

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

JUAN SEBASTIAN PIEDRAHITA GIRALDO

Adaptable VLIW Microprocessor for Energy Efficiency

Thesis presented in partial fulfillment of the

requirements for the degree of Master in

Microeletronics

Advisor: Prof. Dr. Antonio Carlos Schneider Beck

Porto Alegre

2016

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Piedrahita Giraldo, Juan Sebastian

Adaptable VLIW Microprocessor for Energy Efficiency / Juan

Sebastian Piedrahita Giraldo – 2016.

90 f.:il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.

Programa de Pós-Graduação em Microeletrônica, Porto Alegre, BR–

RS, 2014. Advisor: Antonio Carlos Schneider Beck.

1. Introduction. 2. Adaptable Computer Architectures for Energy

Efficiency. 3. VLIW Design. 4. Evaluation of Energy Savings on a

VLIW Processor through Dynamic Issue-width Adaptation. 5. Time-

based Power Gating for VLIW Processors. 6. Leveraging Compiler

Support on VLIW Processors for Efficient Power Gating. 7.

Hardware-Software Power Gating Comparison. 8. Conclusions.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb

Coordenador do PGMICRO: Prof. Fernanda Gusmão de Lima Kastensmidt

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The real danger is not that computers will begin to think like men,

but that men will begin to think like computers.”

 – Sydney Harris

ACKNOWLEDGMENTS

This work would not be possible without the help of many people that provide me

with advices, guidance, ideas, love and many reasons to wake up each morning. I am very

grateful to my advisor Prof. Antonio Carlos Beck for always helping me with his invaluable

experience and for teaching me all the required skills to become a better researcher.

Likewise, thank you to all the people from the Embedded Systems Lab, which gave me

feedback, recommendations and excellent ideas.

To my family, which is always in my heart and motivates every single step I take.

To Thati, for being a source of endless love and unconditional support. For filling me

with countless smiles.

To my friends in Porto Alegre for the unforgettable moments and long laughs.

Mauricio, Nathalia, David, Jose, Luis, Sammy, Franky.

And to Brazil, for being the country that made me happier.

Microprocessador VLIW Adaptável para Eficiência Energética

RESUMO

O consumo de energia tem sido uma variável cada vez mais importante nos projetos de

implementação de microprocessadores nas últimas décadas. A arquitetura VLIW é um

exemplo representativo desta tendência, devido ao seu design simples e desempenho

competitivo, resultado da exploração do paralelismo entre instruções (ILP) em tempo de

compilação. Neste trabalho, é realizada uma análise da economia de energia obtida através da

adaptação da microarquitetura dos processadores VLIW de acordo com as diferentes fases dos

programas executados. Primeiramente, o potencial de otimização é abordado, através da

execução de um grupo de benchmarks no processador configurável ρ-vex, e estudando o

impacto da largura do processador (i.e.: número de issues) na performance, consumo de

energia, e área. A partir desta informação, um experimento levando em conta o caso ótimo

(usando um oráculo) foi realizado com o objetivo de variar dinamicamente a largura do

processador de acordo com a fase do programa, considerando duas granularidades diferentes.

A economia de energia usando este tipo de adaptação pode ser de até 81,5% comparado com

uma versão estática do mesmo processador executando o grupo de benchmarks MiBench.

Com base nestes resultados, duas técnicas de power gating nas unidades funcionais são

propostas. A primeira é baseada em lógica adicional, inserida no processador, para controlar

os circuitos de power gating associados com cada unidade funcional. Mostra-se que estas

unidades podem ser desabilitadas em até 63% do tempo de execução para os multiplicadores e

30% para as ALUs, com um custo em performance de 13%, em média. A segunda técnica

proposta propõe uma técnica para ser usada em conjunto com o compilador para aplicar

power gating nas unidades funcionais, assim como nos blocos do banco de registradores. Esta

operação é realizada inserindo instruções específicas em tempo de compilação, tendo em

conta a análise das probabilidades de instruções de saltos e informação dos blocos básicos,

obtidos através de instrumentação de código. Utilizando este tipo de estratégia, é possível

economizar até 20% em energia com perda marginal de desempenho.

Palavras chaves: VLIW. Processador Adaptativo. Consumo de energía.

Adaptable VLIW Microprocessor for energy efficiency

ABSTRACT

 The development of energy efficient hardware has been a trend in microprocessor

design for the last two decades. VLIW processors are a representative example, since they

have a simpler design and competitive performance, due to their static ILP exploitation. In

this work, we study the energy savings that could be obtained by adapting such

microarchitecture according to the current program phase. First we analyze the potential of

optimization, by executing a set of benchmarks on the ρ-vex configurable softcore VLIW

processor, and by modifying the number of issues. With this data in hand, we develop an

oracle experiment to dynamically vary the issue width of the processor according to the phase

behavior, considering two different phase granularities. The potential energy savings using

this policy could be as high as 81.5% when compared with the static version, executing the

MiBench set. Taking into account this information, two techniques for power gating the

functional units are proposed. The first approach is based on additional hardware logic to

control the power gating circuitry of each Functional Unit. Our results show that these units

can be put to sleep on average 63% of the execution cycles for the multipliers and 30% for the

ALUs, at a performance loss of 13%. The second approach handles intelligent use of the

compiler for power gating the Functional Units as well as blocks of the Register File. We do

so by inserting customized instructions at compile time, based on the analysis that involves

probabilities of conditional branches and basic block information obtained via dynamic

profiling. By using this technique, it is possible to save up of 20% in the total energy

consumption with marginal losses in performance.

Keywords: VLIW. Adaptive processor. Energy consumption

LIST OF FIGURES

Figura 1.1 - Thirty five years of microprocessor trend data. ... 13

Figura 2.1 - Clock gating circuitry for a flip flop. The clock is controlled by the behavior of enable

signal. .. 20

Figura 2.2 - Power gating circuitry. The sleep signal controls the availability of power lines for each

transistor. ... 22

Figura 2.3 - Key intervals in the power gating cycle. ... 23

Figura 2.4 - Time varying behavior for wave5 program from SPEC95 benchmark. The X axis is in

terms of 100 million of executed instructions. .. 26

Figura 2.5 - Relative sizes of the cores used for simulation. ... 28

Figura 2.6 - (a) Performance of application applu on the four cores. (b) Oracle using energy metric (c)

Oracle using energy-delay product. .. 29

Figura 2.7 - Context Switching for big.LITTLE architecture. The demanding tasks are allocated to the

more complex Cortex-A15 while the others are executed by the Cortex-A7. 30

Figura 2.8- Power consumption and execution time of CMP configurations with varying number of

processors N and voltage/frequency levels for an instance of BSOM’s parallel region (a parallel data

mining application). Target execution time and power are 40 ms and 30 W respectively. 31

Figura 2.9– Big/Small Core Speedup for different applications. A thread has big core bias if its

big/small core speedup is large. Conversely a thread has small core bias if its big/small speedup is

small .. 32

Figura 2.10 - Block diagram of a microprocessor with reconfigurable coprocessor. 35

Figura 2.11 - Diagram of an eigh-core CMP with core fusion capability. It depicts a configuration

example of two independent cores, a two-core fused group, and a four-core fused group. 37

Figure 3.1 - Execution in a VLIW versus Superscalar. ... 41

Figure 3.2 - ρ-vex organization for 4-issue-width. .. 44

Figure 3.3 - Instruction Layout for ρ-vex processor ... 45

Figure 3.4 - ρ-VEX application development framework ... 45

Figure 4.1- Area comparison between different issue-widths ... 48

Figure 4.2 - Power comparison between different issue-widths. .. 49

Figure 4.3 - Speedup compared to the 4-issue VLIW ... 49

Figure 4.4 - EDP ratio for different applications... 50

Figure 4.5 - Diagram Flow for the VEX simulator toolchain ... 52

Figure 4.6 - Example of a VLIW instruction in assembly .. 53

Figure 4.7 - Example of the compile-simulated code ... 53

Figure 4.8 - Insertion of profiling functions inserted into compile-simulated code 53

Figure 4.9 - Average IPC during the execution... 56

file:///C:/Users/sebastian/Dropbox/Thesis/Disertacion%20Documento/disertacao-homologada.doc%23_Toc458804578

Figure 4.10 - Energy Savings .. 59

Figure 5.1 - State machine of an execution unit when power gating is inserted. 62

Figure 5.2 - Percent of cycles in sleepmode for ALUs units (y-axis) with different Tidledetect (x-axis)

and Tbreakeven = one of 5, 10,15, or 20 cycles. Twakeup is fixed at 3 cycles. .. 64

Figure 5.3 - Percent of cycles in sleep mode for Multiplier units (y-axis) with different Tidledetect (x-

axis) and Tbreakeven = one of 5, 10,15, or 20 cycles. Twakeup is fixed at 3 cycles. 65

Figure 5.4 - Average IPC of WCET benchmarks (y-axis) with different Tidledetect (x-axis) and Twakeup

values. Tbreakeven is fixed at 10 cycles. IPC is normalized to the base case where power gating is

disabled. .. 65

Figure 5.5 - Energy Savings for each application using Tidledetect fixed to 21 cycles and Tbreakevent point to

10 cycles. ... 66

Figure 6.1 - CFG of a program. Each circle is a Basic Block with an identifier and the number of

instructions. ... 69

Figure 6.2 - Power gating instruction for the FUs. .. 70

Figure 6.3- Number of references for each register using windows of 100 instructions for ndes. The y

axis represents each register that is part of the RF. ... 72

Figure 6.4 - Power gating instruction for the RF. ... 73

Figure 6.5 - Diagram flow for Profile-Based power gating. Each gray box is a step (process) while the

rectangles are data obtained from the last step. ... 73

Figure 6.6 - Number of cycles that the FUs are disabled through power gating for a) ALUs and b)

Multipliers. The dark blue portion represents the amount of cycles that saves energy, whereas the clear

bright bluw portion represents the number of cycles that are needed to compensate the energy

overhead derived from power gating. ... 75

Figure 6.7 - Number of cycles that the RF is disabled through power gating. 75

Figure 6.8 - Performance reduction resulting from the insertion of power gating instructions. 76

Figure 6.9 - Energy savings obtained through the insertion of power gating instructions. The dark

green represents the contribution of the FUs and the bright green portion represents the RF

contribution. .. 77

Figure 7.1 - Comparison of total sleep time for ALU units between Time-based Power Gating and

Compiler-based approach. ... 79

Figure 7.2 - Comparison of total sleep time for Multiplier units between Time-based Power Gating and

Compiler-based approach. ... 80

Figure 7.3 - Comparison of performance losses between Time-based Power Gating and Compiler-

based approach. ... 81

Figure 7.4 - Comparison of energy savings between Time-based Power Gating and Compiler-based

approach. ... 81

LIST OF ACRONYMS

CMOS Complementary Metal Oxide Semiconductor

VLIW Very Long Instruction Word

VEX VLIW Example

VHDL VHSIC Hardware Description Language

IPC Instructions Per Cycle

ALU Arithmetic Logic Unit

CFG Control Flow Graph

ILP Instruction Level Parallelism

FU Functional Unit

DVFS Dynamic Voltage and Frequency Scaling

WCET Worst Case Execution Time

EDP Energy-Delay Product

INDEX

ACKNOWLEDGMENTS .. 4

RESUMO .. 5

LIST OF FIGURES... 7

1 INTRODUCTION ... 12

1.1 Motivation ..12

1.2 Objectives ...15

1.3 Thesis Organization ..15

2 ADAPTABLE COMPUTER ARCHITECTURES FOR ENERGY EFFICIENCY 16

2.1 Managing Power consumption in CMOS technology ..16
2.1.1 Sources of Power consumption .. 18
2.1.2 Techniques for power reduction .. 19

2.2 Dynamic Behavior of Workloads ...24

2.3 Adaptable Architectures to minimize Energy consumption ..27
2.3.1 Heterogeneous Systems ... 27
2.3.2 Reconfigurable Computing ... 34
2.3.3 Challenges and Other Architectures ... 35

2.4 Critical Analysis and Contributions ...37
2.4.1 Our approach .. 38

3 VLIW DESIGN ... 41

3.1 VLIW basics...41

3.2 Commercial VLIW processors..42

3.3 VEX Architecture ..42

3.4 ρ -VEX processor ...43

3.5 Application development for ρ-vex processor ..45

4 EVALUATION OF ENERGY SAVINGS ON A VLIW PROCESSOR THROUGH DYNAMIC ISSUE-
WIDTH ADAPTATION ... 47

4.1 Potential of Optimization ...48

4.2 Dynamic adaptation ...51
4.2.1 Methodology .. 52

4.2.2 Coarse-grained approach .. 54
4.2.3 Fine-grained approach .. 54
4.2.4 Coarse vs. fine-grained approaches .. 55

4.3 Oracle Heuristics for Dynamic Issue-width Selection ..57

4.5 Critical Analysis ..58

5 TIME BASED POWER GATING FOR VLIW PROCESSORS .. 61

5.1 Time Based Power Gating ...62

5.2 Methodology ..63

5.3 Results ..63

6 LEVERAGING COMPILER SUPPORT ON VLIW PROCESSORS FOR EFFICIENT POWER
GATING .. 68

6.1 Compiler-based approach for Power Gating ...68
6.1.1 For the Functional Units ... 68
6.1.2 For the Register File .. 71

6.2 Methodology ..73

6.3 Experimental Results ..74

7 HARDWARE-SOFTWARE POWER GATING COMPARISON ... 78

8 CONCLUSIONS ... 82

8.1 Future Work ...83

12

1 INTRODUCTION

1.1 Motivation

The microprocessor industry witnessed the birth of a new design paradigm in the last

decades, moving away from a design approach focused on performance towards one focused

on energy efficiency. This trend can be attributed to two major facts. The first one is the

power wall that the industry faced when the raising frequency used in the new high-end

processor designs produced higher values of power consumption (Figure 1.1), which could

not be managed with the current packaging technology COLWELL (2013). The deep-

pipelined and aggressive out-or-order designs were discouraged since the success of these

strategies is profoundly linked with increasing clock rates. The second fact was the prevalence

of embedded systems in the electronics market whose energy consumption is very restricted

due to mobile battery constraints RAKHMATOV;VRUDHULA (2003). Thus the growing

performance that electronics market demands from new computer systems generates an

important trade-off: the consumer needs the highest performance with the least possible

energy consumption BECK; LISBÔA; CARRO (2012).

This design pressure for adaptability regarding energy savings might be found in all

levels of abstraction within any modern microprocessor. In the architectural level, it can be

found heterogeneous systems, which are multicore systems composed of cores with different

computer organizations KUMAR et al. (2005). Each one of them presents different values of

power consumption and performance, representing distinct points in the design space. In these

systems, each thread is allocated for its best possible core depending on either specific

performance or energy requirements, making possible improvements in energy efficiency. On

the other hand, at the gate and transistor level, technological approaches like DVFS modify

frequency and voltage supply depending on the current performance demands or power

constraints ISCI; BUYUKTOSUNOGLU; MARTONOSI (2005).

13

Figura 1.1 - Thirty five years of microprocessor trend data.

Reference: MOORE (2011)

At the architectural level, VLIW design is a microarchitecture solution for the

demands imposed by energy efficiency requirements since complexity is moved from

hardware to software. A superscalar processor exploits ILP (Instruction Level Parallelism)

through expensive dynamic scheduling hardware, whereas in VLIW processors a compiler

does most of this work, statically. It results in a simpler hardware design that still takes

advantage of multiple execution units without incurring high resources overhead. However,

the energy resources of a modern VLIW microprocessor are also limited and then its use must

be intelligently managed to avoid any kind of energy waste. Therefore, VLIW

microprocessors must also be designed to dynamically adjust the availability of resources to

the computational demands.

The typical commercial VLIW processors are static and the resources that are

available in the CPU are not always in tune with the demands generated by the workload. In

this group of static resources, we can find the issue-width and the register file size. The issue-

width influences the availability of execution units, which determines the ILP available for

the compiler, whereas the register file size determines the number of registers that the

compiler is able to manage. By choosing high values for these parameters, performance is

likely to increase but it will also increase power consumption as a drawback. Since different

14

programs exploits the availability of functional units and registers at different levels, the

presence of idle units in this kind of resources will most likely be a source of energy waste.

