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ABSTRACT

This research presents results of a performance characterization and a tracing

methodology used for Alya running with a fluid dynamics model. Alya is a ro-

bust physics simulator that runs in parallel and is capable of solving different

physics in a coupled way. One problem faced by Alya is the irregular load be-

tween resources and time. Experiments are conducted in parallel using the MPI

specification implemented by OpenMPI, and the application is traced using the

tracing tools Extrae and ScoreP. The analysis of the trace provides information

about the different performance patterns such as the communications among

ranks, and the effective application load imbalance. To evaluate the load bal-

ance, percent imbalance metric is used, along with an analysis of the execution/-

communication ratio per timestep. The goal of the characterization of Alya is to

provide information about aspects of the application that affect the performance

providing a possible path of improvement to developers of the application. The

tracing methodology comprises the usage of different tracing tools to provide a

way to reassure the results and create complementary experiments.

Keywords: HPC, Alya, ScoreP, Trace, MPI, OpenMPI.
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1 INTRODUCTION

Numerical simulation is used to understand and model natural behaviors.

Very often these simulations are carried out by techniques based on fluid dy-

namics, where a model of a real world scenario is implemented and solved with

iterative numerical methods using time-steps. High performance computers are

employed as execution platforms to run these models, as any sequential approach

would make certain simulations executions impractical for the level of details re-

quired by the scientific community.

Distributed and parallel programming techniques provide high computa-

tional power. Interfaces such as OpenMPI enable portable implementations for

the execution of complex programs in less time and are ideal for dealing with

physical problems for real world simulations. Alya (VÁZQUEZ et al., 2014) is an

example of MPI-based framework simulator of various physical problems. It is

an open source project, part of the PRACE Benchmark (PRACE, 2013), from the

Barcelona Supercomputing Center (BSC) to numerically solve physical problems.

Very often numerical simulation applications have irregular loads during

execution. Such irregularity appears for many reasons, such as irregular con-

trol and data structures, adaptive mesh refinement (AMR) (BERGER; COLELLA,

1989), or even irregular iteration patterns among processes. These reasons ulti-

mately lead to a load imbalance among both resources and time as the simulation

advances. Finding out the actual application behavior on a particular platform

is key to apply optimization techniques, such as better balancing algorithms or

more appropriate communication patterns. The most efficient way to obtain such

information, when you do not know the application code, is to apply tracing

techniques. They use files to keep track of information regarding the applica-

tion, which is saved in the form of events and is used for instance to track MPI

operations.

In the literature, it is possible to find many works that investigate the be-

havior of Alya. For an application that simulates such physical problems with

such massive amount of data and processing, any hampering in the performance

can have a significant influence in the scalability and execution time. Load imbal-

ance has been found in Alya in the experiments performed in the works (CAJAS;

HOUZEAUX; EGUZKITZA, 2015) and (RODRíGUEZ, 2014). Thus, we seek to
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evaluate the load balance, and if a load imbalance is found in our experiments,

we intend to figure out why it is happening.

In this work, the Alya fluid dynamic simulation tool is executed on a set of

different environments settings with a different number of cores and nodes. The

goals are threefold. First, to investigate whether Alya has an irregular execution

behavior regarding the resources and the time for a representative input. Second,

to develop a methodology to trace this application. Third, to understand the

behavior on a smaller scale platform. A similar study has already been conducted

on a larger scale platform (RODRíGUEZ, 2014).

As part of the investigation process, different tools were used and eval-

uated, highlighting the positive and negative points. To reach an appropriate

methodology, the tracing tools Extrae and ScoreP were employed. The tracing

tools record all MPI events. Extrae records all events, not only MPI events, which

make the trace files too big. ScoreP is able to record only MPI events and a set of

wanted functions reducing the size of the trace. ScoreP assumes that the system

has Network File System (NFS) to run with more than one node although it is

possible to run on a system without NFS with a specific setting. The environment

in which the experiments were executed did not have NFS so the experiment was

conducted in a single node.

The work is structured as follows. Chapter 2 presents the basic concepts

of the technologies used. Chapter 3 shows the basic concepts regarding Alya as

well as its structure and its input and output data format. Chapter 4 shows the

most relevant works related to this research. The workflow and methodology

used in the performance characterization and analysis are detailed in Chapter 5.

The results of the experiments are discussed in Chapter 6. The main contributions

and the future work are detailed in Chapter 7.
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2 BASIC CONCEPTS

This chapter presents the basic concepts used in this work. Fundamen-

tals of MPI are explained, the importance of a balanced parallel application is

highlighted and overview of the metrics used to evaluate the load imbalance is

shown.

2.1 The Message Passing Interface (MPI)

The Message Passing Interface (MPI) is a specification used by develop-

ers of message passing libraries, and contains the definition that the library must

have. MPI works on top of the message-passing parallel programming model

and when there is communication between the processes it moves data from the

address space of one process to the other using cooperative operations (BARNEY;

LIVERMORE, 2016). The implementation used in this work is the OpenMPI li-

brary that is an open source implementation of MPI and is a powerful resource

for high performance computing being compatible with C and Fortran.

Initially, MPI was developed to run on distributed memory architectures

with one CPU and one memory per computer and has been adapted to more so-

phisticated architectures as they were created. Today it can be used with shared

memory, where multiple CPU share the same memory in one computer, or dis-

tributed memory that runs on more than one computer and each process only

operates on local data, having to send a communication message to access and

send data to other computers. The usage of both shared and distributed memory

approach is called hybrid. In this work experiments with shared memory and

distributed memory are performed.

