fly to generate specific hardware structures.  For example, some parts 

of a program could require only 12-bit fixed point precision arithmetic, while others could 

demand the use of 32-bit precision for parallel computation of Fast Fourier Transform.  Since 

the most part of the computing systems do not have data structures optimized for each one of 

these tasks, the overall efficiency (in terms of performance and energy) might be boosted if 

the regular data flow were configured into dedicated hardware structures. Furthermore, the 

rapid emergence of FPGAs for computing purposes has multiplied the opportunities for the 

application of reconfigurable computing into many commercial and scientific domains. 

Some researchers have been based on the implementation of a main processor that 

normally executes the instruction set and a coupled coprocessor which is reconfigured for 

acceleration purposes (Figura 2.10). For example, LYSECKY; STITT; VAHID (2004) present 

the implementation of a WARP processor that uses a Field Programmable Gate Array 

(FPGA) to improve the performance of specific parts of the running code.  It is completely 

transparent for the programmer because there is no need for a special compiler for the FPGA 

unit. While not all the benchmarks could take advantage of this technique, it significantly 

improves performance for some applications. Many others projects, can be classified as 

coarse grained architectures – e.g. Montium Tile Processor SMIT et al. (2004)– which are 

commonly used to improve filter algorithms for communication and multimedia applications 

with little control flow, and fine-grained approaches – e.g.  Chimaera YE et al. (2000) – 

which are dominated by control statements.  FL; CARRO (2010) address a wider discussion 

of these kinds of architectures and the implemented challenges associated. 
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Figura 2.10 - Block diagram of a microprocessor with reconfigurable coprocessor. 

 

Reference: MIYAMORI; OLUKOTUN (1998) 

 

2.3.3 Challenges and Other Architectures 

Three important aspects must be taken into account when such adaptable 

microarchitectures are proposed. First, the metric which is subject to optimization through 

adaptability depends on the specific system. For example, some processing units could be 

power constrained so an adaptability solution could be focused on this metric to accomplish 

better results. On the other hand, systems which have higher performance objectives could 

use microarchitecture adaptability to enhance performance depending on the workload. 

Researches like KEDZIERSKI et al. (2010) trade-off between power and performance by 

dynamically partitioning a shared cache among threads based on the phase behavior of the 

program. It dynamically reverts back to a performance centric cache partitioning scheme if 

the power savings are not possible. The results show energy savings around 51.5% in a L2 

cache, which corresponds to 11.5% of the total energy of the processor. 

Secondly, the frequency of microarchitecture adaptation is essential for the results and 

savings obtained. Every reconfiguration has an overhead in terms of performance and power 

since it involves a physical modification of the system, therefore the reconfiguration rate must 

be carefully planned to increase benefits and to avoid potential losses. HU et al. (2004) 

explore power gating to manage the availability of execution units depending on the current 

use. The cost of performance and power that are associated with this technique are the 
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variables that limit the reconfiguration rate. Since there is a cost that must be spent to 

accomplish the disconnection of the power supply lines, there is a minimum time for the 

availability of execution units. If the reconfiguration does not respect this kind of constraint, 

the amount of energy used to adapt the system would be higher than the energy savings 

originated from the use of the technique. Using this approach, and obeying the last restriction, 

they found that the execution units could be put to sleep for up to 28% of the execution time 

at a performance loss of only 2%. 

Finally, the physical resources that are going to be modified as well as the specific 

techniques to accomplish this task must be determined. The kind of resources could be the 

size and associativity from a cache, the availability of execution units, the fusion of cores, etc. 

ALBONESI (1999) implements cache reconfiguration through modification of the level of 

associativity to meet the goal of managing energy budget. Some sub-set of ways are disabled 

depending on the demands to reduce cache switching activity.  The policy is applied for the 

whole execution time of a program, so one cache size is constant for each application. It was 

obtained a reduction about 2% for performance and savings nearly to 40% in cache power 

dissipation.  

It must be noted that some microarchitecture adaptable approaches attempt to 

reconfigure the system at higher levels with the objective of making a higher impact for 

performance and energy efficiency. In this kind of strategy, Reconfigurable Computing is not 

only restricted to specific datapath modules of a single processor but the entire system is 

behaviorally and structurally modified. IPEK et al. (2007) evaluate the use of core fusion to 

better adjust the application demands to the characteristics of the CPU. They use two custom 

instructions visible for the operating system, FUSE and SPLIT, which combine independent 

cores or split one large core into simpler ones (Figura 2.11). It accommodates software 

diversity and incremental parallelization in chip multiprocessors CMPs. The results showed 

that it provides a single execution model across all configurations, as well as it does not need 

additional programming effort maintaining ISA compatibility. 
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Figura 2.11 - Diagram of an eigh-core CMP with core fusion capability. It depicts a configuration 

example of two independent cores, a two-core fused group, and a four-core fused group. 

 

Reference: IPEK et al. (2007) 

 

2.4 Critical Analysis and Contributions 

As was presented along this chapter, the need for more energy efficient computer 

architectures has established one of the main design requirements for new embedded systems. 

This design pressure is the reason behind the adoption of dynamically adaptable systems 

which, besides being optimized for a specific range of points in the design space, shows 

selective use of the resources depending on the workload. While speed-up was the variable 

that guided IC industry during the first decades of development, and power saving was the 

requirement that arose when the industry reached the technological limits, adaptability 

promises may deliver a mid-term between them. This new design paradigm encourages the IC 

engineers to provide the best performance for any application but at the same time using the 

resources efficiently depending on the needs and requirements of the moment. 

The technological evolution of CMOS industry has showed an increasing importance 

for the management and control of power consumption in an integrated circuit. Though 

dynamic power has been the main contribution for total power consumption, static power has 

gained more attention because of higher values for sub-threshold leakage and gate leakage 
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related with newer technologies. A variety of physical techniques has been proposed to 

address this problem like power gating, clock gating and DVFS.  

The related work showed the adoption of two main approaches to accomplish 

workload adaptation for energy savings: systems which schedule the current running code for 

the resources available (i.e. heterogeneous systems) and others which adapt the resources 

available for the current running code (i.e. reconfigurable computing). Each one of them 

presents different advantages in terms of energy savings and performance depending on the 

impact that the adaptation policy has over the normal execution of the microprocessor.  

In terms of design effort for an adaptable system, the complexity that is demanded 

from hardware and software is higher compared with a static one. The system ought to be 

efficient in terms of measuring the state of the execution and implementing the adaptation 

policy. The former refers to the correct measuring of hardware metrics that characterize each 

application, as well as each phase when the granularity is finer. The quantity and quality of 

the variables that are measured determine how much improvements can be derived from an 

adaptable solution. Secondly, an adaptation policy must include all the algorithms and extra 

hardware sub-units that are needed to carry out the physical adaptation process. The selection 

of a hardware or software approach has different impacts and they must be studied carefully 

during the design phase. 

2.4.1 Our approach 

Based on all the current research compiled in this survey, we present in the following 

chapters the design challenges, methodologies and the impact of an adaptable computing 

solution for a VLIW processor. In chapter IV the influence of issue-width for performance, 

power and area for a VLIW microprocessor is addressed. According to a methodology 

inspired by the seminal and aforementioned work KUMAR et al. (2004), we explore the 

potential optimization that could be achieved by a dynamic issue-width VLIW 

microprocessor.  

Then, two methodologies for microarchitecture adaptation based on power gating are 

described: a hardware-based and a software-based approach. The former one uses additional 

logic into the microprocessor with the purpose of applying power gating as was previously 

presented. The objective of this kind of approach is to implement into hardware all the 

necessary modules to detect potential idle parts of the integrated circuit based on historical 

behavior and generating all the suitable signals to control the power gating circuitry. The 

specific type of heuristics used to classify a physical domain as idle depends on the specific 

research and different methods have been proposed SHIN et al. (2010). In our case we 
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implemented Time-based power gating HU et al. (2004). It is aimed to turn off execution 

units by power gating them after observing a streak of idle cycles.  Additional VHDL logic 

was implemented into our VLIW processor with the objective of implementing the hardware 

counters responsible for detecting long-idle periods. 

As was described in this chapter, implementing a power gating policy in hardware is 

not trivial due to the associated power and timing overhead. For that reason, we propose the 

use of software directives for power gating VLIW datapath resources. This strategy has clear 

advantages and has been used in recent investigations PARK et al. (2010). First, the use of 

compiler technology allows identifying idle periods in advance, which is a difficult and 

expensive task when implemented in hardware RELE et al. (2002). Secondly, the additional 

hardware logic that is needed to apply power gating is reduced, since the complexity of the 

problem is moved to the compiler.  

Finally, we implemented the use of customized power gating instructions in VLIW 

processors to disable idle FUs and blocks of the RF. This is done by obtaining and analyzing 

the execution profile of a given application, and then identifying the maximum RF use and the 

idle periods of the FUs.  To achieve this goal, enhancements in the compiler and the 

microarchitecture of the VLIW processor were done. Our approach presents the following 

advantages in comparison to previous power gating techniques: 

• The employed configurable VLIW architecture helps reducing the extra 

hardware logic needed for scheduling. A superscalar processor needs a more complex 

scheduler to manage adaptive FUs, since the available resources are continuously changing 

and additional hardware logic to implement this adaptability must be added. Taking into 

account that the scheduler logic of out-of-order processors is complex by nature, this 

overhead could produce a significant impact on the design. In a VLIW processor, the logic is 

simplified since all the scheduling decisions are made before execution.  

• The VLIW code of an application is normally composed of available slots that 

are not used for computing purposes, which are usually filled with NOP instructions. These 

available slots allow the insertion of customized instructions for power gating, modifying the 

code without increasing its size. In a superscalar processor, the code grows since the power 

gating instructions must be added to the binary code.  

