
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JONAS MULLER KORNDORFER

High Performance Trace Replay for
Event Simulation of Parallel Programs

Behavior

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Lucas Mello Schnorr

Porto Alegre
October 2016

CIP — CATALOGING-IN-PUBLICATION

Muller Korndorfer, Jonas

High Performance Trace Replay for Event Simulation of
Parallel Programs Behavior / Jonas Muller Korndorfer. –
Porto Alegre: PPGC da UFRGS, 2016.

75 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande
do Sul. Programa de Pós-Graduação em Computação,
Porto Alegre, BR–RS, 2016. Advisor: Lucas Mello Schnorr.

1. Parallel Application, Performance Analysis, High Per-
formance, Big Data, Trace Replay. I. Mello Schnorr, Lucas.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“If I have seen farther than others,

it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON

ACKNOWLEDGMENTS

This work is the result of two and a half years of personal development sup-

ported by several people.

In the first place, I would like to thank my advisor Dr. Lucas Mello Schnorr for

its close participation and motivation during all the work. Lucas, you were essential

for the completion of this work, and I really want to thank you for all the “tricks and

tips” about organization, text writing, English, “procrastination hehe” and many other

knowledge that you gave me. I have really evolved with your orientation and I think

you are an example of advisor, I hope that we can work together again in the future.

I am also grateful to the professor Dr. Claudio R. Geyer that have initiated me

in the PPGC, believing in me and helping me several times.

Second and no less important, or even most important, I have to greatly thank

my girlfriend, Marjorie Moraes! Marjorie, how you were able to handle with me all this

time? I was so boring! Thank you for being so patient with me, thanks for motivate me

all this time, thanks for all the “earful” that made me back to work, thanks for being

my girlfriend, I love you.

I would like to thanks my family, mother (Elena Muller), father (Sergio A. Korn-

dorfer) and sister (Rita C. M. Korndorfer), by staying on my side all this time, motivat-

ing and supporting me in the "moments of despair" and all other moments, of course

hehe.

Thank you my classmates, Vinícius G. Pinto, Luís F. Millani, Flavio Alles, Alef

Farah Herbstrith Vinicius, for helping me several times with many knowledge during

this work. I also would like to make an extra and special thanks for the colleagues

Vinícius G. Pinto and Luís F. Millani that, besides all, have watched my presentation

and continue to help me even being outside of the country.

Lastly, I would like to thank my friends, Arthur M. Daudt, Cesar P. Purper,

Gabriel Maciel, Guilherme M. Daudt, Letícia A. Kruse, Marcus L. Rohden, Marjorie

Moraes (yes, she is also one of my best friends), Ricardo M. Oliveira and Suliane Car-

doso. Thank you! You have made my life, together with this work, happier and lighter,

making me laugh and relax. An special thank for my friend Guilherme that gave me

some tips about writing in English which have really improved this text.

Thanks!

ABSTRACT

Modern high performance systems comprise thousands to millions of processing units.

The development of a scalable parallel application for such systems depends on an

accurate mapping of application processes on top of available resources. The identifi-

cation of unused resources and potential processing bottlenecks requires good perfor-

mance analysis. The trace-based observation of a parallel program execution is one of

the most helpful techniques for such purpose. Unfortunately, tracing often produces

large trace files, easily reaching the order of gigabytes of raw data. Therefore trace-

based performance analysis tools have to process such data to a human readable way

and also should be efficient to allow an useful analysis. Most of the existing tools such

as Vampir, Scalasca, TAU have focus on the processing of trace formats with a fixed

and well-defined semantic. The corresponding file format are usually proposed to

handle applications developed using popular libraries like OpenMP, MPI, and CUDA.

However, not all parallel applications use such libraries and so, sometimes, these tools

cannot be useful. Fortunately, there are other tools that present a more dynamic ap-

proach by using an open trace file format without specific semantic. Some of these

tools are the Paraver, Pajé and PajeNG. However the fact of being generic comes with

a cost. These tools very frequently present low performance for the processing of large

traces.

The objective of this work is to present performance optimizations made in the PajeNG

tool-set. This comprises the development of a parallelization strategy and a perfor-

mance analysis to set our gains. The original PajeNG works sequentially by processing

a single trace file with all data from the observed application. This way, the scalability

of the tool is very limited by the reading of the trace file. Our strategy splits such file to

process several pieces in parallel. The created method to split the traces allows the pro-

cessing of each piece in each thread. The experiments were executed in non-uniform

memory access (NUMA) machines. The performance analysis considers several as-

pects like threads locality, number of flows, disk type and also comparisons between

the NUMA nodes. The obtained results are very promising, scaling up the PajeNG

about eight to eleven times depending on the machine.

Keywords: Parallel Application, Performance Analysis, High Performance, Big Data,

Trace Replay.

Ferramenta de Alto Desempenho para Análise do Comportamento de Programas

Paralelos Baseada em Rastos de Execução

RESUMO

Sistemas modernos de alto desempenho compreendem milhares a milhões de unida-

des de processamento. O desenvolvimento de uma aplicação paralela escalável para

tais sistemas depende de um mapeamento preciso da utilização recursos disponíveis.

A identificação de recursos não utilizados e os gargalos de processamento requere uma

boa análise desempenho. A observação de rastros de execução é uma das técnicas mais

úteis para esse fim. Infelizmente, o rastreamento muitas vezes produz grandes arqui-

vos de rastro, atingindo facilmente gigabytes de dados brutos. Portanto ferramentas

para análise de desempenho baseadas em rastros precisam processar esses dados para

uma forma legível e serem eficientes a fim de permitirem uma análise rápida e útil. A

maioria das ferramentas existentes, tais como Vampir, Scalasca e TAU, focam no pro-

cessamento de formatos de rastro com semântica associada, geralmente definidos para

lidar com programas desenvolvidos com bibliotecas populares como OpenMP, MPI e

CUDA. No entanto, nem todas aplicações paralelas utilizam essas bibliotecas e assim,

algumas vezes, essas ferramentas podem não ser úteis. Felizmente existem outras fer-

ramentas que apresentam uma abordagem mais dinâmica, utilizando um formato de

arquivo de rastro aberto e sem semântica específica. Algumas dessas ferramentas são

Paraver, Pajé e PajeNG. Por outro lado, ser genérico tem custo e assim tais ferramen-

tas frequentemente apresentam baixo desempenho para o processamento de grandes

rastros.

O objetivo deste trabalho é apresentar otimizações feitas para o conjunto de ferramen-

tas PajeNG. São apresentados o desenvolvimento de um estratégia de paralelização

para o PajeNG e uma análise de desempenho para demonstrar nossos ganhos. O Pa-

jeNG original funciona sequencialmente, processando um único arquivo de rastro que

contém todos os dados do programa rastreado. Desta forma, a escalabilidade da fer-

ramenta fica muito limitada pela leitura dos dados. Nossa estratégia divide o arquivo

em pedaços permitindo seu processamento em paralelo. O método desenvolvido para

separar os rastros permite que cada pedaço execute em um fluxo de execução sepa-

rado. Nossos experimentos foram executados em máquinas com acesso não uniforme

à memória (NUMA). A análise de desempenho desenvolvida considera vários aspectos

como localidade das threads, o número de fluxos, tipo de disco e também comparações

entre os nós NUMA. Os resultados obtidos são muito promissores, escalando o PajeNG

cerca de oito a onze vezes, dependendo da máquina.

Palavras-chave: Aplicação Paralela, Análise de Desempenho ,Alto Desempenho, Big

Data, Trace Replay.

LIST OF FIGURES

Figure 2.1 Visual example for strong scalability. Figure adopted from (KAMIN-
SKY, 2013). ... 16

Figure 2.2 Visual example for weak scalability. Adopted from (KAMINSKY, 2013).. 17
Figure 2.3 Simple visual representation of the NUMA architecture. Adopted

from (BARNEY et al., 2010). .. 18

Figure 3.1 A DAG model for the pipeline processing with five input items. Fig-
ure adopted from (MCCOOL; REINDERS; ROBISON, 2012). 22

Figure 3.2 Master time-line view taken from Vampir’s site.. 25
Figure 3.3 Process time-line view adopted from Vampir’s site. 25
Figure 3.4 Simple representation of the workflow executed by the Vampir. In the

top, Vampir GUI for the client machine. In the bottom, VampirServer for
remote distributed processing. Figure adopted from (BRUNST et al., 2010)....... 26

Figure 3.5 VampirServer architecture with several MPI workers processes in the
left, and the master MPI process in the right. Figure adopted from (KNÜPFER
et al., 2008).. 27

Figure 3.6 Paraver Graphic view (Time-line) example. One hour of simulation
from NMMB/BSC-CTM model. Figure adopted from (MARKOMANOLIS;
JORBA; BALDASANO, 2014).. 29

Figure 3.7 Paraver internal structure. Figure adopted from (PARAVER, 2001b)......... 30
Figure 3.8 Pipeline of the conversion of CLOG trace file to SLOG2 log file. Figure

adopted from (CHAN; GROPP; LUSK, 2008)... 30
Figure 3.9 Jumpshot preview of five processes time-line from states and mes-

sages. Figure adopted from (JUMPSHOT, 2007).. 31
Figure 3.10 Modules architecture in ViTE. Figure adopted from (COULOMB et

al., 2012). ... 33
Figure 3.11 Example of a time-line view generated by ViTE. Figure taken from

ViTE’s site. .. 33
Figure 3.12 Example of time-line view from pajeng.. 36
Figure 3.13 Original libpaje’s sequential work-flow... 37
Figure 3.14 PajeNG’s run-time ranging the input size and disk type, HDD vs

SSD. This results were collected from the minimum value of 30 executions
performed in the machine turing (see platform description in Chapter 5)....... 38

Figure 4.1 Representation of PajeNG’s parallel work-flow with the strategy that
has aiming to quickly release the simulator. ... 42

Figure 4.2 Results obtained with one of the firsts parallelization strategies for the
PajeNG.. 42

Figure 4.3 libpaje’s parallel work-flow. .. 45

Figure 5.1 Strong scaling speedup graph for bali and turing machines. Thirty
executions for each configuration, all without drop the operational system
data cache. .. 49

Figure 5.2 Strong scaling efficiency graph for bali and turing machines. Thirty
executions for each configuration, all without drop the operational system
data cache. .. 50

Figure 5.3 Weak scaling sizeup graph for bali and turing machines. Thirty execu-
tions for each configuration, all without drop the operational system data
cache.. 51

Figure 5.4 Weak scaling efficiency graph for bali and turing machines. Thirty
executions for each configuration, all without drop the operational system
data cache. .. 51

Figure 5.5 Strong scaling speedup Pin vs Free Threads graph for bali and turing
machines. Thirty executions for each configuration, all without drop the
operational system data cache. ... 53

Figure 5.6 Comparison between turing’s NUMA node’s average read time dura-
tion in seconds. Thirty executions for each configuration, all without drop
the operational system’s data cache. .. 54

Figure 5.7 Speedup achieved by pinning threads in all NUMA nodes (0, 1, 2, 3)
versus only the nodes 0 and 1. .. 55

Figure 5.8 Comparison between the average read time duration in seconds of the
experiments with turing’s NUMA nodes 0 and 1 versus all nodes....................... 56

Figure 5.9 (a) Speedup achieved on turing with the input trace files kept on disk
- SSD vs HDD - Pin vs Free; (b) Same but for bali.. 58

Figure 5.10 The average read time duration in seconds for HDD as a function of
the number of threads for turing. ... 59

Figure 5.11 The average read time duration in seconds for HDD as a function of
the number of threads for bali... 59

Figure 5.12 The average read time duration in seconds for SDD as a function of
the number of threads for turing. ... 60

Figure 5.13 The average read time duration in seconds for SDD as a function of
the number of threads for bali... 60

Figure A.1 Fluxo de execução original da libpaje... 72
Figure A.2 Fluxo de execução paralelo da libpaje. ... 73
Figure A.3 Speedup alcançado pela estratégia desenvolvida nas máquinas bali e

turing. Gráfico comparando o desempenho alcançado com as threads livres
(Free), com as threads fixas (Pin). ... 74

LIST OF TABLES

Table 3.1 Classification for performance analysis tools. .. 39

Table 5.1 Experimental platform settings. ... 47
Table 5.2 Experimental results summary... 61

CONTENTS

1 INTRODUCTION.. 12
2 BASIC CONCEPTS ... 15
2.1 Amdahl’s Law and Strong Scalability.. 15
2.2 Gustafson’s Law and Weak Scalability.. 16
2.3 The Non-Uniform Memory Access (NUMA) Achitecture 17
3 RELATED WORK .. 19
3.1 Parallelization Techniques ... 19
3.1.1 Automatic Compiler-based Parallelization Techniques ... 19
3.1.2 Explicit Parallelization Techniques and Patterns .. 21
3.2 Performance Analysis Tools... 22
3.2.1 Vampir ... 23
3.2.2 Paraver... 27
3.2.3 Jumpshot ... 29
3.2.4 ViTE.. 32
3.2.5 PajeNG... 34
3.3 Summary and Categorization.. 38
4 PARALLEL TRACE REPLAY IN PAJENG .. 41
4.1 Preliminary Attempt to Parallelize the PajeNG Simulator 41
4.2 Pajé Trace Format Support for Parallel Reading.. 43
4.3 Parallel PajeNG’s Processing Work-Flow Description... 44
5 PERFORMANCE ANALYSIS AND RESULTS.. 46
5.1 Experimental Platform and Methodology... 46
5.2 Scalability Overview... 48
5.2.1 Strong Scalability Overview ... 48
5.2.2 Weak Scalability Overview... 50
5.3 Threads Locality Interference ... 52
5.4 Differences Between NUMA nodes Read Throughput ... 54
5.5 Disk Analysis.. 56
5.6 Analysis Summary... 60
6 CONCLUSION... 62
REFERENCES .. 65
APPENDIX A — FERRAMENTA DE ALTO DESEMPENHO PARA ANÁLISE

DO COMPORTAMENTO DE PROGRAMASPARALELOS BASEADA EM
RASTOS DE EXECUÇÃO... 69

A.1 Introdução .. 69
A.2 Proposta e Implementação .. 72
A.3 Resultados .. 73
A.4 Conclusão e Trabalhos Futuros .. 74

12

1 INTRODUCTION

The continuous increasing demand of computing power tends to the develop-

ment of efficient parallel applications that better use the available resources. Modern

high performance systems comprise thousands to millions of processing units con-

nected by complex hierarchical networks. The development of parallel applications

for such systems is a complicated task, affected by at least two factors: the first is the

high scalability provided by them which is hard to achieve; the second is the lack of

a deterministic execution. Since processing nodes are independent, the understand-

ing of such applications can be very painful. Some libraries like OpenMP (DAGUM;

MENON, 1998) and MPI (GROPP; LUSK; THAKUR, 1999) are used to facilitate the

implementation of these applications. However, even with supporting libraries, the

successful development of a high performance parallel application depends on an ac-

curate mapping of the application’s processes on top of available resources.