MPI defines rank as a unique number for each process, so it is possible

to say that the communication happens between ranks. The operations can be

point-to-point or collective, and blocking or non-blocking. Point-to-point opera-

tions involve only two ranks, while collective operations can communicate with

multiple ranks. A blocking operation such as MPI_Send forces ranks to wait

until communication is completed before the execution continues, in contrast,

non-blocking communication such as MPI_ISend returns immediately even if the

communication is not completed. For instance, MPI_Send sends a message from
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one rank to another (the sending rank will only be unblocked after the commu-

nication is completed), while MPI_Bcast send the same message to all ranks of a

certain group.

2.2 Tracing HPC Applications Behavior

Parallel and distributed applications have been providing intense perfor-

mance gains since its initial use. However, the improvement in performance

comes with an increasing complexity. In order to acquire relevant information,

it is required precision and robustness from the performance analysis tools. It

is expected that they can monitor the whole system, recording information from

hardware as well as high-level performance abstractions (SHENDE; MALONY,

2006). This makes it possible to create traces that describe the behavior of an

application.

Despite the usual gain in time that parallel applications have, the complex-

ity of the application usually raises. Thus, understanding how the code works

internally, and what functions are being executed at each given time can be a

challenge. Finding out what is affecting a parallel code is not a simple task, and

is usually facilitated by the use of tracing tools.

A tracing tool is able to precisely inform when a function started and

stopped running, which core executed it, which function called it and which

function was called by it. A variety of other information can be obtained from

the trace, like the communications amongst the processes, MPI calls, and com-

munications operations as well as their target. One common way of doing that is

by instrumenting the code.

Instrumentation is typically done by probes and instruction added to the

code. The probes capture relevant information about the execution as the pro-

gram runs and it can be done in several different ways explained in details in

(SHENDE; MALONY, 2006). The experiments performed in this work use source-

base instrumentation, selective instrumentation, and binary instrumentation. Bi-

nary instrumentation can be done at runtime without the need of recompiling

the program. Selective instrumentation allows us to include or exclude functions

and blocks of code in the trace, this can significantly reduce the size of trace files.

When using source-base instrumentation the program has to be recompiled with
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the tracing tool.

There are many tools available to create and analyze traces such as Score-

P, TAU, EZTrace, Akypuera, SimGrid, Extrae (SCHNORR, 2014). The choice of

which tool to use is dependent on the environment, on the application, and on the

goals that the user aims to achieve with the analysis of the trace. In order to have

a variety of tracing tools, due to some system requirements, and to experiment

with the instrumentation methods cited above, Score-P and Extrae were chosen

for the experiments.

2.3 Metrics for Identifying Load Imbalance

The load balance is the evaluation of the distribution of workload across

multiple computing resources. In the case of parallel computing, it commonly

refers to the amount of processing load that each core have compared to the oth-

ers. Having a good load balance means reduced idle time and improvement in

the performance. The trace of an application provides us with the required re-

sources to evaluate the load balance of the execution. In cases of bad load balanc-

ing, the analysis of the trace can provide information about when and between

which resources the bad balance is coming from. It is then possible to create a

fundamented hypothesis about why it happens and how to fix it.

One interesting metric is the percent imbalance metric that takes into ac-

count the average load of each processor and the load of the busiest processor and

provides information about the load. According to (PEARCE et al., 2012), and

then validated by (RODRIGUES, 2016), the percent imbalance formula is used to

formally calculate the load balance. It is described by the Equation 2.1 where λ

is the load imbalance value to be calculated, Lmax is the value of the process with

the highest load, and L is the average computational load among processes. The

metric may be calculated either for the entire execution or for different phases e.g.

one measure for each time interval or timestep. Higher values mean higher load

imbalance, 0 is the ideal value to have a totally balanced application.

λ = (
Lmax

L
− 1) ∗ 100 (2.1)
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2.4 Summary

The aggregated use of the tracing tools cited in this chapter made it possi-

ble to achieve the results presented in this work. MPI was the specification that

developers used to create Alya. The tracing tool made it possible to extract infor-

mation about the application. With the analysis of the trace, the percent imbal-

ance metric was extracted generating relevant information about the load balance

and the behavior of the application.
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3 ALYA

Alya is a computation mechanics code capable of solving different physics

simulations. It was developed by BSC and can solve partial differential equations

in non-structured meshes using finite element method (RODRíGUEZ, 2014). Alya

can solve a variety of different physical problems, among them are turbulence,

bi-phasic flows, free surface, convection-diffusion reaction, incompressible flows,

compressible flows, excitable media, acoustics, thermal flow, quantum mechanics

and solid mechanics. Each physics has a different modelization characteristic, so

the solvers are divided into modules.

In order to solve a problem that involves more than one physics module

Alya uses coupling. Coupling combines the modules and tries to solve the prob-

lem from all modules involved. To do that, it shares the domain and domain

discretization between modules, therefore all problems are solved in the same

mesh. Depending on the physics, coupling can generate a high complexity, but

as long as the modules are synchronized, sub-timesteping can be applied. In

other words, two modules can have different time iteration configuration. For

example, one module can use a timestep five times faster than the other module.

If one of the modules face scalability issues, the overall scalability will be affected

(VÁZQUEZ et al., 2014).

The general pseudoalgorithm of Alya is presented in the Algorithm 1. It

was done based on the documentation and the source code of Alya (VÁZQUEZ;

HOUZEAUX, 2015). In the pseudoalgorithm it is possible to see the different

stages of the application. After reading the input, and defining the mesh the loop

starts. Each iteration represents one timestep. At each iteration, the boundary

conditions, as well as any other relevant variables, are updated. In the DoBlocks

stage of Algorithm 1, Alya divide modules into blocks, this is done to simplify

cases where some modules or equations are dependent but others are not. For

instance, if three modules are being coupled, Nastin, Turbul and Chemic, but

only Nastin and Turbul are dependent, one block solves Nastin and Turbul, and

the other solves Chemic, avoiding unnecessary dependency. With this method,

Chemic can be solved separately without any perturbation from the other mod-

ules. After that, the coupling is done and the modules are solved. After all cou-

plings, blocks, and timesteps are processed, the final result is processed, checked
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and outputted.

