UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA .
PROGRAMA DE POS-GRADUACAO EM MICROELETRONICA

TIAGO JOSE REIMANN

Cell Selection to Minimize Power in
High-Performance Industrial
Microprocessor Designs

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Microeletronics

Advisor: Prof. Dr. Ricardo A. da Luz Reis

Porto Alegre
January 2017

CIP — CATALOGING-IN-PUBLICATION

Reimann, Tiago José

Cell Selection to Minimize Power in High-Performance
Industrial Microprocessor Designs / Tiago José Reimann. —
Porto Alegre: PGMICRO da UFRGS, 2017.

130 f.: il

Thesis (Ph.D.) — Universidade Federal do Rio Grande do Sul.
Programa de Pos-Graduacdo em Microeletronica, Porto Alegre,
BR-RS, 2017. Advisor: Ricardo A. da Luz Reis.

1. Gate Sizing. 2. Threshold Voltage Assignment. 3. La-
grangian Relaxation. 4. EDA. 5. Microelectronics. 1. Reis, Ri-
cardo A. da Luz. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pro-Reitor de P6s-Graduagdo: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informatica: Prof. Luis da Cunha Lamb
Coordenador do PGMICRO: Prof. Gilson Indcio Wirth

Bibliotecaria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

& jAa enou ulqm(anﬁeﬁearﬁi‘rgqrer—ueﬁenmrﬁ:e apiace In s o am %el;gn? rw%rrqgernowme ea iy mﬂ[” gerst Fneu fresse rea nim by nana rm é%én&mwugggn eansm mane r‘}”ﬁﬁﬁ%s’f 7
E‘i‘ \M[E |n‘?s ﬁ? |t IEEBSt [}ﬁ’ Imcf nt5|5m sstﬂ%sl |r|t ﬁ I%E!g ?]eﬁ(?\n % |nd|'vm5 @Eﬁfst%ﬁ‘: aniqf & 5l§e| 1hl éyll %
7‘3%6 mr‘ Eﬂsnma"*m aﬁaqgmar e 5 aF ? = 4& 33 St ?Z“Ff’“? Lty ﬁ&f‘ngfn'go ngx%e?me M% A i e °3; ;
g \eame stll\ Pr Jaﬂ'\e“a S

SR

N sun re Fs ISy en an ou co
s%?c%ﬁ sa"ﬁ ﬁr N "I] %Vvor dl gvﬁve;' 0 e&?g%ﬁ’tg arg‘ir?\g eg wanF % e oeg we rm?ter h&% § Eou[tos Ipr?jrc ﬁ%&&ﬁv}g wﬂ? es a
‘1 e

elive vtnour grh d cfa'\tlﬂg Us sorm ngegefw eﬂ n oR | o
s g q;‘ AR AET Y e m; semka iy ven,s 5 gom ! er i e @Fr cm -t %m%?esth ST
eal lear ﬁ gottﬁee ea?\ 'S sél

eeI ey hear |sfu Tondioh mda WI have d H urr" éﬂ ﬂfu ! Rl su'e WI e rree??u'e o
ﬂ n?:a‘ﬁrg %up fo mﬁwo'”‘c?){ﬁ' 'ﬁ“éars av‘é aCc:eur mil sl g n ourmme Wﬁ atth:” ! v\ takeo r‘gx A a??e:?ﬁe ¢ s%aﬁ@rg] o Wé QH
r on 's e%é’[F nacﬁ %Wrgwe ar fore erg evepofe] ou | ea{;‘s eln?aw mﬁﬁ? ; Ot‘ 0 sﬁa@l T usl a"l‘(r‘nls%? ﬁe%'ém '"ﬁ
(% |{'e la) edm e nc ouru ?wrl"’a ean w ﬁe%{lb i eg'alf e‘ 2 ?}? sorroWs rWere ormn! oome rd
other hoj ¥ Jriér? tfé eﬂ n ers d? la) ere no] \ for me o o ife 3}” cr§
%d%%an; lks&wor]% ?ﬁ %serr\# in ave a%ay rsgt?: a eve% E?ﬁr:gﬁ' 0 F—meleas (vtgﬁﬁe Eﬁ?g@‘#ﬂ meln%an‘? ive |rt\?‘;ﬁ
F‘ {ree Gar e Vol rei i LS 3 g hé a»e’l e§a acity or qs al a v;ﬁe h|$ e

o e al IOUrS olrsel and hnd JQur ec? '"E_‘\:, ICE one pf
ime we fake we s ea% %% ﬁa’%l i s e d r]E on eovﬁga{m? ue {rs\olse & ‘?&anecﬁ ! anre n o unforese: resse
%9713 anﬁsed Hm 01 ﬁr\gergme |ed|veaﬂees eg%f gvﬂ rg 9,50 ; 1 ﬁ] Tféﬁw S ﬁ%na}(ln in L{I\F

N
% a*e wﬂe b [ﬁé’h.tgsm%s“o%‘mgm

¥

\?ﬁ'ﬁlsdsga/ EI the :7” en a nuc IS 1S
/ a’| IS [\ Ve or Just g str W ‘J\
i wm YZ*‘? rs:An‘}sa ‘3‘*) m - ﬁ%su";%lﬁg@w S o ﬁxﬁe‘o@ﬁ;@ mgw’ %
i ea” e eﬂv:fe%m rﬂﬂ ﬁzoﬁ:; % hﬁs@?ﬁﬁ%""ﬁ‘%&hxni Jm b el orsv L] é"n.ﬁg" seBa%Frsf?
" e "Y?ﬁﬁ ng °’? @L T rfwere BEEEl serﬁz& i ‘iqnﬁa R .nﬁﬁP P
S %{?ﬁgfg' Wc e redille St g di e T aedinia
ﬁ\e e scars. V%&V ‘ﬁ’é‘ never reaﬁzévi rrlJes wilhe over rour ?va on:fdﬂead vﬁﬂ; ere isn
sk A i L 1 Usa W°)am-?r B RS R e e
it % W"" Ol ?E ﬁ?gr %. a.@anP{he"ﬁhWLﬁlﬁ w | ‘*ﬁﬁ%ﬁe ';m j “'EQI Tﬁ%ﬁf&ﬁlﬁk%@;ﬁm o
\e

SRt O ena] (0 ko P TRt S of e T
P SR L gt DR o 1) fﬁeo%\% nem?ﬁ
TR Do S uHel ”"e o es' nf}'“m the y ur cfsqu

Mol ace

ve
T&NOU eﬁgcl’&s |d n r#
i Qaq%e&%%%%ﬁ E.M‘nev%.ﬁ? o rgenfiﬁuswes %lgs ggL iy o
m il |ve‘ree “§zﬁat' O(I?Fe\fsgl”ewltyour H 78 al Yo
%EE EEW% MR D i e
%J{':"'e %fa“ﬁermT 'esseﬁ‘ S !eﬁ"‘"d e“ﬁ"n‘r’.v sssﬁ i & dvies i SHer ALY ”“e“e |s|s I j@" '
(| b] rcn eah K‘/ e% msFVeher n glgn i % ”de& ﬁ‘»"n‘m‘! @éqﬁuvcf"e: o‘vg(‘ﬂ]" m r L Xond erlealms jég(h m ?hourggss aﬁ'%r'&g\év

Fiee tospedk 3 i T \slsm/ lfe
@ ayna ertrargg Yl % ou‘ar roungr S0 r%henqjé \fﬁ'ﬁn 'V"“H%z)’éﬁ ﬁﬂwe <l ‘S Nm ;O 3}/ Qnoese ing fe C ra ngsrsdaa 1l ss4ce & a 3 oreme er Idu
OEE?Q V(ﬁéﬁlom 76tib \ J ,‘LWI Jouk e@% f} E éer%o i;eg?er? er, | s e sa “1

oc |ve§o nrr‘a ot n‘gr X Fbe mjy heﬁorYou:"O dn% r%n or t%qcé:?sun eﬁaw(?:n(10% CE(énd b pat {
Ofe ra I wr e sa ev ca ed o‘r" %(%Lﬁgszgg%émor fl QrwB “Wiese\ ’ N‘f‘“' h%ér’]:é}m 7
x:w Eﬁ'ﬁ%) msu&{ﬁ%l leve ! “?Xzf?%) Vé\z’ejas reucﬁg‘m” i ?:Sﬁ MF 9 ﬁ%‘eeﬁgg,lag EPP OWOHH h%g \’:7 Lt e nee oﬁeﬁl\fi%gﬁ%;?;ﬁ\%?« w{arln&;::g: g?r%'y §§ns sgw T
” el Ak v%%%e M
for

bE "éfs*%% e L am St
e il aiea" ol *&% i nsgw” aﬁ?“ga@ e {ET? nﬁwmseggjoggﬁn“; :

MO r(r\ll \n(
oa er e s vercar om

gSOS E\ﬂ e ral OI' Ive ar ; IS Joes on
e 2l ? ks ‘&rr i b s R AR S5 " %me f 'm‘f W
%%é:;ﬁe w ake j‘r{l{ Ief#?ot,_ﬁﬂvgﬁ |ea(¥mﬁ£ﬁr§y'éaur‘§lfq\ R Sorws 68 e \‘ “F i n’"{he«: [&3@ e|‘here e R?ge?ﬁ%vﬂfﬁﬂ:

e &
A Gl ‘ il
nreiandl sﬁ% Ran i e]
m unwo:;gsfém @gn iy *Fhé‘c e “"g;vg}?ﬂve G e i}q % b i

in Gar wefve Y
enceone e B 1 e Rave ine' el or herot Q?Yd re \nefs7 E’m n i IS ; keanu
%u' %Wﬁemg}?p?a A ?;gﬁ%g?‘cﬂ'l‘é R e W‘ e WQ' e %E"e'ﬁwjﬁm Mﬁ@ri i n
%e%m“ th e? n& P o ke e g e S e R SR fm{hﬂfs e
T ﬁ‘ EEE [or HS\NBR Oua ansyer ore en % muc IS e \ Sla/ N fettin Cn| g a}l 3 35? évraln Sa(i(|*| {J Ss
'S come s t\ o?p sun e\i 11 jn Your eyes g&ew ﬁé F Guby Yo glox 17 m O lIVIrT % f"l? T u r ""’!{&E‘ oor u
‘[33??58 %i. i i A Ee‘){mﬁ@iﬁl%ﬁif&&f@? : d% ’n% @ L ‘“”5””” '"éw Z;sgoézk 2 ﬁﬁ{{“‘ Jéw%s"&? ! gyﬂ (it a*
F?%“;fﬁ g‘"gw' hﬁsﬁg et rﬁ’g{: el e “sﬁeﬁw%mwﬁe@eﬂev@ﬁw °'1e(;w o “vsead%%r dab ?"Swssw: it ifwﬁf%'f’v?%" 5h
e sgogr‘k'e‘fs i lsmekaP "aanvg oef e s it R i e LD R e ﬁviﬁsvsnfgefe 8 eeﬁ *ﬁ
RO NG RS0 o8 mo T oy af’e‘ﬂ R Bifeve in ﬁ[s NEbeer o el The i ReHll 5 F‘ OX/ IT Tgp
iy mn gﬁ@iﬁgﬁwﬁug gzan;éwguW "eéew Iwha v i i@@ Gl HREE m Sk IR
cipigihe e; r Sul MiAESS i v aopEb ears e E oul, of

é el
Do rodt you 're

e “r!g““?n s e és% ‘1'(Ay "ke%A’IF
was X Oo M f, ‘\MP ﬂ‘e dl%(‘ ‘d\v?hWOj\“ E gel Elh Ol HKO rnme OVEV' OUI’SE[?OHIS Sno
Fi i B &aek e “)11351 . e RSP e AL ? e (T et e S
e s e Tirans ol nclerpl Cani Uil ol s i TEpd e
gqceﬁ)ﬁh &)r %To I| IFIé1 \¥%§:a ”‘% 6 %ﬁg 3}"‘?%‘” my dfs ﬁlny §r§"k f?@é‘ﬁi@ﬁﬁ 'l]:!‘é?’?}w ws %E\ g{% %e é V[;elje oljr eJ ecresﬁdde 1“eén%i!e§(2t W‘Esﬁ%\;ﬁo{;
i %pnemaat = d,me%em%a mw a. B sc‘ﬁ %EI g%as;‘rt"foﬁ"?m@ af eg;[vfer ‘P%L TEah oy s

Lel : i dz"’:':é"““*'ﬂ.ﬁ;e o ;g%e W"%
se refg) S et |n 10 as Ce onu E Elg ? US er e Ié}sl’ {}) et
“ai*e'ned‘ m'g M’ wﬁw " fw" Wec‘ s o mf asy% b e ?rﬁaﬁmﬁn ﬁFF"ﬁ%é%%w .r"caﬂa S
B, i amﬁf} Pl .Fs.ge;z;" gf’s.%goﬁmm‘ik"gg. m

FrEV OUI’S (ﬁnd nddo% ﬁeﬁifcgcem eo&i’arﬂ,l usué

(i

eve

Vi s eu’lZe b w.(ﬁ sln E)r ik ‘l’ass r Ry
érl%uveb d orlfl% Wp} 3 2 o0 %W\e%ou}w gzﬂtspraa mt)}ﬂé;vlﬁianun th?rﬁ’“& 9 mr¥ ueyes

ReE e e g 2 R 6 s ey betn
"'e“"%; e "!'?eahﬁ;’ ALY gpaﬂg”'gsréﬁf%qé ?ﬁ%‘iﬁéﬁggﬁw V%‘%m@i% 4, Tg;gm“if . hé“"’x”“wg'aei?“ s &M}x ;ﬂ \4‘; émsun e“?&y
NGy e R B e R R L e el ﬁvc%fuf‘i’apkjég?#c ma iRl i ﬁxﬁf"ﬁ"g@‘ﬁ«g %ﬁ w"'" S R, ﬂ% e
Vlgg%euﬁ%ﬁ S}évﬁgm%&rlgre%f{ggsr gFo;’Wa&lﬁev‘rrdngNévgisav’%)é o[@g}sgﬁfﬁ%\ﬁ Srgsﬁ ¥ EESS‘FBSOSZIVQSC\) H“ gou Vﬁ f ﬁ)r ua7 nmn c‘ft msu ZPOO IE ma ? OPVJEE ELzﬁ%?\/lm IEI’T\ £ ece?%{
ey e sweapfw i euf T e B o Jesw sgww A5 gued i a&\r%ss ek
Eiechy m"mfeswggwem F T e e i s qu S,
*élas COXn f nrw‘a Jtos ol =t at@m ‘ a "e%éﬂF ot 50 sarl Thereis f Otherf 2 gacfe Wﬁs " n os e;e Fﬁ(gctpamr?gr f er WI é{r Ier tg‘xi

e 'We. Gl Gt s e il il .mffeq%ﬁ Y Lo B e
mcrd Bgelrr\‘){?ur Ol ;@‘Yﬂlr\mﬁirﬁﬁ‘ sno? ef erkn ow S ?E 3 j§: ﬁgé’h ur tim wﬂrc? ;‘ 'ﬁﬁe%ﬁcxfae ﬂ‘ ‘n‘?ﬁ" d ¥ 2 n{e?@%{d@%@? rsJ‘eF\M r\lﬂ/e l
Has f’ Spl g n (i Wﬁé’[i @;fs(;;%q it i R e TR R %%
?#J‘ by e e «‘%"“5 o @ﬂ"wmﬁ b e wa%;ggn:”%?v o n*ﬂa@mg%m SRR
I\S’ IS al re\ivas e IS, S\/E flen?e ?(\Naerea %‘lrl{? Siny I nedaloo Easse l‘g}er I C"’Se @ ripple: Om O ! .ureouaFe acts o |‘r?nnegl an c%uet Calr\cll
d?r’ﬁ ge %rgi(es rtﬁio' hl devg'aet:p\?e ewn&m es% s shg%’lﬁn% hﬁg# '%f%ﬁ} %‘)eﬁ? %anw%e |s|§ﬁhoffe En \ﬁpﬂ? (?E“ v ; rﬁﬁ;; agéynotslgﬁﬂvlﬁe H‘E‘Il%‘ii;ci
‘:l;‘ % muiggﬂﬁp j}"’ﬁﬁaﬂ;g&ez % il W@y@.ﬁ?&eiﬁe g o wﬁh %‘Lss.n L ﬂ?."}; ["wn o (eerf”fﬁ"e : i ﬁhgfﬁ AUl et
) 5PN for oyve

| R Jour yes a aftel H;‘aeyaarf
C e OLI J ll n 9’1 Ir e %ﬁ%y af Wlam S IS pa SI ou%c rPr calerg? ajslﬁ F ; r%cs
same il &‘?‘ <YM /OU C¢ uto%%r%izt‘“a D E’“C’p N ﬁeﬂ (€ ﬁrhmé S?R %Pgu étﬁ# g ! fes 13 vg\ ?0 e I nd R/veenarﬁ] {1 ractice e |\%e§o
e ”%? S ggi f*“g j T i el ver;”%;% e %az .Va;%n’«z%,e“ﬁmm g 15 e e gﬁosaﬁ“ﬁéé’ .sﬁfsg e
'\?E\ég&ca g%{ i %K e‘/e“: g\? erq e ier;ﬁmﬁr‘;j ;jsj?:: Seeg}]:?‘iva 'ﬁg@ﬁ‘gr‘xﬁi;rvﬁve?i thesew"' ll\g‘ause[ﬁg eal %g“ er:‘:cacﬂs |r‘|s \Ell :&% "c?i" hoN (] ea\ovvl ert?;é\
f es el,‘a (I1|e hg ﬁ‘%e 5&3 cnt ﬁgefur S:n g i %rlle S\fre P\‘;SZ%EZ%::TL" er &an{!lls' % S 0 ln 0 beal Fher?g EIS u% Ig%ﬂ\lym s Se ﬁ \1 P&!tg mé ﬁ

at the
erent Vi c: sa €]
%ﬁd e*l‘t,ge i i%w %'mn ”"*ﬂgﬁs
recaiej 5 SR R
p m??;\ F’e.lﬁ;'l?. r ".‘3"3".’ PglasE St 9"?‘(!.5&. ‘"HJ\“&”"L\'ES 'WE nﬁce ”E R A ﬁ.ne&dﬂxi’ﬁiiﬁ 2R B T ﬁAf‘.‘r’E‘,’l‘ Rsm e V @ﬁ(m i

“Seja vocé quem for, seja qual for a posicdo social que vocé tenha na vida, a
mais alta ou a mais baixa, tenha sempre como meta muita forga, muita
determinacdo e sempre faca tudo com muito amor e com muita fé em Deus, que
um dia vocé chega la. De alguma maneira vocé chega la.”

— AYRTON SENNA

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS ceeeseessessnees 6
LIST OF FIGURES..... 7
LIST OF TABLES . . . ceeseeneesaees 9
ABSTRACT 10
RESUMO . . .11
1 INTRODUCTION..... 12
2 STATIC TIMING ANALYSIS....... ..14
2.1 Standard Cells 17
2.2 Interconnect Model . ..20
2.2.1 Effective CapaCItanCe.........eeeverueeriieriierieeieenieenieeeteere e st ereesree s seneeneesreesenes 23
3 THE CELL SELECTION PROBLEM.. .25
3.1 Physical Design Flow .25
3.2 Transistor Sizing26
3.3 Gate Sizing.. 27
3.3.1 ContinUoOUS Gate SIZINEceevvieriiieeiieeriieeiieerieeesiteesteeesiaeesteeesseeesaeeessseesseesnnne 27
3.3.2 Discrete Gate Sizing and Threshold Voltage Assignment.........ccccceecveeveenieenneennee. 28
4 RELATED WORKS AND STATE-OF-THE-ART...... .31
4.1 Early Literature..... 31
A1 TILOS ottt ettt s 31
4.1.2 Gate Sizing in MOS Digital Circuits with Linear Programming.............ccccco....... 32
4.1.3 Delay and Area Optimization in Standard-Cell Design..........ccccceeceerveeniieniennene 32
4.1.4 On the Circuit Implementation Problem............ccccoooieiiiniiiiiininieccecee 33
4.1.5 Gate sizing for constrained delay/power/area Optimization.............cceecueerruveennennn. 33
4.1.6 Fast and Exact Simultaneous Gate and Wire Sizing by Lagrangian Relaxation ...36
BUTT FOTZE oottt ettt et e e st e e s ettt e e s bt e e st e e e s eabbe e e e naarae s 39
4.1.8 Linear Programming for Sizing, V};, and Vi, assignment........c..cccceeveveeiiennennnnnn. 41
4.1.9 Timing-aware Power Minimization via Extended Timing Graph Methods........... 42
4.1.10 Gate Sizing for Cell-Library-based Designs...........ccceecueeriiiienieennieenieenieenieene 42
4.1.11 Gate Sizing for Large Cell-based Designs..........ccccuveeriiiniiieeniieniieeniee e 43
4.1.12 A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage As-
SIZMIMETIE 1.ttt ettt ettt et ettt e e et e b e san e et e e bt e saneseneesseesaeesaneenneeneens 43
4.1.13 Lagrangian Relaxation for Gate Implementation Selection...........c.ccceeeevvennnenne 44
4.1.14 Power Reduction Via Near-optimal Library-based Cell-size Selection............... 45
4.1.15 Gate Sizing and Device Technology Selection Algorithms for High-performance
INAUSEIIAl DESTZNS .ovevviieeiiiieeeiee ettt e e e e e e e e eanes 46
4.2 State-of-the-Art..... 49
4.2.1 The ISPD Contest 2012coimiiiiiiiiieeeieeteee ettt 49
4.2.2 An Efficient Algorithm for Library-based Cell-type Selection in High-performance
LOW-POWET DESIZNSeeeiiiieiiiieeiiie ettt ettt et e s eas 52
4.2.3 TIIAENE ...ttt ettt ettt e st e e bt e st e e st e ebeeeeanee e 54
4.2.4 The ISPD Contest 2013oooiiiiiiieiieeieeeeee ettt 56
4.2.5 TIIENE 2.0 ..ottt 58
4.2.6 Fast Lagrangian Relaxation Based Gate Sizing using Multi-Threading 60
4.3 Summary and Discussion .61
5 PROPOSED FLOWS AND TECHNIQUES 66
5.1 Simulated Annealing-based Algorithm .66
T 0 B e TS 1oz | B 2 i (0) PSPPSR 67

5.1.2 Fanout-0f-n SIZINE ...cc.eeiiiiiiiiiiiiiiieeeee ettt s 67

5.1.3 TImMING ENZINE...ccoiiiiiiiiiiiiiiieeite ettt ettt 68

5.1.4 Simulated Annealing with Dynamic Cost FUnctionccecceeevvieniiieenieenineenne. 70
5.2 Empirical Validation........ . . w73
5.3 Lagrangian Relaxation-based Algorlthm 77
5.3.1 Proposed Flow for the ISPD 2012 and 2013 Contest Benchmarks 79
5.3.2 Eliminating Load and Slew Violationsc.ccceeviiiniiiiniieniieiieeeieeeeee e 82
5.3.3 Cell Selection Problem Formulation............cccceeieriiiiiiniiniiiiienieniceececeeen 82
5.3.4 Interconnection MOdEING.........cccueeeiiieriiiieiieeciee ettt 90
5.3.5 Improving the Lagrangian Relaxation SOIUtion.............ccoocveeviiiiiiiiniiinnicennieennne 91
5.4 Empirical Validation .92
5.4.1 ISPD 2012 CONESL....eiiiieiieeiiieiieiieeiie ettt ettt e site et e et eesteesateenseeseesaeeennes 93
5.4.2 ISPD 2013 CONLESL.....eoiuiiiiiiiieieeieeeieeeteete ettt ettt st 95
6 INDUSTRIAL DESIGN FLOW APPLICATION....... 101
6.1 The New Lagrangian Relaxation Formulation . .103
6.1.1 Initializing the Lagrange Multiplierscccooviiiniiiniiiiniiiiiieeieceeeec e 106
6.1.2 Lagrange Multiplier Update............coooviriiiiiiniinieiieeieieneecieeeceeeere e 107
6.1.3 Filtering Gates OPLIONSceeveieriiieriiieiieeeiteertee ettt e e riteesteesiteesbeeesnteesaeeens 108
6.2 Solution Refinement 109
6.2.1 Enhanced Timing RECOVETYcccciiiiiiiiiiiiiiecieeee et 109
6.2.2 Enhanced Power RedUCtioncccccoiiiiiiiiiiiiiiiiciicccceeceeeee e 110
6.3 Empirical Validation 110
6.3.1 Preliminary reSultscooviriiriiiiiiinieeieeeeeeete et 110
6.3.2 FINAL TESULLS ..conviiiiiiiiiieecce et 115
7 CONCLUSION 119

REFERENCES.. 120

LIST OF ABBREVIATIONS AND ACRONYMS

CAD Computer Aided Design

DAG Directed Acyclic Graph

DRC Design Rules Checking

EDA Electronic Design Automation

HDL Hardware Description Language

ISPD International Symposium on Physical Design
IC Integrated Circuit

KKT Karush—Kuhn-Tucker

LR Lagrangian relaxation

NLDM Non-Linear Delay Model

RTL Register Transfer Level

SPICE Simulation Program with Integrated Circuit Emphasis
SA Simulated Annealing

STA Static Timing Analysis

TNS Total Negative Slack

TTNS True Total Negative Slack

TR Timing Recovery
Vi Threshold Voltage
VLSI Very Large Scale Integration

WMIS Weighted Maximum Independent Set

WNS Worst Negative Slack

LIST OF FIGURES

Figure 2.1 Examples of input/output timing arcs for gates of different unateness. 16
Figure 2.2 STA applications in the design floW...........ccooveiiiiiiiiiiiiniiiieeeeeen 16
Figure 2.3 (a) Distributed RC model. (b) Examples of parasitics networks.................... 21
Figure 2.4 Example of reduced order model............ccocoeeiiiiiiiiiiiiiiniiiiieeeceeeeeee 22
Figure 2.5 The effective capacitance model for cell delay calculation in the pres-

ence Of RC 10ads. ... 23
Figure 3.1 General Electronic Design Automation flow.ccocceeviiiiiiiiniiinnicenneen. 26
Figure 3.2 Sources of leakage power in @ MOS transistor.cccccevvevveriveenneeneennennn 29

Figure 3.3 Normalized inverter gate leakage powers in a commercial 45nm library......29

Figure 4.1 Comparison of the behaviors of the proposed method and a greedy

method for POWer OPLIMIZATION.cccuviieirriiieeeiiee et e e e e eraee e 34
Figure 4.2 Behavior of three different methods for power optimization. 35
Figure 4.3 Power-delay curves for different designs for GS and greedy method. 35
Figure 4.4 Circuit representation after replacing the components by their models

(dASREA LINES). ..eeeeiireieeee e ettt e e et e e e et e e e e eeeettrreeeeeeeeeatrrreeeees 36
Figure 4.5 Algorithms (a) SOLVE_LRS/u,(b) SOLVE_LDP, and (c) SGW S—

LRttt 39
Figure 4.6 Optimization flOW.cccuiiiiiiiiiieeieeciee et vee e iae e en 41
Figure 4.7 Timing optimization gate sizing algorithm (LIU; HU, 2010). 44
Figure 4.8 Active area and delay results for continuous and discrete sizing methods....46
Figure 4.9 Step size function for Lagrange multipliers update.c..cccceevveeriennennnne. 48
Figure 4.10 Lagrangian relaxation convergence for (a) objective function and (b) TNS.48
Figure 4.11 Results when using internal or sign-off timer...........cccccoecvevcieniienienicnnenn 48
Figure 4.12 Comparison for the DP algorithm and a single node method in LR. 49
Figure 4.13 Non-convex gate delays for a 3-inputs medium V; NAND gate.................. 50
Figure 4.14 (a) Initial sizing to fix electrical violations, (b) Min-Clock LR, and (c)

Lagrange multiplier update algorithms.ccccveeiiiieriiieeiieeiieeeeeeee e 52
Figure 4.15 Resizing effect eXample.........cocuvveiiieeiiieniieeiie ettt 53
Figure 4.16 Overall gate sizing floW.coooiiiiiiiiiiiiiiie e 55
Figure 4.17 Sensitivity functions US€d.cocueeriiiiiiiiniiiieiieiie e 55
Figure 4.18 Optimization fIOW.cociiiiiiiiiiiiiieeceeee e 58
Figure 4.19 (a) Impact of calibration frequency and (b) leakage power results for

different calibration StrAtEZIES.cccuveerueerrireeriieeiieeriee et e et et e sbeeesreesaeeesaeeas 59
Figure 4.20 TNS and power progression over LR iterations on b19 rast benchmark.....60
Figure 4.21 Greedy sensitivity-based sizing eXample...........ccceevvieeriieniieeniieenieeeieene 63
Figure 4.22 Lagrangian relaxation CONVETZENCE.cccueerureervieeiieeerieeeireesieesnneeenneeens 64
Figure 5.1 Timer Data StrUCTUIEcc.coovviriiriiiinienieeieeeee e 70
Figure 5.2 Number of updated nodes for two different threshold values ¢..................... 71
Figure 5.3 pci_bridge3?2 total leakage power and total violation along SA iterations....73
Figure 5.4 High-level view of our cell selection flow.cccccoviiieiiiiiiiiiiiniiiiieeeee 81
Figure 5.5 Lambda-Delay Cost COMPULAtIONccueeeriiieriieeriieeiieenieeeieeesieeeieeesaeeens 85
Figure 5.6 Example circuit for delay sensitivity computation.ccceecveeevueeerveennnenne 87

Figure 5.7 Leakage power, TNS and solution cost along iterations for cordic_fast.....97
Figure 5.8 Runtime breakdown for (a) slow and (b) fast corners.cccceeveeruerncnne 98

Figure 5.9 Gate usage by sizes and V};, for the cordic benchmark. (a) and (b) for

cordic_slow, (c) and (d) fOr cordic_fast.cooumuvumimviieiiiieiieeeieecieeecie e 100
Figure 6.1 The proposed cell selection flow............ccooueeviiiiiiiiniiiiniienieeeeeeee 102
Figure 6.2 TNS change along LR iterations.ccceecveeriiieeriieniiieenieeeiieesiee e 112

Figure 6.3 Leakage power improvement at the end of LR in five different scenarios
for physical synthesis slack target (target clock period).ccccccveeevviieeinniieennnns 114

LIST OF TABLES

Table 2.1 NLDM lookup table from the ISPD Contest 2013. Transition times in ps
and load capacitances N f 1.coviiiriiririiiieieeeteree et 19

Table 4.1 Number of combinational gates and leakage power (/) on ISPD 2012

BENCRMATKS.oviiiiiiie e e e e e e 51
Table 4.2 Number of combinational gates, leakage power (W) and runtime (min)

on ISPD 2013 benchmarks............cooiiiiiiiiiiiiiie et 57
Table 4.3 Summary of techniques present in references. Optimal refers to the op-

timality claimed for the chosen (inaccurate) models in each work. 62
Table 5.1 Leakage power ratio to best solution found for all ISPD’12 circuits............... 74

Table 5.2 Total violation and total leakage power results with different Fanout-of-n
rules and different flows using one or four SA loops and alternating the use

of an INitial SOIULION.couiiiiiiiiiiiiiii e 75
Table 5.3 Total violation and total leakage power results with different flows using

one or four SA loops without an initial SOIUTION.coveeriiriiiniiriinieeecece 76
Table 5.4 Runtime in minutes for the different flows under test............c..ccceviiiinnnnenn. 77
Table 5.5 NOTALION. ...ocuviiiiiiiiieieiecet ettt s 78
Table 5.6 INOTATION. ..ccuueiiiiiiiiiiieite ettt et b et st e e sbaesaee e 80
Table 5.7 Leakage power (1) for ISPD 2012 benchmarks and number of combi-

national cells for all CITCUILS.couiiiiiiiiiieiiiieeecee e 94

Table 5.8 Runtime (minutes) for ISPD 2012 benchmarks and number of combina-
tional cells for all circuits. Runtimes are taken from the corresponding papers.....95
Table 5.9 Leakage power (W), runtime (min) and clock period (ps) on ISPD 2013
benchmarks comparing the contest results and our new results using accu-
rate timing information in Timing Recovery and Power Reduction algorithms.