• The proposed use of customized instructions for power gating allows managing 

the availability of the FUs together with the RF. The combined application of compiler-based 

power gating to these two resources is a methodology which, to the best of our knowledge, 

has not yet been addressed.  
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The use of power gating instructions on VLIW processors takes advantage of the 

customizability of the VEX architecture (which is the ISA used along this work) and demands 

enhancements on the microarchitecture. Unlike other power gating techniques on VLIW 

processors based on additional control hardware LIAO; BASILE; HE (2002), our approach is 

completely based on software directives. This means that area and power overhead are 

completely minimized and just extra simple logic is required to decode the customized 

instructions.  Other researches, based on re-scheduling VLIW instructions to apply power 

gating UCHIDA et al. (2012), LIAO; BASILE; HE (2007), are intended to reduce energy 

with no concerns regarding performance. Our algorithm does not modify the original 

performance-driven code but takes advantage of the availability of unused slots to insert new 

instructions. In other researches, which use software directives to apply power gating on 

VLIW processors NIEDERMEIER et al. (2010), the decisions about the control of the power 

domains are taken by previous knowledge about the application and its phases. For instance, 

if the programmer knows that in one specific interval of execution there are no floating point 

operations, this unit is disabled via power gating. In contrast, our approach proposes a 

complete fine-grained framework that does not require any a priori knowledge of the 

programmer about phase behavior. Furthermore, some researches have applied power gating 

to control different datapath resources FLAUTNER et al. (2002), LIAO; BASILE; HE (2002), 

but none of them has addressed the use of this kind of technique to manage the availability of 

the FUs and the RF jointly. 
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3 VLIW DESIGN 

3.1 VLIW basics 

VLIW architectures are an alternative to superscalar designs, exploiting ILP through 

compiler instead of using hardware resources. The compiler is responsible for building long 

instruction words, which are composed of various independent operations that will be 

executed at the same time. The main function of VLIW hardware is to split each word and 

distribute the operations among the functional units (FUs) at run-time. The exploitation of ILP 

is done through the use of several functional units with a simple control logic, avoiding the 

expensive dynamic scheduling hardware of contemporary superscalar processors (Figure 3.1). 

In this way, all the computation efforts for this task are put on the compiler which lightens the 

load that is normally handled by the hardware. It considerably reduces power consumption 

and design complexity FISHER; FARABOSCHI; YOUNG (2005). 

Figure 3.1 - Execution in a VLIW versus Superscalar. 

 

 

 



 

42 

 

Reference: FISHER; FARABOSCHI; YOUNG (2005) 

 

The Instruction Set Architecture of a VLIW processor is normally composed of RISC 

instructions, which must be assembled by the compiler in order to use all the functional units 

efficiently. It requires the presence of sufficient ILP in the application to keep all the 

resources relatively busy. Some of the compiler techniques that are used for this purpose are 

software pipelining, scheduling code along basic blocks speculatively, reducing the number of 

operations, etc.  

As any other computer architecture, VLIW processors have some technological 

disadvantages that must be taken into account. In this group of features we can find examples 

such as code size, which significantly increases due to aggressive scheduling policies; higher 

memory and register file bandwidth because of the use of larger instruction words; no binary 

compatibility between different VLIW processors with different type and number of 

functional units, etc. 

3.2 Commercial VLIW processors 

A great part of the commercially available VLIW processors uses a fixed issue width, 

such as TMS320C611 from Texas Instruments, S231 from STMicroelectronics or TriMedia 

series from NXP. Some efforts for reconfigurable VLIW systems can be found in ZHONG; 

LIEBERMAN; MAHLKE (2007) and for superscalar systems in SANKARALINGAM et al. 

(2003) and IPEK et al. (2007). Their focus is on performance improvements for multicore 

systems through core fusion and selective use of the processors involved. This means that the 

adaptability of the processor is carried out by merging simpler cores into a more complex one 

and by disabling the processing units that are not necessary, depending on the application at 

hand. By contrast, the current research is mainly focused on analyzing the influence that such 

adaptive architectures have over energy consumption and other metrics. 

3.3 VEX Architecture 

The architecture that we use in this work is the VEX instruction set architecture 

FISHER; FARABOSCHI; YOUNG (2005). It defines a 32-bit clustered VLIW ISA that is 

scalable and customizable to individual application domains. It offers the use of multi-cluster 

machines, with each cluster being an independent VEX implementation. VEX does not 

support floating point operations. The resources that are found by default in a VEX cluster are 

4 ALU units, 2 multiplier (MUL) units, 1 branch control (CTRL) unit, 1 memory access 
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(MEM), 64 32-bit general purpose registers (GR) and 8 1-bit branch registers. Many syllables 

compose a VEX instruction, depending on the issue-width. Each syllable can be understood 

as a RISC instruction. 

A set of rules are stablished, those that all implementations must obey (such as register 

connectivity, the base ISA, architecture state, memory coherency) and those that each specific 

implementation can define (kind and number of functional units, latencies, issue width, 

number of clusters, and custom instructions). This last feature allows us to enhance the 

capabilities of the ISA, adding custom instructions, without affecting the compatibility with 

the VEX architecture. Therefore, the tools that are developed for this kind of ISA (compilers, 

simulation environment, etc.) can be used to implement new capabilities.  

Hewlett-Packard provides a VEX software toolchain, which has a C compiler and a 

simulator. These tools can be parametrized through the loading of machine models which 

could be specific for each VLIW implementation. The VEX C compiler was derived from 

Lx/ST200 C compiler, which was at the same time an enhancement of the Multiflow C 

compiler. The VEX simulator produces a binary executable through the translation of the 

target executable binary code. 

3.4 ρ -VEX processor 

The processor that was used along this work for simulation purposes was the ρ-VEX, 

which is a configurable processor implemented in VHDL and that implements the 

aforementioned VEX architecture WONG; VAN AS; BROWN (2008). The ρ-VEX core has a 

five-stage pipeline, and it can be configured at design time to have different number of issue 

slots (e.g., 2, 4, or 8). Each operation is encoded as a syllable and the number of syllables per 

instruction word is defined by the number of issue slots. The pipeline’s fetch stage is 

responsible for retrieving the instruction word from memory and distributing one syllable for 

each issue slot. The other pipeline stages are not shared by the issue slots, which are: decode, 

execution 0, execution 1, and write-back. The execution 1 stage performs access to the data 

memory or executes instructions that need more than one cycle to be computed (e.g., multiply 

instruction). Each issue slot may contain different functional units from the following set: 

Arithmetic Logic Unit (ALU) (always present), multiplier, memory, and branch units (Figure 

3.2).  

The execution stage is parameterizable, since the number of ALUs and MULs can be 

changed. The CTRL unit handles all branch and jump operations, whereas all load and store 

operations are performed by the MEM unit. The register file, branch register, and program 
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counter are written back at the respective unit, to ensure that all the targets are modified at the 

same time. The write target of each operation is determined at the decode stage.  

The extensibility of ρ-vex processor is implemented through two mechanisms that are 

provided by VEX architecture. First, the use of custom instructions via pragmas inside the 

application code allows enhancing the functionalities of the architecture.  With only a few 

added lines of VHDL into the ρ-vex code it is possible to add a custom functionality. 

Secondly, the VEX machine models allow to define different parameters for the ρ-vex 

processor. In this group of variables, it is possible to modify the following properties: 

- Syllable Issue-width 

- Number of ALU units 

- Number of MUL units 

- Number of GR registers. (Up to 64) 

- Number of BR registers. (Up to 8) 

- Width of memory buses 

- Types of accessible FUs for each syllable. 

Figure 3.2 - ρ-vex organization for 4-issue-width. 

 

Reference: WONG; VAN AS; BROWN (2008). 
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Figure 3.3 - Instruction Layout for ρ-vex processor 

 

Reference: WONG; VAN AS; BROWN (2008). 

3.5 Application development for ρ-vex processor 

The development of experiments and programs for the ρ-vex processor can be 

summarized into two steps. The first one is the compilation of the C code with the VEX 

compiler. The machine model must be passed as a parameter for the compiler when a custom 

configuration is used. The second step is the generation of an instruction ROM for ρ-VEX, 

which is generated through the assembler p-ASM. The machine model definitions must be 

used in this step too. This whole process is depicted in Figure 3.4. 

 

Figure 3.4 - ρ-VEX application development framework 

 

Reference: WONG; VAN AS; BROWN (2008). 

 

The ρ-VEX design organization used in this work was the following: register file of 64 

registers, 8 issue-width (the issue-width was modified in some experiments to measure the 

potential of optimizations, in chapter 4), ALUs in all issue slots, one memory and one branch 

unit (due to ρ-VEX’s design restrictions), and 4 multipliers. This configuration is similar to 
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other VLIW processors (e.g., Intel Itanium) WONG; VAN AS; BROWN (2008).  The 

programs used in this work were compiled with the VEX compiler from HP labs using 

optimization O3 and the specific machine model for each experiment carried out. 

The synthesis to obtain the power dissipation and area was carried out using an 180nm 

library from X-FAB X-FAB (2015) and Encounter RTL Compiler from Cadence Tools 

CADENCE ENCOUNTER (2015). The module synthesized was the ρ-VEX core, without 

any peripheral or memory attached. The operation frequency was set to 500 Mhz. The activity 

factor that was assumed for the calculation of dynamic power consumption was of 30%, 

which is a value that has been traditionally used for system level analyses of microprocessors 

GEUSKENS; ROSE (2012). This variable assumes that even when some parts of the circuit 

are not used along specific parts of the execution (e.g. Functional Units), the total switching 

activity is averaged to a specific value of 30%. 
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4 EVALUATION OF ENERGY SAVINGS ON A VLIW 

PROCESSOR THROUGH DYNAMIC ISSUE-WIDTH 

ADAPTATION 

As already discussed, one of the main issues when it comes to designing a VLIW 

processor from scratch is about project decisions, such as choosing the right issue-width and 

the register file size. The issue-width influences the availability level of execution units, 

which determines the ILP available for the compiler, and the register file size determines the 

number of registers that the compiler will be able to manage. By choosing high values for 

these parameters, performance will likely be increased. However, it also presents as drawback 

increasing the area and power dissipation.  

In this chapter, we study the potential energy savings that might be obtained by 

adapting VLIW issue-width according to the current program phase. Based on the measuring 

of ILP for different phases, we study an optimal scenario where we combine both 

performance and low energy consumption by adapting all the resources available to the 

average ILP of each phase. 

Therefore, this chapter has two main purposes: 

 Describe quantitatively the impact of issue-width for energy consumption, 

performance, and area on a VLIW microprocessor.  

 Analyze the potential energy savings that could be obtained by dynamically 

adapting the issue width on a VLIW microprocessor according to the program 

phase, using two different granularities: coarse (granularity of 5% of the total 

number of executed instructions) and fine (granularity of basic blocks).  

By considering that the VLIW issue-width is dynamically changed along the program 

execution, the potential energy savings using this policy could be as high as 81.5% when 

compared with the static version. 

The rest of this chapter is organized as follows. Section 4.1 shows the potential of 

optimization by analyzing the impact of design choices on performance and energy 

consumption. Section 4.2 discusses two approaches for evaluating the phases of an 
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application. Section 4.3 describes the oracle experiment performed to evaluate the energy 

savings potential of choosing the most appropriate issue-width for a given phase of the 

program. Finally, Section 4.4 summarizes our conclusions. 

4.1 Potential of Optimization 

In this section, different values for VLIW issue-width are evaluated in order to assess 

the potential optimization that can be achieved through issue-width adaptation.  The impact 

on area, performance, energy consumption and area is addressed. 