Algorithm 1 Alya Pseudocode.
Read Files
Define Mesh Dependencies
Output and Post-process
loop

Compute time step . Calculate Timesteps
Begin time step . Update boundary conditions
Modules Are Grouped Into Blocks
DoBlocks

DoCoupling
Solve module1 (i.e. Nastin)
Solve module2 (i.e. Turbul)
...
Check coupling convergence

EndCoupling
EndBlocks
End time step
Output and Post-process

Output and Post-process
End Execution

There are many modules, such as Incompressible Flows (Nastin), Turbu-

lence models (Turbul), Compressible Flows (Nastal), Non-linear Solid Mechan-

ics (Solidz), Species transport and chemical reactions (Chemic), Excitable Media

(Exmedi), Thermal Flows (Temper), N-body collisions and transport (Immbou).

In this work, the focus has been given to a test case that only uses one

module. The test case represents incompressible flows and does not use coupling.

Therefore the complications that coupling modules create will not be covered in

this work.

Alya has been developed in Fortran90/95 and parallelized using MPI and

OpenMPI. And according to the developers, it is not an initially sequential code

that solved individual modules that was later parallelized, it was initially de-

signed to run in parallel and solve multi-physics problems. This is a positive fea-

ture of the simulator since many problems caused by parallelization of sequential

code have been taken care of in the development of the application. One of Alya’s

main feature is that it has been designed to run in the most powerful and efficient

large scale supercomputing facilities such as Blue Waters, MareNostrum III, JU-

GENE/JUQUEEN, FERMO(BlueGene/Q) and CURIE(Bull Cluster) (VÁZQUEZ

et al., 2014) (RODRíGUEZ, 2014).
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Alya is structured in a modular way, being divided into kernel, services,

and modules. The modules can be compiled separately and then linked. Each

module is dedicated to a specific problem, solving a different set of partial dif-

ferential equations. A sequential execution could be performed using only the

kernel and the modules. The kernel will control the execution and the modules

will solve the problem. The services have the function of parallelizing the code,

by communicating with the modules through well-defined interfaces and con-

nection points. Thus, the parallelization in Alya is a service.

Alya uses METIS (KARYPIS; KUMAR, 2009) library to partition the mesh,

and is executed by the root node sequentially. If the mesh is too big to fit in the

memory, it can take a long time to finish. For that reason, it is possible to per-

form the partition in parallel with parMETIS, a library similar to METIS that runs

in parallel, significantly reducing the partition time as shown in (ARTIGUES;

HOUZEAUX, 2015).

METIS does an automatic mesh partition, and create a set of subdomains

that will interact using MPI in a Master-Worker fashion. The root (Master) pro-

cess will be responsible for the partition and input of the mesh. The other pro-

cesses will solve individually each sub-mesh in parallel. When gathering the re-

sults no communication is needed between them, and the load balance severely

influences the scalability. The size of the interfaces and the communication sched-

ule highly influences the scalability. The iterative solvers use global communica-

tors (MPI_AllReduce) and Point-to-Point communicators (MPI_SendRecv) (RO-

DRíGUEZ, 2014).

In Figure 3.1 it is possible to see the structure of Alya input files. It was

created based on a similar scheme presented in the documentation about Alya

(VÁZQUEZ; HOUZEAUX, 2015). To run a simulation the kernel, the modules,

and the services must be defined. The figure shows that the kernel is minimally

composed of three files, .dat, .dom.dat, .ker.dat.

The information about what modules and services will be used as well

as the general data used in the execution is kept in the .dat file. Parall is the

service responsible for the parallelization and is also kept in the .dat file. The

information about domain input data that contains the mesh description, and all

the dependent variables such as mesh dimensions, element connectivity, bound-

aries, among others information is kept in the .dom.dat file. The .ker.dat
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keeps the variables shared between modules, the information about the physical

problem and the numerical treatment.

The input files for the modules have different format depending on what

will be used. For instance, nsi.dat represents Nastin input data file (incom-

pressible flows), and it keeps information about the physical problem, numerical

treatment, output, post-process, and boundary conditions. The service files are

not always needed.

Figure 3.1: Structure of Alya input files.

Simulation

Kernel

*.nsi.dat *.tem.dat *.tur.dat

Incompressible 
Flows

Thermal 
Flow

Turbulence 
Models

Modules
Physical Problem

Numerical Treatment
Boundary Conditions

Postprocess
Output

*.dat *.dom.dat *.ker.dat

Problem Data
Execution Data
Services: Parall

Mesh Information:
- Boundary Conditions
- Dimensions
- Geometry
- Strategy
- Sets

Physical Problem
Numerical Treatment

Postprocess
Output

The Master-Worker strategy is explained in (VÁZQUEZ et al., 2014). It

also presents the communication types, scheduling, data structure, division of

the mesh and how the boundaries are dealt with. To divide the mesh, Alya uses

a coloring scheme, build upon an adjacency graph scheme of each subdomain.

The adjacent color groups that have no communication can be scheduled in non-

overlapping stages. The Figure 3.2 is based on (VÁZQUEZ et al., 2014). It shows

the kind of problem that can be faced with a bad data transfer schedule. The im-
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age represents four subdomains that have to exchange data between all others.

On the left of the figure an ideal schedule is shown where only three steps are

required. The right part of the figure shows a bad communication schedule that

tries to communicate in a bad order to exchange boundary data. It needs five

steps to finish communication. For instance, subdomain 3 has to wait for step

three to be able to transfer data with subdomain 4, staying idle for two steps.

There are four steps where only two subdomains are able to communicate prop-

erly.

