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more permanent than theirs, it is because

they are made with ideas.
(Godfrey H. Hardy)



Resumo
Neste trabalho, com base em representações por matrizes de duas linhas para alguns tipos
de partição (algumas já conhecidas e outras novas), identificamos propriedades sugeridas por
classificá-las de acordo com a soma dos elementos de sua segunda linha. Esta soma sempre fornece
alguma propriedade da partição relacionada. Se considerarmos versões sem sinal de algumas
funções Mock Theta, seu termo geral pode ser interpretado como função geradora para algum
tipo de partição com restrições. Para retornar aos coeficientes originais, é possível definir um
peso para cada matriz e depois somá-las para contá-los. Uma representação análoga para essas
partições nos permite observar propriedades sobre elas, novamente por meio de uma classificação
referente à soma dos seu elementos da segunda linha. Esta seriação é feita por meio de tabelas
criadas pelo software matemático Maple, as quais nos sugerem padrões e identidades relacionadas
com outros tipos de partições conhecidas e, muitas vezes, encontrando uma fórmula fechada para
contá-las. Tendo as conjecturas obtidas, elas são provadas por meio de bijeções entre conjuntos
ou por contagem.

Palavras-chave: Partições. Funções Mock Theta. Representação Matricial. Diagrama de Young.
Bijeção.



Abstract
In this work, based on representations by matrices of two lines for some kind of partition
(some already known and other new ones), we identify properties suggested by classifying them
according to the sum of its second line. This sum always provides some properties of the related
partition. If we consider unsigned versions of some Mock Theta Functions, its general term can
be interpreted as generating function for some kind of partition with restrictions. To come back
to the original coefficients, you can set a weight for each array and so add them to evaluate the
coefficients. An analogous representation for partitions allows us to observe properties, again by
classificating them according to the sum of its elements on the second row. This classification
is made by means of tables created by mathematical software Maple, which suggest patterns,
identities related to other known types of partitions and often, finding a closed formula to count
them. Having established conjectured identities, all are proved by bijections between sets or
counting methods.

Keywords: Partitions. Mock Theta Functions. Matrix Representation. Young Diagram. Bijec-
tion.
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Introduction

Srinivasa Ramanujan is a well known Indian mathematician born in 1887. Since his
childhood, it was remarkable his intelligence and facility in playing with numbers. He earned a
scholarship, but lost it due to his english been considered not enough to keep studying. Despite of
it, he kept doing his studies and researches in a self-education way and then he began attending
the local university as a listener. His professors noted his abilities and advised him to send the
works he had done to a brilliant English professor, Gordfrey Hardy. Impressed by the sophisticated
mathematics, Hardy invited him to go to England. They gave several important contributions to
Mathematics, being fundamental to the development of the Theory of Partitions.

Three months before his death in 1920 at the age of 32, Ramanujan send Hardy a letter
that describes functions from what he called "Mock Theta Functions". He did not give a formal
definition, but explained what properties a mock theta function should have. He illustrated them
by plenty of examples and also gave some properties without proving them.

In the last years, some authors have considered another combinatorial way to see partitions
as two-line arrays with non-negative integer entries, subject to some restrictions. This concept
started with Santos, Mondek and Ribeiro in [15], where they described a new way of representing,
as two-line matrices, unrestricted partitions and several identities from Slater’s list [16], including
Rogers-Ramanujan Identities, and Lebesgue’s Partition Identity. This new representation has
been useful to prove many identities, as in [8], which are done by showing bijections between two
sets that count specific partitions. Another benefit from this is that the second line describes
some property of the related partition, such as number of parts, rank, number of parts below the
Durfee square and other ones.

One representation for unrestricted partitions in terms of two-line matrices, given in [15],
had a significant contribution to discover other identities by classifying them according to the
sum on the second line. Organizing those numbers in a table, it suggested plenty of patterns
and results, as we can find in [1] and [11]. After discovering and writing such identities formally,
most of them can be proven by showing a bijection between both considered sets. In [10], the
authors also used this to solve a problem stated in [3], which works with the concept of lower
odd parity index of a partition. Its formal definition can be found in that paper too.

Matrix representation for partitions was also useful to find nice information about
partitions into parts congruent to �1 pmod 5q, as set in [6]. Once there is a representation for
partitions into 2-distinct parts in [15], the authors found one to the other considered set of
partitions in the first Rogers-Ramanujan identity. By classifying them according to the sum of
second line of the related matrix, some identities were set and proven.

Another application was by showing a straight relationship between two-line matrices
and coefficients of some Mock Theta Functions. By considering the general unsigned terms as
generating functions for specific partitions, in [9], the authors first established a bijection between
them and restricted matrices. In order to get the coefficient, they settled a weight for each matrix,
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whose second line also reveals characteristics about the parts of such partition. In her PhD
thesis, Andrade [11] constructed tables that express the coefficients for the unsigned version, now
considering the defined weight for each Mock Theta Function when we sum them.

In this work we intend to extend that representation into two-line matrices for other types
of partitions, but first we need to remember some definitions, theorems and notations. They are
stated in the first chapter, called Background, then followed by combinatorial interpretations
for partitions into distinct parts, odd, even and parts which are Fibonacci numbers in the next
chapter. In some cases, we built a table that classifies those partitions according to the sum on
the second line for the respective matrices and get some new and interesting identities.

The third chapter, taking advantage of the representation of its unsigned version given in
[9], we consider four Mock Theta Functions and construct a table similarly to the ones we did
before for each one of them. Although the next chapter consider some Mock Theta Functions
that can be seen as generating functions for partitions into two colors, its structure is basicaly
the same.

Throughout the text, when we do not say where the theorems and propositions we present
came from, it means they are new and proved by us.
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1 Background

In this chapter, we intend to summarize fundamental definitions, results and identities
which are going to serve as basis for all subsequent theory. Through the text, these concepts are
going to be considered as known.

1.1 Partitions

We start with the main definition that goes along through the text:

Definition 1.1. A partition of n is a decomposition of n as sum of positive integers that does
not consider the order of the summands. We can write it as

n � λ1 � λ2 � � � � � λk or λ � pλ1, λ2, � � � , λkq,

where λ1 ¥ λ2 ¥ � � � ¥ λk ¥ 1. Each λi is called a part of the partition. We call the largest part
λ1 and the number of parts lpnq.

We denote the number of partitions of n by ppnq.

Example 1.1. We have seven partition of 5 that are listed below:

p5q

p4, 1q

p3, 2q

p3, 1, 1q

p2, 2, 1q

p2, 1, 1, 1q

p1, 1, 1, 1, 1q

A Young diagram of a partition λ of n is a collection of n 1� 1 squares (i; j) on a square
grid Z2, with 1 ¤ i ¤ lpλq and 1 ¤ j ¤ λi. It is an important tool to see properties of partitions
and a very useful representation to prove identities by doing modifications on its structure and
construct bijections between sets of different kinds of partitions. Pictorially, the first coordinate i
increases downward, while the second coordinate j increases from left to right. The partition
λ � p7, 4, 4, 4, 3, 2, 1, 1q of 26 has the following Young iagram
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The conjugate partition λ1 is obtained by exchanging rows with columns. For the previous
example, we have λ1 � p8, 6, 5, 4, 1, 1, 1q and its Young diagram is

Consider λ � pλ1, λ2, ...q and µ � pµ1, µ2, ...q two partitions. We define λ � µ � pλ1 �

µ1, λ2�µ2, ...q and λYµ � pλ1, µ1, λ2, µ2, ...q then rearranging in non increasing order. In Young
Diagrams, for example,

� =

Y =

Definition 1.2. We define the rank of a partition as the largest part minus the number of parts.
We denote it as rpλq and we have rpλq � λ1 � lpλq.

Another definition that also has been used many times to prove identities is called
the Durfee Square. It is the largest square that fits inside the Young Diagram. The partition
p7, 6, 4, 3, 2, 2q has Durfee square of size 3, as we can see in its Young Diagram

1.2 Generating Functions

Generating Function is a mathematical tool that describes an infinite sequence of numbers
an by treating them like the coefficients of a series expansion. Unlike an ordinary series, this
formal series is allowed to diverge. Although it were first introduced by Abraham de Moivre in
1730, in order to solve the general linear recurrence problem, it was Leonhard Euler who first
used to solve partitions problems.

Definition 1.3. We say that F pqq is a generating function for a sequence pa0, a1, ...q if its
expansion into power series has an as coefficient for qn.
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In the context of partitions, Generating Functions help us to count how many of them
exists, as its coefficients represent the wished number. Sometimes we can not find a formula to
express it, once the sequence does not fit into a representation in terms of products or sums.
Although it normally does not give a closed formula for the coefficients, by using a mathematical
software, we can expand it into power series and select the aimed one.

Next we present three Generating Functions for unrestricted partitions and into odd and
distinct parts.

Example 1.2. We denote by ppnq the number of unrestricted partitions of n. The generating
function can be expressed by

p1� q � q2 � � � � qp1� q2�1 � q2�2 � � � � qp1� q3�1 � q3�2 � � � � q � � � ,

knowing that each exponent represents how many times such part appears. For example, q3�2

means that the part 3 appears twice. The previous expression can be rewritten as:

1
p1� qq

1
p1� q2q

1
p1� q3q

� � � �
¹
n¥1

1
1� qn

.

Consider the first terms on its expansion
¸
n¥1

ppnqqn � 1� q1 � 2q2 � 3q3 � 5q4 � � � � .

It allows us to see that pp0q � 1, pp1q � 1, pp2q � 2, pp3q � 3 e pp4q � 5. In case of n � 3 we
have its three partitions 3, 2� 1 and 1� 1� 1. For n � 4, they are 4, 3� 1, 2� 2, 2� 1� 1 and
1� 1� 1� 1.

Example 1.3. Let pdpnq be the number of partitions of n into distinct parts. The generating
function is given by

¸
n¥0

pdpnqq
n � p1� q1q � p1� q2q � p1� q3q � � �

�
¹
n¥1

p1� qnq

� 1� q � q2 � 2q3 � 2q4 � � � �

Then we have pdp1q � 1, pdp2q � 1, pdp3q � 2 and pdp4q � 2.

Example 1.4. Let popnq be the number of partitions of n into odd parts. The generating function
is

¸
n¥0

popnqq
n � p1� q � q2 � � � � qp1� q3�1 � q3�2 � � � � qp1� q5�1 � q5�2 � � � � q � � �

�
1

1� q1
1

1� q3
1

1� q5 � � �

�
¹
k¥1

1
1� q2k�1 .
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The following notations will be used throughout the text to get the expressions simplified.

pa; qqn �

#
1, n � 0
p1� aq � p1� aqq � � � p1� aqn�1q, n ¥ 1

pa; qq8 � lim
nÑ8

pa; qqn �
¹
n¥0

p1� aqnq.

The three generating functions we presented before can be translated in this new notation
by:

F pqq :�
¸
n¥0

ppnqqn �
1

pq; qq8

Fdpqq :�
¸
n¥0

pdpnqq
n � p�q; qq8

Fopqq :�
¸
n¥0

popnqq
n �

1
pq; q2q8

.

Theorem 1.1 (Euler’s Identity). The number of partitions of n into odd parts is equal to the
partitions of n into distinct parts, that is, pdpnq � popnq. In terms of Generating Functions, it is
equivalent to

p�q; qq8 �
1

pq; q2q8
.

Proof. The proof we present here is about showing the equality between both generating functions.
A bijective proof can be found in [4] or [13]. Consider the following identity

pq2; q2q8 � p�q; qq8pq; qq8.

By doing operations on both sides, we have

pq2; q2q8
pq; q2q8

� p�q; qq8 �
pq; qq8
pq; q2q8

pq2; q2q8
pq; q2q8

� p�q; qq8pq2; q2q8

1
pq; q2q8

� p�q; qq8

Fopqq � Fdpqq.

1.3 The Rogers-Ramanujan Identities

The Rogers-Ramanujan Identities deals with parts congruent to �1 and �2 modulo 5.
The first one establishes an equality, in number, between sets of partitions into parts congruent
to �1 modulo 5 and those ones in which the difference between consecutive parts are, at least
2. The second one is similar to the first. The changes are on the congruence, now into parts
congruent to �2 pmod 5q, and joining a restriction that all parts must be greater than 1 in the
second set.
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Theorem 1.2 (First Rogers-Ramanujan Identity). The number of partitions into parts congruent
to 1 or �1 modulo 5 is equal to the number of partitions whose parts are 2-distinct, that is, the
difference between consecutive parts is, at least 2. Namely,

p�1p5qpnq � ppn, 2-distincts partsq.

In terms of generating functions, the identity becomes
8̧

n�0

qn
2

pq; qqn
�

8¹
n�1

1
p1� q5n�1qp1� q5n�4q

.

Theorem 1.3 (Second Rogers-Ramanujan Identity). The number of partitions into parts con-
gruent to 2 or �2 modulo 5 is equal to the number of partitions whose parts are 2-distinct and
greater than 1. Namely

p�2p5qpnq � ppn, 2-distincts parts greater than 1q.

In terms of generating functions, the identity becomes
8̧

n�0

qn
2�n

pq; qqn
�

8¹
n�1

1
p1� q5n�2qp1� q5n�3q

.

They were first discovered by Leonard James Rogers in 1894. They were subsequently
rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913. Ramanujan had
no proof, but rediscovered Rogers’s paper in 1917, and they then published a joint new proof
[14]. Even though they are about partitions, a one-to-one correspondence was only settled in the
year of 1981, by Garsia and Milne [12].

1.4 Matrix Representation

In this section, we intend to give a brief description of a new representation for partition
in terms of two-lines matrices that was introduced in [15]. This idea will join us throughout the
text as starting point for nice results that it implies.

That paper presented two different interpretations for unrestricted partitions as two-lines
matrices. They are

Theorem 1.4 (Theorem 4.1, [15]). The number of unrestricted partitions of n is equal to the
number of two-line matrices of the form�

c1 c2 � � � cs

d1 d2 � � � ds

�
, (1.1)

where cs � 0, ct � ct�1 � dt�1, and the sum of all entries is equal to n.

Theorem 1.5 (Theorem 4.3, [15]). The number of unrestricted partitions of n is equal to the
number of two-line matrices of the form�

c1 c2 � � � cs

d1 d2 � � � ds

�
, (1.2)

where dt � 0, ct ¥ 1� ct�1 � dt�1, and the sum of all entries is equal to n.



Chapter 1. Background 16

They proved both identities as a corollary from other identity. In [8], the first one was
proved in two different ways by exhibiting two different bijections between unrestricted partitions
and two-line matrices. One of them is built in such a way that the sums of the entries in each
column of the matrix are the parts of the partition. As an example, it is like

p8, 5, 5, 3, 2, 2, 1q Ø
�

5 5 3 2 2 1 0
3 0 2 1 0 1 1

�
. (1.3)

One can observe that the elements on the second row gives a complete description of
the conjugate partition. The entry dt represents the multiplicity of the part t in the conjugate
partition,

The second bijection is built by making a connection between the number of columns
and the greatest part of the partition. See the next example.

p6, 5, 2, 2q Ø
�

4 2 2 2 1 0
0 2 0 0 1 1

�
. (1.4)

Now, one can note that the elements on the second row give a complete description of
the partition itself, where the entry dt is how many times t appears as a part.

The second theorem was also proved in [8] by a bijection. Next we show an example of a
partition and a matrix that are straight related by the map they constructed. In the form it was
settled, the matrix would represent the parts below the Durfee square in the partition and in its
conjugate.

p5, 4, 4, 2, 2, 1q Ø

�
9 4 2
1 2 0

�

�

�
5 3 1
0 0 0

�
�

�
2 0 0
0 2 0

�
�

�
0 0 0
1 0 0

�
�

�
1 1 1
0 0 0

�
�

�
1 0 0
0 0 0

�
.

Figure 1 – Ferrers Graph of p5, 4, 4, 2, 2, 1q

The decomposition into sum of other matrices represents the Durfee Square, parts 2 and
1 below the Durfee square and parts 3 and 1 below the Durfee square in the conjugate partition,
respectively.

A similar representation was also useful to describe the coefficients of some mock theta
functions, first considering their unsigned version and setting a weight to the partitions generated
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by their general terms. For many mock theta functions, in [9] we find a characterization of those
matrices, which helps us to evaluate the coefficients of each function.

For example, the next theorem characterizes the expansion of the Mock Theta Function
φpqq into power series by describing how to count each coefficient according to the number of
two-lines matrices that satisfy some relations.

Definition 1.4. The Mock Theta Function of order 3, φpqq is defined by

φpqq �
8̧

n�0

qn
2

p�q2; q2qn
.

If we not consider the signal, we can define the following unsigned version of φpqq :

φ�pqq �
8̧

n�0

qn
2

pq2; q2qn
.

In [9], the following combinatorial interpretation for this function in terms of two-line
matrices is given.

Theorem 1.6. The coefficient of qn in the expansion of the unsigned version of φpqq is equal to
the number of elements in the set of matrices of the form

A �

�
c1 c2 � � � cs

d1 d2 � � � ds

�
, (1.5)

with non-negative integer entries whose sum is n, satisfying

cs � 1; dt ¥ 0; dt � 0 pmod 2q;

ct � 2� ct�1 � dt�1, @t   s.
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2 Matrix representation for partitions sub-
jected to some restrictions

Finding a closed formula for unrestricted partitions is still a great open problem in number
theory. But, setting restrictions on the parts has been useful to find nice identities that relate
them, such as Euler’s and Shur’s identities. If we set up some conditions on the parts, we can
establish a combinatorial relation to two-lines matrices, subject to some rules. The entries of
such matrices might tell us properties of the respective partition.

In this chapter, we present some kind of partitions and its respective matrix representation.
By summing the elements of the second line, this value represents one property for the related
partition. If we classify them according to theses sums and organize them in a table, we discover
identities till then unknown that it clearly reveals. In each section, we focus on partitions into
distinct, odd and even parts, besides parts which are Fibonacci Numbers.

In the case of distinct parts, we show two characterizations, whereas we present a new
one for partitions into odd parts which, taking advantage of Euler’s Identity, in number, are the
same as those ones subjected to the first restriction.

2.1 Partitions into distinct parts and rank

If we start by considering the number of parts of partitions whose parts are distinct, we can
associate them to one kind of matrices. The following theorem is a combinatorial interpretation
about these partitions based on how many parts they have.

Theorem 2.1. The number of partitions of n into distinct parts is equal to the number of
two-line matrices

A �

�
c1 c2 � � � cs

d1 d2 � � � ds

�
, (2.1)

whose entries are non-negative numbers whose sum is n and satisfying the following relations

cs � 1; dt ¥ 1, (2.2)

ct � 1� ct�1 � dt�1, (2.3)

Proof. We are going to construct a bijection between the considered sets. First, take a partition
into distinct parts,

n � λ1 � λ2 � � � � � λs.

We can relate it to a matrix, whose entries sum n, in the following way:

A �

�
λ2 � 1 λ3 � 1 � � � λs � 1 1

λ1 � λ2 � 1 λ2 � λ3 � 1 � � � λs�1 � λs � 1 λs � 1

�
, (2.4)
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It’s easy to see the matrix above satisfies the conditions (2.2) and (2.3). The inverse map
is described just adding up the columns and getting a partition into distinct parts, where s is
the number of parts.

Example 2.1. By the generating function of partitions into distinct parts , we have
¸
n¥0

pdpnqq
n �

¹
i¥1
p1� qiq � 1� q � q2 � 2q3 � 2q4 � 3q5 � 4q6 � 5q7 � 6q8 � 8q9 � � � � .

If we consider n � 8, we have the following partitions and their respective matrix representations:

pdp8q Matrix representation Sum on the 2nd line

p8q
�

1
7

�
7

p7, 1q
�

2 1
5 0

�
5

p6, 2q
�

3 1
3 1

�
4

p5, 3q
�

4 1
1 2

�
3

p5, 2, 1q
�

3 2 1
2 0 0

�
2

p4, 3, 1q
�

4 2 1
0 1 0

�
1

By summing the entries of the second line, this number describes the rank of the related
partition. Indeed,

d1 � d2 � � � � � ds � pλs � λs�1 � 1q � pλs�1 � λs�2 � 1q � � � � � pλ2 � λ1 � 1q

� λs � s,

which is the largest part minus the number of parts.

Remark 2.1. It is not possible to have partitions into distinct parts whose rank is a negative
number. Indeed, if m is the largest part, we have, at most, m� 1 distinct parts besides it.

Definition 2.1. Let prpn, kq be the number of partitions of n into distinct parts whose rank is

k. We have that
n�1̧

k�0
prpn, kq � pdpnq.

Example 2.2. We have four partitions of 18 into distinct parts and rank equals to 7, then
prp18, 7q � 4. They are

p9, 8q, p10, 7, 1q, p10, 6, 2q and p10, 5, 3q.