The identification of unused resources and potential processing bottlenecks re-

quires good performance analysis tools that are able to observe many entities over

long periods of time. This observation is often initiated by collecting significant per-

formance measurements through event tracing. The collected data is usually from the

application level. Tracing tools commonly register local and global states of the pro-

gram, the amount of data transferred by messages and hardware counters for specific

functions. This data enables the detection of several complex patterns, such as late

communications, costly synchronization or train effects (SCHNORR; LEGRAND; VIN-

CENT, 2012). Unfortunately, tracing often produces large trace files, easily reaching

the order of gigabytes of raw data. Therefore the processing of such data to a human

readable way should be efficient to allow a quick and useful performance analysis.

Over the years, several tracing tools have been developed for performance anal-

ysis of parallel applications. The major challenges of these tools are the processing and

interpretation of the large amount of data produced by parallel applications. The data

is frequently used to replay/simulate the behavior of the program execution. This

results in visual representations such as space/time views, communication graphs

among others (SCHNORR, 2009). Most of the existing tools such as Vampir (MÜLLER

et al., 2007), Scalasca (GEIMER et al., 2010), TAU (SHENDE; MALONY, 2006) have

focus on the processing of trace formats with a fixed and well-defined semantic. The

corresponding file format are usually proposed to handle applications developed using

13

popular libraries like OpenMP, MPI, and CUDA. However, not all parallel applications

use such libraries and so, sometimes, these tools cannot be used. Parallel runtimes

provided by StarPU (AUGONNET et al., 2011) and XKaapi (GAUTIER et al., 2013) are

examples where usual HPC tracing tools are incapable to obtain correct performance

data. Fortunately, there are other tools that present a more dynamic approach. They

have an open trace file format without being associated with any specific semantic.

This way they can handle with a wide range of parallel applications including parallel

run-times such as those mentioned before. Some of these tools are: Paraver (PILLET et

al., 1995), Paje (KERGOMMEAUX; STEIN; BERNARD, 2000) and PajeNG (SCHNORR,

2014b). The fact of being more generic comes with a cost. These tools very frequently

present low performance for the processing of large traces. In some occasions, they

handle the increasing data size by applying aggregation techniques which can remove

important performance information from the original trace data.

This work focuses in the optimization of the PajeNG’s toolset, more specifi-

cally the Paje simulator responsible for replaying traces and re-creating the original

behavior of the observed parallel application. This toolset works with the Pajé trace

format (SCHNORR, 2014a) which has an open semantic. PajeNG relies on its Paje

simulator and built on top of that tools for performance analysis. Examples of such

tools are the space/time view provided by pajeng and pj_dump. The latter is capa-

ble to export performance data in a CSV-like textual format well tailored to conduct R

analysis (IHAKA; GENTLEMAN, 1996). The current implementation of the Paje sim-

ulator is sequential and therefore not scalable when dealing with large trace files. This

dissertation presents a parallelization strategy for PajeNG, intending to improve its

performance and scalability. This document is organized as follows.

Chapter 2: Basic Concepts. The main purpose of this chapter is to present basic con-

cepts that are important for a good understanding of this work. It explains

two ways of how to measure application performance, and it also provides an

overview about the Non-Uniform Memory Access (NUMA) architecture.

Chapter 3: Related Work. This chapter makes an overview about the current scenario

of performance analysis tools based on trace replay. The most common approaches

used to build such tools with high performance are presented. The chapter also

presents common parallelization patterns/techniques.

Chapter 4: Parallel Trace Replay in PajeNG. This chapter presents the implemented

parallelization technique for the PajeNG simulation library. It details the needed

14

modifications and the optimizations made by our work.

Chapter 5: Performance Analysis and Results. This chapter presents a performance

analysis of our solution. We detail and explain the impressive results, scaling up

to eleven times the original PajeNG with the developed strategy. The chapter ini-

tiates describing the experimental platform and the performance methodology.

Then it continues to an overview about the achieved speedup and efficiency, and

terminates by a more detailed analysis including disk measurements and com-

parisons between different NUMA nodes.

Chapter 6: Conclusion. This chapter lists the main contributions of this work. It also

includes some ideas for future work.

15

2 BASIC CONCEPTS

There are many ways to evaluate the performance of parallel applications. Com-

mon examples include the energy consumption, instructions per second, memory us-

age, speedup, efficiency and so on. This chapter presents two of these metrics: how to

determine the speedup and the corresponding efficiency achieved by a parallel pro-

gram. The chapter also brings an overview about how the NUMA (Non-Uniform

Memory Access) architecture works. This knowledge is essential to understand our

performance analysis Chapter 5, since the experiments were performed on NUMA

machines. For this, the Chapter is divided in three sections: Section 2.1 presents

the Amdahl’s Law (AMDAHL, 1967) for strong scalability and the Section 2.2 with

the Gustafson’s Law (GUSTAFSON, 1988) for weak scalability. Section 2.3 offers an

overview about the NUMA architecture.

2.1 Amdahl’s Law and Strong Scalability

The ideal speedup/efficiency of a parallel program would be linear. Doubling

the number of processing elements should halve the runtime maintaining the efficiency

at 100%. The ideal speedup is hard to obtain. Gene Amdahl have shown the limit on

a parallel program’s speedup/efficiency as it executes with more cores while solving

the same problem size (strong scalability). The Figure 2.1 illustrates such idea: the

program should ideally take 1/K amount of time to perform the result for the same

problem, with K processes. Amdahl proposes some equations as follows. Equation 2.1

shows the sequential program’s running time divided by the parallel program’s run-

ning time with K processes, ultimately defining the speedup metric. Amdahl’s effi-

ciency is shown in Equation 2.2: it calculates how far the program is from the ideal

speedup.

Speedup(N,K) =
Tseq(N, 1)

Tpar(N,K)
(2.1)

Efficiency(N,K) =
Speedup(N,K)

K
(2.2)

16

Figure 2.1 – Visual example for strong scalability. Figure adopted from (KAMINSKY, 2013).

Gene Amdahl asserts that every parallel program has a sequential fraction that

limits the performance gains. So even increasing the number of cores, the runtime will

never be faster than such fraction’s time. Equation 2.3 describes this interaction pro-

viding a program’s total running time using K cores. The sequential fraction F is the

total running time that must be performed in a single core. When executing with one

core, the program’s total execution time is T , the sequential portion takes time FT ,

and the parallelizable portion takes (1 − F)T . When using K cores, the parallelizable

portion may experience an ideal speedup taking (1 − F)T/K time, but the sequen-

tial portion still takes FT time. The sequential portion F therefore limits the possible

parallelization gains. This is famous equation called Amdahl’s Law (AMDAHL, 1967).

T (N,K) = FT (N, 1) +
1− F

K
T (N, 1) (2.3)

2.2 Gustafson’s Law and Weak Scalability

John Gustafson has explained another way to check the scalability of a parallel

program when more cores are available. Differently from Amdahl’s law where the

problem size is kept fixed, Gustafson propose an alternative manner by letting the

problem size change according to the number of resources available. This is known

as weak scaling as exemplified by the Figure 2.2: as the number of cores increases,

the problem size is also increased in the same proportion. So ideally it should take

the same amount of time to perform a K times larger problem. Therefore, the main

idea is how much we can increase the problem size/number of cores maintaining the

runtime. With that Gustafson asserts that as the problem size increases, the program’s

parallelizable portion’s running time also increases. So how the program’s sequential

portion typically remains the same, it will becoming less and less significative when

17

considering the program’s total running time. Thus the speedup still increases without

hitting the limit imposed by Amdahl’s law.

Figure 2.2 – Visual example for weak scalability. Adopted from (KAMINSKY, 2013).

The main equations for weak scaling are the Sizeup and Efficiency. The Sizeup

equation 2.4 is the main metric for measuring weak scaling. Considering the T time

of the sequential program with the 1 problem divided by the T time of the parallel

program with K cores and K problems. The Efficiency equation 2.5 tells how close a

program is to the ideal Sizeup. This is much like the strong scaling efficiency, that is

dividing the Sizeup(N,K) by K number of cores.

Sizeup(N,K) =
N(K)

N(1)
∗ Tseq(N(1), 1)

Tpar(N(K), K)
(2.4)

Efficiency(N,K) =
Sizeup(N,K)

K
(2.5)

2.3 The Non-Uniform Memory Access (NUMA) Achitecture

The Non-Uniform Memory Access (NUMA) architecture was designed to im-

prove the scalability limits of the Symmetric Multi-Processing (SMP) architecture in

which all memory access are posted to the same shared memory bus. The SMP works

relatively well for a small number of CPUs, however with a larger number of CPUs

there are much concurrency to access the shared memory bus. Therewith NUMA in-

tends to reduce these bottlenecks by limiting the number of CPUs on a memory bus.

The NUMA architecture classifies memory into NUMA nodes in which a certain num-

ber of cores reside. All cores of the same node have equivalent memory access charac-

teristics, and all nodes are inter-connected by means of a high speed interconnect.

The Figure 2.3 shows a visual representation of what is a NUMA architecture.

Each rectangle presents a NUMA node with its respective cores and local memory

18

range. The black lines mean the high speed interconnect mentioned above. The NUMA

architecture has some particular features that are very important for a program run-

ning on it. All cores of the system can access the entire memory of any node, however

not at all with the same speed. Two concepts were created to differ the memory ac-

cess pattern: local node that is when a core access the memory range of its own node;

and remote node that occurs when a core allocates memory that resides in another node

local memory. The local node access is much faster than a remote node. Therefore a par-

allel program has to be prepared to execute in a NUMA machine, otherwise it will lose

performance. The development of a program for NUMA commonly uses the NUMA

aware approach which means maximize the local memory allocation.

Figure 2.3 – Simple visual representation of the NUMA architecture. Adopted from (BARNEY
et al., 2010).

19

3 RELATED WORK

The goal of this chapter is to present what are the most common parallelization

techniques to build high performance tools. This includes parallelization techniques/-

patterns and the internal structure of several existing tools. The chapter is structured

in two sections as follows. Section 3.1 presents parallelization techniques while Sec-

tion 3.2 makes an overview about performance analysis tools. The objective of latter is

to detail the main features of each tool and its processing model. The last Section 3.3

makes a comparison between the surveyed tools and presents some conclusions.

3.1 Parallelization Techniques

Parallelization techniques are divided here in implicit techniques for automatic

compiler-based parallelization and explicit parallelization techniques/patterns.

3.1.1 Automatic Compiler-based Parallelization Techniques

This section was inspired by E. Raman’s thesis (RAMAN, 2009) and presents

some of the most general and important techniques for automatic compiler-based par-

allelization. We first explaing DOALL, one of the first automatic parallelization tech-

niques. Then, we describe DOACROSS and DSWP, both designed to handle of inter-

iteration dependencies during automatic parallelization.

Independent Multi-Threading (IMT) and the DOALL Technique

Independent Multi-Threading (IMT) techniques are characterized by the nonex-

istence of communication between the threads that execute loops in parallel. The main

parallelization technique for this approach is DOALL (LUNDSTROM; BARNES, 1980;

ALLEN; KENNEDY, 2002). It extracts iteration level parallelism by partitioning the

loop iterations into threads and executing them concurrently with no or very few re-

strictions. This means that IMT techniques requires loops without inter iteration de-

pendencies. The great point of the DOALL technique is that its performance is inde-

pendent of the communication latency between cores, since the threads do not com-

municate within the loop body giving a near linear speedup. On the other hand, this

20

technique has a limited applicability since most loops have several dependencies be-

tween the iterations.

Cyclic Multi-Threading (CMT) and the DOACROSS Technique

Cyclic Multi-Threading (CMT) techniques intend to use synchronization meth-

ods to extract parallelism from loops even when there are iteration dependencies.

DOACROSS (CYTRON, 1986) is one of the firsts and much important techniques for

this approach. Like IMT techniques, DOACROSS obtains parallelism by executing it-

erations concurrently across threads. However the iterations mapping to the threads

is guarded by points of synchronization and communication. The code 3.1 shows an

example of a loop with inter-iteration dependencies due to the pointer chasing load

LD. By using the DOACROSS technique, all threads are synchronized sending and

receiving tokens from each others resulting in a cyclic communication among them.

The great advantage of the DOACROSS technique is its applicability that covers more

possibilities than the DOALL. On the other hand its performance depends on the num-

ber of stall cycles: the speedup decreases from the linear according to how many stall

cycles have occurred during the execution.

Listing 3.1 – Loop incrementing a linked list with inter-iteration dependence due to the pointer

chasing load. Adopted from (RAMAN, 2009).

ptr = f i r s t ;

While (ptr = ptr−>next) //LD

{

ptr−>val += 1 ; //A

}

Pipelined Multi-Threading (PMT) and the DSWP Technique

Pipelined Multi-Threading (PMT) also intends to extract parallelism even with

the existence of inter-iteration dependencies. Decoupled software pipeline (DSWP) (RAN-

GAN et al., 2004; OTTONI et al., 2005) is one of the most general techniques for this

approach. DSWP works by splitting the loop body in a sequence of pipeline stages and

executes each one in a separated flow. The first operation of the DSWP technique is

construct the program dependence graph (PDG) (FERRANTE; OTTENSTEIN; WAR-

REN, 1987) of the loop and identify which are the Strongly Connected Components

21

(SCC) (TARJAN, 1972). Thus a new PDG can be formed based on the SCCs in which

each SCC composes a single node of the graph. Finally, it forms the directed acyclic

graph (DAG) that can have each node mapped to a separated thread. Therefore each

SCC must be processed by a single thread: it prevents that two or more threads share

operations of the same SCC, thus avoiding cyclic communication between them. The

speedup obtained with the DSWP technique is limited by the execution latency of the

thread with the longest execution time. So differently from IMT and CMT techniques,

this approach is not scalable according to the number of iterations or input size.

3.1.2 Explicit Parallelization Techniques and Patterns

The pipeline (MATTSON; SANDERS; MASSINGILL, 2004) pattern describes a

way to handle data in parallel. It proposes the connection of tasks in a producer–consumer

relationship, basically creating a linear sequence of stages. Conceptually all stages of

the parallel pipeline are active at once and can be updated as the data flows through

them. There are two basic approaches to implement the pipeline (MCCOOL; REIN-

DERS; ROBISON, 2012). The first sets a worker to process some stage and the data

bounded for that. The second puts a worker to process a piece of data through all

pipeline stages. The differences between these approaches are their applicability: the

first approach is better for large stages and small data, while the second is preferred

for smaller stages and larger data. The Figure 3.1 shows an abstraction of the pipeline

pattern implemented by the Intel TBB (REINDERS, 2007) library. This is a modified

version of the second approach commented above. In this case a worker receives one

of the five input data items and carries it through as many stages as possible. When a

worker finishes its task, it checks if there are more data for processing. The pipelines

are commonly useful for serially dependent tasks which can be decoupled forming a

fixed number of stages. Therefore the pipeline speedup scalability is limited by the

slowest stage, for example: a pipeline with three balanced stages achieves a maximum

speedup of three, since it is directly attached to the number of stages.