Figure 3.2: Scheduling strategy. Left shows an ideal communication schedule in
three steps, on the right a bad communication schedule in five steps is shown.
Image based on (VÁZQUEZ et al., 2014)
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The data structure used is illustrated in Figure 3.3 with a mesh partition

of four subdomains that was done using METIS (top left) was extracted from

(VÁZQUEZ et al., 2014). In the top left it shows that each worker orders the in-

terior nodes, and then boundary nodes are divided into own boundary nodes

and {others boundary nodes}, presented on the top right. The division is needed

to avoid repeating the contribution of a boundary nodal value. In the bottom

left, the x sign represents the nodes involved in scalar products. And the nodes

involved in MPI_ISend and MPI_IRecv are shown in the bottom right.

Alya uses Sparse Matrix-Vector (SMV) product to help calculate and com-
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Figure 3.3: Organization of data and types of communication. This image was
extracted from (VÁZQUEZ et al., 2014)

municate results between neighbors nodes. First, SMV product is performed on

boundary nodes. Then this information is exchanged between neighbors in a

non-blocking manner with commands MPI_ISend and MPI_IRecv, then the local

SMV is performed on the interior nodes, and then the solutions are updated and

synchronized with MPI_Wait_All.

As our main goal is to analyze the performance, the final output data will

not be the focus of this work. In the end of Alya execution, there is a checker that

evaluates the final answer and indicates if the results are correct or not. Alya has

been tested in several situations such as in (AVILA et al., 2013), (VÁZQUEZ et al.,

2014), (RODRíGUEZ, 2014). Thus, proving that the final outputted data is correct

is not our goal.
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4 RELATED WORK

Alya is a part of the PRACE Benchmark and is present in (PRACE, 2013)

and (ALYA, 2013). It has been used in several projects related to physical simu-

lation and parallel application. One of them is (VÁZQUEZ et al., 2014). It de-

scribes the simulation strategy of Alya and the equations of the cases studied.

Through experiments, it concludes that Alya is scalable since the executions use

up to 100.000 cores simulating different physical problems. One of the key prob-

lems pointed by the paper is the post-processing since the file generated are of

several gigabytes. This problem is also faced in this dissertation. The same work

also describes what is an ideal scheduling strategy with good communication,

and a bad communication scheduling for ALYA. It also explains how the mesh

data is divided between the nodes and shows how the boundary problems are

solved.

A parallel Computational Fluid Dynamics (CFD) model for Alya is pre-

sented in (AVILA et al., 2013). It describes a wind farm model showing in details

the model strategy and the numeric algorithm using finite element discretization.

The result of an Alya simulation is visualized containing information about the

final simulation, such as temperature, wind speed, viscosity, pressure, among

others.

A similar experiment done in this dissertation has been presented in (RO-

DRíGUEZ, 2014) where Alya performance has been analyzed with Extrae tracing

tool. Relevant differences are the physical problems solved, the size of the prob-

lem, and the execution environment. The paper focus on massive size problems,

only trace a part of the execution, and run on Tier-0 machines, with up to 20,000

cores such as JUGENE/JUQUEEN, FERMI, CURIE. The authors state that the Ex-

trae tracing tool generates a large amount of data since it monitors information

about hardware counters, states burst, and events generating traces of several gi-

gabytes. For this reason the paper concludes that it is not possible to manage such

amount of data on an average computer, and to escape that problem, it does not

trace the whole application. In our approach, we tackle a smaller problem but get

information about the entire execution.

The creation of traces for big parallel applications is a challenge due to

the big amount of data present in resulting files. This problem is reported in
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(RODRíGUEZ, 2014). One approach is to only trace part of the execution, how-

ever, depending on the number of processors being traced, even a small share of

timesteps can generate massive files of several gigabytes. Analyzing big amount

of data has a lot of particularities and difficulties that can only be managed by

using certain data manipulation techniques combined with the R plotting tool as

can be seen in (SCHNORR; LEGRAND, 2013).

The paper (PEARCE et al., 2012) presents metrics for load balance quan-

tification and characterization, such as percent imbalance, taking into account

disparities in the data distribution. Those metrics are used and validated in (RO-

DRIGUES, 2016) that formally calculates the load balance metrics for a set of dif-

ferent applications.

Alya presents load imbalance in some cases as reported in the works (CA-

JAS; HOUZEAUX; EGUZKITZA, 2015) and (RODRíGUEZ, 2014). This informa-

tion was extracted using Extrae and tracing only part of the execution. In those

works Alya is executed on high end computers like MareNostrum III using up

to 2048 cores and solving massive problems. In this project, we will verify if a

load imbalance can be found in a smaller problem running on computers with

lower processing power. To do that we trace the entire application using three

different tracing tools for different situations and experiment specification. The

next chapter presents the workflow employed to investigate Alya performance.
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5 INVESTIGATION WORKFLOW AND EVALUATION METHODOLOGY

This chapter contains a general overview of the workflow, as well as de-

tailed information about the tool, techniques and approaches used in this project.

Different experimental methodologies had to be used in the experiments per-

formed in order to better evaluate the particularities of each tracing tool but

they present several similarities. The general methodology for the creation of

this work is also presented in this chapter.

5.1 General Overview

Figure 5.1 presents an overview of the investigation methodology. The

methodology used in all tracing tools follows the same pattern. Despite that, each

tool has its own particularities presented in Section 5.2. As shown in the figure,

first the application is instrumented and executed, then outputs the simulation

result and the trace files. Those trace files are converted to a format that can be

easily read, and then the data is plotted, visualized and analyzed.

Applications can be instrumented in many different ways as previously

stated in Section 2.2 and the tracing tool receives the instructions of what should

be traced in the application. As the application runs, the trace files are created,

and one trace file is created per process per node. If the execution is multi-nodal

after the execution all trace files have to be copied to one node and then merged.