Figure 4.1 depicts the area of different issue-widths, varying from 1- to 8-issue (this 

range was used because of ρ-vex restrictions). The 8-issue has 10.5 times more area than the 

simplest configuration (1-issue), and 2.3 times more than the 4-issue, due to the instantiation 

of more functional units and more read/write ports in the register file. This increase in area 

also leads to an increase in the core’s power dissipation, which is presented in Figure 4.2. The 

8-issue dissipates 2.1 times more power than the 4-issue and 6.86 times more power than the 

single-issue. 

 

Figure 4.1- Area comparison between different issue-widths 
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Figure 4.2 - Power comparison between different issue-widths. 

 

 

In Figure 4.3, the performance for five applications is compared as we change the 

issue-width of the processor, and the speedup is calculated taking the 4-issue configuration as 

the baseline. The following applications were considered: ADPCM, CJPEG, DFT, Matrix 

multiplication and Itver2. The 8-issue is always faster than the 4-issue for these benchmarks, 

varying from 0.5% (ADPCM) to 23% (CJPEG), with an average speedup of 10%. On the 

other hand, the 2-issue is always slower (values below one), ranging from 22% (DFT) to 65% 

(Itver2) of slowdown, with an average slowdown of 44%. 

 

Figure 4.3 - Speedup compared to the 4-issue VLIW 
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Figure 4.4 - EDP ratio for different applications 

 

 

The difference in performance between the 4-issue and 2-issue processors is more 

remarkable than between the 4- and 8-issue versions, because of the limited parallelism that 

the compiler can exploit from the source code. Since the requirement for parallelizing a set of 

operations is that all operations must be executed simultaneously without any data 

dependencies between them, increasing the issue-width requires a larger group of independent 

operations. For instance, a 2-issue processor only needs to find 1 relationship in which the 

data from the two instructions (2-issue) are not dependent from each other, while a 4-issue 

processor needs to find 6 independent relationships (instruction 1 must be independent from 

2, instruction 1 from 3, instruction 1 from 4, instruction 2 from 3, instruction 2 from 4, and 

instruction 3 from 4). Using the same reasoning, an 8-issue processor needs to find 28 

independent relationships to use all the available slots. As can be seen this increase is not 

linear in relation with the issue-width and therefore it is more difficult to effectively exploit 

ILP for wider issues. 

Figure 4.4 presents the Energy-Delay Product (EDP) ratio, having the 4-issue as the 

baseline, for the same set of applications. With the EDP is possible to evaluate the trade-off 

between energy consumption and performance. The best EDP is obtained when executing the 

application on the 2-issue in almost all benchmarks (up to 71% lower), with the exception of 

the Itver2 application, in which the 4-issue presents better EDP. The 8-issue has higher EDP 

(ratio below one) on all applications when compared to the other configurations. Therefore, 

the goal is to have the performance of the 8-issue with the energy consumption of a simpler 

design, e.g., 2- or 4-issue. This can be achieved by disabling parts of the hardware that are 
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idle in a given moment, consequently, reducing the energy consumption and not affecting the 

performance. 

4.2 Dynamic adaptation 

The aforementioned analysis highlights the enormous potential that an exploration of 

the design space could produce in terms of energy savings if microarchitectural adaptation 

was available at run-time. For instance, if one part of a program does not use certain issue 

slots, it is not necessary that they remain active during this portion of time. Instead, they could 

be disabled through a variety of techniques (clock gating, power gating, etc.) to avoid 

unnecessary energy consumption. In order to evaluate the potential gains from using these 

techniques, we will consider that switching for enabling or disabling the hardware is done 

with zero delay.  

Taking this as our guideline, we use architectural simulation to dynamically evaluate 

the IPC, which reflects the utilization of the functional units along the execution time. In this 

way this information will be used to determine the issue-width that best matches the IPC of 

each phase. 

If the processor is using a high number of FUs at one specific moment, it will result in 

high IPC values, as more instruction parallelism could be explored. For example, if a program 

is running on an 8-issue width processor and the IPC for a phase is 1.5, it means that most of 

the FUs are idle during great part of the execution. Therefore, we measured the evolution of 

IPC throughout time to detect the phase changes and hence the dynamic demand of 

computing resources. 
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4.2.1 Methodology 

Figure 4.5 - Diagram Flow for the VEX simulator toolchain 

 

Reference: FISHER; FARABOSCHI; YOUNG (2005) 

 

The HP’s VEX simulator FISHER; FARABOSCHI; YOUNG (2005) was modified to 

obtain the IPC at run-time, extracting the number of issues used by each instruction word. The 

VEX simulator is an architecture-level simulator that uses compiled simulator technology to 

achieve a speed of many equivalent MIPS. The simulation system also comes with a fairly 

complete set of POSIX-like libc and libm libraries (based on the GNU newlib libraries), a 

simple built-in cache simulator (level-1 cache only), and an API that enables other plug-ins 

used for modeling the memory system. The VEX compiled simulator uses a binary translator 

to generate an executable binary for the host platform that contains the operations for 

simulating a program compiler. Finally, the application’s execution on the VEX architecture 

is simulated. To exemplify the action of this toolchain, in Figure 4.6 we can see an example of 

one original VLIW instruction in assembly, whereas in Figure 4.7 it is presented the compiled-

simulated code. Note that each operation in the assembly code has an associated function in 
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the compiled-simulated code that counts the number of occurrences for that kind of 

instruction along the execution of the program. 

 

Figure 4.6 - Example of a VLIW instruction in assembly 

 

Figure 4.7 - Example of the compile-simulated code 

 

In general terms, the modification of the VEX simulator for IPC measurements was 

based on the addition of profiling functions to the host platform compiled-simulated code. 

The objective of these profiling functions was to count the number of operations for each 

instruction executed as well as to count the number of total instructions processed in specific 

intervals of time. An example of this modification is shown in Figure 4.8. 

 

Figure 4.8 - Insertion of profiling functions inserted into compile-simulated code 
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The function profiling_instruction() counts an additional operation processed. In this 

case, since there are 5 operations into the VLIW instruction profiling_instruction() is invoked 

5 times. The function count_instructions() counts the number of instructions in the current 

time window, thereby it is only invoked one time in this example. Each time a new instruction 

is executed, count_instructions() increases an internal counter. Depending on the window 

size, this internal counter is reset when it reaches a predetermined threshold.   

The approach for obtaining IPC at run-time was chosen according to two implemented 

methodologies, which differ in the way they handle the instruction window sizes for phase 

measurement and therefore the way count_instructions() is implemented. They are called 

coarse-grained and fine-grained approaches, which are explained in the next sub-sections. 

The programs used were extracted from Mibench, which is a free, commercially 

representative embedded benchmark suite GUTHAUS et al. (2001). They were compiled 

using VEX compiler for the 8-issue configuration. It was selected a number of 10 

applications, due to the restriction on the availability of libraries from VEX compiler. The 

selected programs were Basicmath, Bitcount, Qsort, Djikstra, Sha, CRC, StringSearch, 

ADPCM, Susan, and FFT. 

4.2.2 Coarse-grained approach 

This method aims to visualize the big picture of IPC dynamics for program behavior. 

For that, the total execution time of each application was divided into intervals with the same 

number of cycles; and the average IPC value for each one of these intervals was calculated. 

Since some applications are larger than others, the same length of time interval for all 

benchmarks would not reflect their particularities. Therefore, it was established a granularity 

of 5% of total execution time for each benchmark (e.g. if one program is composed of 1000 

instruction words, the length of each time interval would be of 50 instructions).  

The dotted line in Figure 4.9a, Figure 4.9c, and Figure 4.9e (the gray background will be 

explained in the next section) shows the results obtained with this methodology. Three 

different benchmarks are shown: Basicmath, StringSearch, and sha, which illustrate different 

and representative behaviors. Basicmath shows an evident phase behavior, being primarily 

composed of two stable phases. StringSearch is stable and does not present changes on the 

IPC that suggests any transition phase. Finally, sha has an IPC that changes drastically 

between intervals. 

4.2.3 Fine-grained approach 

This approach uses the basic block as the basic grain unit, so the IPC measurement is 

applied for each one of them. The Figure 4.9b, Figure 4.9d, and Figure 4.9f show the results 
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using this granularity. The three benchmarks shown (Basicmath, StringSearch, and sha) 

demonstrate three different behaviors: presence of phases, stable behavior, and erratic 

behavior. However, the fine-grained approach highlights the differences of IPC between 

adjacent basic blocks which allows us to observe IPC changes with a higher level of detail 

than the coarse-grained approach.  

4.2.4 Coarse vs. fine-grained approaches 

As can be observed from the data obtained, the applications exhibit dynamic behavior 

that could be successfully exploited via microarchitecture adaptation through coarse or fine-

grained approach. 

From the results we can observe that each application exhibits completely different 

dynamics, in terms of average IPC, number of phases and even the presence or absence of 

them. For example, a program like sha shows a wide range of variation between values 

whereas StringSearch presents a stable behavior that is not affected by time on a large scale. 

The benefits that coarse and fine-grained approaches for dynamic adaptation are 

different as well as the implementation challenges associated. The first approach aims to give 

an outlook of the dynamics of the program by averaging IPC along a big number of 

instructions, while the second produces higher precision in terms of IPC since the window 

sizes are smaller. So, for example, StringSearch presents different behavior comparing both 

techniques. Using the fine-grained approach, in the last part of the execution time, the number 

of execution units would be adjusted to 3- or 4-issue, whereas with coarse-grained approach, 

this variation of IPC measurement would not be detected and only be set to an averaged 

value. 

The measurement of IPC through the coarse-grained approach would have the 

advantage of requiring a simpler implementation. The system could measure IPC only in 

some intervals through sampling of the execution time. The hardware structures that are 

needed for this task are simple hardware counters and storage to save the last IPC 

measurements.  
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On the other hand, the fine-grained approach demands more resources but it could 

allow better granularity optimization. In a hardware implementation, it is necessary a memory 

structure to save the last basic blocks visited. This means that after each new basic block is 

processed, its IPC must be saved. The most important advantage of this approach is that when 

the processor is fetching an already processed basic block, its IPC will be known in advance. 

This kind of information is imperative if we want to allocate the right quantity of hardware 

resources for a given part of the code. The behavior of this memory is similar to a branch 

prediction table and an equivalent microarchitecture could be used for its implementation. 

Figure 4.9 - Average IPC during the execution 

 
a) Basicmath coarse-grained     b) Basicmath fine-grained 

 

c) StringSearch coarse-grained     d) StringSearch fine-grained 

 

e) sha coarse-grained      f) sha fine-grained 
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4.3 Oracle Heuristics for Dynamic Issue-width Selection 

Based on the previous experiments, it was developed an oracle experiment for 

choosing the best issue-width in a given moment of the application’s execution, considering 

performance and energy consumption. It is based on the assumption that at any time the 

processor could change the computer organization from one specific issue-width to another to 

accomplish a global optimization policy. Since we are interested in obtaining the maximum 

potential energy savings, no technological overhead is taken into account for each 

reconfiguration process. 