Power results are truncated.oovvieiiiiiiiiiiiiiieeiieeeee e 96
Table 5.10 Total leakage power after €ach Step.........covveeriiieriiiriiieiiieeeeee e 99
Table 6.1 Characteristics for 14 high performance microprocessor designs. 111
Table 6.2 Results assuming timing closure can be achieved. Only LR step in the

FlOW 1S EXECULEA. ...t 112
Table 6.3 Results considering the worst slack as the target for all timing paths.

Only LR step in the flow is eXecuted.cceeevireriieeiiieeiie e 113
Table 6.4 Results with proposed modifications included for a set of 14 high perfor-

mMance MICroproCesSOr AESIZIS. ...veruriruieriierienieeitenieenre ettt eere e e seeesanees 115
Table 6.5 Experimental results for 14 high performance microprocessor blocks......... 116
Table 6.6 Experiments without 77N S degradation in PR step.cccccceevveeciieniennns 117
Table 6.7 Number of gates and runtimes for Table 6.5 and Table 6.6. 117

Table 6.8 Experiments without lambda tuning iterations.........c.ccccevveereueernieenceeeennneen. 118

ABSTRACT

This work addresses the gate sizing and V; assignment problem for power, area and tim-
ing optimization in modern integrated circuits (IC). The proposed flow is applied to the
Benchmark Suites of the International Symposium on Physical Design (ISPD) 2012 and
2013 Contests. It is also adapted and evaluated in the post placement and post global
routing stage of an industrial IC design flow using a sign-off static timing analysis engine.
The proposed techniques are able to generate the best solutions for all benchmarks in the
ISPD 2013 Contest (in which we were the winning team), with on average 8% lower leak-
age with respect to all other contestants. Also, after some refinements in the algorithms,
we reduce leakage by another 10% on average over the contest results.

The focus of this work is to develop and apply a state-of-the-art cell selection algorithm
to further improve already optimized high-performance industrial designs after the place-
ment and routing stages of the industrial physical design flow. We present the basic con-
cepts involved in the gate sizing problem and how earlier literature addresses it. Several
problems found when applying global optimization techniques in real-life industrial de-
signs, which are not fully covered in publications found in literature, are presented and
discussed. Considering the industrial application, the proposed techniques reduce leak-
age power by up to 18.2%, with average reduction of 10.4% without any degradation in

timing quality.

Keywords: Gate Sizing. Threshold Voltage Assignment. Lagrangian Relaxation. EDA.

Microelectronics.

Seleciao de Portas Logicas para Minimizacao de Poténcia em Projetos de

Microprocessadores de Alto Desempenho

RESUMO

Este trabalho aborda o problema de dimensionamento portas légicas e assinalamento de
V; para otimizacdo de poténcia, drea e temporizacdo em circuitos integrados modernos.
O fluxo proposto € aplicado aos conjuntos de circuitos de teste dos Concursos do Inter-
national Symposium on Physical Design (ISPD) de 2012 e 2013. Este fluxo também ¢é
adapatado e avaliado nos estdgios pOs posicionamento e roteamento global em projetos
industriais de circuitos integrados, que utilizam uma ferramenta precisa de andlise estatica
de temporizagdo.

As técnicas propostas geram as melhores solucdes para todos os circuitos de teste do
Concurso do ISPD 2013 (no qual foi a ferramenta vencedora), com em média 8% menos
consumo de poténcia estatica quando comparada com os outros concorrentes. Além disso,
apods algumas modifica¢cdes nos algoritmos, nds reduzimos o consumo em mais 10% em
média a ponténcia estdticas com relagc@o aos resultados do concurso.

O foco deste trabalho € desenvolver e aplicar um algoritmo estado-da-arte de selecdo
portas l6gicas para melhorar ainda mais projetos industriais de alto desempenho ja otimi-
zados ap0s as fases de posicionamento e roteamento do fluxo de projeto fisico industrial.
Vamos apresentar e discutir varios problemas encontrados quando da aplicagdo de técni-
cas de otimizacao global em projetos industriais reais que nao sdo totalmente cobertos em
publica¢des encontradas na literatura. Os métodos propostos geram as melhores solugdes
para todos os circuitos de referéncia no Concurso do ISPD 2013, no qual foi a solucdo
vencedora. Considerando a aplicacdo industrial, as técnicas propostas reduzem a potén-
cia estdtica em até 18,2 %, com redu¢do média de 10,4 %, sem qualquer degradacio na

qualidade de temporizagdo do circuito.

Palavras-chave: Dimensionamento de Portas Ldgicas, Assinalamento de Tensdo de Li-

miar, Relaxacdo Lagrangiana, EDA, Microeletronica.

12

1 INTRODUCTION

The growing importance of low power designs for portable devices to extend bat-
tery life and to reduce cooling costs, the challenges imposed by the power density of
new technology nodes and cost of energy for server centers is making both industry and
academia focus on algorithms to provide power optimized IC designs.

One way to achieve this goal is through gate sizing and V; assignment. The process
of gate sizing defines the sizes of the transistors inside each logic gate that composes the
design. In many technology processes transistors sizes can be continuously assigned, i. e.,
any size is accepted, or previously determined by a standard cell library. In library-based
designs, only discrete gate sizes are available. Gate sizing and V; assignment optimization
methods can be applied in several stages of the design synthesis flow, from the logic syn-
thesis to post-route optimization, with increasing accuracy in the timing analysis models
as a result of more accurate physical information.

The discrete gate sizing problem has been the subject of many works in the lit-
erature. The techniques proposed are based on different methods like Lagrangian re-
laxation (LR) (CHEN; CHU; WONG, 1999; TENNAKOON; SECHEN, 2005; OZDAL;
BURNS; HU, 2011; FLACH et al., 2013; FLACH et al., 2014), Dynamic Programming
(DP)(OZDAL; BURNS; HU, 2011), Linear Programming (CHINNERY; KEUTZER, 2005),
greedy iterative sensitivity-based methods (LIN; MAREK-SADOWSKA; KUH, 1990;
QIAN; ACAR, 2007; HU et al., 2012; KAHNG et al., 2013), Stochastic optimization
(HU et al., 2012; KAHNG et al., 2013), network-flow (REN; DUTT, 2008; REN; DUTT,
2011), and Sequential Quadratic Programming (SQP) (MENEZES; BALDICK; PILEGGI,
1995; MENEZES; BALDICK; PILEGGI, 1997).

Throughout this work we refer to simultaneous gate sizing and V; assignment as
cell selection. Despite the many contributions in the field, many of the cell selection
problems are not fully handled by existing methods. Also, most of the previous works
do not present solutions that are practical for industrial designs. Several simplifications
adopted in these works, like simpler delays models and incomplete timing propagation,
are not applicable any more or have inaccuracies that prevent the convergence to a near-
optimal solution.

Power consumption in integrated circuits has two components: static (leakage)
and dynamic. The former is related to the leakage current of the components while the

latter is associated with signal transition and short-circuit currents. Both components can

13

be addressed through gate sizing and V; assignment.

Most recent works focus only on the leakage power optimization in a timing-
constrained optimization. This focus is a consequence of the problem definition on the
two ISPD Discrete Gate Sizing Contests (2012 and 2013). However, it is important to also
ensure that the other design objectives like timing, dynamic power, and area are (at least)
not degraded by the power optimization process. Moreover, those parameters may also be
an optimization objective. These objectives are conflicting and optimizing only one may
be detrimental to the others. For instance, if a cell with a larger area (size) and higher V;
(less leakage power) replaces a smaller but lower V; cell option in a non-critical path, the
leakage power will decrease, but dynamic power may increase because of the increase in
the capacitance of the new cell option. Also, the area in this case will increase. Since
leakage power grows exponentially with respect to reduction in V; (as detailed later), the
area increase in order to reduce power can be excessive.

A good formulation for gate sizing and V; assignment must enable an appropriate
balance of those conflicting objectives to further improve the solution provided by the
earlier stages of the physical synthesis flow.

The objective of this work is to develop and apply a state-of-the-art cell selection
algorithm to further improve already optimized high-performance industrial designs after
the placement and global routing stages of the industrial physical design flow, where
wiring parasitics are available and timing models are more accurate.

This work is organized as follows. First, given the importance of timing analysis
for the cell selection algorithms, we introduce some basic concepts of Static Timing Anal-
ysis (STA) and the relevant methods for timing analysis in Chapter 2. Chapter 3 presents
the cell selection problem and gives several options for how it can be inserted in a general
physical design flow with some examples of the different methodologies and applications
of algorithms. In Chapter 4, we revisit the related works and the state-of-the-art prior to
this work. Next, Chapter 5 presents the proposed methodologies to address the cell selec-
tion problem in the ISPD contests. Chapter 6 details the industrial applications proposed,
including the differences in formulations and the respective experimental validation. The

conclusions are presented in Chapter 7.

14

2 STATIC TIMING ANALYSIS

The quality of results given by cell selection algorithms in post-route optimization
strongly relies on the accuracy of the timing models used during the optimization. The
presence of wiring parasitics and the non-linearity of cell delay models undermines the
performance of analytical optimization methods that required closed-form models, which
may present high inaccuracies when compared to the sign-off timing analysis. More
accurate timing enables better optimization results, as presented in recent publications
(KAHNG et al., 2013; FLACH et al., 2014).

In that context, it is important to present the relevant concepts involved in static
timing analysis (STA) that are taken into account for the development of this work.

The concept of static timing analysis (STA) is presented in (HITCHCOCK R.B.,
1982) and other publications, including (HITCHCOCK; SMITH; CHENG, 1982; ABATO
et al., 1996; KIRKPATRICK; CLARK, 1966; GUNTZEL, 2000). Details can be found in
(SAPATNEKAR, 2004; BHASKER; CHADHA, 2009)

The idea of STA is to perform a block-based analysis of the circuit to obtain the
fastest and slowest path delays between all the timing start and endpoints. Also, the slacks
at each cell pin and input—output (I/O) pins are calculated. This is done by propagating
arrival times in topological order and required times in reverse topological order.

Timing startpoints can be either a primary input (PI) or a sequential element (latch,
flip-flop) output. Timing endpoints are the primary outputs (PO) and the data input of
sequential elements.

The blocks in the circuit are usually represented by the gates. The timing informa-
tion for each gate is found in the standard cell library. Gates are modeled with different
delays and slew rates for each transition (rise and fall), depending on input slew and output
load capacitance.

In this work we follow the definitions found in (LEE; GUPTA, 2012) with some

small modifications. The definitions are:

e Primary inputs (PI): input ports in the design that are driven by external sources.

e Primary outputs (PO): output ports in the design.

e Cell rise time or rise delay: time from when the input crosses 50% voltage to when
the rising output crosses 50% voltage.

e Cell fall times or fall delay: time from when the input crosses 50% voltage to when

the falling output crosses 50% voltage.

15

Cell rise transition or slew: the time elapsed from when the output signal crosses
the 20% voltage to when it crosses 80%.

Cell fall transition or slew: the time elapsed from when the output signal crosses
the 80% voltage to when it crosses 20%.

Arrival time (Z,): the time that the signal crosses the 50% voltage threshold at a
given point in the circuit. The time associated with a rising and falling signal is
called the rise arrival time and the fall arrival time, respectively.

Required arrival time (Z,.): the time a signal needs to cross the 50% voltage thresh-
old at a given point in the circuit to be timing feasible. The required arrival time
associated with a rising and falling signal are called the rise and fall required arrival
time, respectively.

Slack (s): the difference of the required arrival time and the arrival time, represents
the amount of timing slack available at that point in the circuit.

Timing arc: a concept used to relate the delay between two adjacent nodes in the
circuit.

Positive unate: when a rising input to a gate causes a rising output, or a falling input
causes a falling output.

Negative unate: when a rising input to a gate causes a falling output, or a falling
input causes a rising output.

Non-unate: when there is no direct relation between the type of transition (rise/fall)
in the input and the type of transition in the output, e.g. XOR gate where a rising or
falling output transition can be triggered by either rising or falling input transition.
[ratio: the ratio between the width of the PMOS transistors and the width of the
NMOS transistors in a CMOS gate.

The unateness concept is shown in Figure 2.1. Sign-off timers handle rising and

falling delays and transitions separately, and the unateness of a cell will determine the

possible combinations for signal propagation through its timing arcs. The unateness also

determines the timing information available in the cell library. Positive and negative unate

arcs only require two timing tables (rise-to-rise, fall-to-fall or rise-to-fall, fall-to-rise) for

delay and transition times for each input-output pin pair. Non-unate cells require four

timing tables (rise-to-rise, fall-to-fall, rise-to-fall and fall-to-rise) for delay and transition

times for each input-output pin pair.

STA is used in the design flow at several stages, with different levels of accuracy,

16

Figure 2.1: Examples of input/output timing arcs for gates of different unateness.

e

(a) Positive unate arc.

— T L

(b) Negative unate arc.
_/j = -

(c) Non-unate arc.

Source: Bhasker and Chadha (2009)

Figure 2.2: STA applications in the design flow.
RTL Constraints (SDC)

Logical design
(Synthesis) - Gate-level netlist
F_/ - unoptimized

——~> - ideal clock trees
/; Logic optimization) - 10 routes

Gate-level netlist
- optimized

Static timing Physical design

analysis
(Placement) | Gate-level netlist
N/ - global routes

\\—/?
Clock tree synthesis)
Gate-level netlist
Static timing / <——| -real clock trees
analysis incl.

noise, crosstal @@

Gate-level netlist
- real routes
- real clock trees
- optimized

Source: Bhasker and Chadha (2009)

as shown in Figure 2.2.

In this work we apply STA with library-based technologies. Although cell selec-

17

tion algorithms do not require a specific timing analysis model to work with, global cell
selection methods in post global routing optimization perform better with sign-off timers,
taking advantage of the actual positive slacks existent in the design and the accurate trade-
offs between timing and power. Simplified timing models, which are linear, convex, or
differentiable introduce inaccuracy that will reduce the ability of the algorithm to find the
actual best combinations of sizes and threshold voltages for a single cell in the design due
to reduced timing slack for the rest of the design caused by timing propagation.

Next we discuss the standard cell library model and the interconnect models com-

monly used in modern designs.

2.1 Standard Cells

Most functions in a chip are designed using basic building blocks which im-
plement simple boolean logic functions such as AND, OR, NAND, NOR, AND-OR-
INVERT, OR-AND-INVERT, XOR, MUX, inverters, and sequential elements (latch, flip-
flop and its variants). There are also utility cells, such as filler cells, antenna cells, and
buffer cells, which are used to help with the physical implementation of the design. These
basic building blocks are referred to as standard cells. The functionality and timing of
the standard cells is pre-designed and pre-characterized and made available to the circuit
designer. Also, larger functional blocks, known as macros, may be in the design and
have similar treatment as standard cells, with timing properties assigned to their input and
output pins. Designers use Electronic Design Automation (EDA) tools to implement the
required functionality of the design using the standard cells as the building blocks.

Usually, several options are available in the library for each logic function. Despite
having the same logic function, each cell has different characteristics regarding: transis-
tor widths and folding (that changes the electrical properties of the transistor), transistor
channel length, threshold voltage (V;), and [ratios (that affect the timing performance
for different rising and falling output transitions). Those differences imply a change in
timing, area, power, and parasitic characteristics. With those options available, the design
can be optimized for one or more objectives.

The cell library uses table models to specify the delays and timing checks for each
timing arc of the cell. The models used may vary between libraries and technologies
depending on the level of accuracy needed. The table models used for delay, output

slew, or other timing checks are referred to as NLDM (Non-Linear Delay Model). Newer

18

libraries for nanometer technologies may use more accurate current source based timing
models. CCS (Composite Current Source) and ECSM (Effective Current Source Model)
are two examples of these models . Current source models are not used throughout this
work and their characteristics and properties are not relevant to the application of the
methods developed here.

The NLDM table is usually a discretization of simulation data or real prototype
measurements. It contains the delay through the cell for several combinations of input
transition time at the cell input pin and total output capacitance at the cell output. The
models for delay are typically presented in a two-dimensional form, with the two inde-
pendent variables being the input transition time and the output load capacitance, and the
entries in the table denoting the delay. The same is applied to the output transition time
(slew rate) calculation.

The following equation shows the bilinear interpolation to the nearest four data

points in the lookup table used for NLDM calculation.

z=a+bXr+cXy+dxxrxy 2.1

where z is the calculated value for delay or slew, z is the input slew, and ¥ is the output
load capacitance.

The timing tables contained in a cell library are:

Rise delay

Fall delay

Rise slew

Fall slew

e Clock hold time (data input of sequential elements only)

Clock setup time (data input of sequential elements only)

An example of a delay lookup table is shown in Table 2.1. It represents the delay
for the smallest and slowest inverter in the ISPD Contest 2013 library. The calculation is
done by interpolating/extrapolating the two-dimensional data in the lookup table. Know-
ing the input transition time slew,,,; and the output load C},4q the value from the lookup
table is obtained as follows. The two nearest table indices in each dimension are chosen
for the table interpolation. Assuming that we are calculating the delay D 4 for a given in-

put transition and output load which the closest indices are x1, x5 and ¥, Y2, respectively:

19

Table 2.1: NLDM lookup table from the ISPD Contest 2013. Transition times in ps and
load capacitances in fF'.

Input transition time

Output load 5.00 30.00 50.00 80.00 140.00 200.00 300.00 500.00
0.00 11.72 18.22 22.67 27.61 34.82 40.44 48.21 61.24
1.00 16.93 23.43 28.60 34.95 44.15 51.18 60.65 75.83
2.00 22.13 28.63 33.83 41.24 52.23 60.57 71.67 89.00
4.00 32.55 39.05 44.25 52.05 66.05 76.76 90.85 112.34
8.00 53.38 59.88 65.08 72.88 88.48 103.09 12240 151.42

16.00 95.05 101.55 106.75 114.55 130.15 145.75 171.59 213.31
32.00 178.38 184.88 190.08 197.88 213.48 229.08 255.08 307.08
DA: (1—ww) X (1—wy) X D11
+ (1 —wy) Xw, XD
()y > D 2.2)
+ w, X (1—wy) X D21
+ w, X Wy X D22
where D,,, is the table entry for indices z, y and
To — T1
Wy =
To — X1
2.3)
Yo — %
Wy, =
Y2 —
For the example in Table 2.1, assuming slew;pp,: = 220ps and Cjpeq = 4.5f F:
220 — 200
= ———— =202
=300 — 200
2.4)
45—4
w, = o =0.125

Y84

20

Dy= (1-0.2) x (1 —0.125) x 76.76
+(1—0.2) x 0.125 x 103.09

+0.2 x (1—0.125) x 90.85
(2.5)
+0.2 x 0.125 x 122.40

D4 = 83.00ps

As aforementioned, the same calculation is done to obtain the output transition
time from its lookup table. When the input transition time and/or the output load are out of
the indices’ ranges, an extrapolation is made with the last two indices in both dimensions.
The calculation process is the same. However, since the cell is not characterized for
such parameters, the resultant delay and output transition time may be quite inaccurate.
Maximum load and maximum transition time are two electrical constraints specified in
the library to guarantee the accuracy of times obtained from the lookup tables.

Each timing arc inside a cell has its respective tables. Timing arcs relate the input
and output pins for both rising and falling transitions and both delay and output slew. In
sequential cells, timing arcs relate the clock pin with the synchronous input and output
pins. The data input is a timing endpoint (sometimes also called a time barrier). Sequen-
tial cells also usually have scan-related pins for testing — scan enable and scan input. Scan
pins and scan timing are omitted in this work for simplicity. They are either not present
(ISPD Contest) or are not setup timing critical (industrial high-performance designs) in

this work. Sequential cells may also have asynchronous inputs (like the clear data pin).

2.2 Interconnect Model

Interconnect models have a significant importance in modern designs where the
interconnect delay has become a considerable percentage of total delay. Also, the slew
propagation through wires has significant impact in timing calculations. Accurate inter-
connection delay and slew propagation metrics must be used in the late stages of physical
design, where parasitics information is available. Interconnect parasitics are extracted
from the circuit layout to form RC (resistance and capacitance) networks. They are com-

monly represented as RC trees or RC meshes — Figure 2.3.

21

Figure 2.3: (a) Distributed RC model. (b) Examples of parasitics networks.
o—AMW _L M\ _L WVI‘W\’TWVT‘WV_O
(a)

Ryire/N

wire D—
—>—< Cwu e/N IC pinl

ere

§

ere/N C

{>—
pin2
w1rc D_

! Cywire/N Icpm 3

§n§

Rwire
—D Wv Icpinl
Cwire)
p1112
AW s
! — Distributed RC LG
(b)

Source: Bhasker and Chadha (2009)

Lumped capacitance models are inaccurate! for timing analysis in post global rout-
ing stages.

Electrical simulation (like SPICE — Simulation Program with Integrated Circuit
Emphasis (NAGEL; PEDERSON, 1973)) can be used to accurately calculate timing by
solving the differential equations related to the currents, charges and voltages. However,
the runtime for this approach is prohibitive in large or even mid-size designs. The runtime
of timing analysis is a key aspect for gate sizing and threshold voltage assignment, where
fast delay estimates are needed for optimization.

The Elmore delay (ELMORE, 1948) is a simple method to estimate delays. This
method calculates the first moment of the impulse response applied to the RC network.
The Elmore delay is an upper bound on the actual delay (GUPTA et al., 1995).

However, modern timers employ more accurate methods that utilize higher order

IThe lumped capacitance model for interconnects is only accurate when the driver resistance over-
whelms the wire resistance (SAPATNEKAR, 2004)

22

Figure 2.4: Example of reduced order model.

I#WVVWVVV 1 -
Sin Driver g &I

Parasitic

g
Ra P

RC network g 3
R P
g T

Receivers

o0 Receiver
Driver rene ; ! model
f — model @] ! !
L . .
SiN ! Reduced-order : : Receiver
network model : : model
. _ .| Receiver
Co model
Response to input waveforms calculated here —/

Source: Synopsys (2004)

moments to improve the accuracy. The Asymptotic Waveform Evaluation Method (PIL-
LAGE; ROHRER, 1990; PILLAGE; HUANG; ROHRER, 1989; ODABASIOGLU; CE-
LIK; PILEGGI, 1997; RATZLAFF; PILLAGE, 1994) and Arnoldi-based methods (SIL-
VEIRA; KAMON; WHITE, 1996; ELFADEL; LING, 1997; SILVEIRA et al., 1996)
are examples of higher order models commonly used to model the parasitics network
— Figure 2.4. More details can be found in (SAPATNEKAR, 2004; CELIK; PILEGGI;
ODABASIOGLU, 2002).

The propagation of the output transitions (slews) of cells is also crucial for timing
calculations. Signal slews in the input pins play a major role in determining the output
delay. It is not possible to ignore slew effects in post global route timing analysis. Es-
pecially in cell selection algorithms, ignoring the slew misses the potential in increasing
gate size or decreasing the threshold voltage to improve the slew in its fanout gates, and
the corresponding gate delays.

For simplicity in timing analysis in industrial STA tools (i.e. Synopsys Prime-
Time®) the propagated output slew is usually the slower slew calculated at the output,
regardless of the arrival time associated. However, most sign-off timers can also prop-

agate the slew associated with the greatest arrival time at the output if specified (e.g.

23

Figure 2.5: The effective capacitance model for cell delay calculation in the presence of
RC loads.

R
vavwvvx,la!
R, ¥

Dl'i\-'illg W DI'iVillg
Ppint : P{_)int
:" Ry 3
A A AL A A A
D | 1 il

8
Ci C C. Ci Cer <) C;
I 0 II . I 4 . :[;' 6 I ff ;
—fwvvvvw—lq; 2 L/vvvva% =
47 /3 & |

(a) (b)
Source: Sapatnekar (2004)

path-based static timing analysis).

2.2.1 Effective Capacitance

Interconnect models may be simplified to use only a lumped capacitance to repre-
sent the wires. However, the lumped capacitance model is not accurate when the driver
resistance and the wire resistance are comparable. The phenomenon of resistive shield-
ing causes the delay at the driver timing arc to be equivalent to a delay where the output
load is smaller than the total capacitance in the RC network. This smaller capacitance is
called effective capacitance. Figure 2.5 shows an example of effective capacitance (Cys)
equivalence.

The effective capacitance models used in accurate STA tools calculate an equiva-
lent capacitance that has the same timing arc delay as the cell with RC tree load. Using
an effective capacitance model is useful because cells may continue to be characterized
in terms of a load capacitance (Section 2.1).

Many methods for effective capacitance calculation can be found in the litera-
ture by O’Brien and Savarino (1989), Dartu et al. (1994), Dartu, Menezes and Pileggi
(1996), Puri, Kung and Drumm (2002), Qian, Pullela and Pillage (2006). The driver
model used for effective capacitance calculations is usually the same used for the para-
sitics network analysis (see Figure 2.4). Dartu, Menezes and Pileggi (1996) propose the
use of a Thevenin model (NILSSON; RIEDEL, 2005) to represent the driver.

The effective capacitance is calculated based on the current necessary to charge the

24

equivalent RC m-model derived from the complete RC network (O’BRIEN; SAVARINO,
1989). The gate is characterized by the determination of the values of a driver resistance
(Ry), transistion delay (%) and transistion time (At), according to the library timing in-

formation (DARTU et al., 1994; DARTU; MENEZES; PILEGGI, 1996).