22

Figure 3.1 – A DAG model for the pipeline processing with five input items. Figure adopted
from (MCCOOL; REINDERS; ROBISON, 2012).

The stencil (MCCOOL; REINDERS; ROBISON, 2012) pattern is an alternative

approach to map data which proposes that an elemental function can access a set of

data in an input collection, and not just a single element. This pattern intends to pro-

vide parallel access to an input collection where each worker pick up a set of fixed

offsets for processing. Stencil is commonly used for image filtering, median filtering,

motion estimation, simulations like fluid flow and lots of others applications. The re-

currence technique addresses a complex case where loop iterations can depend one

each other. This works like a map but can use the outputs from a iteration of adja-

cent elements as inputs for the next. Recurrence can be implemented with a sequence

of stencils. The outputs of stencils (that is offsets of data processed) are iterated and

can be reinterpreted as recurrences over space-time. Recurrences can be used by sev-

eral applications like: image processing, sequence alignment, and also by performance

analysis tools to infer behavioral patterns of a program execution (COOK; WOLF, 1998;

CORNELISSEN; MOONEN, 2007).

3.2 Performance Analysis Tools

This section presents some of the most important trace-based performance anal-

ysis tools. The text have focus on the internal structure of such tools intending to ex-

plain how they achieve high performance on the processing of large amounts of data.

This Section is structured as follows. The Subsection 3.2.1 presents Vampir, one of the

most powerful tools existing today. The following Subsection 3.2.2 exposes Paraver,

which is the most similar to this work. The Subsection 3.2.3 introduces Jumpshot that

23

is a portable tool implemented in Java. The Subsection 3.2.4 explains the multi-format

trace visualizer ViTE. The Subsection 3.2.5 presents PajeNG tool-set for trace replay

built in C++ which is the main focus of this work.

3.2.1 Vampir

The Vampir toolset (NAGEL et al., 1996) is a commercial infrastructure for per-

formance analysis of parallel programs built for MPI, OpenMP, Pthreads, CUDA, and

OpenCL. Currently at version 8.31, the tool is available for Unix, Windows, and Apple

platforms. It is composed by the Vampir GUI for interactive post-mortem visualiza-

tion, the VampirServer for parallel analysis, the VampirTrace instrumentation and run-

time tracing system, and the Open Trace Format(OTF/OTF2) as file format and access

library.

Vampir’s Trace Input Data

The Vampir performance visualization tool works based on execution traces.

Thus it requires a working monitoring system to be attached in the parallel program.

There are some ways to generate performance data compatible with Vampir: Vampir-

Trace, Score-P and Event Tracing for Windows (ETW).

VampirTrace (JURENZ, 2006) is part of the Vampir toolset and supports event

tracing for the programing languages C, C++, Fortran, and Java. It also allows the

instrumentation of parallel programs that use MPI, OpenMP, POSIX Threads, CUDA

or combinations of these libraries. The VampirTrace generates OTF trace files which

are stored in the current working directory from the application execution. The tool

provides several ways that can be combined for the instrumentation of an application,

some of these are:

1. Fully-automatic compiler instrumentation, which have support in the most rele-

vant compilers existing today, the GNU compiler collection, OpenUH compilers,

and the commercial compilers from Intel, Pathscale, PGI, SUN, IBM, and NEC;

2. Source-code instrumentation by using VampirTrace API;

3. By binary rewriting of a ready executable either in a file or a memory image.

1Vampir’s website: https://www.vampir.eu

24

The VampirTrace has great features and used to be the recommended monitor-

ing facility for Vampir. However, according to the site of Vampir, the tool still available

as open source software but no longer under active development. They recommend

the Score-P2 as code instrumentation and run-time measurement framework for the

newest versions of the Vampir toolset. The OTF file format is now considered depre-

cated and replaced by OTF2, which is generated by the Score-P infrastructure.

Vampir’s Performance analysis framework

The Vampir performance analysis (BRUNST et al., 2010) tool provides a frame-

work which can quickly display the programs behavior at many levels of detail. The

traces can be used to generate several graphic views. The tool allows profiling and

event-based tracing. Profiling is the summarized run-time behavior of programs with

accumulated performance measurements. Event-based analysis allows a more detailed

comprehension of the program’s execution behavior. This approach records timed

events like function calls and message communication, in a combination of times-

tamps, event type, and event specific data. Tracing allows a more precise analysis

and several different representative ways of seeing the date like time-line views and

communication matrices.

The Figure 3.2 shows one of the most useful views supported by the Vampir.

This is called master time-line view which contains detailed information about func-

tions, communication, and synchronization events over the time. In the left side of

the Figure 3.2 each row presents a single process and, in the right side, the events that

occurred on it. The horizontal axis shows the selected execution time interval. The

different colors represent a specific group of functions or synchronization events, for

example MPI_Send belonging to the function group MPI.

The Figure 3.3 shows another view provided by Vampir. It is a derivation of

the Figure 3.2 showing a single process time-line. This is divided in different levels

of function call stacks. These levels show the initial function at the first level and the

sub-functions in a level beneath and so forth. The functions that have returned to its

caller are just represented by going back to the level above.

2Score-P available at: http://www.vi-hps.org/projects/score-p/

25

Figure 3.2 – Master time-line view taken from Vampir’s site.

Figure 3.3 – Process time-line view adopted from Vampir’s site.

Vampir’s Performance Architecture

The Vampir toolset provides two ways for trace data processing, Figure 3.4. The

fist is using the Vampir GUI in the client machine, as shown on the top of Figure 3.4.

This way is commonly used to analyze small programs which generate light trace files.

The second is the VampirServer (KNÜPFER et al., 2008), as shown on the bottom of

Figure 3.4. This is a parallel and distributed high performance client-server framework

that provide these features:

• The performance data are kept where it has been created, avoiding data transfer

for processing.

• The parallel/distributed process in each node increase the scalability of the anal-

ysis processing.

26

• It works efficiently from every end-user platforms.

• Large performance data can be remotely browsed and visualized interactively.

Figure 3.4 – Simple representation of the workflow executed by the Vampir. In the top, Vampir
GUI for the client machine. In the bottom, VampirServer for remote distributed processing.
Figure adopted from (BRUNST et al., 2010).

The VampirServer architecture is based on a master-slave relationship as shown

in Figure 3.5. The MPI master process does the communication with the clients and

handle the workers. The workers are a set of identical MPI processes, each one with a

main thread that does the communication with the master process. The session threads

are present in every MPI process of the architecture and are dynamically created ac-

cording to the number of clients. The communication between local threads is made

through shared buffers that are synchronized by mutexes and conditional variables.

The worker’s session threads are subdivided in three modules: trace format,

event data base and analysis. The trace format module is a parser for some trace for-

mats. The event data base module stores objects divided in categories like functions,

messages etc. Finally, the analysis module performs the event data provided by the

data base module.

The master’s session threads have different classification. These are subdivided

as: analysis merger, endian conversion and client comm, like shown 3.5. The analysis

merger combines the results received from several workers. The endian conversion

converts the results to a platform independent format. Finally, the client comm layer

does the communication with the clients.

27

Figure 3.5 – VampirServer architecture with several MPI workers processes in the left, and the
master MPI process in the right. Figure adopted from (KNÜPFER et al., 2008).

3.2.2 Paraver

Paraver (PILLET et al., 1995) is a post-mortem, trace-based tool for performance

analysis of parallel applications. This intends to graphically display the behavior of

a program’s execution. Paraver provides different filters to select what is going to

be showed and also offers some tools like timing and zooming, which improve the

understanding of such programs behavior.

Paraver implements its own trace format without semantics associated. This

means that the tool is very dynamic and easy to extend for new performance data

and/or programming models. The current run-time measurement system of Paraver 3

is the Extrae (ALONSO et al., 2012) which generates Paraver traces for MPI, OpenMP,

pthreads, OmpSs and CUDA.

Paraver Trace Format and Performance Data Generation

The Paraver trace file format (PARAVER, 2001a) is open source and can be sum-

marized in three generic classifications:

• Events: defines a punctual event occurred in a given timestamp that has a pair of

integer values to represent its activity. For example, entry and exit points of user

functions.

• States: determines intervals of thread status. This type is heavily related with the

parallel programming model. For example, the application can be waiting for a

3Paraver’s website: http://www.bsc.es/computer-sciences/performance-tools/paraver/

28

message (either MPI or OpenMP), or for a memory transfer.

• Relation/Communication: establishes a relationship between two objects of the

trace. This type is frequently used to describe records of the communication be-

tween: two processes (in MPI applications), task movement among threads (in

OmpSs applications) or memory transfers (in CUDA/OpenCL applications).

The generation of performance data for the Paraver trace format can be done

in several ways. The core instrumentation package is the Extrae. It is capable of

instrumenting many parallel programming models. Extrae typically generates infor-

mation like time-stamped events of run-time calls, performance counters and source

code references. Furthermore, Extrae provides an API that allows the user to manu-

ally instrument the application. Other way to generate Paraver trace files is by using

Dimemas (PILLET et al., 1995). This allows the simulation of a program’s execution in

an abstract machine defined by key factors for network and CPU. Dimemas generates a

Paraver trace-file that describes the execution according to the simulation parameters.

Therefore the user can compare these results with the real execution. Furthermore,

since the trace format is open-source, there are several third-party translators that con-

vert other formats to and from Paraver.

Paraver Analysis Framework

The Paraver analysis framework (LABARTA; GIMENEZ, 2006) provides three

views generated from the traces. The first is called graphic view: much similar to the

Vampir’s master time-line, it consists in a representation of the program’s execution

behavior over the time. Such view allows the identification of problematic patterns oc-

curred during the execution. The second is a textual view that provides more detailed

information. The third is the analysis view: this allows the user to select quantitative

data to be displayed.

The Figure 3.6 shows an example of the Paraver’s time-line graphic view. This

was a survey about the performance of a meteorological model using Paraver, NMMB/BSC-

CTM model (MARKOMANOLIS; JORBA; BALDASANO, 2014), and presents one ex-

ecution hour with 64 cores. The colors have specific semantics, for example: the blue

one is computation, the yellow one is MPI message, the red one is MPI Wait and so on.

29

Figure 3.6 – Paraver Graphic view (Time-line) example. One hour of simulation from
NMMB/BSC-CTM model. Figure adopted from (MARKOMANOLIS; JORBA; BALDASANO,
2014).

Paraver Performance Architecture

Paraver uses a different approach to gain performance by exploring an intelli-

gent selection of the traced information. This is made by many techniques to reduce

the trace file size, like detecting periodic structures, determine sets of events to be cap-

tured etc. The Paraver’s processing model is divided in three modules: filter, semantic

and representation. The filter module, in the top of the Figure 3.7, intends to mini-

mize the trace data size through several selection and aggregation mechanisms. The

semantic module, in the middle of the Figure 3.7, generates a semantic value for each

represented object which is associated with information like event type/color, event

name and so on. Finally, the representation module, in the bottom of the Figure 3.7,

translates the traces into visual representations described above.

3.2.3 Jumpshot

Jumpshot (ZAKI et al., 1999) is a performance analysis tool for behavioral un-

derstanding of a program’s execution. This provides several visualizations based on

traces. The primary is a series of time-lines with colored bars for each process. This

view can be zoomed and scrolled for examination of specific periods of time. Jumpshot

also generates views like state duration histograms and aggregated states process per

period of time.

30

Figure 3.7 – Paraver internal structure. Figure adopted from (PARAVER, 2001b).

Jumpshot has high portability since it was built in Java and can run as an applet

for browser. The currently version of Jumpshot, the Jumpshot 4 4, covers analysis for

MPI programs by using CLOG trace format provided by the MPE tracing library.

Jumpshot Analysis Framework and Trace Generation

The Jumpshot tool uses the MPE as tracing library. Such library generates traces

in the CLOG trace file format, and Jumpshot needs a SLOG-2 (CHAN; GROPP; LUSK,

2008) log file format as input. So Jumpshot performs this conversion in a sequence of

steps, as shown in the Figure 3.8. The first step, in the left, is the program tracing with

MPE. The second, in the middle, is the conversion of CLOG traces to SLOG2 log files

which stores objects of states, messages and events. Such objects will be further used

to create visualizations.

Figure 3.8 – Pipeline of the conversion of CLOG trace file to SLOG2 log file. Figure adopted
from (CHAN; GROPP; LUSK, 2008).

4Jumpshot’s website: http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/

31

The Jumpshot works like a canvas to display SLOG-2 objects in different forms.

The Figure 3.9 shows an example of a Jumpshot time-line canvas. The left side of

the Figure 3.9 presents the first 5 processes from a MPI application with a total of 16

processes. The visualization of each object can be manually added or removed by

the user. The colors are different states and communication messages. The bottom

of the Figure 3.9 displays the current time interval. This can be navigated forward or

backward by the scroll bars.

Figure 3.9 – Jumpshot preview of five processes time-line from states and messages. Figure
adopted from (JUMPSHOT, 2007).

Jumpshot Performance Data Model

The performance of Jumpshot is very attached to the SLOG-2 format and data

model. When the trace files are converted to SLOG-2, the events, messages and states

become drawable objects organized in a hierarchical structure. This structure is a bi-

nary tree that sorts the objects according to the end timestamp of the events and con-

sidering the total time interval equals to the application run-time. For example: the

root node represents the total time interval [0, T] and the following are children repre-

senting time intervals [t1, 1/2(t1+ t2)) and [1/2(t1+ t2), t2) where t1+ t2 represents the

time of its parent node. Thus all objects will find its position in the tree. When Jump-

shot performs operations like scrolling forward or backward in time are, the program

32

just needs to read the tree considering the searched end time and display the objects

(the nodes) in such time interval.

3.2.4 ViTE

ViTE(Visual Trace Explorer 5) (COULOMB et al., 2009) is an open-source multi-

format trace visualizer for performance analysis. This tool do not have a specific trac-

ing library, however the developers recommend EZTRACE (TRAHAY et al., 2011)

or the GTG(Generic Trace Generator) 6. EZTRACE generates traces in the Pajé for-

mat (SCHNORR, 2014a). GTG generates and converts traces in the Pajé and in the

previously seen OTF file formats. ViTE intends to be the most compatible as possible

with other analysis tools: supports the formats Pajé, OTF and TAU (SHENDE; MAL-

ONY, 2006) (although not fully tested yet with the TAU). ViTE provides a graphical

interface that allows the user to browse the traces and rendering modules to generate

SVG or PNG files depicting traces to export the results.