For a fixed n we classified its partitions according to their sums on the second line. By
counting the appearance of sums, we can organize the data in a table, which is presented next.
The entry in line n and column n� j is the number of times j appears as sum of second line in
type (2.1) matrices. In this case, the entry pn, n� jq is prpn, jq.
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Looking at the 9th line, from the right to the left, we have:

• no partition into distinct parts with rank 0.

• 1 partition into distinct parts with rank 1: p4, 3, 2q.

• 1 partition into distinct parts with rank 2: p5, 3, 1q.

• 2 partitions into distinct parts with rank 3: p6, 2, 1q, p5, 4q.

• 1 partition into distinct parts with rank 4: p6, 3q.

• 1 partition into distinct parts with rank 5: p7, 2q.

• 1 partition into distinct parts with rank 6: p8, 1q.

• no partition into distinct parts with rank 7.

• 1 partition into distinct parts with rank 8: p9q.

By observing the table, one can see below certain entry, the column becomes constant.
This property is

Theorem 2.2. For all n, i ¥ 0, we have

prp2n� 3, nq � prp2n� 3� i, n� iq.

Proof. By establishing a bijection between the sets of partitions counted by both sides of the
equality, the statement would be true. Taking a partition of 2n� 3 whose rank is n, adding up i
to the largest part, we obtain a partition of 2n� i� 3 where the rank has increased the same
amount, then belonging to the set counted by rp2n� 3� i, n� iq.

The inverse map is defined just decreasing i from the largest part of a partition of 2n�3�i
with rank equals to n� i. We must show that it is always possible to decrease it and still have a
partition into distinct parts. Besides, we must assure that the first part minus i is also larger
than the second one. By considering

λ � λ1 � λ2 � � � � � λk,

it remains to prove that λ1 � i ¡ λ2.

As the rank of λ is n� i, we have λ1 � n� k � i. From this, we note that the partition
must have more than one part, otherwise

|λ| � |λ1| � n� i� 1 � 2n� 3� i.

If λ2 ¥ n� k, then λ2 � n� k � l for some l ¥ 0. Hence the partitioned integer would
be, at least,

λ1 � λ2 � pn� k � iq � pn� k � lq � 2n� 2k � l.

As k ¥ 2, it is a contradiction. So, the inverse map is well defined.
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Theorem 2.3. For all n ¥ 0, we have

prp2n� 3, nq � pdpn� 2, parts ¥ 2q,

where pdpn, parts ¥ 2q is the number of partitions of n into distinct parts with no part 1.

Proof. Let Prp2n� 3, nq be the set of partitions of 2n� 3 into distinct parts with rank n and
Pdpn� 2, , parts ¥ 2q the set of partitions of n� 2 into distinct parts larger than or equal to 2.
We shall establish a bijection between both sets, in order to have

|Prp2n� 3, nq| � |Pdpn� 2, , parts ¥ 2q|.

So, given λ � pλ1, λ2, . . . , λkq a partition lying in Prp2n� 3, nq, we remove the largest part λ1

and add 1 to the remaining parts, getting a partition µ � pµ1, µ2, . . . , µk�1q of n� 2 into distinct
parts larger than or equal to 2, such that µ1 � λ2 � 1, µ2 � λ3 � 1, . . . , µk�1 � λk � 1.

Conversely, given µ � pµ1, µ2, . . . , µtq a partition of Pdpn� 2, parts ¥ 2q, we subtract 1
from each part and add a part of size n� 1� t. Thus we get a partition λ � pλ1, λ2, . . . , λt�1q of
2n� 3 into distinct parts. Note that, as

pµ1 � 1q � pµ2 � 1q � . . .� pµt � 1q � n� 2� t,

then
λ2 � |µ1 � 1| ¤ n� 2� t� 1   n� 1� t.

So, |λ1| � n� 1� t is the greatest part of λ. Moreover, rpλq � n� 1� t� pt� 1q � n, and the
bijection is well defined.

Example 2.3. We illustrate the previous bijection by an example. Let us consider n � 10 and
its 8 partitions that make up the set Prp23, 10q.

Prp23, 10q pdp12, parts ¥ 2q
p14, 6, 2, 1q p6, 2, 1q p7, 3, 2q
p14, 5, 3, 1q p5, 3, 1q p6, 4, 2q
p14, 4, 3, 2q p4, 3, 2q p5, 4, 3q
p13, 9, 1q p9, 1q p10, 2q
p13, 8, 2q p8, 2q p9, 3q
p13, 7, 3q p7, 3q p8, 4q
p13, 6, 4q p6, 4q p7, 5q
p12, 11q p11q p12q

2.2 Partitions into distinct parts and number of parts

Instead of focusing on the parts, now we take as basis the greatest part of such partitions.
Here we present another combinatorial way to see partitions into distinct parts. First we prove
an identity for the generating function, which helps us set a straight relation to another kind of
two-lines matrices.
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Lemma 2.1. The generating function for partitions into distinct parts is

Fdpqq � 1� q �
8̧

k�2
p1� qqp1� q2q � � � p1� qk�1qqk.

Proof. Note that
n¹
k�1

p1� qkq �
n�1¹
k�1

p1� qkq �
n�1¹
k�1

p1� qkqqn,

and, by induction, we get
n¹
k�1

p1� qkq � 1� q �
ņ

k�2
p1� qqp1� q2q � � � p1� qk�1qqk.

Once we have the generating function for partitions into distinct parts equals to

Fdpqq �
8¹
k�1

p1� qkq,

letting nÑ8, the identity is proven.

Theorem 2.4. The number of partitions of n into distinct parts is equal to the number of
two-line matrices

A �

�
c1 c2 � � � cs

d1 d2 � � � ds

�
, (2.5)

whose entries are non-negative integers that sum n and satisfy the following relations:

cs � 0, ds � 1 (2.6)

dt P t0, 1u, (2.7)

ct � ct�1 � dt�1, (2.8)

Proof. By Lemma 2.1, we have that

fdpqq � 1� q �
8̧

s�2
p1� qqp1� q2q � � � p1� qs�1qqs.

Each term in the sum of the previous representation of fdpqq generates partitions into
distinct parts whose largest part is s. Consider ji P t0, 1u the number of times i appears as part
and write this partition as

λ � js � s� js�1 � ps� 1q � � � � � j2 � 2� j1 � 1.

The following matrix corresponds to one that satisfies the conditions (2.6) to (2.8),

A �

�
1� j2 � � � � � js�1 � � � 1� js�2 � js�1 1� js�1 1 0

j1 � � � js�3 js�2 js�1 1

�
.

In a inverse way, for a fixed number s of columns, we can easily relate each matrix to a
partition into distinct parts with largest part s. The second row of those matrices describes the
number of parts of the related partition, as we can see by summing its entries.
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Example 2.4. In Example 2.1, we presented all six partitions of 8 into distinct parts and their
respective representations into matrices whose sum of the second line represents their ranks. Now,
in this new representation, the second line gives the number of parts on them. They are listed
below.

pdp8q Matrix representation Sum on the 2nd line

p8q
�

1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 1

�
1

p7, 1q
�

1 1 1 1 1 1 0
1 0 0 0 0 0 1

�
2

p6, 2q
�

2 1 1 1 1 0
0 1 0 0 0 1

�
2

p5, 3q
�

2 2 1 1 0
0 0 1 0 1

�
2

p5, 2, 1q
�

2 1 1 1 0
1 1 0 0 1

�
3

p4, 3, 1q
�

2 2 1 0
1 0 1 1

�
3

We classify the partitions according to the sum of the second line of its respective matrix
like we did in Section 1. Now, the entry pn, n� jq represents the number of partitions of n that
have j distinct parts. We denote it as pdpn, jq.
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0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

65
23

5
37

7
29

7
11

4
19

1
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Looking at the 15th line, from right to left, we have:

• 1 partition into 1 distinct parts;

• 7 partitions into 2 distinct parts;

• 12 partitions into 3 distinct parts;

• 6 partitions into 4 distinct parts;

• 1 partition into 5 distinct parts;

• no partitions into more than 5 distinct parts.

The pattern of this table allows us to see some properties, listed as follows. The first
one justifies the entries 0 on the table and the second one characterizes the sequences lying just
above the first null entries in each column.

Theorem 2.5. Let Tn �
npn� 1q

2 be the nth triangular number. If Tn ¤ k   Tn�1, then

pdpk, n� iq � 0, for all i ¥ 1.

Proof. Let us suppose there is a partition of k into n� i distinct parts, with Tn ¤ k   Tn�1. In
other words,

k � λ1 � λ2 � � � � � λn�i,

with λt � λj ,@t � j. As we have λn�t�i�1 ¥ t, then

k � λ1 � λ2 � � � � � λn�i ¥ pn� iq � � � � � 2� 1 � Tn�i,

which is an absurd.

Theorem 2.6. For n, k ¥ 1,

pdpTn � k, nq � ppk, with at most n parts q.

Proof. Given a partition of Tn � k into n distinct parts and considering its Young Diagram, it is
possible to remove i squares from the i� th smallest part, for i � 1, 2, ..., n. By doing this, what
is left is a partition of n with no restrictions.

Conversely, by adding the partition pn, n� 1, ..., 2, 1q on any partition of k, we obtain a
new one of Tn�k into n distinct parts. Therefore, the map is well defined and it is a bijection.

Example 2.5. If we consider k � 14 and n � 6, we illustrate the previous bijection.

ÞÑ �
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2.3 Partitions into odd parts considering the largest part

In the two previous sections we exhibited two different forms to look at partitions into
distinct parts. From Euler’s Identity, the generating function for partitions into odd parts is the
same as partitions whose parts are distinct. We have that

Fopqq �
¹
i¥1

1
1� q2i�1 �

¹
i¥1
p1� qiq � Fdpqq.

Here we prove an equality for Fopqq which allows us to set a new relation between partitions into
odd parts and two-lines matrices. As a consequence, these three representations are, in number,
the same.

Lemma 2.2. We have
Fopqq �

8̧

n�1

qn

pq2; q2qn
.

Proof. The general term

qs

pq2; q2qs
�

qs

p1� q2qp1� q4q � � � p1� q2sq

generates partitions into two colors (dark and light gray) in which there is only one light gray
part s and any number of dark even parts less than or equal to 2s.

We prove the statement by building a bijection between partitions into odd parts and
those ones into two colors that satisfy the conditions above. In order to make the bijection easier
to understand, as we explain the steps, we use an example.

First, take a partition λ into odd parts and consider its conjugated λ1.

ÞÝÑ

Separate the first part λ11 and turn it into the unique light gray part.

As the original partition had only odd parts, the remaining parts, after this process,
appear in pairs. So, merge each pair of parts and paint them with dark gray.
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ÞÝÑ

It is clear that the resulting parts are, at most, 2 times λ11. The reverse process is easily
constructible.

Theorem 2.7. The number of partitions of n into odd parts (equivalently, distinct parts) is
equal to the number of two-line matrices in the form 2.1, with non-negative integers as entries
whose sum is n and satisfy the relations:

cs � 1; (2.9)

di � 0 pmod 2q; (2.10)

ct � ct�1 � dt�1, t   s. (2.11)

Proof. Instead of taking a partition into odd parts, we are going to work with partitions into
two colors generated by

8̧

n�1

qn

pq2; q2qn
.

Both sets have the same cardinality as settled by Lemma 2.2. Write this partition as

n � s� j1 � 2� j2 � 4� � � � � js � 2s,

where s is the unique light gray part and ji counts the appearance of the even dark gray part 2i.
Rearrange it as

n � p2j1 � 2j2 � � � � � 2jsq � 1� p1� 2jsq � p1� 2js � 2js�1q � � � � � p1� 2js � � � � � 2j2q.

Organizing them in a matrix in the form

A �

�
1� 2js � 2js�1 � � � � � 2j2 � � � 1� 2js � 2js�1 1� 2js 1

2j1 � � � 2jds�2 2js�1 2js

�
,

it satisfies the conditions (2.9) to (2.11). The inverse map can be easily built based on the entries
on the second line that a half of di is how many times 2i appears as a part.

Remark 2.2. Again we want to sum all entries in the second line to seek an information for
the related partition. Now, following the inverse map of the bijection given as proof for Lemma
2.2, this value plus 1 represents the largest part of the partition into odd parts.

Example 2.6. In order to distinguish light and dark gray parts, we bold the dark ones. We
consider n � 8, that we know, from Example 2.1, there are six partitions whose parts are odd
numbers. Next we show them as well as the respective partitions into two colors and this new
matrix representation. Remember that the sum of second line plus 1 gives the largest part for the
original partition.
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pop8q Matrix representation Sum on the 2nd line plus 1

p7, 1q p2,2,2,2q
�

1 1
6 0

�
7

p5, 3q p4, 2,2q
�

3 1
2 2

�
5

p5, 1, 1, 1q p4,2,2q
�

1 1 1 1
4 0 0 0

�
5

p3, 3, 1, 1q p4,4q
�

3 1 1 1
0 2 0 0

�
3

p3, 1, 1, 1, 1, 1q p6,2q
�

1 1 1 1 1 1
2 0 0 0 0 0

�
3

p1, 1, 1, 1, 1, 1, 1, 1q p8q
�

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0

�
1

2.4 Partitions into even parts

If we set that the parts must be always even, the generating function for this kind of
partitions is

Fepqq �
¹
i¥1

1
1� q2i .

As before, we can associate each one of those partitions of n to two-lines matrix whose
entries sum n and satisfy some conditions. This theorem is proved next.

Theorem 2.8. The number of partitions of n into even parts is equal to the number of two-line
matrices

A �

�
c1 c2 � � � cs

d1 d2 � � � ds

�
,

whose entries are non-negative integers summing n and satisfy the following relations:

cs � ds; (2.12)

ct � dt � ct�1 � dt�1, t   s. (2.13)

Proof. We prove this statement by showing a bijection between both sets considered. We start
considering a partition into even parts of n, like

n � js � 2 � s� � � � � j2 � 2 � 2� j1 � 2 � 1.

Once the parts must be even numbers, it is clear that we only have partitions for even values of
n. Then, write the previous partitions as

n � pj1 � � � � � jsq � js � pjs�1 � 2jsq � pjs�2 � 2js�1 � 2jsq � � � � � pj1 � 2j2 � � � � � 2jsq.

Consider the following matrix
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A �

�
j1 � 2j2 � � � � � 2js � � � js�2 � 2js�1 � 2js js�1 � 2js js

j1 � � � js�2 js�1 js

�
.

It corresponds to one that satisfies the conditions (2.12) and (2.13).

In a inverse way, for a fixed number s of columns, we can easily relate each matrix to a
partition into even parts by determining how many times each number appear in the partition.
These quantities are expressed on the second line. When we add up these entries, we obtain the
number of parts of such partitions.

Example 2.7. By calling pepnq the number of partitions of n into even parts and considering
its generating function, we have

Fepqq �
¸
n¥0

pepnqq
n �

¹
i¥1

1
1� q2i � 1� q2 � 2q4 � 3q6 � 5q8 � 7q10 � 11q12 � 15q14 � � � � .

For n � 10, next we have the seven following partitions and their respective matrix representations:

pep10q Matrix representation Sum on the second line

p10q
�

2 2 2 2 1
0 0 0 0 1

�
1

p8, 2q
�

3 2 2 1
1 0 0 1

�
2

p6, 4q
�

4 3 1
0 1 1

�
2

p6, 2, 2q
�

4 2 1
2 0 1

�
3

p4, 4, 2q
�

5 2
1 2

�
3

p4, 2, 2, 2q
�

5 1
3 1

�
4

p2, 2, 2, 2, 2q
�

5
5

�
5

This representation of partitions provides information about the parts, as we could see.
As the sum of the second line gives us the number of parts, we can classify all partitions according
to this sum, which is the same as classifying them according to the number of parts. The next
definition will be useful for all results we are going to present.

Definition 2.2. For non-negative integers n and k, let pepn, kq be the number of partitions of
n into k even parts. We have

¸
k

pepn, kq � pepnq. This number is the same as the number of

matrices we have considered whose sum on the second line is equal to k.

Remark 2.3. Besides the fact we can only split even numbers into even parts, the maximum
numbers of parts is its half. So, we will only consider partitions counted by pep2n, kq, where
k ¤ n.
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Classifying those partitions according to the number of parts (equivalently to the sum of
the second line of its matrix representation), we organize them in a table. Next we present this
table, created by Maple, where the entry p2n, jq expresses the number of partitions of 2n into
n� j � 1 even parts.
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1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
2

1
4

1
1

6
1

1
1

8
1

1
2

1
10

1
1

2
2

1
12

1
1

2
3

3
1

14
1

1
2

3
4

3
1

16
1

1
2

3
5

5
4

1
18

1
1

2
3

5
6

7
4

1
20

1
1

2
3

5
7

9
8

5
1

22
1

1
2

3
5

7
10

11
10

5
1

24
1

1
2

3
5

7
11

13
15

12
6

1
26

1
1

2
3

5
7

11
14

18
18

14
6

1
28

1
1

2
3

5
7

11
15

20
23

23
16

7
1

30
1

1
2

3
5

7
11

15
21

26
30

27
19

7
1

32
1

1
2

3
5

7
11

15
22

28
35

37
34

21
8

1
34

1
1

2
3

5
7

11
15

22
29

38
44

47
39

24
8

1
36

1
1

2
3

5
7

11
15

22
30

40
49

58
57

47
27

9
1

38
1

1
2

3
5

7
11

15
22

30
41

52
65

71
70

54
30

9
1

40
1

1
2

3
5

7
11

15
22

30
42

54
70

82
90

84
64

33
10

1
42

1
1

2
3

5
7

11
15

22
30

42
55

73
89

10
5

11
0

10
1

72
37

10
1

44
1

1
2

3
5

7
11

15
22

30
42

56
75

94
11

6
13

1
13

6
11

9
84

40
11

1
46

1
1

2
3

5
7

11
15

22
30

42
56

76
97

12
3

14
6

16
4

16
3

14
1

94
44

11
1

48
1

1
2

3
5

7
11

15
22

30
42

56
77

99
12

8
15

7
18

6
20

1
19

9
16

4
10

8
48

12
1

50
1

1
2

3
5

7
11

15
22

30
42

56
77

10
0

13
1

16
4

20
1

23
0

24
8

23
5

19
2

12
0

52
12

1
52

1
1

2
3

5
7

11
15

22
30

42
56

77
10

1
13

3
16

9
21

2
25

2
28

8
30

0
28

2
22

1
13

6
56

13
1

54
1

1
2

3
5

7
11

15
22

30
42

56
77

10
1

13
4

17
2

21
9

26
7

31
8

35
2

36
4

33
1

25
5

15
0

61
13

1
56

1
1

2
3

5
7

11
15

22
30

42
56

77
10

1
13

5
17

4
22

4
27

8
34

0
39

3
43

4
43

6
39

1
29

1
16

9
65

14
1

58
1

1
2

3
5

7
11

15
22

30
42

56
77

10
1

13
5

17
5

22
7

28
5

35
5

42
3

48
8

52
5

52
2

45
4

33
3

18
5

70
14

1
60

1
1

2
3

5
7

11
15

22
30

42
56

77
10

1
13

5
17

6
22

9
29

0
36

6
44

5
53

0
59

8
63

8
61

8
53

2
37

7
20

6
75

15
1

62
1

1
2

3
5

7
11

15
22

30
42

56
77

10
1

13
5

17
6

23
0

29
3

37
3

46
0

56
0

65
3

73
2

76
4

73
3

61
2

42
7

22
5

80
15

1
64

1
1

2
3

5
7

11
15

22
30

42
56

77
10

1
13

5
17

6
23

1
29

5
37

8
47

1
58

2
69

5
80

7
88

7
91

9
86

0
70

9
48

0
24

9
85

16
1

66
1

1
2

3
5

7
11

15
22

30
42

56
77

10
1

13
5

17
6

23
1

29
6

38
1

47
8

59
7

72
5

86
3

98
4

10
76

10
90

10
09

81
1

54
0

27
0

91
16

1
68

1
1

2
3

5
7

11
15

22
30

42
56

77
10

1
13

5
17

6
23

1
29

7
38

3
48

3
60

8
74

7
90

5
10

60
12

04
12

91
12

97
11

75
93

1
60

3
29

7
96

17
1

70
1

1
2

3
5

7
11

15
22

30
42

56
77

10
1

13
5

17
6

23
1

29
7

38
4

48
6

61
5

76
2

93
5

11
16

13
03

14
55

15
49

15
27

13
67

10
57

67
4

32
1

10
2

17
1

72
1

1
2

3
5

7
11

15
22

30
42

56
77

10
1

13
5

17
6

23
1

29
7

38
5

48
8

62
0

77
3

95
7

11
58

13
80

15
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17
61

18
45

18
01

15
79

12
06

74
8

35
1

10
8

18
1

74
1

1
2

3
5

7
11

15
22

30
42

56
77

10
1

13
5

17
6

23
1

29
7

38
5

48
9

62
3

78
0

97
2

11
88

14
36

16
86

19
30

21
12

21
94

21
04

18
24

13
60

83
1

37
8

11
4

18
1
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Looking at the line number 14, from the right to the left, we have

• 1 partition into 1 even part: p14q.