Moreover, not only different applications present varying demands for resources: even

the needs of a single application may vary throughout time. For instance, some parts of the

program may exploit more ILP by computing several arithmetic operations; while others may

present less ILP because of being memory bound sections. These intervals with similar

behavior are defined, in this work, as phases SHERWOOD et al. (2002). If the resources are

set to comprise the phase with the highest demand of hardware resources (in order to achieve

the best performance), the execution of a phase with low computing demands will increase

the energy consumption of the system since the idle resources will continuously consume

energy. On the other hand, if the resources are set to the lowest demanding phase, the

performance will be highly affected (and may also negatively influence energy, since it will

take longer to finish execution). Therefore, for a given application, the presence of different

phase behavior will very likely affect the performance and energy consumption of the system.

Since high performance is needed in many practical problems, the implementation of a

great quantity of FUs in a VLIW processor is sometimes obligatory. Therefore, the optimal

scenario is to combine both performance and low energy consumption by having all the

resources available for high ILP phases and turn off the idle hardware when a phase with low

ILP is found. This situation demands the use of effective techniques for power management

of idle FUs, dynamically decreasing the amount of energy consumed by parts of the circuit

that are not useful for computing purposes. In this group of techniques, we can find prior

circuit-level approaches like clock gating BOLZANI et al. (2009), EMNETT; BIEGEL

(2000) and power gating HU et al. (2004). While the first one only attempts to decrease the

dynamic power consumption, which is a result of the clock tree switching; the second one

also reduces leakage power of the logic by disabling the power lines for specific parts of the

circuit. The implementation of power gating is more challenging in terms of design because

of the overhead of this technique: since the turn-on and turn-off processes of the power lines

of the circuitry spend additional time and energy, this penalty must be taken into account by

the power gating policy. Nevertheless, leakage power has been showing an increasing impact

on newer technologies CHANDRAKASAN; BRODERSEN (2012). Thus, the use of power

gating for specific parts of the die could be mandatory in the next microprocessor designs to

avoid excessive power dissipation.

15

1.2 Objectives

Having in mind the aforementioned scenario, the purpose of this thesis is to address

the feasibility of an adaptable VLIW processor and propose design solutions for the

implementation of its microarchitecture. We present results and measurements of the potential

benefits produced by this scheme through synthesis and simulation tools.

Summarizing, this work has three main purposes:

• Describe quantitatively the impact of architectural design choices like issue-

width for energy consumption, performance, and area on a VLIW processor.

• Analyze the potential energy savings that might be obtained by dynamically

adapting the VLIW microarchitecture according to the program phase.

• Propose, describe and implement a feasible adaptable VLIW processor for

energy efficiency; and compare the advantages and challenges of a purely hardware-based

approach versus a compiler-based approach.

1.3 Thesis Organization

The rest of this work is organized as follows. Chapter II describes a summarized

bibliographic review over adaptable computer architectures for energy efficiency. Chapter III

describes work related to VLIW microprocessors and presents ρ-VEX, a VLIW processor that

is used along this work for simulation purposes. Chapter IV shows the potential of

optimization by analyzing the impact of design choices on performance and energy

consumption as well as the evaluation of an oracle methodology for potential energy savings

through issue-width adaptation. Chapter V and Chapter VI compares two main

implementations for adaptable functional units through power gating: a hardware approach

based on hardware counters (Chapter V) and a software approach based on power gating

instructions (Chapter VI). Chapter VII presents a comparison in terms of results between the

two previously mentioned strategies. Chapter VIII summarizes our conclusions and points

out to future directions of research and development.

16

2 ADAPTABLE COMPUTER ARCHITECTURES FOR

ENERGY EFFICIENCY

In this chapter, it is presented a survey about adaptable computer architectures for

energy efficiency and the implementation challenges that are associated with this kind of

design. More specifically, how we can dynamically reconfigure the behavior of modern

microprocessors depending on the running application in order to minimize energy

consumption. We are going to review a set of researches related with this issue and we will

show the different practical problems that arise whenever an adaptable processor is

implemented. The purpose of this chapter is to show the different methodologies that have

been applied for the energy efficiency problem, presenting a wide range of paradigms, from

Heterogeneous Systems to Reconfigurable Computing.

The rest of this chapter is organized as follows. In section 2.1 it is presented the

problem of power consumption in CMOS technology as well as the technological techniques

that have been developed to decrease its impact. In section 2.2 there is an overview about

dynamic behavior of workloads studying the variability that applications exhibit in terms of

application metrics like IPC, branch miss prediction error rates, etc. In section 2.3 the related

work about adaptable architectures for energy efficiency is presented, remarking the

differences between each one of the possible approaches. Finally, section 2.4 presents the

conclusions that can be extracted from the previous discussion and the perspectives that can

be expected from future adaptable computer architectures.

2.1 Managing Power consumption in CMOS technology

The CMOS paradigm has evolved as the primary technology used to design,

implement and verify new integrated circuits. The shift from bipolar circuits to CMOS

brought new advances in power consumption since the energy this kind of circuits demanded

was mainly represented by switching activity whereas static consumption was almost

insignificant. Paradoxically, the same reason that gave impulse to CMOS technology has been

17

the primary challenge in the last years. The increasing power density as well as the increasing

importance of leakage power have become rough challenges for hardware engineers. Since

the advent of a new technology that replaces CMOS will not be mature within a short term,

the efforts have been focused on the implementation of techniques for decreasing power

consumption without essentially changing the manufacturing process.

Since the 1990s, power consumption has been a primary requirement at the same level

that performance and cost for any digital design. The embedded systems and mobile

applications, which are restricted by battery lifetime, are two big forces that have guided the

rise of power-aware computing. In desktop machines, the key constraint is thermal, so

currently, high performance processors have encounter a “power wall” and their operating

frequencies have been severely restricted.

Likewise, power consumption is becoming a main concern for the High Performance

Computing (HPC) community, since moving from petascale to exascale demands better

energy efficient systems HEMMERT (2010). For instance, the Titan supercomputer at Oak

Ridge National Laboratory has 18,688 NVIDIA Tesla K20X GPUs, which demand almost 8.2

MW of power while generating 2.14 GF/W. This energy efficiency is far from the required to

enable exascale systems, which would have to be higher than 50GF/W VILLA, et al. (2014).

The future process technology improvements would account for about 4.3X of the required

energy efficiency whereas an additional 1.9X could be derived from circuit improvements like

lower VDD operating voltage. Therefore, about 2.5X of the needed enhancements would have

be generated by architectural and system level design decisions which, if successful, would

allow efficient scaling-up of node performance VILLA, et al. (2014).

The problem of low power techniques has been historically and mainly addressed by

circuit engineers. The apparently historical unique focus on the circuit-level is understandable

because of availability of CAD tools for power consumption estimation and a more precise

analytical approach. However, in the recent past the importance of architecture decisions has

gained interest, so the problem has been also managed at a higher level of abstraction. Often

the design decisions on higher levels of abstraction produce a higher impact on system

behavior in terms of performance and energy. The latest efforts in this direction have been

present at the level of caches, execution units, cores, etc.

In the next subsections the CMOS power consumption sources are explained as well

as the specific techniques that have been developed to deal with them.

18

2.1.1 Sources of Power consumption

Basically we can divide power consumption for CMOS into two big categories:

dynamic and leakage power. The first is related with energy spent during switching activity

intervals and the second one includes all the power consumption sources when the circuit is in

idle state.

2.1.1.1 Dynamic Power

Dynamic power consumption has been the most important part of the power budget

and the primary metric that has guided the progresses in power aware computing. It is caused

by the switching activity that CMOS gates generate when there are state changes in any of

their outputs. In that case, the capacitances that compose the circuit are charged and

discharged, which consumes energy in the process.

It is given by the known equation:

P = CV2Af

Here, C is the load capacitance, V is the voltage that acts as supply, A is the activity

factor and f is the operating frequency. The details of each one of these variables are

described below.

Capacitance (C): It is the capacitance that is generated by the intrinsic characteristics

of the transistors and the contribution of wires and aggregated chip sub-structures. Since the

capacitance due to transistor parasitics are inherent to the technology, the architecture

decisions have not a big impact on this one. However, the load capacitance largely depends

on the wire lengths of on-chip modules, so the variation of computer organization could

increase or decrease the total power consumption. As an example, a processor composed of

four simple cores would have shorter wire lengths compared with a big core since the most

part of the connections is restricted to smaller regions. The same principle applies to

independent banks of cache compared with a large cache since the address and data lines are

only spanned in a relatively small region.

Supply Voltage (V): It corresponds to the voltage of supply lines connected to CMOS

gates. Since the contribution to P is quadratic, its changes have enormous influence on the

total power consumption. Historically, this variable has dropped steadily with each new

technology which has made possible higher levels of integration.

Activity factor (A): This variable expresses the fraction of time that the wires are

transitioning. A value of 1 would mean that the transistor outputs are switching at the same

rate as the clock speed. There are many techniques, like clock gating, that aim to reduce

activity factor by disabling unused logic at specific moments.

19

Frequency (f): The clock rate is a variable that is associated with operating frequency

in any synchronous circuit. The supply voltage and frequency are not independent parameters,

so usually they are correlated. A system that needs higher operating frequency needs higher

supply voltage since the charge and discharge of capacitances is faster in that situation. For

that reason, the effect of these variables (V2f) has a cubic impact on power consumption.

Techniques like DVFS (Dynamic Voltage and Frequency Scaling) have been developed to

reduce this effect by modifying frequency and voltage supply depending on the current

performance demands ISCI, et al. (2005).

2.1.1.2 Leakage Power

The power consumption that is produced when the transistors are not changing their

current outputs is called leakage power. The amount of its contribution is not predominant

when it is compared with dynamic power but the trend is to increase with each new

semiconductor fabrication improvement. As the technology scales down below 100nm, the

channel length decreases, which increases the amount of leakage power in the total power

dissipated KUMARI et al. (2014).

Leakage power is divided into gate leakage and sub-threshold leakage. The first one is

related to the amount of current that is tunneled through the transistor gate and its relative

importance is increasing with technological shrinking. On the other hand, sub-threshold

leakage is the most representative part of leakage power and it is caused by the non-ideality of

gate dynamics. The ideal value of static drain current in a CMOS circuit is zero. However,

since it behaves exponentially, there is a little contribution of current even when the voltage

source is less than threshold voltage. Mathematically it is expressed as:

Here, V is the supply voltage, Vth is the threshold voltage, T is the temperature and a, q

and ka are constants that depend on fabrication processes. It is noted that leakage power is

higher if Vth is lower. Since lowering threshold voltage is a necessity to achieve higher

operating frequencies, it causes an increasing for power consumption.

2.1.2 Techniques for power reduction

There have been proposed many different techniques to decrease the impact that a

variety of sources have over power consumption both as dynamic power and as static power.

These methods span from low level techniques, like using high threshold transistors, to high

20

level approaches, like using multicore processors. In this section, we explore two specific

methods that can be applied at the microarchitecture level and, as a result, important for the

current research. They are clock gating and power gating.

The first one attempts to reduce dynamic power caused by clock tree and the second

one is focused on decreasing leakage generated by idle circuits. Each one resolves different

problems so they can be applied orthogonally.

2.1.2.1 Clock Gating

One of the main methods to reduce dynamic power consumption is to disable

switching activity that does not have a direct influence on the results of a computation. In the

case of clock gating, the main purpose is to prune those parts of the clock tree that arrive to

flip flops and latches which are not changing their outputs. Therefore, this action reduces

dynamic power generated by clock switching activity. It could be applied to simple circuits,

modules an even at the core level, depending on the granularity that is being addressed.

At the circuit level, the process of clock gating is depicted in Figura 2.1. When an

AND gate is introduced, the flip flop input capacitance is replaced by the AND gate

capacitance. Since this value is lower than the former one, the energy that is spent discharging

and charging it is much smaller.

Figura 2.1 - Clock gating circuitry for a flip flop. The clock is controlled by the behavior of enable

signal.

One specific technique for clock gating is Deterministic Clock Gating, which enables

and disables the clock tree for execution units or different stages of a pipeline some amount of

cycles in advance LI et al. (2004). So if one specific module is not used during a part of the

execution, its clock signals could be pruned. The idleness of a structure must be known some

21

cycles in advance to reduce problems of performance drop. The enable and disable signals for

clock gating are transmitted like a bubble through the pipeline.

Although the idea had been conceived a long time ago, the first real application on a

superscalar pipeline was not made until 2003. By applying deterministic clock gating LI et al.

(2003) disabled and enabled latches and stages of the pipeline according to the ideas

presented here. They reduced power in 21% and 19%, on average, for floating point and

integer SPEC2000 benchmarks, respectively.

A number of commercial processors implement some kind of clock gating to take

advantage of the reduction in dynamic power without significant losses in performance. In the

following paragraphs some of the most remarkable ones are presented.

Intel XScale: It is a low power processor that, besides its extensive DVFS features,

implements deterministic clock gating CLARK et al. (2001). The most basic units that are

controlled via clock gating are the Local Clock Buffers (LCBs), which generate clock pulses

that are fed into pulse-clocked latches. Each LCB has enable signals that stops the production

of those signals and consequently disables the clock tree for some parts of the processor. Each

LCB must control at least five latches to avoid losses due to power overhead associated with

extra-circuitry.

Power5: The power savings obtained via clock gating in this processor are about 25%

without losses in performance CLABES et al. (2004). All the clock gating domains are

programmable, so there is a big control over the dynamics of the mechanisms.

2.1.2.2 Power Gating

The main idea behind Power gating is to decrease static power by dynamically

disabling the power lines of specific parts of the circuit when there is no switching activity.

To achieve this objective a global policy controls the dynamics of power gating signals and,

likewise, some additional and special circuits carry out the connection and disconnection of

power lines.

The circuitry for each domain is composed of a header and/or footer transistor and the

corresponding logic (see Figura 2.2). When a sleep signal is asserted, the sleep transistors

disconnect Vdd and the virtual Vdd. Likewise, when it is de-asserted the power supply is

available again.

22

Figura 2.2 - Power gating circuitry. The sleep signal controls the availability of power lines for each

transistor.

Refernce: SAHA et al. (2013)

Since the charge and discharge of power lines is not currently accomplished within

one single clock cycle, there is a time penalty for each one of these processes. This kind of

penalty is manifested as a potential performance loss when a specific circuit is needed for

computational purposes and its functionality is not available at that moment.

The process of power gating has a set of phases that it is important to mention briefly

(See Figura 2.3). The inactivity period begins at T0, and at T1. The Power gating control unit

takes a decision and produces the signals to disable the domain. From T1 to T2, the signal is

distributed to the header and it consumes an overhead energy of Eoverhead1. At T2 the

connection between Vdd and virtual Vdd is asserted and the latest one begins to decrease. The

process continues until T4, when the virtual Vdd is completely discharged. Although the

reduction in leakage power begins at T2, it is only zero at T4. At T5, it is detected busy

activity again and the signals for the header are enabled, which produces an overhead energy

cost equals to Eoverhead2. At T6, the virtual Vdd begins its process of recharging until T7.

23

Figura 2.3 - Key intervals in the power gating cycle.

Reference: HU et al. (2004)

The break-even point T3 is defined as the point when the amount of power savings

equals the amount of energy overhead that the reconfiguration demands:

Eoverhead = Eoverhead1 + Eoverhead2

Depending on the specific characteristics of the header, the block size, the decoupling

capacitances, etc. this value could vary. There have been several researches about this topic.

For instance, in DROPSHO et al. (2002) the worst-case leakage behavior relative to the

dynamic energy is modeled; whereas in HU et al. (2004) an analytical model is developed for

the calculation of break-even point, finding a value of 10 cycles for break-even point using

some typical technological parameters.

Due to the overhead of power and performance that power gating produces, it

generates more modifications at the architectural level when compared with clock gating. An

intelligent policy must be implemented to avoid applying power gating in all situations and

restricting its use only for those cases when the potential savings are better than the incurrent

cost. Many commercial products for low power markets implement power gating through the

intervention of Operating System, like the Intel Atom Processor E5xx. This kind of

processors are designed with optimized power utilization, being capable of applying power

gating for Video Decode (VDX), Video Encode (VED), Graphics (GFX), and Display (DSP)

modules in runtime YEO et. al (2011).