Traces Generation and Analysis with ViTE

ViTE intends to be a generic tool supporting different trace formats. Thus there

are many ways to generate performance data to be processed with ViTE. The recom-

mended libraries are EZTRACE and GTG. EZTRACE was designed to provide an

automatic and simple way to trace parallel applications and generate the Pajé for-

mat. It provides predefined plugins allowing the tracing of applications that use MPI,

OpenMP and Pthreads as well as hybrid implementations. Furthermore user-defined

plugins can be developed. The GTG provides a generic way to manually generate

traces in various formats such as Pajé and OTF.

The multi-format trace based performance analysis provided by ViTE intends

to display graphically the behavior of parallel applications. To process these multiple

input formats the tool implements a module architecture as depicted in the Figure 3.10.

The set of modules in the bottom of this figures are in charge of parsing the traces and

fill the generic data structure. Such structure stores abstract objects defined by features

of the trace format. The last modules, in the top, uses the data structure to display the

traces as requested by the user (COULOMB et al., 2012).

33

Figure 3.10 – Modules architecture in ViTE. Figure adopted from (COULOMB et al., 2012).

The Figure 3.11 shows an example of a time-line view generated by ViTE. The

left side of the Figure 3.11 presents the containers hierarchy from the traced applica-

tion. This hierarchy was inspired in the Pajé format in which the containers can be any

monitored entity like processes, network links, threads etc. In the middle of the Fig-

ure 3.11 are the states and events occurred for each container over the time. This view

also displays the links/messages between the containers which are represented by the

white arrows. The popup demonstrates an user selection of a container, in this case

called proc7. This action shows detailed information about the selected container.

Figure 3.11 – Example of a time-line view generated by ViTE. Figure taken from ViTE’s site.

5ViTE’s website: http://vite.gforge.inria.fr/index.php
6Available under the CeCILL-C license at: http://gtg.gforge.inria.fr/

34

ViTE Performance

The performance of ViTE is correlated with its efficient data structure and a fast

rendering. The data structure is based on binary trees that are built over sorted lists

of known size. This construction allows modifications that minimize the data stored,

for example: instances of states are recorded just by state changes, thus avoiding store

its start and duration. The binary tree structure is also important for rendering the

traces, which summarizes portions of the data according to a resolution parameter.

This resolution is a portion of time that eliminates items that are too small to be ren-

dered. When applying the zoom-in operation, such resolution decreases and the same

process is used. The traces rendering module was built with OpenGL. According to

the authors (COULOMB et al., 2012), after benchmarking several rendering solutions,

this appear to be the most scalable one.

3.2.5 PajeNG

PajeNG (SCHNORR, 2014b) is a tool-set for trace replay built in C++. The tool

is capable to read files that follow the generic Pajé trace format (SCHNORR, 2014a).

The tool-set provides four tools with different purposes: pj_validate, pj_dump,

pajeng, libpaje. The pj_validate validates the integrity of the trace data. The

pj_dump exports the processing results in a CSV file format. The pajeng is a visu-

alization tool that generates views with the replayed traces. Finally the libpaje is

a library to process traces following the Paje format. Furthermore libpaje is object

oriented and can be easily modified or extended. As it follows, we describe the Paje

trace file format, how performance analysis is conducted in the PajeNG framework,

and how the tool works to simulate (replay) traces in a sequential manner.

Pajé Trace File Format Description

The Pajé trace file format is a self-defined, textual, and generic format to describe

the behavior of the execution of parallel and/or distributed systems. The trace files are

composed by two parts. The first part contains a definition for each event type with

an unique identification number, like shown in Listing 3.2. The second part, depicted

in Listing 3.3, contains one event per line. The first field identifies the event type and

the others are separated by spaces or tabs. Those fields must follow the same order

35

presented in the header.

Listing 3.2 – Example of event definition adopted from (SCHNORR, 2014a).

% EventDef SendMessage 21
% Time date
% ProcessID int
% Receiver int
% Size int
% EndEventDef

% EventDef UnblockProcess 17
% Time date
% ProcessId int
% LineNumber int
% FileName string
% EndEventDef

Listing 3.3 – Example of trace data adopted from (SCHNORR, 2014a).

21 3.233222 5 3 320
17 5.123002 5 98 sync.c

The traced events in Pajé format are defined in five types of conceptual objects:

containers, states, events, variables and links. The containers can be any monitored

entity like a network link, a process, or a thread. It is the most generic object and the

unique that can hold others, including other containers. States represent anything that

has a beginning and ending time-stamp. For example: a given container starts blocked

and then, after some time, changes to free. This period of time characterises a state.

Events are anything remarkable enough to be uniquely identified and contain only one

time-stamp. Variables have information about the evolution of the value of a variable

along time. Finally, the links are the relation/messages between two containers having

a beginning and ending timestamps.

There are many ways to generate traces in the Pajé format: it can be collected di-

rectly from the application execution, or converted from other formats. Akypuera is an

independent project that provides the tracing library. This library provide a low mem-

ory footprint and low intrusion tracing and generates binary traces that are converted

to Pajé format. Furthermore Akypuera provide tools to covert traces from several for-

mats to Pajé, like Rastro, TAU, OTF2 and OTF.

36

Performance Analysis with PajeNG

The PajeNG’s framework has two main tools for performance analysis. The

pajeng is a visualization tool that can generate views such as time-lines, and pj_dump

that exports the results in a CSV-like format tailored to conduct R analysis (IHAKA;

GENTLEMAN, 1996). The Figure 3.12 presents an example of a time-line view gen-

erated by using the pajeng tool. Each line represents a container. The rectangles are

different types of States described by the traces (see trace format description above)

and represented by distinct colors. The user can select drawn objects to retrieve more

detailed information about that. This case the user have selected a State object and

received its detailed information in the selected point and in the bottom of the program

as shown in Figure 3.12. The tool also provides space-time zoom operations by using

the scroll bars in the bottom and in the right side.

Figure 3.12 – Example of time-line view from pajeng.

The Listing 3.4 shows an example of the CSV output text content generated by

the pj_dump tool. Each line presents one simulated object with its respective features

and values. For example, the fifth row of the Listing 3.4 describes a State for the con-

tainer “node32”, of the type “SERVICE”, starting time “538 seconds”, finish time “548

seconds”, duration “10 seconds”, imbrication level “0” and with the value “free”. This

content can be easily used to create several statistics and plots by using R7 software
7R Project’s website: https://www.r-project.org/

37

environment for statistical computing and graphics.

Listing 3.4 – Example of pj_dump output data.

Container, 0, 0, 0, 1205, 1205, 0
Container, 0, L1, 0, 1205, 1205, node32
State, node32, PM, 1149.000000, 1205.000000, 56.000000, 0.000000, normal
State, node32, SERVICE, 537.000000, 538.000000, 1.000000, 0.000000, reconfigure
State, node32, SERVICE, 538.000000, 548.000000, 10.000000, 0.000000,free
State, node32, SERVICE, 548.000000, 553.000000, 5.000000, 0.000000, booked
Variable, node32, power, 0.000000, 1205.000000, 1205.000000, 1000000000.000000

PajeNG’s Work-Flow

The libpaje does the needed processing for the traces replay. This works

with a single trace file each time and does the processing in a sequential way. The

libpaje follows a work-flow composed by three main components, as depicted in the

Figure 3.13 proceeding from the left to the right. The component PajeFileReader

starts the processing by the trace’s reading. This catches chunks of fixed size from the

trace file and send them to the second component. The PajeEventDecoder receives

such chunks, splits them into lines, and transforms each line in a generic event-object

according to its definition (see Pajé’s trace format description above). The last compo-

nent, PajeSimulator, implements different functions for each event type to stack up

each event-object into the correct stack of its respective container.

PajeFileReader PajeSimulatorPajeEventDecoder

Time

Container

Container

Container

Figure 3.13 – Original libpaje’s sequential work-flow.

The Paje structure is strongly connected, that is, the PajeDecoder must wait

for data provided by the PajeFileReader, and the PajeSimulator waits for ob-

jects coming from the PajeEventDecoder. This way, while a chunk of data is being

processed, the PajeFileReader is stopped. Thus this model has performance prob-

lems since the processing time is linearly proportional to the size of the input trace file.

The Figure 3.14 shows an example of this problem, where the time proportionally in-

creases to the input size. The X axis presents the input trace file size, and the Y axis, the

minimum run-time collected from 30 executions (these executions were performed in

the machine turing which is described in Chapter 5). Each line represent a different

38

disk type, HDD or SSD, according to the caption. The results were very similar for both

disks, however this was probably due to the turing’s SSD that is not much faster than

the HDD. Therefore these results demonstrate that a sequential approach is unable to

handle high performance parallel applications which produce thousands of Gbytes of

trace data when executed. Our work builds on this by attempting to solve this issue

with parallelization and a change in the Paje file format. Our solution is described in

next chapter.

15

20

25

30

35

40

45

50

55

145MB 290MB 435MB 580MB
Input File Size

E
xe

cu
tio

n
T

im
e(

s)

Disk
HDD

SSD

Figure 3.14 – PajeNG’s run-time ranging the input size and disk type, HDD vs SSD. This
results were collected from the minimum value of 30 executions performed in the machine
turing (see platform description in Chapter 5).

3.3 Summary and Categorization

The classification focus on the performance structures provided by each tool.

Four features were considered to the classification, as shown in Table 3.1. The first is

computation, which can be classified in three types: parallel, distributed, or sequen-

tial. The second is classified just by yes or no and considers the capability of handle

multiple trace files as input. The third determines if the tool automatically does some

aggregation/reduction operations to improve the traces processing. This is classified

39

as summary, filter, or nothing which means no reductions in the traces. The last one

determines if the tool can be extended to support new programing models, classified

as yes, no, or limited.

Table 3.1 – Classification for performance analysis tools.

Tool Computation Multiple Traces Trace Reduction Extensible

Vampir Parallel/Distr. Yes Filter No
Paraver Sequential No Summary/Filter Yes
Jumpshot Sequential No Filter Limited
ViTE Sequential Yes Summary Yes

PajeNG Sequential No Yes

Vampir 3.2.1 provides high performance traces processing by using a parallel

and distributed architecture. Vampir is a commercial tool and can not be modified by

third parties. Thus new programming models may not be supported by the tool.

Jumpshot 3.2.3 differs from the others by its great portability since it is imple-

mented with Java. The tool provides an infrastructure that achieves high performance

based on its data model attached by the SLOG-2 format. Jumpshot also improves its

performance by applying filters to reduce the trace files size, which may lose impor-

tant data. The tool can be extended, however it is a very complicated task: it uses a

trace format that is semantically attached to the collected events. The SLOG-2 trace

file format used by Jumpshot may not support new programming models, and so its

extensibility is limited.

Paraver 3.2.2 and PajeNG 3.2.5 are tools with a great feature due to their trace

file formats. Both tools provide a generic format without associated semantics. Paraver

improves its performance by executing several summarization and filtering methods to

reduce the trace size. On the other hand, the PajeNG reads the entire trace sequentially,

thus losing performance to handle large trace files. The extensible classification for

both tools is a great feature, since they are open-source and use generic trace formats,

they are more capable to cover new programing models than the other tools.

ViTE 3.2.4 addresses a different idea for performance analysis providing an

open-source visualization environment for multi-format traces. The tool supports sev-

eral trace file formats like Pajé, OTF and TAU, and thus it has a great compatibility

with other tools. To achieve high performance ViTE uses an efficient data structure

40

and summarizes parts of the traces. ViTE can be extended and cover many new pro-

gramming models, since it processes several trace formats, also including the generic

format Pajé.

The surveyed tools lead us to further explore the PajeNG due to its great features

and capability to handle many types of parallel applications. However its performance

degrades the usefulness of the tool, since it takes much time to generate the analy-

sis data. Therewith, in the following Chapter 4 is presented our parallel processing

model for PajeNG (libpaje). The chapter also includes the description of modifica-

tions made in the original Pajé trace format. This model is the main contribution of

this work, it was developed and tested showing promising results as is presented in

Chapter 5.

41

4 PARALLEL TRACE REPLAY IN PAJENG

The PajeNG’s parallelization strategy proposed by this work aims to maximize

the amount of data read for processing. This strategy comes up from our previous

attempts to parallelize the PajeNG also presented here. The successful strategy com-

prises two main changes: one in the input data, and another in the tool’s processing

behavior. The Pajé trace format was modified to allow the splitting of a trace in mul-

tiple files, instead of just a single one with all data. The libpaje’s work-flow was

adapted to use threads to carry out a parallel processing of the multiple trace files.

This chapter is divided in the following sections. Section 4.1 presents our previ-

ous preliminary attempts to improve the PajeNG’s performance and how it has guided

us to the final parallelization strategy. Section 4.2 describes the modifications made in

the Pajé trace file format necessary for our parallelization strategy. Finally, Section 4.3

describes the design and implementation of the parallel PajeNG simulator.

4.1 Preliminary Attempt to Parallelize the PajeNG Simulator

The Figure 4.1 shows the modified work-flow representing the first attempt to

improve PajeNG. The modifications have focused on the communication between the

PajeSimulator and the containers. This was made by separating the reading of the file

from the simulation. In the normal work-flow, the simulator must wait for the pro-

cessing made by the containers considering each event to move one. This strategy

implements a queue of events (tasks) and two threads to process it. This way, the sim-

ulator can queue the trace events, while a thread manages the containers processing.

We have designed this strategy to verify the performance of two parts of the sequential

work-flow: the reading of the trace file and the processing made by the containers.

The Figure 4.2 shows the results obtained with the first parallelization strat-

egy in comparison with the sequential version. The tests represent thirty executions

of three trace files, ondes3D with 234MB, scorep-lu with 741MB and scorep-cg with

2006MB. It was made on a machine with four cores, running at 3.1GHz and with 20GB

of memory. The X axis represents the size of the trace files and indicates the type of

the execution, sequential or parallel, and the Y axis the respective execution time in

42

PajeFileReader PajeSimulatorPajeEventDecoder

Time

Container

Container
Task Queue

T
h
R
E
A
D
S

Figure 4.1 – Representation of PajeNG’s parallel work-flow with the strategy that has aiming
to quickly release the simulator.

seconds. Although not very easily to seen, each rectangle represents the standard de-

viation and the center lines represent the average time. The experiment shows that we

obtain a very little variation in the executions.