• 3 partitions into 2 even parts: p12, 2q, p10, 4q, p8, 6q.

• 4 partitions into 3 even parts: p10, 2, 2q, p8, 4, 2q, p6, 4, 4q, p6, 6, 2q.

• 3 partitions into 4 even parts: p8, 2, 2, 2q, p6, 4, 2, 2q, p4, 4, 4, 2q.

• 2 partitions into 5 even parts: p6, 2, 2, 2, 2q, p4, 4, 2, 2, 2q.

• 1 partition into 6 even parts: p4, 2, 2, 2, 2, 2q.

• 1 partition into 7 even parts: p2, 2, 2, 2, 2, 2, 2q.

The table provides that some quantities remain constant in columns beneath the entries
pep4n, nq. This information can be translated as

pep4n� 2i, n� iq � pep4n, nq; i ¥ 0.

If we prove that they keep constant in columns, the sequence made of these numbers is the same
as the sequence of unrestricted partitions. The following theorem presents the properties we have
mentioned.

Theorem 2.9. For all n ¥ 1 and i ¥ 0 we have

pep4n� 2i, n� iq � ppnq

Proof. The statement we are going to prove is pep4n, nq � ppnq. For the case i ¥ 1, there is a
similar bijection to the one we did in Theorem 2.2, which proves that pep4n�2i, n�iq � pep4n, nq.
The only difference here is that we remove i parts 2 instead of i parts 1. Again, it is possible to
assert there are, at least, i parts 2 to remove. We do it by supposing there are less than i and it
becomes an absurd.

For the case i � 0, we start with a partition which lies in Pep4n, nq and has the form

4n � λ1 � λ2 � � � � � λn.

As each part is even, we write it as λi � 2µi. Then

p2µ1, 2µ2, ..., 2µnq

is a partition of 4n. We decrease 2 from each part, then divide the result by 2. We obtain�µ1 � 2
2 ,

µ2 � 2
2 , � � � ,

µn � 2
2

	
,

a partition of n, where some parts might possible be zero.
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Example 2.8. We describe both bijections with an example. Consider n � 5, i � 3 and the three
sets Pep26, 8q, Pep20, 5q and P p5q, whose cardinalities are 7 for all.

Pep26, 8q Pep20, 5q P p5q
p12, 2, 2, 2, 2, 2, 2, 2q p12, 2, 2, 2, 2q ÞÝÑ p10q ÞÝÑ p5q
p10, 4, 2, 2, 2, 2, 2, 2q p10, 4, 2, 2, 2q ÞÝÑ p8, 2q ÞÝÑ p4, 1q
p8, 6, 2, 2, 2, 2, 2, 2q p8, 6, 2, 2, 2q ÞÝÑ p6, 4q ÞÝÑ p3, 2q
p8, 4, 4, 2, 2, 2, 2, 2q p8, 4, 4, 2, 2q ÞÝÑ p6, 2, 2q ÞÝÑ p3, 1, 1q
p6, 6, 4, 2, 2, 2, 2, 2q p6, 6, 4, 2, 2q ÞÝÑ p4, 4, 2q ÞÝÑ p2, 2, 1q
p6, 4, 4, 4, 2, 2, 2, 2q p6, 4, 4, 4, 2q ÞÝÑ p4, 2, 2, 2q ÞÝÑ p2, 1, 1, 1q
p4, 4, 4, 4, 4, 2, 2, 2q p4, 4, 4, 4, 4q ÞÝÑ p2, 2, 2, 2, 2q ÞÝÑ p1, 1, 1, 1, 1q

2.5 Partitions into Fibonacci Numbers

The Fibonacci sequence is a sequence of integers numbers, starting with 0 and 1, in which
each subsequent term is the sum of the two previous ones. This sequence received the Italian
mathematician Leonardo of Pisa’s name, better known as Fibonacci, which describes, the growth
of a rabbit population.

In mathematical terms, the sequence is recursively defined by the following formula

Fn � Fn�1 � Fn�2, n ¥ 2

whose initial conditions are F0 � 0 and F1 � 1. This sequence has as first terms

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ...

Analysed as a sequence number, it is only a simple organization numerals receiving a
touch of mathematical logic. But what makes this order numbers, a special discovery, is its
connection with the phenomena of nature and the approximate value of the constant 1.6, the
ratio between a number and its predecessor in the sequence.

In this section, we consider partitions whose parts are in the set of Fibonacci Numbers.
Although we are not able to find nice information for this kind of partitions, we could get a
matrix representation to them.

Theorem 2.10. The number of partitions of n into parts that are Fibonacci numbers is equal to
the number of two-lines matrices in the form given by Theorem ??, with non-negative integers
entries whose sum is n and satisfy the following relations:

cs � 0, cs�1 � ds (2.14)

ct � ct�2 � ct�1 � dt�1, t   s� 1. (2.15)

Proof. We will not consider here the duplicity of the part 1 in the sequence. So, taking a partition
into Fibonacci numbers, we write it as

n � d1F2 � d2F3 � � � � � dsFs�1,
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where di are the multiplicities of each Fi�1. Each Fibonacci number can be rewritten as

F2 � 1

F3 � 1� F1

F4 � 1� F1 � F2
...

Fs�1 � 1� F1 � F2 � F3 � � � � � Fs�1.

Then, the partition can be read as

n � pd1 � d2 � � � � � dsq � 1� pd2 � � � � � dsqF1 � � � � � dsFs�1,

and we put on a matrix like

A �

�
dsFs�1 � ds�1Fs�2 � � � � � d2F1 � � � dsF2 � ds�1F1 dsF1 0

d1 � � � ds�2 ds�1 ds

�
.

Observe that the entries satisfy the conditions (2.14) and (2.15) and those ones in the
second line express how many parts of F2, ..., Fs�1 the correspondent partition has. The inverse
map can be defined just knowing the multiplicity of each part, set on the second line.

Example 2.9. By calling pfibpnq the number of partitions into Fibonacci numbers and considering
its generating function, we have

Ffibpqq �
¹
i¥2

1
p1� qFiq

� 1� q � 2q2 � 3q3 � 4q4 � 6q5 � 8q6 � 10q7 � � � � .

For n � 5, next we list its six considered partitions and their respective matrix representations:

pfibp5q Matrix representation Sum on the 2nd line

p5q
�

1 1 1 1 0
0 0 0 0 1

�
1

p3, 2q
�

2 1 0
0 1 1

�
2

p3, 1, 1q
�

1 1 0
2 0 1

�
3

p2, 2, 1q
�

2 0
1 2

�
3

p2, 1, 1, 1q
�

1 0
3 1

�
4

p1, 1, 1, 1, 1q
�

0
5

�
5
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3 Some Unsigned Mock Theta Functions

If we consider some Mock Theta Functions without sign in their general term, we can
read them as generating function for some kind of partitions. Setting a weight for each partition,
we can turn back to evaluate the coefficients of their expansion into power series. This work
was done in [9], where the authors established a straight relation between those coefficients and
a set of two-line matrices, whose integer entries are subject to some rules. To do so, first they
considered the unsigned version then, after setting the structure of the related matrix, they saw
that the weight normally depends on the sum of the second line of this, when it is required.

Our work is based on the representation for the coefficients by a two-line matrix given in
[9]. Even though most of them are presented in that paper, we prove the ones we are going to
use. From this and for each function, we classify all generated partitions of an integer n which
have the same sum for the second row of its associated matrix and build a table to organize it.
Some patterns are clearly suggested by the table. Probably, there are many more than the ones
we have already found.

In this chapter we study four Mock Theta Functions of order 5 as generating functions for
partitions. Two of them will be consider without the signal and properties about its partitions
will be enunciated and proved. Some results are known and, where they appear, we are going to
refer where they can be found. When it is not mentioned, the identities are new.

Some identities we present next are in the article [5] - Identities for partitions generated
by the unsigned versions of some mock theta functions - accepted for publication (Bulletin of
the brazilian Mathematical Society). It is composed by a selection of the following results. They
come from a combinatorial interpretation for the coefficientes of some unsigned Mock Theta
Functions.

3.1 Mock Theta Function f1pqq

We start by considering the Mock Theta Function of order 5

f1pqq �
8̧

n�0

qn
2�n

p�q; qqn
� 1� q2 � q3 � q4 � q5 � 2q6 � 2q7 � q8 � q9 � � � � .

If we consider its expansion, we get negative coefficients brought fourth by the denominator
of its general term. By removing this sign we get

f�1 pqq �
8̧

s�0

qs
2�s

pq; qqs
�

8̧

s�0

q2p1�2�3�����sq

p1� qqp1� q2q � � � p1� qsq
, (3.1)

whose general term generates the partitions of n with no gaps containing at least two parts equal
to each one of the numbers 1, 2, 3, . . . , s. By conjugation, another interpretation can be seen
as generator of partitions of n into exactly s parts such that the smallest part λs ¥ 2 and the
difference between consecutive parts is λt � λt�1 ¥ 2.
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Definition 3.1. Let pf1pnq be the number of partitions of n where, if s is the greatest part, there
are, at least, two copies of each number smaller than or equal to s. Then, we have

f�1 pqq �
8̧

n�0
pf1pnqq

n.

Example 3.1. pf1p9q � 3, and the three considered partitions are

p2, 2, 2,1, 1, 1q;

p2, 2,1,1,1, 1, 1q;

p1,1,1,1,1,1,1, 1, 1q.

The following combinatorial interpretation for the function f�1 pqq is given in [9].

Theorem 3.1. The coefficient of qn in the expansion of p3.1q is equal to the number of elements
in the set of matrices of the form

A �

�
c1 c2 � � � cs

d1 d2 � � � ds

�
, (3.2)

with non-negative integer entries whose sum is n and satisfying

cs � 2; dt ¥ 0; (3.3)

ct � 2� ct�1 � dt�1, @t   s. (3.4)

Proof. According to the general term of (3.1), we can decompose n as

n � 2 � 1� 2 � 2� 2 � 3� � � � � 2 � s� p1 � d1 � 2 � d2 � � � � � s � dsq

or, equivalently, as the sum of the entries of the matrix

A �

�
2s� d2 � � � � � ds � � � 6� ds�1 � ds 4� ds 2

d1 � � � ds�2 ds�1 ds

�
,

Noting that the entries satisfy conditions (3.3) to (3.4), the theorem is proved.

The second row of the matrices mentioned before describes how many parts 1, 2, ..., s the
related partition has beyond the two copies that necessarily appear. To know how many of these
parts the partition has, we have to sum the di, for i � 1, 2, . . . , s.

Definition 3.2. Let pf1pn, kq be the number of partitions counted by pf1pnq having k other parts
beyond the two copies that must appear. When we consider an example, those k parts will be bold.
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Example 3.2. Considering n � 24 and k � 6, we have 4 partitions that satisfy the conditions
having 6 parts beyond those that must appear twice. They are

p3, 3,3,3,3, 2, 2, 1, 1,1,1,1q;

p3, 3,3,3, 2, 2,2,2, 1, 1,1,1q;

p3, 3,3, 2, 2,2,2,2,2, 1, 1,1q;

p3, 3, 2, 2,2,2,2,2,2,2, 1, 1q.

The author defined the weight for partitions generated by this function as

ωf1pλq � p�1q
°
di ,

where the elements di are the entries of the second row. So, the coefficient of qn in the expansion
of f1 can be rewritten as

f1pqq �
8̧

n�0

� ¸
even k

pf1pn, kq �
¸
odd k

pf1pn, kq
	
qn.

For a fixed n, we classify its partitions of the type described in Definition 3.2 according
to the sum on the second row of the matrix associated to it. By counting the appearance of each
number in these sums, we can organize the data on a table, which is presented next. The entry
in line n and column n� j is the number of times j appears as sum of the entries of the second
row in type (3.2) matrices.
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1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

1
0

2
0

1
3

0
1

0
4

0
1

0
0

5
0

1
0

0
0

6
0

1
0

0
0

1
7

0
1

0
0

0
1

0
8

0
1

0
0

0
1

1
0

9
0

1
0

0
0

1
1

0
0

10
0

1
0

0
0

1
1

1
0

0
11

0
1

0
0

0
1

1
1

0
0

0
12

0
1

0
0

0
1

1
1

1
0

0
1

13
0

1
0

0
0

1
1

1
1

0
0

1
0

14
0

1
0

0
0

1
1

1
1

1
0

1
1

0
15

0
1

0
0

0
1

1
1

1
1

0
1

1
1

0
16

0
1

0
0

0
1

1
1

1
1

1
1

1
2

0
0

17
0

1
0

0
0

1
1

1
1

1
1

1
1

2
1

0
0

18
0

1
0

0
0

1
1

1
1

1
1

2
1

2
2

1
0

0
19

0
1

0
0

0
1

1
1

1
1

1
2

1
2

2
2

0
0

0
20

0
1

0
0

0
1

1
1

1
1

1
2

2
2

2
3

1
0

0
1

21
0

1
0

0
0

1
1

1
1

1
1

2
2

2
2

3
2

1
0

1
0

22
0

1
0

0
0

1
1

1
1

1
1

2
2

3
2

3
3

2
0

1
1

0
23

0
1

0
0

0
1

1
1

1
1

1
2

2
3

2
3

3
3

1
1

1
1

0
24

0
1

0
0

0
1

1
1

1
1

1
2

2
3

3
3

3
4

2
2

1
2

1
0

25
0

1
0

0
0

1
1

1
1

1
1

2
2

3
3

3
3

4
3

3
1

2
2

0
0

26
0

1
0

0
0

1
1

1
1

1
1

2
2

3
3

4
3

4
4

4
2

2
3

2
0

0
27

0
1

0
0

0
1

1
1

1
1

1
2

2
3

3
4

3
4

4
5

3
3

3
3

1
0

0
28

0
1

0
0

0
1

1
1

1
1

1
2

2
3

3
4

4
4

4
6

4
4

3
4

3
1

0
0

29
0

1
0

0
0

1
1

1
1

1
1

2
2

3
3

4
4

4
4

6
5

5
4

4
4

3
0

0
0

30
0

1
0

0
0

1
1

1
1

1
1

2
2

3
3

4
4

5
4

6
6

6
5

5
5

5
2

0
0

1
31

0
1

0
0

0
1

1
1

1
1

1
2

2
3

3
4

4
5

4
6

6
7

6
6

5
6

4
1

0
1

0
32

0
1

0
0

0
1

1
1

1
1

1
2

2
3

3
4

4
5

5
6

6
8

7
7

6
7

6
4

1
1

1
0

33
0

1
0

0
0

1
1

1
1

1
1

2
2

3
3

4
4

5
5

6
6

8
8

8
7

8
7

6
3

1
1

1
0

34
0

1
0

0
0

1
1

1
1

1
1

2
2

3
3

4
4

5
5

7
6

8
9

9
8

9
8

8
6

3
1

2
1

0
35

0
1

0
0

0
1

1
1

1
1

1
2

2
3

3
4

4
5

5
7

6
8

9
10

9
10

9
9

8
6

2
2

2
1

0
36

0
1

0
0

0
1

1
1

1
1

1
2

2
3

3
4

4
5

5
7

7
8

9
11

10
11

10
11

10
9

5
3

3
3

0
0

37
0

1
0

0
0

1
1

1
1

1
1

2
2

3
3

4
4

5
5

7
7

8
9

11
11

12
11

12
11

11
8

5
3

4
2

0
0

38
0

1
0

0
0

1
1

1
1

1
1

2
2

3
3

4
4

5
5

7
7

9
9

11
12

13
12

13
13

13
11

9
5

5
4

2
0

0
39

0
1

0
0

0
1

1
1

1
1

1
2

2
3

3
4

4
5

5
7

7
9

9
11

12
14

13
14

14
15

13
12

8
6

5
5

1
0

0
40

0
1

0
0

0
1

1
1

1
1

1
2

2
3

3
4

4
5

5
7

7
9

10
11

12
15

14
15

15
17

15
15

12
9

7
7

4
1

0
0

Ta
bl
e
4
–
Ta

bl
e
fr
om

th
e
ch
ar
ac
te
riz

at
io
n
gi
ve
n
by

T
he

or
em

3.
1
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Looking at the 10th line, from the right to the left, there are:

• no partitions with no parts beyond those ones which must appear twice;

• no partitions with 1 part beyond those ones which must appear twice;

• 1 partition with 2, 3 and 4 parts beyond those ones which must appear twice;

• no partitions with 5, 6 and 7 parts beyond those ones which must appear twice;

• 1 partition with 8 parts beyond those ones which must appear twice;

• no partitions with 9 parts beyond those ones which must appear twice.

By observing the table above, looking at the diagonals, we get some results.

Proposition 3.1. For all n ¥ 1 and 0 ¤ i ¤ n� 1 we have

pf1pn
2 � n� 1� i, 1q � 1.

Proof. First of all, note that the largest part of any partition that belongs to Pf1pn
2�n�1� i, 1q

must be n. Indeed, if n� 1 were the greatest part, we would have, at least,

pn� 1q � pn� 1q � n� n� � � � � 1� 1 � n2 � 3n� 2,

which is greater than n2 � n � 1 � i, for 0 ¤ i ¤ n � 1. On the other hand, if n � 1 were the
greatest part, we would have

pn� 1q � pn� 1q � � � � � 1� 1 � n2 � n

and, as a part is at most n� 1, the number been partitioned would be at most n2 � n� pn� 1q,
which is smaller than n2 � n� 1� i, if 0 ¤ i ¤ n� 1.

Then, we have to write

n2 � n� 1� i � n� n� � � � � 1� 1� k � pn� 1qn� k � n2 � n� k,

with k ¤ n. It is clear that we can only have k � i� 1.

Proposition 3.2. For all n ¥ 1 and 0 ¤ i ¤ n, we have

pf1pn
2 � i, 2q �

$'&
'%
n� 1

2 �
Y i

2

]
odd n,

n

2 �
Y i� 1

2

]
even n.

Proof. The greatest part of any partition counted by pf1pn
2 � i, 2q must be n� 1. So, we write

n2 � i � pn� 1q � pn� 1q � � � � � 1� 1� r � s,

with 1 ¤ s ¤ r ¤ n� 1, which implies

r � s � n2 � i� npn� 1q � n� i.
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Then we need to determinate the number of solutions of equations r� s � n� i and r� s � n� i,
with 1 ¤ s ¤ r ¤ n � 1. Let us solve the problem for r � s � n � i, the negative case being
adaptable by changing signs. First of all, the number of solutions of equation r � s � n� i with

no restriction on r is
Z
n� i

2

^
. Now we discard the solutions where r ¡ n� 1.

If i � 0, note that r ¡ n� 1 implies r � n, and so s � 0, which never occurs. So, there’s
no solution to discard and the number we’re looking for is just

Z
n

2

^
�

$&
%
n� 1

2 , odd n,
n

2 , even n

For i ¥ 1, as s ¥ 1 and r ¡ n� 1, we can write r � n� 1� k with 1 ¤ k ¤ i, and so,
for each value of k we get one value of s.

Then, the number of solutions we want is
Z
n� i

2

^
� i. Next, we analyse possible parities

of n and i and their combinations, in order to see that this number is equal to the one given by
the proposition.

If n and i are odd, we write n � 2l � 1 and i � 2j � 1. So,Z
n� i

2

^
� i �

Z
2l � 2j � 2

2

^
� p2j � 1q

� l � j

�
n� 1

2 �
i� 1

2

If n is odd and i is even, we write n � 2l � 1 and i � 2j. So,Z
n� i

2

^
� i �

Z
2l � 2j � 1

2

^
� 2j

� l � j

�
n� 1

2 �
i

2

If n and i are even, we write n � 2l and i � 2j. So,Z
n� i

2

^
� i �

Z
2l � 2j

2

^
� 2j

� l � j

�
n

2 �
i

2

If n is even and i is odd, we write n � 2l and i � 2j � 1. So,Z
n� i

2

^
� i �

Z
2l � 2j � 1

2

^
� p2j � 1q

� l � j � 1

�
n

2 �
i� 1

2

Thus, the proposition is proven.
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Proposition 3.3. For all n ¥ 3 we have

pf1pn
2 � 3, 3q � ppn� 3, 3q.

Proof. First of all, it is easy to prove that the largest part of any partition counted by pf1pn
2�3, 3q

must be n� 1, by considering possible parts larger or smaller than it. We are able to write

n2 � 3 � pn� 1q � pn� 1q � � � � � 1� 1� r � s� t

� npn� 1q � r � s� t

� n2 � n� r � s� t,

which is the same as
r � s� t � n� 3,

with 1 ¤ t ¤ s ¤ r ¤ n� 1. The number of solution of this equation clearly is ppn� 3, 3q.