25

3 THE CELL SELECTION PROBLEM

In this chapter we define the cell selection problem, showing how it can be inserted
in a general physical design flow and give some examples of the different methodologies
and applications of algorithms related to the cell selection problem.

First we talk about the physical design flow and how cell selection algorithms can

be applied in several stages of the flow.

3.1 Physical Design Flow

Cell selection algorithms can be applied in many parts of the design flow, from the
logic synthesis to the post-route stages. Figure 3.1 shows an example of a general Elec-
tronic Design Automation (EDA) flow. For each stage in the flow, the actions expected
can be summarized as follows:

The Logic Synthesis step starts with a Register Transfer Level (RTL)/Hardware
Description Language (HDL) design description, a standard cell library information and
timing constraints for the design. A gate level netlist mapped to the standard cell library
is generated to meet the constraints and optimized different objectives.

The Floorplanning stage creates a floorplan with rows for standard cell placement,
I/0O pads and locations for macro blocks.

A Placement step defines the positions for the cells into the rows created by the
floorplanning algorithm, flipping and rotating cells as necessary for the optimization ob-
jectives. The main objective is usually to minimize the wirelength in the resulting layout.
Another common target is routing congestion mitigation and improve timing in critical
paths (timing-driven placement).

The Clock Tree Synthesis stage will create a clock tree of buffers to distribute the
clock signal to all sequential elements of the design. The main goals are to minimize the
size of the clock tree (to minimize clock power and latency), and the skew at each of the
outputs of the clock tree.

Routing connects the pins from the placed cells using wires on the available metal
layers and vias between layers. The objective is to minimize the total wiring needed
(reduce congestion and delay), while avoiding design rule violations and meeting timing
constraints.

Cell selection methods can be used throughout the design flow to:

26

Figure 3.1: General Electronic Design Automation flow.

Placed, routed design

Design in RTL

Synthesis*

Mapped Netlist Verification /

Yield Enhancement
‘ Floorplanning ‘ #
Floorplan information
Final Layout

Placement*

Cell placement

Clock tree synthesis

Clock tree information

Source: Lee and Gupta (2012)

fix timing violations, and to optimize the design.

fix maximum fanout rule violations or maximum slew violations.

fix design rule violations.

optimize the design for timing/area/power/variability/yield.

3.2 Transistor Sizing

The transistor sizing problem has been studied for decades and is applied to han-
dle many different problems. The reader is referred to the following publications Kao,
Movahed-Ezazi and Sabiers (1984), Glasser and Hoyte (1984), Kao, Fathi and Lee (1985),
Fishburn and Dunlop (1985), Pincus and Despain (1986), Matson and Glasser (1986),
Hedlund (1987), Cirit (1987), Marple and Gamal. (1987), Shyu et al. (1988), Marple
(1989), Dai and Asada (1989), Hoppe et al. (1990), Sapatnekar, Rao and Vaidya (1991),
Sapatnekar et al. (1993), Borah, Owens and Irwin (1995), Borah, Owens and Irwin (1996),
Sirichotiyakul et al. (1999), Kasamsetty, Ketkar and Sapatnekar (2000), Sundararajan,
Sapatnekar and Parhi (2002), Santos et al. (2003), Kursun, Ghiasi and Sarrafzadeh (2004),
Chou, Wang and Chen (2005), Santos et al. (2005/a), Boyd et al. (2005), Beece et al.
(2010), Kasamsetty and Sapatnekar (2000), Nikoubin et al. (2010), Liao and Hu (2011),
Marranghello et al. (2011), Yoshida and Fujita (2011), Posser et al. (2012) for more details
about the problem and several formulations and algorithms to handle it.

Transistor sizing can be applied for analog designs and custom digital IC designs.

27

Both cases are not covered in this work since the focus here in on cell selection in designs
using standard cell libraries.

Most formulations for the transistor sizing problem assume a direct and linear
relationship between the delay and the transistor width. However, modern designs have
several sources of non-linearities that make such models inaccurate.

As mentioned before, with the use of standard libraries, digital IC designs rarely
make use of transistor sizing algorithms. One of the major problems is the lack of fast
and accurate characterization tools to provide good models and layout parasitic extraction
for new cell sizes. Tools for library characterization can take weeks, especially with turn
around to correct the generated cells.

The typical formulation for the transistor sizing problem is:

minimize f(x)
subject to Delay < Tspe. 3.1

L <z; <U

where z is the variable available for optimization (usually transistor width), f(x) is the
objective function (usually area or power), 7). is the maximum allowed delay and L;, U;

are the lower and upper bounds for the transistor size.

3.3 Gate Sizing

The gate sizing problem assumes a fixed set of transistor widths for a logic gate in
order to model the gate size. Then, the whole gate is sized, instead of sizing separately
each one of its transistors.

Gate sizing algorithms can be divided in two categories: continuous gate sizing

and discrete gate sizing. We detail both methodologies next.

3.3.1 Continuous Gate Sizing

The continuous gate sizing approach assumes that any size can be implemented
in the layout. This approach is suitable for custom digital designs that do not use a cell
library.

Continuous gate sizing is not in the scope of this work. However, many discrete

28

sizing algorithms use the continuous sizing formulation to find a discrete solution, by dis-
cretizing the continuous solution or using it to guide another discrete approach. Therefore,
this work describes some continuous sizing approaches to explain the concepts behind
such algorithms that can be applied in the discrete problem as well.

Continuous sizing methods model the delay, area and power as continuous func-
tions of the design parameters similarly to the transistor sizing problem. This model is
used to formulate an optimization problem to find a set of continuous sizes that optimize
an objective.

With the use of convex delay models, it can be optimally solved by Lagrangian re-
laxation algorithms. Examples of approaches applied to the continuous gate sizing prob-

lem are presented in Chapter 4.

3.3.2 Discrete Gate Sizing and Threshold Voltage Assignment

Discrete gate sizing is a known NP-hard combinatorial optimization problem (LI,
1993). It has been extensively studied in the last couple of decades with several dif-
ferent focuses. Many approaches have been proposed to handle a variety of objectives.
Sizing algorithms for power (COUDERT; HADDAD, 1996), timing yield (DUTT; REN,
2010), low power standard cell library generation (RAHMAN et al., 2010; AFONSO
et al., 2009), placement (CHEN; HSIEH; PEDRAM, 1999; REN; DUTT, 2011), glitch
reduction (HASHIMOTO; ONODERA; TAMARU, 1998), variation-aware optimization
(SINGH et al., 2005; SINGH; LUO; SAPATNEKAR, 2008) and others have been pub-
lished. More details about related literature can be found in Chapter 4.

Most works use the following problem definition. Given a design, a standard cell

library £ and a timing analysis engine:

n
minimize Z T
=1
subject to agp < T for outputs

3.2
a; +D; < a; for j connected to input of ¢ (3-2)

D,, < a, forinputs
1e L

where x; is the objective associated with cell ¢ (usually area or power) , a; is the arrival

29

Figure 3.2: Sources of leakage power in a MOS transistor.

Gate
leakage |
Junction / Junction /
Substrate I Subthreshold Substrate
leakage ¥ leakage leakage

Source: Lee and Gupta (2012)

Figure 3.3: Normalized inverter gate leakage powers in a commercial 45nm library.

100
g
3 10
o
)
o
©
;cé 1 sl vt0
°Q = vtl
8 Vovt2
N A
= 01 vt3
£
o
c

0.01

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

gate size
Source: Lee and Gupta (2012)

time at ¢, 7" is the maximum delay allowed (clock period) and D); is the delay associated
with cell 7.

The V; assignment problem has a formulation similar to the discrete gate sizing
problem. In fact, the formulation is the same if there are no specific rules/constraints to
the use of different V; levels.

While the delay of a gate decreases linearly! with increasing width, it decreases
super-quadratically with decreasing V; (SAPATNEKAR, 2004). This makes V; decreasing
more effective for reducing the delays of gates.

Figure 3.2 shows the sources of leakage power. The leakage power due to sub-
threshold conduction is exponentially related to the threshold voltage. This is the main
reason for the presence of multiple-V; cells in standard cell libraries. Since the relation-
ship between leakage and gate size is linear, high-V; cells enable much bigger leakage
power reduction than using sizing alone. Figure 3.3 shows the normalized leakage power

as a function of the gate size.

ILess than linear if the increase in capacitance for the previous stage of logic is accounted for — internal
capacitances also go up.

30

Most modern technologies allow the use of two or more V; levels in order to pro-
vide cell options with less leakage power than the standard or fastest V;. When combined
with gate sizing, V; assignment adds another dimension to the solution space, making the
use of simplified delay models more complicated. Therefore, many works in literature
deal with the V; assignment problem separated from the gate sizing, using specific algo-
rithms to solve it. Also, it is common to let the designer choose which V; are available for
the algorithms, limiting or expanding the number of options.

In this work, we simultaneously address discrete gate sizing and V; assignment in
order to provide power-optimized solutions. In this way we are able to explore a larger

solution space to find a near-optimal solution.

31

4 RELATED WORKS AND STATE-OF-THE-ART

This chapter presents the previous literature that addresses the cell selection prob-
lem. The first section of this chapter briefly summarizes the early literature and publica-
tions that have relevant contributions to the problem and especially to the development of
this work. The second section summarizes the most recent publications that delimit the
state-of-the-art and the two ISPD contests held in 2012 and 2013.

The titles of subsections reflect the respective paper titles or the name of the pro-

posed tool.

4.1 Early Literature

This section details the most relevant related works. The publications are pre-
sented in a chronological order to better relate the research to the challenges imposed by
the evolution of fabrication process and the design methodologies to which the algorithms
can be applied to.

We briefly describe the methods present in some of the most relevant works in the
literature that have contributed to the development of cell selection algorithms, especially

the algorithms developed and presented in this work.

4.1.1 TILOS

Fishburn and Dunlop (1985) present a transistor sizing algorithm using posyno-
mial programming and convex optimization techniques with a distributed RC model. The
capacitances are proportional to transistor size and the resistance is inversely proportional
to transistor size.

TILOS starts with minimum transistor sizes for all transistors. A static timing
analysis is performed, assigning the latest times (to go low/high) to each node. Then, paths
violating the setup timing constraint are traversed in reverse topological order. Transistors
that are too slow are examined and the transistor with the highest sensitivity is increased.

The sensitivity function is as follows.

R,C

xr2

D'(x) = RC, — @.1)

32

where x is the transistor width, C), and R,, are capacitance and resistance of a unit-sized
transistor and C' and R are the wire capacitance and resistance, respectively.

Results show that TILOS can improve circuit timing and reduce area. However,
the runtime is proportional to the number of timing paths, which is exponential with the
number of elements, making it impractical to apply such an algorithm to medium size

(10K+) CMOS circuits.

4.1.2 Gate Sizing in MOS Digital Circuits with Linear Programming

References published by Berkelaar and Jess (1990), Berkelaar, Buurman and Jess
(1994), Berkelaar, Buurman and Jess (1996) present an algorithm where the gate siz-
ing optimization problem is mapped into a linear program, which is then solved by the
Simplex algorithm. A simple (nonlinear) delay model is proposed. A piece-wise linear
approximation is performed to reduce linearization error. Any convex delay model can be
used with the algorithm without loss of optimality.

The approach guarantees to find the global optimum (considering the inaccurate
timing model used), and has proven feasible for circuits of up to several thousand cells.

However, this comes with considerable increase in area of up to 172%.

4.1.3 Delay and Area Optimization in Standard-Cell Design

Lin, Marek-Sadowska and Kuh (1990) apply a sensitivity-based heuristic to the
discrete cell selection problem. Sensitivities are defined as the ratio between the variation
of delay and area. This process of choosing cells based on local cost calculations is the
base of several algorithms, with different objectives and different formulations to include,
or not, components that estimate the impact on the global solution.

Another feature used together with sensitivities is the "criticality". The criticality
is the ratio between the cell delay and its weighted slack. The weighted slack is the slack
divided by the path length.

The proposed algorithm starts from all cells set to the smallest option. Then an
iterative phase that increase the sizes is applied to solve timing violations. Next a size de-
creasing phase recovers area on cells on positive slack paths. The two phases are repeated

until convergence or stop criteria are met.

33

The complexity of the proposed algorithm is O(n?). The results show area im-
provements ranging from -2%' to 29% for a set of nine benchmarks obtained from misII

technology mapping tool (DETJENS et al., 1987).

4.1.4 On the Circuit Implementation Problem

References (LI et al., 1992; LI et al., 1993) present a pseudo-polynomial time
algorithm, applying suitable decomposition techniques and dynamic programming that
obtain optimal solutions for basic series-parallel circuits.

Six heuristics are presented to obtain minimal area circuit implementations given
a delay constraint. The authors observe that more sophisticated heuristics handle the
problem better than the simpler ones. Also, proofs that both basic circuit implementation
and general circuit implementation problems are NP-hard are presented.

Another publication by Li (1993) proves that the discrete gate sizing algorithm is
strongly NP-hard, implying that for arbitrary DAGs there is no pseudo-polynomial time

algorithm to obtain the exact solution unless P=NP.

4.1.5 Gate sizing for constrained delay/power/area optimization

The works from Coudert (1996), Coudert, Haddad and Manne (1996), Coudert
(1997) present a general purpose gate sizing algorithm GG'S that is oriented to a pure com-
binatorial problem optimization, enabling the use of complex cost models. To the best
of our knowledge, Coudert (1996) is the first work to address the challenges of gate siz-
ing in modern real-life designs using a standard cell library and an accurate table lookup
based nonlinear delay model. With focus on real-life designs, the proposed algorithm
uses accurate delay and power models during the optimization process.

The proposed method first evaluates all cells with the calculation of gradients
(variation of the cost function when resizing a node). These gradients are used to choose
the new sizes for all cells based on the cost function. Then, a new iteration is performed
only with cells that have an updated gradient. The process repeats until some convergence

criterion is met.

'Degradation in area caused by improvement in delay.
2McNall and Casavant (1990) apply similar techniques (dynamic programming) for the synthesis of
pipelined architectures.

34

Figure 4.1: Comparison of the behaviors of the proposed method and a greedy method
for power optimization.

power

delay
Source: Coudert (1997)

The proposed algorithm can be applied to delay, area and power minimization. In
the first case, the algorithm will iteratively process the netlist to choose the best (discrete)
sizes that minimize delay. The second and third cases start from a delay optimized solu-
tion (obtained with GS) and then proceeds to area/power optimization for the following
reasons: 1) Optimizing the delay gives plenty of alternatives for area/power optimization,
i.e., going far away from the infeasible region makes power minimization less likely to be
trapped in a local minimum. 2) The power optimization is done within the feasible region
by relaxing the delay constraints using a penalty/benefit function.

This penalty/benefit function will balance the delay and power through the whole
path, as opposed to a greedy method that resizes as many noncritical nodes as possible
to their minimal power. Such a greedy approach would deliver low quality results by
creating critical paths without power savings proportional to the increase in path delays,
preventing most of the other nodes from being resized and saving more power. This
behaviour is exposed in Figure 4.1, showing the superiority of the proposed method over
the greedy method in scenarios with different timing constraints. The shaded areas in the
charts represent solutions with timing constraint violations.

The work also shows a very important analysis of different methods to find a fea-
sible solution with minimal power. Figure 4.2 shows (a) ping-pong, (b) penalty function,
and (c) relaxation based constrained optimization. The case shown in Figure 4.2 (b)
resembles the behavior of the simulated annealing method presented in this work (Sec-
tion 5.1, Chapter 5), where the power reduction is obtained while creating timing vio-
lations until the point where violations are penalized in detriment of power. The main
Lagrangian relaxation algorithm proposed in this work has an hybrid behavior between

Figure 4.2 (a) and (c), where the algorithm finds a feasible solution in terms of timing and

Figure 4.2: Behavior of three different methods for power optimization.

power

2
g : 2 A
1 Pl :
'
'
L,
o .
delay delay delay
(a) (b) (©

Source: Coudert (1997)

Figure 4.3: Power-delay curves for different designs for G'S and greedy method.

C2670.cmos_cha

C3540 cmos_cba

35

18000

1880 - : : - : ; 2550 : :
*\ : : : G5 +— : a5 +—
N greedy —— greedy +—
1860 g i
\ ‘\/«\ 2500
ER N i
o4 |2 : i
4 \ 2450 [
1820 |- . S SIS NSNS SV S—
\ [
\ LN i
1800 o R \ 2400 [y
5 | N
1780 o \ e
i i \ 2350
A% A
Ay
1760 | : \\ \
H : —
: L ~delay 2300
1740 |- i S
\'$_7_$_7 —
1730 i i i i i i i 2250 i i i i i
5500 8000 6500 7000 7500 8000 8500 2000 9500 10000 11000 12000 13000 14000 15000 16000 17000 18000
C2670.bm_ms! C3540.CBCT_HD_MAX
128 T T T 405 T T T T T T T T
cs Gs +—
greedy —— . gresly +—
b a0+ 1
124 [15
H 395 g
= T E
H \ g
122 b ...x‘ USROS S S 38 o
! \ ! 3gs |
\ \
‘\ i 38 H
\ : }
\
¥, \ H
118 [y \ 375 - i
16 [= defay . : delay \
\ 365 F T ks 4
H‘_w-,.a_,_ T — i H i
14 H i e B S - i H i i H i H : i
5 55 [&5 7 75] 135 14 145 15 155 16 18.5 17 175 18 185

Source: Coudert (1997)

then reduces power, but allowing unfeasible solutions with small violations (ping-pong

effect).

Figure 4.3 shows four power-delay curves for different designs for GS and a

greedy method. The curves clearly show the superiority of G\S over the greedy method

in terms of power. The smooth behavior of power along with different target delays is

important to measure the quality of the proposed methods because it shows the stability

of the algorithm in different scenarios where delay and power have different weights in

the input design.

36

Figure 4.4: Circuit representation after replacing the components by their models (dashed
lines).

Sum of capacitance Sum of capacitance

=G =G
Source: Chen, Chu and Wong (1999)

Both GS and greedy results show good improvements in both delay and power.
Comparing GS with the greedy method, there is only a small difference for delay val-
ues. On the other hand, G'S results for power are in average 5.2% better than the greedy

method.

4.1.6 Fast and Exact Simultaneous Gate and Wire Sizing by Lagrangian Relaxation

One of the most relevant Lagrangian relaxation works in gate sizing is presented
by Chen, Chu and Wong (1999). It was the first work to prove convergence and to guar-
antee theoretical optimality for the continuous gate sizing problem using convex delay
model. An exact algorithm for gate and wire sizing based on Lagrangian Relaxation and
"one-gate/one-wire-at-a-time" local optimization is presented. The timing constraints are
defined on the gates rather than on the signal paths. This will generate a linear number of
timing constraints, allowing time complexity of O(n X i), where n is the number of gates
and 7 is the number of iterations.

The proposed method uses the Elmore delay model (ELMORE, 1948) and the
gate is modelled as a switch-level RC circuit with a resistance proportional to the gate
size. Figure 4.4 shows how the circuit is represented after replacing the components by

the their models (dashed lines).

37

The Primal Problem (PP) in the Lagrangian relaxation is formulated as follows:

PP :
minimize Z ;x;
i=1
subject to aj < Ay j € input(0) (4.2)

aj+D; <a; i€ GUW AV € input(i)
D;<a; 1€D
Li<z; <U; ieGUW
where « is a user-specified constant weight for each component, = represents the area (or
the leakage power) of the component, a is the arrival time, D the delay, L and U are the
lower and upper limits for z. ‘0’ is the sink node of the circuit and Ay the required arrival
time at the output components. G, VW and D are respectively the set of component indexes

of gates, wires segments and input drivers in the circuit.

Introducing the Lagrange multipliers for each constraint:

Ly(z,a) = Zaixi + Z ajo(a; — Ap)
i=1

j€input(0) (43)
+ Z Z)\ij(aj + Dz — (Zi) + Z)\mz<Dz — CLi)
1€GUW jeinput(i) i€D

The Lagrangian relaxation subproblem then becomes:

LRSS/ :
minimize Ly(x,a) (4.4)
subjectto L, <z, <U; i€ GUW
Using the Karush-Kuhn-Tucker (KKT) conditions to optimality, the problem is
greatly simplified, eliminating the arrival time from the equation for the dual problem.

This transformation allows only delay calculation during the £LRS solving. The simpli-

fied equation becomes:

n n+s
i=1 i=1

where, 11; = Y i) Nij for 0 <@ < n+ s (any node in the circuit).

38

This equation only depends on the gate delays. Using a convex delay model (like
the Elmore delay model) the solution is guaranteed to be optimal, although such model is
inaccurate.

In order to solve the Lagrangian relaxation subproblem, a new set of sizes for all
components is calculated for a fixed set of multipliers. When i € G, let z; be the gate
size, r; be the output resistance of the gate and c; be the input capacitance of a pin of the
gate. Let 7; and ¢; be respectively the unit size output resistance and the input capacitance

per unit size of gate ¢. The optimal local sizing of component ¢ is given by equation 4.6.

i C;
x; =min <U,-, max (LI, %)) (4.6)
where .
T
R; = i
'Ei;t(i)lu Ti
= (4.7)

Ci= > Mi%

k€output (i)

The proposed iterative algorithm to solve the Lagrangian relaxation subproblem
SOLV E_LRS/u is shown in Figure 4.5a. This algorithm performs the sizing (based on
the calculated values of capacitance and resistance) with fixed Lagrange multipliers.

Algorithm SOLV E_LD P shown in Figure 4.5c¢ finds the optimal set of multipli-
ers. Initially, an arbitrary set of Lagrange multipliers respecting the Karush—Kuhn—Tucker
(KKT) conditions (A € €2, where €, is the set of multipliers that respect the flow con-
servation property) is set (line 1). Then, the iterative sizing algorithm calculates the new
sizes until convergence (line 2). After convergence of SOLV E_LRS/u, a new set of
Lagrange multipliers is calculated (line 3) and projected into €2, (line 4).

The algorithm SGW S — L R shown in Figure 4.5b solves optimally the gate sizing
problem. Line 1 is the the iterative method to find the optimal set of Lagrange multipliers
A. Then, SOLV E_LRS performs the optimal sizing for each component. Algorithm
SOLV E;,DP in Figure 4.5¢ finds the set of Lagrange multipliers for the new solution,
using an user-defined step size p.

Those algorithms are the main inspiration for the Lagrangian relaxation-based al-
gorithm presented in this work. In the discrete case, the optimality properties are lost, but
the algorithm is still able to converge to an optimized solution.

Our work also presents algorithms to circumvent the use of an arbitrary initial set

of multipliers in SOLV E_LDP.

39

Figure 4.5: Algorithms (a) SOLVE_LRS/u,(b) SOLVE_LDP, and (¢c) SGWS—LR.

ALGORITHM SOLVE_LRS/ u:
Output: = (z1,...,z,) which minimizes L, (z) ALGORITHM SGWS-LR:
l.fori:=1tondoz; :=L; Output: the optimal gate and wire sizing solution &
2./* Finding C} for 1 < i < n by traversing 1. Call SOLVE_LDP to find the optimal A.
the circuit in a reverse topological order */ 2. p=(foy- -y Mnts) Where pu; = ngmput(i) Aji
fori:=1totdo 3. Call SOLVE_LRS/u to find the optimal z.
o ck ifieg

for::=t+1ton do

Ci= { (}/2 gz E)g/v ALGORITHM SOLVE_LDP:
' Output: A which maximizes LRS/A
1. k:=1/* step counter */
A := arbitrary initial vector in Q2

2. p = (Kos-- - fints) Where i; = Zjeinput(j,) Aji

for all & s.t. i € input(k) do
o= C,’ +Ekxk ifkeg
Cl+Cray+ fr/2+C), ifkeW

i

3./ Ftiﬁldil}g Rti 'andt:ri f?r i Sli Sd n 5’7 traversing Solve LRS/A. (Solve LRS/p by SOLVE_LRS/
he circuit n a topological order and then calculate a1, . . ., @15 as in Section 3.2).
for i := n downto 1 do 3. /* Move to a new A by adjusting multipliers A j; */
R;:=0 fori:=0ton + sdo
for all j € input(:) do for all j € input(i) do
R; + p7/z; ifjeg Aji + pr(aj — Ao) ifi=0
Rl = Ri+uj?j/$j+Rj lfJEW Aji': /\j,;+p1«,(aj+D,;—ai) ifieGuw
R7:+uij_” ifjeD i + pr(Ds — a;) ifieD
. — = 4. Project A onto the nearest point in §2 5.
x; = min (Ui,max (L,;, VuiTiClJ (G R + ai))) S him k1
4. Repeat step 2 and 3 until no improvement. 6. Repeat step 2-5until (3} ; a;z; — Q(A)) < error bd.
(a) (©

Source: Chen, Chu and Wong (1999)

Another important difference in our work is how the new sizes are selected. The
algorithm SOLV E_LRS/p uses a closed form to calculate the new widths based on
the convex delay model to determine the new optimal resistance and the capacitance. In
contrast, our proposed model evaluates in one step a cost function for all discrete options

available, choosing the lowest cost solution as the new assigned option.

4.1.7 Forge

Tennakoon and Sechen (2002) presented a new fast gradient-based pre-processing
step to provide an effective set of initial Lagrange multipliers for the continuous gate
sizing problem.

The Lagrangian relaxation method is formulated following the same steps and
simplifications proposed by Chen, Chu and Wong (1999).

The work proposes a method to find an initial set of Lagrange multipliers using
a steepest-descent, gradient-based approach. The goal is to arrive at the desired delay

contour. The steepest descent search is applied in topological order to minimize the delay,

40

using equation 4.83. Re-sizing is repeated until the delay is less than the target delay.

7iCi

¥ — (4.8)
T VRe
The equation to find the multiplier based on the size of ¢ and its input j is
;5
A= — - - 4.9)
(%ifai) Ci = (Pi/a;) Eis
Deriving this equation to handle n-input gates and assuming \;; = #i/n,
o o,
Hi = (i) C; — %Rsiéﬂ'i (4.10)
where Rs; is the sum of the upstream resistances.
Rearranging and solving for x:
) = ATiCs (4.11)
(a; + N\iRsjc;))

This proposed approach shows the importance of the initial set of multipliers and
the effect of such choice in the final convergence even in methods with guaranteed con-
vergence. Forge takes advantage of the closed form calculation that relates delay and
widths (resistance and capacitance). In our proposed lambda initialization we also try to
approximate the multipliers to correspond with delays in the current solution, but without
a closed form equation.

The authors propose a modified subgradient search method for multiplier update
LagrangeM . The idea is to avoid the difficulty in determining the proper factors used to
control the step size adjustments to the multipliers in a subgradient-based method.

The work from Tennakoon and Sechen (2005) extends F'orge to handle a novel
piecewise convex delay model for static CMOS gates. The model handles distinct rise/-
fall delays and rise/fall slew rates. The method improves the accuracy of the model by
subdividing the available simulation data in to small regions, fitting one convex function
per region. An overlap between regions is defined in order to prevent the solution get-
ting trapped between two regions. Results comparing with a commercial transistor sizing
tool show an average 28.6% area reduction, showing the superiority of LR methods over

common greedy methods.

3Variables and constants follow definitions of previous reference (CHEN; CHU; WONG, 1999).

41

Figure 4.6: Optimization flow.
Verilog netlis
M reduce delay in vDesi,cm Compile

»sensitivity = miIvl {AP/Ad} . AP<0f%

linear program to assign y values
min(X(yAP)), T<T,,,

Plsensitivity = maic{AP/Ad}, Ad<0l+

linear program to assign y values
min(max{-,T-T,, } TAE(7AP))
v

v
| change cells if ¥>0.99 for Ad>0|

change cells if ¥>0.01 for Ad<0

no
Verilog netlist

Source: Chinnery and Keutzer (2005)

4.1.8 Linear Programming for Sizing, ;;, and V,; assignment

Chinnery and Keutzer (2005) expose the problems of using sensitivity-based greedy
sizing as in (SRIVASTAVA; SYLVESTER; BLAAUW, 2004; SHAH et al., 2005), propos-
ing linear programming for a global sizing approach. The linear program is similar to
Nguyen et al. (2003) but modeling each timing arc and including wire loads.

Figure 4.6 shows the flow for the linear programming (LP) problem formulation.
The flow is divided into two steps, both using linear programming to assign which cells
will change. The first step reduces power from the initial solution (obtained from a com-
mercial design tool) while trying to still meet the timing constraints. Since there is no
guarantee that the timing constraint will be satisfied, the second step reduces the delay for
the cases where timing constraint is violated. The process iterates until power improve-
ments are less than a defined threshold.