Each tracing tool outputs a trace that has to be converted to a format that makes it

possible to read and make a post-mortem analysis in R. With the files in a proper

format, the analysis in R is performed and plots containing behavioral informa-

tion about Alya are created.

The amount of timesteps calculated in each execution can be easily de-

fined and has been changed according to the goals of the experiment. The spe-

cific process of compiling Alya is described in detail in the labbook present in

(CAMELO; SCHNORR, 2016). The general steps are to modify the config.in

file to comprise the wanted settings, then run the configure file to create the

makefile, run make of metis4 that is responsible for the automatic mesh parti-

tion (KARYPIS; KUMAR, 2009), then run make. After this, the binary file of Alya

can be executed sequentially simply running the Alya.x file after compilation.
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Figure 5.1: General methodology
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In order to run in parallel OpenMPI commands must be used.

Alya can be executed in one node (shared memory) or multiple nodes

(distributed memory). In order to run in multiple nodes, some communication

tags and a machinefile must be used. The important communication flags are

-mca btl_tcp_if_include em1 and -mca btl tcp,self, that set the ap-

propriate communication protocols for the environment used. The parameter

-machinefile receives the machinefile file that defines the number of ranks

and in which host the application will be executed. Listing 5.1 shows an exam-

ple of a machinefile that uses 64 cores divided between two nodes, draco1, and

draco8.

Listing 5.1 – Example of machinefile for an execution with two nodes.

draco1 s l o t s =32 max_slots =32

draco8 s l o t s =32 max_slots =32

5.2 Per-tracing tool Implementation

5.2.1 Extrae

The experiment involving Extrae used only four nodes of the Draco clus-

ter with a total of 64 cores. The instructions to execute in a multi-node fashion

are described at the end of Section 5.1. The simulation ran only until the end of
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the third timestep due to the large size of the trace files. The trace files for this

execution have a size of 2,7 gigabytes. The tool Extrae creates individual traces

for each processor, keeping information regarding the communication and exe-

cution. Multiple files are created in .mpits format containing information about

what was executed by a given process. It is then necessary to convert and merge

them using the tool mpi2prv that outputs the Paraver format .prv. After that, a

Perl script is used to filter the relevant data creating a Comma-Separated Values

(CSV) file used for the analysis scripts. (RODRíGUEZ, 2014) also uses Extrae to

trace part of the application, but uses a tool to visualize it.

The resulting CSV output has four columns of data: the MPI rank (Rank),

the time in which the process entered the state (Start), the time in which the pro-

cess finished the state (End), and the MPI state name (State). With this informa-

tion, it is possible to calculate the actual workload (running time in seconds) of

each process, as well as create space/time graphics that tells us the order and

what was the time that each state occurred in each process. All calculations are

made from scripts written in the R language, making use of ggplot2 and dplyr

libraries. Figure 5.2 gives a summary of the steps to trace Alya and to conduct

the performance analysis of the experiment when using Extrae.

Figure 5.2: Methodology used for the execution and analysis of the experiment.

The schematics on Figure 5.2 represent a possible execution setting with

four nodes each using 16 cores representing an arbitrary setting. The first and

second blocks represent the execution with MPI and trace with Extrae. The next

two blocks in the flow are the output of the simulation results and the trace files in
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.mpits format. The following two blocks represent the conversion of the trace

to .prv and then to CSV using mpi2prv and a Perl script, respectively. Then

a block representing the CSV format is presented followed by the last block that

represents the creation of graphics and analysis of the experiment using language

R.

5.2.2 Score-P

As previously stated, the trace generates files of massive size, so in order to

filter functions ScoreP receives as input a configuration file to filter events. That

way only functions that are relevant for the experiment will be present in the final

trace. In the filter file initially all functions are excluded with the selector * and

then MPI and communication functions are added. After that, the Alya functions

endste_ and timeste_ are included. Those functions mark the beginning and

end of each timestep. The filter instructions used can be seen in the Listing 5.2.

Listing 5.2 – Filter file that excludes all events then includes MPI events and timestep

functions.

SCOREP_REGION_NAMES_BEGIN

EXCLUDE *
INCLUDE MPI COM

INCLUDE endste_ t imste_

SCOREP_REGION_NAMES_END

One particularity of ScoreP is that for executions with more than one node,

it assumes that there is a NFS system. The available machines did not have NFS

so multi-nodal experiments were not performed. Chapter 7 presents some possi-

bilities of future approaches that tackle this problem.

Some environment variables had to be set to configure the execution, such

as: SCOREP_EXPERIMENT_DIRECTORY it defines where the traces will be stored;

SCOREP_OVERWRITE_EXPERIMENT_DIRECTORY=true to overwrite old traces;

SCOREP_ENABLE_TRACING=true so that the tracing of the application is en-

abled; SCOREP_FILTERING_FILE=<dir_to_filter_file> to use the filter

file wanted; SCOREP_TOTAL_MEMORY=<memory_per_core> that defines the

memory used by each core. With these flags, the execution can be performed
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in a single node.

The trace files are outputted in OTF2 format and converted to paje format

with otf22paje. Command pj_dump is used to create raw data that can be

loaded into R. Then pre-processing is performed removing trailing spaces and

unwanted information. Finally, the data is ready to be plotted in R.

5.3 Analysis Tools

The technology used for this project was the combination of Emacs 24.5

(and newer version) and Org mode 8.3.5. Org mode is an Emacs mode for note

keeping, project planning, TODO lists and authoring. With Org mode it is pos-

sible to describe the work being done while doing it. Using tags managed by

Lisp it is possible to run blocks of code inside the labbook. All commands that

a user type inside a terminal can be executed from the labbook and the results

are outputted inside the labbook. With this approach, all the work done will be

logged into the labbook. Org mode is also used to write this work, once written

the document is exported to Latex and results in a PDF file.