Proposition 3.4. For all n ¥ 1 we have

piq pf1
p4n2 � n� i, 3q � pf1

p4n2 � n� i, 3q, for 0 ¤ i ¤ n� 2;

piiq pf1
p4n2 � 5n� 2� i, 3q � pf1

p4n2 � 5n� 2� i, 3q, for 0 ¤ i ¤ n� 2;

piiiq pf1
p4n2 � 5n� i, 3q � Tn, for i � 0, 1, 2, 3.

pivq pf1
p4n2 � n, 3q �

Z
n2 � 1

2

^
;

Proof. piq First of all, note that the largest part of any partition counted by pf1p4n2�n� i, 3q
is 2n � 1. This can be proved in the same way as we did before. So, we have to build a
bijection between sets Pf1p4n2 � n� i, 3q and Pf1p4n2 � n� i, 3q.

Let λ be a partition of 4n2 � n� i in the form

λ � p1, 1, 2, 2, . . . , 2n� 1, 2n� 1, r, s, tq,

with 1 ¤ r ¤ s ¤ t ¤ 2n� 1. Then, r, s and t satisfy

r � s� t � 3n� i.

Consider now the partition 4n2 � n� i, whose parts probably are not ordered,

µ � p1, 1, 2, 2, . . . , 2n� 1, 2n� 1, 2n� r, 2n� s, 2n� tq.

Conversely, let µ be a partition of 4n2 � n� i in the form

λ � p1, 1, 2, 2, . . . , 2n� 1, 2n� 1, r, s, tq,

with 1 ¤ r ¤ s ¤ t ¤ 2n� 1. Then

r � s� t � 3n� i.

As before, taking λ � p1, 1, 2, 2, . . . , 2n� 1, 2n� 1, 2n� r, 2n� s, 2n� tq, we get a partition
of 4n2 � n� i.
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piiq In this case, the largest part of any partition of pf1p4n2 � 5n� 2� i, 3q is 2n. The bijection
between Pf1p4n2 � 5n� 2� i, 3q and Pf1p4n2 � 5n� 2� i, 3q is similar to the one we gave
in item piq.

Given λ � p1, 1, 2, 2, . . . , 2n, 2n, r, s, tq, a partition counted by pf1p4n2� 5n� 2� i, 3q, then
r, s and t, must satisfy 1 ¤ r ¤ s ¤ t ¤ 2n and r � s� t � 3n� 1� i. So, consider

µ � p1, 1, 2, 2, . . . , 2n, 2n, 2n� 1� r, 2n� 1� s, 2n� 1� tq

the correspondent partition lying in Pf1p4n2 � 5n� 2� i, 3q.

The reverse map is analogous.

piiiq The largest part of any partition counted by pf1p4n2 � 5n� i, 3q is 2n. So, we have

4n2 � 5n� i � 1� 1� 2� 2� � � � � 2n� 2n� r � s� t

� 4n2 � 2n� r � s� t,

with 0 ¤ r ¤ s ¤ t ¤ 2n, which implies

r � s� t � 3n� i, 0 ¤ r ¤ s ¤ t ¤ 2n (3.5)

So, to prove statement piiiq, we need to prove that the number of solutions of equation
(3.5) is equal to Tn.

Let us begin with equation (3.5) with no restriction in parts r, s and t, other than 0 ¤ r ¤

s ¤ t. The number of solutions is the same as pp3n� i, 3q, which, as we already know, is

"
p3n� i� 3q2

12

*
�

Z
3n� i

2

^
� 1.

Now we have to eliminate the solutions we do not want. For this we will split the rest of
the proof into two parts, proving for i � 0 and i � 1, and, after that, setting bijections
between Pf1p4n2 � 5n, 3q and Pf1p4n2 � 5n� 3, 3q and between Pf1p4n2 � 5n� 1, 3q and
Pf1p4n2 � 5n� 2, 3q.

 If i � 0, equation (3.5) turns to r � s� t � 3n, and the number of its solutions with
no restriction is "

3pn� 1q2

4

*
�

Z
3n
2

^
� 1.

Claim. For all n ¥ 1,"
3pn� 1q2

4

*
�

Z
3n
2

^
� 1 � npn� 1q

2 �

Z
pn� 1q2

4

^
. (3.6)

∗ Indeed, if n is even, say n � 2k,"
3p2k � 1q2

4

*
�

Z
3p2kq

2

^
� 1 �

"
3p4k2 � 4k � 1q

4

*
� 3k � 1 � 3k2,

and
2kp2k � 1q

2 �

Z
p2k � 1q2

4

^
�

4k2 � 2k
2 � k2 � k � 3k2.
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∗ If n is odd, saying n � 2k � 1,"
3p2k � 2q2

4

*
�

Z
3p2k � 1q

2

^
�1 �

"
3p4k2 � 8k � 4q

4

*
�p3k�1q�1 � 3k2�3k�1,

and

p2k � 1qp2k � 2q
2 �

Z
p2k � 1� 1q2

4

^
�

4k2 � 6k � 2
2 � k2 � 3k2 � 3k � 1.

Next we eliminate the solutions that do not satisfy 1 ¤ r ¤ s ¤ t ¤ 2n.
Note that only t can be greater than 2n, otherwise r � s� t ¡ 3n. So, if t ¡ 2n we
can write t � 2n� i with 1 ¤ i ¤ n� 2 and the equation becomes r � s � n� i. For

each value of i the number of solutions is
Z
n� i

2

^
.

Claim. For all n ¥ 3,

n�2̧

i�1

Z
n� i

2

^
�

Z
pn� 1q2

4

^
. (3.7)

We prove this claim by induction on n. First of all, for n � 3 the equality holds.
Supposing that for n the equality holds, for n� 1, we have

n�1̧

i�1

Z
n� 1� i

2

^
�

n�2̧

i�0

Z
n� i

2

^

�
n�2̧

i�1

Z
n� i

2

^
�

Z
n

2

^

�

Z
pn� 1q2

4

^
�

Z
n

2

^
.

∗ For odd n, say n � 2j � 1,Z
p2j � 1� 1q2

4

^
�

Z
2j � 1

2

^
�

Z
4j2

4

^
� j � j2 � j �

Z
p2j � 1q2

4

^
.

∗ For even n, say n � 2j,Z
p2j � 1q2

4

^
�

Z
2j
2

^
�

Z
4j2 � 4j � 1

4

^
� j � j2 � j � j � j2 �

Z
p2jq2

4

^
.

Then
n�1̧

i�1

Z
n� 1� i

2

^
�

Z
n2

4

^
,

and the claim is proved.
Now, the number of solutions of equation (3.5) with 1 ¤ r ¤ s ¤ t ¤ 2n is

npn� 1q
2 �

Z
pn� 1q2

4

^
�

Z
pn� 1q2

4

^
�
npn� 1q

2 � Tn.
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 If i � 1 equation (3.5) turns to r � s� t � 3n� 1, and the number of its solutions

with no restriction is
"
p3n� 4q2

12

*
�

Z
3n� 1

2

^
� 1.

Like before, considering odd n and even n, we have n ¥ 1,"
p3n� 4q2

12

*
�

Z
3n� 1

2

^
� 1 � npn� 1q

2 �

Z
n2

4

^
.

Now, having the number of solutions of equation r� s� t � 3n� 1 with no restriction,
other than 0 ¤ r ¤ s ¤ t, we eliminate those ones that do not satisfy 1 ¤ r ¤ s ¤ t ¤

2n.
Note that only t can be greater than 2n, otherwise r � s� t ¡ 3n� 1. If t ¡ 2n, we
can write t � 2n� i with 1 ¤ i ¤ n� 1 and the equation becomes r � s � n� 1� i.

For each value of i the number of solutions is
Z
n� 1� i

2

^
.

In the same way we did for equality (3.7), we have: For all n ¥ 2,

n�1̧

i�1

Z
n� 1� i

2

^
�

Z
n2

4

^
.

So, the number of solutions of equation (3.5) with 1 ¤ r ¤ s ¤ t ¤ 2n is for i � 1 is

npn� 1q
2 �

Z
n2

4

^
�

Z
n2

4

^
�
npn� 1q

2 � Tn.

Now, to prove the case when i � 3 we set a bijection between Pf1p4n2 � 5n, 3q and
Pf1p4n2 � 5n� 3, 3q.

Given a partition counted by pf1p4n2�5n, 3q, it is of the form λ � p1, 1, 2, 2, 3, 3, . . . , 2n, 2n, r, s, tq,
with 1 ¤ r ¤ s ¤ t ¤ 2n and r � s� t � 3n.

Writing µ � p1, 1, 2, 2, . . . , 2n � 1 � r, 2n � 1 � s, 2n � 1 � tq, µ is a partition lying in
Pf1p4n2 � 5n� 3, 3q because

1� 1� 2� 2� � � � � 2n� 2n� p2n� 1� rq � p2n� 1� sq � p2n� 1� tq �

� 4n2 � 2n� 6n� 3� pr � s� tq

� 4n2 � 6n� 3� 3n

� 42 � 5n� 3.

Conversely, given a partition counted by Pf1p4n2 � 5n� 3, 3q, it is like

µ � p1, 1, 2, 2, 3, 3, . . . , 2n, 2n, a, b, cq,

with 1 ¤ a ¤ b ¤ c ¤ 2n and a� b� c � 3n� 3. So,

λ � p1, 1, 2, 2, 3, 3, . . . , 2n, 2n, 2n� 1� a, 2n� 1� b, 2n� 1� cq

is a partition counted by Pf1p4n2 � 5n, 3q because

1� 1� 2� 2� � � � � 2n� 2n� p2n� 1� aq � p2n� 1� bq � p2n� 1� tq �
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� 4n2 � 2n� 6n� 3� pa� b� cq

� 4n2 � 8n� 3� 3n� 3

� 42 � 5n.

The bijection between sets Pf1p4n2 � 5n� 1, 3q and Pf1p4n2 � 5n� 2, 3q is analogous.

pivq By item piq, taking i � 0, we have that the largest part of any partition counted by
pf1p4n2 � n, 3q is 2n� 1. Thus, pf1p4n2 � n, 3q is the number of solutions of the following
equation

4n2 � n � 1� 1� 2� 2� � � � � 2n� 1� 2n� 1� r � s� t

� 4n2 � 2n� r � s� t,

which is equivalent to

r � s� t � 3n, 1 ¤ r ¤ s ¤ t ¤ 2n� 1 (3.8)

To prove statement pivq, we need to prove that the number of solutions of equation (3.8) is

equal to
Z
n2 � 1

2

^
.

Let us begin with equation (3.8) with no restriction in parts r, s and t. The number of
solutions is the same as pp3n, 3q, which we already know"

p3n� 3q2

12

*
�

Z
3n
2

^
� 1.

By considering odd n and even n, as we did in the previous item, we have that: for all
n ¥ 1, "

p3n� 3q2

12

*
�

Z
3n
2

^
� 1 �

Z
n2 � 1

2

^
�

Z
n2

4

^
. (3.9)

Now we have to eliminate the solutions that do not satisfy 1 ¤ r ¤ s ¤ t ¤ 2n � 1. As
before, note that only t can be greater than 2n�1, otherwise r�s�t ¡ 3n�1. If t ¡ 2n�1,
we can write t � 2n� 1� i with 1 ¤ i ¤ n� 1 and the equation becomes r� s � n� 1� i.

For each value of i the number of solutions is
Z
n� 1� i

2

^
.

In the same way we did for equality (3.7), we have: For all n ¥ 2,

n�1̧

i�1

Z
n� 1� i

2

^
�

Z
n2

4

^
. (3.10)

And the identity holds.

Proposition 3.5. For all n ¥ 2 and 0 ¤ i ¤ 3, we have

pf1p2Tn � i, 4q � pf1p2Tn � i, 4q.
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Proof. Any partition counted by Pf1p2Tn � i, 4q has largest part n� 1. This can be proved in
the same way we did many times before.

Given λ a partition counted by Pf1p2Tn � i, 4q, it is of the form

λ � pn� 1, n� 1, . . . , 2, 2, 1, 1, k1, k2, k3, k4q,

with 1 ¤ kj ¤ n� 1. So, we have k1 � k2 � k3 � k4 � n2 � n� i� npn� 1q � 2n� i.

If we take µ � pn� 1, n� 1, . . . , 2, 2, 1, 1, n� k1, n� k2, n� k3, n� k4q, we get a partition
of

n� 1� n� 1� . . . �1� 1� n� k1 � n� k2 � n� k3 � n� k4

� npn� 1q � 4n� pk1 � k2 � k3 � k4q

� n2 � 3n� p2n� iq

� n2 � n� i

� 2Tn � i,

with 1 ¤ n� kj ¤ n� 1. So, µ is a partition counted by Pf1p2Tn � i, 4q.

The reverse map is clear.

3.2 Mock Theta Function F1pqq

Consider the mock theta function of order 5

F1pqq �
8̧

n�0

q2n2�2n

pq; q2qn�1
. (3.11)

Its general term
q4p1�2�3�����sq

p1� qqp1� q3q � � � p1� q2s�1q
,

generates the partitions of n with:
- the even parts ranging from 2 to 2s with no gaps, and each one of them with multiplicity 2;
- any odd part is less than or equal to 2s� 1.

The next Theorem can be found in [9]. It also relates the coefficients of the Mock Theta
Function F1pqq to a set composed by two-line matrices. Differently from what we did for f1pqq,
here we do not need to set a weight for partitions the general term of F1pqq provides, just because
its expansion does not have any negative term.

Theorem 3.2. The coefficient of qn in the expansion of p3.11q is equal to the number of elements
in the set of matrices of the form

A �

�
c1 c2 � � � cs�1

d1 d2 � � � ds�1

�
, (3.12)
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with non-negative integer entries satisfying

cs�1 � 0; dt ¥ 0; (3.13)

ct � 4� ct�1 � 2dt�1, @t   s� 1; (3.14)

n �
¸
ct �

¸
dt. (3.15)

Proof. According to the general term of (3.11), we can decompose n as

n � p4� 8� 12� � � � � 4sq � p1 � d1 � 3 � d3 � � � � � p2s� 1q � ds�1q

or, equivalently, as the sum of the entries of the matrix

A �

�
4s� 2d2 � � � � � 2ds�1 � � � 8� 2ds � 2ds�1 4� 2ds�1 0

d1 � � � ds�1 ds ds�1

�
,

Noting that the entries satisfy conditions (3.14) to (3.15), the theorem is proved.

Definition 3.3. Let pF1pnq be the number of partitions of n where, if the largest even part is 2s,
then all even number smaller than or equal to 2s must appear twice and the odd parts must be
smaller than or equal to 2s� 1. Hence,

F1pqq �
8̧

n�0
pF1pnqq

n.

The second row of the matrices of type (3.12) describes the odd parts from 1 to 2s� 1,
of the partition associated to each matrix. To know how many odd parts the partition has, we
have to sum the di, for i � 1, 2, . . . , s� 1.

Definition 3.4. Let pF1pn, kq be the number of partitions of n counted by pF1pnq, where there
are k odd parts. So

pF1pnq �
¸
k

pF1pn, kq.

Example 3.3. We have pF1p28, 8q � 4 and PF1p28, 8q is composed of by the following four
partitions:

p5,5, 4, 4, 2, 2,1,1,1,1,1,1q;

p5, 4, 4,3,3, 2, 2,1,1,1,1,1q;

p4, 4,3,3,3,3, 2, 2,1,1,1,1q;

p3,3,3,3,3,3,3,3, 2, 2q.

For a fixed n, we classify its partitions like in Definition 3.3 according to the sum on the
second row of the matrix associated to it, consequently, according to the number of odd parts.
By counting the appearance of each number in these sums, we can organize the data on a table,
which is presented next. The entry in line n and column n� j is the number of times j appears
as sum of the entries of the second row in type (3.12) matrices.
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1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

1
0

2
0

0
3

0
0

0
4

0
0

0
1

5
0

0
0

1
0

6
0

0
0

1
0

0
7

0
0

0
1

0
1

0
8

0
0

0
1

0
1

0
0

9
0

0
0

1
0

1
0

0
0

10
0

0
0

1
0

1
0

1
0

0
11

0
0

0
1

0
1

0
1

0
0

0
12

0
0

0
1

0
1

0
1

0
0

0
1

13
0

0
0

1
0

1
0

1
0

1
0

1
0

14
0

0
0

1
0

1
0

1
0

1
0

1
0

0
15

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
16

0
0

0
1

0
1

0
1

0
1

0
2

0
1

0
0

17
0

0
0

1
0

1
0

1
0

1
0

2
0

1
0

1
0

18
0

0
0

1
0

1
0

1
0

1
0

2
0

1
0

2
0

0
19

0
0

0
1

0
1

0
1

0
1

0
2

0
2

0
2

0
0

0
20

0
0

0
1

0
1

0
1

0
1

0
2

0
2

0
2

0
1

0
0

21
0

0
0

1
0

1
0

1
0

1
0

2
0

2
0

2
0

2
0

0
0

22
0

0
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

2
0

1
0

0
23

0
0

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
2

0
2

0
0

0
24

0
0

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
2

0
3

0
0

0
1

25
0

0
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

3
0

3
0

1
0

1
0

26
0

0
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

3
0

3
0

2
0

1
0

0
27

0
0

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
3

0
3

0
3

0
2

0
1

0
28

0
0

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
3

0
4

0
3

0
3

0
1

0
0

29
0

0
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

3
0

4
0

3
0

4
0

1
0

1
0

30
0

0
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

3
0

4
0

3
0

5
0

2
0

2
0

0
31

0
0

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
3

0
4

0
4

0
5

0
3

0
2

0
1

0
32

0
0

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
3

0
4

0
4

0
5

0
4

0
3

0
2

0
0
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0

1
0

1
0

1
0

1
0

2
0

2
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3
0

3
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4
0

4
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5
0

5
0

4
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3
0
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0
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0

0
0
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0
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6
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6
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5
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3
0
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0
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0
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0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

3
0

4
0

4
0

6
0

6
0

7
0

7
0

6
0

4
0

1
0
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0
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0
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0
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0
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Example 3.4. Looking at some numbers that appear in the 23th line, we have:

• In the 20th column, we have pF1p23, 23� 20q � pF1p23, 3q � 2;

• In the 18th column, we have pF1p23, 23� 18q � pF1p23, 5q � 2;

• In the 16th column, we have pF1p23, 23� 16q � pF1p23, 7q � 3;

• In the 14th column, we have pF1p23, 23� 14q � pF1p23, 9q � 2;

• In the 13th column, we have pF1p23, 23� 13q � pF1p23, 10q � 0.

By observing the table, one note that the columns become constant below certain entry.
Beyond this, the columns in odd posititions are null columns. In fact, this occurs when n and
the number k of odd parts have different parity.

This sequence made of those constant numbers in columns represents the same sequence
of the number of partitions into parts congruent to �2 pmod 5q, used in the Second Rogers-
Ramanujan Identity. The informations we described before are set out and proved next into two
theorems.

Theorem 3.3. For all n ¥ 1 and i ¥ 0, we have

pF1p3n� 1, n� 1q � pF1p3n� 1� i, n� 1� iq.

Proof. We present a bijective proof that simply maps a partition pF1p3n� 1, n� 1q onto a new
one that belongs to pF1p3n � 1 � i, n� 1 � iq, by adding i parts of size 1. Now, the goal is to
ensure there are always at least i parts 1 in a partition that lies in PF1p3n� 1� i, n� 1� iq.

Let us suppose, by contradiction, we have less than i parts 1. To simplify the notation, call the
multiplicity of each part λk by xpλkq.

As we have supposed, xp1q ¤ i� 1. Then the largest s from the definition that can appear
as a part is 2 and the smallest is 1, otherwise

3n� 1� i � 2sps� 1q �
s�1̧

i�1
p2i� 1q � xp2i� 1q

¡ 4p2� 1q �
3̧

i�1
p2i� 1q � xp2i� 1q

¥ 12� xp1q � 3 pxp3q � xp5qqlooooooomooooooon
n�1�i�xp1q

� 12� xp1q � 3n� 3� 3i� 3xp1q.

It gives us that

3n� 1� i ¡ 9� 2xp1q � 3n� 3i

xp1q ¡ i� 4,

which is a contradiction.
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Now, still supposing that xp1q   i, we can write

3n� 1� i � 4� 8� xp1q � 3xp3q � 5xp5q

3n� 1� i � 12� 3 pxp1q � xp3q � xp5qqloooooooooooomoooooooooooon
n�1�i

�2xp1q � 2xp5q

3n� 1� i � 9� 3n� 3i� 2xp1q � 2xp5q

�i� 4 � �xp1q � xp5q

Since xp1q ¤ i� 1, it follows that xp5q ¤ �5. This is an absurd and then, the theorem is
proved.

Theorem 3.4. For all n ¥ 1, we have

pF1p3n� 1, n� 1q � ppn� 1|parts congruent to� 2 pmod 5qq.

Proof. We denote by P �pn�1q the set of partitions of n�1 in which, if s is the largest part, every
part from 1 to s appears at least twice. So, we can build a bijection between sets PF1p3n�1, n�1q
and P �pn� 1q by decreasing 1 from every odd part of a partition counted by pF1p3n� 1, n� 1q
and then dividing all parts by 2. Clearly, the reverse map is possible.