Experimental results show 10% to 16% power improvements over commercial tool
solutions when two threshold voltages are available. A greedy post-optimization method
is applied to further reduce sizes of gates in paths with some positive slack left after
LP optimization. Nevertheless, the method presents power increase in one case where
only one threshold voltage is available. Moreover, the LP method used is very timing

consuming when compared to LR methods.

42

4.1.9 Timing-aware Power Minimization via Extended Timing Graph Methods

Qian and Acar (2007) discuss the practical issues in applying gate sizing, and the
experimental validation of the proposed methods with real circuits from high performance
microprocessor designs. The work presents a sensitivity-based method that allows fast
incremental and concurrent gate sizing and V; assignment.

The method starts with a design meeting the timing requirements and then mini-
mizes the leakage power without creating any timing violations. A graph-based iterative
approach is used to look for an optimal set of gates to modify in each iteration.

The work also addresses constraints of industrial design flows usually not ad-
dressed in literature works, such as Notouch designation and cell Grouping, presenting

how the proposed methods handle such constraints.

4.1.10 Gate Sizing for Cell-Library-based Designs

The work presented in (HU; KETKAR; HU, 2007; HU; KETKAR; HU, 2009)
proposes a continuous solution guided dynamic programming algorithm to directly solve
the discrete gate sizing problem. The algorithm is a combination of continuous sizing
and discrete sizing methods. The search space of the dynamic programming (discrete)
is significantly narrowed down under the guidance from a good continuous solution. At
each gate node, instead of every discrete gate size, only those close to the continuous
solution will be investigated, avoiding excessive runtime.

The continuous problem is solved using the Lagrangian relaxation formulation
from (CHEN; CHU; WONG, 1999) with Elmore delay model. Partial discrete solutions
are selected for investigation using a simulated annealing-like randomized process based
on the proximity to the continuous solution. More gate assignments are investigated for
timing critical nodes.

Two types of pruning are used. The first is called node pruning which is performed
when a node is processed. Solutions with known inferiority based on delay and area are
pruned. Only the solution with either a smaller maximum delay or smaller total area sur-
vives. The second type is called solution-set pruning which is performed after a node is
processed and when the size of the solution set is greater than a threshold. Similar solu-
tions are grouped and then the representative one from each group is selected for further

propagation. The solutions which have not been selected are pruned to save runtime, en-

43

abling the LR-based method to achieve runtimes similar to other simpler techniques. In
our work, pruning techniques are also employed to make the LR methodology runtime
feasible.

Results are compared with an implementation of (COUDERT, 1997). 1%-21%
of area-cost reductions are obtained. The runtime including computing the continuous

solution is, on average, about 50% higher than that of (COUDERT, 1997).

4.1.11 Gate Sizing for Large Cell-based Designs

Reference (HELD, 2009) uses slew targets instead of delay budgets to guide the
sizing process. Gates are sized (chosen from cell library) to meet the slew target on its
successors input pins. Similar to our work, it is applied to industrial designs.

First, the algorithm sets the slew targets. Then, an iterative approach repeatedly
chooses the cell sizes to meet the slew targets, updates timing and computes new slew
targets based on an estimate of the slew gradient. The gradient guides the cell to a locally
optimum solution. The algorithm avoids expensive incremental timing updates. Instead,
the timing is updated for the complete design by a timing oracle once per iteration.

After the fast global sizing, a local search (greedy) sizing is applied to further
improve the result. The greedy algorithm is applied to gates in the most timing critical
paths and their fanout gates (bounded to 0.2% of total circuit size) to improve timing.

Results comparing to a industrial tool show an 60% average improvement in TNS
with similar WNS. Area is increased by 7% on average. The total runtime is 5X faster
than the industrial tool for the chosen set of benchmarks (ranging from 64K to 5879K
cells).

4.1.12 A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage As-

signment

References (LIU; HU, 2009) and (LIU; HU, 2010) propose two new techniques
which enable a DP-like solution search for gate sizing and Vt assignment. One is based
on relaxing the presented history consistency constraint. The other is an iterative bi-
directional search that seeks solutions along both the forward and the backward topolog-

ical directions.

44

Figure 4.7: Timing optimization gate sizing algorithm (LIU; HU, 2010).
Input : combinational circuit G and cell library L
Output: size and V; assignment for all gates in G

// Initialize the option sets at
multi-fanin gates
X; < {all implementaion options of v;}, Yv; € V;

repeat
// PHASE I: Initial Optimization
ConsistencyRelaxation(G);
ConsistencyRestoration(G);

// PHASE II: Iterative Refinement
InterativeRefinement(G);

// Update the option sets at
multi-fanin gates

X; < {v;’s used options in this iteration}, Yv; € V;
until no improvement ;

Compared to the sensitivity driven heuristics, the algorithm is more systematic and
therefore can lead to improved solution quality. The algorithm can be directly applied
on DAG topology. This is achieved using two techniques: consistency relaxation and
coupled bi-directional search. Those techniques are combined in the timing optimization
flow as shown in Figure 4.7.

The solution found by one iteration of relaxation and restricted bi-directional
search may be a local optimum. Therefore, multiple iterations of relaxation and restriction
are used. This approach is thus called iterative joint relaxation and restriction (IJRR).

The disadvantages of Phase I are compensated by an iterative refinement procedure
in Phase II. Each iteration of Phase II consists of a backward search followed by a forward
search.

The authors also present a timing-constrained power optimization flow based on
Lagrangian relaxation. As in our work, the approach follows the methods proposed in
(CHEN; CHU; WONG, 1999).

A parallel GPU-based implementation of the techniques proposed in this work
is presented in reference (LIU; HU, 2011), which provides the same power and timing

results with an average runtime speedup of 39x.

4.1.13 Lagrangian Relaxation for Gate Implementation Selection

Huang, Hu and Shi (2011) present a Lagrangian relaxation-based method for dis-

crete gate sizing using a projection-based descent method for solving the Lagrangian dual

45

problem. The method predicts the timing constraint vs. Lagrangian multiplier behavior
based on the history of previous iterations and then speculates the direction and step size
of the descent move.

First, the expected arrival time for all the fan-in gates is calculated such that the
sum of multipliers distributing to them is equal to what the gate received from its fan-in

gates. The equation used is

aexp — aj
=27 - A = Ay
Z 7 (T 1) Z k K 4.12)

v € fanin(v;) o€ fanout(v;)
where 7/(Tj, 1i;) is based on the history of previous iterations, with more emphasis on
recent history. This approach was tested in our flow but did not present valid results (LR
could not converge).

Then multipliers are calculated for each fan-in gate and also KKT is guaranteed
to be satisfied. Authors claim better convergence in the discrete sizing problem for the
proposed method when compared to sub-gradient method from (CHEN; CHU; WONG,
1999).

4.1.14 Power Reduction Via Near-optimal Library-based Cell-size Selection

Rahman, Tennakoon and Sechen (2011) extend the continuous sizing formulation
in (CHEN; CHU; WONG, 1999) to handle separate rise and fall delays.

The discrete cell sizing is a branch-and-bound methodology guided by continuous
solution. Each cell is assigned a candidate set of discrete sizes that are “close” in some
sense to the continuous size, and which preserve the continuous beta ratio () as much
as possible, since PMOS and NMOS transistors’ widths are chosen separately. Upper
bounds (bounding box) in both active area and delay based on the continuous solution are
set to minimize the number of retained partial solutions. Candidate partial solution points
are discarded if they fall outside these bounds.

In the new discrete cell size selection algorithm, the decision on the discretization
of a particular cell is delayed until it is clearer how it will globally impact active area
and delay for the whole circuit. Each generated partial solution, with one additional
discretized gate, requires a call to STA to evaluate its delay. This is the most CPU intensive
part of the algorithm. Authors exploit parallelism to reduce the total number of required

STA runs as well as the CPU time for each STA run.

46

Figure 4.8: Active area and delay results for continuous and discrete sizing methods.

155 Ty — /e
=¥= Cont. Sizing
P U X &] —e—New Disc. Sizing
E 145 _4\\X ___i.N.._____!____| =—=—Nearest Rounding |:
§ 140 4 JAvg]jelay Incr. |12.5%|____§
< ' ‘ : :
> 1 1 1 1 ' 1
§ 18 Tl "lm e —
< Avg. Delay Incr. 4% . 3 ! :
130 1 T T froeeeeeee proceeees e w:
125 i i i i : i
700 800 900 1000 1100 1200 1300
Delay (ps)

Source: Rahman, Tennakoon and Sechen (2011)

The effectiveness of the proposed discretization method is shown in Figure 4.8
where it is shown that the average delay difference from continuous solution is around
4%.

Results show that the active area is reduced by an average of 40% and leakage
power by an average of 40% compared to leading commercial tools as used in a specific
design flow.

Reference (RAHMAN; SECHEN, 2012) proposes a V; selection algorithm that
is performed before sizing using the method proposed in (RAHMAN; TENNAKOON;
SECHEN, 2011). In that algorithm, the threshold voltages are raised as much as possible
while strictly maintaining the delay goal. A cost function that is globally aware of the
entire circuit is used to rank the solutions.

The algorithm iteratively globally ranks all of the cells based on a cost function
which is the total slack elimination (in the whole circuit) divided by the leakage reduction
(for that cell). The lowest cost cell is swapped to the next highest available a V;, as long
as the delay is not increased. The procedure iterates until no cell can feasibly be swapped

to a higher a V.

4.1.15 Gate Sizing and Device Technology Selection Algorithms for High-performance

Industrial Designs

Ozdal, Burns and Hu (2011) and Ozdal, Burns and Hu (2012) list the main opti-
mization challenges in modern industrial designs. The main issues are: discrete cell sizes,

cell timing models, complex timing constraints, interconnect timing models, slew effects,

47

many near-critical paths, and large design sizes.

The timing related challenges can be handled by an accurate commercial timer.
However the formulation must enable the use of such a tool, since accurate timing analysis
1s very expensive in terms of runtime.

The authors propose a Lagrangian relaxation formulation that decouples timing
analysis from the optimization engine without resulting in loss of accuracy. Also, a graph
model that captures the delay costs of discrete cells accurately based on timing tables
in the cell library is presented. A delta-delay cost metric is proposed to alleviate the
suboptimalities due to double counting in directed acyclic graph (DAG) optimization by
combining fanin and fanout costs in the subnode costs. A dynamic programming (DP)
algorithm based on critical tree extraction is used to solve the L RS optimization problem
for discrete cells.

Following a formulation similar to Chen, Chu and Wong (1999) the authors pro-
pose the decoupling of timing engine and optimization, through the use of slack values to
model the timing constraints. These slacks can be obtained from any commercial sign-
off timer. The use of slacks makes the optimization relevant to multiple clock domains
and false path calculations, since they are provided by the timing engine. The LR.S then

becomes

apower + 3 fipolpo + Y Huso(Musy — 1) (4.13)

po u—v
where « is the scaling factor that trades-off power and timing, m,_,, = @y + dy_y, — 7y
and m, = a, — r,. a; and r; are the arrival and required time at node 7, respectively.

The method for the Lagrange multiplier update is the same as defined by Chen,
Chu and Wong (1999). The step size function for the subgradient method is shown in
Figure 4.9.

Results show a good convergence for around 30 iterations of LR — see Figure 4.10.
This number of iterations is similar (but larger) than the number of iterations of our in-
dustrial version of LR-based algorithm. However, it is smaller than the iterations needed
in our implementation for the ISPD contest.

The authors present comparisons with respect to the use of an internal (faster but
less accurate) timer, showing great improvements when a sign-off timer is used — Fig-
ure 4.11.

Another point made by the authors is the considerable improvement in quality

seen when comparing the proposed DP-based method against a configuration where LR

48

Figure 4.9: Step size function for Lagrange multipliers update.
step size

8 12 16 30 iteration
Source: Ozdal, Burns and Hu (2012)

Figure 4.10: Lagrangian relaxation convergence for (a) objective function and (b) TNS.

Design Ind-A Design Ind-A
@ 52 26
g 50 \ g 25 N 1stiter
PRNAN = J)
> 48 = 24
B\ g
9 46 3
Q_J‘ \‘4 2 o 23
'OQ 44 , bbbt s o 29 30t iter
0 10 20 30 0 2000 4000 6000
Iteration TNS
(a) (b)

Source: Ozdal, Burns and Hu (2012)

processes gates one-by-one — Figure 4.12.

Figure 4.11: Results when using internal or sign-off timer.
>0 Design Ind-A
40

30 \-..

20

==signoff timer
«=internal timer

Power (x10%)

10

0 T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

TNS
Source: Ozdal, Burns and Hu (2012)

49

Figure 4.12: Comparison for the DP algorithm and a single node method in LR.
30 15

Design Ind-A Design Ind-B
5% &-‘_‘ B
o o
o =
‘:20 lu—) 10 -
q;’ 15 =e-our algorithm g ~s-our algorithm
(] . o
o «single-node LR -=single-node LR
10 T 1 5 T T 1
0 500 1000 0 5000 10000 15000
TNS TNS

(a) (b)
Source: Ozdal, Burns and Hu (2012)

4.2 State-of-the-Art

4.2.1 The ISPD Contest 2012

The ISPD Discrete Gate Sizing Contest 2012 brought attention back to the discrete
gate sizing problem (OZDAL et al., 2012). The Contest focuses on simultaneous gate siz-
ing and V; assignment to optimize static (leakage) power under performance constraints.

The simplified problem formulation comprises a standard cell library and a set of
netlists with fixed timing constraints and interconnect parasitics. As the output of the
problem, cell sizes and V; should be provided. The first goal is to satisfy all performance
constraints: maximum slew, maximum load capacitance, and setup timing constraints.
The second goal is to minimize total leakage power.

An industrial timing engine is used as the reference timer. All benchmarks pro-
vided are guaranteed to have a feasible solution with all constraints being satisfied.

The main objective of the contest was to expose industrial challenges in the gate
sizing problem to academia. The most common industrial challenges pointed out by the
contest are: discrete cell sizes, continuous optimization and rounding, typically subopti-
mal non-convex cell timing models due to transistor folding in the layout, slew dependen-
cies and max slew constraints, and large design sizes. This contest was not covering other
challenges as: multiple clock domains, false paths, interconnect models.

The cell library was created specifically for the contest, with realistic non-convex
timing models (Figure 4.13) and realistic cell sizes and V; levels. Timing tables were
generated based on a simple current source model.

There were two main sources of non-convexities in the models: transistor folding

50

Figure 4.13: Non-convex gate delays for a 3-inputs medium V; NAND gate.

100

80
z
o 60 ¥
Q ~ ra

40

fall naO3m —49—
20 rise na03m ——

0 2 4 6 8 10 12 14 16 18
Size (load increases with the same ratio)
Source: Ozdal et al. (2012)

in the layout and p/n transistor size ratios not always constant due to discreteness.
A runtime limit is imposed for the execution of each benchmark. It depends lin-

early on the number of gates in the design, as follows:

(4.14)

Runtime = 5h 4+ 1h X [#gates-‘

35K
For the primary ranking, the metric used prioritizes the minimization of the to-
tal number of violations. Since all benchmarks had violation-free solutions, the second
metric (total leakage power) becomes the real goal in the contest.
In the secondary ranking, violations are still the primary metric, but all the solu-
tions with the same number of violations are ranked based also on the runtime necessary
to generate a solution, as defined in 4.15. This metric trades quality by runtime improve-

ment with respect to a reference power and runtime values.

Power Runtime
cost = —— + 7YX ——————— (4.15)
Powerggr Runtimegpr

Powergpr and Runtimegrpp are the measurements from the best quality solution (ac-
cording to primary ranking metric) for each benchmark, and v is set to 0.05, e.g., 1%
degradation in the solution quality can be compensated by a 20% runtime reduction with
respect to reference values.

Different techniques were presented by the contestant teams (only one methodol-

ogy published by Reimann et al. (2013)) and a new set of benchmarks together with a

51

Table 4.1: Number of combinational gates and leakage power (1) on ISPD 2012 bench-
marks.

of Clock Leakage Power (1)

Benchmark Gates (ps) Ist 2nd 3rd Best
DMA_slow 25K 900 0.205 0.158 0.147 0.147
DMA _fast 770 0.511 0.323 0.312 0.312
pci_bridge32_slow 33K 720 0.203 0.115 0.116 0.115
pci_bridge32_fast 660 0.512 0.168 0.226 0.168
des_perf_slow 11K 900 0.674 0.884 0.697 0.674
des_perf_fast 735 2.390 3.520 2.320 2.320
vga_lcd_slow 165K 700 0.415 0.378 0.391 0.378
vga_lcd_fast 610 0.758 0.580 0.773 0.580
b19_slow 219K 2500 0.627 0.614 0.736 0.614
b19_fast 2100 2.710 - 4.490 1.040
leon3mp_slow 649K 1800 1.420 1.790 2.960 1.420
leon3mp_fast 1500 - - 4.940 2.020
netcard_slow 959K 1900 1.770 1.970 1.940 1.770
netcard_fast 1200 2.010 2.300 2.970 2.010

cell library based on recent technologies were publicly released for the evaluation of the
submitted tools. The results are presented in Table 4.1.

However, the results of the contest could still be improved by considerable margin
(OZDAL et al., 2012). Lee and Gupta (2012) also stated their concern with the quality of
results presented in the contest, highlighting that no method was able to establish as the
“best" method. The authors also urged that more work is needed to properly develop the
state-of-the-art.

That led to the publication of much more improved results after the contest (LI et
al., 2012; HU et al., 2012) using the same set of benchmarks and cell library.

New results were presented further improving the best results published after the
contest (FLACH et al., 2013). These state-of-the-art results are part of this work, as

detailed in next chapter.

52

Figure 4.14: (a) Initial sizing to fix electrical violations, (b) Min-Clock LR, and (c) La-
grange multiplier update algorithms.

Algorithm 3 Updating 1

1: for each timing endpoints po in design do
2 /1';)‘0 = :u;o(a;o + dpo)ﬁ'

3 iho = ipo(ago + dpo)”.
4: end for

5: for each timing arc wv in design do
6

7

8

Algorithm 2 Initial Sizing

1: for each gate g in reverse topological order of the circuit do

2: Find the smallest-size alternative cell-type c1 for g that satisfies
a * max_capacitance(c1) > output_load(g).

3: Find the smallest-size alternative cell-type c2 for g that satisfies
output_slew(g) < max_transition assuming that the input
slews of g are max_transition.

#Zt‘.v = ML,U (a;(vuv) + d;'u)ﬂ'
pho = (@i + df,)P.
: end for

4 Set g to cell-type maz(ci, ca). 9: for each timing endpoi‘nts po in design do
5: end for 10: cur_sum = 33, fipo + 3, o
11 gy = Moo /Cur_sum.
(@) 122 ply, = ply Jcur_sum.
13: end for

Algorithm 1 Min-Clock LR
1: Find an initial sizing without capacitance and slew violations.)) o ” C f_ f
2: while clock period improved in last iteration is larger than a 19~ CuUr_sum = Zuveg My CUT_SUM" = Zuveg Huw-
threshold do 16: opt_sum” = Equation (4), opt_sumf = Equation (5), where

14: for each gate g in reverse topological order of the circuit do

3 fon: each ga@ g in design do)) n is output net of g.

4 if topological_level(g) % 3 == iteration_count % 3 then L. .

5 Resize g to minimize L, (a). 17 for each timing arc uwv in gate g do

6 end if 18: Mo = [* Opt_sum” [cur_sum” .
7. end for 19: Hsz = y,iv * Upt_.sumf / (:’u,r_.smnf .
8. Update global timing.

: 20: end for

9: Update p.
10: end while 21: end for

(b) (©)

Source: Lietal. (2012)

4.2.2 An Efficient Algorithm for Library-based Cell-type Selection in High-performance

Low-power Designs

Authors of reference (LI et al., 2012) propose a flow to take advantage of the
emerging many-core systems to effectively reduce the design cycle time for modern de-
signs. Another concern is that the designer should have a clear picture of the performance
(timing) limit of a design, as well as the possible power-performance trade-off.

The work is based on the ISPD Contest 2012 formulation. The proposed flow in-
cludes a Minimum Clock Period Lagrangian Relaxation (Min-Clock LR) method to gen-
erate the fastest design with all possible cell-types. After finding the highest-performance
design, a min-cost network flow based method is used to optimize the power consump-
tion while maintaining the timing feasibility of the design. Further improvement in power
is achieved by a greedy heuristic to prune power by maximally utilizing any remaining
timing slacks.

An initial sizing is performed in order to provide a electrical violation-free design
to the Min-Clock LR algorithm. The algorithm is shown in Figure 4.14a. o < 11s an
empirical parameter to control the load ratio between a driver cell and its fanout cells.

a = 1 produces the slowest design without any capacitance or slew violation. For the

53

Figure 4.15: Resizing effect example.

—tn
_—E’
L bl _ la
= 4 F @) p -
I~ b2 d2
- a
B (1) P > D (2
" a2
l_cl _el
- A (0) P
I c2 y [e2
L {_gl
Cc (1) > E (2
g2
G (3

Source: Lietal. (2012)

experiments, the authors use 0.6 < o < 0.8.

The algorithm of Min-Clock LR is shown in Figure 4.14b. The LRS is approxi-
mately solved in the inner for loop. The outer while loop is to solve the LDP. In order
to avoid the excessive use of incremental timing updates with an accurate timing model,
the authors present a heuristic for the LRS which avoids the incremental timing update.
A novel parallel-friendly approach to the LR subproblem (LRS) is presented. It is im-
portant to note that these procedures cause timing inaccuracies and sub-optimality — such
methods are not employed in our work. Nevertheless, our approach can achieve similar
runtimes — see Section 5.4.

The example in Figure 4.15 is used to show the comprehensive effect of resizing
a cell. When resizing cell A, while all other cells remain unchanged, all cells connected
to input and output pins of A are considered for timing analysis. Cell resizes that create
electrical violations are not considered. The delays on timing arcs b1, b2, cl, c¢2 need
to be re-estimated due to load changes. With the slew change in nets x and y, {2 and g1
also need a timing update. The same is true for timing arcs al and a2 for the new size
of cell A. Then timing on net z and arcs d1 and el is updated. The authors claim that no
further propagation is needed for accuracy, and even cells F and G could be skipped in
some cases (if input pin capacitances of cell A are reduced by a resize).

The LR convergence speed is boosted by a modified subgradient method. The
algorithm to update the Lagrange multipliers is shown in Figure 4.14c. Authors propose
a new multiplier update method that adjusts sub-gradients according to local delay and
arrival time. The parameter § defines the step size. A larger [implies a faster but less

controlled convergence. The authors found that 5 = 2 is a proper trade-off between

54

stability and fast convergence.

The min-cost flow algorithm is modified to handle discrete non-convex timing
models. The network flow formulation is based on the work by Ma and Young (2008).
In order to speed up the heuristic, a fast and coarse-grained timing update technique is
developed to replace the accurate but expensive timing update. After the min-cost flow
algorithm, the solution is further improved by a sensitivity-based greedy method called
Power Pruning.

Experimental results show that the algorithm can achieve 13% more power savings
on designs with fast timing constraints compared to the best ISPD Contest 2012 results
— those results are outperformed by our methods (Section 5.4). The algorithm exhibits a

near-linear empirical runtime, with processing rate from 1 to 1.5 hours per million cells.

4.2.3 Trident

(HU et al., 2012) presents a sensitivity-guided heuristic approach based on sequen-
tial importance sampling (ALDOUS; VAZIRANI, 1994) that integrates power and timing
optimization, and handles several types of constraints.

Total Negative Slack (TNS) estimation is used in the sensitivity functions rather
than just the worst slack. A parameterized space of sensitivity functions for gate sizing is
defined. The method traverses this space using a multistart technique that naturally lends
itself to efficient parallelization on multi-core and shared memory CPU architectures, and
distributed systems.

The proposed heuristic has two stages — Global Timing Recovery (GTR), and
Power Reduction with Feasible Timing (PRFT). GTR first seeks violation-free (feasible)
solutions, and then PRFT iteratively reduces total leakage power of sizing solutions by
local search. The overall flow is presented in Figure 4.16.

GTR starts with minimum-leakage cell configurations that are incrementally re-
fined by increasing/decreasing gate sizes or decreasing/increasing threshold voltages. Both
cell upsizing and decreasing V; are performed in the smallest possible increments; the or-
dering of these actions is determined by their sensitivities, which are calculated by the

impact on TNS and leakage power.

ATNS

Aleakage_power®

(4.16)

sensitivitycrr =

55

Figure 4.16: Overall gate sizing flow.

s T T T . y -; Multi-threaded
1 Input Design 1 Assign Initial -
1 P & 8 “Go with

i[Netlist, Spef, Cell Libraryli ~ | Cell Configurations = ihe Winners”

---------------] * Only if necessary
Global Timing Recovery (GTR)

\Coarse- -grain' " best [“Fine- -grain " best | “Fine- -grain ! _"best

\o_search _ 1,7 i_ _S_E'E"L‘:_h_l - .' o 7] 1o S€arch I i soputions

'[Sensitivity-guided | for e"Cf’ f”“”on [Sensitivity-guided i
! Greedy Sizing (SGGS)| SF, SF, SF.|Greedy Sizing (SGGS)|:
! v e o o o Y :
\| Slack Legalization* I—)— —— — (—| Slack Legalization* |
| o o o e ol e e e e
Jpe— ; """"" s 'Fb" _ée_st_ """"" A— ; """" i
! Speed Up ¢ *t Ysolution 3 Speed Up .
i Bottleneck Cells | 7, y, » | Bottleneck Cells !
¥ ¥ |
1 SGGS | e e oo | SGGS | |
I ¥ [==m === ==- 7 I
'| [Slack Legalization™] ! Final Cell \ [Slack Legalizatiorr] | |
| ' Assignments ! I
: yes Best™_no T I T no Best es :
: ---4--- :

Source: Hu et al. (2012)

Figure 4.17: Sensitivity functions used.

[Acronyms | Sensitivity functions |
SF1 —Aleakage_power/Adelay
SF2 —Aleakage_power X slack
SF3 —Aleakage_power/(Adelay x #paths)
SF4 —Aleakage_power x slack [#paths
SF5 —Aleakage_power X slack/(Adelay x #paths)

Source: Hu et al. (2012)

All cell modifications are evaluated assuming other cells are fixed. In order to
prevent inaccuracies in sensitivities calculation, only the first 7% of modifications are
committed between consecutive STA invocations. The variables 0 < a < 3.0 and 0 <
~v < 60% determine specific multistart configurations.

The sensitivity-guided greedy sizing (SGGS) method downsizes cells according
to the sensitivity while avoiding timing violations. The sensitivities used in SSGS are
presented in Figure 4.17.

ISTA(c;) is an incremental STA operation after cell ¢; is changed. The SGGS algo-
rithm starts with STA and initializes all timing nodes. Sensitivities are computed for all
downsizable cells. Both gate downsizing and increasing V; for the sensitivity calculation.

In order to reduce leakage power, the algorithm selects a cell ¢; with maximum

sensitivity, and downsizes c¢; or increases its V;. Incremental timing analysis and checking

56

for violations is performed to avoid inserting electrical violations. The loop continues
until M becomes empty. The slack legalization phase fixes timing violations present after
the execution of SGGS. Furthermore, bottleneck cells are identified and sped up to create
more space for downsizing and V; increase in other cells belonging to the same paths.
PRFT repeats until no more improvements are found.

The experimental results presented in the paper show considerable improvements
over the best results in the ISPD Contest 2012 and similar quality to the results in (LI et

al., 2012). Again, the quality of our results outperforms these improvements.

4.2.4 The ISPD Contest 2013

The second contest presented more challenging benchmarks and also a more real-
istic delay model (OZDAL et al., 2013). For static timing analysis, interconnecting wires
are represented as an RC tree, different from the lumped capacitance model used in 2012.
This model makes the correct assessment of timing and electrical violations much more
challenging, since the algorithms used in the reference commercial sign-off timer are not
publicly available.

The introduction of distributed wire delays and slew degradation in the contest
makes the contestant’s internal STA tools inaccurate with respect to the commercial accu-
rate timer used for the solution evaluation. This inaccuracy will vary based on the chosen
timing models used in each tool.