Several tools were used in this work. R was used to analyze the results

and organize some experiments. Screen is a full-screen window manager that

multiplexes a physical terminal between several processes screen, was used to

run experiments in remote machines without having to keep a open terminal on

the local computer. Both ssh and scp were used to remotely control the high

performance computers, and copy files between computers. Vim editor was used

on remote computers. Latex was used to create the text about this work. Extrae

and ScoreP are the tracing tools used.

5.4 Summary

This chapter presented the general process needed to trace Alya followed

by an explanation that details the particularities that each tracing tool require.

The technical configurations in order to run the application in one node and in

multiple nodes were also explained. Lastly, the tools and programs used through-

out the entire process were listed along with their contribution to this work.
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6 RESULTS

In this chapter results of three experiments are reported. The first experi-

ment was conducted using the BSC tool Extrae in a four node distributed memory

environment, running only three timesteps, with a general load balance evalua-

tion of the whole execution. In order to improve the precision of the load balance

metrics the second experiment was performed with ScoreP tracing tool in only

one node in shared memory environment (due to ScoreP environment restric-

tions as explained in Section 5.2.2), running for 10 timesteps. The load balance

metrics evaluation were measured in each timestep giving an insight of the local

load balance.

Experiments were conducted on computers that are part of the Draco clus-

ter at the Institute of Informatics of the Federal University of Rio Grande do Sul

(UFRGS). The cluster is formed by eight nodes with identical architectures, each

one equipped with two Intel (R) Xeon (R) E5-2640 v2 CPU @ 2.00GHz processors

with eight physical cores (16 with hyper-threading) resulting in 32 cores in each

node, 64 gigabytes of RAM, running Ubuntu 14.04.4 LTS. Different amount of

cores and nodes were used in the experiments and are described in this chapter

along with the experiments description and results. The schematics in Figure 6.1

shows the detailed architecture of a single Draco that is part of the Draco cluster.

It is possible to see both logical and physical cores, as well as the cache sizes, L1i

(instructions) with 32 KB, L1d (data) with 32 KB, L2 with 256 KB, and L3 with 20

MB. The schematic was extracted with the tool lstopo.

6.1 Distributed Memory Experiment with Extrae - three timesteps

The goal of our performance analysis is to identify relevant characteris-

tics of the application and evaluate whether it presents load imbalance among

resources and along the time. We also intended to refine our methodology to

conduct larger scale experiments. It is possible to see some of these refinements

in the experiments with more timesteps presented in other sections of this chap-

ter. We provide an overview about the load balance, a detailed analysis using

a traditional space/time view, and an attempt to explain the identified behav-

ior using per-rank state statistics. We end the analysis by globally applying the
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Figure 6.1: Schematics of draco nodes architecture.

percent imbalance metric to evaluate the load imbalance. All data presented in

the graphics from Section 6.1 are acquired from one execution using four nodes

and 64 cores, running until the end of the third timestep in a distributed memory

environment.

6.1.1 Overview of Load Imbalance

Figure 6.2 shows the aggregate time of effective computation for each pro-

cess in an experiment that executed three timesteps. Computation is calculated

by summing all time periods in which the process performs data processing. All

periods of time on MPI communication, point-to-point synchronization, and col-
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lective synchronization are not included in these measures. It is observed that

most processes have a total computing time of roughly 150 seconds. In some

cases, however, the time reaches up to 300 seconds, for instance, the process 60.

This is an indicative that a load imbalance occurs considering this specific case

study.

Figure 6.2: Aggregated time of effective computation (Y axis) per rank (X).
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6.1.2 Space/Time Execution

Figure 6.3 presents detailed information about the load balancing, showing

the time that each process was in a state of effective computation for an execution

of three timesteps. At the beginning of the execution, process zero engages in

dividing the mesh sequentially in order to distribute the work among processes.

This activity continues until the 150 seconds mark. After this time mark, the

remaining processes begin to work and the root process (zero) becomes idle while

waiting for the response of other processes.

An interesting feature that can also be observed in Figure 6.3 is the exis-

tence of four groups of processes: the 0-15, 16-31, 32-47, and 48-63. This behavior

correlates with the number of nodes used in the experiment, indicating that in-

ternally in a node all processes begin their computation roughly at the same time.

This means that the initial load distribution from process zero is not scalable be-

cause visually the computation in each one of the four machines start sequen-

tially: first the group between the processes 32-47, after the group of processes

16-31, then the group containing the zero process (0-15) and finally the group of

processes 48-63. In the latter group, we also observe an anomaly in the processes
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Figure 6.3: Timeline (X axis) showing computation states per process (Y axis).

60 and 62. They start and finish their computation after the other processes from

their group. Such anomaly is observed only within this group.

The process 60 has a peculiar behavior when compared to the other pro-

cesses. Figure 6.2 features the time of effective computation: it runs for roughly

300 seconds. Figure 6.3 shows that process 60 has an anomalous behavior, be-

ginning and ending its execution last. Moreover, the execution state (Running)

of this rank, where the computation is actually performed, does not seem to con-

tain as many spaces as other ranks. This probably indicates that the time spent

on communication functions for this particular case is much lower than in other

processes.

6.1.3 Process Behavior by State

Figure 6.4 displays a summary of dedicated time (Y axis) by process (X

axis) to each state (different facets). Only the five most important states are pre-
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sented (Blocking Send, Group Communication, Running, Send Receive and Waiting

a message). The other states present very little or nonexistent time. The Blocking

Send has less influence in load balance than the other states since they are some-

what similar in all processes (except for the 48-63 group, slightly higher). The

Group Communication has quite different times among processes and a very long

time to process zero, as detailed in previous sections. Load imbalance is shown

in the facet Running, similar to the data presented in Figure 6.2. The sending and

receiving times are relatively homogeneous between processes, except in some

cases in which they are smaller. Therefore, it is possible to see in the rightmost

facet of the graphic that the possible reason for the anomaly of the processes 60

and 62 is due to additional time spent in the state Waiting a message. Such fact

contradicts our previous hypothesis drafted in the previous section, where the

timeline visually indicated less communication time for process 60. This is prob-

ably due to drawing much more events than the screen space available to draw

them (SCHNORR; LEGRAND, 2013).