As an example, take the partition p5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1q that belongs to
PF1p37, 11q. The resulting partition is p2, 2, 2, 1, 1, 1, 1, 1, 1, 1q, in P �p13q.

Looking at the 2nd Rogers-Ramanujan Identity, we are going to prove that p�pn � 1q
is equal to the number of partitions of n � 1 into 2-distinct parts, greater than or equal to 2.
Consider the following steps.

 Given a partition in P �pn� 1q, split it into two new ones, the first one made of two copies
of each part from 1 to s, and the other one with the remaining parts.

 In the first partition, merge equal parts 1, 2, ..., s, getting p2, 4, ..., 2sq. From the second
one, take its conjugate. Once that its parts are smaller than or equal to s, now it has at
most s parts.

 Get both partitions together side-by-side.

Example 3.5. For n � 12, the partition p2, 2, 4, 4, 5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1q P PF1p37, 11q leads
to p10, 3q, a partition of 13 into 2-distinct parts greater than or equal to 2.
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p2, 2, 4, 4, 5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1q ÝÑ p2, 2, 4, 4, 4, 2, 2, 2, 2, 2q

ÝÑ p1, 1, 2, 2, 2, 1, 1, 1, 1, 1q ÝÑ

ÝÑ ÝÑ

Proposition 3.6. For all n ¥ 1 we have

pF1pn, 0q �

$&
%1, if n � 2sps� 1q

0, otherwise.

Proof. As any partition counted by pF1pn, 0q has its even parts repeated 2 times from 2 to 2s
and no other part appears, we can only write

n � 2p2� 4� � � � � 2sq

n � 2sps� 1q,

and we get what we need.

Proposition 3.7. For all n ¥ 1 we have

pF1p2n2 � 2n� i, 1q �

$&
%0, for even i, 0 ¤ i ¤ 2n,

1, for odd i, 1 ¤ i ¤ 2n� 1.

Proof. Note that the largest even part of multiplicity 2 of any partition counted by pF1p2n2 �

2n � i, 1q must be 2n. Indeed, if it were larger than 2n, it would be at least 2n � 2 and the
number we would have to partition would be greater than or equal to

2p2� 4� � � � � 2n� 2n� 2q � 2pn� 1qpn� 2q � 2n2 � 6n� 4.

This number is also greater than 2n2 � 2n� i.

By an analogous argument, we can prove that the largest even part cannot be smaller
than 2n� 2.

So, 2n2 � 2n� i must be

2n2 � 2n� i � 2p2� 4� � � � � 2nq � t, with odd t and 1 ¤ t ¤ 2n� 1.

This implies
2n2 � 2n� i � 2n2 � 2n� t ùñ t � i.

So, for each value of i, we have one solution for the equation above, in case i is odd.
Otherwise, there is no possible solution.

Proposition 3.8. For all n ¥ 1 and 1 ¤ i ¤ 2n we have
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(i) pF1p8n2 � p2i� 1q, 2q � 0;

(ii) pF1p8n2 � 2i, 2q � n�

Z
i

2

^
;

(iii) pF1p8n2 � 8n� 1� p2i� 1q, 2q � 0;

(iv) pF1p8n2 � 8n� 1� 2i, 2q � n�

Z
i� 1

2

^
.

Proof. We prove just items piq and piiq. Items piiiq and pivq have analogous proofs of piq and
piiq, respectively.

(i) The largest even part of multiplicity 2 of any partition counted by pF1p8n2 � p2i� 1q, 2q must
be 4n� 2. So, we write

8n2 � p2i� 1q � 2p2� 4� � � � � p4n� 2qq � r � t, with odd r, t and 1 ¤ r ¤ t ¤ 4n� 1,

that gives us the equation
r � t � 4n� p2i� 1q.

Hence, as 4n�p2i�1q is an odd number, we cannot write it as a sum of two odd numbers
r and t. Then pF1p8n2 � p2i� 1q, 2q � 0.

(ii) Again, the largest even part of multiplicity 2 of any partition counted by pF1p8n2 � 2i, 2q is
4n� 2. So,

8n2 � 2i � 2p2� 4� � � � � 4n� 2q � r � t

implies
r � t � 4n� 2i, with odd r, t and 1 ¤ r ¤ t ¤ 4n� 1.

So, in order to prove the statement, we need to find the number of solutions of the last
equation. This can be rewritten as

2k � 1� 2m� 1 � 4n� 2i, with 1 ¤ k ¤ m ¤ 2n,

which is the same as

k �m � 2n� i� 1, with 1 ¤ k ¤ m ¤ 2n. (3.16)

First we analyse the case with �i. The number of solutions of equation

k �m � 2n� i� 1, with 1 ¤ k ¤ m ¤ 2n,

without counting the order, is
Z

2n� i� 1
2

^
� n�

Z
�i� 1

2

^
� n�

Z
i

2

^
.

For the case with �i, we evaluate the number of solutions, without counting the order, of

k �m � 2n� i� 1, with 1 ¤ k ¤ m ¤ 2n.
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Considering the previous equation with no restrictions, the number of its solutions is
Z

2n� i� 1
2

^
.

We just need to discard the solutions where m ¡ 2n. Writing m � 2n � t with 1 ¤ t ¤ i, the
solutions we eliminate are the same, in number, as the solutions of equation k � t � i� 1 with
1 ¤ t ¤ i, which are i.

Then, the number of solutions of (3.16) is
Z

2n� i� 1
2

^
� i, that is equal to n�

Z
i

2

^
.

Proposition 3.9. For all n ¥ 1 and i � 0, 2, 4, 6, we have

pF1p8n2 � 2n� 3� i, 3q � Tn.

Proof. The largest even part of multiplicity 2 of any partition counted by pF1p8n2� 2n� 3� i, 3q
is 4n� 2. So, we have

8n2 � 2n� 3� i � 2p2� 4� � � � � 4n� 2q � r � s� t,

with odd r, s, t and 1 ¤ r ¤ s ¤ t ¤ 4n� 1. The equation implies

r � s� t � 6n� 3� i.

By noting that r, s, t are odd numbers, we can write it as

2R� 1� 2S � 1� 2T � 1 � 6n� 3� i,

or
R� S � T � 3n� j with j � 0, 1, 2, 3 and 1 ¤ R ¤ S ¤ T ¤ 2n.

The number of solutions with no restrictions, without counting the order of parts, is
equal to the number of partitions of 3n� j into 3 parts. This formula is already known and it
can be found in [4], that is "

p3n� j � 3q2

12

*
�

Z
3n� j

2

^
� 1.

Now we have to eliminate the solutions where T ¡ 2n. As R and S are, at least 1, writing
T � 2n� k, with k ¥ 1, k may range from 1 to n� j � 2. So, for each value of k, we have to

exclude the solutions of R� S � n� j � k, that, in number, are
Z
n� j � k

2

^
. This formula can

be also found in [4]. The amount of solutions we need to eliminate is
n�j�2¸
k�1

Z
n� j � k

2

^
. So,

pF1p8n2 � 2n� 3� i, 3q �
"
p3n� j � 3q2

12

*
�

Z
3n� j

2

^
� 1�

n�j�2¸
k�1

Z
n� j � k

2

^
.

Finally, to see that it is equal to Tn, we follow the same steps we did in item piiiq of
Proposition (3.4).

Proposition 3.10. For all n ¥ 2 we have
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(i) pF1p8n2 � 6n� 1� p2i� 1q, 3q � 0, if 0 ¤ i ¤ n;

(ii) pF1p8n2 � 6n� 1, 3q �
Z
n2 � 1

2

^
;

(iii) pF1p8n2 � 6n� 1� 2i, 3q � pF1p8n2 � 6n� 1� 2i, 3q, if 0 ¤ i ¤ n.

Proof.

(i) The largest even part of any partition counted by pF1p8n2 � 6n � 1 � p2i � 1q, 3q is 4n � 4.
Then, we write

8n2 � 6n� 1� p2i� 1q � 2p2� 4� � � � � 4n� 4qq � r � s� t

with odd r, s, t and 1 ¤ r ¤ s ¤ t ¤ 4n� 3, which implies

r � s� t � 6n� 3� p2i� 1q.

Noting that 6n� 3� p2i� 1q is an even number, clearly it cannot be written as sum of
three odd numbers.

(ii) Again, the largest even part of any partition counted by pF1p8n2� 6n� 1, 3q is 4pn� 1q. Then,
we write

8n2 � 6n� 1 � 2p2� 4� � � � � 4pn� 1qq � r � s� t

with odd r, s, t and 1 ¤ r ¤ s ¤ t ¤ 4n� 3, which implies

r � s� t � 6n� 3.

What we need is evaluate the number of solutions of

r � s� t � 6n� 3 with odd r, s, t and 1 ¤ r ¤ s ¤ t ¤ 4n� 3.

As r, s, t are odd, we can write

2R� 1� 2S � 1� 2T � 1 � 6n� 3 with 1 ¤ R ¤ S ¤ T ¤ 2pn� 1q,

or
R� S � T � 3n with 1 ¤ R ¤ S ¤ T ¤ 2n� 1.

Note that this equation is exactly the same as the one stablished in (3.8), whose number

of solution has already been calculated and is equal to
Z
n2 � 1

2

^
.

(iii) We will build a bijection between sets PF1p8n2� 6n� 1� 2i, 3q and PF1p8n2� 6n� 1� 2i, 3q.
The largest even part of any partition counted by pF1p8n2 � 6n� 1� 2i, 3q is 4pn� 1q.

So, given a partition counted by pF1p8n2 � 6n� 1� 2i, 3q, we have

2p2� 4� � � � � 4pn� 1qq � r � s� t � 8n2 � 6n� 1� 2i,
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with odd r, s, t and 1 ¤ r ¤ s ¤ t ¤ 4n� 3, which implies

r � s� t � 6n� 3� 2i.

If we take the partition

λ � p2, 2, 4, 4, . . . , 4pn� 1q, 4pn� 1q, 4n� 2� t, 4n� 2� s, 4n� 2� rq,

it belongs to pF1p8n2 � 6n� 1� 2i, 3q, because 4n� 2� t, 4n� 2� s, 4n� 2� r are odd, with
1 ¤ 4n� 2� t ¤ 4n� 2� s ¤ 4n� 2� r ¤ 4n� 3, and

2p2� 4� � � � 4pn� 1qq � 3p4n� 2q � pt� s� rq � 8n2 � 12n� 4� 12n� 6� pr � s� tq

� 8n2 � 2� p6n� 3� 2iq

� 8n2 � 6n� 1� 2i.

The way back is easy to set.

3.3 Mock Theta Function f0pqq

We start by considering the Mock Theta Function of order 5

f0pqq �
8̧

n�0

qn
2

p�q; qqn
� 1� q � q2 � q3 � q6 � q7 � q9 � 2q10 � q11 � � � � .

If we consider its expansion, we get negative coefficients brought fourth by the denominator
of its general term. By removing this signal we get

f�0 pqq �
8̧

s�0

qs
2

pq; qqs
�

8̧

s�0

q1�3�5�����p2s�1q

p1� qqp1� q2q � � � p1� qsq
, (3.17)

whose general term generates the partitions of n containing each one of the odd numbers
1, 3, 5, ..., 2s� 1 as part of multiplicity 1 and any number of parts less than or equal to s. Also, it
is the generating function for superdistinct partitions (partitions where λi � λi�1 ¥ 2) of n into
exactly s parts. To see this, just add an unrestricted partition into at most s parts to the right
of the triangle 1� 3� . . .� p2s� 1q.

Definition 3.5. Let pf0pnq be the number of partitions of n where, if 2s� 1 is the greatest odd
part, each one of odd numbers smaller than it must appear once. Besides those parts, any quantity
of parts smaller than or equal to s. When we show examples for this partitions, we bold the parts
beyond the sequence with no gaps of odd parts that are part of them. So,

f�0 pqq �
8̧

n�0
pf0pnqq

n.

Example 3.6. pf0p9q � 5, because the five considered partitions are

p5, 3, 1q;
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p3,2,2,1, 1q;

p3,2,1,1,1, 1q;

p3,1,1,1,1,1, 1q;

p1,1,1,1,1,1,1,1, 1q;

As we can see, the coefficients of the unsigned version are the number of partitions that
satisfy the Definition 3.5. We explore this identity to prove a combinatorial interpretation for the
function f�0 pqq, given in [9]. This sets a bijection between those partitions and two-line matrices,
subject to some restrictions on the entries.

Theorem 3.5. The coefficient of qn in the expansion of p3.17q is equal to the number of elements
in the set of matrices of the form

A �

�
c1 c2 � � � cs

d1 d2 � � � ds

�
, (3.18)

with non-negative integer entries satisfying

cs � 1; dt ¥ 0; (3.19)

ct � 2� ct�1 � dt�1, @t   s; (3.20)

n �
¸
ct �

¸
dt. (3.21)

Proof. According to the general term of (3.17), we can decompose n as

n � 1� 3� 5� � � � � p2s� 1q � p1 � d1 � 2 � d2 � � � � � s � dsq

or, equivalently, as the sum of the entries of the matrix

A �

�
2s� 1� d2 � � � � � ds � � � 5� ds�1 � ds 3� ds 1

d1 � � � ds�2 ds�1 ds

�
,

with di ¥ 0 for all i.

Noting that the entries satisfy conditions (3.19) to (3.21), the theorem is proved.

The second row of the matrices of type (3.18) describes the parts from 1 to s, besides the
odd parts from 1 to 2s� 1, of the partition associated to it. To know how many parts from 1 to
s the partition has, we have to sum the di, for i � 1, 2, . . . , s.

Definition 3.6. Let pf0pn, kq be the number of partitions counted by pf0pnq having k parts beyond
the sequence of consecutive odd numbers starting from 1, in accordance with Definition 3.5.
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Example 3.7. We have that pf0p25, 9q � 5. Its five partitions are listed below.

p7, 5, 3, 1,1,1,1,1,1,1,1,1,1q;

p5, 3,2,2,2,2,2,2,2,1,1, 1q;

p5,3, 3,2,2,2,2,2,1,1,1, 1q;

p5,3,3, 3,2,2,2,1,1,1,1, 1q;

p5,3,3,3, 3,2,1,1,1,1,1, 1q.

As the authors did for f1pqq in [9], they defined the same weight for partitions generated
by this function. It is

ωf0pλq � p�1q
°
di ,

where the elements di are the entries of the second row. Equivalently,
¸
di counts the number of

parts beyond the odd sequence. So, the coefficient of qn the expansion of f1 can be rewritten as

f0pqq �
8̧

n�0

� ¸
even k

pf0pn, kq �
¸
odd k

pf0pn, kq
	
qn.

For a fixed n, we classify its partitions of type described in Definition 3.6 according to
the sum on the second row of the matrix associated to it, which is the same as the number of
parts beyond the odd sequence. By counting the appearance of each number in these sums, we
can organize the data on a table, which is presented next. The entry in line n and column n� j

is the number of times j appears as sum of the entries of the second row in type (3.18) matrices.
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1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

1
1

2
1

0
3

1
0

0
4

1
0

0
1

5
1

0
0

1
0

6
1

0
0

1
1

0
7

1
0

0
1

1
0

0
8

1
0

0
1

1
1

0
0

9
1

0
0

1
1

1
0

0
1

10
1

0
0

1
1

1
1

0
1

0
11

1
0

0
1

1
1

1
0

1
1

0
12

1
0

0
1

1
1

1
1

1
1

1
0

13
1

0
0

1
1

1
1

1
1

1
2

0
0

14
1

0
0

1
1

1
1

1
2

1
2

1
0

0
15

1
0

0
1

1
1

1
1

2
1

2
2

1
0

0
16

1
0

0
1

1
1

1
1

2
2

2
2

2
0

0
1

17
1

0
0

1
1

1
1

1
2

2
2

2
3

1
0

1
0

18
1

0
0

1
1

1
1

1
2

2
3

2
3

2
1

1
1

0
19

1
0

0
1

1
1

1
1

2
2

3
2

3
3

2
1

1
1

0
20

1
0

0
1

1
1

1
1

2
2

3
3

3
3

3
2

1
2

1
0

21
1

0
0

1
1

1
1

1
2

2
3

3
3

3
4

3
2

2
2

0
0

22
1

0
0

1
1

1
1

1
2

2
3

3
4

3
4

4
3

2
3

2
0

0
23

1
0

0
1

1
1

1
1

2
2

3
3

4
3

4
5

4
3

3
3

1
0

0
24

1
0

0
1

1
1

1
1

2
2

3
3

4
4

4
5

5
4

4
4

3
1

0
0

25
1

0
0

1
1

1
1

1
2

2
3

3
4

4
4

5
6

5
5

4
4

3
0

0
1

26
1

0
0

1
1

1
1

1
2

2
3

3
4

4
5

5
6

6
6

5
5

5
2

0
1

0
27

1
0

0
1

1
1

1
1

2
2

3
3

4
4

5
5

6
7

7
6

6
6

4
1

1
1

0
28

1
0

0
1

1
1

1
1

2
2

3
3

4
4

5
6

6
7

8
7

7
7

6
4

2
1

1
0

29
1

0
0

1
1

1
1

1
2

2
3

3
4

4
5

6
6

7
9

8
8

8
7

6
4

1
2

1
0

30
1

0
0

1
1

1
1

1
2

2
3

3
4

4
5

6
7

7
9

9
9

9
9

8
7

3
2

2
1

0
31

1
0

0
1

1
1

1
1

2
2

3
3

4
4

5
6

7
7

9
10

10
10

10
9

9
6

3
3

3
0

0
32

1
0

0
1

1
1

1
1

2
2

3
3

4
4

5
6

7
8

9
10

11
11

11
11

11
9

6
4

4
2

0
0

33
1

0
0

1
1

1
1

1
2

2
3

3
4

4
5

6
7

8
9

10
12

12
12

12
13

11
9

6
5

4
2

0
0

34
1

0
0

1
1

1
1

1
2

2
3

3
4

4
5

6
7

8
10

10
12

13
13

13
15

13
12

10
7

5
5

1
0

0
35

1
0

0
1

1
1

1
1

2
2

3
3

4
4

5
6

7
8

10
10

12
14

14
14

16
15

14
13

10
7

7
4

1
0

0
36

1
0

0
1

1
1

1
1

2
2

3
3

4
4

5
6

7
8

10
11

12
14

15
15

17
17

17
16

14
10

9
7

4
0

0
1

37
1

0
0

1
1

1
1

1
2

2
3

3
4

4
5

6
7

8
10

11
12

14
16

16
18

18
19

18
17

14
12

9
8

3
0

1
0

38
1

0
0

1
1

1
1

1
2

2
3

3
4

4
5

6
7

8
10

11
13

14
16

17
19

19
21

21
20

18
16

12
11

7
2

1
1

0
39

1
0

0
1

1
1

1
1

2
2

3
3

4
4

5
6

7
8

10
11

13
14

16
18

20
20

22
23

23
21

20
16

14
11

7
2

1
1

0
40

1
0

0
1

1
1

1
1

2
2

3
3

4
4

5
6

7
8

10
11

13
15

16
18

21
21

23
25

26
24

24
21

18
15

12
6

2
2

1
0

Ta
bl
e
6
–
Ta

bl
e
of

th
e
ch
ar
ac
te
riz

at
io
n
gi
ve
n
by

T
he

or
em

(3
.5
)
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Example 3.8. Looking at some numbers that appear in the 16th line, from right to left, we have:

• 1 partition with 0, 8, 9, 10, 11, 12 and 15 other parts beyond the ones that must appear.

• 2 partitions with 3, 4, 5, 6 and 7 other parts beyond the ones that must appear.

• no partitions with 1, 2, 13 and 14 other parts beyond the ones that must appear.

By observing the table above we get some interesting results.

Remark 3.1. By observing the first diagonal, corresponding to partitions with no other part
besides 1, 3, . . . , 2s� 1, we can easily note that only squares are able to be partitioned into distinct
odd parts with no gaps. That is, n2 � 1� 3� � � � � p2n� 1q.

The next theorem describes the numbers that are in the second diagonal of Table 6.
These numbers correspond to the set of partitions with only one part beyond the sequence of
consecutive odd numbers that must appear.

Proposition 3.11. For all n ¥ 0 and 0 ¤ i ¤ n, we have

(i) pf0p2Tn � 1� i, 1q � 0;

(ii) pf0p2Tn � n� 2� i, 1q � 1.

Proof. (i) Suppose we can write 2Tn � 1� i as a sum of s consecutive odd parts plus one part
k, with 1 ¤ k ¤ s. In this case, the largest part is 2n� 1.

Let us suppose λ � p1, 3, . . . , 2n� 1, kq, with 1 ¤ k ¤ n, is a partition of 2Tn� 1� i. Then,

1� 3� � � � � 2n� 1� k � 2Tn � 1� i

n2 � k � n2 � n� 1� i

k � n� 1� i,

which is an absurd.