As in the first contest, there are two rankings, the primary and the secondary. For
the first ranking the metrics are the same from previous contest. The new runtime limit

for the primary ranking is set as:

‘ #gates
t =3h+ 1h 4.17
Runtimepriymary 3h + X ’7 10K ()
For the secondary ranking a tighter runtime is defined:
Runti
Runtimesseon pany — { un Zm€5PRHV[ARY—‘ (4.18)

In the secondary ranking, the quality metric considers the runtime following the
equation:

(4.19)

Runtq
cost = Power + ((1 —)+ x untime)

Runtimergr

57

Table 4.2: Number of combinational gates, leakage power (I/) and runtime (min) on
ISPD 2013 benchmarks.

of Leakage Power (1) Runtime (min)
Benchmark Gates 1st 2nd 3rd 1st 2nd 3rd
usb_phy_slow 609 0.001 0.001 0.001 9.90 0.60 0.79
usb_phy_fast 0.002 0.002 0.007 0.58 0.42 6.75
pci_bridge32_slow 31K 0.058 0.059 0.077 14.28 6.60 225.37
pci_bridge32_fast 0.097 0.107 - 87.03 11.62 -
fft_slow 3K 0.090 0.095 0.107 36.63 23.17 121.07
fft_fast 0.226 0.321 0.638 52.15 35.25 229.38
cordic_slow K 0.324 0.444" 1.078! 94.7 92.42! 244.73!
cordic_fast - - - - - -
des_perf_slow 113K 0.353 0.380 2.392 96.05 69.17 350.20
des_perf_fast - - - - - -
edit_dist_slow 131K 0.447 0.468 - 116.23 107.93 -
edit_dist_fast 0.596 0.639 - 185.50 166.07 -
matrix_mult_slow 155K 0.470 0.513! 1.381 243.40 215.78! 416.28
matrix_mult_fast - - - - - -
netcard_slow 989K 5.302 5.371 5.2461 549.40 1680.27 1655.42!
netcard_fast 5.318 - 19.152 613.25 - 1655.03

!'Solutions had very small violations (< 0.1 — ps and/or pF).

Runtimegrpr is fixed and defined as half of the runtime limit. Also, v is set to 0.05,
e.g., using the full runtime limit will represent an increase in 5% in the solution cost. A
runtime close to zero represents a reduction of close to 5% in the final cost.

The winning team — called SOUTH-Brazil, and which algorithms are part of this
work — presented a good margin against the second placed tool (~8%). Contest results
are presented in Table 4.2. For three designs, none of the submitted tools were able to
find a violation-free solution.

After the contest, the results of the winning tool were further improved by about
10% after changes in the internal timing engine and the use of a commercial accurate
timer in some stages of the proposed flow (FLACH et al., 2014). These methodologies
are also part of this work. Different from the first contest, the proposed flow finds the
best solution for all benchmarks. This method is also the only published work to present

results with violation-free solutions for all designs.

58

Figure 4.18: Optimization flow.

Input design = = —— Global Timing Recovery (GTR) o
creves Cestscssesssusssssstesestssnennses GTRWOST =+
Initial sizing of netlist —> GTR(a,y) [

1 N

#++ Timing recovery i+« Feasible?

Yes
Next Sensitivity Function (SF,) Calibration w/

signoff timer

s . Increase guardband (GB)
g Ce” upSIZIng E Sesssssssssssssssssssssssssssssssssssnsssssfessssnssnns
é e E geeecsssnacens l GTRWST '*
calibration : GTR(a,y)
¢ |Peephole & Critical| ¢ %
¢ | path optimization : : Timing recovery
GTR Solution
= === == == | Power Reduction with Feasible Timing (PRFT) = == === === -
RIS R PRFT phase1**
: SGGS(SF) - :
: No : 1
: Timing recovery Feasible? : Multi-threaded

ssssssssssssssssesssesssssesesssssenessscssnsscssssnnves

Best Sensitivity Function (SF)
"SRLLLLIIITT SULIPRRR AL LRSI LA PRFT phase2"*

No

Yes

P SGGS(SF)

Best solution

Timing recovery

Next Kick Move (LSMC)

T Y YRyl

Source: Kahng et al. (2013)

4.2.5 Trident 2.0

Kahng et al. (2013) present a multi-threaded, stochastic optimization tool for cell
selection to minimize leakage power subject to capacitance, slew and timing constraints.
The overall optimization flow is shown in Figure 4.18.

The first stage of Trident2.0, called Global Timing Recovery without a sign-off
timer (GTRwoST), uses a multi-threaded meta-heuristic to optimize individual parameters
of lower-level search heuristics with interconnect delay models and constraints, relying
only on internal timer calculations. The second stage also seeks to produce a feasible so-
lution, but performing timing calibration with the sign-off timer. The third stage performs
power reduction with feasible timing (PRFT), also using timing calibration. A sensitivity-

guided greedy downsizing (SGGS) is used with different sensitivity functions. The best

59

Figure 4.19: (a) Impact of calibration frequency and (b) leakage power results for different

calibration strategies.
-50

4 5%
il
a0 P : 10% 112% M calibration (5%) init calibration
Ao, 15% M no calibration [GB=5ps
/] — _
g . o : e a0 £ 100% . DGB=10ps
g ~ H (9]]]
o d (1]
= ,f ! e g
3 / ! L = 106%
8 20 e .-; e 9
»] ;r’ -]
1 ¥ & 103%
10 H =
E
AL b
= - -
0.0% 15.0% 30.0% 45.0% 97% iy il
The fraction of cells changed PRFT after timing recovery
() (b)

Source: Kahng et al. (2013)

solution is carried to the second phase of PRFT where the best sensitivity function from
first phase is used with greedy downsizing as in (HU et al., 2012).

The internal timer applies an offset-based timing calibration method that invokes
the sign-off timer periodically and stores the slack differences at every timing endpoint.The
accuracy of the internal timer decreases as the number of cell changes accumulates, re-
quiring a new calibration every time the number of cell changes reaches 5% or 10%.
Figure 4.19a shows the impact of calibration frequency in the slack error.

Authors also discuss the impact of timing accuracy on leakage power results,
showing that frequent timing calibration presents the best leakage power results when
compared to less frequent or no calibration results. Figure 4.19b shows the leakage com-
parison between runs with different calibration strategies. It is shown that methods using
calibration are more efficient than using a guardband (GB) to compensate the slack error.
The more frequent the calibration (more accuracy), the better are the leakage power re-
sults. The D2M (delay with two moments) (ALPERT; DEVGAN; KASHYAP, 2000) and
PERI (KASHYAP et al., 2002) models are used for wire delay and slew model, respec-
tively.

Trident 2.0 outperforms the winners in the secondary-metric of ISPD Contest 2013

and places between first and second for the primary metric.

60

Figure 4.20: TNS and power progression over LR iterations on 019 rast benchmark.

Iteration

0 sTaas '*"-F‘—__-_I’LT‘_\\’-”{ 1.4
/ 50 100 'll 1 150
o | 1.2
.z 20
w2 I —
Er 1 2
5 4o ! g
= ! ++% 08 &
i I .
I = == Fast-OLR TNS = == OLR TNS
60 1 0.6

= Fast-OLR power ===(QLR power

Source: Sharma et al. (2015)

4.2.6 Fast Lagrangian Relaxation Based Gate Sizing using Multi-Threading

Sharma et al. (2015) propose techniques to speedup Lagrangian relaxation-based
gate sizing. The proposed flow is tested with the ISPD 2012 Contest benchmark suite.

The authors present two main techniques to explore parallelism in the LR itera-
tions without loosing significant quality in the results of a flow similar to the LR flow
described here in Section 5.3. Instead of using the more common leveling and cluster-
ing techniques for parallel processing of several gates, it is suggested the use of mutual-
exclusion edge (MEE) and directed acyclic graph (DAG) netlist traversal (DNT). These
techniques allow better load balancing among threads and a reduction in thread idle time
than the former approaches.

Another technique proposed addresses the local resizing during LR iterations. The
local search is performed from smallest to largest cell size in the vicinity of current solu-
tion and is halted when no improvement in the cost is found in this search window. That
approach reduces cell evaluations by 3.3x less and overall LR runtime by 3x.

Figure 4.20 shows the TNS and leakage power convergence for the two optimal
local resizing (OLR) implementations. Fast-OLR includes the technique just described.
The local search also improves convergence by avoiding disruptions in solution timing
quality. We can see in the final iterations of LR that disruptions in timing generate less

improved power results.

61

4.3 Summary and Discussion

Beyond the aforementioned works, many other publications also address the tran-
sistor/gate sizing and the device selection problem but are not detailed in this work. The
reader can refer to the works from Beeftink et al. (1998), Harris et al. (1997), Sapat-
nekar (2004), Berkelaar, Buurman and Jess (1994), Berkelaar, Buurman and Jess (1996),
Nguyen et al. (2003), Srivastava and Sylvester (2005.), Ghiasi et al. (2004), Santos (2005),
Santos et al. (2005/b), Shah et al. (2005), Chopra et al. (2005), Singh et al. (2005), Roy,
Chen and Chen (2005), Chinnery (2006), Roy et al. (2007), Singh, Luo and Sapatnekar
(2008), Dutt and Ren (2010), Ren and Dutt (2011), Rahman, Tennakoon and Sechen
(2013) to find more algorithms and further insights related to the cell selection problem.
Also, Wang, Das and Zhou (July 2009) revisit the Lagrangian relaxation gate sizing for-
mulation, correcting misunderstandings and extending it to handle general convex delay
models.

Table 4.3 presents a summary of the techniques described in previous section and
some characteristics of each one. Trans./Gate refers to the application of the method:
transistor or gate sizing. Sign-off column shows whether the method uses a commer-
cial/industrial sign-off timer during the optimization. C/D shows whether the method is
applied to the continuous or discrete problem.

Lee and Gupta (2012) present a comprehensive study of the cell selection problem
going through the details of several works in the literature and proposed techniques. The
work classifies the methods by their techniques and presents useful comparisons between
the algorithms.

Many of the issues faced by cell selection algorithms are not new and are exten-
sively studied in literature. However, the difficulty of applying academic algorithms in
industry is still one of the major problems. As stated by Coudert (1996), approaches

found in literature typically suffer from at least one of the following problems:

1. The cost models, especially for gate delay, slew, wire delay, and power, are not
realistic, or are oversimplified to fit an optimization technique.

2. Some methods assume that the gates can be continuously sized, with the idea of
solving an easier problem and then projecting the continuous solution on a discrete
solution. But projective methods can even fail to find a feasible solution: gate sizing

is essentially a combinatorial problem (NP-complete).

3. Some methods make crude assumptions on the optimality criterion, e.g., minimiz-

62

Table 4.3: Summary of techniques present in references. Optimal refers to the optimality
claimed for the chosen (inaccurate) models in each work.

Reference Trans./Gate Core Method Optimal ~ Sign-off C/D
Fishburn and Dunlop (1985) Trans. Posynomial Progr. No No C
Chan (1990) Gate Heuristic Yes No D
Berkelaar and Jess (1990) Gate Linear Program Yes No C
Lin, Marek-Sadowska and Kuh (1990) Gate Sensitivities Yes No D
Liet al. (1993) Gate Heuristic No No D
Coudert (1997) Gate Heuristic No Yes D
Chen, Chu and Wong (1999) Gate Lagrangian Yes No C
Tennakoon and Sechen (2005) Gate Lagrangian Yes No C
Chinnery and Keutzer (2005) Gate Linear Progr. No Yes D
Qian and Acar (2007) Both Sensitivities No Yes C/D
Hu, Ketkar and Hu (2009) Gate Lagrangian No No D
Held (2009) Gate Slew target No Yes D
Liu and Hu (2010) Gate Lagrangian No No D
Huang, Hu and Shi (2011) Gate Lagrangian No No D
Rahman, Tennakoon and Sechen (2011) Gate Lagrangian No No C/D
Ozdal, Burns and Hu (2012) Gate Lagrangian No Yes D
Hu et al. (2012) Gate Sensitivities No No D
Kahng et al. (2013) Gate Stochastic No Calibr. D

ing a weighted power and delay product is the best power/delay trade-off, while the

problem is about constrained optimization.

4. Some methods assume that the objective function or/and the feasible region is con-

vex, which does not hold with accurate delay and power model.

5. Some methods are too runtime expensive to be applied on circuits with more than

1000 nodes.

Also, as detailed by Coudert (1996), several of the industry problems in cell se-

lection are not considered in most publications. The constraints also include maximum

fanout load or maximum transition time. Accurate delay models make gate sizing a non-

linear, non-convex, constrained, discrete, optimization problem. Moreover, that it is not

even unimodal, i.e., several local extrema exist. Because of the delay dependency on out-

put load and input transition time, sizing a gate affects the propagation times and output

transition times of its fanin and of its fanout gates, demanding many timing updates. De-

lay optimization can encounter (and get trapped in) several local extrema because of the

non-convexity of the delay model. This makes more important to have a method that can

avoid such traps (COUDERT, 1996).

Another industry concern is the application of cell selection when the design is

63

Figure 4.21: Greedy sensitivity-based sizing example.

_D— AND?2 cell choices:

] AND2X1 - delay 2ns, power ImW | _AP _ 1MW /1Ins
_ AND2X2 — delay 1ns, power 2mW Ad

: ANDA4 cell choices:

— AND4X1 — delay 2ns, power 2mW _AP —2mW/1ns
—) ANDA4X?2 — delay Ins, power 4mW d

Source: Chinnery and Keutzer (2005)

infeasible, violating some timing constraints. The objectives become different than most
works found in the literature. In industry, a practical objective is to maximize the worst
slack, but to also push less critical negative slacks towards zero. This approach reduces
the need for other more resource-consuming optimization routines (HELD, 2009).

The importance of using cell selection algorithms in incremental optimization
tools is examined by Lee and Gupta (2012). Performing gate sizing and changing V;
levels is less disruptive than changing placement and/or routing of tens or hundreds of
cells.

References also highlight that known and widely used methods can also fail even
in simple cases. Chinnery and Keutzer (2005) present an example of how greedy sensitivity-
based methods fail to find local optimal solutions in simple cases (Figure 4.21). Just
choosing the gate with the maximum sensitivity is suboptimal. For instance, if all the
gates in the above example are initially sized with the X2 option, the critical path delays
is 2ns and total power consumption is 12mW. Considering a 3ns delay target, the max-
imum power_reduction/delay_increase sensitivity choice wiil be to downsize the AND4
gate, resulting in 10mW total power. Nevertheless, downsizing the four AND?2 results in
8mW total power.

Considering the objectives of cell selection optimization, the reader can notice a
very clear shift from timing/area optimization to power optimization in the literature. This
is caused by the increasing challenge of power in modern technologies and designs for
portable low power devices. Dynamic power is still dominant in some designs, partic-
ularly for process technologies 22nm and below with FinFETs. According to Chinnery
and Keutzer (2005), more than 95% of the change in power can be calculated at that gate:
switching power due to C},; switching power of the load with V,,; leakage power; and
internal power. Slew changes cause small total power changes of typically less than 10%.

From a practical perspective, runtime is always a limiting factor when applying

realistic and accurate delays models, as highlighted by Li et al. (2012): Also, it is known

64

Figure 4.22: Lagrangian relaxation convergence.
3000 -

2700 4
2400 -
2100 -
1800 -
1500 -
1200 -
900
600 -
300 -
0 T . T T . .

0 10 20 30 40 50 60

lteration

Source: Liu and Hu (2010)

Power

that the continuous sizing model may work well for traditional transistor sizing, but it is
not a good option when designing with macrocells and standard cells (CHAN, 1990).

However, with standard cell libraries, the delay model is not convex, eliminating
the guarantee of finding the optimal solution. Also, the delay directly depends on slew
propagation, implying the same effort of propagating arrival times. Those issues will be
discussed in more detail in Chapter 5.

Comparing with many other techniques applied to this problem, Lagrangian relax-
ation algorithms have shown the best results in the recent literature (FLACH et al., 2013;
FLACH et al., 2014). However, applying LR is not an easy task. Tennakoon and Sechen
(2002) emphasize the difficulties of convergence in LR formulations for cell selection. In
practice, it has been seen that the LR convergence guarantee when using subgratient is
not easy either (BAZARAA; SHETTY, 1979; LORENA; SENNE, 1999). The subgra-
dient optimization is very sensitive to the initial values for the multipliers and the step
size (TENNAKOON; SECHEN, 2002).

More drawbacks of sub-gradient method are also presented by Huang, Hu and Shi
(2011). Discrete cell sizing presents either drastic changes in slack, causing the ping-pong
effect on solution, or very small changes, when LR needs to waste several iterations to
cause a simple change in size/V;.

Another know problem of applying LR is the convergence. Figure 4.22 shows
an example of convergence that takes around 15 iterations to start reducing power. With
the use of sign-off timing analysis, it is desirable to speed up convergence as much as
possible.

All the aforementioned issues are still faced when solving the cell selection in

65

modern real-life industrial designs. Algorithms to handle such issues and provide highly
optimized solutions are needed in industry. The goal of this work is to provide a solid
problem formulation to apply a state-of-the-art cell selection algorithm in real industrial
designs, considering all the necessary quality metrics involved in a industrial design flow.

The publications Reimann et al. (2013), Flach et al. (2013), Flach et al. (2014),
Reimann, Sze and Reis (2015), Reimann, Sze and Reis (2016), Reimann, Sze and Reis
(2016) are part of this work and all algorithms, flows, discussions and results contained
in them are presented in this work. Flach (2015) also presents parts of the work detailed

in this thesis.

66

5 PROPOSED FLOWS AND TECHNIQUES

In this chapter we detail the algorithms proposed in this work. As previously in
the text, the methods are presented in a chronological order for better comprehension of

the timeline and the evolution of this work.

5.1 Simulated Annealing-based Algorithm

This is the first method developed for discrete gate sizing and V; assignment in
this work. This method was evaluated and compared with respect to the other contestant
teams in the ISPD Contest 2012. Part of this work is already published in (REIMANN et
al., 2013).

The proposed methodology is composed of a set of heuristic algorithms to address
the cell selection problem for timing-constrained leakage power minimization while satis-
fying maximum load capacitance and maximum input slew constraints. The cell selection
flow combines the Fanout-of-4 (FO4) empirical rule, the Logical Effort (LE) concept, a
Simulated Annealing (SA) as the main optimization engine, as well as a new set of spe-
cific optimization strategies to solve the problem as formulated in the 2012 ISPD Gate
Sizing Contest. No initial solution is provided. Therefore, not only power optimization
but also timing closure must be achieved, what is a challenge by itself in designs with
thigh constraints.

The main contribution of this work is to show how a sequence of Simulated
Annealing runs, starting from a timing-infeasible solution improved by Logical Effort,
Fanout-of-4 rule, and employing a set of new techniques can be used together to solve
cell selection problems of up to a million gates.

A new dynamic cost function is used. It enables SA to deal with the conflicting
objectives during the optimization. The entire flow was able to achieve the second and
first ranks in the ISPD 2012 Contest. Here we present a set of different experiments to

support design decisions and highlight the quality of the achieved results.

67

5.1.1 Logical Effort

The logical effort (LE) method is based on a simple model of the delay through a
single logic gate (SUTHERLAND; SPROULL; HARRIS, 1999). Each different combi-
national function in the library has a different logical effort. The logical effort calculation
is based on an inverter, which has a logical effort of 1. For a logic gate, it tells how much
slower it will drive a load than would do a reference inverter, i.e., how much more input
capacitance a gate must present in order to deliver the same output current as an inverter
(SUTHERLAND; SPROULL; HARRIS, 1999). It is defined as the ratio of the input
capacitance of a gate to the input capacitance of an inverter delivering the same output
current.

&

LE = —oate 5.1
Cininv ()

For example, if the inverter has three units of input capacitance while the NAND

gate has four, the NAND gate has a logical effort of LE = 4/3.

5.1.2 Fanout-of-n Sizing

Fanout-of-4 (FO4) is a simple and efficient rule for delay-optimal gate sizing
(SUTHERLAND; SPROULL; HARRIS, 1999; RABAEY; CHANDRAKASAN; NIKOLIC,
2002). It is based on the idea that an inverter can drive a load approximately four times
larger than its input capacitance. This ratio closely relates to the best delay in an inverter

chain that drives a large capacitance. The fanout ratio is given by the following equation:

(5.2)

where, (44 1S the load capacitance (including wire load in our case) and Cj,, is the input
capacitance of the gate.
Considering the fanout of 4 rule, the input capacitance is given by:
o C(load

Cin = 1 (5.3)

In this work we show the impact of different values of "n" (fanout) on the SA

convergence and solution quality. The initial solution finds which cell options have fanout

68

ratio equal to or closer to "n". The cells are ordered according to their leakage power, so
the algorithm will choose the cell option with smallest leakage that satisfies the fanout
ratio rule. The cells are evaluated in reverse topological order, since the output loads are
fixed.

If a cell is in a path with negative slack, only the faster cell options, i.e. options
with smaller V; , are considered, resulting in gates with more leakage power. Therefore,
to calculate the fanout of each cell we combine the fanout ratio with LE as follows:

Cload

Fanout = m (54)

where LE,,;. 1s the logical effort of the gate as defined above.
This equation is used to produce the initial solution that is provided to the SA
algorithm. Such an initial solution is considered to have a relatively good timing quality

and few or none electrical violations. However it is not power-optimized.

5.1.3 Timing Engine

The most important aspect that need to be addressed to make SA scalable (and
feasible for the expected runtime) is the process of timing updates after changes in size
and V; of gates. Since SA only performs a single cell change per iteration, the timing
engine must do many updates during execution. In order to enable such a methodology,
the timing analyser must be highly efficient. To achieve that, logical depths are pre-
computed and contiguous data structures are used to enhance cache-obliviousness while
executing timing updates, as detailed below.

The timing model defined in the ISPD 2012 Contest (OZDAL et al., 2012) is used
for static timing analysis. This model propagates only the worst slews and worst arrival
times, using NLDM with delay and slew lookup tables and lumped wire capacitance.
Logical depths are useful as they define a proper order to process cells for static timing
analysis. A cell with logical depth n should be processed before all cells with logical
depth n 4 1.With this, the arrival times can be updated without the need for an extra loop
over the circuit.

Prior to the data structure construction, a pre-processing step is performed where
the logical depth of each cell is computed. Logical depths are propagated from path

drivers (a primary input or the output of a sequential element) to path sinks (primary

69

outputs and/or data inputs of sequential elements). Primary inputs and sequential elements
are defined as having a logical depth of zero. The logical depth of a combinational cell is
set to the maximum logical depth among its driving cells plus one.

The netlist is modeled as a directed graph where edges represent the timing arcs
and nodes represent circuit nets. The graph structure is stored in a way similar to the
Compressed Row Storage (CRS) format (SILVA, 2005) used to store sparse matrices.

The necessary data is stored in three vectors as depicted by Figure 5.1:

e Vector of Timing Arcs - stores slew and delay information of timing arcs com-
puted directly from the library lookup tables, as well as the pointer to the respective

lookup table;

e Vector of Nets - stores slew and delay information, arrival and required times,
capacitive load, as well as pointers to the vector of Timing Arcs and to the vector
of Sink Net Pointers. The net vector is sorted by increasing logical depth, with the

logical depth of a net being equal to the logical depth of its driving cell;

e Vector of Sink Net Pointers - stores pointers to the Vector of Nets. These pointers

are used to easily find sink nets being driven by a specific net.

Dummy nets and timing arcs are left at the beginning of vectors to avoid dealing
with special cases when calculating timing for zero-logical depth nets. A dummy net is
created for each primary input and another one represents the clock net. For each dummy
net, a respective dummy timing arc is added. They are used to model the pre-defined pri-
mary input delays and account for special timing characteristics of sequential elements.
This allows the timing engine to treat both cell types, sequential and combinational, uni-
formly.

Two modes for the static timing analysis are available in order to enable many
timer calls: full timing analysis and incremental timing analysis.

The full timing analysis is used to update timing for the whole circuit. It is required
during start up and whenever more than one cell is changed at once without the respective
incremental timing update. As the timing data structure keeps nets organized by logical
depth, the timing analysis can be performed by simply sweeping nets, without relying
on any extra data structure such as a queue. Nets are swept from logical depth zero to
the highest logical depth. This ensures that, when a cell is being updated, all required
information have already been calculated. Furthermore, cells with the same logical depth

may be computed in parallel.

70

Figure 5.1: Timer Data Structure

el T T LT TTTTTT]

"‘ v

Y.
v (LTI TTIITTTITT] 9%
Logical Depth' .\\\ driven arcs
v.\ N 4 T —> driven net
Sink Net .
Ploninte?s | | | | | | l l | | | Ddummles

Source: from author (2016)

Incremental timing analysis is used to keep timing updated when a single cell is
changed. Differently from full timing analysis, the incremental timing update relies on a
queue data structure to update only the paths which are affected by the change.

When a cell size is changed, all cells in the fanout cones of its drivers must be
updated. These fanout cones may have a large number of cells in common so that updating
cells in a simple breadth-first manner may perform a lot of unnecessary work. This issue
is simply solved by replacing the queue used in the breadth-first walking by a priority
queue where cells with lower logical depth are processed first.

As the timing changes propagate through the netlist away from the changed cell,
the timing variations may become less and less significant. Therefore, the proposed
methodology uses a threshold limit (¢) for the timing variation that stops further prop-
agation, saving runtime with no impact on the accuracy of final timing results. This
threshold to stop propagation leads to up to 17X savings in node updates and an average
3X overall faster timing calculation when executing the proposed flow. Figure 5.2 shows
the number of updated nodes for six benchmarks from the ISPD 2012 Contest using ¢ = 0

and ¢ = 1E-6.

5.1.4 Simulated Annealing with Dynamic Cost Function

It is well known that SA requires large runtime and typically does not scale well
to large problem sizes. To compensate for this downside of the SA, heuristics combined
with a reasonable temperature schedule are needed.

Some empirical tests showed that an appropriated schedule alone would not have a

71

Figure 5.2: Number of updated nodes for two different threshold values ¢.

Updated Nodes
160000000 W e-le6
Wc:==0
120000000
80000000
40000000
0
2l w? 89 o o0 ok
@ { o @ o
o \ot"é’g s P \Ep"'& e
&

Source: from author (2016)

reasonable runtime and would also not respect the hard runtime limit set in the ISPD 2012
Contest. In the proposed flow, each SA iteration randomly selects a cell instance over the
circuit and randomly chooses its new size. The new cost is then evaluated (incremental
timing update) and the new solution is accepted or rejected, as usual in SA-based methods.

The main conflict in cell selection using SA is that the algorithm needs to accept
violations to reduce leakage and keep the violations under control at the same time. How-
ever, a static cost function would penalize violations with a constant value during the
entire annealing process. This approach is extremely inefficient due to single cell changes
performed in SA. Changing only a single cell in each SA iteration may lead to violations
(to reduce leakage power) that can only be solved in subsequent iterations (for example
by reducing other cells, i.e., output load). A cost function that penalizes every violation in
the same way would reject several changes that could be fixed later, preventing the algo-
rithm from finding a good solution in terms of leakage, since it loses the “hill climbing”
capability.

In this work, a dynamic cost function is proposed to allow a certain amount of
violations during initial SA iterations, when temperature is still high, and reject violations
when the temperature is reduced. This change in the cost function emulates a relaxation-
like methodology.

The dynamic cost function used is defined in equation 5.5. The dynamic feature

of the function is given by « and 5, both dependent on the current temperature, as shown

72

in equations 5.6 and 5.7.

cost = a X (LimMingyio + slewyio) + B X loadye + leakageo (5.5)
a=temp ! (5.6)
B =temp 2 5.7

The original flow submitted to the ISPD 2012 Contest uses an initial solution with
Fanout-of-n, where n = 2, but only the larger cells (with lower V}) are considered to apply
the fanout rule in paths with negative slack. Then a sequence of four SA loops iterate over
the circuit to find the final power-optimized solution. The runtime limit for each SA loop
is empirically defined as 10%, 30%, 50% and 100% of total maximum runtime. As the
temperature decay actually gives iteration count, it must be directly related to the circuit
cell count (slower decay for bigger circuits).

The first SA loop starts with a low temperature in order to generate a solution free
from timing violations. The loop is not always executed since some circuits already have
no timing violations at this point. Timing critical cells (belonging to paths with negative
slack) have the priority when SA randomly chooses the cell to be changed in the design.

The next three loops perform like a typical SA algorithm. The goal of having
three loops is to avoid locally optimal solutions, since a good temperature schedule would
not be practical due to the runtime limit. With this approach, violations are allowed to
increase three times during the SA execution.

Figure 5.3 shows how total leakage power and total violation behave along SA
iterations (sampling). The three violations peaks are related to initial iterations of each SA
loop, when the higher temperature allows violations to increase while decreasing power
(leakage).