Hence, the purpose of this framework is to measure the energy savings when the 

microarchitecture of the system is modified at run-time from one configuration to another. 

The oracle experiment choose the best suited issue-width for each interval of execution, 

knowing in advance the ILP for that period of time. We used the data of IPC measurements 

that were obtained with both coarse and fine-grained approaches. For each interval, the oracle 

chooses the issue-width that minimizes the energy consumption without incurring big 

performance losses. For that, it is selected the nearest integer to the current IPC. For instance, 

if the IPC for an interval is 2.7, it is chosen a 3-issue width processor for this interval.  

The data on power dissipation for each issue configuration was presented in Figure 4.2 

and for each granularity (fine and coarse), two scenarios are considered as follows. The first is 

called restricted adaptation, in which the number of issue slots can be modified between 2, 4, 

and 8. The second, called wide adaptation, is able to adapt the issue width from 1 to 8 (1, 2, 

3,…8). For example, if the IPC is calculated to be 5.4, the first approach will choose an 8-

issue processor whereas the second one will use a 6-issue processor.  

Figure 4.10 depicts the energy savings that can be obtained by applying the restricted 

and wide adaptations on both fine and coarse-grained approaches when compared to the static 

8-issue processor. The energy consumption was estimated based on the power dissipation of 

each core configuration and the time that each of these configurations was active. The results 

derived from this procedure show that the energy savings that could be obtained via an 

adaptation of issues could be as high as 81.5%. This means that one processor that could 

dynamically enable and disable its available execution units would consume only a fifth part 

of the total energy consumption of an 8-issue processor. 

Let us assess Figure 4.10 again, now focusing on the gray background: light gray is for 

when the restricted approach is used, while dark gray is for when the wide on is employed. 

Note that the restricted will always choose an issue-width equal or larger than the wide 

adaptation for a given phase, because the former can only choose between three distinct issue-
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widths, all of which the wide approach is also able to choose. That is, for phases that have an 

average IPC of 2, 4, or 8 (i.e., the values that the restricted adaptation is able to choose), the 

wide adaptation (that can choose from 1- to 8-issue) will choose the same issue-width as the 

restricted, having the same energy savings for that given phase. On the other hand, 

applications such as Basicmath present up to 28.8% of difference between the wide and 

restricted adaptations, because there is a large part of the application in which the average IPC 

of the phase is 5. Therefore, the wide adaptation would choose six issue slots, while the 

restricted would choose eight issue slots, as depicted in Figure 4.9a. The reduction obtained 

with the wide-adaptation is higher because the processor can better adapt to the behavior of 

the application. On average, the wide adaptation is able to save 71% of energy and the 

restricted 63%.   

By using a finer grain, the processor adapts itself faster to changes in the application’s 

behavior. This may decrease the energy consumption as the issue-width will be changed faster 

when the application reaches a phase with low ILP. On the other hand, it also may choose a 

higher issue-width that would not be detected on the coarse granularity, resulting in more 

energy consumption. Therefore, on average, both fine and coarse-grained approaches achieve 

similar energy savings because each granularity can consume less or more energy than the 

other in specific moments of the application’s execution.  

4.5 Critical Analysis 

We first focused on evaluating the consequences of architectural decisions over 

metrics like area, energy, and performance, showing the big impact that these choices could 

produce into the design. The complexity of a processor, in terms of number of available 

functional units, improve the measured performance at the expense of increasing the 

demanded resources and, consequently, increasing the power dissipation and energy 

consumption. The performance comparison between applications demonstrates that each 

program has different implicit ILP, meaning that some programs could benefit more from a 

VLIW processor with a higher number of execution units.  
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Figure 4.10 - Energy Savings 

 

 

a) Coarse-grained approach  

 

b) Fine-grained approach 

 

Then, we investigated the effects of issue-width adaptation during run-time on 

performance and energy. It was noted that there are remarkable variations of ILP throughout 

time, which evidences the presence of phases due to the cyclic behavior of the code.  The 

implemented oracle experiment showed that the potential energy consumption reduction 

between a system with adaptive issue-width and one with eight issue slots could be as high as 
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81.5%. The results evidence the great benefits in terms of energy savings that an adaptive 

architecture brings to a VLIW design.  

It is worth noting that in a real application, the decision about using wide or restricted 

adaptation is dependent on the available project resources. If a larger group of available issue-

width values is handled, the complexity of the hardware would be significantly increased. 

Specifically, extra logic must be added in order to support a larger group of 

microarchitectures. This means that the overhead of a wider adaptation, in terms of area, 

could make unaffordable its implementation if this cost is high. 

As was mentioned along this chapter, the ideal solution for an energy efficient VLIW 

processor would be having as many Functional Units available and Registers as possible 

when needed, and turning them off if the application does not offer enough ILP. In the rest of 

this thesis, we propose the use of specific power gating techniques for FUs and RF to exploit 

the availability of long idle periods to disable these kind of hardware modules. In this way we 

not only could decrease dynamic power consumption but also static power consumption 

efficiently.  

There will be presented a hardware and a software approach in Chapter V and Chapter 

VI respectively.  The advantages and disadvantages of each one of these methodologies will 

be discussed in these chapters as well as a final discussion about their comparison will be 

extended in Chapter VII. 
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5 TIME BASED POWER GATING FOR VLIW 

PROCESSORS 

The results presented along Chapter IV evidence the potential energy savings that 

might be obtained through an adaptable VLIW processor. In this chapter, we explore the use 

of hardware techniques to accomplish such objective. In order to adapt the amount of 

available resources suited to each interval of execution, the use of additional logic embedded 

into the processor is proposed to detect idle periods of the FUs. According with this detection, 

the FUs can be disabled or enabled via power gating depending on the demand and state of 

the corresponding resource.  

With this in mind, the ρ-vex processor was modified by inserting new logic to carry 

out the detection of idle periods of the FUs, their activation/deactivation and the measurement 

of the performance losses. Through the use of hardware counters to detect long idle periods, 

the units are turned off when their inactivity surpasses a user-defined threshold. In this way, 

the historical behavior of the Functional Units is used to successfully apply power gating 

without significant time penalties. The turn off and turn on processes are simulated by adding 

new registers that save the power state of each one of the resources. Furthermore, the impact 

on the performance is calculated by counting the overhead associated with each wake-up 

process (i.e the case when a FU is needed but such unit is not available yet). 

Our results show that the FUs can be put to sleep on average 63% of the execution 

cycles for the multiplier units and 30% for the ALUs, at a performance loss of 13%. By 

varying the threshold for detecting idle inactivity, it is possible to observe different impacts 

on the performance-power tradeoff. Overall, our results prove that hardware techniques can 

be used effectively to power-gating execution units on a VLIW processor. 

The rest of this chapter is organized as follows. Section 5.1 shows the conceptual basis 

of a time based power gating. Section 5.2 presents the methodology used to implement this 

kind of hardware approach. Section 5.3 discusses the results obtained through the simulation 

of a group of benchmarks. Finally, Section 5.4 summarizes our conclusions. 
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5.1 Time Based Power Gating 

Time-based power gating HU et al. (2004) is a power gating technique based on 

additional logic to detect long-idle periods for the Functional Units and the corresponding 

turn-on and turn-off decisions. It is aimed to turn off execution units by power gating them 

after observing a streak of idle cycles.  In order to implement this idea, a finite state machine 

(FSM) is added for each execution unit of the VLIW processor, as depicted in Figure 5.1. The 

initial state of the FSM is WAKEUP. If the execution unit is idle during a number of cycles 

that exceeds some threshold Tth, power gating can be applied and the state changes to an 

interim state called UNCOMPENSATED. If the execution unit remains at the same idle state 

after Tbreakeven cycles, then it moves to COMPENSATED state. As can be expected, in these 

two states the execution units are turned off but only at the COMPENSATED state there are 

positive energy savings. When an execution unit is in COMPENSATED or 

UNCOMPENSATED state and an instruction needs it, the execution unit must wake up. In 

that case, it is necessary a number of Twakeup cycles to carry out the wake-up process. If the 

unit is not completely power-down the time that the execution units takes to wake up will be 

less than Twakeup because the voltage difference will be smaller between the two states 

(enabled and disabled). However, we take a conservative approach by assuming wake up 

process is equal to Twakeup cycles. Therefore, the real performance impact will be much higher 

since we are assuming the most pessimistic setting.  

   

Figure 5.1 - State machine of an execution unit when power gating is inserted. 
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The energy savings as well as the performance impact are dependent on the 

aforementioned parameters: Tbreakeven, Twakeup and Tidledetect. Whereas the first two variables are 

constraints defined by circuit design limits, the third one is a design decision which can be 

adjusted taking into account the trade-off between energy savings and performance losses. If a 

large Tidledetect is used, the performance would not be significantly affected because of less 

number of wake-up moments but at the same time the contribution of short idle periods to 

energy savings would be small. Conversely shorter Tidledetect allows to exploit these idle 

intervals but with higher cost for performance. 

5.2 Methodology 

The 8 issue-width ρ-vex with 4 multipliers was modified to apply time-based power 

gating through modifications into the VHDL code. For each multiplier and ALU unit a FSM, 

as described in the last section, was added to carry out the application of time-based power 

gating. Besides, the microarchitecture was enhanced with a power control register of 12 bits 

(8 bits for ALU units and 4 for multipliers), which saves the power state of each execution 

unit (1 for enabled or 0 for disabled).  

The additional logic implemented into the VHDL code has five main objectives as was 

argued in the Section 5.1:  

(1) Detect idle periods greater than a preset threshold for each functional unit.  

(2) Change the power state when a potential idle period is detected. In other words, 

modify the corresponding bit in the power control register to ‘0’. 

(3) Activate the execution unit in case a new instruction demands the use of this 

resource. Modify the corresponding bit in the power control register to ‘1’. 

(4) Count the effective fraction of execution time that each execution unit is disabled.  

We report experimental results based on traces of a set of 8 WCET benchmarks, 

adpcm, mm_40, x264, matrix, fir, crc, ndes and dft GUSTAFSSON et al. (2010). This group 

of benchmarks was selected because of its compatibility with ρ-vex processor. For all the 

results, in reporting average statistics, we use geometric mean across the corresponding 

benchmark suite.  

5.3 Results 

The total idle cycles for each functional unit were calculated via simulation as well as 

the total execution cycles for each benchmark. For the rest of this chapter, the fraction of 
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cycles spent in the sleep mode by an execution unit of a given type P is determined as 

follows: 

 

In this equation, it is calculated, for each functional unit, the ratio between the time 

spent in sleep mode and the total execution time. The idle cycles correspondent to all the 

instances of a specific type of FU are summed and they are weighted by the contribution of 

each instance. For example, since there are 8 ALUs in our simulations, for each ALU it is 

obtained the total cycles in sleep mode; they are summed, and the result is divided by the total 

execution cycles times the number of functional units, in this case 8. 