234MBytes 741MBytes 2006MBytes

25

50

75

Parallel Sequential Parallel Sequential Parallel Sequential
Execution Type

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e(

s)

Figure 4.2 – Results obtained with one of the firsts parallelization strategies for the PajeNG.

The execution time of this strategy has remained roughly the same as the se-

quential. For example, for the file scorep-lu with 741MB, the average execution time

and standard deviation were respectively, 30.33 and 0.31 seconds for the sequential

and 30.25, 0.20 seconds for the parallel. These can not even be considered as perfor-

mance gain since they are much closer to each other. Based on this results we have

noted that the PajeNG’s greatest performance bottleneck is not the simulation process

but the reading of the trace file. This conclusion has took into account the fact that if

43

the simulation was the bottleneck, when at least two threads are doing its processing

we must gain some performance.

We have tried other similar parallelization strategies based on queues and tasks,

but none of them lead to acceleration. The most successful solution, designed and

implemented, is the one described in the following sections. They radically change the

Paje file format providing a parallel reading of the trace file and the event simulation.

4.2 Pajé Trace Format Support for Parallel Reading

The changes made on the libpaje must use multiple trace files as input to

enable the parallel processing. Therefore the modifications on the Pajé trace format

consist in a way to split the old unique trace file in several pieces. Furthermore we

have to create a method to link such pieces each other.

The multiple trace files were generated by breaking a single one for each con-

tainer event found. This approach was chosen due to internal dependencies of the

events associated to a container. Thus, this way several trace files are generated, each

with full information about one container, and all together being equivalent to the pre-

vious single file information. To link the all pieces we have created a new event type

called PajeTraceFile. This event contains three information: its type, a Container

and a path/name of one file where the events are registered. Furthermore we have

built a descriptor trace file that works as a job producer. Like shown in the Listing 4.1,

this file just contains the creation of Containers and PajeTraceFile events. This

case, lines identified by 6 indicates a container creation and lines marked as 26 specify

where is the file with the events of some container. This was the better way that we

have found to allow the traces processing in parallel. The next Subsection 4.3 will bet-

ter explain the importance of such modifications for our parallelization strategy and

how works such descriptor “job producer” trace file.

Listing 4.1 – Example of the contents from a descriptor - job producer - trace file.
% EventDef PajeCreateContainer 6
% Time date
% Alias string
% Type string
% Container string
% Name string
% EndEventDef

44

% EventDef PajeTraceFile 26
% Container string
% Type string
% Filename string
% EndEventDef
6 0.000000000 rank0 PROCESS root "rank0"
26 rank0 PROCESS "traces/containerrank0.trace"
6 0.000000000 rank1 PROCESS root "rank1"
26 rank1 PROCESS "traces/containerrank1.trace"
...

4.3 Parallel PajeNG’s Processing Work-Flow Description

The Paje Simulator has been modified in two ways: first, to understand the new

event type, PajeTraceFile; and second, to use C++11 threads for a parallel processing

model. This events are processed by a new component called PajeParallelProcessor.

This component implements a queue of tasks and a set of workers. The tasks queue is

filled with PajeTraceFile events and the workers are a set of C++11 threads whose size

is user defined.

The modifications described above have allowed the construction of a new work-

flow for the PajeNG (libpaje). The Figure 4.3 illustrates how such work-flow be-

haves. The main thread is presented in the top of the Figure 4.3. This one follows

a similar behavior to the sequential approach: starting by the PajeFileReader (pFR),

sending data to the PajeEventDecoder (pED) and finally, reaching the PajeSimulator

(pS), like described in the related work Chapter 3, Subsection 3.2.5. The changes start

when a PTF event reaches the pS component, like shown in Figure 4.3. When such

thing happens, the pS inserts the PTF event in the tasks queue of the PajeParallelPro-

cessor (pPP) component. In our strategy, the main thread will work like a producer

by performing the descriptor trace file 4.2. This way such thread fills the pPP’s tasks

queue with all PTF events in the descriptor. Furthermore the pPP launches its set of

workers starting the parallel processing.

The following steps of the parallel work-flow are the workers that consume the

pPP’s tasks queue. These are illustrated right below of the main thread in the Fig-

ure 4.3. Each worker receives a PTF event from the tasks queue until the queue be-

comes empty. Thus, according to the event information, Container (PC) and file path/-

name, the worker starts a new flow in a separated thread. These separated flows work

45

Time

pFR pED pS

pFR pED pS

PC PTF PC PTF PC PTF

pFR pED pS

pFR pED pS
pPP

qTasks

qWorkers

Figure 4.3 – libpaje’s parallel work-flow.

as the sequential, however each one processing a piece of the global trace file. The de-

veloped model was strongly inspired by the pipeline pattern/technique described in

Chapter 3, Subsection 3.1.2. This was the technique that better met our requirements.

The next Chapter 5 presents a detailed performance analysis to our strategy intending

to prove the performance gains.

46

5 PERFORMANCE ANALYSIS AND RESULTS

This chapter presents an analysis of the performance achieved by the developed

parallelization strategy for the PajeNG’s tool-set. Section 5.1 presents the experimen-

tal methodology and the two platforms that were used to conduct the experiments.

Section 5.2 proposes an overview of the performance obtained with speedup and effi-

ciency graphs. In Sections 5.3 and 5.4, we investigate the reason for the performance

drop from a certain level of parallelism. The latter led us to correlate the application

behavior with architectural details suggesting changes to our strategy. Finally, the Sec-

tion 5.5 considers disk measurements, comparing the application performance when

the input data are on HDD versus SSD.

5.1 Experimental Platform and Methodology

The settings of the two experimental platforms that were used for the analysis

are summarized in Table 5.1. The first is a Dell PowerEdge R910 machine identified as

turing with 32 physical cores arranged in four Intel(R) Xeon(R) CPU X7550 of 2.00GHz,

each with eight cores. The nodes have non-uniform memory access (NUMA), and

each processor is in a NUMA node. Cores are identified across NUMA nodes using

an offset of 4 by 4. The main memory of the system is 128GBytes. The solid disc is

a 64 GBytes Corsair Force 3, while the hard drive is a Hitachi HUC151414CSS60 and

Western Digital WD10TPVT-00U configured as RAID 1. The second platform is an

SGI C1104G-RP5 machine identified as bali with 16 physical cores arranged in two

processors Intel(R) Xeon(R) E5-2650 2GHz, each with eight cores. This machine has

two NUMA nodes. Cores are identified across NUMA nodes using an offset of 8 by 8.

The main memory of the system is 64GBytes. The solid drive is a Samsung SSD 840

500GBytes while the hard drives are two Seagate ST91000640NS 1 TBytes each.

Each experimental combination was executed at least 30 times in order to de-

crease the possibility that measurement errors disturb the interpretation. The prelimi-

nary analysis of each test battery have identified that most of the observations follows

a Gaussian distribution indicating normality. The observations that do not fit perfectly

into a normal distribution are those where the execution overload and the performance

47

Table 5.1 – Experimental platform settings.

turing bali

Brand Dell PowerEdge R910 SGI C1104G-RP5
Processor Intel X7550 2GHz Intel E5-2650 2GHz
Turbo Boost Technology v1.0 v2.0
Max Turbo Frequency 2.4GHz 2.8GHz
Cache L3 Size 18MB 20MB
Bus Speed 6.4 GT/s QPI 8 GT/s QPI

NUMA Nodes 4 2
Cores/Node 8 8
Total Cores 32 16

NUMA Nodes Config

0: 0, 4, 8, 12, 16, 20, 24, 28
1: 1, 5, 9, 13, 17, 21, 25, 29
2: 2, 6, 10, 14, 18, 22, 26, 30
3: 3, 7, 11, 15, 19, 23, 27, 31

0: 0, 1, 2, 3, 4, 5, 6, 7
1: 8, 9, 10, 11, 12, 13, 14, 15

DMA Disk Controller Node 0 Node 0

Memory DDR3 DDR3
Memory Size 128 GBytes 64 GBytes
Memory Speed 1066MHz 1600MHz

Hard drive RAID Dell PERC H700
4TBytes

2 x Seagate ST91000640NS
2 x 1TBytes

Solid drive Corsair Forse 3
64GBytes

Samsung SSD 840
500GBytes

bottleneck appear, which this chapter intends to present. The input data for the Sec-

tions 5.2, 5.3, 5.4 was a trace file of about 10GBytes divided in 64 pieces of 150MBytes

each. For the disk measurements Section 5.5, the input data was a trace file of about

2GBytes split in 64 pieces of 32MBytes each. These differences of input size do not

influence the analysis results, this was made just to generate the results more quickly,

since the disk experiments need longer periods of time to execute. The experimental

methodology is tailored to consider the following factors:

Locality The threads locality, also known as affinity, has two levels of measurement:

with free-running threads (free), where the system scheduler can migrate these

threads to optimize the run-time and memory access, or pinned threads (pin),

where we define a specific mapping in the beginning of the execution that does

not change. In this second case, a linear mapping was done according to the

numbering of the cores provided by the operational system.

Quantity The amount of threads was evaluated using five levels comprising: a se-

quential implementation with only one execution flow, which was used as refer-

48

ence for the speedup calculation, and then a parallel version with two, four, eight

and sixteen threads.

Disc Type This factor compares the solid drives and hard drives of the machines. The

main goal is to compare the reading performance depending on the disk technol-

ogy of each platform.

5.2 Scalability Overview

This section presents an overview about the speedup and efficiency achieved by

the parallelization strategy of the PajeNG. The used measurements for such overview

assumes that the trace data is in memory. This is not the most realistic approach since

generally the data will be on the disk, however with that we can explicit the limits of

our strategy. The overview is divided in two subsections: the Subsection 5.2.1 with

strong scalability 2.1 analysis and Subsection 5.2.2 with weak scalability 2.2 results.

5.2.1 Strong Scalability Overview

This subsection considers strong scalability measurements, that is the run-time

versus number of execution flows with a fixed input about 10 GBytes. Besides that,

for these experiments we do not have disabled the Linux operation system’s cache and

the automatic thread scheduling. This means that the files are automatically buffered

in memory and the threads are free to migrate among cores according to the operating

system rules. So these results consider run-times for free threads and with the input

data stored in memory independently of the machine’s disk type. Figure 5.1 presents

the speedup achieved by our strategy on each machine, bali and turing (see platform

description in Section 5.1). The X axis presents the number of threads while the Y axis

shows the respective speedup. These results come from the minimum value of each

experiment. The minimum was chosen because frequently worst results are caused

by some intrusion and so the average can not be a good measurement. The grey line

illustrates what should be the ideal speedup and the other ones the results for each

machine. In the Figure 5.1 we can see that both machines are still speeding up until

four threads and then there is a performance drop. The machine bali continues to

gain performance until sixteen threads but far away from the ideal speedup. On the

49

other hand, the machine turing drastically slows down with eight and sixteen threads,

getting closer to the sequential results. Such observations will be further discussed in

the Section 5.3 and 5.4, with more detailed data that can better explain these results.

0
1
2

4

8

16

0 1 2 4 8 16
Threads

S
pe

ed
U

p Machine
bali

turing

Figure 5.1 – Strong scaling speedup graph for bali and turing machines. Thirty executions for
each configuration, all without drop the operational system data cache.

The Figure 5.2 presents the efficiency results of our strategy. Like the speedup

(see Figure 5.1), the plotted results consider the minimum value from thirty executions

for each configuration. The X axis presents the number of threads, while the Y axis the

respective efficiency. The grey line demonstrates what should be the ideal efficiency

and the other ones the results for each machine. Efficiency (see Figure 5.2) shows the

same pattern observed for the speedup depicted in Figure 5.1, but in a different man-

ner. It achieves a relatively good efficiency until four threads and then there is an

efficiency drop. However this graph 5.2 exposes an interesting behavior for the ma-

chines: until four threads the machine turing has achieved a better efficiency than bali,

but when the parallelism is increased, turing loses much more performance. Thereby

the state changes and bali ends achieving much better efficiency.

50

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1 2 4 8 16
Threads

E
ffi

ci
en

cy Machine
bali

turing

Figure 5.2 – Strong scaling efficiency graph for bali and turing machines. Thirty executions
for each configuration, all without drop the operational system data cache.

5.2.2 Weak Scalability Overview

This subsection considers weak scalability experiments, that means increase the

problem size proportionally to the number of parallel execution flows. Like the strong

scalability 5.2.1 measurements, for this overview we do not disable operation system’s

disk cache and the automatic thread’s scheduling. The Figure 5.3 shows the capabil-

ity of increase the input size(sizeup) achieved by our strategy on each machine, bali

and turing. The X axis presents the number of threads while the Y axis shows the

respective sizeup capability. These results also came from the minimum value of each

experiment, all with thirty executions for each configuration. The input size of each ex-

perimental setting is displayed over the ideal sizeup grey line, starting from 150MBytes

for the sequential until 2400MBytes for 16 threads. In the Figure 5.3 we can note that

the weak scalability experiments for bali have followed a similar pattern of the strong

speedup results as seen in Subsection 5.2.1, scaling up the input size until eight times

and then losing performance. On the other hand, the weak measurements for turing

have a different behavior, allowing a sizeup about eight times. Other interesting obser-

vation is that for all experiments, both strong and weak scalability, the machine turing

has achieved better results until four threads, but when the parallelism increases, the

turing’s performance drastically decreases.

51

150MB

300MB

600MB

1200MB

2400MB

1

2

4

8

16

1 2 4 8 16
Threads

S
iz

eU
p Machine

bali

turing

Figure 5.3 – Weak scaling sizeup graph for bali and turing machines. Thirty executions for
each configuration, all without drop the operational system data cache.

The Figure 5.4 presents the efficiency graph for weak scalability results from

both machines bali and turing. The X axis presents the number of threads while the Y

axis shows the respective efficiency. These results are also considering the minimum

time for each configuration. The input size of each experimental setting is displayed

on the top of the Figure 5.4, over the grey line that illustrates the ideal efficiency.

150MB 300MB 600MB 1200MB 2400MB1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1 2 4 8 16
Threads

E
ffi

ci
en

cy Machine
bali

turing

Figure 5.4 – Weak scaling efficiency graph for bali and turing machines. Thirty executions for
each configuration, all without drop the operational system data cache.

52

5.3 Threads Locality Interference

This section deepens the performance analysis and intends to explain why we

have obtained the results presented in the overview Section 5.2. For this we have for-

mulated the hypothesis that since the tasks are memory bounded, its migration could

be a point of performance loss. To prove such hypothesis we have performed exper-

iments by fixing (Pin) each thread on a core, thus preventing the operating system to

migrate (Free) them. The results for this section still consider that the operational sys-

tem’s data cache is enabled, so the input trace files are kept in memory. Furthermore,

for these experiments, the pinning process of the threads was made sequentially, thus

ignoring the architectural structure of the machines (see Section 5.1 and Table 5.1 in

line NUMA Nodes Config). In other words, each thread was fixed in the first available

core identifier, for example: thread 1 in core 1, thread 2 in core 2 and so on.