During all loops, a max-load violation control heuristic is used to keep this kind
of violation as low as possible. This heuristic performs a greedy search and increases the
size of a cell with load/slew violation on its output and/or reduces the sizes of its fanout
cells (i.e. cells connected to its output). Although this violation control may interfere

with timing violations, it avoids excessive searching during SA to solve max-load and

73

Figure 5.3: pci_bridge32 total leakage power and total violation along SA iterations.
1.00

0.90
0.80 -

0.70 -
—Leakage

0.60
=<Viol Sum

0.50 -

0.40
0.30 7

0.20

0.10 -

Ne—

1001 2001
Source: from author (2016)

0.00

[N

slew violations. Electrical violations are difficult to solve since the only way to do so is
by changing the cell with the violation and/or its fanout cells would solve the violation.
On the other hand, timing violations can be solved by changing any cell in the path that

has the negative slack.

5.2 Empirical Validation

The methodology described herein was submitted to the ISPD 2012 Contest and
was able to generate the best solution in 5 out of 14 benchmark circuits in the benchmark
suite. Despite having the most consistent results over all circuits, the flow did not find
violation-free solutions for two circuits: b19_fast and leon3mp_fast.

Table 5.1 shows the ratios from each tool to best leakage result reported in the
ISPD 2012 Contest. Considering only violation free solutions, the proposed flow presents
the best average ratio between its solutions and the best solution found. It also presents
the lowest maximum deviation (i.e. 52%) and at least half the average deviation of the
other tools submitted to the contest.

Additional experiments were performed to determine the most suitable value for
n and to evaluate different approaches in SA loops and also omitting the initial solution.
All experiments have the same original flow submitted to the ISPD 2012 Contest, with
only a few corrections in the code.

The fanout-of-n is an empirical rule, and can be affected by aspects such as tech-

nology parameters, or how large the actual capacitances are in a design. The flow submit-

74

Table 5.1: Leakage power ratio to best solution found for all ISPD’ 12 circuits.

Benchmark NTUgs Ours PowerValve Goldilocks eOPT CUsizer
DMA_slow 1.39 1.07 1.00 1.46 3.07 2.50
DMA _fast 1.64 1.04 1.00 2.20 2.75 1.57
pci_bridge32_slow 1.77 1.00 1.01 6.05 1.97 2.50
pei_bridge32_fast 3.05 1.00 1.35 5.64 243 2.02
des_perf_slow 1.00 1.31 1.03 1.41 3.38 1.68
des_perf_fast 1.03 1.52 1.00 4.23 2.53 1.05
vga_lcd_slow 1.10 1.00 1.03 1.22 1.70 1.99
vga_lcd_fast 1.31 1.00 1.33 - 1.32 1.48
b19_slow 1.02 1.00 1.20 1.23 1.40 8.18
b19_fast 2.61 - 4.32 1.71 1.82 -
leon3mp_slow 1.00 1.26 2.08 1.04 1.32 1.35
leon3mp_fast - - 245 1.00 1.20 1.03
netcard_slow 1.00 1.11 1.10 1.02 1.19 1.13
netcard_fast 1.00 1.14 1.48 1.02 1.41 1.22

Avg? 1.45 1.12 1.53 2.25 1.96 2.13

Avg? 1.36 1.13 1.21 241 2.11 2.29

#Ignoring results with violation.
b Ignoring Vga_lcd_fast, leon3mp_fast and b19_fast for all tools.

ted to the contest used fanout-of-2 (4SA/FO2-LE), as it was empirically determined at first
that it produced the best results in some test circuits. New experiments were performed
with n = 3 and n = 4 (hereafter called 4SA/FO3-LE and 4SA/FO4-LE, respectively) to
finally check which generates a better initial solution for SA optimization. Choosing a
lower value of n means that the cells will be bigger and faster (for the same V; level).
That helps the critical paths to have no timing violations but also increases total leakage
power. The better is the power-timing trade-off provided by the initial solution, the better
will SA perform.

The results for all these experiments are presented in Table 5.2 and Table 5.3.

The first column of Table 5.2 reports the proposed flow submitted to the ISPD 2012
Contest (4SA/FO2-LE). Column 4SA/FO3-LE shows some better solutions compared to
4SA/FO?2-LE but in average it shows inferior results. It also results in more solutions with
timing violations when compared to the other method.

The 4SA/FO4-LE method mostly generates lower leakage solutions than both
other methods. This shows that n = 4 has the most balanced trade-off between timing
and leakage power. However, this configuration also presents less violation-free solutions

when compared to 4SA/FO2-LE.

75

Table 5.2: Total violation and total leakage power results with different Fanout-of-n rules
and different flows using one or four SA loops and alternating the use of an initial solution.

4SA/FO2-LE 4SA/FO3-LE 4SA/FO4-LE ISA/FO2-LE

Benchmark Total Leakage Total Leakage Total Leakage Total Leakage

Viol. W) Viol. (%) Viol. (%) Viol. (%)
DMA_slow - 0.157 - 1.1 - -0.8 - 0.6
DMA _fast - 0.341 - 28.4 - -34 - —12.5
pci_bridge32_slow - 0.119 - —1.0 - —4.6 - —4.0
pei_bridge32_fast - 0.176 - 31.7 - -5.1 - —-24
des_perf_slow - 0.694 - —2.6 - -5.0 5.21E0 6.3
des_perf_fast - 3.40 - —20.2 - —25.6 1.04ES —50.4
vga_lcd_slow - 0.395 9.68E2 —1.3 4452 —-0.7 3.13E0 3.1
vga_lcd_fast 3.27E3 0.545 5.05SE3 —0.6 3.06E3 —-3.6 2.37E3 4.5
b19_slow 7.90E2 0.646 3.19E2 —0.7 3.04E3 5.7 3.77E3 —6.7
b19_fast 1.37E4 0.713 125E4 —-1.2 1.52E4 —4.5 1.40E4 0.1
leon3mp_slow 2.24E6 240 1.52E6 27.8 3.73E3 7.9 9.49E3 31.0
leon3mp_fast 8.21E3 2.58 1.42E5 27.6 6.39E6 37.0 2.68E4 94.5
netcard_slow 2.62E3 2.87 7.73E2 5.6 3.96E2 0.9 7.64E3 12.0
netcard_fast 5.84E3 351 7.a1E3 —1.2 1.04E5 0.3 8.24E3 4.1
#viol. / avg. 7 - 8 6.7 8 -0.9 10 9.7
Runtime Ratio 1.00 1.08 1.02 1.09

1SA/FO2-LE represents the flow with a single SA run. The /SA/FO2-LE flow
is not able to generate as many violation-free solutions as the original flow. This single
loop configuration has a slower temperature decay in order to have a similar number of SA
iterations and runtime. The difficulty to solve the violations created with high temperature
increases the runtime to generate the final solution.

The results in Table 5.3 show how simulated annealing struggles to find violation-
free solutions by itself when starting with an arbitrary solution. For such experiments, the
initial solution provided to SA is the smallest leakage option for all cells in the design. It
is clear that the flow with four fast SA runs — 4SA — is more effective than a single SA
loop — 1SA. However, both algorithms cannot converge to good solutions without timing
violations. 4SA generates only three violation-free solutions and /SA a single one.

4S8A and ISA are the two flows without the initial heuristic solution. 4SA keeps
the original flow but ignores the sizing based on fanout and logical effort. The last con-
figuration has only one SA loop and no initial sizing with fanout-of-n and logical effort
(1SA). Table 5.3 presents the results of the proposed configuration that employs no initial

solution and four separate SA runs, by comparing it to a single SA algorithm, also without

76

Table 5.3: Total violation and total leakage power results with different flows using one
or four SA loops without an initial solution.

4SA I1SA

Benchmark
Total Viol. Leakage (%) Total Viol. Leakage (%)

DMA_slow - 4.1 - 13.0
DMA _fast - 4.5 5.21E2 20.7
pci_bridge32_slow 5.14E3 37.3 1.59E3 46.7
pci_bridge32_fast 1.36E2 17.1 2.62E4 40.1
des_perf_slow - -1.5 7.70E2 27.5
des_perf_fast 7.63E4 2.9 3.36E5 -58.4
vga_lcd_slow 4.63E3 32 5.17E3 -3.6
vga_lcd_fast 9.38E3 -8.1 1.00E4 -12.9
b19_slow 1.44E4 -4.3 1.63E4 -2.6
b19_fast 1.42E4 8.6 2.06E4 59
leon3mp_slow 1.63E6 5.7 1.36E6 29.7
leon3mp_fast 1.61E6 38.2 2.29E7 103.9
netcard_slow 8.10E2 -18.8 6.24E3 -20.5
netcard_fast 3.17E7 534 1.15E7 151.7
#viol. / avg. 11 9.7 13 24.4
Runtime Ratio 1.05 1.10

the initial heuristic solution.

Results show that the flows without initial solution (4SA and /SA) completely
fail to generate a violation free solution for almost all circuits. It becomes clear that
the process of solving violations is very hard for the Simulated Annealing even with the
proposed heuristics. The single cell change approach would require a large amount of
iterations to find the right combination of cells without any heuristic solution.

All runtimes for the experiments described are reported in Table 5.4. These exper-

iments were performed on a machine with two AMD(R) Opteron(R) @ 2.3GHz CPUs'.

I'This machine is slower than the one used to run the tools in the ISPD 2012 Contest. Therefore, the
quality of results presented in Tables 5.2 and 5.3 are considerably inferior than those reported in the ISPD
2012 Contest.

Table 5.4: Runtime in minutes for the different flows under test.

77

Benchmark 4SA/FO2-LE 4SA/FO3-LE 4SA/FO4-LE 1SA/FO2-LE 4SA 1SA
DMA_slow 81 80 94 139 99 136
DMA _fast 73 352 192 159 183 360
pci_bridge32_slow 32 53 53 352 106 311
pci_bridge32_fast 69 351 72 352 100 237
des_perf_slow 293 514 324 479 540 541
des_perf_fast 529 529 529 529 543 540
vga_lcd_slow 600 600 600 600 600 600
vga_lcd_fast 600 600 600 600 600 600
b19_slow 720 720 720 720 720 720
b19_fast 720 720 720 720 720 720
leon3mp_slow 1440 1440 1440 1440 1440 1440
leon3mp_fast 1440 1440 1440 1440 1440 1440
netcard_slow 1980 1980 1980 1980 1980 1980
netcard_fast 1980 1980 1980 1980 1980 1980
Ratio 1.00 1.08 1.02 1.09 1.05 1.10

5.3 Lagrangian Relaxation-based Algorithm

The second methodology developed uses Lagrangian relaxation as the main en-

gine for timing-constrained power optimization. This approach is applied in two different

situations: the ISPD Contest Benchmark Suites; and inside an industrial design flow for

high-performance microprocessor blocks. Both applications share the same core method-

ologies but differ considerably in several aspects that are detailed in the next sections.

First, we describe the general formulation for the Lagrangian relaxation applied

to the cell selection problem. We follow the basic formulation found in (CHEN; CHU;

WONG, 1999) for the continuous gate sizing problem, as described in Section 4.1.6.

Table 5.5 shows the notation used in this section.

The timing-constrained power? optimization problem, here called the Primal Prob-

’Here we use power as an example of the optimization objective to present the general formulation. As
we show later in this work, other objectives like area can be in the optimization objective.

78

Table 5.5: Notation.

T clock period

TNS total negative slack

¢ — j timing arc from node ¢ to node j
Tlgs s delay of timing arc ¢ — j

a; arrival time at node ¢

Qi require time at node ¢

A Lagrangian multiplier

lem (PP), can be defined as follows:

Primal Problem (PP):
minimize Z power;
i (5.8)

subject to a; + d;_,; < a;, for each timing arc 7 — j
ay < T, for each path output node &

By applying the Lagrangian Relaxation technique we can bring the constraints
inside the minimization function by the use of Lagrange multipliers. Thus, we obtain the

Lagrangian Relaxation Subproblem L RS shown in Equation (5.9).

LRS:
minimize Z power; +
i (5.9)
Z Nisjla; + disj — aj) +
Z Me(ag —T)

Chen, Chu and Wong (1999) show that by applying the Karush—Kuhn—Tucker
(KKT) conditions to optimality, the problem in Equation (5.9) can be simplified, as shown
in Equation (5.10). This simplification makes the minimization objective dependent only
on the delays of timing arcs, reducing the number of calculations required from the timing

engine.

LRS (simplified):

, 5.10
minimize Z power; + X Z A _ndi_,j ()

Hereafter, the sum) | \;_,;d;_,; is referred as lambda-delay.

The relaxed version of the sizing problem can be viewed as the selection of gate

79

versions which minimizes the objective plus lambda-delay with no explicit information
about arrival and/or required times. Finally, LD P is simply the maximization of LRS

where) is also variable as shown in Equation (5.11).

LDP: maxiAmize (Z power; + X Z)\dei_,j) (5.11)

Following this formulation we propose new algorithms to handle the cell selection
problem in modern designs.

The new algorithms are developed to handle the set of benchmarks from the ISPD
2013 and 2012 Discrete Gate Sizing Contests. In both cases, no initial solution is provided
with the benchmarks. Also, this work later presents an extension of this formulation
to adapt the algorithms to optimize real-life industrial high-performance designs in an
industrial design flow.

In the next sections and following chapter we present the proposed flows that have
LR as the core optimization technique. The empirical results show the effectiveness of

the proposed frameworks.

5.3.1 Proposed Flow for the ISPD 2012 and 2013 Contest Benchmarks

The methodology here presented is partially published in (FLACH et al., 2013).
This work has received the best paper award in the 2013 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI 2013). The extension of the methodology to handle the
new set of benchmarks from the ISPD 2013 Contest is partially published in (FLACH et
al., 2014).

This is a fast and efficient approach to select the gates in a design producing state-
of-the-art results. The gate sizing tool was first built based on the infrastructure provided
in the ISPD 2012 Contest Benchmark Suite (OZDAL et al., 2012). It was later adapted to
handle the modifications introduced in the ISPD 2013 Contest.

As mentioned in Section 4.2.1, the contes benchmarks consist of a modern standard-
cell library, including 11 different combinational functions and 1 flip flop, and designs
ranging from 23k to 861k cells, For each combinational logic function, 30 different cell
types are available (composed by 3 threshold voltages and 10 sizes for each V). The
benchmarks contain a Verilog netlist, a SDC (Synopsys Design Constraints) file with the

timing constraints and interconnect parasitics in IEEE SPEF format. The objective is to

80

Table 5.6: Notation.

slew; slew at node ¢

AD,_,; delay change given a change in input slew of arc ¢ — j

n elay change given a change in slew of net n
AD delay change g hang 1 f net
gsdl;j delay sensitivity to input slew of arc i — j
ZZZZJ output slew sensitivity to input slew of arc i — j
[0) cumulative back-propagated arc delay sensitivity

reduce the leakage power while all performance and design constraints are satisfied.

The highlights of the methodology here presented are:

e A fast, effective, and simple methodology to solve the discrete gate sizing prob-

lem, that employs a selected set of techniques in a much improved way. The core
step models the gate selection problem using Lagrangian relaxation. The relaxed
problem is solved by a greedy one-gate-at-time algorithm applying only local mod-
ifications while relying on both precise local timing information and fast global
timing estimation.

A fast technique based on sensitivities to estimate the global delay impact of a gate

sizing without re-running a complete incremental timing analysis.

Best results for all ISPD 2012 benchmarks compared to previous state-of-the-art
works, with leakage power improvements of up to 27.73%. On average, the our
flow reduces leakage power by 9.53% compared with (HU et al., 2012) and by
12.45% compared with (LI et al., 2012). Moreover, the method is, on average, 19X
faster than (HU et al., 2012) and 1.18X faster than (LI et al., 2012).

Best results for all ISPD 2013 benchmarks compared with all contestants (including
our previous flow submitted to the contest). Our new flow provides on average
9.62% power reduction compared to the best contestant’s results, with up to 30%
power reduction in one circuit. It is also the first gate sizing method to report

violation-free solutions for all benchmarks of the ISPD 2013 Contest.

In this section, a circuit is described by its logical and memory elements called

gates and the connections between them called nets. Only combinational gates are con-

sidered for sizing. Gates are attached to nets at specific points of the net topology named

driver and sink nodes. A gate is composed by one or more timing arcs which describe the

timing characteristics of the gate. Table 5.6 summarizes the additional notation for this

section.

81

Figure 5.4: High-level view of our cell selection flow.

set all gates to
smallest leakage
version

power reduction

remove load and
slew violations

timing recovery

LDP solver

update As

Lagrangian Relaxation
Source: Flach (2015)

When connections are modeled using a simple lumped capacitance as in the ISPD
2012 Contest, timing information (arrival, required and slew) at sink nodes is equal to the
values at the driver node. In this case, driver and sinks share the same name borrowed
from the net which connects them.

To keep the notation simple, rise and fall edges are not represented separately
throughout this paper, but the proposed method is developed for considering them sepa-
rately for timing accuracy.

Figure 5.4 depicts a high-level view of the flow developed in this work. As de-
scribed in Section 4.2.1, the method developed for the ISPD Contest starts with a timing-
infeasible solution. By definition, the proposed methodology will ignore the input solu-
tion (since it is not by any means useful), setting all gates to the smallest option available
with the highest V;. Then, a solution without electrical violations is generated by apply-
ing the initial sizing algorithm from (LI et al., 2012). This solution is the input to the
Lagrangian relaxation method, which is constrained to keep the solution free of electrical
violations. Next, any timing violations left are eliminated by a Timing Recovery method.
Finally the leakage power is further reduced by a Power Reduction algorithm.

Every method developed in this work has a linear complexity vs. circuit size per
iteration. The number of iterations for each iterative method depends on several aspects
related to the quality of the solution provided as the input of each method. It is hard to
predict the final number of iterations and runtime, but for most cases only a few (tens to

hundred) are required.

82

5.3.2 Eliminating Load and Slew Violations

As mentioned before, load and slew violations have to be removed from the initial
minimum leakage solution, which is also needed in order to avoid extrapolations when
computing timing from the library lookup tables. Without such an approach, the LR
method would be misguided by unrealistic timing information. Since LR convergence
highly depends on timing information in each iteration, all kinds of electrical violations
must be avoided.

The removal is performed by means of the iterative method presented in (LI et al.,
2012) (see Figure 4.14a), with o = 0.7. The procedure visits all gates, one at a time,
from outputs (where output capacitances are fixed) to the inputs. For each gate, the gate
version with least leakage that respects both slew and load constraints is selected. In our
implementation, as the gates are visited, timing is updated only locally as explained in
detail in this section.

The oy, € (0, 1] parameter is used to control the ratio between driver strength and
the load capacitance. The smaller is the «, value, the larger should be the driver strength,

but also its input capacitance. In all results obtained in this work we use o;, = 0.7.

5.3.3 Cell Selection Problem Formulation

This section details timing-constrained leakage power minimization. However,
more objectives can also be optimized as explained in Chapter 6.

A concise way to represent timing constraints is by imposing constraints on the
arrival times. In this case, arrival times are seen as dependent variables by the optimization
problem, allowing a linear number of constraints with circuit size instead of path-based
constraints (CHEN; CHU; WONG, 1999).

There are several methods in the literature to solve the Lagrange Dual Problem
(LDP). Most share very similar steps when applied to the gate sizing problem. Algo-
rithm 1 presents an overview of the iterative method used to look for a competitive solu-
tion to the LDP. The idea of the LDP solver is straightforward. It sequentially combines
two algorithms: (1) greedy cell selection and (2) Lagrange multiplier update. The second
algorithm requires a previous timing analysis to obtain the updated timing information
after the changes made by the first algorithm.

Using the current solution, the Lagrange multipliers are updated to reflect how

83

Algorithm 1: LDP Solver

store initial solution

set an initial value for As

update timing (STA)

update \s // Alg. 2

repeat

solve LRS/\ I Alg. 4

update timing (STA)

update \s // Alg. 2

if new solution is better than stored one then
‘ store solution

end

until convergence;

restore best solution found

o 0 N T R W N

[
=]

—
W N =

much a constraint, now incorporated to the objective function, is being violated. This
generates a new instance of L RS/ which is then solved again by the greedy cell selection

method. A cost function is used to evaluate the best LR solution:

cost = total Leakage + TN S x (o + WNS)? (5.12)

Different from the simplified convex continuous sizing problem (CHEN; CHU;
WONG, 1999), the sub-gradient method does not guarantee the optimality of the LDP
maximization with an accurate, i.e. non-convex, library of discrete gate sizes. Consid-
ering that, other methods for the A update process are presented in the literature (TEN-
NAKOON; SECHEN, 2002; LI et al., 2012). Here we also present a new methodology for
Lagrangian multiplier update that leads to direct improvement in convergence and quality
of the final solution.

The initial multiplier value is set to a constant value for all timing arcs. This value
is scaled by the KKT propagation performed in the Lagrange multiplier update method.

The empirically chosen initial multiplier value used for the experiments is 12. A
solution is said to be better than another one if its TNS is less than 10% of 7" and it has
smaller leakage.

The updating of Lagrange Multipliers is accomplished in two steps: (1) slack
scaling and (2) KKT projection. Algorithm 2 presents the method used to update them.

Initially Lagrange Multipliers are scaled according to the slack of the respective
timing arcs. The idea is to increase proportionally the importance (A value) for timing

arcs with negative slack and to decrease the importance for those with positive slack. The

84

Algorithm 2: Updating Lagrange Multipliers

1 for each timing arc i — j do
2

a;—qi\+1/k
(1 2572)

Aissj £ Aissj X { Nk
(1+%7) a; < g

3 end
4 KKT projection

Algorithm 3: Update Lambdas KKT (CHEN; CHU; WONG, 1999)

1 for each net n of the circuit do

2 for each edge (rise and fall) do

3 if sum of driver timing arc lambdas > (0 then
4 for each driver timing arc do

5 ‘ Aare = sum_sink_lambdas * Agre/SUmNgrivers)
6 end

7 end

8 else

9 for each driver timing arc do
10 ‘ Aare = SUMNginks /num_sinks
11 end
12 end
13 end
14 end

higher is the A\ value the higher is the impact of the respective timing arc delay in the
objective function.

KKT projection is performed to ensure that multipliers obey the KKT conditions
for optimality. These conditions imply that the sum of multipliers driving a net must be
equal to the sum of multipliers being driven by that net (CHEN; CHU; WONG, 1999).

In our flow, the projection is performed by traversing the circuit in reverse topo-
logical order distributing proportionally the sum of multipliers being driven by a net to the
ones driving the net. The proportion is defined by the updated multiplier value of driving
timing arcs. Algorithm 3 shows the pseudo code for KKT projection.

In order to find a solution for each LRS/\ instance, differently from (OZDAL;
BURNS; HU, 2011), which uses dynamic programming for multi-gate-at-a-time changes,
the one-gate-at-a-time greedy method presented in Algorithm 4 is employed. It works by
scanning all gates in topological order, trying to properly select a new version to each of
them. The new selected version is the one which locally minimizes leakage power plus

the lambda-delay cost.

85

Algorithm 4: LRS/\ Solver

1 compute lambda-delay sensitivities // Eq. 5.19
2 for each gate g in topological order do

3 ‘ select a gate version for g // Alg. 5

4 end

Figure 5.5: Lambda-Delay Cost Computation

7 -~
0 . \ ~~s 9
.... "’—

1]..--*
.___.____’] 6 b

-==234—110

2
=) 13

11). .--°

Source: Flach (2015)

As the impact on lambda-delay requires an incremental STA to be performed,
it would be infeasible to use updated information every time a gate option is analyzed.
Therefore, the greedy method relies on local timing information and global estimation to
approximate the global impact on lambda-delay of affected gates.

In most cases, the timing impact of a gate resize is absorbed within a few logic
levels. Therefore the global impact on circuit timing can be estimated considering only
local information. However, to deal with the cases where a local change greatly affects
the overall timing — i.e. a change in a gate belonging to a path highly sensitive to slew
changes — a global sensitivity-based lambda-delay function is developed below.

The objective of the LRS problem is the minimization of the lambda-delay plus
leakage power. Since a gate resize may affect several other delays, how the total lambda-
delay is affected needs to be taken into account together with the leakage change. The
lambda-delay cost of a gate option indicates how the gate version impacts on lambda-
delay. This is not exact and is computed mostly relying on local information, but the
sensitivity-based global estimation helps the calculation of such impact.

The lambda-delay cost for the current version of a gate g (e.g. darker gate in

86

Figure 5.5), lambdaDelayCost(g), is shown in Equation 5.13.

lambdaDelayCost(g) =

Z Aisjdisj+

i—jedriver Ares(g)UgateArcs(g)UsinkAres(g)

' ADY, + Y AD)

i—jesideArces(g) nedrainNets(g)

(5.13)

where

e driverArcs(g) is the set of arcs driving the driver nets of gate g (e.g. arcs {0,1} —
6,{2,3} — 5and {5,4} — 8 in Figure 5.5);

e sinkArcs(g) is the set of arcs which are driven by gate g (e.g. arcs 10 — {12,13}
in Figure 5.5);

e sideArcs(g) is the set of arcs which are driven by gate ¢’s driver nets but which do

not belong to g itself (e.g. arcs 6 — 9 and 5 — 8 in Figure 5.5);

e gateArcs(g) is the set of arcs which belong to gate g (e.g. arcs {6,5,8} — 10 in
Figure 5.5);

e drainNets(g) is the set of nets driven by sink gates of g (e.g. nets 12 and 13 in
Figure 5.5).

The timing arc sensitivity measures how the delay/slew of an arc changes given
a change on its context (i.e. input slew, output load). It linearly approximates the de-
lay/slew from the lookup table at around the current context. Sensitivities are combined
and propagated back from path outputs to inputs. This enables the use a single operation
to approximate the effect of a local change in the timing of the whole fanout cone.

The cumulative sensitivity of an arc estimates how the total delay of the fanout
cone changes given a change on its input slew. For sensitivity computation, a lumped
capacitance interconnection model is assumed.

Next follows an example for a better understanding of this process. Consider the
simple inverter chain example in Figure 5.6.The Lagrange multipliers As are omitted to
facilitate the comprehension. They are easily accounted for just by multiplying each arc
delay sensitivity to input slew by its respective multiplier.

The delay change due to an input slew change of timing arc 2 — 3, is simply the

87

Figure 5.6: Example circuit for delay sensitivity computation.

Source: Flach (2015)

timing arc sensitivity itself times the input slew change, as in Equation 5.14.

5d
ADy .5 = Aslew,—222 (5.14)
dslewy

Similarly, for timing arc 1 — 2, the delay change is the input slew change times
timing arc delay sensitivity plus the delay change for timing arc 2 — 3 as in Equation

5.15.

5d
AD; .o = Aslew;—=2 + ADy .5 (5.15)

slewq

Combining (5.14) and (5.15), and noting that Equation 5.16 holds

dslewy (5.16)

Aslewsy ~ Aslew,
dslew,

we end up with the Equation 5.17 that depends on only one unknown, Aslew;.

(5.17)

d dsl d
AD1_>2 = Aslew1 (5 122 Stews 5 273)

O0slew; dslew; dslews

Finally, the delay change for timing arc 0 — 1 is shown in Equation (5.18).

AD0_>1 _ Aslewo |:(5d0H1 65[6’(1]1 (5611%2

oslewg dslewy \ dslew;

(55[6’(1)2 (5d2%3 >:|

dslew; dslews

(5.18)

Note that such propagation could continue on for as many levels as necessary till
reaching the path input. Note also that D,_,; provides the whole path delay change due
to a change in the slew at net 0.

In general terms, the back-propagate lambda-delay sensitivity of a timing arc ¢ —
j is defined by the recurrence Equation 5.19 for every timing arc i’ — 5’ driven by arc

1 — j. Note that, differently from the aforementioned example, the Lagrange multiplier

88
A associate to the timing arc is now being shown.

od;_; dslew; | >- dv—j dominant arc

e oslew; dslew; 0

¢z‘—>j = A

(5.19)
otherwise

In order to handle multiple fanout nets and to avoid counting multiple times the
delay change, only the arc with the worst slew rate — that is propagated to the output,
here called the dominant arc — propagates back the cumulative sensitivity. The remaining
arcs see the cumulative sensitivity as zero since they are likely dominated by the arc with
worst slew and hence, they should not affect the timing of gates ahead.

The delay change of timing arc © — 7 is then calculated as in Equation 5.20.

AD?

i—J

For a net, the delay change is equal to the sum of the delay changes of all timing

arcs driven by it, as shown in Equation 5.21.

AD) = Aslew, » _ ¢i; (5.21)

Algorithm 5 presents the method that selects a new gate version. In this method,
all options available in the library are tested.

To improve overall convergence and guide our flow to a good solution, there are
two conditions that a gate option should obey to be qualified to replace the current option:
(1) not increasing any load violation and (2) not impacting too much the local negative
slack as we explain below.

In order to replace the current option, the new one must not increase electrical
violations (line 6). For the library used in the contest, slew violations only exist at nodes
with load violations. Thus, preventing load violations also prevents slew violations at that
node. As our flow starts with a solution with no load violations, this implies that no load
violations will be ever generated.