(ii) The largest part of any partition of 2Tn � n� 2� i must be 2n� 1.

Then, let λ � p1, 3, . . . , 2n� 1, kq, with 1 ¤ k ¤ n� 1, be a partition of 2Tn � n� 2� i.

1� 3� � � � � 2n� 1� k � 2Tn � n� 2� i

pn� 1q2 � k � n2 � 2n� 2� i

k � 1� i.

As i P t0, 1, 2, . . . , nu and k P t1, 2, 3, . . . , n� 1u, for each value of i we get only one value
of k.

In order to prove the next Proposition, first we need the following lemmas.
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Lemma 3.1. For all odd n ¥ 1 and 0 ¤ i ¤ n, any solution py1, y2q of the equation y1 � y2 �

n� 1� i, with 1 ¤ y1 ¤ y2 ¤ n, can be written as

(i) px1 � j, x2 � jq, if i � 2j, or

(ii) px1 � j � 1, x2 � jq, if i � 2j � 1,

where px1, x2q is solution of equation x1 � x2 � n� 1, with 1� j ¤ x1 ¤ x2 ¤ n� j.

Proof. (i) Suppose i � 2j and y1 � y2 � n� 1� i. First of all, note that as y1 � y2 � n� 1� i
and y2 ¤ n, we have y1 ¥ i� 1. So, we can write y1 � i� l � 2j � l with l ¥ 1. Writing
x1 � j � l we get y1 � x1 � j.

As y2 ¥ y1, we can write y2 � y1� t with t ¥ 0. So, y2 � x1� j� t and we call x2 � x1� t.
Note that x1 � x2 � py1 � jq � py2 � jq � y1 � y2 � 2j � n � 1 � i � i � n � 1 and that
x1 � x2 � n� 1 implies x2 � n� 1� x1 � n� 1� pj � lq ¤ n� j.

(ii) If i � 2j � 1, then n and i are both odd, which means y1   y2. Again, as y2 ¤ n, y1 ¥ i� 1
or y1 � i� l � l � j � pj � 1q, with l ¥ 1. We take x1 � l � j.

As y1   y2, then y2 � y1 � t � x1 � pj � 1q � t, with t ¥ 0. We take x2 � x1 � 1 � t.
Noting that x1 � x2 � y1 � pj � 1q � y2 � j � y1 � y2 � i � n� 1� i� i � n� 1 and that
x2 � n� 1� x1 � n� 1� pl � jq ¤ n� j, we get what we need.

Lemma 3.2. For all even n ¥ 1 and 0 ¤ i ¤ n, any solution py1, y2q of the equation y1 � y2 �

n� 1� i, with 1 ¤ y1 ¤ y2 ¤ n, can be written as

(i) px1 � j, x2 � jq, if i � 2j, where px1, x2q is solution of equation x1 � x2 � n � 1 with
1� j ¤ x1 ¤ x2 ¤ n� j, or

(ii) px1 � j, x2 � j � 1q, if i � 2j � 1, where px1, x2q is solution of equation x1 � x2 � n� 1,
with j ¤ x1 ¤ x2 ¤ n� j � 1.

Proof. The proof of item piq is analogous to the proof of item piiq in Lemma 3.1.

(ii) Again y2 ¤ n implies y1 ¥ i � 1 and we write y1 � i � l � l � pj � 1q � j, taking
x1 � l � pj � 1q.

As y2 ¥ y1, we write y2 � y1 � t � x1 � j � t with t ¥ 0. Note that x1 � x2 � n� 1 with
even n implies x1 and x2 have different parities. So, as x2 ¥ x1, we have x2 ¡ x1. Therefore
we take x2 � x1 � t� 1.

Now, x1 � x2 � y1 � j � y2 � pj � 1q � y1 � y2 � p2j � 1q � n � 1 � i � i � n � 1, with
x2 � n� 1� x1 � n� 1� pl � j � 1q ¤ n� 1� j.



Chapter 3. Some unsigned Mock Theta Functions 62

Proposition 3.12. For all n ¥ 1 and 0 ¤ i ¤ n we have

pf0p2Tn � 1� i, 2q �

$'&
'%
Xn� 1

2
\
�
X i� 1

2
\
, for odd nXn� 1

2
\
�
X i
2
\
, for even n.

Proof. Let n be an odd positive integer and suppose we can write 2Tn � 1 � i as a sum of s
consecutive odd parts plus two parts y1 and y2, with 1 ¤ y1 ¤ y2 ¤ s. As done many times
before, we can prove that the greatest part of this partition has to be 2n� 1. Therefore,

1� 3� � � � � 2n� 1� y1 � y2 � 2Tn � 1��i

n2 � y1 � y2 � n2 � n� 1� i

y1 � y2 � n� 1� i (3.22)

Now we want to know the number of positive integer solutions of equation (3.22). Let us
solve the problem for y1 � y2 � n� 1� i, the negative case being adaptable by changing signs.

First, if n is odd, by Lemma 3.1 the the number of solutions we are looking for is the
same as the number of solutions of equation x1 � x2 � n� 1, with 1� j ¤ x1 ¤ x2 ¤ n� j and

j �

Z
i� 1

2

^
. As there are

Z
n� 1

2

^
solutions for equation x1 � x2 � n � 1 with no restriction,

other than x1 ¤ x2, we have to exclude those where x1   j � 1 or x2 ¡ n� j. But observe that,
if we have x1   j� 1, automatically we get x2 ¡ n� j and vice versa. So we only need to analyse

the case where x1   j � 1. Clearly, those solutions are in number of
Z
j

2

^
�

Z
i� 1

2

^
.

So, the number of solutions we were looking for is
Z
n� 1

2

^
�

Z
i� 1

2

^
.

If n is even we use Lemma 3.2. Again there are
Z
n� 1

2

^
solutions for equation x1 � x2 �

n � 1 with no restriction. If i � 2j � 1 we have to exclude the solutions where x1   j or
x2 ¡ n� 1� j, which are equivalent. If i � 2j we have to exclude the solutions where x1   j � 1

or x2 ¡ n� j. In both cases this number is
Z
i

2

^
.

So, the number of solutions we were looking for is
Z
n� 1

2

^
�

Z
i

2

^
.

Proposition 3.13. For all n ¥ 1 we have

pf0pn
2, 3q � ppn� 2,¤ 3q.

Proof. The largest part of any partition counted by pf0pn
2, 3q must be 2n� 3. As

n2 � p1� 3� � � � � pq2n� 3qq � 2n� 1,

it remains that 2n � 1 need to be partitioned into three parts smaller than or equal to n � 1.
That is,

λ1 � λ2 � λ3 � 2n� 1, with λ1 ¤ λ2 ¤ λ3 ¤ n� 1.



Chapter 3. Some unsigned Mock Theta Functions 63

Let us consider pλ1, λ2, λ3q, whose parts are solutions for the equation above. By writing
µ � pµ1, µ2, µ3q � pn� 1� λ3, n� 1� λ2, n� 1� λ1q, we get a partition of n� 2. Some µi might
be zero and we omit them.

Example 3.9. Considering n � 7, we get the partitions below:

Pf0p49, 3q pλ1, λ2, λ3q pµ1, µ2, µ3q P p5,¤ 3q

(11, 9, 7,6,6, 5, 3, 1,1q p6, 6, 1q (5, 0, 0q p5q
p11, 9, 7,6, 5,5, 3,2, 1q (6, 5, 2q (4, 1, 0q p4, 1q
(11, 9, 7,6, 5,4, 3,3, 1q (6, 4, 3q (3, 2, 0q p3, 2q
(11, 9, 7, 5,5,5, 3,3, 1q (5, 5, 3q (3, 1, 1q p3, 1, 1q
(11, 9, 7, 5,5,4,4, 3, 1q (5, 4, 4q (2, 2, 1q p2, 2, 1q

In order to prove the next proposition, we will need the following lemma.

Lemma 3.3. For all n ¥ 1, if we define

A :�
 
pr, s, tq P Z3 ; r � s� t � 3n� 3, 1 ¤ t ¤ s ¤ r ¤ 2n and pr � 2n or t � 1q

(
, (3.23)

its cardinality is n, that is |A| � n.

Proof. We separate the proof in two cases: (i) r � 2n and (ii) t � 1.

(i) If r � 2n, then

r � s� t � 3n� 3

s� t � 3n� 3� 2n

s� t � n� 3,

which has
Xn� 3

2
\
solutions.

(ii) If t � 1, then
r � s � 3n� 2.

As r ¤ 2n, then s ¥ n � 2. So, note that r and s can assume 2n � pn � 2q � 1 � n � 1

different values. This gives us
Z
n� 1� 1

2

^
�

Z
n

2

^
different solutions, without counting the

order, as usual.

Now, note that the solution of r � s � t � 3n � 3 where r � 2n and t � 1 has been
counted in both cases. So, the number of solutions of equation r � s� t � 3n� 3 satisfying the
desired conditions, i.e., the number of elements of the set (3.23) is equal toZ

n� 3
2

^
�

Z
n

2

^
� 1.

By considering both parities of n, we can prove that
Z
n� 3

2

^
�

Z
n

2

^
� 1 � n and the

result follows.
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Proposition 3.14. For all n ¥ 1 we have

pf0
p4n2 � 3n� 3, 3q � Tn

Proof. The largest part of any partition counted by pf0
p4n2 � 3n� 3, 3q must be 4n� 1. The

three parts less than or equal to 2n must satisfy r � s� t � 3n� 3.

This means that

pf0
p4n2 � 3n� 3, 3q � |tpr, s, tq ; r � s� t � 3n� 3, 1 ¤ t ¤ s ¤ r ¤ 2nu|

which is the same as

pf0
p4n2 � 3n� 3, 3q � |tpr, s, tq ; r � s� t � 3n� 3, 2 ¤ t ¤ s ¤ r ¤ 2n� 1u|

� |tpr, s, tq ; r � s� t � 3n� 3, 1 ¤ t ¤ s ¤ r ¤ 2n and pr � 2n or t � 1qu|

By Lemma 3.3, it turns to

pf0
p4n2 � 3n� 3, 3q � |tpr, s, tq ; r � s� t � 3n� 3, 2 ¤ t ¤ s ¤ r ¤ 2n� 1u| � n,

and we only need to prove that

|tpr, s, tq ; r � s� t � 3n� 3, 2 ¤ t ¤ s ¤ r ¤ 2n� 1u| � pf0
p4n2 � 5n� 4, 3q,

that will be by showing a bijection.

Given a partition counted by pf0
p4n2 � 5n � 4, 3q, consider the parts r, s, t satisfying

r � s� t � 3n, with 1 ¤ t ¤ s ¤ r ¤ 2n� 2. Set the partition pr � 1, s� 1, t� 1q and note that
2 ¤ t� 1 ¤ s� 1 ¤ r � 1 ¤ 2n� 1.

The result follows by induction.
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Example 3.10. In the following table, we show the partitions of Pf0
p4n2 � 3n � 3, 3q, for

n � 1, 2, 3, 4, according to Theorem p3.14q.

n � 1 n � 2 n � 3 n � 4

Pf0p10, 3q Pf0p25, 3q Pf0p48, 3q Pf0p79, 3q

p3,2,2,2, 1q p7, 5, 3,3,3,3, 1q (11, 9, 7, 5,4,4,4, 3, 1q p15, 13, 11, 9, 7, 5,5,5,5, 3, 1q
p7, 5,4, 3,3,2, 1q p11, 9, 7, 5,5,4, 3,3, 1q p15, 13, 11, 9, 7,6, 5,5,4, 3, 1q
(7, 5,4,4, 3, 1,1q p11, 9, 7, 5,5,5, 3,2, 1q p15, 13, 11, 9, 7,6,6, 5, 3,3, 1q

p11, 9, 7,6, 5,5, 3, 1,1q p15, 13, 11, 9, 7,7,6, 5, 3,2, 1q
p11, 9, 7,6, 5,4, 3,2, 1q p15, 13, 11, 9, 7,7, 5,5, 3,3, 1q
p11, 9, 7,6, 5, 3,3,3, 1q p15, 13, 11, 9, 7,7, 5,4,4, 3, 1q

p15, 13, 11, 9, 7,7,7, 5, 3, 1,1q
p15, 13, 11, 9,8, 7,6, 5, 3, 1,1q
p15, 13, 11, 9,8, 7, 5,5, 3,2, 1q
p15, 13, 11, 9,8, 7, 5,4, 3,3, 1q

Theorem 3.6. For all n ¥ 2 and i ¥ 0 we have

pf0p2n� i, n� 2� iq � pbpn� 2q,

where pbpnq is the number of balanced partitions of n, i.e., the number of partitons of n where
the smallest part equals the number of parts.

Proof. We begin with i � 0.

Let λ � pλ1, λ2, . . . , λkq be a partition counted by pbpn� 2q. Note that λk � k and the
Ferrers graph of this partition has Durfee square of size k. Considering the k2 points of the
Durfee square, let’s write them as the partition p2k � 1, 2k � 3, . . . , 3, 1q. We denote by λp1q the
partition on the right side of the Durfee square. So,

n� 2 � k2 � |λp1q|.

Observe that, as n ¥ 2, we have k ¥ 2, and as n � 2 ¥ k2 � λ1 � k, then λ1 � k ¤

n� 2� k2 ¤ n� 2.

Let us consider λp1q the conjugate partition of λp1q and add to its left side the partition
p1, 1, . . . , 1loooomoooon

n�2

q. As the number of parts of λp1q is less than k (because λk � k), each part of this new

partition we built is less than k.

Observe that the number we have partitioned now is

n� 2� k2 � pn� 2q � 2n� k2.

By joining this partition to the partition p2k � 1, 2k � 3, . . . , 3, 1q, we get

2n� k2 � 2k � 1� 2k � 3� � � � � 3� 1 � 2n� k2 � k2 � 2n,
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partitioned into k odd parts plus n � 2 excesses less than k. In other words, it is a partition
counted by pf0p2n, n� 2q.

Conversely, given a partition counted by pf0p2n, n� 2q, let us suppose its greatest odd
part is 2k� 1. Then we transform the parts 2k� 1, 2k� 3, . . . , 3, 1 into the partition pk, k . . . , kloooomoooon

k

q.

The remaining parts are the n� 2 excesses less than or equal to k. We subtract one unit from
each of these excesses and conjugate this new parts. By adding this conjugated partition to the
right side of the partition pk, k, . . . , kq, we obtain a balanced partition of n� 2.

If i ¥ 1, the only way to have a partition counted by pf0p2n�i, n�2�iq is by having i parts
of size one below the Durfee square of this partition. Clearly, a bijection between Pf0p2n, n� 2q
and Pf0p2n � i, n � 2 � iq, in one way, adds parts of size one and, in the other way, removes
them.

Example 3.11. For n � 13, the partition p7, 5, 3q P Pbp15q leads to

p5,3,3, 3,2,2,1,1,1,1,1,1,1, 1q,

a partition of 26 that lies in Pf0p26, 11q.

p7, 5, 3q ÝÑ p3, 3, 3q � p4, 2q

ÝÑ

ÝÑ ÝÑ +

ÝÑ Y ÝÑ
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3.4 Mock Theta Function F0pqq

In this section, we consider the mock theta function of order 5

F0pqq �
8̧

n�0

q2n2

pq; q2qn
. (3.24)

Now, the expansion in power series does not consider signal. So, the general term

q2p1�3�5�����p2s�1qq

p1� qqp1� q3q � � � p1� q2s�1q
,

can be interpreted as generating function for partitions of n into odd parts from 1 to 2s� 1, with
no gaps, in a way that each part has multiplicity at least two.

Theorem 3.7. The coefficient of qn in the expansion of p3.24q is equal to the number of elements
in the set of matrices of the form

A �

�
c1 c2 � � � cs

d1 d2 � � � ds

�
, (3.25)

with non-negative integer entries satisfying

cs � 2; dt ¥ 0; (3.26)

ct � 4� ct�1 � 2dt�1, @t   s; (3.27)

n �
¸
ct �

¸
dt. (3.28)

Proof. According to the general term of (3.24), we can decompose n as

n � 2 � 1� 2 � 3� 2 � 5� � � � � 2 � p2s� 1q � p1 � d1 � 3 � d2 � � � � � p2s� 1q � dsq

or, equivalently, as the sum of the entries of the matrix

A �

�
2p2s� 1q � 2d2 � � � � � 2ds � � � 10� 2ds�1 � 2ds 6� 2ds 2

d1 � � � ds�2 ds�1 ds

�
,

Noting that the entries satisfy conditions (3.26) to (3.28), the theorem is proved.

The entries on the second row describe how many parts from 1 to 2s� 1 appear more
than twice. To know this quantity, we have to sum them.

Definition 3.7. Let pF0
pn, kq be the number of partitions of n into odd parts ranging from 1 to

2s� 1, each one appearing at least twice, and k odd parts beyond these two copies.

As before, we can organize the data we have obtained by summing the second line in a
table. The structure is the same as we have done in all tables before.
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1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

1
0

2
0

1
3

0
1

0
4

0
1

0
0

5
0

1
0

0
0

6
0

1
0

0
0

0
7

0
1

0
0

0
0

0
8

0
1

0
0

0
0

0
1

9
0

1
0

0
0

0
0

1
0

10
0

1
0

0
0

0
0

1
0

0
11

0
1

0
0

0
0

0
1

0
1

0
12

0
1

0
0

0
0

0
1

0
1

0
0

13
0

1
0

0
0

0
0

1
0

1
0

0
0

14
0

1
0

0
0

0
0

1
0

1
0

1
0

0
15

0
1

0
0

0
0

0
1

0
1

0
1

0
0

0
16

0
1

0
0

0
0

0
1

0
1

0
1

0
0

0
0

17
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

0
0

18
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

0
0

1
19

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
0

0
1

0
20

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
0

21
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

22
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
23

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
2

0
1

0
1

0
24

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
2

0
1

0
2

0
0

25
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

2
0

1
0

2
0

0
0

26
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

2
0

2
0

2
0

1
0

0
27

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
2

0
2

0
2

0
2

0
0

0
28

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
2

0
2

0
2

0
2

0
1

0
0

29
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

2
0

2
0

0
0

30
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

2
0

3
0

0
0

0
31

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
2

0
3

0
1

0
0

0
32

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
3

0
3

0
2

0
0

0
1

33
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

3
0

3
0

3
0

1
0

1
0

34
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

3
0

3
0

3
0

2
0

1
0

0
35

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
3

0
4

0
3

0
3

0
1

0
1

0
36

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
3

0
4

0
3

0
4

0
2

0
1

0
0

37
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

3
0

4
0

3
0

4
0

3
0

1
0

1
0

38
0

1
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

2
0

2
0

3
0

3
0

4
0

4
0

4
0

4
0

2
0

2
0

0
39

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
3

0
4

0
4

0
4

0
5

0
3

0
2

0
1

0
40

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
2

0
2

0
3

0
3

0
4

0
4

0
4

0
5

0
4

0
2

0
2

0
0

Ta
bl
e
7
–
Ta

bl
e
fr
om

th
e
ch
ar
ac
te
riz

at
io
n
gi
ve
n
by

T
he

or
em

(3
.7
)
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Remark 3.2. The entries in columns in odd positions are zeros. These entries represent pf0pn, n�

kq, where k is an odd number. Indeed, if n is even (resp. odd), we cannot decompose it into an
odd (resp. even) number of odd parts.

The main property is verified by looking at the non-zero columns. They are exactly the
same of those ones from the table we build for the Mock Theta Function f0pqq in the last section.
So, the results we present here can be proven by showing a relation between them and obtain
similar identities.

There is a simple identity that relates the partitions generated by Mock Theta Function
F0pqq with f0pqq we have considered, and it summarizes a lot of information.

Theorem 3.8. For all n ¥ 1 and 0 ¤ i ¤ n, we have

pF0
p2n� i, iq � pf0

pn� i, iq.

Proof. Let λ � pλ1, λ2, . . . , λkq be a partition of 2n� i counted by pF0
p2n� i, iq, with largest odd

part 2s� 1. Note that the exceeding parts sum 2n� i� 2s2. As there are at least two copies of
each odd part in λ, we remove one copy of each one of them, getting 2n� i� s2. Each exceeding
odd part λj , we replace by µj �

λj � 1
2 , getting a part between 1 and s.

The reverse map is easy to get and, clearly, we have a bijection.

Example 3.12. By considering n � 15 and i � 6, we have pF0p36, 6q � 4. We illustrate the
previous bijection in this case.

PF0p36, 6q ÞÑ Pf0p21, 6q

p5,5,5, 5, 5, 3, 3,1,1,1, 1, 1q p3,3,3, 5, 3,1,1,1, 1q p5,3,3,3, 3,1,1,1, 1q
p5,5, 5, 5,3,3, 3, 3,1,1, 1, 1q p3,3, 5,2,2, 3,1,1, 1q p5,3,3, 3,2,2,1,1, 1q
p5, 5, 5,3,3,3,3, 3, 3,1, 1, 1q p3, 5,2,2,2,2, 3,1, 1q p5,3, 3,2,2,2,2,1, 1q
p5, 5,3,3,3,3,3,3, 3, 3, 1, 1q p5,2,2,2,2,2,2, 3, 1q p5, 3,2,2,2,2,2,2, 1q

As consequence of Theorem 3.8, we get the following corollary.