The values of P (corresponding to each FU) were calculated for each benchmark and 

they were averaged along the benchmarks to obtain the metrics hat are shown in the next 

figures. Figure 5.2 and Figure 5.3 show the power savings for ALU units and Multiplier units. 

These figures show the impact of the parameters Tidledetect and Tbreakeven on the expected 

number of disabled cycles. Twakeup is fixed for these charts. 

 

Figure 5.2 - Percent of cycles in sleepmode for ALUs units  (y-axis) with different Tidledetect  (x-axis) 

and Tbreakeven = one of 5, 10,15, or 20 cycles. Twakeup is fixed at 3 cycles. 
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Figure 5.3 - Percent of cycles in sleep mode for Multiplier units (y-axis) with different Tidledetect (x-

axis) and Tbreakeven = one of 5, 10,15, or 20 cycles. Twakeup is fixed at 3 cycles. 

 

Figure 5.4 shows performance losses when the power gating overhead is taken into 

account. In this case, each time a wake-up process is carried out, the contribution of this 

overhead is summed to the total extra-cycles. In the same way that the first metric shown in 

the last figures, the performance losses were averaged along all the benchmarks simulated. 

The parameter Tbreakeven point was fixed to 10 cycles and Tidledetect and Twakeup were modified to 

observe their impact on performance. 

 

Figure 5.4 - Average IPC of WCET benchmarks (y-axis) with different Tidledetect (x-axis) and Twakeup 

values. Tbreakeven is fixed at 10 cycles. IPC is normalized to the base case where power gating is 

disabled. 
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Figure 5.5 - Energy Savings for each application using Tidledetect fixed to 21 cycles and Tbreakevent point to 

10 cycles. 

 

 

Figure 5.5 depicts the energy savings that are obtained using threshold fixed to 21 

cycles and break-even point to 10 cycles, for all the benchmarks. The effective use of the 

functional units was used to calculate this metric, assuming a constant energy consumption 

for the Multiplier units as well as for the ALU units. On average the mean power savings are 

14,63%, spanning from 3,57% for matrix and 25,44% for x264. This wide range remarks the 

difference in terms of benefits that this technique shows depending on the application. There 

are some programs that have more quantity of long idle periods for the functional units so 

time-based power gating could be used to take advantage of this behavior. On the other hand, 

there are applications that have a large quantity of shorter idle periods and the use of large 

thresholds prevent the use of power gating in those situations. This is the case of fir and 

matrix which have many short idle periods that are not detected with the threshold used in this 

setting. 

As we can see from the figures, the percentage of cycles spent in sleep mode for every 

functional unit decreases almost exponentially with increasing Tidledetect values. The 

performance, on the other hand, improves significantly when Tidledetect increases from 1 cycle 

to 11 cycles, and then gradually reaches the performance of the base case, where power-

gating is disabled. The big performance jump from 1 cycle to 11 cycles of Tidledetect indicates 

the presence of short idle periods and these are not amenable to power gating. Though the 

number of such idle periods are large, power-gating in this case causes a significant 
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performance loss since each of these periods would incur timing overhead equals to Twakeup 

cycles. The presence of smaller values for Tbreakeven and Twakeup, as well as long idle periods 

help to achieve larger energy savings and decreases the performance impact. 

Figure 5.2 and Figure 5.3 show a particular behavior for energy savings around 

Tidledetect=11 cycles. Before this turn point, the curve drops very fast, indicating that very short 

idle periods dominate the total length of idle periods in WCET benchmarks. Since in integer 

applications branches, loads and stores appear once every 4 or 5 instructions, it correlates with 

the predominant idle periods. 

It must be noted that the results that were achieved with this work are very similar to 

those found in HU et al. (2004). One of the differences is the value for Tidledetect to achieve a 

specific amount of power savings. For instance, the mentioned research found a reduction of 

10% for IPC using Tidledetect = 6. To achieve the same IPC reduction we would have to use 

nearly Tidledetect=31. This means that it is necessary to neglect more short idle periods in our 

case to achieve the same energy savings. In exchange, for the same Tidledetect we achieve better 

results in terms of power savings. For example, if we fix Tidledetect= 6, the aforementioned 

work found power savings nearly to 10% compared with the baseline case. For the same value 

of Tidledetect, we found reduction for power savings nearly to 50% for ALU units.  

This behavior could be caused by the difference of processors and compilers used in 

the two researches. The cited paper used an out-of-order processor, whereas we use an in-

order processor, namely a VLIW unit. This means that our system is not capable of 

processing other instructions until the current instruction is executed. In our case, the turn-on 

of a functional unit has a big impact in performance since it is necessary to execute all the 

operations of an instruction to process the next group of operations. Conversely, an out-of-

order processor could process more instructions even if an execution unit is not ready yet. 

Some other functional units could handle operations that are independent while the wake-up 

process of a FU is completed.  

In conclusion, the presented hardware-based approach for power gating Functional 

Units in a VLIW processor shows positive energy savings, which supports its feasibility and 

potential benefits. Using a time-based power gating solution, the Multiplier units can be put to 

sleep about 63% of the total execution time and the ALU units about 30%. It generates power 

savings about 14,63% with performance losses near to 13% for a typical configuration.  
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6 LEVERAGING COMPILER SUPPORT ON VLIW 

PROCESSORS FOR EFFICIENT POWER GATING  

In this chapter it is evaluated a compiler-based approach for power gating functional 

units and register file in a VLIW processor. As it is shown in this chapter, intelligent use of 

the compiler allows for power gating at a finer grain saving considerable amounts of power. It 

is done so by inserting customized instructions at compile time, based on the analysis that 

involves probabilities of conditional branches and basic block information obtained via 

dynamic profiling. By using the compiler technique, it is possible to save up of 20% in the 

total energy consumption with marginal losses in performance. Unlike the technique that was 

described in Chapter V, which relies exclusively on hardware resources, this approach is 

based on the use of software directives to manage the availability of circuit domains 

throughout the execution trace.  

The rest of this chapter is organized as follows. Section 6.1 shows our compiler power 

gating approach as well as the implementation challenges faced. Section 6.2 discusses the 

evaluation methodology and the resources that were used. Section 6.3 describes the results 

obtained by following this approach. Section 6.4 summarizes the conclusions. 

6.1 Compiler-based approach for Power Gating 

The methodology proposed is based on 1) obtaining the execution profile of the 

applications 2) using this information to determine the best locations for power gating 

instructions and 3) measuring the impact of these customized instructions on energy savings 

and performance losses. 

 

6.1.1 For the Functional Units 

The proposed code based solution for the application of power gating for functional 

units uses the analyses of the control flow graph (CFG) and inserts power gating instructions 

according to it. More precisely, based on profiling, we obtain information about the 

conditional branches and/or loops to evaluate the best locations for power gating instructions, 
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taking into account the impact on performance and power savings. The problem of inserting 

power gating instructions can be reduced to finding the optimal locations for OFF instructions 

(which disables a functional unit) and ON instructions (which wakes up a functional unit) to 

maximize the energy savings. With this purpose we build the CFG of a program, which is a 

data structure that comprises the transition probabilities, the percentage of use of each FU, 

and the amount of cycles; always considering each basic block separately. An example of a 

CFG obtained via dynamic profiling is depicted in Figure 6.1.  There are paths that do not use 

the current functional unit during a specific time interval, like the one composed of basic 

blocks B2, B3 and B4. The transition probability from B2 to B3 is 70%, whereas from B3 to 

B4 is 90%. If we are interested in knowing the expected number of cycles that the FU could 

be put to sleep if we insert an OFF instruction at the beginning of B2, we must take into 

account this information. This number will comprise the number of instructions in B2 (since 

we are assuming that the OFF instruction is processed), plus the expected number of idle 

cycles due to the transition to B3 (This will be the amount of cycles for B2 weighted by its 

transition probability of 70%), plus the expected number of idle cycles resultant from the 

transition from B3 to B4. In this case, the expected number of idle cycles is the number of 

instructions of B4 weighted by the probability of this specific path B2-B3-B4: the transition 

probability from B2 to B3, which is 70%, multiplied by the transition probability from B3 to 

B4, which is 90%. 

Therefore, we can obtain the following expected number of cycles for an OFF 

instruction inserted at the beginning of B2: 

 

T = 4+( 0.7 *4 ) + (0.7 * 0.9 *10)  = 13,1 

  

Figure 6.1 - CFG of a program. Each circle is a Basic Block with an identifier and the number of 

instructions. 
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This value must be higher than the technological break-even point to obtain positive 

power savings, since otherwise the amount of energy used to disable the FU will be greater 

than the saved energy. Taking into account this example and using a technological break-even 

point equals to 10 cycles (which is consistent with the technology parameters used as was 

described in Chapter II) we can see that inserting an OFF instruction at the top of the path and 

an ON instruction at the final of this one would generate energy savings.  

We can generalize this average path calculation to any basic block. The 

implementation of this function is made recursively, obtaining the average number of idle 

cycles by weighting the contribution of the average number of idle cycles of each path by its 

transition probability. We can express the last statement in a recursive mathematical 

expression: 

T = P1 T1 +P2T2 

Where P1 and P2 are the transition probabilities of the path 1 and path 2 respectively, 

and T1 and T2 are the average number of idle cycles following the path 1 and 2, respectively. 

If one path uses the FU, T1 or T2 will be equal to zero, since there are no idle cycles in that 

path. In this work, this algorithm is applied for all the basic blocks and for each CFG 

associated with each FU.   

The additional customized instruction for power gating FUs has a standard layout 

which encodes all the necessary information to disable and enable the required units. 2 bits 

are necessary to control each FU (3 possibilities: disable, enable, normal operation). Since 

each VLIW instruction is composed of a set of syllables of 32 bits each, it is possible to 

encode more power gating directives into a unique word, so different functional units can be 

disabled and enabled by only processing one power gating instruction. The 8 most significant 

bits are used as opcode (i.e., indicate that the current instruction is for power gating). The 

remaining 24 bits were divided into two groups of 12 bits each (Figure 6.2). The Most 

Significant Bits (MSB) are responsible for the ON operations and the least significant bits 

(LSB) for the OFF operations. Since there are 12 functional units, each bit of the MSB part 

and each of the LSB part is associated with a specific functional unit. 

    

Figure 6.2 - Power gating instruction for the FUs. 
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Although the technique proposed is based on software directives to apply power 

gating, it is also necessary some hardware support to execute the additional customized 

instructions. Given that the analyses of the CFG is carried out before execution, the extra-

logic is drastically reduced.  A status register of 12 bits was added to the ρ-VEX processor to 

hold the state of each functional unit (ON or OFF), called, in this work, of Power Status 

Register (PSR).  Additional logic was added to modify the PSR according to the power gating 

instruction processed. Power Gating Circuitry, using the same principle as headers [18], uses 

the information of the PSR to enable or disable the FUs according to the encoded bits. 