Most load violations lead to slew violations which are harder to keep track of be-
cause they may be generated at many logic levels after the perturbation. They may also be
propagated throughout the circuit. Prohibiting the increase of load violations avoids the
method from wandering through solutions with lots of slew violations, which are difficult
to recover back and cause lookup table extrapolations. As mentioned before, extrapola-

tions may generate exaggerated delay/slew values that affect the overall convergence of

89

Algorithm 5: Gate Option Selection

1 originalSlack < computeLocal NegativeSlack(g)
2 bestCandidate < version(g)

3 bestCost < lambdaDelayCost(g) + leakage(g)

4 foreach gate optiont € options(g) do

5 option(g) <t

6 if load violation has increased then

7 ‘ go to the next version

8 end

9

10 update timing locally
1
12 slack < computeLocal NegativeSlack(g)
13 if slack < v * original Slack then

14 | go to the next version

15 end

16
17 cost <— lambdaDelayCost(g) + leakage(g)
18 if cost < bestCost then

19 bestCandidate <t
20 bestCost < cost

21 end

22 end

23 option(g) < bestCandidate
24 update timing locally

the flow.

Similarly to slew violations, timing violations generated due to a single pertur-
bation may spread out to all logic levels until reaching a timing endpoint. This is more
apparent when critical paths are passing through the vicinity of the current gate.

In order to keep TNS under control, a gate option must not increase the local
negative slack above a certain threshold (empirically defined). This control is performed
in line 13.

As keeping track of the actual slack would require running a complete incremental
STA, the solution proposed in our method looks only at the slack perturbation in the
vicinity of the current gate, so as to minimize runtime. This slack calculation uses the
required arrival time from the previous timing update. On the other hand, arrival times
used are up-to-date since they are calculated in local timing updates.

Local negative slack is defined simply as the sum of negative slacks (positive
slacks are not included) of the driver nets and the sink net of the current gate.

To allow some sort of "hill climbing" like in stochastic methods, the local negative

90

slack is allowed to increase a small amount controlled by the parameter as defined in
Equation 5.22. The idea is to allow larger changes at the first iterations when the timing
violations are likely to be high and to avoid them as the method converges to a low timing
violation solution. Not allowing any sort of local TNS degradation restricts too much the

search space, reducing the leakage power optimization.

v = (—(min(0, worstSlack))/T + 1) (5.22)

The local negative slack constraint indirectly controls the trade-off between leak-
age and lambda-delay in the objective function. It avoids choosing an option which re-
duces locally the objective function but is likely to cause a large impact on timing viola-

tion.

5.3.4 Interconnection Modeling

Another important aspect for designs with realistic wire models (i.e. not the
lumped wire load model in ISPD 2012 Contest) is how delay and slew propagation are
calculated. The interconnection modeling used in the internal timing analysis engine is
based on the Elmore delay (GUPTA et al., 1995). It is fast enough to be used several
times during the optimization process. However, it is still slower than the lookup table
gate timing propagation (~10X). The flow submitted to the ISPD 2013 Contest only relies
on the method described in (PURI; KUNG; DRUMM, 2002).

It starts by computing the effective capacitance for the driver node of the net using
the method presented in (QIAN; PULLELA; PILLAGE, 2006). The effective capacitance
is then used to obtain delay and slew information from the lookup table. Next, delay and
slew are propagated in topological order to the sink nodes of the net. Algorithm 6 presents
the interconnection timing calculation.

However, this modeling presents several inaccuracies when compared to commer-
cial timing analysis tools that employ reduced order models described in Section 2.2.

More details about the effect of this inaccuracy are presented ahead in the text.

91

Algorithm 6: RC Interconnection Model

1 compute effective capacitance for driver node
2 obtain delay and slew from lookup table for driver node using effective

capacitance
3 foreach node n (# driver) in topological order do
4 R < resistance connecting n to parent node
5 C' < downstream capacitance

6 delayy,, <+ delaypgrent + RC
7 | slew, + \/slewgwem +1.93 % (RC)?

s end

5.3.5 Improving the Lagrangian Relaxation Solution

It is expected that Lagrangian relaxation generates a solution that does not respect
all timing constraints in the discrete problem. This is mainly due to the lost of optimal-
ity in the discrete case and also the use of incomplete timing propagation during gate
resizing. Thus, after performing several iterations of Lagrangian relaxation, the solution
provided can still be improved using two other specific methods for both timing and power
optimization.

In this work we apply two straightforward greedy methods to do local optimiza-
tion. They are called Timing Recovery (TR) and Power Reduction (PR).

The first method fixes the timing violations left by LR. It is executed only if the
Total Negative Slack (TNS) is higher than a threshold e. The implementation submitted
to both contests uses € = le-6 ps, i.e., Timing Recovery is executed when the solution has
any path with negative slack.

Algorithm 7 shows the pseudo code for the Timing Recovery algorithm. The nets
n are sorted in decreasing order of the number of critical paths passing through them.
Here, all paths reaching the timing endpoints with negative slacks are considered critical.
The algorithm tries to decrease the delay of the gate driving n by changing the current
gate-version to the next larger gate size with the same V.

In this method, V; decrease is not applied since it would lead to a high leakage
power increase for this particular library. At the same time, iteratively increasing gate
sizes is efficient enough to solve small timing violations left by the LR while not increas-
ing leakage power too much.

A gate g is considered upsizable if changing the original gate version to the next

bigger size does not generate electrical violations. Moreover, the TNS with this change

92

Algorithm 7: Timing Recovery

1 g < most critical gate

2 previousT'NS < TNS

3 while g do

4 if g is upsizable then

5 upsize g

6 run incremental STA

7 if NS < previousT NS and no load/slew violations generated then
8 previousT'NS <~ TNS
9 re-sort gates

10 else

11 ‘ undo

12 end

13 end

14 g <+ next critical gate

15 end

must be smaller than the TNS of the previous solution.

The second method searches for local gate changes that optimize power without
creating timing violations. The greedy Power Reduction algorithm is presented in Algo-
rithm 8. For each gate g it tries to increase the V; and/or to downsize the gate g.

V; can be increased if the gate with higher V; does not generate any electrical
violation and the TNS is smaller than or equal to the previous TNS. The same is valid for

downsizing a gate.

5.4 Empirical Validation

We evaluate our academic discrete gate sizing approach using the ISPD 2012 and
2013 Discrete Gate Sizing Contest infrastructures and benchmark suites.

The main difference between ISPD 2012 and 2013 contests is the interconnec-
tion modeling. Therefore, the overall Lagrangian relaxation-based flow applied to both
infrastructures is the same.

The proposed approach is fully implemented in C++ without any third-party li-
braries.

All the results presented in this section are validated using Synopsys PrimeTime®

to check the design constraints.

93

Algorithm 8: Power Reduction

1 repeat
2 changedCounter < 0
3 for each gate g of the circuit in topological order do
4 if V; of g is increasable then
5 increase V; of g
6 update timing (STA)
7 if TNS > 0 and no electrical violations generated then
8 ‘ changedCounter + +
9 else
10 ‘ undo
11 end
12 end
13 end
14 for each gate g of the circuit in topological order do
15 if g is downsizable then
16 downsize g
17 update timing (STA)
18 if TNS > 0 and no load/slew violations generated then
19 ‘ changedCounter + +
20 else
21 \ undo
22 end
23 end
24 end

25 until changedCounter = 0;

5.4.1 ISPD 2012 Contest

In this section we evaluate our flow using the infrastructure and benchmarks from
the ISPD 2012 Discrete Gate Sizing Contest. The number of combinational gates in those
circuits ranges from 23K to 861K combinational gates.

For the 2012 contest, the interconnections are modeled as simple lumped capaci-
tances. Therefore, the RC interconnection model presented in Section 5.3.4 is not used.

Since the proposed lambda-delay sensitivities technique is compatible with the
lumped capacitance model, it is applied in the experimental results presented in this sec-
tion.

The final leakage power results in Watts (/) for each benchmark-constraint com-
bination are presented in Table 5.7.

Our results for these benchmarks are compared with recent publications from Hu

et al. (2012) and Li et al. (2012), that are also based on the ISPD 2012 Contest Bench-

94

Table 5.7: Leakage power (W) for ISPD 2012 benchmarks and number of combinational
cells for all circuits.

Leakage Power (17) Power Difference
Benchmark Comb. HUetal. Lletal. Ours Comparedto Compared to
Cells 2012 2012 HU et al. LI et al.

DMA_slow 23K 0.145 0.153 0.132 -8.73% -13.50%
DMA _fast 0.299 0.281 0.238 -20.29% -15.19%
pci_bridge32_slow 30K 0.111 0.111 0.096 -13.31% -13.31%
pci_bridge32_fast 0.183 0.167 0.136 -25.51% -18.37%
des_perf_slow 102K 0.614 0.671 0.570 -7.14% -15.03%
des_perf_fast 1.842 1.930 1.395 -24.27% -27.73%
vga_lcd_slow 148K 0.351 0.375 0.328 -6.61% -12.59%
vga_lcd_fast 0.471 0460 0413 -12.22% -10.12%
b19_slow 213K 0.583 0.604 0.564 -3.28% -6.64%
b19_fast 0.771 0.784 0.717 -7.06% -8.61%
leon3mp_slow SA0K 1.341 1.400 1.334 -0.53% -4.72%
leon3mp_fast 1.487 1.640 1.443 -2.99% -12.04%
netcard_slow 61K 1.770 1.780 1.763 -0.41% -0.97%
netcard_fast 1.861 2.180 1.841 -1.07% -15.55%
Avg. 0.845 0.895 0.784 -9.53% -12.45%

mark Suite. The methodology proposed in this work is able to find the best solution
among all algorithms, i.e., the solution with smallest leakage power and no constraints
violations.Leakage power reduction of up to 27.73% is obtained with the proposed flow.
Compared to Hu et al. (2012), our solution reduces leakage power in 9.53% on average
and 12.45% on average when compared to (LI et al., 2012).

Considering the smaller circuits (DMA, pci_bridge32, des_perf and vga_lcd), our
approach reduces leakage power by 14.76%, on average, compared to (HU et al., 2012)
and 15.73% compared to (LI et al., 2012). As Hu et al. (2012) stated, the timing con-
straints for larger circuits (except for netcard) are tighter than for the smaller ones, and
thus it is more difficult to reduce leakage power keeping a violation-free circuit in the
former case.

Table 5.8 shows the runtimes to obtain the results in Table 5.7. Our solution is
19X faster than Hu et al. (2012) and 1.18X faster than Li et al. (2012) considering the
total runtime for all benchmarks. Li et al. (2012) run the experiments on a Linux work-

station with six 2666 MHz two-socket cores and 72 GB memory, using multi-threading.

95

Table 5.8: Runtime (minutes) for ISPD 2012 benchmarks and number of combinational
cells for all circuits. Runtimes are taken from the corresponding papers.

Runtime (min) Speedup (X)
Benchmark Comb. HUetal. LIetal. Ours Comparedto Compared to
Cells 2012 2012 HU et al. LIetal.

DMA_slow 23K 9.90 0.60 0.79 12.53 0.76
DMA _fast 13.90 0.60 092 15.11 0.65
pci_bridge32_slow 30K 10.20 1.20 0.87 11.72 1.38
pci_bridge32_fast 13.00 1.20 092 14.13 1.30
des_perf_slow 102K 70.10 6.00 25.31 2.77 0.24
des_perf_fast 82.70 6.60 16.37 5.05 0.40
vga_lcd_slow 148K 87.50 7.80 5.67 15.43 1.38
vga_lcd_fast 45.60 10.20 8.37 5.45 1.22
b19_slow 213K 213.90 10.20 9.15 23.38 1.11
b19_fast 206.50 12.00 11.75 17.57 1.02
leon3mp_slow SA0K 1274.00 43.80 38.98 32.68 1.12
leon3mp_fast 1323.20 54.60 46.62 28.38 1.17
netcard_slow 861K 299.90 48.00 34.39 8.72 1.40
netcard_fast 1096.90 88.80 47.41 23.14 1.87
Sum (h) 79.12 486 4.13 19.18 1.18

Compared to our work, Li et al. (2012) use a slower machine, but uses a multi-threaded
implementation. Hu et al. (2012) performed the experiments on a 3.2GHz Intel Xeon
E31230 Linux workstation with 8GB of memory. The ISPD 2012 and 2013 Contests
results were obtained on a Linux system with 2.93GHz CPU and 48GB memory.

As we can observe, the methods described in this work presents the best results for
power and runtime compared with the state-of-the-art works. Considering the efficiency
of this flow, a set of changes were made in this approach to support the ISPD 2013 Discrete
Gate Sizing Contest infrastructure. The changes and results for the benchmarks of the

ISPD 2013 Contest are presented next.

5.4.2 ISPD 2013 Contest

In this subsection we evaluate our flow using the infrastructure and benchmarks
from ISPD 2013 Discrete Gate Sizing Contest. The number of combinational gates in
those circuits ranges from 510 to 884K gates as shown in Table 5.9.

In the 2013 contest, interconnections are modeled as RC trees for which the timing

96

Table 5.9: Leakage power (W), runtime (min) and clock period (ps) on ISPD 2013 bench-
marks comparing the contest results and our new results using accurate timing information
in Timing Recovery and Power Reduction algorithms. Power results are truncated.

of Clock Leakage Power (1) Power Runtime (min)

Benchmark Comb. Period Best Ours Ours Saved®” Best Ours

Gates (ps) ISPD’13 New Best? ISPD’13 New
usb_phy_slow 510 450 0.00107 0.00107 0.00106 0.05% 0.6 0.5
usb_phy_fast 300 0.00160 0.00155 0.00153 3.36% 0.6 0.4
pci_bridge32_slow 28K 1000 0.05789 0.05696 0.05694 1.61% 14.3 10.5
pci_bridge32_fast 750 0.09651 0.08543 0.08503 11.47% 87.0 22.6
fft_slow 31K 1800 0.09034 0.08660 0.08654 4.14% 36.6 25.7
fft_fast 1400 0.22620 0.19430 0.19390 14.10% 52.2 40.4
cordic_slow 1K 3000 0.32379 0.27051 0.26566 16.45% 94.7 69.0
cordic_fast 2626 1.43057 1.00099 0.98017 30.03% 948 117.1
des_perf_slow 104K 1300 0.35300 0.33042 0.32728 6.40% 96.1 132.3
des_perf_fast 1140 0.79399 0.64882 0.64449 18.18% 2809 3479
edit_dist_slow 21K 3600 0.44740 0.42549 0.41603 4.90% 116.2 123.9
edit_dist_fast 3000 0.59632 0.53978 0.53547 9.48% 185.5 353.0
matrix_mult_slow 153K 2800 0.46973 0.44427 0.44291 5.42% 2434 226.1
matrix_mult_fast 2200 2.13007 1.61093 1.54156 24.37% 416.5 396.0
netcard_slow 884K 2400 5.24566 5.15523 5.15483 1.72% 5494 483.6
netcard_fast 2000 5.31783 5.20015 5.18158 2.21% 613.3 400.9
Avg. (all) 1860 9.62% 180.1 1719
Avg. (only fast) 1677 14.15% 2164 209.8

2 Qur solution without the runtime limit set in the ISPD 2013 Contest.
5 Our solution with the runtime limit (“Ours New") compared to ISPD 2013 Contest.

is computed using the algorithm presented in Section 5.3.4. As the lambda-delay sensitiv-
ities technique is not compatible with the RC model, it is not applied in the experimental
results presented in this subsection. Moreover, the flow includes a timing validation step
which performs timing recovery using accurate timing and effective wire capacitance val-
ues from Synopsys PrimeTime® to ensure a violation-free solution.

The tool described is this section achieved the first place in the ISPD 2013 Contest.
The results presented at ISPD 2013 Contest were further improved, reducing the leakage
power and producing solutions with no violations for all benchmarks.

The new results compared with the best results obtained at the ISPD 2013 Contest
including ours are presented in Table 5.9. The timing results are also validated using
Synopsys PrimeTime®. For the three circuits without power and runtime values at ISPD

2013 Contest (cordic_fast, des_perf_fast, matriz_mult_fast) we are considering

97

Figure 5.7: Leakage power, TNS and solution cost along iterations for cordic_fast.
—Power -+ TNS - Cost

12 <, 1.00E+00 &

[l".' O

S 10 1.00E-01

e, c

& 08 1.00E-02 O
©

p

2 0.6 . 1.00E-03 Z

T 04 1.00E-04 Q

£ N

S R

S 02 1.00E-05 S

0.0 1.00E-06 &

O P R AP PP <

Iteration
Source: from author (2016).

our solution that was submitted to ISPD 2013 Contest.

The new results provide on average 9.62% power reduction compared to the best
Contest results with up to 30% power reduction. The runtime is on average 1.28X faster
than the best Contest results. Considering only the fast circuits, leakage power is reduced
by 14.15% and the runtime is 1.41X faster than the best Contest results.

Table 5.9 shows the results of using accurate timing analysis in the Timing Recov-
ery and Power Reduction algorithms. It can be observed how the accurate timing helps
achieving improved results. This also indicates that relying on our simplified internal
STA might be preventing the Lagrangian Relaxation optimization algorithm from achiev-
ing even better results earlier. Table 5.9 also reports the best results achieved with this
flow without considering the runtime limit.

The leakage power and TNS behavior along iterations is presented in Figure 5.7
with the cost metric that chooses the best solution (line 9 in Algorithm 1) to be stored. The
trend break observed in iteration 57 is due to the change of k£ (Algorithm 2). Setting k to
a value close or smaller than one helps the convergence of TNS to a near zero value. With
a k greater than one lambdas will decrease faster than increase, helping leakage power to
reduce faster, as observed in the chart. Considering this, k is set to one in the beginning of
LR and set to 4 when TNS is considered small (iteration 57 in this case) and is kept with
this value until the final iterations. At this point k is set again to a value equal or smaller
than one in order to reduce the remaining timing violations at the end of LR.

In Figure 5.8 the runtime breakdown of each algorithm for all benchmarks is pre-
sented. One can notice that the Timing Recovery algorithm only requires a significant

runtime for some of the fast benchmarks. This behavior is expected since circuits with

98

Figure 5.8: Runtime breakdown for (a) slow and (b) fast corners.

ELR X TR MPR ™ Legalization HLR X TR EPR M Legalization
100% 100%
90% 90%
80% 80% \
70% 70% \ \ NN
60% 60% — \ \ -
50% 50% \
40% 40%
30% 30%
20% 20%
10% 10%
0% 0%
S O L s & S ; SN
ISR A S O ¢ & TS
K2 S &) & Q/b {8{\\ @ K2 ‘Q‘\ C & 06 S RZ
o7 o7
Q
(a) (b)

Source: from author (2016).

slow constraints do not require hard timing legalization after the Lagrangian Relaxation
optimization.

The Power Reduction (PR) algorithm shows almost the same runtime proportion
for both constraints in the same circuits, varying for the different benchmarks.

A close look at the PR runtime shows which circuits need more local optimization
after LR but it can also show how the incremental timing analysis used in PR is slower
than the local timing update performed in LR. To better understand when each case oc-
curs, Table 5.10 shows the total leakage power after each step of the proposed flow.

Comparing Figure 5.8 and Table 5.10 it is clear that the PR step for the netcard
and edit_dist benchmarks does not improve leakage power significantly despite requiring
a significant runtime. So, it is possible to conclude that this large runtime is due to slow
incremental STA caused by the characteristics of those circuits and their number of gates.
On the other hand, for the cordic and matrixz_mult benchmarks the significant runtime
reflects directly into power savings. That represents the case when the PR step needs more
iterations to exhaust all possible local optimizations left by the LR.

The runtime breakdown for the LR algorithm alone shows that 97% of total run-
time is spent performing STA, being 87% calculating wire timing, 3% calculating gate
timing and only less than 2% performing Lagrangian Relaxation. This runtime break-
down shows that LR is fast to execute and the runtime is dominated by timing analysis
even with LR relying only in local timing updates.

Finally, Figure 5.9 shows the gate usage for the cordic benchmark. The difference
between the gate usage for the two clock constraints shows how the sizing tool chooses

faster gates to get timing closure with a tighter clock period. Not only bigger gates but

99

Table 5.10: Total leakage power after each step.

Leakage Power - After:

Benchmark LR TR PR
w w diff. w diff.

usb_phy_slow 0.0010735 0.0010735 - 0.0010735 -
usb_phy_fast 0.0015450 0.0015830 +2.46 % 0.0015770 -0.38%
pci_bridge32_slow 0.0571730 0.0571730 +0.26 % 0.0571580 -0.29%
pci_bridge32_fast 0.0880710 0.0895070 +1.63% 0.0879155 -1.78%
fft_slow 0.0872705 0.0873675 +0.11% 0.0871495 -0.25%
fft_fast 0.2039270 0.2047320 +0.39% 0.2014390 -1.61%
cordic_slow 0.3091530 0.3091530 - 0.2810640 -9.09 %
cordic_fast 1.6646800 1.6693800 +0.28 % 1.1387300 -31.79 %
des_perf_slow 0.3389120 0.3389120 - 0.3387110 -0.06 %
des_perf_fast 0.7499550 0.7764230 +3.53% 0.7625440 -1.79%
edit_dist_slow 0.4293730 0.4297370 +0.08 % 0.4293020 -0.10%
edit_dist_fast 0.5726620 0.5729100 +0.04 % 0.5670630 -1.02%
matrix_mult_slow 0.4630130 0.4630130 - 0.4611650 -0.40 %
matrix_mult_fast 2.0324600 2.0392700 +0.34 % 1.6879700 -17.23%
netcard_slow 5.1169900 5.1170700 +0.00 % 5.1146100 -0.05%
netcard_fast 5.1483100 5.1679200 +0.38% 5.1540800 -0.27 %

also faster V;;,s are chosen to provide the best trade-off between timing and total leakage
power. Also, the number of gates of each size/V};, shows how much effort is needed to
get timing closure and how much leakage power the sizing tool must sacrifice to meet the

desired clock constraint.

100

Figure 5.9: Gate usage by sizes and Vy, for the cordic benchmark. (a) and (b) for

cordic_slow, (c) and (d) for cordic_fast.
X1 mX2 " X3 mX4
HX6 71X8 MX10 & X20

0.01%0.5% 3% 6%

m Slow M Typical I Fast

10%
4%
52%
!3%
(a) (b)
BX1 BX2 " X3 mX4
X6 X8 WX10 & X20 m Slow m Typical ™ Fast
0.04%2% 7% 15%
g? 10%

45%

75%

(d)

Source: from author (2016).

101

6 INDUSTRIAL DESIGN FLOW APPLICATION

In this chapter we detail the algorithms and the proposed modifications necessary
to enable the cell selection flow to work in an industrial design flow, specifically in the
post global route stage. In such a flow, different objectives must be optimized while other
quality metrics are treated as constraints to the problem.

Different from the aforementioned contests, the initial solution provided to this
flow (i.e. the solution after place and route) is considered to have a good quality. There-
fore, that solution can be used as a reference to the cell selection optimization and also to
provide a guidance to the Lagrangian relaxation-based algorithm.

The first benefit of having a good initial solution is the electrical violations. They
have already been resolved to the fullest extent practical. Since the input designs may not
be closed, it is expected that electrical violations exist and are not solvable at this stage.
To take that into account, the cell selection algorithm used in the Lagrangian relaxation
iterations should see those violations as the maximum violation allowed for those specific
nets. A decrease in the number of violations is acceptable but it is not a direct objective
of the algorithm.

The second insight taken from the initial solution is the current timing information.
In a pure power/area optimization stage of an industrial flow, the input timing quality must
be considered as a hard constraint in the Lagrangian relaxation algorithm, i.e. timing
results may not be degraded.

Another positive effect of the initial solution in our cell selection framework is a
consequence of the greedy sizing method used in LR. Since the greedy algorithm relies
on the cell options currently assigned to the gates, the first LR iteration will benefit from
the fact that those gates already represent good choices of sizing and V;. This also helps
the algorithm to keep equal or less electrical violations than the initial solution, avoiding
disruptions in the solution quality.

As mentioned before, one of the major challenges of gate sizing algorithms is the
use of complex timing models needed in modern technologies and designs. The complex-
ity of those models, and the existence of different clock domains, clock gating, accurate
wire models for interconnect delay and slew propagation, make the sign-off timing en-
gines too excessive in runtime to be used throughout the proposed optimization flow. The
use of simpler timing models and/or timing estimation techniques is required to enable

the use of the proposed flow in the chosen target environment.

102

Figure 6.1: The proposed cell selection flow.

Set slack targets v
Placement
Set load and slew Legalization

violation targets

Enhanced Timing
Recovery

Greedy Sizing

Update A’s
Enhanced Power

Reduction

Enhanced Timing
Recovery

Restore Initial
Solution
Lagrangian Relaxation _—

Source: from author (2016).

r———— - - —— — —

The placement of gates is also important in a late optimization stage of an indus-
trial design flow. A big change in placement will directly affect routing and, as a conse-
quence, timing. Testing every placement change, even in a greedy way (i.e. the change
caused only by the cell option being tested in the greedy cell sizing algorithm), would be
prohibitive in runtime. Thus, the cell selection algorithm needs to take into account the
area of the gates, also preventing overlapping and excessive (or any) overall area increase.
However, limiting the maximum footprint of a cell to be the current cell area or less will
degrade the final solution and also prevent further optimization.

The proposed flow incorporates the area into the objective minimization function.
By doing so, the optimization objective will balance area and power accordingly. This will
require scaling factors to set the correct proportion between the power, area and timing
units. Also placement legalization must be performed to ensure an overlap-free design
after cell selection optimization.

The new proposed flow is shown in Figure 6.1 and the details of each step are
discussed in the next sections.

The two initial steps set the timing and electrical violation targets for each pin
in the design. The sizing algorithm will consider the existing electrical violation as the
violation limit for each pin, not allowing increase in electrical violations. The third step

implements the iterative LR-based cell selection algorithm described in Section 6.1. Sec-

103

tions 6.1.1 to 6.1.3 discuss the initial Lagrange multiplier estimation method, the new
multiplier update and the ranking algorithm, respectively. After that, a placement legal-
ization is performed to fix any placement overlaps created.

In the Solution Refinement step, Enhanced Timing Recovery will work to improve
solutions with slack degradation. Next, Enhanced Power Reduction will further reduce
leakage power and area by a greedy method. The last step is a second run of Enhanced
Timing Recovery. Both refinement methods are based on the algorithms already presented
in Section 5.3 with proposed changes as discussed below.

Another placement related feature introduced in our flow is the legalization test
during the post-LR solution refinement. This legalization test ensures that the new solu-
tion will have the desired effect after the final placement legalization.

In the late optimization problem, designs may have timing violations that cannot
be solved by applying only cell selection algorithms. As a consequence of that, the typical
LR formulation would lead to an increase in power/area in an attempt to fix all timing
violations. This is not the desired effect of such an optimization process in an industrial
IC design flow.

The main goal is to keep the same quality of results for timing and electrical vi-
olations (or improve them) and improve power and/or area of the design. To accomplish

that, a change in the typical LR formulation (presented in Section 5.3) is required.

6.1 The New Lagrangian Relaxation Formulation

The cell selection optimization problem here, the Primal Problem (PP), can be

formulated as:

PP:
minimize [X power + 0 X area
(6.1)
subjectto a; +d,_,; < a; ,Vtiming arci — j
a, <T , V timing endpoint o
where 3 and 6 are the scaling factors for each optimization objective in order to scale the

different units. Both scaling factors are calculated based on the input standard cell library

104

as follows. They reflect the average power/area change between cell options in the library.

N, N,
0 —

= Blen) — Bile)” | Aler) — Aleo)

(6.2)

where ¢, and ¢, are the largest (lowest V;) and smallest (higher V;) cell in the library.
The 6 calculation involves only a single V; level. Applying the scaling factors makes the
optimization free of power and area units. Such units may change between standard cell
libraries and technologies.

The library-based parameters may also be replaced by design-dependent param-
eters like average power and average area for all cells in the design. We have found by
experimentation that both methods lead to similar results.

Applying the Lagrangian relaxation method we obtain the LR Sub-problem (L RS)
in (6.3).

LRS:
minimize [X power + 0 X area +
Z)\Hj(ai + di—>j — CLj) +

Z)\o(ao - T)

Further simplification can be achieved by applying Karush-Kuhn-Tucker (KKT)
conditions to optimality (A € €2,) (CHEN; CHU; WONG, 1999). Then, (6.3) is simplified

(6.3)

resulting in the form in (6.4).