24

Therefore, power gating has been implemented through two main approaches: by

microarchitectural techniques, which use hardware logic to measure, decide and apply power

gating at the circuitry level; and by software techniques, which use the knowledge about the

behavior of the program to carry out power gating decisions. In the first group we can find

researches based on an accurate measurement of idle periods FLAUTNER et al. (2002),

KAXIRAS; HU; MARTONOSI (2001). The efforts are focused on memory resources like

SRAM hardware, measuring intervals of time when some sub-modules are not currently being

used and applying power gating when these periods of time are detected. HU et al. (2004)

proposes the use of hardware counters to detect idle periods and apply power gating when

these intervals surpass a specific threshold. Two strategies are analyzed: time based power

gating and branch prediction power gating. On the other hand, RELE et al. (2002) use

compiler technology to detect low ILP segments of the execution to generate power gating

directives for rarely used FUs on a superscalar MIPS processor. Park et al. PARK et al.

(2010) use profile information of functional units to insert ON/OFF instructions during the

code execution of an out-of-order ARM processor. ROY et al. (2006) describe the insertion of

sleep instructions at the entry point of specific iterative code segments by capturing the

nesting loop properties of the program.

Other researches have addressed the issue in VLIW processors. UCHIDA et al.

(2012) proposes a scheduling technique for fine-grained power gate on VLIW processors.

LIAO; BASILE; HE (2002) use power gating through Virtual power/ground rails Clamp

(VRC) and Multithreshold CMOS (MTCMOS). It is based on a microarchitecture technique

that counts the active frequency of cache ways and specific components of the datapath in a

given time window. This information is used to determine which idle units could be disabled

via power gating. NIEDERMEIER et al. (2010) present an analysis of fine-grain power

gating. The processor is partitioned into three power domains and they are controlled through

control registers that determines the activation or deactivation of the different resources.

2.2 Dynamic Behavior of Workloads

The sections of code processed by a generic microprocessor changes depending on the

current state of execution. It means that one specific time segment could be focused on certain

parts of the application whereas other could be rarely executed. It makes the CPU exhibits

disparate behaviors in terms of performance and use of resources in different moments. This

characteristic is not only evident when the applications are compared between each other but

even when the analysis is carried out between specific time intervals of the same program.

25

Most part of the applications that are normally executed in a computing system exhibit

a series of phases along time SHERWOOD et al. (2002). Each phase is characterized by a

group of variables that are relatively constant for that period of time. For instance, during one

part of the execution the program could be showing memory bounded behavior, in another it

could be repeatedly stall on branch miss-predictions, and in others the arithmetic operations

could be the most part of the processed instructions and the processor performance would be

higher. One key observation which must be noted here is that since this behavior is a product

of the way the processor executes different segments of the code, large scale phases could be

detected just by measuring the ratio in which different parts of the program are being executed

DHODAPKAR; SMITH (2003). For example, if a program is composed by two main

segments of code A and B, a phase 1 could be characterized by a high proportion of executed

code A and a low proportion of B whereas a phase 2 could be primarily composed by

executed code B and a low proportion of code A.

Even though the existence of phases is very intuitive and evident (see Figura 2.4), the

justification about when a new phase begins, and even its quantitative and qualitative

definition, is not trivial. Program phases show fractal-like behavior, so large phases are

composed of lower level phases and in the limit each instruction could be classified as a

distinctive phase HIND; RAJAN; SWEENEY (2003). It remarks the idea that a program

phase is not an absolute concept but it is only a model to classify the behavior of a program at

different levels of granularity. Phase detection algorithms are not methods for direct detection

of phases but for detecting changes in program behavior that are interpreted as a change in

current program phase.

SHERWOOD; SAIR; CALDER (2003b) simulated a set of programs from SPEC95

benchmark and obtained measurements of IPC, branch prediction, address prediction, value

prediction, cache performance and reorder buffer occupancy. It was found that programs

exhibit phase and cyclic behavior in a large scale and this inherent pattern is repeated along

time. The method that was used to discriminate between phases was Basic Block Vectors

(BBV), which is based on saving information about each basic block of the program within

each time interval. A record of all the basic blocks executed by a specific interval is saved so

that a distribution of BB is obtained. If two time intervals belong to the same phase they

would have a similar distribution of basic blocks use and conversely, if they are not part of the

same phase, the Manhattan Distance between the two BBV would be higher.

26

Figura 2.4 - Time varying behavior for wave5 program from SPEC95 benchmark. The X axis is in

terms of 100 million of executed instructions.

Reference: SHERWOOD et al. (2002)

Since the number of executed basic blocks within a time window of millions of

instructions is very large, recording the complete information about the use of all the basic

blocks is almost impractical in terms of hardware and software. For this reason it was used

compression of the BBVs to reduce their high dimensionality. The results remark the great

variability of the program metrics between different phases and the similarity that could be

found when the measurements comparisons are done within different parts of the same phase.

In a similar work, DHODAPKAR; SMITH (2002) use the specific set of instructions

that are executed within a time window to classify phases. Program changes are detected

when the dissimilarity between two consecutive instruction working sets are greater than a

preset threshold. Likewise, as the approach that was earlier described by SHERWOOD;

SAIR; CALDER (2003b), a compression phase allows to retain only the information

necessary for classification and to obtain a digital representation with a minimal number of

bits.

Other strategies like HUANG; RENAU; TORRELLAS (2003) use subroutines to

identify phase behavior. It uses a hardware call stack to measure the time that each part of the

code is using the CPU, taking into account nesting. If time that is spent in each sub-routine is

greater than a preset value, it is detected as a new phase.

DWARKADAS et al. (2010) implement a system that uses the amount of conditional

branches to detect phase changes. One of the arguments that is used by this kind of approach

is that the quantity of branches throughout a phase remains relatively constant and a major

27

change for this value represents a modification of the current phase. For this purpose, it is

used a threshold that indicates the maximum value of difference between two adjacent time

windows to be classified as belonging to the same phase. The threshold is modified

dynamically throughout the execution of the program.

2.3 Adaptable Architectures to minimize Energy consumption

The idea of an adaptable computing system suitable for the specific characteristics of

the workload has been developed in several previous researches. Firstly, it is presented a

heterogeneous system perspective with two focuses: approaches which optimize power

limited by performance constraints and others whose most important metric is performance

whereas power is restricted to a budget. Secondly, it is presented the concept of

reconfigurable computing and the main papers that have been related with this field. Finally,

there is a review about self-adaptable microarchitecture and the challenges that this

perspective presents in comparison with other techniques.

2.3.1 Heterogeneous Systems

Heterogeneous System is a design approach proposed to improve the energy efficiency

on multicore chips. In this kind of systems, the workload is scheduled among a group of cores

with different computer organization complexities. The objective is allocating the threads to

the best core in terms of performance or energy efficiency. For instance, if an application has

high thread level parallelism, the workload could be divided into a set of simple cores, taking

advantage of its inherent parallel algorithm. However, if one part of the workload is strictly

sequential, it is not useful using many cores since a single thread could be allocated to a more

complex processor (e.g, out-of-order core). Having in mind Amdahl’s Law, this decision

decreases the impact that a strictly sequential segment of code produces over the total

execution time.

Many strategies have been proposed to adapt thread allocation policy in heterogeneous

systems. In the following sub-sections it is presented some of the most relevant researches, as

well as the advantages and the challenges for each approach. The related work is divided into

two groups: those researches that attempt to obtain power savings according to performance

constraints; and others that optimize performance constrained by a constant power budget.

2.3.2.1 Optimizing power with performance constraints

KUMAR et al. (2004) present one of the first researches focused on saving energy via

dynamically scheduling in heterogeneous systems. It used a simulation of a multi-core system

to evaluate how the optimal core for energy efficiency changes along execution time. It was

28

used a group of cores with different complexity levels, namely four Alpha cores – EV4

(Alpha 21064), EV5 (Alpha 21164), EV6 (Alpha 21264), and a single threaded version of

EV8 (Alpha 21464). The physical organization is depicted in Figura 2.5.

Figura 2.5 - Relative sizes of the cores used for simulation.

Reference: KUMAR et al. (2004)

As can be seen, the increasing complexity of the core microarchitecture is the reason

behind the big difference between the area used by EV4 and EV8. The former approximately

has only 10% of the total area allocated for the second one. All the cores share a single ISA

which reduces problems due to binary compatibility.

In all simulations it was assumed that a single thread was running in one core at a

time. Power and area were calculated from application statistics collected in real applications.

By running the same thread for all cores it was found which core was the best option for each

phase depending on two objective functions: energy-delay (the product of energy and delay)

and energy-delay2 (the product of energy and the square of delay).

Using the best core for each application phase and following the mentioned

methodology, it was obtained a reduction about 63% and 50% for energy-delay and energy-

delay2 respectively. This oracle experiment for a specific application can be observed in

Figura 2.6, where it is represented for each phase the best core in terms of energy efficiency.

29

Figura 2.6 - (a) Performance of application applu on the four cores. (b) Oracle using energy metric (c)

Oracle using energy-delay product.

Reference: KUMAR et al. (2004)

Recent technological and commercial devices are based on the heterogeneous

processing architecture like the Big.LITTLE Technology JEFF et al. (2012). The referred

system uses two types of processor: “LITTLE” processors, which are designed for maximum

power efficiency; and “big” processors, which are designed to provide maximum performance

(Figura 2.7). These two kinds of processors use the same instruction set, which provides

coherence for their programmability. Depending on the performance required for the executed

threads, each one can be allocated to a big or LITTLE core. Its use has been mainly present in

the Mobile market.

30

Figura 2.7 - Context Switching for big.LITTLE architecture. The demanding tasks are allocated to the

more complex Cortex-A15 while the others are executed by the Cortex-A7.

Reference: JEFF et al. (2012)

LI; MARTINEZ (2006) present, in the context of optimization algorithms for

minimizing power consumption in heterogeneous systems, a group of heuristics for dynamic

optimization using a design space composed of two main dimensions: the number of active

processors and voltage/frequency scaling. A group of benchmarks was simulated with

different values for these two variables. The results of power and performance can be

observed in Figura 2.8.

31

Figura 2.8- Power consumption and execution time of CMP configurations with varying number of

processors N and voltage/frequency levels for an instance of BSOM’s parallel region (a parallel data

mining application). Target execution time and power are 40 ms and 30 W respectively.

Reference: LI; MARTINEZ (2006)

As normally, an exhaustive search is beyond the scope of any design exploration.

Therefore, a hill climbing method was used to find the optimal number of processors in terms

of power consumption. Taking into account the results of performance and power obtained

via simulation, binary search was applied to the number of processors. A variable DVFS was

set to accomplish the minimal performance target. Software support is required to schedule

the applications to the right number of processors during optimization phase and steady phase.

2.3.2.2 Optimizing performance with a given power budget

ISCI et al. (2006) describe a homogeneous system, which aimed to maximize

performance under a power budget by applying per-core DVFS (Dynamic Voltage and

Frequency Scaling). Different policies and objective functions were used to evaluate how

several heuristics impact on the overall results of power and performance. It was obtained a

degradation of 1% of performance compared with an ideal oracle, constrained to a specific

power budget. The concept of a global power manager is shown, which uses different

frequencies and voltages for each core instead of a generic policy for all the cores. This has an

enormous advantage over other approaches because it allows adjusting the power level to the

performance requirements of each core, producing a better granularity management.

32

KOUFATY; REDDY; HAHN (2010) analyze the problem of selecting the core that

best suits the resource needs of each thread in a heterogeneous system. They evaluate key

metrics to find the best core, allowing the scheduler to be aware of such characteristics for a

better performance. Two big contributions can be obtained from this work. First, it is based on

online application monitoring without sampling performance metrics on each core or offline

profiling. Secondly, the cores, unlike many other researches, exhibited different

microarchitectures which allows better understanding of heterogeneous system in the context

of multithreading. One of the assumptions that this work used was the correlation between

stalls and bias core (Figura 2.9). Bias, in this research, is defined as the affinity of a thread to a

core type. A thread has big core bias if its big/small core speedup is large and conversely, a

thread has small core bias if its big/small core speedup were small. Taking into account this

concept, often the applications that present a high amount of external or internal stalls have

smaller performance gains when they are running on a big core, when compared with others

which do not have this characteristic. Therefore, a system that measures the number of stalls

was simulated along with an algorithm for estimation of bias application depending on the

number of stalls and CPI. The results showed the benefits of a policy that takes into account

the hardware metrics derived from applications for efficient thread scheduling.

Figura 2.9– Big/Small Core Speedup for different applications. A thread has big core bias if its

big/small core speedup is large. Conversely a thread has small core bias if its big/small speedup is

small

Reference: KOUFATY; REDDY; HAHN (2010)

33

GHIASI; GRUNWALD (2003) present the use of an asymmetric multicore approach

to deal with thermal emergencies. The management is accomplished through the use of

multiple operation frequencies for the different units, so the general policy attempts to

optimize performance taking into account the constraints that impose the exceptions

generated by abnormal temperature behavior.

ANNAVARAM; GROCHOWSKI; SHEN (2005) implement a real design of an

asymmetric multiprocessor with multithreading applications. Both static and dynamic

environments are simulated, and it is measured the performance gain under fixed power

budgets. This is evaluated on a physical 4-way Xeon SMP Server and using a big group of

multi-threaded benchmark programs. It was found 38% wall clock speedup for the AMP

(Asymmetric multiprocessor) compared to a standard SMP (Symmetric Multiprocessor) that

uses the same power.

Although the benefits that heterogeneity brings to microprocessor design are clear, the

implementation of real systems face new challenges in terms of software development which

are not present in homogeneous systems.

Usually software engineers develop code with the assumption that all cores have the

same performance and capabilities, but this is not true when a heterogeneous multicore

system is being used. This implies that if software design is not aware of microarchitecture

features, maybe there will be problems for scalability and predictability.

BALAKRISHNAN et al. (2005) show a work about these issues and how they could

be managed to take advantage, in terms of performance and energy efficiency, of

heterogeneous systems without generating new problems due to asymmetry. It was used a 4-

way 2.8 GHz Intel Xeon multiprocessor (Shasta series), hyper threading was disabled in all

processors and heterogeneity was achieved via DVFS for each core. Running a set of SPEC

benchmarks, the conclusions that were found from this work can be summarized as:

• Asymmetry affects predictability when there are shared memory resources for

a specific application.

• With some workloads, the problems that arise with asymmetry could be

mitigated with an operating system aware of heterogeneity. In other applications, it is

necessary the application itself to be aware of the available microarchitecture features.

• The sequential performance of a heterogeneous system with a fast core is better

than a homogeneous one, as can be expected from previous discussions.

34

Finally, it is noted the big importance of the development of mechanisms for

exchanging information between hardware and software counterparts for good predictability

and scalability results. New tools and interfaces need to be developed to expose the operating

system and the scheduler to the varying features of the cores that are part of a heterogeneous

system.

2.3.2 Reconfigurable Computing

Reconfigurable Computing is an approach aimed to adapt the computer organization

of the system depending on the varying behavior of the workload. The computer organization

is modified to exploit application particularities, improving the performance of specific code

segments or modifying the availability of computing resources for energy efficiency

CARDOSO; DINIZ; WEINHARDT (2010). In this kind of solution, reconfigurable hardware

can be modified on-the-fly to generate specific hardware structures. For example, some parts

of a program could require only 12-bit fixed point precision arithmetic, while others could

demand the use of 32-bit precision for parallel computation of Fast Fourier Transform. Since

the most part of the computing systems do not have data structures optimized for each one of

these tasks, the overall efficiency (in terms of performance and energy) might be boosted if

the regular data flow were configured into dedicated hardware structures. Furthermore, the

rapid emergence of FPGAs for computing purposes has multiplied the opportunities for the

application of reconfigurable computing into many commercial and scientific domains.