Figure 6.4: Time spent in each state by process.
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6.1.4 Percent Imbalance

In this experiment the calculation of the metric is performed considering

the entire execution, thus being a global indicator of load imbalance. The met-

ric characterizes the uneven distribution of work formalized by the Formula 2.1,

and when applied to our measurements gives the value λ = 74.25161. That repre-

sents a workload imbalance of 75%. This indicates that if the load is more evenly

distributed between the computational resources there would be room for a po-
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tential performance improvement.

6.2 Shared Memory Experiment with ScoreP - 10 timesteps

In order to evaluate the load balance, an advised approach is to analyze the

execution time of each core. With this method, it is possible to see the load balance

state for a given period of time. This has been done in the experiment with Extrae

in Section 6.1. The issue with that result is that only a global value is given about

the load balance, it is not possible to know in which part of the execution the load

balance is better or worst nor what might be affecting the execution performance.

With that in mind, an experiment that evaluates the local load balance rather than

only the global load balance has been designed.

This experiment was executed on only one node using 32 cores in shared

memory environment and tracing with ScoreP. The environment used was the

computer draco3 that is part of the Draco cluster described in Section 5.1.

It was possible to identify the timesteps by tracing the functions timste

and endste called by the main loop in Alya.f90, those functions mark the

beginning and end of each timestep. By doing that, in the trace files, there will

be an event for each core that can be used to create one data frame per core per

timestep so that analysis can be made in a more significant way.

In Figure 6.5 it is possible to see all MPI events that occur but there is too

much information. It is possible to identify the problems mentioned in Chapter

4 about the abundance of data and the difficulty of showing all information on a

single plot. Despite that, it is possible to see some patterns. For instance, in the

first part, all worker ranks were in a state of MPI_Recv, while the master rank was

dividing the mesh. After that, the workers start to execute, solve the problems

and communicate, and the master rank goes into a state of MPI_All_Reduce and

waits for the ranks to finish solving the problem and report to the master rank.

During 8,5 % of the total execution time, the root process is the only one doing

effective computation. Until the beginning of the first timestep at the 181 seconds

mark all other processes are idle.

Zooming in specific parts of the execution can provide more significant

information. In Figure 6.6 a zoom has been applied in the iteration border be-

tween the first and the second iteration. The mark of 376 seconds divides the
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Figure 6.5: Gantt Chart with Space/Time visualization of the MPI events.

iterations, and at that time it is possible to see that all ranks synchronize with

an MPI_All_Reduce, then a small execution period, then another synchronized

MPI_All_Reduce period, then a large portion of effective computation. Based on

Chapter 3, one possible hypothesis is that the first execution period was working

on the boundaries of the subdomains, then communicated the dependencies, and

on the second, large execution period, the heavy work started.

Figure 6.6: Gantt Chart with Space/Time visualization of the MPI events during
iteration border.
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In order to reach the aggregated time of effective execution by process,

the data was grouped by rank, and all the time intervals that MPI operations

occurred were summed and then subtracted from the total execution time, which

was 2113.686 seconds. By doing that the information of how much time each rank

spends in effective computation becomes available.

An image with the aggregated time of effective computation by core is

presented in Figure 6.7. It is possible to see that most processes have execution

time ranging from 1671 seconds to 1867 seconds with one exception, the root

process. The root process uses some time in the beginning of the execution to

divide the mesh, organize and communicate with all other processes, and after

that stays idle waiting for the other processes. Thus in total it runs for less than

186 seconds.

Apart from the root process, the load balance seems to be good, as can be

seen in Figure 6.7, this supposition is explored in the next data analysis.

Figure 6.7: Aggregated time of effective computation (Y axis) per rank (X).
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Another interesting analysis that can be done using the timesteps is to find

out how long each timestep takes, and if they have similar times of execution. In

Figure 6.8 each process represents a line, so since most lines overlap each other

it is shown that the timesteps have roughly the same duration. It is important to
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note that this analysis is only for 10 timesteps, so it is not possible to assure that

this behavior would be the same for a longer execution.

Figure 6.8: Plot of duration of each timestep.

As stated before the function timste and endstemark the beginning and

end of one interaction, so they were also traced in this execution. The function

timste has been chosen as a divisor of timesteps because it is the function that

starts a timestep. Analyzing the calls of the timste function we can see in Figure

6.9 they are all called sequentially and finish at the same time. The last one to be

called is the root process. It is important to note the timesteps start roughly at the

same time in all ranks.

One significant information that can be extracted from parallel applica-

tions is the communication ratio and the computation ratio. They are both pre-

sented in Figure 6.10, on top the communication ratio (a) is presented and the

computation ratio is shown in the bottom (b). It is expected that both ratios to be

complementary to each other, and in fact, it is possible to see that both values are

correlated since when one rises the other decreases.

To get a better visualization the master rank has been excluded since it

will present very high levels of communication. The initial and final iterations

present higher communication and are not presented in the figure to better vi-
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Figure 6.9: Space/Time plot of timste call event with division per rank. X axis
represents time, Y axis represents rank.

sualize the other iteration information. In the beginning of the execution (initial

iteration) there is more communication required to divide and share the subdo-

mains. Similarly, in the end (final iteration) more communication happens in

order to assemble all the solution in the master rank.