The Figure 5.5 presents the speedup obtained by the experiments with each

thread fixed (Pin) on a core, in contrast to the results for Free threads. The Figure 5.5

is divided in two plots: in the left are the results for the machine bali and in the right

for the turing. The X axis shows the number of threads and the Y axis the respective

speedup. The grey lines for both plots are illustrating the ideal speedup, and the other

lines, the speedup achieved for each setting: Free and pinned (Pin) threads. The Pin

threads version have achieved better speedup results than the Free ones. For exam-

ple: with the Pin version for the machine turing we were able to reach a nearly linear

speedup until eight threads, while with the Free just four. In turn, the machine bali does

not present much differences between the versions, just with a little higher speedup

for the Pin version with sixteen threads. Thereby, these results reinforce our hypoth-

esis that the threads migration are causing performance loss. However the machine

turing still presenting huge performance loss after eight threads for both settings, Pin

and Free. Thus, from now on we will focus on turing since it is the bigger machine and

have more interesting results. The next Figure 5.6 shows more detailed measurements

comparing the data read’s time duration between each turing’s NUMA node.

The results obtained from turing with Pin threads experiments led us to formu-

late a new hypothesis based on the turing’s NUMA nodes organization (see Section 5.1

and Table 5.1 in the line NUMA Nodes Config). The NUMA node 0 is the only one

directly connected to the disk IO interface. The remaining NUMA nodes (1, 2, and3)

53

bali turing

0

1

2

4

8

16

0 1 2 4 8 16 0 1 2 4 8 16
Threads

S
pe

ed
U

p Pinned
Free

Pin

Figure 5.5 – Strong scaling speedup Pin vs Free Threads graph for bali and turing machines.
Thirty executions for each configuration, all without drop the operational system data cache.

may require more time to access data, thus causing performance loss. Furthermore,

we have pinned the threads sequentially and the cores’s identifiers/NUMA nodes are

organized in a different way. For example: core 0 is on NUMA 0, core 1 on NUMA

1 and core 2 on NUMA 2, core 3 on NUMA 3, core 4 comes back to NUMA 0 and

so on until the counting reaches 16 cores, 8 physical and 8 logical for each of 4 NUMA

nodes. Based on this hypothesis we have performed experiments that collect the data’s

read duration time for each NUMA node intending to show the differences between

them. The Figure 5.6 presents the results for such experiment. The X axis shows the

NUMA node identifier and the Y axis its respective average data’s read duration time.

The whiskers represent the standard error of each data-set, calculated as three times

the standard deviation divided by the square root of the number of experiments. The

average read time duration of the NUMA node 0 is lower than the others. The NUMA

node 1 also presents better results than both 2 and 3, and is the only one that comes

closer to the node 0. However this probably happens due to a physical proximity of

the two nodes. The next Section 5.4 presents some more experiments that will consider

the turing’s NUMA node configuration, thus trying to achieve better performance.

54

0.00060

0.00065

0.00070

0.00075

0 1 2 3
NUMANode

A
ve

ra
ge

 R
ea

d
D

ur
at

io
n

Figure 5.6 – Comparison between turing’s NUMA node’s average read time duration in sec-
onds. Thirty executions for each configuration, all without drop the operational system’s data
cache.

5.4 Differences Between NUMA nodes Read Throughput

This section explores a different thread’s pinning approach for experiments per-

formed in the turing machine. We have focused on the machine turing since it has pro-

duced very strange results and so, we want to explain what is happening and causing

the performance drop from 8 to 16 threads. This section takes into account the turing’s

architecture, more specifically the NUMA nodes/cores distribution, as described in

Section 5.1, Table 5.1. The latter consists in the thread’s pinning to use only the turing’s

NUMA nodes 0 and 1. We intend to achieve better performance due to the experi-

ments exposed in the above section by the Figure 5.6, in which the nodes 0 and 1 have

presented lower read times.

The Figure 5.7 presents the speedup achieved (on Y) as a function of the number

of threads (on X) by the experiments when pinning threads in all NUMA nodes (0, 1, 2,

3) in contrast to only NUMA nodes 0 and 1. The grey line illustrates the ideal speedup,

and the other lines, the results obtained for each pinning approach. The Figure 5.7

confirms that the performance increases when we have the threads fixed (pinned) only

in the NUMA nodes 0 and 1. On the other hand, the performance dropping from 8 to

16 threads, albeit with less intensity, keeps being observed.

55

0
1
2

4

8

16

0 1 2 4 8 16
Threads

S
pe

ed
U

p

Machine turing_allNUMA turing_NUMA:0−1

Figure 5.7 – Speedup achieved by pinning threads in all NUMA nodes (0, 1, 2, 3) versus only
the nodes 0 and 1.

The experiments performed on turing using only the NUMA nodes 0 and 1 have

achieved a little better speedup than the ones that have used all nodes. However the

observed pattern of performance drop from 8 to 16 threads occurs in both experiments.

Therewith we have decided to compare the average read time duration of the experi-

ments configured to use all NUMA nodes with the ones that use only the nodes 0 and

1. This observation should present lower read times for the experiments with only the

nodes 0 and 1. If true, the latter will prove our hypothesis that the nodes 0 and 1 have

better read capabilities than the others, and thus they end up being faster. This exper-

iment is depicted in the Figure 5.8. The X axis presents the experiment set name like

turing_allNUMA (nodes 0, 1, 2, 3) and turing_NUMA0-1 (nodes 0, 1). The Y axis

shows the average read time for each set of experiments. Unfortunately, the Figure 5.8

has showed an unexpected behavior, presenting higher read times for the experiments

performed with only the NUMA nodes 0 and 1. The fact is that this results end up

refuting our hypothesis for the performance drop in the machine turing.

The exact reason for the performance drop in the machine turing still under

study. We have performed some more experiments but none were able to provide the

problem. This problem was not observed in the machine bali. Therewith, we consider

some differences between the machines intending to formulate a new hypothesis for

future studies. All experiments performed so far have considered that the traces are

56

0.00065

0.00070

0.00075

0.00080

turing_allNUMA turing_NUMA:0−1
Machine

A
ve

ra
ge

 R
ea

d
T

im
e

D
ur

at
io

n

Figure 5.8 – Comparison between the average read time duration in seconds of the experi-
ments with turing’s NUMA nodes 0 and 1 versus all nodes.

kept in main memory. Thus, there is a good hypothesis for the bali’s better perfor-

mance, since its memory/bus speeds (1600MHz - 8GT/s QPI) are very faster than the

turing ones (1066MHz - 6.4GT/s QPI). Furthermore bali is a little bit newer machine

with more cache (20MB versus 18MB on turing) and the turbo boost technology v2.0

that can increase the processor’s speed to 2.8GHz, versus the v1.0 present on turing

that just achieves 2.4GHz. Therefore, we conclude that since the developed strategy is

very memory bounded, the turing’s lower memory/bus/processor speeds may be the

bottleneck for our approach.

5.5 Disk Analysis

This section presents experiments performed by using the command

sysctl vm.drop_caches=3

before each experimental execution. This command drops the operational system data

cache, thus forcing the data reads directly from the disks where they are kept. The

input data for the disk measurements were smaller than the others experiments to

decrease the experimental time. Measurements have used traces of about 2GBytes

divided in 64 pieces of 32MBytes each. The section discusses the relation between the

disk type and the application performance, and also compares the read time duration

57

versus number of threads. The latter considers HDD and SSD measurements for both

machines (bali and turing) and settings (Pin and Free).

The Figure 5.9 displays the speedup achieved by our strategy assuming that the

data were not cached for both machines, for turing (a) and bali (b). In these two plots,

(a) and (b), the X axis presents the number of threads, and the Y axis, the speedup

obtained. The grey lines represent the ideal speedup and the other lines the results

for Free or Pin threads versions. The left side of the graphs shows the results con-

sidering the input data stored on HDD, while the right side considers the results for

SSD. These experiments provide information for several conclusions about our strat-

egy. First of all, we can see that the HDD results for both machines were bad, achieving

a speedup of only about 4. These results were expected since rarely HDDs can handle

with multiple accesses at same time, thus when we increase the number of threads,

the concurrence grows degrading the performance. On the other hand, the speedup

achieved on the SSDs were good: reaching 8 times in both Free and Pin settings

for the machine turing and about 10 times for bali. The next graphs make a closer look

into the behavior of each disk type by considering their read time duration for different

number of threads, thus allowing a precise identification of the performance features

for each one.

The Figures 5.10 and 5.11 depicts HDD measurements about the thread’s read

time duration from the machines turing and bali respectively. The results were clas-

sified considering three settings: Pin, Free and Seq (sequential). They show the re-

lation between the average read time with an increasing number of threads. In both

figures the X axis presents the number of threads, and the Y axis, the respective aver-

age read time. These figures also display rectangles which are zoom zones to expose

values that are much smaller. For example, in the Figure 5.10 the rectangle comprises

read times from 1 to 2 threads, and in the Figure 5.11 from 1 to 4, which are the smaller

values of each one. The presented results explain the speedup’s behavior for HDDs.

As we can see in the Figure 5.9 (HDD, (a) and (b)), the speedup keeps growing until 4

threads, which is exactly the maximum number of threads for which the reads dura-

tion is still stable. Besides that, the speedup drops from 4 to 16 threads due to the huge

growth of the read time duration from there on. The latter proves the problems from

HDDs which can not work with multiple accesses, as observed for both machines.

58

HDD SSD

0
1
2

4

8

16

0 1 2 4 8 16 0 1 2 4 8 16
Threads

S
pe

ed
U

p Pinned
Free

Pin

(a)

HDD SSD

0
1
2

4

8

16

0 1 2 4 8 16 0 1 2 4 8 16
Threads

S
pe

ed
U

p Pinned
Free

Pin

(b)
Figure 5.9 – (a) Speedup achieved on turing with the input trace files kept on disk - SSD vs
HDD - Pin vs Free; (b) Same but for bali.

The Figures 5.12 and 5.13 are presenting the SSD measurements about the thread’s

read time duration. These results were also classified considering the settings Pin,

Free and Seq. These show the behavior of our strategy when running on SSDs with

an increasing number of threads. Like the HDD graphs, the figures expose in the X

axis, the number of threads, and in the Y axis, the respective average read time. These

figures do not display the zoom rectangles since the measurements for all settings were

more stable and closer each others. The results can also explain the performance ob-

tained by our strategy when the traces were stored in SSDs. The speedup graph, Fig-

ure 5.9 (SSD, (a) and (b)), shows that the performance gain keeps growing until at least

59

HDD

●

●
●

0.000

0.005

0.010

0.015

0.020

0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 8 16
Threads

A
ve

ra
ge

 R
ea

d
T

im
e

D
ur

at
io

n

Version
Free
Pin
Seq

Figure 5.10 – The average read time duration in seconds for HDD as a function of the number
of threads for turing.

HDD

●
●
●

●
●

●●

0.00
0.01
0.02
0.03
0.04

1 2 3 4

0.0

0.1

0.2

0.3

1 2 3 4 8 16
Threads

A
ve

ra
ge

 R
ea

d
T

im
e

D
ur

at
io

n

Version
Free
Pin
Seq

Figure 5.11 – The average read time duration in seconds for HDD as a function of the number
of threads for bali.

8 threads in both machines, and then they slow down. This behavior is easily under-

stood when we take a look to the Figures 5.12 and 5.13, which show that the max num-

ber of threads with small read times are in fact 8. Furthermore, from 8 to 16 threads

the read times increase faster, and thus, the speedup drops. The latter proves the better

performance of SSDs when handle with multiple accesses, however it is important to

note that the sequential read times are very similar for both disks.

60

SSD

0.000

0.002

0.004

0.006

0.008

0.010

0.012

1 2 4 8 16
Threads

A
ve

ra
ge

 R
ea

d
T

im
e

D
ur

at
io

n

Version
Free

Pin

Seq

Figure 5.12 – The average read time duration in seconds for SDD as a function of the number
of threads for turing.

SSD

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 2 4 8 16
Threads

A
ve

ra
ge

 R
ea

d
T

im
e

D
ur

at
io

n

Version
Free

Pin

Seq

Figure 5.13 – The average read time duration in seconds for SDD as a function of the number
of threads for bali.

5.6 Analysis Summary

The performance analysis has focused to provide experimental results showing

the gains obtained with the implemented parallel strategy for the PajeNG simulator.

The analysis has considered two platforms and several aspects like the number of exe-

cution flows (threads), locality and disk type. The Table 5.2 summarizes our results by

61

presenting the maximum speedup obtained for each platform and for each configura-

tion of storage system/threads locality. These results show us that the machines have

presented different behavior. The machine bali, in most of the cases, continues gaining

speedup until 16 threads, however each time with less efficiency. On the other hand,

the machine turing reaches a certain limit with about 8 threads with good efficiency,

and then, with more threads, it loses performance. This chapter has also presented an

investigation over the application’s behavior running on the turing host. We intented

to understand the loss of performance detected in this machine. This investigation is

still being carried out since the performed experiments have not showed sufficiently

conclusive results yet.

Table 5.2 – Experimental results summary

Machine Trace Data In Locality Max Speedup Efficiency

bali

Memory
Memory
SSD
SSD
HDD
HDD

Free
Pin
Free
Pin
Free
Pin

7.04 (8 t)
9.21 (16 t)
9.88 (16 t)
11.87 (16 t)
3.20 (8 t)
3.20 (8 t)

44%
58%
61%
74%
40%
40%

turing

Memory
Memory
SSD
SSD
HDD
HDD

Free
Pin
Free
Pin
Free
Pin

3.63 (4 t)
7.16 (8 t)
7.65 (8 t)
7.62 (8 t)
2.76 (4 t)
2.37 (4 t)

90%
89%
95%
95%
69%
59%

62

6 CONCLUSION

The development of efficient parallel and distributed applications that better

use the available resources is the way to follow the increasing demand of computing

power. This is a very hard task due to the complexity of the current systems that com-

prise thousands to millions of processing units. There are many attempts intending

to help this issue, such as development libraries like OpenMP and MPI, and perfor-

mance analysis tools that intend to understand the application behavior. The latter

was the global focus of this dissertation. This was presented by an extensive survey in

the related work Chapter 3 that have considered several features of some of the most

important analysis tools like Vampir, Paraver, ViTE and PajeNG.