Some researchers have been based on the implementation of a main processor that

normally executes the instruction set and a coupled coprocessor which is reconfigured for

acceleration purposes (Figura 2.10). For example, LYSECKY; STITT; VAHID (2004) present

the implementation of a WARP processor that uses a Field Programmable Gate Array

(FPGA) to improve the performance of specific parts of the running code. It is completely

transparent for the programmer because there is no need for a special compiler for the FPGA

unit. While not all the benchmarks could take advantage of this technique, it significantly

improves performance for some applications. Many others projects, can be classified as

coarse grained architectures – e.g. Montium Tile Processor SMIT et al. (2004)– which are

commonly used to improve filter algorithms for communication and multimedia applications

with little control flow, and fine-grained approaches – e.g. Chimaera YE et al. (2000) –

which are dominated by control statements. FL; CARRO (2010) address a wider discussion

of these kinds of architectures and the implemented challenges associated.

35

Figura 2.10 - Block diagram of a microprocessor with reconfigurable coprocessor.

Reference: MIYAMORI; OLUKOTUN (1998)

2.3.3 Challenges and Other Architectures

Three important aspects must be taken into account when such adaptable

microarchitectures are proposed. First, the metric which is subject to optimization through

adaptability depends on the specific system. For example, some processing units could be

power constrained so an adaptability solution could be focused on this metric to accomplish

better results. On the other hand, systems which have higher performance objectives could

use microarchitecture adaptability to enhance performance depending on the workload.

Researches like KEDZIERSKI et al. (2010) trade-off between power and performance by

dynamically partitioning a shared cache among threads based on the phase behavior of the

program. It dynamically reverts back to a performance centric cache partitioning scheme if

the power savings are not possible. The results show energy savings around 51.5% in a L2

cache, which corresponds to 11.5% of the total energy of the processor.

Secondly, the frequency of microarchitecture adaptation is essential for the results and

savings obtained. Every reconfiguration has an overhead in terms of performance and power

since it involves a physical modification of the system, therefore the reconfiguration rate must

be carefully planned to increase benefits and to avoid potential losses. HU et al. (2004)

explore power gating to manage the availability of execution units depending on the current

use. The cost of performance and power that are associated with this technique are the

36

variables that limit the reconfiguration rate. Since there is a cost that must be spent to

accomplish the disconnection of the power supply lines, there is a minimum time for the

availability of execution units. If the reconfiguration does not respect this kind of constraint,

the amount of energy used to adapt the system would be higher than the energy savings

originated from the use of the technique. Using this approach, and obeying the last restriction,

they found that the execution units could be put to sleep for up to 28% of the execution time

at a performance loss of only 2%.

Finally, the physical resources that are going to be modified as well as the specific

techniques to accomplish this task must be determined. The kind of resources could be the

size and associativity from a cache, the availability of execution units, the fusion of cores, etc.

ALBONESI (1999) implements cache reconfiguration through modification of the level of

associativity to meet the goal of managing energy budget. Some sub-set of ways are disabled

depending on the demands to reduce cache switching activity. The policy is applied for the

whole execution time of a program, so one cache size is constant for each application. It was

obtained a reduction about 2% for performance and savings nearly to 40% in cache power

dissipation.

It must be noted that some microarchitecture adaptable approaches attempt to

reconfigure the system at higher levels with the objective of making a higher impact for

performance and energy efficiency. In this kind of strategy, Reconfigurable Computing is not

only restricted to specific datapath modules of a single processor but the entire system is

behaviorally and structurally modified. IPEK et al. (2007) evaluate the use of core fusion to

better adjust the application demands to the characteristics of the CPU. They use two custom

instructions visible for the operating system, FUSE and SPLIT, which combine independent

cores or split one large core into simpler ones (Figura 2.11). It accommodates software

diversity and incremental parallelization in chip multiprocessors CMPs. The results showed

that it provides a single execution model across all configurations, as well as it does not need

additional programming effort maintaining ISA compatibility.

37

Figura 2.11 - Diagram of an eigh-core CMP with core fusion capability. It depicts a configuration

example of two independent cores, a two-core fused group, and a four-core fused group.

Reference: IPEK et al. (2007)

2.4 Critical Analysis and Contributions

As was presented along this chapter, the need for more energy efficient computer

architectures has established one of the main design requirements for new embedded systems.

This design pressure is the reason behind the adoption of dynamically adaptable systems

which, besides being optimized for a specific range of points in the design space, shows

selective use of the resources depending on the workload. While speed-up was the variable

that guided IC industry during the first decades of development, and power saving was the

requirement that arose when the industry reached the technological limits, adaptability

promises may deliver a mid-term between them. This new design paradigm encourages the IC

engineers to provide the best performance for any application but at the same time using the

resources efficiently depending on the needs and requirements of the moment.

The technological evolution of CMOS industry has showed an increasing importance

for the management and control of power consumption in an integrated circuit. Though

dynamic power has been the main contribution for total power consumption, static power has

gained more attention because of higher values for sub-threshold leakage and gate leakage

38

related with newer technologies. A variety of physical techniques has been proposed to

address this problem like power gating, clock gating and DVFS.

The related work showed the adoption of two main approaches to accomplish

workload adaptation for energy savings: systems which schedule the current running code for

the resources available (i.e. heterogeneous systems) and others which adapt the resources

available for the current running code (i.e. reconfigurable computing). Each one of them

presents different advantages in terms of energy savings and performance depending on the

impact that the adaptation policy has over the normal execution of the microprocessor.

In terms of design effort for an adaptable system, the complexity that is demanded

from hardware and software is higher compared with a static one. The system ought to be

efficient in terms of measuring the state of the execution and implementing the adaptation

policy. The former refers to the correct measuring of hardware metrics that characterize each

application, as well as each phase when the granularity is finer. The quantity and quality of

the variables that are measured determine how much improvements can be derived from an

adaptable solution. Secondly, an adaptation policy must include all the algorithms and extra

hardware sub-units that are needed to carry out the physical adaptation process. The selection

of a hardware or software approach has different impacts and they must be studied carefully

during the design phase.

2.4.1 Our approach

Based on all the current research compiled in this survey, we present in the following

chapters the design challenges, methodologies and the impact of an adaptable computing

solution for a VLIW processor. In chapter IV the influence of issue-width for performance,

power and area for a VLIW microprocessor is addressed. According to a methodology

inspired by the seminal and aforementioned work KUMAR et al. (2004), we explore the

potential optimization that could be achieved by a dynamic issue-width VLIW

microprocessor.

Then, two methodologies for microarchitecture adaptation based on power gating are

described: a hardware-based and a software-based approach. The former one uses additional

logic into the microprocessor with the purpose of applying power gating as was previously

presented. The objective of this kind of approach is to implement into hardware all the

necessary modules to detect potential idle parts of the integrated circuit based on historical

behavior and generating all the suitable signals to control the power gating circuitry. The

specific type of heuristics used to classify a physical domain as idle depends on the specific

research and different methods have been proposed SHIN et al. (2010). In our case we

39

implemented Time-based power gating HU et al. (2004). It is aimed to turn off execution

units by power gating them after observing a streak of idle cycles. Additional VHDL logic

was implemented into our VLIW processor with the objective of implementing the hardware

counters responsible for detecting long-idle periods.

As was described in this chapter, implementing a power gating policy in hardware is

not trivial due to the associated power and timing overhead. For that reason, we propose the

use of software directives for power gating VLIW datapath resources. This strategy has clear

advantages and has been used in recent investigations PARK et al. (2010). First, the use of

compiler technology allows identifying idle periods in advance, which is a difficult and

expensive task when implemented in hardware RELE et al. (2002). Secondly, the additional

hardware logic that is needed to apply power gating is reduced, since the complexity of the

problem is moved to the compiler.

Finally, we implemented the use of customized power gating instructions in VLIW

processors to disable idle FUs and blocks of the RF. This is done by obtaining and analyzing

the execution profile of a given application, and then identifying the maximum RF use and the

idle periods of the FUs. To achieve this goal, enhancements in the compiler and the

microarchitecture of the VLIW processor were done. Our approach presents the following

advantages in comparison to previous power gating techniques:

• The employed configurable VLIW architecture helps reducing the extra

hardware logic needed for scheduling. A superscalar processor needs a more complex

scheduler to manage adaptive FUs, since the available resources are continuously changing

and additional hardware logic to implement this adaptability must be added. Taking into

account that the scheduler logic of out-of-order processors is complex by nature, this

overhead could produce a significant impact on the design. In a VLIW processor, the logic is

simplified since all the scheduling decisions are made before execution.

• The VLIW code of an application is normally composed of available slots that

are not used for computing purposes, which are usually filled with NOP instructions. These

available slots allow the insertion of customized instructions for power gating, modifying the

code without increasing its size. In a superscalar processor, the code grows since the power

gating instructions must be added to the binary code.

• The proposed use of customized instructions for power gating allows managing

the availability of the FUs together with the RF. The combined application of compiler-based

power gating to these two resources is a methodology which, to the best of our knowledge,

has not yet been addressed.

40

The use of power gating instructions on VLIW processors takes advantage of the

customizability of the VEX architecture (which is the ISA used along this work) and demands

enhancements on the microarchitecture. Unlike other power gating techniques on VLIW

processors based on additional control hardware LIAO; BASILE; HE (2002), our approach is

completely based on software directives. This means that area and power overhead are

completely minimized and just extra simple logic is required to decode the customized

instructions. Other researches, based on re-scheduling VLIW instructions to apply power

gating UCHIDA et al. (2012), LIAO; BASILE; HE (2007), are intended to reduce energy

with no concerns regarding performance. Our algorithm does not modify the original

performance-driven code but takes advantage of the availability of unused slots to insert new

instructions. In other researches, which use software directives to apply power gating on

VLIW processors NIEDERMEIER et al. (2010), the decisions about the control of the power

domains are taken by previous knowledge about the application and its phases. For instance,

if the programmer knows that in one specific interval of execution there are no floating point

operations, this unit is disabled via power gating. In contrast, our approach proposes a

complete fine-grained framework that does not require any a priori knowledge of the

programmer about phase behavior. Furthermore, some researches have applied power gating

to control different datapath resources FLAUTNER et al. (2002), LIAO; BASILE; HE (2002),

but none of them has addressed the use of this kind of technique to manage the availability of

the FUs and the RF jointly.

41

3 VLIW DESIGN

3.1 VLIW basics

VLIW architectures are an alternative to superscalar designs, exploiting ILP through

compiler instead of using hardware resources. The compiler is responsible for building long

instruction words, which are composed of various independent operations that will be

executed at the same time. The main function of VLIW hardware is to split each word and

distribute the operations among the functional units (FUs) at run-time. The exploitation of ILP

is done through the use of several functional units with a simple control logic, avoiding the

expensive dynamic scheduling hardware of contemporary superscalar processors (Figure 3.1).

In this way, all the computation efforts for this task are put on the compiler which lightens the

load that is normally handled by the hardware. It considerably reduces power consumption

and design complexity FISHER; FARABOSCHI; YOUNG (2005).

Figure 3.1 - Execution in a VLIW versus Superscalar.

42

Reference: FISHER; FARABOSCHI; YOUNG (2005)

The Instruction Set Architecture of a VLIW processor is normally composed of RISC

instructions, which must be assembled by the compiler in order to use all the functional units

efficiently. It requires the presence of sufficient ILP in the application to keep all the

resources relatively busy. Some of the compiler techniques that are used for this purpose are

software pipelining, scheduling code along basic blocks speculatively, reducing the number of

operations, etc.

As any other computer architecture, VLIW processors have some technological

disadvantages that must be taken into account. In this group of features we can find examples

such as code size, which significantly increases due to aggressive scheduling policies; higher

memory and register file bandwidth because of the use of larger instruction words; no binary

compatibility between different VLIW processors with different type and number of

functional units, etc.

3.2 Commercial VLIW processors

A great part of the commercially available VLIW processors uses a fixed issue width,

such as TMS320C611 from Texas Instruments, S231 from STMicroelectronics or TriMedia

series from NXP. Some efforts for reconfigurable VLIW systems can be found in ZHONG;

LIEBERMAN; MAHLKE (2007) and for superscalar systems in SANKARALINGAM et al.

(2003) and IPEK et al. (2007). Their focus is on performance improvements for multicore

systems through core fusion and selective use of the processors involved. This means that the

adaptability of the processor is carried out by merging simpler cores into a more complex one

and by disabling the processing units that are not necessary, depending on the application at

hand. By contrast, the current research is mainly focused on analyzing the influence that such

adaptive architectures have over energy consumption and other metrics.

3.3 VEX Architecture

The architecture that we use in this work is the VEX instruction set architecture

FISHER; FARABOSCHI; YOUNG (2005). It defines a 32-bit clustered VLIW ISA that is

scalable and customizable to individual application domains. It offers the use of multi-cluster

machines, with each cluster being an independent VEX implementation. VEX does not

support floating point operations. The resources that are found by default in a VEX cluster are

4 ALU units, 2 multiplier (MUL) units, 1 branch control (CTRL) unit, 1 memory access

43

(MEM), 64 32-bit general purpose registers (GR) and 8 1-bit branch registers. Many syllables

compose a VEX instruction, depending on the issue-width. Each syllable can be understood

as a RISC instruction.

A set of rules are stablished, those that all implementations must obey (such as register

connectivity, the base ISA, architecture state, memory coherency) and those that each specific

implementation can define (kind and number of functional units, latencies, issue width,

number of clusters, and custom instructions). This last feature allows us to enhance the

capabilities of the ISA, adding custom instructions, without affecting the compatibility with

the VEX architecture. Therefore, the tools that are developed for this kind of ISA (compilers,

simulation environment, etc.) can be used to implement new capabilities.

Hewlett-Packard provides a VEX software toolchain, which has a C compiler and a

simulator. These tools can be parametrized through the loading of machine models which

could be specific for each VLIW implementation. The VEX C compiler was derived from

Lx/ST200 C compiler, which was at the same time an enhancement of the Multiflow C

compiler. The VEX simulator produces a binary executable through the translation of the

target executable binary code.

3.4 ρ -VEX processor

The processor that was used along this work for simulation purposes was the ρ-VEX,

which is a configurable processor implemented in VHDL and that implements the

aforementioned VEX architecture WONG; VAN AS; BROWN (2008). The ρ-VEX core has a

five-stage pipeline, and it can be configured at design time to have different number of issue

slots (e.g., 2, 4, or 8). Each operation is encoded as a syllable and the number of syllables per

instruction word is defined by the number of issue slots. The pipeline’s fetch stage is

responsible for retrieving the instruction word from memory and distributing one syllable for

each issue slot. The other pipeline stages are not shared by the issue slots, which are: decode,

execution 0, execution 1, and write-back. The execution 1 stage performs access to the data

memory or executes instructions that need more than one cycle to be computed (e.g., multiply

instruction). Each issue slot may contain different functional units from the following set:

Arithmetic Logic Unit (ALU) (always present), multiplier, memory, and branch units (Figure

3.2).

The execution stage is parameterizable, since the number of ALUs and MULs can be

changed. The CTRL unit handles all branch and jump operations, whereas all load and store

operations are performed by the MEM unit. The register file, branch register, and program

44

counter are written back at the respective unit, to ensure that all the targets are modified at the

same time. The write target of each operation is determined at the decode stage.

The extensibility of ρ-vex processor is implemented through two mechanisms that are

provided by VEX architecture. First, the use of custom instructions via pragmas inside the

application code allows enhancing the functionalities of the architecture. With only a few

added lines of VHDL into the ρ-vex code it is possible to add a custom functionality.

Secondly, the VEX machine models allow to define different parameters for the ρ-vex

processor. In this group of variables, it is possible to modify the following properties:

- Syllable Issue-width

- Number of ALU units

- Number of MUL units

- Number of GR registers. (Up to 64)

- Number of BR registers. (Up to 8)

- Width of memory buses

- Types of accessible FUs for each syllable.

Figure 3.2 - ρ-vex organization for 4-issue-width.

Reference: WONG; VAN AS; BROWN (2008).

45

Figure 3.3 - Instruction Layout for ρ-vex processor

Reference: WONG; VAN AS; BROWN (2008).

3.5 Application development for ρ-vex processor

The development of experiments and programs for the ρ-vex processor can be

summarized into two steps. The first one is the compilation of the C code with the VEX

compiler. The machine model must be passed as a parameter for the compiler when a custom

configuration is used. The second step is the generation of an instruction ROM for ρ-VEX,

which is generated through the assembler p-ASM. The machine model definitions must be

used in this step too. This whole process is depicted in Figure 3.4.