Corollary 3.1. For n ¥ 1, we have the following identities:

piq pF0
p2n2, 0q � pf0

pn2, 0q � 1;

piiq pF0
p2n2 � 4n� 3� 2i, 1q � pf0

pn2 � 2n� 2� i, 1q � 1, 0 ¤ i ¤ n;

piiiq pF0
p2n2 � 2n� 2i, 2q � pf0

pn2 � n� 1� i, 2q;

pivq pF0
p2n2 � 3, 3q � pf0

pn2, 3q � ppn� 2,¤ 3q;

pvq pF0
p8n2 � 6n� 3, 3q � pf0

p4n2 � 3n� 3, 3q � Tn;

pviq pF0
p3n� 5� i, n� 1� iq � pf0

p2n� 2� i, n� 1� iq � pbpn� 3q, i ¥ 0.
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4 Mock Theta Functions and partitions into
two colors

Considering the models given in [9], in this chapter we focus on Mock Theta functions
ρpqq, σpqq, νpqq and λpqq the first two and the last one related to partitions into two colors. For
νpqq, there is a signal which "weighs" the coefficients in its expansion in power series, so we first
ignore it and analyze its general term as a generating function for a kind of partitions into one
color. Although it is not apparent, we can map each one of them to a specific partition into two
colors brought forth by λpqq. By proving that this map is a bijection, both considered sets have
the same cardinality. As a consequence, it proves an identity for νpqq in a combinatorial way
while it is already proved analytically.

The second line of matrices representing partitions generated by those Mock Theta
functions also describes properties of the related partition. By summing the elements of the
second line, we can classify the partitions according to these sums and organize the data in a
table, as done in [1] for two matrix representations of unrestricted partitions. It allows us to
investigate and discover properties, till then unknown, that clearly are suggested by the table.

By analyzing the table, the columns become constant below certain entry as it has
happened for all tables we have built. Coincidentally in the next three tables ( for ρpqq, σpqq
and νpqq) these constant numbers represent the same sequence as three kind of partitions into
distinct parts. These three identities are proven by showing bijections between the sets. Some
identities in this chapter were collected and submitted as a paper [7].

4.1 Mock Theta Function ρpqq

In this section, we study the Mock Theta function of order 6

ρpqq �
8̧

n�0

p�q; qqnqp
n�1

2 q

pq; q2qn�1
, (4.1)

and obtain results and patterns that are suggested by a table, whose construction is made
according to the sum of the second line of its matrix representation, found in [9].

Its general term
p1� qqp1� q2q � � � p1� qsqq1�2�3�����s

p1� qqp1� q3q � � � p1� q2s�1q
,

is the generating function for partitions of n into parts of two different colors:

• dark gray parts, ranging from 1 to s, with no gaps, and each part having multiplicity 1 or
2;

• any number of light gray odd parts less than or equal to 2s� 1.
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Theorem 4.1. The coefficient of qn in the expansion of p4.1q is equal to the number of elements
in the set of matrices of the form

A �

�
c1 c2 � � � cs

d1 d2 � � � ds

�
, (4.2)

with non-negative integer entries satisfying

cs � 0; dt ¥ 0; (4.3)

ct � it � ct�1 � 2dt�1, with it P t1, 2u, @t   s; (4.4)

n �
¸
ct �

¸
dt. (4.5)

Proof. According to the general term of (4.1), we can decompose n as

n � pp1� j1q � 1� p1� j2q � 2� � � � � p1� jsq � sq � pd1 � 3d3 � � � � � p2s� 1q � ds�1q

with jt P t0, 1u and dt ¥ 0,or, equivalently, as the sum of the entries of the matrix

A �

�
s� j1 � � � � � js � 2d2 � � � � � 2ds�1 � � � 1� js � 2ds�1 0

d1 � � � ds ds�1

�
,

Noting that the entries satisfy conditions (4.3) to (4.5), the theorem is proved.

Definition 4.1. From now on, in order to distinguish dark and light gray parts, we indicate the
light ones by writing them inside a box. So, a partition in which p5, 3, 1, 1q are the light parts and
p2, 1, 1q are the dark gray ones can be expressed by

p 5 , 3 , 2, 1 , 1 , 1, 1q.

Example 4.1. Looking at the first few terms of the expansion

ρpqq � 1� 2q � 3q2 � 4q3 � 6q4 � 8q5 � 11q6 � 14q7 � 18q8 � 24q9 � � � � ,

we can see that there are 11 partitions of 6 into parts we described above. Consequently, there are
11 matrices of type p4.2q whose sum of the second line elements is equal to 6. They are shown below.

Partitions from ρpqq Matrices of type p4.2q

p3, 2, 1q
�

3 2 1 0
0 0 0 0

�

p2, 2, 1, 1q
�

4 2 0
0 0 0

�

p2, 2, 1 , 1q
�

3 2 0
1 0 0

�

p2, 1 , 1 , 1, 1q
�

3 1 0
2 0 0

�

p2, 1 , 1 , 1 , 1q
�

2 1 0
3 0 0

�
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p 3 , 2, 1q
�

4 1 0
0 1 0

�

p 3 , 1 , 1, 1q
�

4 0
1 1

�

p 1 , 1 , 1 , 1 , 1, 1q
�

2 0
4 0

�

p 3 , 1 , 1 , 1q
�

3 0
2 1

�

p 1 , 1 , 1 , 1 , 1 , 1q
�

1 0
5 0

�

p 1 , 1 , 1 , 1 , 1 , 1 q

�
0
6

�

The entries in the second row of the matrices of type (4.2) describe the light gray odd
parts of the partition associated to each matrix. To know how many of these parts the partition
has, we have to sum the di, for i � 1, 2, . . . , s� 1.

Definition 4.2. Let pρpn, kq be the number of partitions of n into parts of two different colors,
counted by the general term of (4.1), having k light gray odd parts. We denote by Pρpn, kq the set
of partitions counted by pρpn, kq.

As an example, we have pρp10, 3q � 5, and the elements of Pρp10, 3q are

p 3 , 3 , 3 , 1q;

p 3 , 3 , 2, 1 , 1q;

p 5 , 2, 1 , 1 , 1q;

p 3 , 2, 2, 1 , 1 , 1q;

p3, 2, 1 , 1 , 1 , 1, 1q.

For a fixed n, we classify its partitions of type described in definition 4.2 according to the
sum on the second row of the matrix associated to each partition. By counting the appearance of
each number in these sums, we can organize the data on a table, which is presented next. The
entry in line n and column n� j is the number of times j appears as sum of the entries of the
second row in type (4.2) matrices.
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For example, looking at the 5th line, from the right to the left, there are:

• 1 partition with no light gray odd parts: p2, 2, 1q.

• 2 partitions with 1 light gray odd part: p2, 1 , 1, 1q and p 3 , 1, 1q

• 2 partitions with 2 light gray odd parts: p2, 1 , 1 , 1q and p 3 , 1 , 1q.

• 1 partition with 3 light gray odd parts: p 1 , 1 , 1 , 1, 1q

• 1 partition with 4 light gray odd parts: p 1 , 1 , 1 , 1 , 1q

• 1 partition with 5 light gray odd parts: p 1 , 1 , 1 , 1 , 1 q.

By observing the table above we see that the columns become constant below certain
entries. This result is described as follows:

Theorem 4.2. For n, i ¥ 0, we have

(i) pρp3n� 4� i, n� 1� iq � pρp3n� 4, n� 1q;

(ii) pρp3n� 5� i, n� 1� iq � pρp3n� 5, n� 1q.

Proof. We prove only the first item by exhibiting a bijection between both sets of partitions.
The second one has a similar proof.

A map we build from Pρp3n� 4, n� 1q to Pρp3n� 4� i, n� 1� iq is simply described by
adding i light gray parts 1 to partitions lying in the first set. Clearly, the resulting partition lies
in the second one.

In order to check that this map is in fact a bijection, we must assure that a partition
counted by pρp3n � 4 � i, n � 1 � iq always has i light gray parts of size 1. So, let us suppose
that there are xp2j � 1q light gray parts 2j � 1, with xp1q   i. As each dark gray part j has
multiplicity 1� lj , with lj � 0 or lj � 1, then

3n� 4� i � p1� l1q � 1� p1� l2q � 2� � � � � p1� lsq � s�
s�1̧

j�1
p2j � 1q � xp2j � 1q

�
ş

j�1
p1� ljq � j �

s�1̧

j�2
p2j � 1q � xp2j � 1q � xp1q

¥
ş

j�1
p1� ljq � j �

s�1̧

j�2
3 � xp2j � 1q � xp1q

¥
ş

j�1
p1� ljq � j � 3 � pn� 1� i� xp1qq � xp1q
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So,

1� i ¥
ş

j�1
p1� ljq � j � 3i� 2xp1q

1� i ¡
ş

j�1
p1� ljq � j � 3i� 2i

1 ¡
ş

j�1
p1� ljq � j,

which is a contradiction.

Since the columns become constant, one can see that these fixed values represent the
same sequence as the one for the number of partitions of certain integers into distinct parts. This
result is described next.

Theorem 4.3. For n ¥ 0, we have

(i) pρp3n� 1, nq � pdp2n� 1q,

(ii) pρp3n� 2, nq � pdp2n� 2q.

Proof. We prove the first item by exhibiting a bijection between sets Pρp3n�1, nq and Pdp2n�1q.
The same map also holds for item (ii).

We classify each partition counted by pρp3n � 1, nq according to its largest dark gray
part, which is s from the definition of Mock Theta ρpqq. As we also know, every positive part
smaller than or equal to s must appear and there are n light gray odd parts smaller than or
equal to 2s� 1.

The following steps describe the bijection between both sets, each one of them illustrated
by an example.

 Step 1: Given a partition in Pρp3n� 1, nq, consider its young diagram. Split it in two parts: the
light gray and the dark gray one.

 Step 2: Decrease each light gray part by 1. Thus we get at most n light gray even parts smaller
than or equal to 2s.

 Step 3: Conjugate both partitions. In the dark gray one, as the largest part was s, now we have
exactly s parts and in the light gray one, at most 2s parts.

 Step 4: Note that all dark gray parts are now distinct, because all numbers from 1 to s must appear.
Since we have an even number of parts in the light gray partition, merge pairs of equal
parts.

 Step 5: Finally, add both partitions side by side.
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Example 4.2. Taking n � 5, we start with p 5 , 3 , 2, 2, 1 , 1 , 1 , 1q, which lies in Pρp16, 5q.

Step 1
ÞÝÑ

Step 2
ÞÝÑ

Step 3
ÞÝÑ

Step 4
ÞÝÑ

Step 5
ÞÝÑ

As image of p 5 , 3 , 2, 2, 1 , 1 , 1 , 1q we get p7, 4q, which lies in Pdp11q.

Note that we always merge light gray parts of even size. Hence, if in the original dark gray
partition the part s appears twice, the resulting smallest part will be even. In case it appears
once, it will be odd.

Moreover, if the dark gray part k from the original partition has multiplicity 2, the
resulting λk and λk�1 parts have the same parity. In case of multiplicity 1, they have distinct
parity. We can see this in the following two cases for n � 5.

Example 4.3. Case with dark gray parts with multiplicity 2:

p 3 , 3, 2, 2, 1 , 1 , 1 , 1 , 1, 1q ÝÑ p 2 � 5, 3, 1q

ÝÑ

Case with dark gray parts with multiplicity 1:

p 3 , 3 , 3 , 3 , 2, 1 , 1q ÝÑ p 8 � 2, 1q

ÝÑ
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Furthermore, the number of parts in the resulting partition is the same as the largest
dark gray parts of size s in the original partition.

Based on the previous remarks, we are able to describe the inverse map. Taking a partition
λ � pλ1, λ2, ..., λsq of 2n� 1 into distinct parts, we need to know how many times each dark gray
part from 1 to s will appear in the resulting partition.

We start by observing the smallest part λs. If it is odd, the dark part s in the resulting
partition will have multiplicity 1, because λs�1 � 0 and λs do not have the same parity. If it is
even, following the same idea, s has multiplicity 2. According to this result, we remove the first
one or the first two columns of λ’s Young Diagram, and also what is left from its sth row. Save
this parts we removed. We repeat the previous step for every remaining part in order to discover
all dark gray parts of the resulting partition.

Consider the removed columns and rows from each of the s steps above. Organize the
columns by joining them side by side, and the rows by joining them one above the other, in the
same order they were removed in the previous steps. These rows are of even size, so split them
into two equal parts. After all this adjustments, conjugate the remaining partitions and add the
partition p1, 1, ..., 1q with n parts to the light gray one. Finally, join both partitions together.

In order to illustrate the inverse map, we describe it step-by-step in the following example.

Example 4.4. Again with n � 5, consider p6, 4, 1q which lies in Pdp11q. According to the inverse
map, its image is p 5 , 3, 2, 1 , 1 , 1 , 1 , 1, 1q, as we can see next.

ÝÑ

ÝÑ ÝÑ

ÝÑ ÝÑ

ÝÑ ÝÑ

So, the map we described is a bijection and the equality in item piq holds.
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4.2 Mock Theta Function σpqq

In this section we consider the Mock Theta function of order 6

σpqq �
8̧

n�0

p�q; qqnqp
n�2

2 q

pq; q2qn�1
. (4.6)

Its general term

p1� qqp1� q2q � � � p1� qsqq1�2�3�����ps�1q

p1� qqp1� q3qp1� q5q � � � p1� q2s�1q
,

generates the partitions of n into parts of two different colors:

• dark gray parts, ranging from 1 to s� 1, with no gaps, the largest one with multiplicity
exactly one and the others with multiplicity 1 or 2;

• any number of light gray odd parts less than or equal to 2s� 1.

Some partition identities we find in this section are similar to those for partitions generated
by ρpqq. In addition, the columns of the table for σpqq, constructed similarly to the previous one,
reveals a relation between partitions generated by σpqq and ρpqq.

σpqq may also be interpreted in a combinatorial way, as we find in [9].

Theorem 4.4. The coefficient of qn in the expansion of p4.6q is equal to the number of elements
in the set of matrices of the form

A �

�
c1 c2 � � � cs

d1 d2 � � � ds

�
, (4.7)

with non-negative integer entries satisfying

cs � 1; dt ¥ 0; (4.8)

ct � it � ct�1 � 2dt�1, with it P t1, 2u, @t   s; (4.9)

n �
¸
ct �

¸
dt. (4.10)

Proof. According to the general term of (4.6), we can decompose n as

n � pp1� j1q � 1� p1� j2q � 2� � � � � p1� jsq � s� ps� 1qq � pd1 � 3d3 � � � � � p2s� 1q � ds�1q

with jt P t0, 1u and dt ¥ 0, or, equivalently, as the sum of the entries of the matrix

A �

�
ps� 1q � j1 � � � � � js � 2d2 � � � � � 2ds�1 � � � 2� js � 2ds�1 1

d1 � � � ds ds�1

�
,

Noting that the entries satisfy conditions (4.8) to (4.10), the theorem is proved.
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Example 4.5. Looking at the first few terms of the expansion

σpqq � q � q2 � 2q3 � 3q4 � 3q5 � 5q6 � 7q7 � 8q8 � 11q9 � � � � ,

one can see that there are 11 partitions of 9 into parts we described above. Consequently, there
are 11 matrices of type (4.7) whose sum of their entries is equal to 9. They are shown below.

Partitions from σpqq Matrices of type p4.7q

p3, 2, 2, 1, 1q
�

5 3 1
0 0 0

�

p3, 2, 2, 1 , 1q
�

4 3 1
1 0 0

�

p3, 2, 1 , 1 , 1, 1q
�

4 2 1
2 0 0

�

p3, 2, 1 , 1 , 1 , 1q
�

3 2 1
3 0 0

�

p 3 , 3, 2, 1q
�

5 2 1
0 1 0

�

p 3 , 3 , 2, 1q
�

7 1
0 2

�

p 3 , 2, 1 , 1 , 1, 1q
�

5 1
2 1

�

p2, 1 , 1 , 1 , 1 , 1 , 1, 1q
�

3 1
5 0

�

p2, 1 , 1 , 1 , 1 , 1 , 1 , 1q
�

2 1
6 0

�

p 3 , 2, 1 , 1 , 1 , 1q
�

4 1
3 1

�

p 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1q
�

1
8

�

The entries in the second row of the matrices of type (4.7) describe the light gray odd
parts of the partition associated to each matrix. To know how many of these parts the partition
has, we have to sum the di, for i � 1, 2, . . . , s� 1.

Definition 4.3. Let pσpn, kq be the number of partitions of n into parts of two different colors,
counted by the general term of (4.6), having k light gray odd parts. We denote by Pσpn, kq the set
of partitions counted by pσpn, kq.

For a fixed n, we classify its partitions of type described in definition 4.3 according to
the sum on the second row of the matrix associated to each partition. Similar to the one in the
previous section, we construct a table whose entry in line n and column n� j is the number of
times j appears as sum of the entries of the second row in type (4.7) matrices.
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Again, looking at the 5th line, from the right to the left, there are:

• no partitions with no light gray odd parts.

• 1 partitions with 1 light gray odd part: p2, 1 , 1, 1q.

• 1 partitions with 2 light gray odd parts: p2, 1 , 1 , 1q.

• no partitions with 3 light gray odd parts.

• 1 partition with 4 light gray odd parts: p 1 , 1 , 1 , 1 , 1q.

Remark 4.1. From the definition of the Mock Theta function of order 5

1� 2Ψ0pqq �
8̧

n�0
p�1; qqnqp

n�1
2 q,

which represents partitions whose parts appear at most twice, the largest part s appears once and
every integer smaller than s is also a part, it is easy to see that pσpn, 0q represents the coefficients
of the Mock Theta function Ψ0 above.

As it happens in the table of Mock Theta function ρpqq, the columns in the table of
Mock Theta function σ also become constant from certain values of n on, which leads us to the
following theorem. Its proof is analogous to the one in Theorem 4.2.

Theorem 4.5. For n, i ¥ 0, we have

(i) pσp3n� 3� i, n� 1� iq � pσp3n� 3, n� 1q;

(ii) pσp3n� 1� i, n� iq � pσp3n� 4, n� 1q.

The fixed values in the columns in the table built for σpqq are also related to partitions
of certain integers into distinct parts, but all of them must be greater than or equal to 2. This
result is described next.

Theorem 4.6. Denoting by pdpn, parts ¥ kq the number of partitions into distinct parts larger
than or equal to k, for n ¥ 1 we have

(i) pσp3n, n� 1q � pdp2n, parts ¥ 2q;

(ii) pσp3n� 1, n� 1q � pdp2n� 1, parts ¥ 2q.

Proof. Again, this theorem is proved by setting a bijection between two different sets of partitions.
In order to avoid extensive details, we only highlight some adjustments we make in the proof of
Theorem 4.3, so that we have an analogous proof for Theorem 4.6.

When in Theorem 4.3 we decreased by one each part from the light gray partition, now
we must also decrease the largest dark part by one. It is possible since we always have one dark
part. The remaining steps are equal to the original map.
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In the inverse map, we set how many dark gray parts we would have according to the
parity of the parts. Unlike there, now if λi is odd, there will be two parts of size i in the resulting
partition. Otherwise there will be just one part of size i. This occurs because now we have the
dark part s� 1, which does not appear in ρ.

By observing the constant values in the columns of Tables 8 and 9, we note that the sum
of two certain numbers in table for σpqq appears in the table for ρpqq. This property is proved
next.

Corollary 4.1. For all n ¥ 1, we have:

(i) pσp3n, n� 1q � pσp3n� 1, n� 1q � pρp3n� 1, nq;

(ii) pσp3n� 1, n� 1q � pσp3n� 3, nq � pρp3n� 2, nq.

Proof. Both items have analogous proofs, so we present only one of item piq.

By Theorems 4.3 and 4.6, statement piq is equivalent to

pdp2n� 1, parts ¥ 2q � pdp2n, parts ¥ 2q � pdp2n� 1q.

This identity can be easily proved by splitting the set whose cardinality is counted by
pdp2n� 1q into two new ones: one of partitions of 2n� 1 into distinct parts with no part of size
1, and the other of partitions of 2n� 1 into distinct parts having 1 as a part. Noting that the
last set has cardinality equal to pdp2n, parts ¥ 2q, the corollary follows.

Combining Corollary 4.1 and Theorems 4.2 and 4.5, we get another relation between
Mock Theta functions ρ and σ.

Corollary 4.2. For all n ¥ 1, we have

pσp2n� 1, n� 1q � pσp2n� 1, nq � pρp2n� 1, n� 1q.