Performance analysis tools based on execution traces are much helpful for the

identification of potential bottlenecks and misused resources of current massive par-

allel applications. Such applications produce huge amounts of raw data that these

tools have to handle. Currently there are some analysis tools that are scalable enough

to keep processing this quantity of data. Most of these high performance tools, like

Vampir, have a problem due to being strongly proposed to the processing of semantic

traces that describe events from specific libraries. This approach prevents that appli-

cations built with different libraries to being analyzed, thus, some times, these tools

are useless. On the other hand, tools that approach generic trace formats, like Par-

aver and PajeNG, do not reach the required processing power to analyze great parallel

applications.

The main contributions of this work are the design and development of a par-

allelization strategy for the PajeNG toolset together with its respective performance

analysis. The surveyed tools show us that PajeNG has great potential since it uses

the generic Paje trace format. However this tool works sequentially and is not able to

handle with huge traces. Our improvements made in the PajeNG are inspired by the

pipelined multi-threading technique/pattern described in the Chapter 3. As related

in the proposal Chapter 4, the developed strategy intends to maximize the amount of

input data read by the PajeNG’s processing unit. This was made by launching several

execution flows similar to the sequential for the processing of several pieces from a

trace file. The results are good, but since the strategy is memory bounded, its scalabil-

ity is limited by the HDDs, SSDs and main memory speeds.

The results presented in the analysis Chapter 5 took into account several aspects

63

that have impacted in the performance of our parallel strategy. The experiments were

performed in two platforms as detailed in Table 5.1. The first is a Dell PowerEdge R910

machine identified as turing with 32 physical cores arranged in four NUMA nodes

of 2.00GHz, each with eight cores. The second platform is a SGI C1104G-RP5 ma-

chine identified as bali with 16 physical cores arranged in two NUMA nodes of 2GHz,

each with eight cores. The results obtained without drop the operational system’s data

cache have achieved an speedup about 8 for the machine turing with a maximum of 8

threads, and about 11 for the machine bali with 16 threads. We note that the threads

migration for the latter case were degrading the strategy performance, so these results

consider pinned threads. This behavior have occurred since the experimental platform

were NUMA machines which implies in different memory access speed for each node.

This way the automatic threads migration end up changing a thread from one node

to another which slows the reading process. The machine turing was observed more

in details since it presents a strange behavior. It achieves better performance with the

NUMA nodes 0 and 1 than with the others nodes. This behavior was not totally un-

derstood. Our hypothesis was that since the node 0 is the only one attached to the disk

interface, and the node 1 is near from 0, these nodes may perform faster read times.

However the experiments comparing the average read time of all NUMA nodes, ver-

sus nodes 0 and 1, have showed that we were wrong. In terms of data read duration,

the observed results do not show any gains from the nodes 0 and 1. Therewith our final

hypothesis is that we have achieved the maximum possible throughput of the turing’s

memory, and so, even with more threads, the read times increase in a prohibitive way

which disturbs the performance gain. The machine bali do not present this behavior

since its memory/bus/processors speeds are faster than turing being capable to handle

with more threads.

The experiments executed by disabling the operational system’s data cache have

compared the performance of our strategy when reading the traces directly from the

HDDs and SSDs of the machines. As expected, the results obtained from HDDs quickly

have reached the maximum amount of concurrent threads accessing the data. These

ones have scaled up the PajeNG about 4 times, then, with more threads, the HDDs

were not able to provide data efficiently in both machines. Hard disks drives are be-

ing optimized from several years, however their mechanic nature physically limits the

disks themselves. Solid state drives as storage systems have another proposal that han-

dle muth better with random/parallel accesses (CHEN; KOUFATY; ZHANG, 2009).

64

The SSDs results have proved such diferences: even with similar bandwidth from the

HDDs, the experiments in SSDs have scaled up the PajeNG about 11 times.

As a whole, the work have presented relevant results. The conducted analysis

lead us to understand several features of the developed strategy. As future work we

intend to further study how to deal with the concurrency from the disk. Furthermore,

since the threads run independently and we have created a way to split the trace file

in several pieces, our implementation facilitates the development of a version for dis-

tributed memory which will not be limited by the storage systems.

65

REFERENCES

ALLEN, R.; KENNEDY, K. Optimizing compilers for modern architectures: a
dependence-based approach. [S.l.]: Morgan Kaufmann San Francisco, 2002.

ALONSO, P. et al. Tools for power-energy modelling and analysis of parallel scientific
applications. In: IEEE. Parallel Processing (ICPP), 2012 41st International Conference
on. [S.l.], 2012. p. 420–429.

AMDAHL, G. M. Validity of the single processor approach to achieving large scale
computing capabilities. In: ACM. Proceedings of the April 18-20, 1967, spring joint
computer conference. [S.l.], 1967. p. 483–485.

AUGONNET, C. et al. Starpu: a unified platform for task scheduling on heterogeneous
multicore architectures. Concurrency and Computation: Practice and Experience,
Wiley Online Library, v. 23, n. 2, p. 187–198, 2011.

BARNEY, B. et al. Introduction to parallel computing. Lawrence Livermore National
Laboratory, v. 6, n. 13, p. 10, 2010.

BRUNST, H. et al. Comprehensive performance tracking with vampir 7. In: MüLLER,
M. S. et al. (Ed.). Tools for High Performance Computing 2009. [S.l.]: Springer Berlin
Heidelberg, 2010. p. 17–29. ISBN 978-3-642-11261-4.

CHAN, A.; GROPP, W.; LUSK, E. An efficient format for nearly constant-time access
to arbitrary time intervals in large trace files. Scientific Programming, IOS Press, v. 16,
n. 2, p. 155–165, 2008.

CHEN, F.; KOUFATY, D. A.; ZHANG, X. Understanding intrinsic characteristics and
system implications of flash memory based solid state drives. Citeseer, 2009.

COOK, J. E.; WOLF, A. L. Discovering models of software processes from event-based
data. ACM Transactions on Software Engineering and Methodology (TOSEM),
ACM, v. 7, n. 3, p. 215–249, 1998.

CORNELISSEN, B.; MOONEN, L. Visualizing similarities in execution traces. In:
Proceedings of the 3rd Workshop on Program Comprehension through Dynamic
Analysis (PCODA). [S.l.: s.n.], 2007. p. 6–10.

COULOMB, K. et al. An open-source tool-chain for performance analysis. In: Tools
for High Performance Computing 2011. [S.l.]: Springer, 2012. p. 37–48.

COULOMB, K. et al. Visual trace explorer (ViTE). 2009. <http://vite.gforge.inria.fr/>.

CYTRON, R. Doacross: Beyond vectorization for multiprocessors. In: ICPP’86. [S.l.:
s.n.], 1986. p. 836–844.

DAGUM, L.; MENON, R. Openmp: An industry-standard api for shared-memory
programming. IEEE Comput. Sci. Eng., IEEE Computer Society Press, Los Alamitos,
CA, USA, v. 5, n. 1, p. 46–55, 1998. ISSN 1070-9924.

http://vite.gforge.inria.fr/

66

FERRANTE, J.; OTTENSTEIN, K. J.; WARREN, J. D. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and
Systems (TOPLAS), ACM, v. 9, n. 3, p. 319–349, 1987.

GAUTIER, T. et al. Xkaapi: A runtime system for data-flow task programming on
heterogeneous architectures. In: IEEE. Parallel & Distributed Processing (IPDPS),
2013 IEEE 27th International Symposium on. [S.l.], 2013. p. 1299–1308.

GEIMER, M. et al. The scalasca performance toolset architecture. Concurrency and
Computation: Practice and Experience, John Wiley & Sons, Ltd., v. 22, n. 6, p. 702–719,
2010.

GROPP, W.; LUSK, E. L.; THAKUR, R. Using MPI-2: Advanced Features of the
Message Passing Interface. Cambridge, Massachusetts, USA: The MIT Press, 1999.

GUSTAFSON, J. L. Reevaluating amdahl’s law. Communications of the ACM, ACM,
v. 31, n. 5, p. 532–533, 1988.

IHAKA, R.; GENTLEMAN, R. R: a language for data analysis and graphics. Journal
of computational and graphical statistics, Taylor & Francis, v. 5, n. 3, p. 299–314, 1996.

JUMPSHOT. Jumpshot-4 Users Guide. <ftp://ftp.mcs.anl.gov/pub/mpi/slog2/
js4-usersguide.pdf>, 2007. Acessed in November, 19th, 2014.

JURENZ, M. Vampirtrace software and documentation. ZIH, Technische Universität
Dresden, http://www. tu-dresden. de/zih/vampirtrace, v. 4, 2006.

KAMINSKY, A. Big cpu, big data: Solving the world’s toughest computational
problems with parallel computing. Creative Commons, 2013.

KERGOMMEAUX, J. C. de; STEIN, B. de O.; BERNARD, P. E. Paje, an interactive
visualization tool for tuning multi-threaded parallel applications. Elsevier Science
Parallel Computing, Elsevier Science, Numath, INRIA Lorraine, BP 101, F-54600
Villers les Nancy, France, v. 26, n. 10, p. 1253–1274, 2000. ISSN 0167-8191.

KNÜPFER, A. et al. The vampir performance analysis tool-set. In: Tools for High
Performance Computing. [S.l.]: Springer, 2008. p. 139–155.

LABARTA, J.; GIMENEZ, J. Performance analysis: From art to science. Parallel
Processing for Scientific Computing. M. Heroux and R. Raghavan and HD Simon
Eds. SIAM, p. 9–32, 2006.

LUNDSTROM, S. F.; BARNES, G. H. A controllable mimd architecture. In:
Proceedings of the 1980 International Conference on Parallel Processing. [S.l.: s.n.],
1980. p. 19–27.

MARKOMANOLIS, G.; JORBA, O.; BALDASANO, J. Performance analysis of an
online atmospheric-chemistry global model with paraver: Identification of scaling
limitations. In: IEEE. High Performance Computing & Simulation (HPCS), 2014
International Conference on. [S.l.], 2014. p. 738–745.

MATTSON, T. G.; SANDERS, B. A.; MASSINGILL, B. L. Patterns for parallel
programming. [S.l.]: Pearson Education, 2004.

ftp://ftp.mcs.anl.gov/pub/mpi/slog2/js4-usersguide.pdf
ftp://ftp.mcs.anl.gov/pub/mpi/slog2/js4-usersguide.pdf

67

MCCOOL, M.; REINDERS, J.; ROBISON, A. Structured parallel programming:
patterns for efficient computation. [S.l.]: Elsevier, 2012.

MÜLLER, M. S. et al. Developing scalable applications with vampir, vampirserver
and vampirtrace. In: CITESEER. PARCO. [S.l.], 2007. v. 15, p. 637–644.

NAGEL, W. E. et al. Vampir: Visualization and analysis of mpi resources.
Supercomputer 63, Volume XII, Number 1, p. 69–80, 1996.

OTTONI, G. et al. Automatic thread extraction with decoupled software pipelining.
In: IEEE. Microarchitecture, 2005. MICRO-38. Proceedings. 38th Annual IEEE/ACM
International Symposium on. [S.l.], 2005. p. 105–116.

PARAVER. Paraver Tracefile Description. <http://www.bsc.es/media/1370.pdf>,
2001. Acessed in November, 15th, 2014.

PARAVER. Reference Manual. <http://www.bsc.es/media/1364.pdf>, 2001.
Acessed in November, 15th, 2014.

PILLET, V. et al. Paraver: A tool to visualize and analyze parallel code. In: Proceedings
of WoTUG-18: Transputer and occam Developments. [S.l.: s.n.], 1995. v. 44, p. 17–31.

RAMAN, E. Parallelization techniques with improved dependence handling. Thesis
(PhD) — Princeton University, 2009.

RANGAN, R. et al. Decoupled software pipelining with the synchronization array. In:
IEEE COMPUTER SOCIETY. Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques. [S.l.], 2004. p. 177–188.

REINDERS, J. Intel Threading Building Blocks. First. Sebastopol, CA, USA: O’Reilly
& Associates, Inc., 2007. ISBN 9780596514808.

SCHNORR, L. Some Visualization Models applied to the Analysis of Parallel
Applications. Thesis (PhD) — INPG; UFRGS, 2009.

SCHNORR, L. M. Pajé trace file format. Porto Alegre, Brazil, 2014. <http:
//paje.sf.net>.

SCHNORR, L. M. PajeNG – Paje Next Generation. 2014. <http://github.com/
schnorr/pajeng>.

SCHNORR, L. M.; LEGRAND, A.; VINCENT, J.-M. Detection and analysis of resource
usage anomalies in large distributed systems through multi-scale visualization.
Concurrency and Computation: Practice and Experience, Wiley Online Library, v. 24,
n. 15, p. 1792–1816, 2012.

SHENDE, S. S.; MALONY, A. D. The tau parallel performance system. International
Journal of High Performance Computing Applications, SAGE Publications, v. 20,
n. 2, p. 287–311, 2006.

TARJAN, R. Depth-first search and linear graph algorithms. SIAM journal on
computing, SIAM, v. 1, n. 2, p. 146–160, 1972.

http://www.bsc.es/media/1370.pdf
http://www.bsc.es/media/1364.pdf
http://paje.sf.net
http://paje.sf.net
http://github.com/schnorr/pajeng
http://github.com/schnorr/pajeng

68

TRAHAY, F. et al. Eztrace: a generic framework for performance analysis. In: IEEE.
Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International
Symposium on. [S.l.], 2011. p. 618–619.

ZAKI, O. et al. Toward scalable performance visualization with jumpshot.
International Journal of High Performance Computing Applications, SAGE
Publications, v. 13, n. 3, p. 277–288, 1999.

69

APPENDIX A — FERRAMENTA DE ALTO DESEMPENHO PARA ANÁLISE DO

COMPORTAMENTO DE PROGRAMASPARALELOS BASEADA EM RASTOS

DE EXECUÇÃO

A.1 Introdução

A contínua demanda por poder de computação tende ao desenvolvimento de

aplicações paralelas eficientes que melhor utilizam os recursos disponíveis. Sistemas

modernos de alto desempenho compreendem de milhares a milhões de unidades de

processamento conectadas por redes hierárquicas complexas. O desenvolvimento de

aplicações para tais sistemas é uma tarefa complexa, afetada por ao menos dois fa-

tores: o primeiro é a alta escalabilidade provida por eles, a qual é difícil de alcançar; o

segundo é a falta de uma execução determinística. Como o processamento nos nós é

independentes, compreender tais aplicações pode ser muito uma tarefa muito custosa.

Algumas bibliotecas como OpenMP e MPI são utilizadas para facilitar a implemen-

tação destas aplicações. No entanto, mesmo com o apoio de bibliotecas, o sucesso no

desenvolvimento de uma aplicação paralela de alto desempenho depende de um ma-

peamento correto de seus processos com relação aos recursos disponíveis.