Figure 3.4 - ρ-VEX application development framework

Reference: WONG; VAN AS; BROWN (2008).

The ρ-VEX design organization used in this work was the following: register file of 64

registers, 8 issue-width (the issue-width was modified in some experiments to measure the

potential of optimizations, in chapter 4), ALUs in all issue slots, one memory and one branch

unit (due to ρ-VEX’s design restrictions), and 4 multipliers. This configuration is similar to

46

other VLIW processors (e.g., Intel Itanium) WONG; VAN AS; BROWN (2008). The

programs used in this work were compiled with the VEX compiler from HP labs using

optimization O3 and the specific machine model for each experiment carried out.

The synthesis to obtain the power dissipation and area was carried out using an 180nm

library from X-FAB X-FAB (2015) and Encounter RTL Compiler from Cadence Tools

CADENCE ENCOUNTER (2015). The module synthesized was the ρ-VEX core, without

any peripheral or memory attached. The operation frequency was set to 500 Mhz. The activity

factor that was assumed for the calculation of dynamic power consumption was of 30%,

which is a value that has been traditionally used for system level analyses of microprocessors

GEUSKENS; ROSE (2012). This variable assumes that even when some parts of the circuit

are not used along specific parts of the execution (e.g. Functional Units), the total switching

activity is averaged to a specific value of 30%.

47

4 EVALUATION OF ENERGY SAVINGS ON A VLIW

PROCESSOR THROUGH DYNAMIC ISSUE-WIDTH

ADAPTATION

As already discussed, one of the main issues when it comes to designing a VLIW

processor from scratch is about project decisions, such as choosing the right issue-width and

the register file size. The issue-width influences the availability level of execution units,

which determines the ILP available for the compiler, and the register file size determines the

number of registers that the compiler will be able to manage. By choosing high values for

these parameters, performance will likely be increased. However, it also presents as drawback

increasing the area and power dissipation.

In this chapter, we study the potential energy savings that might be obtained by

adapting VLIW issue-width according to the current program phase. Based on the measuring

of ILP for different phases, we study an optimal scenario where we combine both

performance and low energy consumption by adapting all the resources available to the

average ILP of each phase.

Therefore, this chapter has two main purposes:

 Describe quantitatively the impact of issue-width for energy consumption,

performance, and area on a VLIW microprocessor.

 Analyze the potential energy savings that could be obtained by dynamically

adapting the issue width on a VLIW microprocessor according to the program

phase, using two different granularities: coarse (granularity of 5% of the total

number of executed instructions) and fine (granularity of basic blocks).

By considering that the VLIW issue-width is dynamically changed along the program

execution, the potential energy savings using this policy could be as high as 81.5% when

compared with the static version.

The rest of this chapter is organized as follows. Section 4.1 shows the potential of

optimization by analyzing the impact of design choices on performance and energy

consumption. Section 4.2 discusses two approaches for evaluating the phases of an

48

application. Section 4.3 describes the oracle experiment performed to evaluate the energy

savings potential of choosing the most appropriate issue-width for a given phase of the

program. Finally, Section 4.4 summarizes our conclusions.

4.1 Potential of Optimization

In this section, different values for VLIW issue-width are evaluated in order to assess

the potential optimization that can be achieved through issue-width adaptation. The impact

on area, performance, energy consumption and area is addressed.

Figure 4.1 depicts the area of different issue-widths, varying from 1- to 8-issue (this

range was used because of ρ-vex restrictions). The 8-issue has 10.5 times more area than the

simplest configuration (1-issue), and 2.3 times more than the 4-issue, due to the instantiation

of more functional units and more read/write ports in the register file. This increase in area

also leads to an increase in the core’s power dissipation, which is presented in Figure 4.2. The

8-issue dissipates 2.1 times more power than the 4-issue and 6.86 times more power than the

single-issue.

Figure 4.1- Area comparison between different issue-widths

49

Figure 4.2 - Power comparison between different issue-widths.

In Figure 4.3, the performance for five applications is compared as we change the

issue-width of the processor, and the speedup is calculated taking the 4-issue configuration as

the baseline. The following applications were considered: ADPCM, CJPEG, DFT, Matrix

multiplication and Itver2. The 8-issue is always faster than the 4-issue for these benchmarks,

varying from 0.5% (ADPCM) to 23% (CJPEG), with an average speedup of 10%. On the

other hand, the 2-issue is always slower (values below one), ranging from 22% (DFT) to 65%

(Itver2) of slowdown, with an average slowdown of 44%.

Figure 4.3 - Speedup compared to the 4-issue VLIW

50

Figure 4.4 - EDP ratio for different applications

The difference in performance between the 4-issue and 2-issue processors is more

remarkable than between the 4- and 8-issue versions, because of the limited parallelism that

the compiler can exploit from the source code. Since the requirement for parallelizing a set of

operations is that all operations must be executed simultaneously without any data

dependencies between them, increasing the issue-width requires a larger group of independent

operations. For instance, a 2-issue processor only needs to find 1 relationship in which the

data from the two instructions (2-issue) are not dependent from each other, while a 4-issue

processor needs to find 6 independent relationships (instruction 1 must be independent from

2, instruction 1 from 3, instruction 1 from 4, instruction 2 from 3, instruction 2 from 4, and

instruction 3 from 4). Using the same reasoning, an 8-issue processor needs to find 28

independent relationships to use all the available slots. As can be seen this increase is not

linear in relation with the issue-width and therefore it is more difficult to effectively exploit

ILP for wider issues.

Figure 4.4 presents the Energy-Delay Product (EDP) ratio, having the 4-issue as the

baseline, for the same set of applications. With the EDP is possible to evaluate the trade-off

between energy consumption and performance. The best EDP is obtained when executing the

application on the 2-issue in almost all benchmarks (up to 71% lower), with the exception of

the Itver2 application, in which the 4-issue presents better EDP. The 8-issue has higher EDP

(ratio below one) on all applications when compared to the other configurations. Therefore,

the goal is to have the performance of the 8-issue with the energy consumption of a simpler

design, e.g., 2- or 4-issue. This can be achieved by disabling parts of the hardware that are

51

idle in a given moment, consequently, reducing the energy consumption and not affecting the

performance.

4.2 Dynamic adaptation

The aforementioned analysis highlights the enormous potential that an exploration of

the design space could produce in terms of energy savings if microarchitectural adaptation

was available at run-time. For instance, if one part of a program does not use certain issue

slots, it is not necessary that they remain active during this portion of time. Instead, they could

be disabled through a variety of techniques (clock gating, power gating, etc.) to avoid

unnecessary energy consumption. In order to evaluate the potential gains from using these

techniques, we will consider that switching for enabling or disabling the hardware is done

with zero delay.

Taking this as our guideline, we use architectural simulation to dynamically evaluate

the IPC, which reflects the utilization of the functional units along the execution time. In this

way this information will be used to determine the issue-width that best matches the IPC of

each phase.

If the processor is using a high number of FUs at one specific moment, it will result in

high IPC values, as more instruction parallelism could be explored. For example, if a program

is running on an 8-issue width processor and the IPC for a phase is 1.5, it means that most of

the FUs are idle during great part of the execution. Therefore, we measured the evolution of

IPC throughout time to detect the phase changes and hence the dynamic demand of

computing resources.

52

4.2.1 Methodology

Figure 4.5 - Diagram Flow for the VEX simulator toolchain

Reference: FISHER; FARABOSCHI; YOUNG (2005)

The HP’s VEX simulator FISHER; FARABOSCHI; YOUNG (2005) was modified to

obtain the IPC at run-time, extracting the number of issues used by each instruction word. The

VEX simulator is an architecture-level simulator that uses compiled simulator technology to

achieve a speed of many equivalent MIPS. The simulation system also comes with a fairly

complete set of POSIX-like libc and libm libraries (based on the GNU newlib libraries), a

simple built-in cache simulator (level-1 cache only), and an API that enables other plug-ins

used for modeling the memory system. The VEX compiled simulator uses a binary translator

to generate an executable binary for the host platform that contains the operations for

simulating a program compiler. Finally, the application’s execution on the VEX architecture

is simulated. To exemplify the action of this toolchain, in Figure 4.6 we can see an example of

one original VLIW instruction in assembly, whereas in Figure 4.7 it is presented the compiled-

simulated code. Note that each operation in the assembly code has an associated function in

53

the compiled-simulated code that counts the number of occurrences for that kind of

instruction along the execution of the program.

Figure 4.6 - Example of a VLIW instruction in assembly

Figure 4.7 - Example of the compile-simulated code

In general terms, the modification of the VEX simulator for IPC measurements was

based on the addition of profiling functions to the host platform compiled-simulated code.

The objective of these profiling functions was to count the number of operations for each

instruction executed as well as to count the number of total instructions processed in specific

intervals of time. An example of this modification is shown in Figure 4.8.

Figure 4.8 - Insertion of profiling functions inserted into compile-simulated code

54

The function profiling_instruction() counts an additional operation processed. In this

case, since there are 5 operations into the VLIW instruction profiling_instruction() is invoked

5 times. The function count_instructions() counts the number of instructions in the current

time window, thereby it is only invoked one time in this example. Each time a new instruction

is executed, count_instructions() increases an internal counter. Depending on the window

size, this internal counter is reset when it reaches a predetermined threshold.

The approach for obtaining IPC at run-time was chosen according to two implemented

methodologies, which differ in the way they handle the instruction window sizes for phase

measurement and therefore the way count_instructions() is implemented. They are called

coarse-grained and fine-grained approaches, which are explained in the next sub-sections.

The programs used were extracted from Mibench, which is a free, commercially

representative embedded benchmark suite GUTHAUS et al. (2001). They were compiled

using VEX compiler for the 8-issue configuration. It was selected a number of 10

applications, due to the restriction on the availability of libraries from VEX compiler. The

selected programs were Basicmath, Bitcount, Qsort, Djikstra, Sha, CRC, StringSearch,

ADPCM, Susan, and FFT.

4.2.2 Coarse-grained approach

This method aims to visualize the big picture of IPC dynamics for program behavior.

For that, the total execution time of each application was divided into intervals with the same

number of cycles; and the average IPC value for each one of these intervals was calculated.

Since some applications are larger than others, the same length of time interval for all

benchmarks would not reflect their particularities. Therefore, it was established a granularity

of 5% of total execution time for each benchmark (e.g. if one program is composed of 1000

instruction words, the length of each time interval would be of 50 instructions).

The dotted line in Figure 4.9a, Figure 4.9c, and Figure 4.9e (the gray background will be

explained in the next section) shows the results obtained with this methodology. Three

different benchmarks are shown: Basicmath, StringSearch, and sha, which illustrate different

and representative behaviors. Basicmath shows an evident phase behavior, being primarily

composed of two stable phases. StringSearch is stable and does not present changes on the

IPC that suggests any transition phase. Finally, sha has an IPC that changes drastically

between intervals.

4.2.3 Fine-grained approach

This approach uses the basic block as the basic grain unit, so the IPC measurement is

applied for each one of them. The Figure 4.9b, Figure 4.9d, and Figure 4.9f show the results

55

using this granularity. The three benchmarks shown (Basicmath, StringSearch, and sha)

demonstrate three different behaviors: presence of phases, stable behavior, and erratic

behavior. However, the fine-grained approach highlights the differences of IPC between

adjacent basic blocks which allows us to observe IPC changes with a higher level of detail

than the coarse-grained approach.

4.2.4 Coarse vs. fine-grained approaches

As can be observed from the data obtained, the applications exhibit dynamic behavior

that could be successfully exploited via microarchitecture adaptation through coarse or fine-

grained approach.

From the results we can observe that each application exhibits completely different

dynamics, in terms of average IPC, number of phases and even the presence or absence of

them. For example, a program like sha shows a wide range of variation between values

whereas StringSearch presents a stable behavior that is not affected by time on a large scale.

The benefits that coarse and fine-grained approaches for dynamic adaptation are

different as well as the implementation challenges associated. The first approach aims to give

an outlook of the dynamics of the program by averaging IPC along a big number of

instructions, while the second produces higher precision in terms of IPC since the window

sizes are smaller. So, for example, StringSearch presents different behavior comparing both

techniques. Using the fine-grained approach, in the last part of the execution time, the number

of execution units would be adjusted to 3- or 4-issue, whereas with coarse-grained approach,

this variation of IPC measurement would not be detected and only be set to an averaged

value.

The measurement of IPC through the coarse-grained approach would have the

advantage of requiring a simpler implementation. The system could measure IPC only in

some intervals through sampling of the execution time. The hardware structures that are

needed for this task are simple hardware counters and storage to save the last IPC

measurements.

56

On the other hand, the fine-grained approach demands more resources but it could

allow better granularity optimization. In a hardware implementation, it is necessary a memory

structure to save the last basic blocks visited. This means that after each new basic block is

processed, its IPC must be saved. The most important advantage of this approach is that when

the processor is fetching an already processed basic block, its IPC will be known in advance.

This kind of information is imperative if we want to allocate the right quantity of hardware

resources for a given part of the code. The behavior of this memory is similar to a branch

prediction table and an equivalent microarchitecture could be used for its implementation.

Figure 4.9 - Average IPC during the execution

a) Basicmath coarse-grained b) Basicmath fine-grained

c) StringSearch coarse-grained d) StringSearch fine-grained

e) sha coarse-grained f) sha fine-grained

57

4.3 Oracle Heuristics for Dynamic Issue-width Selection

Based on the previous experiments, it was developed an oracle experiment for

choosing the best issue-width in a given moment of the application’s execution, considering

performance and energy consumption. It is based on the assumption that at any time the

processor could change the computer organization from one specific issue-width to another to

accomplish a global optimization policy. Since we are interested in obtaining the maximum

potential energy savings, no technological overhead is taken into account for each

reconfiguration process.

Hence, the purpose of this framework is to measure the energy savings when the

microarchitecture of the system is modified at run-time from one configuration to another.

The oracle experiment choose the best suited issue-width for each interval of execution,

knowing in advance the ILP for that period of time. We used the data of IPC measurements

that were obtained with both coarse and fine-grained approaches. For each interval, the oracle

chooses the issue-width that minimizes the energy consumption without incurring big

performance losses. For that, it is selected the nearest integer to the current IPC. For instance,

if the IPC for an interval is 2.7, it is chosen a 3-issue width processor for this interval.

The data on power dissipation for each issue configuration was presented in Figure 4.2

and for each granularity (fine and coarse), two scenarios are considered as follows. The first is

called restricted adaptation, in which the number of issue slots can be modified between 2, 4,

and 8. The second, called wide adaptation, is able to adapt the issue width from 1 to 8 (1, 2,

3,…8). For example, if the IPC is calculated to be 5.4, the first approach will choose an 8-

issue processor whereas the second one will use a 6-issue processor.

Figure 4.10 depicts the energy savings that can be obtained by applying the restricted

and wide adaptations on both fine and coarse-grained approaches when compared to the static

8-issue processor. The energy consumption was estimated based on the power dissipation of

each core configuration and the time that each of these configurations was active. The results

derived from this procedure show that the energy savings that could be obtained via an

adaptation of issues could be as high as 81.5%. This means that one processor that could

dynamically enable and disable its available execution units would consume only a fifth part

of the total energy consumption of an 8-issue processor.

Let us assess Figure 4.10 again, now focusing on the gray background: light gray is for

when the restricted approach is used, while dark gray is for when the wide on is employed.

Note that the restricted will always choose an issue-width equal or larger than the wide

adaptation for a given phase, because the former can only choose between three distinct issue-

58

widths, all of which the wide approach is also able to choose. That is, for phases that have an

average IPC of 2, 4, or 8 (i.e., the values that the restricted adaptation is able to choose), the

wide adaptation (that can choose from 1- to 8-issue) will choose the same issue-width as the

restricted, having the same energy savings for that given phase. On the other hand,

applications such as Basicmath present up to 28.8% of difference between the wide and

restricted adaptations, because there is a large part of the application in which the average IPC

of the phase is 5. Therefore, the wide adaptation would choose six issue slots, while the

restricted would choose eight issue slots, as depicted in Figure 4.9a. The reduction obtained

with the wide-adaptation is higher because the processor can better adapt to the behavior of

the application. On average, the wide adaptation is able to save 71% of energy and the

restricted 63%.