Verification monitors were implemented to count the number of saved cycles for each 

execution unit as well as the cycles overhead due to wake up instructions. The cycles 

overhead counter is increased each time a FU is required for execution but it is disabled at 

that point. For instance, if a new basic block is processed and one instruction belonging to this 

one requires the use of a multiplier that is disabled, the counter is augmented with the value of 

needed wake-up cycles (3 cycles taking into account current technology HU et al. (2004)).       

The hardware complexity associated with the decoding process of power gating 

instructions is marginal with our scheme. The information about which FUs must be enabled 

or disabled is encoded directly in the instruction with almost zero decoding overhead.  

However, it is important to note that the insertion of a power gating instruction in a basic 

block is limited by the availability of issue slots. In the proposed methodology, the power 

gating instructions are inserted at the first instruction of each basic block, so at least one 

syllable must be available there (i.e., the word must have at least one NOP operation). For 

narrower issue-width processors, whose availability of unused slots is reduced, such behavior 

could be a source of performance losses because an additional VLIW instruction would need 

to be inserted. 

6.1.2 For the Register File  

Since all the applications demand different amounts of resources, the overall use of the 

RF is dependent on the program that is being executed by the processor.  For instance, Figure 

6.3 depicts the register file use along time for a typical WCET benchmark. The y-axis 

represents each register and the x-axis represents time in terms of cycles. It was calculated the 

amount of references for each register in intervals of 100 cycles. If one register is used for an 

arithmetic/logic operation, branch operation, load/store operation, it is counted like a 

reference for that register. This information is encoded in the gray scale of each portion of the 

graph. The most part of the register file use is depicted in flat clear gray, which represents the 

registers that are never used along the execution of the program. The active registers are 
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clustered in contiguous areas of the RF. These are allocated in groups that are positioned in 

the most and least significant indexes of the RF (i.e., close to r0 and r63). As can be observed, 

the usage rate of each register use can be constant for a long period of time, while the 

behavior of the register file can be correlated with the phases of the program SHERWOOD et 

al. (2003a). This means that big portions of the hardware can be disabled in case that some 

registers are not needed for computational purposes. 

 

Figure 6.3- Number of references for each register using windows of 100 instructions for ndes. The y 

axis represents each register that is part of the RF. 

 

Therefore, we can apply power gating to the registers that are not used along the 

execution. To implement this functionality in hardware, we divided the register file into 8 

groups of 8 registers. The enabling/disabling process of each group is managed statically by 

power gating instructions that informs the groups of registers that are going to be used for 

each program. The power gating instructions are inserted in the first instructions of the 

application taking into account the maximum RF use. The format of the customized 

instruction can be seen in Figure 6.4. To simplify decoding, 8 bits controls the activation of the 

RF blocks and other 8 bits the deactivation of them. 
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Figure 6.4 - Power gating instruction for the RF. 

 

 

6.2 Methodology 

The following applications were evaluated: adpcm, crc, dft, fir, matrix, mm40 and 

ndes, which belong to the WCET benchmark set. The methodology flow is depicted in Figure 

6.5. Benchmarks are compiled with the VEX compiler from HP labs (Step 1). The generated 

instruction and data memory files are loaded to the ρ-VEX processor, so it is possible to 

obtain full traces of the execution, using the Modelsim Software. Dynamic profiling was used 

to obtain the CFG of each application (Step 4 and 5). Each CFG is represented through a 

database that contains the necessary information for each basic block, as depicted in Section 

IV.  

Then, the CFG is analyzed to generate all the power gating instructions and to insert 

them at the best possible locations, as shown in the last section (Step 6).  It was implemented 

using ANSI C. As it is automatically done at the binary level, there is no need for 

recompilation or any modifications at the source code. Finally, the modified benchmark, with 

the additional power gating instructions, is ready to execute on the ρ-VEX processor (Step 8) 

and therefore it is possible to measure power savings and performance overheads (Step 9).   

 

Figure 6.5 - Diagram flow for Profile-Based power gating. Each gray box is a step (process) while 

the rectangles are data obtained from the last step. 
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6.3 Experimental Results 

The fraction of cycles spent in sleep mode by an execution unit of a given type for 

each benchmark simulated is depicted in Figure 6.6. It is observed that the total number of 

cycles that the functional units can be disabled is significant: 54,63% for ALUs and 81,90% 

for multipliers, on average. It is important to remember that to achieve positive power savings 

from power gating, there is a period of time needed to compensate the energy overhead, 

which we call compensation cycles. The subtraction between the total idle time that the FUs 

remain disabled and the compensation cycles is the effective period of time that the block is 

saving energy. Taking into account this behavior, the effective time that the FUs are saving 

energy is 43,11% for ALUs and 72,93% for multipliers.   

Some applications, like crc and mm40, show a small proportion of compensation 

cycles, which means that the idle periods are relatively long so the compensation cycles are 

not very significant. On the other hand, others, like fir and matrix, spend more cycles in 

compensation mode since there are a big quantity of short idle periods (i.e., the OFF/ON 

process is repeated many times). For some programs, like ndes and x264, the amount of 

compensation cycles for the multipliers is near to zero, since they are not used along program 

execution. Therefore, they can be disabled at the beginning of the execution and so the turn-

off process is only carried out one time. In these cases, the effective energy savings for the 

multiplier units is almost 100%. Moreover, it can be seen that the use of functional units 

depends heavily on the application: crc does not use multipliers extensively; whereas the 

mm40 presents the opposite behavior, so idle periods in such cases are not so common. 

However, in overall, the amount of saved cycles from the multipliers is significantly greater 

than for the ALUs for all the benchmarks, since they are usually less used (even though their 

presence is obviously necessary).  

  

 

 



 

75 

 

Figure 6.6 - Number of cycles that the FUs are disabled through power gating for a) ALUs and b) 

Multipliers. The dark blue portion represents the amount of cycles that saves energy, whereas the clear 

bright bluw portion represents the number of cycles that are needed to compensate the energy 

overhead derived from power gating. 

 

The total cycles in the sleep mode for the blocks in the RF for each benchmark 

simulated is depicted in Figure 6.7. The amount of number of cycles that the registers can be 

disabled is 74,38%, on average. As can be observed, the difference in terms of power savings 

for each benchmark is significantly different, since there are some programs like fir that uses 

more blocks of registers along the execution than others, like adpcm. 

  

Figure 6.7 - Number of cycles that the RF is disabled through power gating. 
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 The performance losses were also calculated for each application (Figure 6.8), 

with an average value of 8.64%. The performance overhead is a consequence of how many 

times an instruction is processed and whether the needed functional units are ready or not for 

executing the operations at a given moment. Any time that this situation occurs (the 

functional unit has not been completely awake to execute an instruction that is ready), the 

system must stall and wait until the wake-up process is completed. Clearly, the performance 

impact is not equal for all the benchmarks. Some of them, such as fir and matrix, are more 

affected. This situation arises when there are more recurring wake-up processes in the 

execution of an application, which increase the total execution time. One of the causes of this 

behavior is in cases there is a big difference in the type or number of resources demanded by 

basic blocks that are sequentially executed. For example, if one basic block uses 2 ALUs, and 

another basic block that is most of time executed after this one uses 5 ALUs, the wake-up 

process of 3 ALUs will be carried out as this path is processed. This will result in 

performance degradation, even though energy is saved -  and our approach focus on the latter. 

However, if there are practical limits on performance losses for an application, performance 

constraints can be added to our algorithm.  

  

Figure 6.8 - Performance reduction resulting from the insertion of power gating instructions. 
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Figure 6.9 - Energy savings obtained through the insertion of power gating instructions. The 

dark green represents the contribution of the FUs and the bright green portion represents the 

RF contribution. 

 

 

The energy savings due to the insertion of power gating instructions, considering the 

performance penalties, is depicted in Figure 6.9. This quantity of energy savings is considered 

taking into account the contribution of power gating applied to the RF and to the FUs. It is 

observed that the average savings in energy are about 20% of the total energy consumed by 

the original ρ-VEX processor. The range of variation is between 14,35% for matrix and 

28,12% for x264. The same variability observed between benchmarks before can be extended 

to analyze this metric.  
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7 HARDWARE-SOFTWARE POWER GATING 

COMPARISON 

The difference of power energy savings results between the simulations focused on the 

potential of optimization (Chapter IV) and the simulations focused on the application of 

power gating techniques (Chapter V and VI) are notorious and are caused by the 

methodologies and objectives of each approach. In chapter IV we found that, on average, the 

potential energy savings are 70% across the benchmarks simulated, whereas for the 

application of power gating of the functional units the results are 15% and 20% for a 

hardware-based and software-based approach, respectively.  The approach showed in Chapter 

IV had as objective describing the energy savings that could be obtained if the complete 

microarchitecture of the processor was changed from one issue-width to another. It means that 

all the hardware units are changed including the specific configuration of the functional units, 

the register file, the load/store unit, etc. which are modules that are tailored for each issue-

width. Since hardware reconfiguration always presents timing and power overhead, the 

adaptation of all the microprocessor would not be feasible in real situations at fine-

granularity, so the results of this chapter can be seen as the upper-limit that an adaptable 

VLIW processor could achieve. Conversely, the presented power gating techniques in 

Chapter V and VI aimed to show the implementation of a VLIW processor that just apply the 

adaptation policy for the functional units. The results shown take into account the drawbacks 

derived from the application of the technique and are intended to present the real challenges 

that are faced with an adaptable VLIW microprocessor. 

There are remarkable differences between the hardware and the software approach that 

are important to point out. In general, the former offers best results in terms of energy savings 

as well as less performance losses for almost all the benchmarks that were used along this 

work.  

The compiler-based approach can put to sleep the functional units more times than the 

time-based approach. In Figure 7.1 and Figure 7.2, it is depicted the comparison for ALU 
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units and Multiplier units for each one of the benchmarks using the two aforementioned 

techniques. The threshold, the break-even point and the wakeup cycles of the time-based 

power gating were set to 21, 10, and 3, respectively, to obtain similar performance losses with 

the compiler-based power gating. In this way, we can compare the two frameworks by setting 

the same performance losses margins. It is observed that the average number of cycles that the 

functional units can be disabled is 54,63% for ALUs and 81,90% for multipliers through 

compiler-based approach; and 30% for ALUs and 63% for multipliers through time-based 

power gating. The results showed that with application binary analysis it is possible to detect 

shorter idle time periods that are overlooked by the time-based power gating. It is remarkable 

that for some benchmarks, like fir and matrix, the total sleep time through compiler-based 

approach is significantly larger. This means that in these benchmarks the long idle periods are 

not so common, and it is necessary a static or dynamic application analyses to take advantage 

of the presence of shorter idle periods inherent to the code. Moreover, the time that the 

multiplier units can be disabled is larger than for ALU units, since these functional units are 

used with less frequency. For some applications they can be put to sleep throughout all the 

execution time saving significant amounts of energy. 