A identificação de recursos não utilizados e potenciais gargalos de processa-

mento requere boas ferramentas para análise de desempenho, capazes de observar

muitas entidades durante longos períodos de tempo. Esta observação é muitas vezes

iniciada através da coleta de importantes medidas de desempenho através do rastrea-

mento de eventos. Os dados coletados são geralmente em nível de aplicação. Ferra-

mentas de rastreamento comumente registram estados locais e globais do programa,

a quantidade de dados transferidos por mensagens e contadores de hardware para

funções específicas. Estes dados permitem a identificações de vários padrões com-

plexos, tais como: late communications, costly synchronization ou train effects. Infeliz-

mente o rastreamento de aplicações muitas vezes produz grandes arquivos de rastro,

facilmente atingindo a ordem de gigabytes de dados brutos. Portanto, o tratamento

desses dados para uma forma legível precisa ser eficiente para permitir uma análise de

desempenho menos onerosa, mais rápida e útil.

Ao longo dos anos várias ferramentas baseadas em rastros têm sido desenvolvi-

das para a análise de desempenho de aplicações paralelas. Os principais desafios

dessas ferramentas são a interpretação e o processamento da grande quantidade de

70

dados produzidos por aplicações paralelas. Tais dados são frequentemente utiliza-

dos para reproduzir/simular o comportamento da execução do programa. Isto resulta

em representações visuais tais como o linhas de tempo, grafos de comunicação en-

tre outros. A maioria das ferramentas existentes, tais como Vampir, Scalasca, TAU,

concentram-se no processamento de formatos de rastro com uma semântica fixa e bem

definida. Estes formatos de arquivo são normalmente definidos para lidar com apli-

cações desenvolvidas com bibliotecas populares como OpenMP, MPI, e CUDA. No

entanto, algumas vezes, essas ferramentas tonam-se inúteis, tendo em vista que nem

todas aplicações paralelas são construídas com tais bibliotecas. Felizmente existem

outras ferramentas que apresentam uma abordagem mais dinâmica. Estas apresen-

tam um formato de arquivo de rastreamento aberto, não associado a uma semântica

específica. Desta forma, tais ferramentas podem lidar com uma ampla gama de apli-

cações paralelas. Algumas dessas ferramentas são: Paraver, Pajé e PajeNG. O fato

de serem mais genéricas vem com um custo. Estas ferramentas frequentemente ap-

resentam baixo desempenho no processamento de grandes rastros. Algumas destas

ferramentas controlam o tamanho dos dados utilizando técnicas de agregação, entre-

tanto tal procedimento pode acabar removendo informações importantes dos dados

de rastreamento originais.

Este trabalho se concentra na otimização do conjunto de ferramentas contidas

em PajeNG, mais especificamente no simulador Pajé, o qual é responsável por proces-

sar os rastros e recriar o comportamento original da aplicação paralela observada. Este

conjunto de ferramentas funciona com o formato de rastro Pajé, o qual apresenta uma

semântica aberta. PajeNG baseia-se em seu simulador Pajé e oferece ferramentas para

análise de desempenho. Exemplos de tais ferramentas são: uma linha de tempo visual

provida por pajeng e pj_dump. O último é capaz de exportar os dados de desempenho

em um formato textual CSV, os quais podem ser utilizados para análises utilizando o

software R. A implementação atual do simulador Pajé é sequencial e, portanto, não

escalável para lidar com grandes arquivos de rastro. Esta dissertação apresenta uma

estratégia de paralelização para PajeNG, com a intenção de melhorar seu desempenho

e escalabilidade.

PajeNG é um conjunto de ferramentas para o processamento e análise de ras-

tros construída em C++. Internamente PajeNG utiliza sua biblioteca chamada libpaje

para processar os rastros em formato Pajé. O formato Pajé é auto-definido, textual

e genérico. Os arquivos de rastreio neste formato são divididos em duas partes. A

71

primeira parte contém uma definição para cada tipo de evento e um número de iden-

tificação único para tal. A segunda parte contém um evento por linha, todas iniciando

por seu identificador. Os eventos registrados em formato Pajé são definidos dentro de

cinco tipos de objetos conceituais: Containers, States, Events, Variables e Links. Um Con-

tainer pode ser qualquer entidade monitorável, como um roteador, um processo, ou

uma thread. Este é o objeto mais genérico e o único que pode conter outros, incluindo

outros containers. States representam qualquer coisa que tenha um tempo de início e

fim. Por exemplo: um determinado container começa no estado (state) bloqueado e

então, depois de algum tempo, volta ao estado livre, ou trabalhando etc. Este período

de tempo caracteriza um state. Events são qualquer coisa notável o suficiente para ser

unicamente identificado e conter apenas uma única medida de tempo. Variables reg-

istram informações sobre a evolução do valor de uma variável ao longo do tempo.

Finalmente, os Links são as relações, ou troca de mensagens, entre dois containers, ar-

mazenando os tempos de início e fim da comunicação.

A libpaje realiza o processamento necessário para a análise dos rastros. Esta

funciona com um arquivo de rastro único contendo todas as informações coletadas e

realiza o processamento de forma sequencial. A libpaje segue um fluxo de trabalho

constituído por três componentes principais, como representado na Figura A.1, proce-

dendo a partir da esquerda para a direita. O componente PajeFileReader inicia o pro-

cesso através da leitura do rastro. Este, lê pedaços de tamanho fixo de arquivo e enviá-

os para o segundo componente. O componente seguinte, PajeEventDecoder, recebe os

pedaços, divide-os em linhas e transforma cada linha em um evento/objeto genérico.

O último componente, PajeSimulator, implementa funções diferentes para cada tipo de

evento, empilhando cada evento/objeto na pilha correta de seu respectivo container.

Este modelo de processamento apresenta sérios problemas de desempenho quando os

rastros aumentam muito de tamanho. Um rastro de apenas 1GBytes por exemplo, leva

cerca de 1 minuto para ser processado, e um rastro de 10GBytes, já alcança os 10 min-

utos de processamento. Portanto o o tempo de execução cresce linearmente de acordo

com o tamanho da entrada e com isso o PajeNG acaba perdendo utilidade na análise

de rastros muito grandes.

72

PajeFileReader PajeSimulatorPajeEventDecoder

Time

Container

Container

Container

Figure A.1 – Fluxo de execução original da libpaje.

A.2 Proposta e Implementação

A estratégia de otimização do PajeNG proposta por este trabalho trata-se da

paralelização do fluxo de trabalho da libpaje visando maximizar a quantidade de da-

dos lidos para processamento. Tal estratégia contempla duas mudanças principais no

programa original: uma nos dados de entrada (rastros), e outra no fluxo de execução

da ferramenta. O formato rastro Pajé foi modificado para permitir a quebra do ar-

quivo único em vários arquivos menores. O fluxo de trabalho da libpaje foi adaptado

para realizar o processamento em paralelo, processando múltiplos arquivos de rastro

simultaneamente utilizando threads.

A criação dos múltiplos arquivos de rastro foi feita através da quebra do arquivo

único em vários pedaços, cada um contendo um evento container. Desta forma vários

arquivos são gerados contendo todas as informações referentes a um container, e todos

juntos sendo equivalentes à informação do arquivo único anterior. Para ligar todos os

pedaços criamos um novo tipo de evento chamado PajeTraceFile. Este evento contém

três informações: seu tipo, um container e um caminho/nome de arquivo, no qual

os eventos estão registrados. Além disso, construímos um arquivo de rastreamento

descritor. Este, funciona como um produtor de trabalho, contendo apenas a criação

de eventos Container e PajeTraceFile. O arquivo descritor será utilizado para inciar a

aplicação, inicializando os containers e indicando a localização dos rastros.

Para permitir o processamento paralelo, a libpaje precisou ser modificada em

alguns pontos. Primeiramente, o componente PajeSimulator foi modificado para com-

preender o novo tipo de evento, PajeTraceFile. Além disso, um novo componente

chamado PajeParallelProcessor foi implementado. Este é o responsável por tornar o

processamento paralelo. O componente PajeParallelProcessor implementa uma fila de

tarefas e um conjunto de trabalhadores. O conjunto de trabalhadores é composto por

C++11 threads e seu tamanho é definido pelo usuário. A fila de taréfas é preenchida

por eventos PajeTraceFile. A Figura A.2 ilustra como estas modificações criam o novo

fluxo de trabalho da libpaje. A thread principal da aplicação, topo da Figura A.2, é bem

73

similar ao funcionamento sequencial. As modificações realmente começam quando

um evento PajeTraceFile chega ao PajeSimulator. Neste caso, o PajeSimulator coloca tal

evento na fila de tarefas do novo componente, PajeParallelProcessor, e inicia o conjunto

de trabalhadores, C++11 threads. Deste ponto em diante, os trabalhadores passam a

consumir os eventos PajeTraceFile que estão na fila de tarefas. Assim, os trabalhadores

recebem cada um, um arquivo de rastro diferente, processando-os em em threads sep-

aradas. O fluxo de trabalho dos trabalhadores é idêntico ao sequencial.

Time

pFR pED pS

pFR pED pS

PC PTF PC PTF PC PTF

pFR pED pS

pFR pED pS
pPP

qTasks

qWorkers

Figure A.2 – Fluxo de execução paralelo da libpaje.

A.3 Resultados

O desempenho alcançado pela estratégia desenvolvida foi bem interessante. A

análise realizada levou em consideração várias aspectos, como: localidade das threads,

tipo de disco, e quantidade de threads. Os experimentos foram realizados em duas

máquinas NUMA (Non Uniform Memory Access) diferentes, turing com 32 núcleos

e bali com 16 núcleos. Cada configuração experimental foi executada 30 vezes. A

Figura A.3 mostra uma visão geral do desempenho alcançado pela paralelização do Pa-

jeNG. Neste gráfico estão representados os resultados de aceleração (Speedup) atingi-

dos em cada máquina, à esquerda bali e à direita turing. O eixo X apresenta o número

de threads e no eixo Y a respectiva aceleração alcançada. A linha cinza representa

a aceleração ideal, e as outras linhas, os resultados obtidos com duas configurações

de localidade de threads diferentes: Free, threads livres para migrar como o sistema

operacional decidir e, Pin, cada thread fixada em um processador. Com este gráfico

conseguimos observar que para ambas as máquinas o ganho de desempenho com as

threads fixadas foi maior. A máquina bali chegando a atingir uma aceleração de cerca

de 11 vezes em relação a versão sequencial, e a turing cerca de 8 vezes.

74

bali turing

0

1

2

4

8

16

0 1 2 4 8 16 0 1 2 4 8 16
Threads

S
pe

ed
U

p Pinned
Free

Pin

Figure A.3 – Speedup alcançado pela estratégia desenvolvida nas máquinas bali e turing.
Gráfico comparando o desempenho alcançado com as threads livres (Free), com as threads
fixas (Pin).

A.4 Conclusão e Trabalhos Futuros

O desenvolvimento de aplicações paralelas e/ou distribuídas eficientes, que

melhor utilizam os recursos disponíveis, é a forma de suprir a crescente demanda por

poder de computação. Isto é uma tarefa muito difícil devido à complexidade dos sis-

temas atuais, os quais compreendem de milhares a milhões de unidades de proces-

samento. Existem muitas tentativas que pretendem ajudar e facilitar tal desenvolvi-

mento, por exemplo bibliotecas como OpenMP e MPI, e ferramentas para análise de

desempenho que pretendem compreender o comportamento de uma aplicação. Estas

ferramentas foram o foco global desta dissertação. No capítulo de trabalhos relaciona-

dos (related work) é apresentado um extenso levantamento de algumas das ferramen-

tas mais importantes existentes, tais como Vampir, Paraver, ViTE e PajeNG.

As principais contribuições deste trabalho são o projeto e desenvolvimento de

uma estratégia de paralelização para o conjunto de ferramentas PajeNG, juntamente

com sua respectiva análise de desempenho. As ferramentas pesquisadas nos mostram

que PajeNG tem um grande potencial, uma vez que utiliza um formato de rastro

genérico. No entanto, o PajeNG original funciona sequencialmente e não é capaz de

75

lidar com grandes rastros. A estratégia desenvolvida maximiza a quantidade de da-

dos de entrada lidos pela unidade de processamento do PajeNG. Isto foi feito através

do lançamento de vários fluxos de execução semelhantes ao sequencial, cada um real-

izando o processamento de um pedaço do arquivo de rastro. Esta abordagem apresen-

tou bons resultados, entretanto sua máxima escalabilidade é limitada pela velocidade

dos sistemas de armazenamento, HDDs, SSDs e memória principal.

Como um todo, o trabalho apresenta resultados bem relevantes, alcançando

uma aceleração, com relação ao PajeNG original, de aproximadamente 11 vezes em

alguns experimentos. Além disso, na versão paralela desenvolvida, cada thread exe-

cuta de forma independente. Tal independência cria um modelo que facilitará muito

o eventual desenvolvimento de uma versão para memória distribuída. A análise de

desempenho realizada nos levou a compreender vários aspectos sobre estratégia de-

senvolvida, como, por exemplo, sua escalabilidade limitada e problemas de acesso

concorrente ao disco. Em trabalhos futuros, pretende-se estudar mais a fundo a forma

como lidar com tal concorrência e/ou implementar uma versão para memória dis-

tribuída, a qual eliminaria este problema.

	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Basic Concepts
	2.1 Amdahl's Law and Strong Scalability
	2.2 Gustafson's Law and Weak Scalability
	2.3 The Non-Uniform Memory Access (NUMA) Achitecture

	3 Related Work
	3.1 Parallelization Techniques
	3.1.1 Automatic Compiler-based Parallelization Techniques
	3.1.2 Explicit Parallelization Techniques and Patterns

	3.2 Performance Analysis Tools
	3.2.1 Vampir
	3.2.2 Paraver
	3.2.3 Jumpshot
	3.2.4 ViTE
	3.2.5 PajeNG

	3.3 Summary and Categorization

	4 Parallel Trace Replay in PajeNG
	4.1 Preliminary Attempt to Parallelize the PajeNG Simulator
	4.2 Pajé Trace Format Support for Parallel Reading
	4.3 Parallel PajeNG's Processing Work-Flow Description

	5 Performance Analysis and Results
	5.1 Experimental Platform and Methodology
	5.2 Scalability Overview
	5.2.1 Strong Scalability Overview
	5.2.2 Weak Scalability Overview

	5.3 Threads Locality Interference
	5.4 Differences Between NUMA nodes Read Throughput
	5.5 Disk Analysis
	5.6 Analysis Summary

	6 Conclusion
	References
	Appendix A — Ferramenta de Alto Desempenho para Análise do Comportamento de ProgramasParalelos Baseada em Rastos de Execução
	A.1 Introdução
	A.2 Proposta e Implementação
	A.3 Resultados
	A.4 Conclusão e Trabalhos Futuros