By using a finer grain, the processor adapts itself faster to changes in the application’s

behavior. This may decrease the energy consumption as the issue-width will be changed faster

when the application reaches a phase with low ILP. On the other hand, it also may choose a

higher issue-width that would not be detected on the coarse granularity, resulting in more

energy consumption. Therefore, on average, both fine and coarse-grained approaches achieve

similar energy savings because each granularity can consume less or more energy than the

other in specific moments of the application’s execution.

4.5 Critical Analysis

We first focused on evaluating the consequences of architectural decisions over

metrics like area, energy, and performance, showing the big impact that these choices could

produce into the design. The complexity of a processor, in terms of number of available

functional units, improve the measured performance at the expense of increasing the

demanded resources and, consequently, increasing the power dissipation and energy

consumption. The performance comparison between applications demonstrates that each

program has different implicit ILP, meaning that some programs could benefit more from a

VLIW processor with a higher number of execution units.

59

Figure 4.10 - Energy Savings

a) Coarse-grained approach

b) Fine-grained approach

Then, we investigated the effects of issue-width adaptation during run-time on

performance and energy. It was noted that there are remarkable variations of ILP throughout

time, which evidences the presence of phases due to the cyclic behavior of the code. The

implemented oracle experiment showed that the potential energy consumption reduction

between a system with adaptive issue-width and one with eight issue slots could be as high as

60

81.5%. The results evidence the great benefits in terms of energy savings that an adaptive

architecture brings to a VLIW design.

It is worth noting that in a real application, the decision about using wide or restricted

adaptation is dependent on the available project resources. If a larger group of available issue-

width values is handled, the complexity of the hardware would be significantly increased.

Specifically, extra logic must be added in order to support a larger group of

microarchitectures. This means that the overhead of a wider adaptation, in terms of area,

could make unaffordable its implementation if this cost is high.

As was mentioned along this chapter, the ideal solution for an energy efficient VLIW

processor would be having as many Functional Units available and Registers as possible

when needed, and turning them off if the application does not offer enough ILP. In the rest of

this thesis, we propose the use of specific power gating techniques for FUs and RF to exploit

the availability of long idle periods to disable these kind of hardware modules. In this way we

not only could decrease dynamic power consumption but also static power consumption

efficiently.

There will be presented a hardware and a software approach in Chapter V and Chapter

VI respectively. The advantages and disadvantages of each one of these methodologies will

be discussed in these chapters as well as a final discussion about their comparison will be

extended in Chapter VII.

61

5 TIME BASED POWER GATING FOR VLIW

PROCESSORS

The results presented along Chapter IV evidence the potential energy savings that

might be obtained through an adaptable VLIW processor. In this chapter, we explore the use

of hardware techniques to accomplish such objective. In order to adapt the amount of

available resources suited to each interval of execution, the use of additional logic embedded

into the processor is proposed to detect idle periods of the FUs. According with this detection,

the FUs can be disabled or enabled via power gating depending on the demand and state of

the corresponding resource.

With this in mind, the ρ-vex processor was modified by inserting new logic to carry

out the detection of idle periods of the FUs, their activation/deactivation and the measurement

of the performance losses. Through the use of hardware counters to detect long idle periods,

the units are turned off when their inactivity surpasses a user-defined threshold. In this way,

the historical behavior of the Functional Units is used to successfully apply power gating

without significant time penalties. The turn off and turn on processes are simulated by adding

new registers that save the power state of each one of the resources. Furthermore, the impact

on the performance is calculated by counting the overhead associated with each wake-up

process (i.e the case when a FU is needed but such unit is not available yet).

Our results show that the FUs can be put to sleep on average 63% of the execution

cycles for the multiplier units and 30% for the ALUs, at a performance loss of 13%. By

varying the threshold for detecting idle inactivity, it is possible to observe different impacts

on the performance-power tradeoff. Overall, our results prove that hardware techniques can

be used effectively to power-gating execution units on a VLIW processor.

The rest of this chapter is organized as follows. Section 5.1 shows the conceptual basis

of a time based power gating. Section 5.2 presents the methodology used to implement this

kind of hardware approach. Section 5.3 discusses the results obtained through the simulation

of a group of benchmarks. Finally, Section 5.4 summarizes our conclusions.

62

5.1 Time Based Power Gating

Time-based power gating HU et al. (2004) is a power gating technique based on

additional logic to detect long-idle periods for the Functional Units and the corresponding

turn-on and turn-off decisions. It is aimed to turn off execution units by power gating them

after observing a streak of idle cycles. In order to implement this idea, a finite state machine

(FSM) is added for each execution unit of the VLIW processor, as depicted in Figure 5.1. The

initial state of the FSM is WAKEUP. If the execution unit is idle during a number of cycles

that exceeds some threshold Tth, power gating can be applied and the state changes to an

interim state called UNCOMPENSATED. If the execution unit remains at the same idle state

after Tbreakeven cycles, then it moves to COMPENSATED state. As can be expected, in these

two states the execution units are turned off but only at the COMPENSATED state there are

positive energy savings. When an execution unit is in COMPENSATED or

UNCOMPENSATED state and an instruction needs it, the execution unit must wake up. In

that case, it is necessary a number of Twakeup cycles to carry out the wake-up process. If the

unit is not completely power-down the time that the execution units takes to wake up will be

less than Twakeup because the voltage difference will be smaller between the two states

(enabled and disabled). However, we take a conservative approach by assuming wake up

process is equal to Twakeup cycles. Therefore, the real performance impact will be much higher

since we are assuming the most pessimistic setting.

Figure 5.1 - State machine of an execution unit when power gating is inserted.

63

The energy savings as well as the performance impact are dependent on the

aforementioned parameters: Tbreakeven, Twakeup and Tidledetect. Whereas the first two variables are

constraints defined by circuit design limits, the third one is a design decision which can be

adjusted taking into account the trade-off between energy savings and performance losses. If a

large Tidledetect is used, the performance would not be significantly affected because of less

number of wake-up moments but at the same time the contribution of short idle periods to

energy savings would be small. Conversely shorter Tidledetect allows to exploit these idle

intervals but with higher cost for performance.

5.2 Methodology

The 8 issue-width ρ-vex with 4 multipliers was modified to apply time-based power

gating through modifications into the VHDL code. For each multiplier and ALU unit a FSM,

as described in the last section, was added to carry out the application of time-based power

gating. Besides, the microarchitecture was enhanced with a power control register of 12 bits

(8 bits for ALU units and 4 for multipliers), which saves the power state of each execution

unit (1 for enabled or 0 for disabled).

The additional logic implemented into the VHDL code has five main objectives as was

argued in the Section 5.1:

(1) Detect idle periods greater than a preset threshold for each functional unit.

(2) Change the power state when a potential idle period is detected. In other words,

modify the corresponding bit in the power control register to ‘0’.

(3) Activate the execution unit in case a new instruction demands the use of this

resource. Modify the corresponding bit in the power control register to ‘1’.

(4) Count the effective fraction of execution time that each execution unit is disabled.

We report experimental results based on traces of a set of 8 WCET benchmarks,

adpcm, mm_40, x264, matrix, fir, crc, ndes and dft GUSTAFSSON et al. (2010). This group

of benchmarks was selected because of its compatibility with ρ-vex processor. For all the

results, in reporting average statistics, we use geometric mean across the corresponding

benchmark suite.

5.3 Results

The total idle cycles for each functional unit were calculated via simulation as well as

the total execution cycles for each benchmark. For the rest of this chapter, the fraction of

64

cycles spent in the sleep mode by an execution unit of a given type P is determined as

follows:

In this equation, it is calculated, for each functional unit, the ratio between the time

spent in sleep mode and the total execution time. The idle cycles correspondent to all the

instances of a specific type of FU are summed and they are weighted by the contribution of

each instance. For example, since there are 8 ALUs in our simulations, for each ALU it is

obtained the total cycles in sleep mode; they are summed, and the result is divided by the total

execution cycles times the number of functional units, in this case 8.

The values of P (corresponding to each FU) were calculated for each benchmark and

they were averaged along the benchmarks to obtain the metrics hat are shown in the next

figures. Figure 5.2 and Figure 5.3 show the power savings for ALU units and Multiplier units.

These figures show the impact of the parameters Tidledetect and Tbreakeven on the expected

number of disabled cycles. Twakeup is fixed for these charts.

Figure 5.2 - Percent of cycles in sleepmode for ALUs units (y-axis) with different Tidledetect (x-axis)

and Tbreakeven = one of 5, 10,15, or 20 cycles. Twakeup is fixed at 3 cycles.

65

Figure 5.3 - Percent of cycles in sleep mode for Multiplier units (y-axis) with different Tidledetect (x-

axis) and Tbreakeven = one of 5, 10,15, or 20 cycles. Twakeup is fixed at 3 cycles.

Figure 5.4 shows performance losses when the power gating overhead is taken into

account. In this case, each time a wake-up process is carried out, the contribution of this

overhead is summed to the total extra-cycles. In the same way that the first metric shown in

the last figures, the performance losses were averaged along all the benchmarks simulated.

The parameter Tbreakeven point was fixed to 10 cycles and Tidledetect and Twakeup were modified to

observe their impact on performance.

Figure 5.4 - Average IPC of WCET benchmarks (y-axis) with different Tidledetect (x-axis) and Twakeup

values. Tbreakeven is fixed at 10 cycles. IPC is normalized to the base case where power gating is

disabled.

66

Figure 5.5 - Energy Savings for each application using Tidledetect fixed to 21 cycles and Tbreakevent point to

10 cycles.

Figure 5.5 depicts the energy savings that are obtained using threshold fixed to 21

cycles and break-even point to 10 cycles, for all the benchmarks. The effective use of the

functional units was used to calculate this metric, assuming a constant energy consumption

for the Multiplier units as well as for the ALU units. On average the mean power savings are

14,63%, spanning from 3,57% for matrix and 25,44% for x264. This wide range remarks the

difference in terms of benefits that this technique shows depending on the application. There

are some programs that have more quantity of long idle periods for the functional units so

time-based power gating could be used to take advantage of this behavior. On the other hand,

there are applications that have a large quantity of shorter idle periods and the use of large

thresholds prevent the use of power gating in those situations. This is the case of fir and

matrix which have many short idle periods that are not detected with the threshold used in this

setting.

As we can see from the figures, the percentage of cycles spent in sleep mode for every

functional unit decreases almost exponentially with increasing Tidledetect values. The

performance, on the other hand, improves significantly when Tidledetect increases from 1 cycle

to 11 cycles, and then gradually reaches the performance of the base case, where power-

gating is disabled. The big performance jump from 1 cycle to 11 cycles of Tidledetect indicates

the presence of short idle periods and these are not amenable to power gating. Though the

number of such idle periods are large, power-gating in this case causes a significant

67

performance loss since each of these periods would incur timing overhead equals to Twakeup

cycles. The presence of smaller values for Tbreakeven and Twakeup, as well as long idle periods

help to achieve larger energy savings and decreases the performance impact.

Figure 5.2 and Figure 5.3 show a particular behavior for energy savings around

Tidledetect=11 cycles. Before this turn point, the curve drops very fast, indicating that very short

idle periods dominate the total length of idle periods in WCET benchmarks. Since in integer

applications branches, loads and stores appear once every 4 or 5 instructions, it correlates with

the predominant idle periods.

It must be noted that the results that were achieved with this work are very similar to

those found in HU et al. (2004). One of the differences is the value for Tidledetect to achieve a

specific amount of power savings. For instance, the mentioned research found a reduction of

10% for IPC using Tidledetect = 6. To achieve the same IPC reduction we would have to use

nearly Tidledetect=31. This means that it is necessary to neglect more short idle periods in our

case to achieve the same energy savings. In exchange, for the same Tidledetect we achieve better

results in terms of power savings. For example, if we fix Tidledetect= 6, the aforementioned

work found power savings nearly to 10% compared with the baseline case. For the same value

of Tidledetect, we found reduction for power savings nearly to 50% for ALU units.

This behavior could be caused by the difference of processors and compilers used in

the two researches. The cited paper used an out-of-order processor, whereas we use an in-

order processor, namely a VLIW unit. This means that our system is not capable of

processing other instructions until the current instruction is executed. In our case, the turn-on

of a functional unit has a big impact in performance since it is necessary to execute all the

operations of an instruction to process the next group of operations. Conversely, an out-of-

order processor could process more instructions even if an execution unit is not ready yet.

Some other functional units could handle operations that are independent while the wake-up

process of a FU is completed.

In conclusion, the presented hardware-based approach for power gating Functional

Units in a VLIW processor shows positive energy savings, which supports its feasibility and

potential benefits. Using a time-based power gating solution, the Multiplier units can be put to

sleep about 63% of the total execution time and the ALU units about 30%. It generates power

savings about 14,63% with performance losses near to 13% for a typical configuration.

68

6 LEVERAGING COMPILER SUPPORT ON VLIW

PROCESSORS FOR EFFICIENT POWER GATING

In this chapter it is evaluated a compiler-based approach for power gating functional

units and register file in a VLIW processor. As it is shown in this chapter, intelligent use of

the compiler allows for power gating at a finer grain saving considerable amounts of power. It

is done so by inserting customized instructions at compile time, based on the analysis that

involves probabilities of conditional branches and basic block information obtained via

dynamic profiling. By using the compiler technique, it is possible to save up of 20% in the

total energy consumption with marginal losses in performance. Unlike the technique that was

described in Chapter V, which relies exclusively on hardware resources, this approach is

based on the use of software directives to manage the availability of circuit domains

throughout the execution trace.

The rest of this chapter is organized as follows. Section 6.1 shows our compiler power

gating approach as well as the implementation challenges faced. Section 6.2 discusses the

evaluation methodology and the resources that were used. Section 6.3 describes the results

obtained by following this approach. Section 6.4 summarizes the conclusions.

6.1 Compiler-based approach for Power Gating

The methodology proposed is based on 1) obtaining the execution profile of the

applications 2) using this information to determine the best locations for power gating

instructions and 3) measuring the impact of these customized instructions on energy savings

and performance losses.

6.1.1 For the Functional Units

The proposed code based solution for the application of power gating for functional

units uses the analyses of the control flow graph (CFG) and inserts power gating instructions

according to it. More precisely, based on profiling, we obtain information about the

conditional branches and/or loops to evaluate the best locations for power gating instructions,

69

taking into account the impact on performance and power savings. The problem of inserting

power gating instructions can be reduced to finding the optimal locations for OFF instructions

(which disables a functional unit) and ON instructions (which wakes up a functional unit) to

maximize the energy savings. With this purpose we build the CFG of a program, which is a

data structure that comprises the transition probabilities, the percentage of use of each FU,

and the amount of cycles; always considering each basic block separately. An example of a

CFG obtained via dynamic profiling is depicted in Figure 6.1. There are paths that do not use

the current functional unit during a specific time interval, like the one composed of basic

blocks B2, B3 and B4. The transition probability from B2 to B3 is 70%, whereas from B3 to

B4 is 90%. If we are interested in knowing the expected number of cycles that the FU could

be put to sleep if we insert an OFF instruction at the beginning of B2, we must take into

account this information. This number will comprise the number of instructions in B2 (since

we are assuming that the OFF instruction is processed), plus the expected number of idle

cycles due to the transition to B3 (This will be the amount of cycles for B2 weighted by its

transition probability of 70%), plus the expected number of idle cycles resultant from the

transition from B3 to B4. In this case, the expected number of idle cycles is the number of

instructions of B4 weighted by the probability of this specific path B2-B3-B4: the transition

probability from B2 to B3, which is 70%, multiplied by the transition probability from B3 to

B4, which is 90%.

Therefore, we can obtain the following expected number of cycles for an OFF

instruction inserted at the beginning of B2:

T = 4+(0.7 *4) + (0.7 * 0.9 *10) = 13,1

Figure 6.1 - CFG of a program. Each circle is a Basic Block with an identifier and the number of

instructions.