  

Figure 7.1 - Comparison of total sleep time for ALU units between Time-based Power Gating and 

Compiler-based approach. 
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Figure 7.2 - Comparison of total sleep time for Multiplier units between Time-based Power Gating 

and Compiler-based approach. 

 

In Figure 7.3 it is shown the comparison of performance losses. This metric represents 

the reduction in IPC that it is expected regardless the employed technique. In the same way as 

before, the threshold, the break-even point and the wakeup cycles of the time-based power 

gating were set to 11, 10, and 3, respectively, to obtain similar power savings with the 

compiler-based power gating. The performance losses for the compiler-based approach are on 

average 8.64% and for the time-based approach 20,11%. In general, for almost all the 

benchmarks the reduction is about two or three times better for the software technique. This 

situation appears because by using application binary analyses we can set the necessary 

resources of each basic block before it begins its execution. In this way, often all the 

functional units that are required by a basic block are enabled when the instructions belonging 

to that basic block demand a specific resource. Conversely, for the time-based approach the 

functional units are enabled only when they are required by a new instruction. This lack of 

prediction is due to the dynamic nature of the hardware approach in contrast with the static 

compiler-based technique, producing a significant timing overhead. The only exception of 

this pattern is x264, which presents a larger performance overhead for the compiler-based 

power gating. This situation arises because this application presents many short idle periods 

which can be exploited for energy savings through the compiler technique. However, they are 

not long enough to obtain significant improvements in terms of energy consumption. Since 

the developed power gating instruction algorithm always put one power off instruction if 

there are potential positive energy savings, the performance could be affected without 

significant improvements for power consumption, which is what happens to this specific case.  
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Figure 7.3 - Comparison of performance losses between Time-based Power Gating and Compiler-

based approach. 

 

In Figure 7.4 it is depicted the comparison of energy savings using the same 

methodology as before for the threshold, break-even point and the wakeup cycles, to obtain 

similar performance losses with the compiler-based power gating as was made for the Figure 

7.1 and Figure 7.2.  We can see a link between those figures with Figure 7.4 since the 

calculations for energy savings were made based on the amount of sleep time cycles of the 

functional units. For all the benchmarks, the energy savings are larger for the compiler-based 

approach with varying degrees of improvements. Despite the difference in energy savings 

between the two approaches, this value is not so large (only 5%). The reason behind this 

result could be the presence of disabled functional units that are inactive independent of the 

applied methodology. For example, since the multipliers are not extensively used in some 

benchmarks, both software and hardware approach are able to disable them, so the net energy 

savings difference between the two methodologies is reduced. 

 

Figure 7.4 - Comparison of energy savings between Time-based Power Gating and Compiler-based 

approach. 

 



 

82 

 

8 CONCLUSIONS 

This thesis has presented the motivation, implementation challenges and potential 

benefits of an adaptable VLIW processor for energy efficiency. The overall results show that 

this kind of design is feasible and the improvements in relation to previous approaches is 

significant.  

The first part of the work has covered the most recent developments in adaptable 

computer architecture, specifically those focused on energy efficiency optimization. It was 

noted that this kind of designs offer a great variety of advantages over their static counterparts 

since the resources are handled dynamically. On the other hand, often the design complexity 

is increased and the overhead in terms of energy and performance must be taken into account 

into the final solution. 

We have then detailed the problems that arise with traditional static VLIW 

microprocessors and explained how these issues could be addressed through the 

implementation of an adaptable computing system. The impact in area, performance and 

power of an adaptable issue-width processor was obtained. The potential energy savings for a 

dynamic issue-width VLIW processor were calculated and two adaptation policies were 

implemented: coarse granularity and fine granularity. The results showed that the potential 

energy savings could be as high as 80%, which remarks the beneficial impact that an 

adaptable behavior could bring to a VLIW processor.  

Having in mind this scenario, we proposed two different techniques for the 

implementation of an adaptable VLIW processor: a hardware-based and a software-based 

power gating solution. The first one was based on the availability of hardware counters to 

detect long idle periods for the functional units and the use of power gating circuitry to 

disable the resources when these inactive traces are detected. The results showed that the 

functional units can be put to sleep for 63% of the total execution time for the multiplier units 

and 30% for the ALUs with a penalty of 20% in performance. The second solution proposed 

the insertion of customized instructions into the VLIW code to handle the turn on and turn off 
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of the functional units via power gating. Since this approach moves away the computational 

efforts from the hardware towards the software, the hardware design overhead is decreased 

and the power consumption of such adaptable processor is lower. The obtained results showed 

that the ALU units can be disabled 54% of the total execution time and the Multiplier units 

81% following this policy.  The total energy savings are on average 20% with an impact on 

performance near to 8%. 

8.1 Future Work 

The conclusions obtained from this dissertation open a wide range of research topics 

that could be source of new projects in the future work.  

The application of power gating might be suited to other datapath structures in the 

same way that these techniques were applied to the functional units and the register file. For 

example, the same as the Multiplier units and the ALU units present long idle periods, 

modules of a cache memory are used selectively and present idleness depending on the 

application. It means that, a significant part of the cache is inactive during specific periods of 

time wasting dynamic and static power consumption. This phenomenon is dynamic 

throughout the execution time. A compiler-based approach could use static or dynamic 

profiling to detect the expected cache use of each phase, and hence be able to insert 

customized instructions to control the availability of idle circuits via power gating.  

The greedy nature of the algorithm used for power gating instruction insertion presents 

some drawbacks that can be handled with improvements for this compiler technique. As was 

observed, there are some programs like x264 that have some idle paths in the CFG of some 

functional units, that are long enough to obtain positive energy savings but that are not 

significantly long to justify the performance losses. For example, using 10 cycles for the 

break-even point any idle path with just 11 cycles could be exploited to disable the functional 

unit. Whereas there will be energy savings since it is greater than the minimum cycles 

required, the performance losses could be higher if the wakeup of the functional unit is 

continuously required. To manage this situation, the influence of the performance impact 

could be inserted into the algorithm to avoid disabling the functional unit when these kind of 

recurring wake-up processes are present.  

The application of power gating and clock gating together is an interesting research 

topic that could be addressed in future work. As was observed along this Master Thesis, these 

two techniques are orthogonal since the application of one of them does not constraint the 
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application of the other one. Since clock gating could be applied cycle by cycle, power gating 

could be used selectively to take advantage of longer idle periods.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

85 

 

 

REFERENCES 

 

ALBONESI, David H. Selective cache ways: On-demand cache resource allocation. En 

Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual International Symposium on. 

IEEE, 1999. p. 248-259. 

 

ANNAVARAM, Murali; GROCHOWSKI, Ed; SHEN, John. Mitigating Amdahl's law 

through EPI throttling. En Computer Architecture, 2005. ISCA'05. Proceedings. 32nd 

International Symposium on. IEEE, 2005. p. 298-309. 

 

BALAKRISHNAN, Saisanthosh, et al. The impact of performance asymmetry in emerging 

multicore architectures. En ACM SIGARCH Computer Architecture News. IEEE Computer 

Society, 2005. p. 506-517. 

 

BECK, Antonio Carlos Schneider; LISBÔA, Carlos Arthur Lang; CARRO, Luigi. Adaptable 

embedded systems. Springer Science & Business Media, 2012. 

 

BOLZANI, Leticia, et al. Enabling concurrent clock and power gating in an industrial design 

flow. En Proceedings of the Conference on Design, Automation and Test in Europe. European 

Design and Automation Association, 2009. p. 334-339. 

 

BORKAR, Shekhar. Design challenges of technology scaling. Micro, IEEE, 1999, vol. 19, no 

4, p. 23-29. 

 

CADENCE ENCOUNTER, R. T. L. Compiler v. 8.10. Available at: www. cadence. com. 

Accessed November, 2015, vol. 11. 

 

CARDOSO, João MP; DINIZ, Pedro C.; WEINHARDT, Markus. Compiling for 

reconfigurable computing: A survey. ACM Computing Surveys (CSUR), 2010, vol. 42, no 4, 

p. 13. 

 

CHANDRAKASAN, Anantha P.; BRODERSEN, Robert W. Low power digital CMOS 

design. Springer Science & Business Media, 2012. 

 

CHANG, Chin-Hao; LIU, Pangfeng; WU, Jan-Jan. Sampling-based phase classification and 

prediction for multi-threaded program execution on multi-core architectures. En Parallel 

Processing (ICPP), 2013 42nd International Conference on. IEEE, 2013. p. 349-358. 

 

CLARK, Lawrence T., et al. Standby power management for a 0.18 μm microprocessor. En 

Proceedings of the 2002 international symposium on Low power electronics and design. 

ACM, 2002. p. 7-12. 

 

COLWELL, Robert. The chip design game at the end of Moore's law. En 2013 IEEE Hot 

Chips 25 Symposium (HCS). IEEE, 2013. p. 1-16. 

 

DHODAPKAR, Ashutosh S.; SMITH, James E. Comparing program phase detection 

techniques. En Proceedings of the 36th annual IEEE/ACM International Symposium on 

Microarchitecture. IEEE Computer Society, 2003. p. 217. 



 

86 

 

 

DHODAPKAR, Ashutosh S.; SMITH, James E. Managing multi-configuration hardware via 

dynamic working set analysis. En Computer Architecture, 2002. Proceedings. 29th Annual 

International Symposium on. IEEE, 2002. p. 233-244. 

 

DROPSHO, Steve, et al. Managing static leakage energy in microprocessor functional units. 

En Microarchitecture, 2002.(MICRO-35). Proceedings. 35th Annual IEEE/ACM International 

Symposium on. IEEE, 2002. p. 321-332. 

 

DUNN, Darrell. The best and worst cities for data centers. InformationWeek, 2006, vol. 23. 

 

DWARKADAS, Sandhya, et al. Memory hierarchy reconfiguration for energy and 

performance in general-purpose processor architectures. U.S. Patent No RE41,958, 23 Nov. 

2010. 

 

EMNETT, Frank; BIEGEL, Mark. Power reduction through RTL clock gating. SNUG, San 

Jose, 2000. 

 

FISHER, Joseph A.; FARABOSCHI, Paolo; YOUNG, Cliff. Embedded computing: a VLIW 

approach to architecture, compilers and tools. Elsevier, 2005. 

 

FL, Antonio Carlos Schneider Beck; CARRO, Luigi. Dynamic Reconfigurable Architectures 

and Transparent Optimization Techniques: Automatic Acceleration of Software Execution. 