The cores with higher variance are represented by thicker lines with colors

while the most stable cores are gray. Looking at the communication ratio, it is

possible to observe that the communication is not too high, which is beneficial for

the performance of the application. There are some anomalies on communication

ratios in certain cores that do not remain stable, and one, in particular presents a

tendency to grow throughout the execution, finishing with more than 16% of its

time communicating.

Once again using the timestep function timste as a timestamp it was pos-

sible to divide the data set into smaller data sets, apply local analysis and calcu-

late local metrics. One of the metrics was the percent imbalance, calculated and

plotted in Figure 6.11. As pointed out in Chapter 2 the smaller the value of the

percent imbalance the better is the workload distribution. The first iteration is not

shown in order to gain precision since it presented low levels of load imbalance.
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Figure 6.10: (a) Communication Ratio without rank 0 and without iteration 1 and
10. (b) Computation Ratio without rank 0 and without iteration 1 and 10.
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(b) Computation Ratio by Iteration

The root rank (zero) is not being considered for the calculation of the percent

imbalance.

The chart on the left of Figure 6.11 (a) shows the whole plot, followed by a

zoom on the right (b). In the zoomed image it is possible to see that the percent

imbalance has a tendency to rise as the execution proceeds, the application starts

with percent imbalance lower than 3,3 and increases reaching values higher than
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3,6 in timestep 7, and finishing with load imbalance values between 3,4 and 3,5.

The behavior in timestep seven is very different from other timesteps, as can be

seen in Figure 6.8, timestep seven is the shortest timestep.

Figure 6.11: Local percent imbalance metric by timestep. X axis represents the
percent imbalance, Y axis represents the timestep. In (a) the whole plot is pre-
sented, and in (b) a zoom is shown.
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(b) Zoom of Percent Imbalance per Timestep

6.3 Comparison between the tracing tools

In order to evaluate the tracing tool used in this work, experiments were

conducted with a different number of cores, timesteps and in shared and dis-

tributed memory environments.

One constant concern when creating the traces is the size of the files. This a

serious problem because the size of the final trace quickly escalates with the num-

ber of cores as stated in Chapter 4 and in (VÁZQUEZ et al., 2014). This problem

was faced in all tracing tools used, but for ScoreP selective instrumentation was

used to reduced the size of the traces making it possible to run the application

with more timesteps.

The usage of selective instrumentation along with ScoreP made it possible

to exclude all information that was not relevant for this analysis and also to keep

track of the timestep functions resulting in a more meaningful analysis. The se-

lective instrumentation in ScoreP is simple and effectively done with a filter file

as explained in Section 5.2.2. In comparison, this is a clear advantage that ScoreP
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has over Extrae. The selective instrumentation in Extrae has dependencies and is

not as practical as ScoreP.

Extrae deals well with distributed memory executions. On the other hand,

ScoreP presented some issues. ScoreP assumes NFS to run in a shared memory

environment to synchronize the data. The system that was currently available

did not have NFS, and no experiments were conducted with more than one node

with ScoreP.
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7 CONCLUSION AND FUTURE WORK

Parallel applications have an immense potential to reduce execution time,

but they do not follow regular sequential programming paradigms, and the same

applies for the execution flow. For that reason debugging or even figuring out

how a parallel code works might be a challenge without the use of any tool. In

this work the power of tracing tools was shown. Together with data analysis in

R, it was possible to explicit the behavior of a big parallel application, showing

communication patterns, synchronization points, effective communication, and

evaluate the performance. The usage of R with raw data made it possible to

perform several kinds of analysis, providing a certain degree of freedom that a

visualization tool would not be able to provide.

The experiments performed with Extrae were part of the investigation re-

garding distributed memory. The application could not be executed with a higher

number of timesteps due to the massive size of the trace files created that raises

quickly as more ranks are involved in the experiment. Therefore, a simulation

with three timesteps was carried out on a platform of four computer nodes total-

ing 64 cores, leading to an execution of approximately 450 seconds. The execution

was traced using the Extrae, enabling us to discover relevant information about

the core operation of Alya in the addressed case. We observe that a significant

share of the time (about 34% in a run with three timesteps) is somewhat wasted

in the beginning of the execution to divide the mesh sequentially, creating consid-

erable overhead since remaining processes are kept idle. Other results include the

detection of anomalies in some processes and the perception that the root process

(zero) sends the partitioned data sequentially to different nodes, making the start

of application considerably slow and not scalable. One other possible reason for

this is the synchronization between the nodes.

The experiments performed with ScoreP show the communication pattern

and explicit the behavior of the application in terms of MPI events. They also

show the pattern and load balance of each iteration. It was possible to see that

the iterations have basically the same duration, and start at the same time with

synchronization. The execution has been performed with 32 cores all in the same

node processing 10 timesteps running for roughly 2110 seconds. It was possible

to see the communication ratio was good, never being higher than 16 %. Only
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8,5% of the total time is employed to divide the mesh and distribute the problem.

During this time only one rank is computing and compared to the experiment

with three timesteps, the overhead of the division and distribution of work is

significantly smaller. This means that if more timesteps are involved, the time

percentage that the application spends in a sequential execution is reduced.

Some issues have been found in this work and will be tackled in the future.

One issue faced in the experiment was the environment requirements of ScoreP.

It assumes the there is a Network File System(NFS) for the executions in multiple

nodes. Those conditions were not met by the computers available. One future ap-

proach is to conduct a similar experiment in a system with NFS. Then multi nodal

(distributed memory) execution with medium size problems will be performed.

Another issue was that only one test case was considered for this work, it is ex-

pected that more test cases with different configurations will be available soon.

Future experiments will comprise results from different scenarios with different

parameters that will be compared with the results found in this work. Some ini-

tial research has been done towards the use of the tracing tool TAU, that seems

promising. The tool presents selective instrumentation and can run multi nodal

experiments without NFS. In the future, experiments will be done using this tool.
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