70

This value must be higher than the technological break-even point to obtain positive

power savings, since otherwise the amount of energy used to disable the FU will be greater

than the saved energy. Taking into account this example and using a technological break-even

point equals to 10 cycles (which is consistent with the technology parameters used as was

described in Chapter II) we can see that inserting an OFF instruction at the top of the path and

an ON instruction at the final of this one would generate energy savings.

We can generalize this average path calculation to any basic block. The

implementation of this function is made recursively, obtaining the average number of idle

cycles by weighting the contribution of the average number of idle cycles of each path by its

transition probability. We can express the last statement in a recursive mathematical

expression:

T = P1 T1 +P2T2

Where P1 and P2 are the transition probabilities of the path 1 and path 2 respectively,

and T1 and T2 are the average number of idle cycles following the path 1 and 2, respectively.

If one path uses the FU, T1 or T2 will be equal to zero, since there are no idle cycles in that

path. In this work, this algorithm is applied for all the basic blocks and for each CFG

associated with each FU.

The additional customized instruction for power gating FUs has a standard layout

which encodes all the necessary information to disable and enable the required units. 2 bits

are necessary to control each FU (3 possibilities: disable, enable, normal operation). Since

each VLIW instruction is composed of a set of syllables of 32 bits each, it is possible to

encode more power gating directives into a unique word, so different functional units can be

disabled and enabled by only processing one power gating instruction. The 8 most significant

bits are used as opcode (i.e., indicate that the current instruction is for power gating). The

remaining 24 bits were divided into two groups of 12 bits each (Figure 6.2). The Most

Significant Bits (MSB) are responsible for the ON operations and the least significant bits

(LSB) for the OFF operations. Since there are 12 functional units, each bit of the MSB part

and each of the LSB part is associated with a specific functional unit.

Figure 6.2 - Power gating instruction for the FUs.

71

Although the technique proposed is based on software directives to apply power

gating, it is also necessary some hardware support to execute the additional customized

instructions. Given that the analyses of the CFG is carried out before execution, the extra-

logic is drastically reduced. A status register of 12 bits was added to the ρ-VEX processor to

hold the state of each functional unit (ON or OFF), called, in this work, of Power Status

Register (PSR). Additional logic was added to modify the PSR according to the power gating

instruction processed. Power Gating Circuitry, using the same principle as headers [18], uses

the information of the PSR to enable or disable the FUs according to the encoded bits.

Verification monitors were implemented to count the number of saved cycles for each

execution unit as well as the cycles overhead due to wake up instructions. The cycles

overhead counter is increased each time a FU is required for execution but it is disabled at

that point. For instance, if a new basic block is processed and one instruction belonging to this

one requires the use of a multiplier that is disabled, the counter is augmented with the value of

needed wake-up cycles (3 cycles taking into account current technology HU et al. (2004)).

The hardware complexity associated with the decoding process of power gating

instructions is marginal with our scheme. The information about which FUs must be enabled

or disabled is encoded directly in the instruction with almost zero decoding overhead.

However, it is important to note that the insertion of a power gating instruction in a basic

block is limited by the availability of issue slots. In the proposed methodology, the power

gating instructions are inserted at the first instruction of each basic block, so at least one

syllable must be available there (i.e., the word must have at least one NOP operation). For

narrower issue-width processors, whose availability of unused slots is reduced, such behavior

could be a source of performance losses because an additional VLIW instruction would need

to be inserted.

6.1.2 For the Register File

Since all the applications demand different amounts of resources, the overall use of the

RF is dependent on the program that is being executed by the processor. For instance, Figure

6.3 depicts the register file use along time for a typical WCET benchmark. The y-axis

represents each register and the x-axis represents time in terms of cycles. It was calculated the

amount of references for each register in intervals of 100 cycles. If one register is used for an

arithmetic/logic operation, branch operation, load/store operation, it is counted like a

reference for that register. This information is encoded in the gray scale of each portion of the

graph. The most part of the register file use is depicted in flat clear gray, which represents the

registers that are never used along the execution of the program. The active registers are

72

clustered in contiguous areas of the RF. These are allocated in groups that are positioned in

the most and least significant indexes of the RF (i.e., close to r0 and r63). As can be observed,

the usage rate of each register use can be constant for a long period of time, while the

behavior of the register file can be correlated with the phases of the program SHERWOOD et

al. (2003a). This means that big portions of the hardware can be disabled in case that some

registers are not needed for computational purposes.

Figure 6.3- Number of references for each register using windows of 100 instructions for ndes. The y

axis represents each register that is part of the RF.

Therefore, we can apply power gating to the registers that are not used along the

execution. To implement this functionality in hardware, we divided the register file into 8

groups of 8 registers. The enabling/disabling process of each group is managed statically by

power gating instructions that informs the groups of registers that are going to be used for

each program. The power gating instructions are inserted in the first instructions of the

application taking into account the maximum RF use. The format of the customized

instruction can be seen in Figure 6.4. To simplify decoding, 8 bits controls the activation of the

RF blocks and other 8 bits the deactivation of them.

73

Figure 6.4 - Power gating instruction for the RF.

6.2 Methodology

The following applications were evaluated: adpcm, crc, dft, fir, matrix, mm40 and

ndes, which belong to the WCET benchmark set. The methodology flow is depicted in Figure

6.5. Benchmarks are compiled with the VEX compiler from HP labs (Step 1). The generated

instruction and data memory files are loaded to the ρ-VEX processor, so it is possible to

obtain full traces of the execution, using the Modelsim Software. Dynamic profiling was used

to obtain the CFG of each application (Step 4 and 5). Each CFG is represented through a

database that contains the necessary information for each basic block, as depicted in Section

IV.

Then, the CFG is analyzed to generate all the power gating instructions and to insert

them at the best possible locations, as shown in the last section (Step 6). It was implemented

using ANSI C. As it is automatically done at the binary level, there is no need for

recompilation or any modifications at the source code. Finally, the modified benchmark, with

the additional power gating instructions, is ready to execute on the ρ-VEX processor (Step 8)

and therefore it is possible to measure power savings and performance overheads (Step 9).

Figure 6.5 - Diagram flow for Profile-Based power gating. Each gray box is a step (process) while

the rectangles are data obtained from the last step.

74

6.3 Experimental Results

The fraction of cycles spent in sleep mode by an execution unit of a given type for

each benchmark simulated is depicted in Figure 6.6. It is observed that the total number of

cycles that the functional units can be disabled is significant: 54,63% for ALUs and 81,90%

for multipliers, on average. It is important to remember that to achieve positive power savings

from power gating, there is a period of time needed to compensate the energy overhead,

which we call compensation cycles. The subtraction between the total idle time that the FUs

remain disabled and the compensation cycles is the effective period of time that the block is

saving energy. Taking into account this behavior, the effective time that the FUs are saving

energy is 43,11% for ALUs and 72,93% for multipliers.

Some applications, like crc and mm40, show a small proportion of compensation

cycles, which means that the idle periods are relatively long so the compensation cycles are

not very significant. On the other hand, others, like fir and matrix, spend more cycles in

compensation mode since there are a big quantity of short idle periods (i.e., the OFF/ON

process is repeated many times). For some programs, like ndes and x264, the amount of

compensation cycles for the multipliers is near to zero, since they are not used along program

execution. Therefore, they can be disabled at the beginning of the execution and so the turn-

off process is only carried out one time. In these cases, the effective energy savings for the

multiplier units is almost 100%. Moreover, it can be seen that the use of functional units

depends heavily on the application: crc does not use multipliers extensively; whereas the

mm40 presents the opposite behavior, so idle periods in such cases are not so common.

However, in overall, the amount of saved cycles from the multipliers is significantly greater

than for the ALUs for all the benchmarks, since they are usually less used (even though their

presence is obviously necessary).

75

Figure 6.6 - Number of cycles that the FUs are disabled through power gating for a) ALUs and b)

Multipliers. The dark blue portion represents the amount of cycles that saves energy, whereas the clear

bright bluw portion represents the number of cycles that are needed to compensate the energy

overhead derived from power gating.

The total cycles in the sleep mode for the blocks in the RF for each benchmark

simulated is depicted in Figure 6.7. The amount of number of cycles that the registers can be

disabled is 74,38%, on average. As can be observed, the difference in terms of power savings

for each benchmark is significantly different, since there are some programs like fir that uses

more blocks of registers along the execution than others, like adpcm.

Figure 6.7 - Number of cycles that the RF is disabled through power gating.

76

 The performance losses were also calculated for each application (Figure 6.8),

with an average value of 8.64%. The performance overhead is a consequence of how many

times an instruction is processed and whether the needed functional units are ready or not for

executing the operations at a given moment. Any time that this situation occurs (the

functional unit has not been completely awake to execute an instruction that is ready), the

system must stall and wait until the wake-up process is completed. Clearly, the performance

impact is not equal for all the benchmarks. Some of them, such as fir and matrix, are more

affected. This situation arises when there are more recurring wake-up processes in the

execution of an application, which increase the total execution time. One of the causes of this

behavior is in cases there is a big difference in the type or number of resources demanded by

basic blocks that are sequentially executed. For example, if one basic block uses 2 ALUs, and

another basic block that is most of time executed after this one uses 5 ALUs, the wake-up

process of 3 ALUs will be carried out as this path is processed. This will result in

performance degradation, even though energy is saved - and our approach focus on the latter.

However, if there are practical limits on performance losses for an application, performance

constraints can be added to our algorithm.

Figure 6.8 - Performance reduction resulting from the insertion of power gating instructions.

77

Figure 6.9 - Energy savings obtained through the insertion of power gating instructions. The

dark green represents the contribution of the FUs and the bright green portion represents the

RF contribution.

The energy savings due to the insertion of power gating instructions, considering the

performance penalties, is depicted in Figure 6.9. This quantity of energy savings is considered

taking into account the contribution of power gating applied to the RF and to the FUs. It is

observed that the average savings in energy are about 20% of the total energy consumed by

the original ρ-VEX processor. The range of variation is between 14,35% for matrix and

28,12% for x264. The same variability observed between benchmarks before can be extended

to analyze this metric.

78

7 HARDWARE-SOFTWARE POWER GATING

COMPARISON

The difference of power energy savings results between the simulations focused on the

potential of optimization (Chapter IV) and the simulations focused on the application of

power gating techniques (Chapter V and VI) are notorious and are caused by the

methodologies and objectives of each approach. In chapter IV we found that, on average, the

potential energy savings are 70% across the benchmarks simulated, whereas for the

application of power gating of the functional units the results are 15% and 20% for a

hardware-based and software-based approach, respectively. The approach showed in Chapter

IV had as objective describing the energy savings that could be obtained if the complete

microarchitecture of the processor was changed from one issue-width to another. It means that

all the hardware units are changed including the specific configuration of the functional units,

the register file, the load/store unit, etc. which are modules that are tailored for each issue-

width. Since hardware reconfiguration always presents timing and power overhead, the

adaptation of all the microprocessor would not be feasible in real situations at fine-

granularity, so the results of this chapter can be seen as the upper-limit that an adaptable

VLIW processor could achieve. Conversely, the presented power gating techniques in

Chapter V and VI aimed to show the implementation of a VLIW processor that just apply the

adaptation policy for the functional units. The results shown take into account the drawbacks

derived from the application of the technique and are intended to present the real challenges

that are faced with an adaptable VLIW microprocessor.

There are remarkable differences between the hardware and the software approach that

are important to point out. In general, the former offers best results in terms of energy savings

as well as less performance losses for almost all the benchmarks that were used along this

work.

The compiler-based approach can put to sleep the functional units more times than the

time-based approach. In Figure 7.1 and Figure 7.2, it is depicted the comparison for ALU

79

units and Multiplier units for each one of the benchmarks using the two aforementioned

techniques. The threshold, the break-even point and the wakeup cycles of the time-based

power gating were set to 21, 10, and 3, respectively, to obtain similar performance losses with

the compiler-based power gating. In this way, we can compare the two frameworks by setting

the same performance losses margins. It is observed that the average number of cycles that the

functional units can be disabled is 54,63% for ALUs and 81,90% for multipliers through

compiler-based approach; and 30% for ALUs and 63% for multipliers through time-based

power gating. The results showed that with application binary analysis it is possible to detect

shorter idle time periods that are overlooked by the time-based power gating. It is remarkable

that for some benchmarks, like fir and matrix, the total sleep time through compiler-based

approach is significantly larger. This means that in these benchmarks the long idle periods are

not so common, and it is necessary a static or dynamic application analyses to take advantage

of the presence of shorter idle periods inherent to the code. Moreover, the time that the

multiplier units can be disabled is larger than for ALU units, since these functional units are

used with less frequency. For some applications they can be put to sleep throughout all the

execution time saving significant amounts of energy.

Figure 7.1 - Comparison of total sleep time for ALU units between Time-based Power Gating and

Compiler-based approach.

80

Figure 7.2 - Comparison of total sleep time for Multiplier units between Time-based Power Gating

and Compiler-based approach.

In Figure 7.3 it is shown the comparison of performance losses. This metric represents

the reduction in IPC that it is expected regardless the employed technique. In the same way as

before, the threshold, the break-even point and the wakeup cycles of the time-based power

gating were set to 11, 10, and 3, respectively, to obtain similar power savings with the

compiler-based power gating. The performance losses for the compiler-based approach are on

average 8.64% and for the time-based approach 20,11%. In general, for almost all the

benchmarks the reduction is about two or three times better for the software technique. This

situation appears because by using application binary analyses we can set the necessary

resources of each basic block before it begins its execution. In this way, often all the

functional units that are required by a basic block are enabled when the instructions belonging

to that basic block demand a specific resource. Conversely, for the time-based approach the

functional units are enabled only when they are required by a new instruction. This lack of

prediction is due to the dynamic nature of the hardware approach in contrast with the static

compiler-based technique, producing a significant timing overhead. The only exception of

this pattern is x264, which presents a larger performance overhead for the compiler-based

power gating. This situation arises because this application presents many short idle periods

which can be exploited for energy savings through the compiler technique. However, they are

not long enough to obtain significant improvements in terms of energy consumption. Since

the developed power gating instruction algorithm always put one power off instruction if

there are potential positive energy savings, the performance could be affected without

significant improvements for power consumption, which is what happens to this specific case.

81

Figure 7.3 - Comparison of performance losses between Time-based Power Gating and Compiler-

based approach.

In Figure 7.4 it is depicted the comparison of energy savings using the same

methodology as before for the threshold, break-even point and the wakeup cycles, to obtain

similar performance losses with the compiler-based power gating as was made for the Figure

7.1 and Figure 7.2. We can see a link between those figures with Figure 7.4 since the

calculations for energy savings were made based on the amount of sleep time cycles of the

functional units. For all the benchmarks, the energy savings are larger for the compiler-based

approach with varying degrees of improvements. Despite the difference in energy savings

between the two approaches, this value is not so large (only 5%). The reason behind this

result could be the presence of disabled functional units that are inactive independent of the

applied methodology. For example, since the multipliers are not extensively used in some

benchmarks, both software and hardware approach are able to disable them, so the net energy

savings difference between the two methodologies is reduced.

Figure 7.4 - Comparison of energy savings between Time-based Power Gating and Compiler-based

approach.

82

8 CONCLUSIONS

This thesis has presented the motivation, implementation challenges and potential

benefits of an adaptable VLIW processor for energy efficiency. The overall results show that

this kind of design is feasible and the improvements in relation to previous approaches is

significant.

The first part of the work has covered the most recent developments in adaptable

computer architecture, specifically those focused on energy efficiency optimization. It was

noted that this kind of designs offer a great variety of advantages over their static counterparts

since the resources are handled dynamically. On the other hand, often the design complexity

is increased and the overhead in terms of energy and performance must be taken into account

into the final solution.

We have then detailed the problems that arise with traditional static VLIW

microprocessors and explained how these issues could be addressed through the

implementation of an adaptable computing system. The impact in area, performance and

power of an adaptable issue-width processor was obtained. The potential energy savings for a

dynamic issue-width VLIW processor were calculated and two adaptation policies were

implemented: coarse granularity and fine granularity. The results showed that the potential

energy savings could be as high as 80%, which remarks the beneficial impact that an

adaptable behavior could bring to a VLIW processor.