Springer Science & Business Media, 2010. 

 

FLAUTNER, Krisztián, et al. Drowsy caches: simple techniques for reducing leakage power. 

En Computer Architecture, 2002. Proceedings. 29th Annual International Symposium on. 

IEEE, 2002. p. 148-157. 

 

GEUSKENS, Bibiche; ROSE, Kenneth. Modeling microprocessor performance. Springer 

Science & Business Media, 2012. 

 

GHIASI, Soraya; GRUNWALD, Dirk. Thermal management with asymmetric dual core 

designs. Dept. Comput. Sci., Univ. Colorado, Boulder, Tech. Rep. CU-CS-965-03, 2003. 

 

GUSTAFSSON, Jan, et al. The Mälardalen WCET benchmarks: Past, present and future. En 

OASIcs-OpenAccess Series in Informatics. Schloss Dagstuhl-Leibniz-Zentrum fuer 

Informatik, 2010. 

 

GUTHAUS, Matthew R., et al. MiBench: A free, commercially representative embedded 

benchmark suite. En Workload Characterization, 2001. WWC-4. 2001 IEEE International 

Workshop on. IEEE, 2001. p. 3-14. 

 

HEMMERT, Scott. Green hpc: From nice to necessity. Computing in Science & Engineering, 

2010, vol. 12, no 6, p. 8-10. 

 

HIND, Michael J.; RAJAN, Vadakkedathu T.; SWEENEY, Peter F. Phase shift detection: A 

problem classification. Technical report, IBM, 2003. 

 



 

87 

 

HU, Zhigang, et al. Microarchitectural techniques for power gating of execution units. En 

Proceedings of the 2004 international symposium on Low power electronics and design. 

ACM, 2004. p. 32-37. 

 

HUANG, Michael C.; RENAU, Jose; TORRELLAS, Josep. Positional adaptation of 

processors: application to energy reduction. En Computer Architecture, 2003. Proceedings. 

30th Annual International Symposium on. IEEE, 2003. p. 157-168. 

 

IPEK, Engin, et al. Core fusion: accommodating software diversity in chip multiprocessors. 

En ACM SIGARCH Computer Architecture News. ACM, 2007. p. 186-197. 

 

ISCI, Canturk, et al. An analysis of efficient multi-core global power management policies: 

Maximizing performance for a given power budget. En Proceedings of the 39th annual 

IEEE/ACM international symposium on microarchitecture. IEEE Computer Society, 2006. p. 

347-358. 

 

ISCI, Canturk; BUYUKTOSUNOGLU, Alper; MARTONOSI, Margaret. Long-term 

workload phases: Duration predictions and applications to DVFS. Micro, IEEE, 2005, vol. 25, 

no 5, p. 39-51. 

 

JEFF, Brian. Big. LITTLE system architecture from ARM: saving power through 

heterogeneous multiprocessing and task context migration. En Proceedings of the 49th 

Annual Design Automation Conference. ACM, 2012. p. 1143-1146. 

 

JIANG, Hailin; MAREK-SADOWSKA, Malgorzata; NASSIF, Sani R. Benefits and costs of 

power-gating technique. En Computer Design: VLSI in Computers and Processors, 2005.  

 

ICCD 2005. Proceedings. 2005 IEEE International Conference on. IEEE, 2005. p. 559-566. 

 

KĘDZIERSKI, Kamil, et al. Power and performance aware reconfigurable cache for CMPs. 

En Proceedings of the Second International Forum on Next-Generation Multicore/Manycore 

Technologies. ACM, 2010. p. 1. 

 

KOUFATY, David; REDDY, Dheeraj; HAHN, Scott. Bias scheduling in heterogeneous 

multi-core architectures. En Proceedings of the 5th European conference on Computer 

systems. ACM, 2010. p. 125-138. 

 

KUMAR, Rakesh, et al. Heterogeneous chip multiprocessors. Computer, 2005, no 11, p. 32-

38. 

 

KUMAR, Rakesh, et al. Single-ISA heterogeneous multi-core architectures for multithreaded 

workload performance. ACM SIGARCH Computer Architecture News, 2004, vol. 32, no 2, 

p. 64. 

 

KUMARI, Khushboo, et al. Review of Leakage Power Reduction in CMOS Circuits. 

American Journal of Electrical and Electronic Engineering, 2014, vol. 2, no 4, p. 133-136. 

 

LI, Hai, et al. DCG: deterministic clock-gating for low-power microprocessor design. Very 

Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2004, vol. 12, no 3, p. 245-

254. 



 

88 

 

 

LI, Hai, et al. Deterministic clock gating for microprocessor power reduction. En High-

Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth 

International Symposium on. IEEE, 2003. p. 113-122. 

 

LI, Jian; MARTINEZ, Jose F. Dynamic power-performance adaptation of parallel 

computation on chip multiprocessors. En High-Performance Computer Architecture, 2006. 

The Twelfth International Symposium on. IEEE, 2006. p. 77-87. 

 

LIAO, Weiping; BASILE, Joseph M.; HE, Lei. Leakage power modeling and reduction with 

data retention. En Proceedings of the 2002 IEEE/ACM international conference on Computer-

aided design. ACM, 2002. p. 7 WANG, Meng, et al. Real-time loop scheduling with leakage 

energy minimization for embedded VLIW DSP processors. En null. IEEE, 2007. p. 12-19.14-

719. 

 

LYSECKY, Roman; STITT, Greg; VAHID, Frank. Warp processors. En ACM Transactions 

on Design Automation of Electronic Systems (TODAES). ACM, 2004. p. 659-681. 

 

MARKOFF, John; HANSELL, Saul. Hiding in plain sight, Google seeks more power. New 

York Times, 2006, vol. 14, p. 1-2. 

 

MIYAMORI, Takashi; OLUKOTUN, U. A quantitative analysis of reconfigurable 

coprocessors for multimedia applications. En FPGAs for Custom Computing Machines, 1998. 

Proceedings. IEEE Symposium on. IEEE, 1998. p. 2-11. 

 

MOORE, Chuck. Data processing in exascale-class computer systems. In: The Salishan 

Conference on High Speed Computing. 2011. 

 

NIEDERMEIER, Anja, et al. The challenges of implementing fine-grained power gating. En 

Proceedings of the 20th symposium on Great lakes symposium on VLSI. ACM, 2010. p. 361-

364. 

 

PARK, Danbee, et al. Optimal algorithm for profile-based power gating: A compiler 

technique for reducing leakage on execution units in microprocessors. En Proceedings of the 

International Conference on Computer-Aided Design. IEEE Press, 2010. p. 361-364. 

 

RAKHMATOV, Daler; VRUDHULA, Sarma. Energy management for battery-powered 

embedded systems. ACM Transactions on Embedded Computing Systems (TECS), 2003, vol. 

2, no 3, p. 277-324. 

 

RELE, Siddharth, et al. Optimizing static power dissipation by functional units in superscalar 

processors. En Compiler Construction. Springer Berlin Heidelberg, 2002. p. 261-275. 

 

ROY, Soumyaroop; RANGANATHAN, Nagarajan; KATKOORI, Srinivas. A framework for 

power-gating functional units in embedded microprocessors. Very Large Scale Integration 

(VLSI) Systems, IEEE Transactions on, 2009, vol. 17, no 11, p. 1640-1649. 

 

SAHA, Dipankar, et al. Implementation of the Cluster Based Tunable Sleep Transistor Cell 

Power Gating Technique for a 4x4 Multiplier Circuit. arXiv preprint arXiv:1310.3203, 2013. 

 



 

89 

 

SANKARALINGAM, Karthikeyan, et al. Exploiting ILP, TLP, and DLP with the 

polymorphous TRIPS architecture. En Computer Architecture, 2003. Proceedings. 30th 

Annual International Symposium on. IEEE, 2003. p. 422-433. 

 

SHERWOOD, Timothy, et al. Automatically characterizing large scale program behavior. 

ACM SIGOPS Operating Systems Review, 2002, vol. 36, no 5, p. 45-57. 

 

SHERWOOD, Timothy, et al. Discovering and exploiting program phases. Micro, IEEE, 

2003, vol. 23, no 6, p. 84-93. 

 

SHERWOOD, Timothy; SAIR, Suleyman; CALDER, Brad. Phase tracking and prediction. 

En ACM SIGARCH Computer Architecture News. ACM, 2003. p. 336-349. 

 

SHIN, Youngsoo, et al. Power gating: Circuits, design methodologies, and best practice for 

standard-cell VLSI designs. ACM Transactions on Design Automation of Electronic Systems 

(TODAES), 2010, vol. 15, no 4, p. 28. 

 

SMIT, Gerard JM, et al. Lessons learned from designing the MONTIUM-a coarse-grained 

reconfigurable processing tile. 2004. 

 

UCHIDA, Mitsuya, et al. Energy-aware SA-based instruction scheduling for fine-grained 

power-gated VLIW processors. En SoC Design Conference (ISOCC), 2012 International. 

IEEE, 2012. p. 139-142. 

 

VILLA, Oreste, et al. Scaling the power wall: a path to exascale. En Proceedings of the 

International Conference for High Performance Computing, Networking, Storage and 

Analysis. IEEE Press, 2014. p. 830-841. 

 

WONG, Stephan; VAN AS, Thijs; BROWN, Geoffrey. ρ-VEX: A reconfigurable and 

extensible softcore VLIW processor. En ICECE Technology, 2008. FPT 2008. International 

Conference on. IEEE, 2008. p. 369-372. 

 

X-FAB, 0.18 micron modular cmos technology. Available at: 

www.xfab.com/technology/cmos/018-um-xc018/.  Accessed November, 2015. 

 

YANG, Se-Hyun, et al. An integrated circuit/architecture approach to reducing leakage in 

deep-submicron high-performance I-caches. En High-Performance Computer Architecture, 

2001. HPCA. The Seventh International Symposium on. IEEE, 2001. p. 147-157. 

 

YE, Zhi Alex, et al. CHIMAERA: a high-performance architecture with a tightly-coupled 

reconfigurable functional unit. ACM, 2000. 

 

YEO, L. C., et al. Dynamic power gating implementation on intel embedded media and 

graphics driver. Intel Corporation, White Paper, 2011, vol. 325293. 

 

YOU, Yi-Ping; LEE, Chingren; LEE, Jenq Kuen. Compilers for leakage power reduction. 

ACM Transactions on Design Automation of Electronic Systems (TODAES), 2006, vol. 11, 

no 1, p. 147-164. 

 



 

90 

 

ZHONG, Hongtao; LIEBERMAN, Steven A.; MAHLKE, Scott A. Extending multicore 

architectures to exploit hybrid parallelism in single-thread applications. En High Performance 

Computer Architecture, 2007. HPCA 2007. IEEE 13th International Symposium on. IEEE, 

2007. p. 25-36. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