Although Corollary 4.2 can be obtained from previous results, alternatively we can
demonstrate it by a bijective proof, which is described next.

Bijective proof for Corollary 4.2. Let Pρp2n� 1, n� 1q be the set of all partitions counted
by pρp2n� 1, n� 1q, and define its two disjoint subsets as follows.

 Pρp2n� 1, n� 1q� : the set of partitions such that, if s is the largest dark part, it appears
twice or the largest light part is 2s� 1.

 Pρp2n� 1, n� 1q# : the set of partitions such that the largest dark part s appears once
and the largest light part is smaller than or equal to 2s� 1.
So we have

Pρp2n� 1, n� 1q � Pρp2n� 1, n� 1q# Y Pρp2n� 1, n� 1q�
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Now, separate all the partitions according to the set they belong. As an example, take
n � 9:

Pρp17, 8q

( 3 , 3 , 3 , 3 , 1 , 1 , 1 , 1 ,1)

( 3 , 3 , 3 ,2, 1 , 1 , 1 , 1 , 1 ,1)

( 5 , 3 ,2, 1 , 1 , 1 , 1 , 1 , 1 ,1)

( 3 , 3 ,2,2, 1 , 1 , 1 , 1 , 1 , 1 ,1)

( 5 ,2,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1)

( 3 ,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1,1)

(3,2,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1,1)

(3,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1)

Pρp17, 8q# Pρp17, 8q�

( 3 , 3 , 3 ,2, 1 , 1 , 1 , 1 , 1 ,1) ( 3 , 3 , 3 , 3 , 1 , 1 , 1 , 1 ,1)

( 3 ,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1,1) ( 5 , 3 ,2, 1 , 1 , 1 , 1 , 1 , 1 ,1)

(3,2,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1,1) ( 3 , 3 ,2,2, 1 , 1 , 1 , 1 , 1 , 1 ,1)

( 5 ,2,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1)

(3,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1)

It is easy to see that Pρp2n� 1, n� 1q# � Pσp2n� 1, n� 1q. So, it remains to be proved
that

|Pρp2n� 1, n� 1q�| � |Pσp2n� 1, nq|,

which is done by exhibiting a bijection between both sets. Let λ be a partition lying in Pρp2n�
1, n� 1q�. We define the map according to the following steps:

• If the largest dark part s of λ appears twice, increase one of them by 1 and add 1 as a
light gray part. Thus we have a partition of 2n� 1 into n light gray parts and the dark
ones ranging from 1 to s� 1, with possible repetition of parts between 1 and s� 1. Hence,
a partition lying in Pσp2n� 1, nq.

• In case s appears once and the largest light gray part of λ is 2s+1 , split it into two new
dark parts s and s� 1. Then add two light parts 1 . Once again, we have a partition lying
in Pσp2n� 1, nq with dark parts 1, ..., s, s, s� 1.

For example, for n � 9 it works as follows.
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( 3 , 3 , 3 , 3 , 1 , 1 , 1 , 1 ,1) ÝÑ ( 3 , 3 , 3 ,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1,1)

( 5 , 3 ,2, 1 , 1 , 1 , 1 , 1 , 1 ,1) ÝÑ ( 3 ,3,2,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1)

( 3 , 3 ,2,2, 1 , 1 , 1 , 1 , 1 , 1 ,1) ÝÑ ( 3 , 3 ,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1)

( 5 ,2,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1) ÝÑ ( 5 ,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1)

(3,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1) ÝÑ (4,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1).

The inverse map depends on how many dark parts of size s the partition lying in
Pσp2n� 1, nq has. In case it has two, merge one part of size s and one of size s� 1, getting a
light gray part 2s+1 , and remove two parts 1 . Otherwise, decrease the part s� 1 by 1 and
remove one part 1 .

�

4.3 Mock Theta Function νpqq

Overlooking signs in coefficients of Mock Theta function of order 5

νpqq �
8̧

n�0

qn
2�n

p�q; q2qn�1
,

we see that they represent some kind of partitions, as before, related to certain partitions into
distinct parts. In this section, we present this relations and also an identity that easily follows
from a formula found in [2].

Consider the unsigned version of νpqq:

νp�qq �
8̧

n�0

qn
2�n

pq; q2qn�1
�

8̧

s�0

q2�4�����2s

p1� qqp1� q3q � � � p1� q2s�1q
. (4.11)

Its general term generates the partitions of n containing exactly one copy of each one of
the even parts 2, 4, � � � , 2s and any number of odd parts less than or equal to 2s� 1. For example,
the partitions of 10 that satisfy the conditions are

p4, 3 , 2, 1 q;

p4, 2, 1 , 1 , 1 , 1 q;

p 3 , 3 , 2, 1 , 1 q;

p 3 , 2, 1 , 1 , 1 , 1 , 1 q;

p2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 q;

p 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 q.

We can also find in [9] an interpretation in terms of two-line matrices for this partitions.
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Theorem 4.7. The coefficient of qn in the expansion of p4.11q is equal to the number of elements
in the set of matrices of the form

A �

�
c1 c2 � � � cs�1

d1 d2 � � � ds�1

�
, (4.12)

with non-negative integer entries satisfying

cs�1 � 0; dt ¥ 0 (4.13)

ct � 2� ct�1 � 2dt�1, @t ¤ s; (4.14)

n �
¸
ct �

¸
dt. (4.15)

Proof. According to the general term of (4.11), we can decompose n as

n � p2� 4� � � � � 2sq � pd1 � 3d2 � � � � � p2s� 1q � ds�1q.

Organizing it in a matrix, we get

A �

�
2s� 2d2 � � � � � 2ds�1 � � � 4� 2ds � 2ds�1 2� 2ds�1 0

d1 � � � ds�1 ds ds�1

�
,

which clearly satisfies conditions (4.13) to (4.15).

Example 4.6. Looking at the first few terms of the expansion

νp�qq � 1� q � 2q2 � 2q3 � 2q4 � 3q5 � 4q6 � 4q7 � 5q8 � 6q10 � 8q11 � � � �

one can see that there are 6 partitions of 10 into parts we described above. Consequently, there
are 6 matrices of type p4.12q whose sum of their entries is equal to 10. They are shown below.

Partitions from νp�qq Matrices of type p4.12q

p4, 3 , 2, 1 q
�

6 2 0
1 1 0

�

p4, 2, 1 , 1 , 1 , 1 q
�

4 2 0
4 0 0

�

p 3 , 3 , 2, 1 , 1 q
�

6 0
2 2

�

p 3 , 2, 1 , 1 , 1 , 1 , 1 q
�

4 0
5 1

�

p2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 q
�

2 0
8 0

�

p 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 q
�

0
10

�
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The entries in the second row of matrices like (4.12) describe the odd parts from 1 to
2s� 1 of the partition associated to each matrix. It means that entry dt expresses how many
light gray parts 2t� 1 the correspondent partition has. To know how many of these parts the
partition has, we have to sum the di, for i � 1, 2, . . . , s.

Definition 4.4. Let pνpn, kq be the number of partitions of n counted by the general term of
p4.11q, having k odd parts between 1 to 2s� 1. Write pνpnq �

¸
k

pνpn, kq.

Example 4.7. By considering n � 20, we have 5 partitions satisfying the conditions and having
6 light gray odd parts. So pνp20, 6q � 5 and the set Pνp20, 6q is made of by

p6, 4, 3 , 2, 1 , 1 , 1 , 1 , 1 q;

p 5 , 5 , 4, 2, 1 , 1 , 1 , 1 q;

p 5 , 4, 3 , 3 , 2, 1 , 1 , 1 q;

p4, 3 , 3 , 3 , 2, 1 , 1 , 1 q;

p 3 , 3 , 3 , 3 , 3 , 3 , 2q.

For a fixed n, we classify its partitions of type described in Definition 4.4 according to
the sum on the second row of the matrix associated to each partition. We construct a table in
the same way we did for ρpqq and σpqq functions, now for Mock Theta function νpqq.
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0

1
21

1
0

1
0

1
0

2
0

2
0

3
0

4
0

5
0

5
0

4
0

1
0

22
1

0
1

0
1

0
2

0
2

0
3

0
4

0
5

0
5

0
5

0
3

0
0

23
1

0
1

0
1

0
2

0
2

0
3

0
4

0
5

0
6

0
6

0
4

0
1

0
24

1
0

1
0

1
0

2
0

2
0

3
0

4
0

5
0

6
0

7
0

6
0

2
0

0
25

1
0

1
0

1
0

2
0

2
0

3
0

4
0

5
0

6
0

7
0

7
0

4
0

1
0

26
1

0
1

0
1

0
2

0
2

0
3

0
4

0
5

0
6

0
8

0
8

0
6

0
3

0
0

27
1

0
1

0
1

0
2

0
2

0
3

0
4

0
5

0
6

0
8

0
9

0
8

0
5

0
1

0
28

1
0

1
0

1
0

2
0

2
0

3
0

4
0

5
0

6
0

8
0

9
0

9
0

7
0

2
0

0
29

1
0

1
0

1
0

2
0

2
0

3
0

4
0

5
0

6
0

8
0

10
0

10
0

9
0

5
0

1
0

30
1

0
1

0
1

0
2

0
2

0
3

0
4

0
5

0
6

0
8

0
10

0
11

0
11

0
7

0
3

0
1

31
1

0
1

0
1

0
2

0
2

0
3

0
4

0
5

0
6

0
8

0
10

0
11

0
12

0
10

0
5

0
1

0
32

1
0

1
0

1
0

2
0

2
0

3
0

4
0

5
0

6
0

8
0

10
0

12
0

13
0

12
0

9
0

3
0

0
33

1
0

1
0

1
0

2
0

2
0

3
0

4
0

5
0

6
0

8
0

10
0

12
0

14
0

14
0

11
0

6
0

1
0

34
1

0
1

0
1

0
2

0
2

0
3

0
4

0
5

0
6

0
8

0
10

0
12

0
14

0
15

0
14

0
9

0
3

0
0

35
1

0
1

0
1

0
2

0
2

0
3

0
4

0
5

0
6

0
8

0
10

0
12

0
15

0
16

0
16

0
13

0
6

0
1

0
36

1
0

1
0

1
0

2
0

2
0

3
0

4
0

5
0

6
0

8
0

10
0

12
0

15
0

17
0

18
0

16
0

10
0

3
0

0
37

1
0

1
0

1
0

2
0

2
0

3
0

4
0

5
0

6
0

8
0

10
0

12
0

15
0

17
0

19
0

19
0

14
0

6
0

1
0

38
1

0
1

0
1

0
2

0
2

0
3

0
4

0
5

0
6

0
8

0
10

0
12

0
15

0
18

0
20

0
21

0
18

0
10

0
3

0
0

39
1

0
1

0
1

0
2

0
2

0
3

0
4

0
5

0
6

0
8

0
10

0
12

0
15

0
18

0
21

0
23

0
21

0
15

0
7

0
1

0
40

1
0

1
0

1
0

2
0

2
0

3
0

4
0

5
0

6
0

8
0

10
0

12
0

15
0

18
0

21
0

24
0

24
0

19
0

12
0

3
0

0
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By observing the table above we get some interesting results.

Remark 4.2. It is clear to see that, for all n ¥ 1, we have

pνpn, 0q �

$&
%1, if n � s2 � s

0, otherwise.

and

pνpn, 1q �

$&
%1, if n is odd

0, if n is even.

Theorem 4.8. For all n ¥ 1 and i � 0, 2, 4, we have

pνp4n2 � 2n� i, 2q � n.

Proof. If i � 0, the largest even part of any partition counted by pνp4n2� 2n, 2q has to be 4n� 4.
So, we have to write

4n2 � 2n � 2� 4� � � � � 4n� 4� r � s,

with odd r and s and 1 ¤ s ¤ r ¤ 4n� 3, which implies

r � s � 4n� 2.

Equivalently, writing r � 2p � 1 and s � 2q � 1, with 1 ¤ q ¤ p ¤ 2n � 1, we have to
determine the number of solutions of equation p� q � 2n, with 1 ¤ q ¤ p ¤ 2n� 1.

First of all, the number of positive solutions of equation p� q � 2n with no limitation for

p and q ¤ p is
Z

2n
2

^
� n. The solutions we do not want are those where p ¡ 2n� 1. Although,

note that p ¡ 2n� 1 implies p � 2n, and so q � 0, which never occurs. So, there is no solution
to eliminate and the number we are looking for is just n.

If i � 2 or 4, there is only one partition counted by pνp4n2 � 2n � i, 2q with largest
even part 4n � 2. Indeed, 2 � 4 � � � � � 4n � 2 � r � s � 4n2 � 2n � i, with odd r and s and
1 ¤ s ¤ r ¤ 4n� 1, implies r� s � i. As in those conditions 2 and 4 can only be written as 1� 1
and 3� 1, respectively, there is only one partition counted by pνp4n2 � 2n� i, 2q with largest
part 4n� 2. The other partitions have largest even part equal to 4n� 4. So,

4n2 � 2n� i � 2� 4� � � � � 4n� 4� r � s,

with odd r and s and 1 ¤ s ¤ r ¤ 4n� 3, which implies

r � s � 4n� 2� i.

Again writing r � 2p � 1 and s � 2q � 1, with 1 ¤ q ¤ p ¤ 2n � 1, and i � 2j, it is
equivalent to determine the number of solutions of equation p�q � 2n�j, with 1 ¤ q ¤ p ¤ 2n�1.

The number of positive solutions of equation p� q � 2n� j with no limitation for p and

q ¤ p is
Z

2n� j

2

^
. The solutions we do not want are those where p ¡ 2n� 1. As q has to be at

least 1 and p ¡ 2n� 1, we can write

p � 2n� 1� k with 1 ¤ k ¤ j,
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and so, for each value of k we get one value of p.

Then, the number of solutions we want isZ
2n� j

2

^
� j � n� 1.

Adding these to the other solution we already have, we get pνp4n2 � 2n� i, 2q � n, for
i � 0, 2, 4.

As it happens in Tables 8 and 9, the columns in Table 10 become constant from certain
values of n on. This fact can be proved analogously to those in Theorems 4.2 and 4.5. Hence, we
omit the proof of the next theorem.

Theorem 4.9. For all n ¥ 0 and i ¥ 0, we have

pνp3n� 2� i, n� iq � pνp3n� 2, nq.

The constant values in the columns of the table are also related to certain partitions into
distinct parts.

Theorem 4.10. For all n ¥ 0 and i ¥ 0, we have

pνp3n� 2, nq � pdpn� 1q.

Proof. Let λ � pλ1, λ2, . . . , λkq P Pdpn � 1q. We describe how to associate λ to a partition
µ P Pνp3n� 2, nq step-by-step and illustrate it with an example.

 Step 1: As λ has k distinct parts, subtract and save k, k � 1, k � 2, . . . , 1 from λ1, λ2, . . . , λk,
respectively.

 Step 2: Conjugate the remaining partition and call the new parts r1, r2, . . . , rλ1�k.

 Step 3: Double the partitions pk, k � 1, k � 2, . . . , 1q and pr1, r2, . . . , rλ1�kq and add 1 to each part
ri.

 Step 4: Join the partitions.

 Step 5: Add n� pλ1 � kq parts of size 1.

Overlooking the order of the parts, the partition µ obtained with the steps above is the
partition

µ � p2k, 2pk � 1q, 2pk � 2q, . . . , 2, p2r1 � 1q, . . . , p2rλ1�k � 1q, 1, 1, . . . , 1loooomoooon
n�pλ1�kq

q.

µ really lies in Pνp3n� 2, nq, because every even part from 2 to 2k appears exactly once,
2ri � 1 ¤ 2k � 1 for all ri ¤ k, the odd parts are in number of n and

2k � 2pk � 1q � � � � � 2� p2r1 � 1q � � � � � p2rλ1�k � 1q � 1� 1� � � � � 1loooooooomoooooooon
n�pλ1�kq
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� kpk � 1q � 2pr1 � � � � � rλ1�kq � λ1 � k � n� pλ1 � kq

� kpk � 1q � 2pn� 1� kpk � 1q
2 q � n

� 3n� 2

The inverse map is easy to build.
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Example 4.8. For n � 37, consider λ � p11, 9, 8, 5, 3, 2q and µ � p13, 12, 10, 9, 8, 7, 7, 6, 4, 3, 2 1, 1, . . . , 1loooomoooon
32 times

q.

The following diagram illustrates how to get from λ to µ.

ÝÑ

Step 1
ÝÑ

Step 2
ÝÑ

Step 3
ÝÑ

ÝÑ

Step 4
ÝÑ

Step 5
ÝÑ

1
2
� �
� �
� �

31
32
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By replacing x and y by q in Equation 6 at page 29 of [2], we get the next identity.
Although it is already proved, we present a new combinatorial way to demonstrate it.

Theorem 4.11. We have the identity

8̧

n�0

qnpn�1q

pq; q2qn�1
�

8̧

n�0
p�q; q2qnq

n. (4.16)

Proof. Let us consider the two following sets of partitions:

• Npnq: The set of partitions of n such that, if 2s is the largest even part, then all parts
2, 4, ..., 2s must appear exactly once, any odd part must be smaller than 2s� 1 and may
appear in any number.

• Λpnq: The set of partitions of n into dark gray and light gray parts such that there is only
one dark part s and the light parts must be distinct odd parts, smaller than 2s� 1.

Note that the left and right hand sides of (4.16) are the generating functions for partitions
lying in Npnq and Λpnq, respectively. If we prove that |Npnq| � |Λpnq|, the theorem follows. So,
we describe step-by-step a map from Npnq to Λpnq.

 Step 1: Given a partition counted by Npnq, consider its corresponding Young Diagram. Separate
even and odd parts, getting two new diagrams.

 Step 2: As each even part appears exactly once and the greatest one is 2s, change the s even parts
for s parts of size s� 1. Then, subtract and save one unit from each odd part.

 Step 3: As the partition into odd parts has turned into one with even parts, split each of these
parts into two parts of equal size.

 Step 4: Join all the partitions together (for more details see Example 4.9) and then subtract and
save one unit from each part of the new diagram.

 Step 5: Transform the removed units into a dark part.

 Step 6: The light gray parts are obtained by doing hooks with the remaining rows and columns: for
the first part, take the first row together with the first column; for the second part, take
what is left from the second row together with what is left from the second column. Keep
doing this process until there are no more squares left in the old diagram.

 Step 6: Finally, get the parts together.

Example 4.9. We illustrate how to get partition p 11 , 9, 5 , 1 q P Λp26q from partition p6, 5, 4, 3, 3, 2, 1, 1, 1q P
Np26q.
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Step 1
ÝÑ

Step 2
ÝÑ

Step 3
ÝÑ

Step 4
ÝÑ

Step 5
ÝÑ

Step 6
ÝÑ ÝÑ

The resulting light gray parts are odd because the parts below the Durfee Square of the
partition after step 5 appear in pairs. This also proves that these parts are distinct.

Note that the unique dark part of the resulting partition is equal to the number of parts
of the original partition (s plus the number of odd parts). The largest light part is, at most, 2
times the number of odd parts plus 2s� 1. So, the resulting partition lies in Λpnq.

To describe the inverse map, take the dark part and draw it as a column. Beside it, build
a square with side equal to the number of light gray parts of the partition. Over this square,
display the remaining parts as hooks to complete the Young Diagram. The steps that complete
the inverse map are easy to see and we illustrate them in the next example.

Example 4.10. Considering the partition p 11 , 9, 5 , 1 q P Λp26q, we set the way back to
p6, 5, 4, 3, 3, 2, 1, 1, 1q P Np26q.

Thus, with the maps we described above we have set a bijection between Npnq and Λpnq
and, therefore, statement (4.16) holds.

From Theorem 4.11, changing q by �q, we have the following
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p 11 , 9, 5 , 1 q ÝÑ � p 11 , 5 , 1 q ÝÑ

ÝÑ ÝÑ ÝÑ

ÝÑ ÝÑ p6, 5, 4, 3, 3, 2, 1, 1, 1q

Corollary 4.3. We have the identity

νpqq �
8̧

n�0
p�1qnpq; q2qnq

n.

Remark 4.3. Knowing Mock Theta function

λpqq �
8̧

n�0

p�1qnpq; q2qnq
n

p�q; qqn
,

we set the two-variable generating function for λpqq

λpq, zq �
8̧

n�0

p�1qnpq; q2qnq
n

p�zq; qqn
.

Considering the coefficient of z0, we get the generating function
8̧

n�0
p�1qnpq; q2qnq

n, which

is equal to νpqq.
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5 Concluding Remarks

Based on a matrix representation for partitions we could relate it to coefficients of some
Mock Theta functions, by overlooking signs and interpreting the general terms as generating
functions for some of those partitions. As it was possible to set this straight relation between
partitions and two-line matrices, the second line provided us characteristics of the partitions.
We classified the partitions in a table according to the sum of the elements of the second line of
its matrix and we were able to see patterns suggested by it. Many identities were obtained by
considering other known partitions and into distinct parts is the one appears more.
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