Having in mind this scenario, we proposed two different techniques for the

implementation of an adaptable VLIW processor: a hardware-based and a software-based

power gating solution. The first one was based on the availability of hardware counters to

detect long idle periods for the functional units and the use of power gating circuitry to

disable the resources when these inactive traces are detected. The results showed that the

functional units can be put to sleep for 63% of the total execution time for the multiplier units

and 30% for the ALUs with a penalty of 20% in performance. The second solution proposed

the insertion of customized instructions into the VLIW code to handle the turn on and turn off

83

of the functional units via power gating. Since this approach moves away the computational

efforts from the hardware towards the software, the hardware design overhead is decreased

and the power consumption of such adaptable processor is lower. The obtained results showed

that the ALU units can be disabled 54% of the total execution time and the Multiplier units

81% following this policy. The total energy savings are on average 20% with an impact on

performance near to 8%.

8.1 Future Work

The conclusions obtained from this dissertation open a wide range of research topics

that could be source of new projects in the future work.

The application of power gating might be suited to other datapath structures in the

same way that these techniques were applied to the functional units and the register file. For

example, the same as the Multiplier units and the ALU units present long idle periods,

modules of a cache memory are used selectively and present idleness depending on the

application. It means that, a significant part of the cache is inactive during specific periods of

time wasting dynamic and static power consumption. This phenomenon is dynamic

throughout the execution time. A compiler-based approach could use static or dynamic

profiling to detect the expected cache use of each phase, and hence be able to insert

customized instructions to control the availability of idle circuits via power gating.

The greedy nature of the algorithm used for power gating instruction insertion presents

some drawbacks that can be handled with improvements for this compiler technique. As was

observed, there are some programs like x264 that have some idle paths in the CFG of some

functional units, that are long enough to obtain positive energy savings but that are not

significantly long to justify the performance losses. For example, using 10 cycles for the

break-even point any idle path with just 11 cycles could be exploited to disable the functional

unit. Whereas there will be energy savings since it is greater than the minimum cycles

required, the performance losses could be higher if the wakeup of the functional unit is

continuously required. To manage this situation, the influence of the performance impact

could be inserted into the algorithm to avoid disabling the functional unit when these kind of

recurring wake-up processes are present.

The application of power gating and clock gating together is an interesting research

topic that could be addressed in future work. As was observed along this Master Thesis, these

two techniques are orthogonal since the application of one of them does not constraint the

84

application of the other one. Since clock gating could be applied cycle by cycle, power gating

could be used selectively to take advantage of longer idle periods.

85

REFERENCES

ALBONESI, David H. Selective cache ways: On-demand cache resource allocation. En

Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual International Symposium on.

IEEE, 1999. p. 248-259.

ANNAVARAM, Murali; GROCHOWSKI, Ed; SHEN, John. Mitigating Amdahl's law

through EPI throttling. En Computer Architecture, 2005. ISCA'05. Proceedings. 32nd

International Symposium on. IEEE, 2005. p. 298-309.

BALAKRISHNAN, Saisanthosh, et al. The impact of performance asymmetry in emerging

multicore architectures. En ACM SIGARCH Computer Architecture News. IEEE Computer

Society, 2005. p. 506-517.

BECK, Antonio Carlos Schneider; LISBÔA, Carlos Arthur Lang; CARRO, Luigi. Adaptable

embedded systems. Springer Science & Business Media, 2012.

BOLZANI, Leticia, et al. Enabling concurrent clock and power gating in an industrial design

flow. En Proceedings of the Conference on Design, Automation and Test in Europe. European

Design and Automation Association, 2009. p. 334-339.

BORKAR, Shekhar. Design challenges of technology scaling. Micro, IEEE, 1999, vol. 19, no

4, p. 23-29.

CADENCE ENCOUNTER, R. T. L. Compiler v. 8.10. Available at: www. cadence. com.

Accessed November, 2015, vol. 11.

CARDOSO, João MP; DINIZ, Pedro C.; WEINHARDT, Markus. Compiling for

reconfigurable computing: A survey. ACM Computing Surveys (CSUR), 2010, vol. 42, no 4,

p. 13.

CHANDRAKASAN, Anantha P.; BRODERSEN, Robert W. Low power digital CMOS

design. Springer Science & Business Media, 2012.

CHANG, Chin-Hao; LIU, Pangfeng; WU, Jan-Jan. Sampling-based phase classification and

prediction for multi-threaded program execution on multi-core architectures. En Parallel

Processing (ICPP), 2013 42nd International Conference on. IEEE, 2013. p. 349-358.

CLARK, Lawrence T., et al. Standby power management for a 0.18 μm microprocessor. En

Proceedings of the 2002 international symposium on Low power electronics and design.

ACM, 2002. p. 7-12.

COLWELL, Robert. The chip design game at the end of Moore's law. En 2013 IEEE Hot

Chips 25 Symposium (HCS). IEEE, 2013. p. 1-16.

DHODAPKAR, Ashutosh S.; SMITH, James E. Comparing program phase detection

techniques. En Proceedings of the 36th annual IEEE/ACM International Symposium on

Microarchitecture. IEEE Computer Society, 2003. p. 217.

86

DHODAPKAR, Ashutosh S.; SMITH, James E. Managing multi-configuration hardware via

dynamic working set analysis. En Computer Architecture, 2002. Proceedings. 29th Annual

International Symposium on. IEEE, 2002. p. 233-244.

DROPSHO, Steve, et al. Managing static leakage energy in microprocessor functional units.

En Microarchitecture, 2002.(MICRO-35). Proceedings. 35th Annual IEEE/ACM International

Symposium on. IEEE, 2002. p. 321-332.

DUNN, Darrell. The best and worst cities for data centers. InformationWeek, 2006, vol. 23.

DWARKADAS, Sandhya, et al. Memory hierarchy reconfiguration for energy and

performance in general-purpose processor architectures. U.S. Patent No RE41,958, 23 Nov.

2010.

EMNETT, Frank; BIEGEL, Mark. Power reduction through RTL clock gating. SNUG, San

Jose, 2000.

FISHER, Joseph A.; FARABOSCHI, Paolo; YOUNG, Cliff. Embedded computing: a VLIW

approach to architecture, compilers and tools. Elsevier, 2005.

FL, Antonio Carlos Schneider Beck; CARRO, Luigi. Dynamic Reconfigurable Architectures

and Transparent Optimization Techniques: Automatic Acceleration of Software Execution.

Springer Science & Business Media, 2010.

FLAUTNER, Krisztián, et al. Drowsy caches: simple techniques for reducing leakage power.

En Computer Architecture, 2002. Proceedings. 29th Annual International Symposium on.

IEEE, 2002. p. 148-157.

GEUSKENS, Bibiche; ROSE, Kenneth. Modeling microprocessor performance. Springer

Science & Business Media, 2012.

GHIASI, Soraya; GRUNWALD, Dirk. Thermal management with asymmetric dual core

designs. Dept. Comput. Sci., Univ. Colorado, Boulder, Tech. Rep. CU-CS-965-03, 2003.

GUSTAFSSON, Jan, et al. The Mälardalen WCET benchmarks: Past, present and future. En

OASIcs-OpenAccess Series in Informatics. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2010.

GUTHAUS, Matthew R., et al. MiBench: A free, commercially representative embedded

benchmark suite. En Workload Characterization, 2001. WWC-4. 2001 IEEE International

Workshop on. IEEE, 2001. p. 3-14.

HEMMERT, Scott. Green hpc: From nice to necessity. Computing in Science & Engineering,

2010, vol. 12, no 6, p. 8-10.

HIND, Michael J.; RAJAN, Vadakkedathu T.; SWEENEY, Peter F. Phase shift detection: A

problem classification. Technical report, IBM, 2003.

87

HU, Zhigang, et al. Microarchitectural techniques for power gating of execution units. En

Proceedings of the 2004 international symposium on Low power electronics and design.

ACM, 2004. p. 32-37.

HUANG, Michael C.; RENAU, Jose; TORRELLAS, Josep. Positional adaptation of

processors: application to energy reduction. En Computer Architecture, 2003. Proceedings.

30th Annual International Symposium on. IEEE, 2003. p. 157-168.

IPEK, Engin, et al. Core fusion: accommodating software diversity in chip multiprocessors.

En ACM SIGARCH Computer Architecture News. ACM, 2007. p. 186-197.

ISCI, Canturk, et al. An analysis of efficient multi-core global power management policies:

Maximizing performance for a given power budget. En Proceedings of the 39th annual

IEEE/ACM international symposium on microarchitecture. IEEE Computer Society, 2006. p.

347-358.

ISCI, Canturk; BUYUKTOSUNOGLU, Alper; MARTONOSI, Margaret. Long-term

workload phases: Duration predictions and applications to DVFS. Micro, IEEE, 2005, vol. 25,

no 5, p. 39-51.

JEFF, Brian. Big. LITTLE system architecture from ARM: saving power through

heterogeneous multiprocessing and task context migration. En Proceedings of the 49th

Annual Design Automation Conference. ACM, 2012. p. 1143-1146.

JIANG, Hailin; MAREK-SADOWSKA, Malgorzata; NASSIF, Sani R. Benefits and costs of

power-gating technique. En Computer Design: VLSI in Computers and Processors, 2005.

ICCD 2005. Proceedings. 2005 IEEE International Conference on. IEEE, 2005. p. 559-566.

KĘDZIERSKI, Kamil, et al. Power and performance aware reconfigurable cache for CMPs.

En Proceedings of the Second International Forum on Next-Generation Multicore/Manycore

Technologies. ACM, 2010. p. 1.

KOUFATY, David; REDDY, Dheeraj; HAHN, Scott. Bias scheduling in heterogeneous

multi-core architectures. En Proceedings of the 5th European conference on Computer

systems. ACM, 2010. p. 125-138.

KUMAR, Rakesh, et al. Heterogeneous chip multiprocessors. Computer, 2005, no 11, p. 32-

38.

KUMAR, Rakesh, et al. Single-ISA heterogeneous multi-core architectures for multithreaded

workload performance. ACM SIGARCH Computer Architecture News, 2004, vol. 32, no 2,

p. 64.

KUMARI, Khushboo, et al. Review of Leakage Power Reduction in CMOS Circuits.

American Journal of Electrical and Electronic Engineering, 2014, vol. 2, no 4, p. 133-136.

LI, Hai, et al. DCG: deterministic clock-gating for low-power microprocessor design. Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2004, vol. 12, no 3, p. 245-

254.

88

LI, Hai, et al. Deterministic clock gating for microprocessor power reduction. En High-

Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth

International Symposium on. IEEE, 2003. p. 113-122.

LI, Jian; MARTINEZ, Jose F. Dynamic power-performance adaptation of parallel

computation on chip multiprocessors. En High-Performance Computer Architecture, 2006.

The Twelfth International Symposium on. IEEE, 2006. p. 77-87.

LIAO, Weiping; BASILE, Joseph M.; HE, Lei. Leakage power modeling and reduction with

data retention. En Proceedings of the 2002 IEEE/ACM international conference on Computer-

aided design. ACM, 2002. p. 7 WANG, Meng, et al. Real-time loop scheduling with leakage

energy minimization for embedded VLIW DSP processors. En null. IEEE, 2007. p. 12-19.14-

719.

LYSECKY, Roman; STITT, Greg; VAHID, Frank. Warp processors. En ACM Transactions

on Design Automation of Electronic Systems (TODAES). ACM, 2004. p. 659-681.

MARKOFF, John; HANSELL, Saul. Hiding in plain sight, Google seeks more power. New

York Times, 2006, vol. 14, p. 1-2.

MIYAMORI, Takashi; OLUKOTUN, U. A quantitative analysis of reconfigurable

coprocessors for multimedia applications. En FPGAs for Custom Computing Machines, 1998.

Proceedings. IEEE Symposium on. IEEE, 1998. p. 2-11.

MOORE, Chuck. Data processing in exascale-class computer systems. In: The Salishan

Conference on High Speed Computing. 2011.

NIEDERMEIER, Anja, et al. The challenges of implementing fine-grained power gating. En

Proceedings of the 20th symposium on Great lakes symposium on VLSI. ACM, 2010. p. 361-

364.

PARK, Danbee, et al. Optimal algorithm for profile-based power gating: A compiler

technique for reducing leakage on execution units in microprocessors. En Proceedings of the

International Conference on Computer-Aided Design. IEEE Press, 2010. p. 361-364.

RAKHMATOV, Daler; VRUDHULA, Sarma. Energy management for battery-powered

embedded systems. ACM Transactions on Embedded Computing Systems (TECS), 2003, vol.

2, no 3, p. 277-324.

RELE, Siddharth, et al. Optimizing static power dissipation by functional units in superscalar

processors. En Compiler Construction. Springer Berlin Heidelberg, 2002. p. 261-275.

ROY, Soumyaroop; RANGANATHAN, Nagarajan; KATKOORI, Srinivas. A framework for

power-gating functional units in embedded microprocessors. Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, 2009, vol. 17, no 11, p. 1640-1649.

SAHA, Dipankar, et al. Implementation of the Cluster Based Tunable Sleep Transistor Cell

Power Gating Technique for a 4x4 Multiplier Circuit. arXiv preprint arXiv:1310.3203, 2013.

89

SANKARALINGAM, Karthikeyan, et al. Exploiting ILP, TLP, and DLP with the

polymorphous TRIPS architecture. En Computer Architecture, 2003. Proceedings. 30th

Annual International Symposium on. IEEE, 2003. p. 422-433.

SHERWOOD, Timothy, et al. Automatically characterizing large scale program behavior.

ACM SIGOPS Operating Systems Review, 2002, vol. 36, no 5, p. 45-57.

SHERWOOD, Timothy, et al. Discovering and exploiting program phases. Micro, IEEE,

2003, vol. 23, no 6, p. 84-93.

SHERWOOD, Timothy; SAIR, Suleyman; CALDER, Brad. Phase tracking and prediction.

En ACM SIGARCH Computer Architecture News. ACM, 2003. p. 336-349.

SHIN, Youngsoo, et al. Power gating: Circuits, design methodologies, and best practice for

standard-cell VLSI designs. ACM Transactions on Design Automation of Electronic Systems

(TODAES), 2010, vol. 15, no 4, p. 28.

SMIT, Gerard JM, et al. Lessons learned from designing the MONTIUM-a coarse-grained

reconfigurable processing tile. 2004.

UCHIDA, Mitsuya, et al. Energy-aware SA-based instruction scheduling for fine-grained

power-gated VLIW processors. En SoC Design Conference (ISOCC), 2012 International.

IEEE, 2012. p. 139-142.

VILLA, Oreste, et al. Scaling the power wall: a path to exascale. En Proceedings of the

International Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE Press, 2014. p. 830-841.

WONG, Stephan; VAN AS, Thijs; BROWN, Geoffrey. ρ-VEX: A reconfigurable and

extensible softcore VLIW processor. En ICECE Technology, 2008. FPT 2008. International

Conference on. IEEE, 2008. p. 369-372.

X-FAB, 0.18 micron modular cmos technology. Available at:

www.xfab.com/technology/cmos/018-um-xc018/. Accessed November, 2015.

YANG, Se-Hyun, et al. An integrated circuit/architecture approach to reducing leakage in

deep-submicron high-performance I-caches. En High-Performance Computer Architecture,

2001. HPCA. The Seventh International Symposium on. IEEE, 2001. p. 147-157.

YE, Zhi Alex, et al. CHIMAERA: a high-performance architecture with a tightly-coupled

reconfigurable functional unit. ACM, 2000.

YEO, L. C., et al. Dynamic power gating implementation on intel embedded media and

graphics driver. Intel Corporation, White Paper, 2011, vol. 325293.

YOU, Yi-Ping; LEE, Chingren; LEE, Jenq Kuen. Compilers for leakage power reduction.

ACM Transactions on Design Automation of Electronic Systems (TODAES), 2006, vol. 11,

no 1, p. 147-164.

90

ZHONG, Hongtao; LIEBERMAN, Steven A.; MAHLKE, Scott A. Extending multicore

architectures to exploit hybrid parallelism in single-thread applications. En High Performance

Computer Architecture, 2007. HPCA 2007. IEEE 13th International Symposium on. IEEE,

2007. p. 25-36.