LRS (A € Q)):
(6.4)
minimize [X power + 0 X area + a X Z Niesjdissj

Here, the « scaling factor is introduced to normalize the timing unit. It is defined
as follows:
Ne

“ = Dlen) — Dico) >

where delays D(c,) and D(cy) are calculated based on the standard cell library with the
same reference output load.

We apply a method similar to (FLACH et al., 2014) to solve the LRS. Algorithm 9
shows the pseudo-code for the LRS solver. The sum) \,_,;d;_,; is referred as lambda-
delay in the algorithms. lambda-delay(c) is the lambda-delay for all timing arcs connected

to the input and output pins of the gate c. optioN,. represents the library option currently

105

Algorithm 9: SolveLRS

1 foreach gate c € Design do

2 best_option < optioN,
best_cost < « x lambda-delay(c)
3 + B8 x (Pi(c) + Pa(c))
+ 6 x A(c)

4 foreach gate option g € F(c) do

5 optioN, < ¢

6 if electrical violations bigger than initial then
7 | go to the next option

8 end

9 local timing update

10 if new_slack < 7 * original_slack then
11 ‘ go to the next option

12 end

cost < « X lambda-delay(c)
» + 5% (Pie) + Pa(0))
+6 x A(c)

14 if cost < best_cost then

15 best_option < g

16 best_cost < cost

17 end

18 end

19 optioN, < best_option
20 local timing update
21 end

assigned to ¢. P;(c) and P,(c) represent the leakage and the dynamic power for cell ¢,
respectively.

Then, the new problem is to find the optimal set of lambdas that solve the PP.
Thus, LD P is simply the maximization of LRS where A is the variable, as presented in
Chapter 5.

Algorithm 10 shows the new proposed method to solve the LD P problem. The
first loop (lines 3-9) performs initial lambda estimation (details in Section 6.1.1). Second
loop (lines 10-18) is the main LR flow that is limited by a maximum number of iterations
or by convergence metrics.

The overall solution quality is measured by a score function. The score function

penalizes timing degradation exponentially, as follows:

score = — (APower + AArea + 2787V — 1) (6.6)

where ATV represents the percentage of change in timing violation. All As are calculated
with respect to input solution. Positive scores represent improved solutions while negative

scores show solution degradation.

106

Algorithm 10: SolveLDP

store initial solution
set initial multipliers
repeat
SolveLRS
update timing
UpdateLagrangeMultipliers
restore initial solution
update timing
ntil iteration limit;
repeat
SolveLRS
update timing
UpdateLagrangeMultipliers
if new_score > best_score then
store solution
best_score < new_score
end
until converged or iteration limit;
restore best solution found

o 0 N A N R W N =

L <
NN R W N =D
[=]

e
e e

6.1.1 Initializing the Lagrange Multipliers

A well known issue in Lagrangian relaxation-based methods is how to define the
initial values for the Lagrange multipliers. The initial set of multipliers plays a significant
role in convergence and final quality of results, as shown in (TENNAKOON; SECHEN,
2005). However, finding a set of multipliers for a given input set of gate sizes and thresh-
old voltages with the respective delays is a problem with a similar difficulty to the cell
selection problem. Moreover, considering the KKT conditions, it may be impossible to
find such a set of multipliers.

We propose a simple and straightforward method to overcome the lack of a good
set of initial multipliers. The method consists of a few LR iterations where we solve
the L RS problem, update the multipliers and restore the initial solution. The new set of
multipliers represents a L RS solution with delays closer to the delays present in the input
solution. This estimation method provides a set of initial multipliers to the main LR flow
simulating an incremental approach and avoiding quality disruption.

In order to avoid excessive runtime due to sign-off timer calls, only the ranking
method (Section 6.1.3) is used to solve the LRS, i.e., F'(c) has only one option that is

always chosen in Solve LRS, with no need to update timing.

107

Algorithm 11: UpdateLagrangeMultipliers

1 Pinc = Pinit X (]- + Zt)
2 Pdec = Pinit X (]-5 + Zt)
3 foreach timing arc i — j do
4
1 _ Scurr—Sinit Fine Q. > . S .
)\ AWNSXPMLC] = q,] it
7 < >\Z X IS S kdec
(1 + —CuTT;pd:c"”> aj < qj — Sinit
5 end

=)

KKT projection (A € €2y)

6.1.2 Lagrange Multiplier Update

In the late optimization problem in industrial flows, designs may have timing vi-
olations that are expected to not be solved by any means. As a consequence, a normal
LR formulation would lead to an increase in power/area in an attempt to fix all timing
violations, which is not the desired effect of such optimization process. The main goal
must be to keep the same timing quality of results (or improve it) and to improve power
and area of the design. To accomplish that, a change in the LR formulation is required.

Reference (REIMANN; SZE; REIS, 2015) presents a new lambda update method
that enables LR-based algorithms to handle designs with negative slacks. New lambda
values are calculated to target the initial timing arc slack S;,;;. In this work we apply
a similar but more aggressive method for the Lagrange multiplier update. Algorithm 11
shows the new update approach.

In order to achieve fast convergence and better timing quality of results, the timing
reference for the multiplier increase (7) is replaced by the worst slack degradation in the
current solution with respect to the initial state — called AW N .S. Also, two step factors
(p) are included to smooth convergence. These factors are similar to step sizes in the
subgradient method. Without step factors, the solution quality has large variations along
iterations (due to the discreteness of the problem) that lead to a slower convergence and
degradation in quality of results.

Exponents k;,. and kg are defined as k4. = —k and k;,. = /k. The variable
k will determine the convergence priority: the constraints or the optimization objective.
For k& < 1, multipliers will increase faster, resulting in faster delay reduction in the next
SolveLRS run. On the other hand, £ > 1 results in faster multiplier decrease, allowing

more power/area savings while increasing delay in non-violating paths. The ranges for

108

Algorithm 12: OptionRanking
1 foreach gate option g € G(c) do

2 estimate local delays for g
cost <— « X lambda-delay(c) + 3 x P/(c) + 6 x A(c)
! +¢x C(e)
4 insert g in cost-ordered vector F'(c)
5 end

k are empirically defined according to the quality of previous LR iteration, as shown in
(6.7). Different choices for k£ do not significantly affect the final quality of results, but
allow faster convergence, reducing the number of iterations required.

(
5 if \ initialization

02<k<1 ifTNS degraded
k= (6.7)

1.5 <k <4 ifnew_score > score

\ 1 otherwise

Seurr 18 the current worst slack obtained from the sign-off timer. Such a method
makes the presence of multiple clock domains transparent to the LR engine, as derived by

Ozdal, Burns and Hu (2012).

6.1.3 Filtering Gates Options

The use of a high accuracy timer to evaluate all cell options is not feasible in terms
of runtime. A less accurate timing model can be used instead. However, the less accurate
timer may not only evaluate (rank) the options differently but also make any electrical
violation control ineffective.

Considering these limitations, we propose the use of a less accurate timing model
to rank all gate options using the same cost function of the Solve LRS' algorithm. The
less accurate timer ignores the delay and slew rate changes in the interconnect parasitics.
It also ignores effective capacitance calculations. Timing arc delays and output slews are
calculated using the lookup tables in the standard cell library. After that, the sign-off
timer only evaluates the top ¢ ranked gate options, skipping several high accuracy timing
updates to reduce runtime.

The ranking method is presented in Algorithm 12. Since there is no timing update

109

when ranking the options, there is no accurate dynamic power calculation available, as
updated input slews would be needed. Dynamic power is estimated by using the input
pin capacitance of the new gate option. The input pin capacitance must also be properly
scaled to become unitless. The input pin capacitance scaling factor (is calculated as

follows.
N,

= Clen) - Cla)

(6.8)

Similar to the other scale factors, (can also be calculated using design statistics

like average input pin capacitance.

6.2 Solution Refinement

The fast and highly constrained convergence adopted during LR iterations gener-
ates solutions that still show space for local optimizations.

In some cases, timing must be improved to better resemble the timing quality of
the initial state. The algorithm used for that end is described next. Also, power can be

locally optimized by a greedy algorithm as detailed hereafter.

6.2.1 Enhanced Timing Recovery

The Timing Recovery algorithm is here adapted to handle placement legalization
for each gate size/V};, change. Also, a new ordering for the search is set. Instead of order-
ing the gates as in the original work, we order the gates by their worst slack, processing
the most critical gates first.

For each new gate option under test, the algorithm checks if the gate needs to be
moved from its current location to fit the new size option. In the cases where the gate
has its footprint increased and there is no free space to fit it, a new placement location
with available space is found. Thereby, the timer takes into account the routing parasitics
changes to update timing.

The second run takes advantage of capacitance and area reduction obtained in the
Enhanced Power Reduction step. Only paths violating the initial worst slack are searched

in both runs.

110

6.2.2 Enhanced Power Reduction

The Power Reduction algorithm can further improve the solution after LR, reduc-
ing power and area of cells. Since it only performs downsizing and V};, increase, place-
ment legalization is usually not required. Nevertheless, the algorithm is also placement-
aware and can find new cell placement locations if necessary.

The algorithm is here adapted to prioritize downsizing in non-critical gates in the
fanout of critical paths, reducing the output load of critical gates and allowing more im-
provements in the next run of Enhanced Timing Recovery.

We also improve the algorithm to prevent True Total Negative Slack (T"T'NS)
degradation. The original implementation would take advantage of worst slack propaga-
tion, powering down gates in paths dominated by a side negative slack. Since TT'N.S
calculation includes the slacks of side paths, degradations occur when any slack gets
more negative. Our enhanced algorithm checks for slack degradation in the output pin of

all changed gates and rejects solutions with slack degradation.

6.3 Empirical Validation

We evaluate the proposed method in the post-global routing optimization stage
of an industrial design flow with fourteen high-performance industrial microprocessor
blocks with SGHz clock frequency (174ps clock period) using a 22nm standard cell li-
brary with 2 or 3 threshold voltage levels available, according to the specific design.

First we present the results that do not consider TTNS in the Enhanced Power
Reduction stage. Those results present more leakage power reduction but, as expected,
degrade TTNS. Such an approach may be useful when designers will not apply others
techniques to fix timing and want to find the best power-TNS trade-off.

6.3.1 Preliminary results

As mentioned in the previous section, the slack targets are set based on the con-

verged timing slacks' and the new Lagrange update method multiplier presented in the

ELIT3

Here, converged timing slacks refer to the end of “optimization”, “clock insertion and optimization” or
“routing optimization” stages.

111

Table 6.1: Characteristics for 14 high performance microprocessor designs.

Sizeable Worst TNS Power (mW)

Design Gates Slack (ps) Leakage Dynamic Total

ibm2014uP_01 88521 —72.57 —138492 79.08 13.54 92.62
ibm2014uP_02 7346 —142.43 —3004 1.07 1.28 2.35
ibm2014uP_03 7940 8.76 —18 2.73 51.37 54.10
ibm2014uP_04 5848 —8.38 —552 1.59 1.35 2.94
ibm2014uP_05 10448 —87.06 —42914 18.92 45.21 64.13
ibm2014uP_06 60768 —142.67 —37685 37.40 112.03 149.43
ibm2014uP_07 63724 —41.50 —52367 60.51 12.60 73.11
ibm2014uP_08 14372 —72.89 —38053 16.29 68.06 84.35
ibm2014uP_09 15270 —-30.74 —13234 14.41 33.03 47.44
ibm2014uP_10 117011 —42.43 —65276 85.01 304.35 389.36
ibm2014uP_11 20929 —-164.94 —188713 35.97 21.65 57.62
ibm2014uP_12 14529 —421.29 —363751 4.26 20.47 24.73
ibm2014uP_13 16481 —46.36 —27261 19.90 61.22 81.12
ibm2014uP_14 5595 —61.86 —6525 8.18 9.68 17.86

previous section is used in our implementation. We successfully applied the LR-based
power optimization algorithm on the designs shown in Table 6.1.

First, we would like to understand how timing quality changes in the first several
LR iterations of the algorithm. Figure 6.2 shows the LR convergence for two different
designs. T'NS degrades drastically for first several iterations, because the multipliers
(As) are not properly set to resemble timing quality of the input solution (we initialize all
multipliers with the same constant value). At the same time, these iterations are the price
to pay in order to find out which timing arcs are more timing-critical and which are not.
After that, further iterations can mitigate timing degradation producing a solution with
similar (ibm2014uP_14) or better (ibm2014uP_08) timing quality. The designs shown
in Figure 6.2 converge pretty quickly (at around the 15" iteration) and the cost of “\-
tuning” is one third of the total CPU time, which is significant considering the LR-based
cell selection algorithm usually takes hours of runtime for our medium-sized designs. It
is good to remember that some oscillation in timing quality is expected during the LR
optimization process, but excessive timing degradation is not desired in a method that is
supposed to be incremental.

As stated before, using a formulation that assumes that all timing constraints can
be respected in the design is not suitable for designs with known negative slack paths.
Moreover, balancing those negative slacks may also degrade the timing quality of results.
This situation is similar to the ISPD contest formulation, where all designs are consid-

ered to have no timing violations, and non-critical paths can have their timing relaxed as

112

Table 6.2: Results assuming timing closure can be achieved. Only LR step in the flow is

executed.
Design Worst Slack (ps) TNS (ps) Leakage Power (mW) Dynamic Power (mW) CPU (s)
pre-LR post-LR pre-LR post-LR diff pre-LR post-LR diff pre-LR post-LR diff
ibm2014uP_01 -75.2 -75.1 -138639 -138234 405 80.38 87.88 9.3% 13.46 13.47 0.1% 27486
ibm2014uP_02 -135.1 -135.1 -2973 -3479 -506 1.07 1.18 10.1% 1.30 1.27 —2.1% 4191
ibm2014uP_03 8.9 4.6 -16 -22 -6 2.73 3.16 15.6% 51.24 50.01 —2.4% 2345
ibm2014uP_04 -8.4 -1.7 -552 -529 23 1.59 1.59 0.2% 1.37 1.36 —0.3% 749
ibm2014uP_05 -82.1 -85.1 -43211 -45913 -2702 19.14 19.61 2.4% 45.04 45.12 0.2% 1714
ibm2014uP_06 -133.4 -148.6 -30643 -45586 -14943 38.14 38.31 0.4% 112.01 112.00 0.0% 13312
ibm2014uP_07 -38.4 -39.9 -52648 -56713 -4065 60.97 62.76 2.9% 12.60 12.60 0.0% 23021
ibm2014uP_08 -78.0 -78.0 -37504 -35653 1851 16.56 17.50 5.7% 68.68 69.16 0.7% 3900
ibm2014uP_09 -33.8 -73.3 -14110 -16018 -1908 14.77 15.79 6.9% 33.29 33.56 0.8% 4831
ibm2014uP_10 -34.6 -62.5 -70314 -65161 5153 86.11 90.23 4.8% 303.92 303.71 —-0.1% 51932
ibm2014uP_11 -162.8 -162.9 -189618 -186607 3011 36.10 40.14 11.2% 21.59 21.62 0.1% 4938
ibm2014uP_12 -421.4 -421.1 -354649 -337070 17579 4.28 5.36 25.2% 20.37 20.34 —0.2% 4530
ibm2014uP_13 -49.4 -52.2 -26363 -25379 984 20.27 20.98 3.5% 60.93 60.88 —-0.1% 3865
ibm2014uP_14 -61.9 -65.1 -6526 -6463 63 8.18 8.19 0.1% 9.68 9.68 0.0% 1027

Figure 6.2: TNS change along LR iterations.

5000 -

2 .

-5000 -
-10000 -
-15000 -

ATNS

-20000 -+
-25000 -
-30000 -

-35000 -
0 5 10 15 20 25 30
LR iteration

~e-ibm2014uP_08 ibm2014uP_14
Source: from author (2016).

long as they still respect the defined clock arrival time. Table 6.2 shows the Lagrangian
relaxation result for 10 designs when all timing endpoints are set to target zero slack.
Both of the aforementioned cases of failure are present in the results. For example, de-
sign ibm2014uP_12 shows a small timing improvement while leakage power degrades by
25%. On the other hand, design ibm2014uP_06 shows considerable timing degradation
while leakage power only improves by 0.4%. None of those two cases are acceptable in
an industrial design flow.

A common approach is to set the slack target for all paths as the worst slack in the
design, as mentioned before.The experiment shows the importance of setting a different

timing target for each timing endpoint and not a constant target for all paths. This ap-

113

Table 6.3: Results considering the worst slack as the target for all timing paths. Only LR
step in the flow is executed.

Design Worst Slack (ps) TNS (ps) Leakage Power (mW) Dynamic Power (mW) CPU (s)
pre-LR post-LR pre-LR post-LR pre-LR post-LR pre-LR post-LR
ibm2014uP_01 -73.1 -95.5 -139703 -369537 80.49 -44.4% 13.45 -0.3% 26867
ibm2014uP_02 -1424 -142.7 -3004 -16768 1.07 -26.1% 1.29 -9.2% 3842
ibm2014uP_03 8.9 6.1 -16 -80 2.73 27.6% 51.24 -1.4% 2723
ibm2014uP_04 -8.4 -10.0 -552 -1122 1.59 0.0% 1.37 -0.3% 1970
ibm2014uP_05 -83.5 -90.9 -43124 -80768 19.13 -17.7% 45.09 -3.0% 1691
ibm2014uP_06 -142.7 -151.6 -27901 -385203 37.84 -14.1% 112.01 -0.1% 12532
ibm2014uP_07 -38.7 -48.4 -52238 -175215 61.04 -45.7% 12.60 0.0% 21889
ibm2014uP_08 -72.9 -75.8 -38008 -74927 16.56 -43.5% 68.75 -8.0% 4160
ibm2014uP_09 -33.8 -39.1 -14110 -40741 14.77 -30.1% 33.29 -2.2% 4520
ibm2014uP_10 -353 -442 -69144 -281091 85.81 -46.7% 303.93 -9.9% 45642
ibm2014uP_11 -158.7 -177.4 -191743 -256042 36.17 -46.7% 21.59 -0.2% 5089
ibm2014uP_12 -421.1 -421.1 -359714 -564317 4.26 -21.6% 20.35 -3.1% 4758
ibm2014uP_13 -51.2 -56.3 -26553 -56966 20.29 -41.5% 60.93 -2.8% 3838
ibm2014uP_14 -61.9 -61.7 -6526 -13759 8.18 -1.9% 9.68 0.0% 1080

proach is similar to considering the negative slacks as impossible to solve (i.e. the best
possible timing has already been achieved — or timing has converged) and to promote a
clock period relaxation in order to circumvent those timing violations in critical paths. As
mentioned before, this relaxation will produce a considerable timing degradation (when
considering the actual clock period) in non-critical paths, achieving more power improve-
ments.

Table 6.3 shows the results for 10 designs using this approach. As expect, timing
quality degrades significantly even when W NS is kept almost the same. Such results
can be seen as a lower-bound reference of the worst degradation caused by a method that
ignores the input state and only balances power and timing.

In the middle of the design flow when the designers are still improving the floor
plan and pin assignment, increasing the clock period makes cell selection at the end of
physical synthesis trivial, and a global method (like LR) will not improve much the solu-
tion provided by the greedy algorithm. We tested this possibility by changing the slack
target in the physical synthesis flow to simulate a clock period relaxation. We set the
global slack target to be the worst slack, 3/4, 1/2 and 1/4 of the worst slack of a previous
physical synthesis run.

Figure 6.3 shows the leakage power improvement at the end of LR iterations with

the five different slack targets for the physical synthesis run. The more the clock is relaxed

114

Figure 6.3: Leakage power improvement at the end of LR in five different scenarios for
physical synthesis slack target (target clock period).
15.0%

10.0%

& 5.0%

o

2 00% — ‘

=} —\ ——ibm2014uP_12
E -5.0% =—ibm2014uP_11
% ibm2014uP_09
3 10.0% ——ibm2014uP_08
80 15 0% ibm2014uP_07
= ibm2014uP_05
g

_ 0,
20.0% ——ibm2014uP_01

-25.0%

-30.0%
WNS 3/4 WNS 1/2 WNS 1/4 WNS Normal

Slack target

Source: from author (2016).

(the left most case) the smaller is the leakage power improvement (leakage power may
even increase). The right most results (“Normal”) are the typical run, where the slack
target is a positive slack value. Results show that a tighter clock period makes the standard
greedy algorithm present in the industrial flow less effective, allowing more leakage power
improvement in our global cell selection method.

The complete results of applying LR-based power-driven cell selection algorithm
with individual slack targets at the end of our physical synthesis flow is shown in Ta-
ble 6.4. “pre-GS” and “post-GS” are measurements just before and after the cell selection
algorithm. It is promising to see that our method can achieve 11.7% of average leakage
power saving on top of our existing physical synthesis flow, which is power-aware and
has components to minimize low-V; usage. The table also shows that the power reduction
algorithm does not degrade worst slack and TN S.

However, as mentioned in before, focusing only on worst slack and T'N S gives the
user of a real industrial design flow a wrong perception. And we would like to also eval-
uate the change of timing quality of results during the run of the Lagrangian Relaxation-
based method. As shown in the columns marked “7"7’N.S” in Table 6.4, the degradation
on timing quality of results is significant which gives a totally different conclusion com-
paring to “worst slack” and “T'"N.S”. Even though the cell selection method maintains
worst slack and the T'N.S of the designs, the TT'N S is worsened significantly for some

designs. This behavior is not desired in this real industrial design flow, since the timing

115

Table 6.4: Results with proposed modifications included for a set of 14 high performance
microprocessor designs.

Design Worst Slack (ps) TNS (ps) Leakage Power (mW) TTNS (ps) CPU (5)
pre-GS post-GS pre-GS post-GS pre-GS post-GS diff pre-GS post-GS diff
ibm2014uP_01 -72.6 -72.6 -138492 -133799 79.08 58.75 -25.7% -882785 -956814 -74029 37068
ibm2014uP_02 -142.4 -141.3 -3004 -2480 1.07 0.99 -1.3% -24295 -30079 -5784 3064
ibm2014uP_03 8.8 7.0 -18 -14 2.73 2.70 -1.0% -39 -67 =27 3875
ibm2014uP_04 -8.4 <74 -552 -513 1.59 1.58 -0.4% -560 -519 41 1021
ibm2014uP_05 -87.1 -86.9 -42914 -42213 18.92 17.53 -1.4% -77630 -80474 -2845 2548
ibm2014uP_06 -142.7 -142.7 -37685 -34145 37.40 34.64 -7.4% -64667 -66497 -1830 19120
ibm2014uP_07 -41.5 -41.8 -52367 -50054 60.51 50.57 -16.4% -390841 -415402 -24561 26886
ibm2014uP_08 -72.9 -72.9 -38053 -33914 16.29 13.68 -16.1% -201562 -200360 1202 5314
ibm2014uP_09 -30.7 -30.7 -13234 -12408 14.41 11.55 -199% -65844 -77650 -11806 6083
ibm2014uP_10 -42.4 -42.0 -65276 -62411 85.01 72.85 -143% -292779 -306952 -14173 44659
ibm2014uP_11 -164.9 -164.9 -188713 -182711 35.97 2898 -19.4% -1020419 -1023425 -3006 6848
ibm2014uP_12 -421.3 -421.2 -363751 -352693 4.26 374 -12.1% -795556 -830203 -34648 5663
ibm2014uP_13 -46.4 -46.4 -27261 -24594 19.90 16.69 -16.1% -137055 -143574 -6519 5656
ibm2014uP_14 -61.9 -60.9 -6525 -6430 8.18 8.12 -0.7% -11213 -11134 78 1033
Total: -977845 -938379 Total: -3965245 -4143151 -177906

violations are expected to be fixed by other methods in different stages of the flow and less
critical (but yet violating) paths should not be degraded, what would increase the effort to
solve violations and undo the power improvements found. Also, other sizing algorithms
applied in the flow are not allowed to degrade 7"I'N S, so comparison would not be fair if
our methods degrade TT'N S.

The runs are performed on a server with 64bit-Linux with 24 Intel X5690 CPUs
running at 3.47Ghz, and 142GB of memory. However, our current implementation of
the LR-based algorithm only uses a single-thread. Also, despite the fact that the timing
engine has multi-thread capabilities, they have insignificant impact on runtime due to the
one-cell change for each timing update call. As shown in the table, the runtime can take

up to 12.4 hours for the biggest design ibm2014uP_10.

6.3.2 Final results

We evaluate the proposed method in the post global routing optimization stage
of an industrial design flow with a set of 14 high-performance mid-size industrial mi-
croprocessor blocks with SGHz working frequency with a 22nm standard cell library.
Considering that the input solution to our algorithm is already optimized (i.e. the best
solution found by the industrial flow), all designs are challenging in terms of timing, area

and power.

As proposed in (REIMANN; SZE; REIS, 2015), we also include TT'N S mea-

116

Table 6.5: Experimental results for 14 high performance microprocessor blocks.

Worst Slack (ps) TNS (ps) TTNS (ps) Power Area

Design before after before after diff before after diff Leakage Dynamic

ibm22uP_01 -39.40 -39.33 -54401 -52860 1541 -392551 -414251 -21700 -16.8% 0.0% -1.9%
ibm22uP_02 -78.34 S77.72 -144167 -132476 11691 -910468 -920704 -10236 -20.0% -0.4% -2.6%
ibm22uP_03 8.87 8.95 -14 -6 8 -30 -11 20 5.2% -2.9% -0.3%
ibm22uP_04 -82.13 -82.02 -43263 -42510 753 -76068 -76794 -726 -6.1% -0.5% -0.2%
ibm22uP_05 -32.74 -32.27 -14491 -13243 1248 -71828 -88072 -16244 -21.8% 0.1% -2.7%
ibm22uP_06 -49.79 -49.75 -26647 -25587 1060 -133504 -137696 -4192 -15.5% -0.5% -2.0%
ibm22uP_07 -165.27 -165.23 -195168 -189647 5521 -1054130 -1075880 -21750 -18.0% 0.0% -0.5%
ibm22uP_08 -34.20 -34.20 -70737 -68875 1862 -322544 -360042 -37498 -20.7% -3.3% -3.5%
ibm22uP_09 -72.89 -72.89 -37290 -34505 2785 -195777 -214362 -18585 -19.8% -1.0% -2.7%
ibm22uP_10 -61.86 -61.16 -6526 -6383 143 -11213 -11069 144 -0.5% 0.0% -0.1%
ibm22uP_11 -421.88 -421.88 -359981 -348969 11012 -777205 -777115 90 -11.3% -2.3% -7.5%
ibm22uP_12 -135.13 -134.29 -2973 -2587 386 -22778 -26917 -4139 -8.3% -4.0% -6.3%
ibm22uP_13 -8.38 -7.40 -552 -515 37 -560 -521 39 -0.4% -0.5% -0.1%
ibm22uP_14 -142.57 -142.57 -36833 -35539 1294 -62323 -67034 -4712 -4.0% 0.0% -0.2%
Average 2810 -9963 -11.3% -1.1% -2.2%
Total 39341 -139489 -16.3% -1.8% 2.1%

surements to show all timing changes in the design including subpaths, not only the worst
timing paths that reach the timing endpoints. Table 6.5 briefly shows the results without
applying the new enhancements to prevent 7'T'N .S degradation in the Enhanced Power
Reduction algorithm. Number of gates and runtimes shown in Table 6.7a. It is clear
that ignoring degradation of slacks in side paths results in an unacceptable timing quality
degradation. Such results show that the method is unsuitable for industrial design flows.
Nevertheless, Table 6.6 (refer to Table 6.7b for runtimes) shows results when fully
applying the Enhanced Power Reduction method. This implementation will keep (or
improve) the timing quality obtained in the Lagrangian relaxation stage, for all metrics.
Initial design information varies from Table 6.5 due to the adopted test method-
ology, where all results are generated running the whole physical synthesis flow. Thus,
timing, power, area, number of gates are slightly different comparing both tables.
Although power improvements are smaller, the method is able to deliver consider-
able solution quality enhancements. It is important to remember that such improvements
are over designs already power-optimized by other methods at several stages of the indus-
trial design flow. We achieve 7.2% average (10.8% total and up to 18.2%) leakage power
reduction with similar or better timing quality for all designs tested. Area used is also
improved by 1.7% in average, which is remarkable in post-routing optimization stage.
Experimental data shows 10X average runtime speedup due to ranking method
with less than 2% difference in leakage power improvement. Results are obtained using

t = 2, i.e. only the top two ranked options are evaluated using the sign-off timer. These

117

Table 6.6: Experiments without 7' N S degradation in PR step.
Worst Slack (ps) TNS (ps) TTNS (ps) Power Area

Design before after before after diff before after diff Leakage Dynamic

ibm22uP_01 -37.92 -37.92 -52108 -50126 1982 -376012 -357385 18627 -9.4% 0.0% -0.6%
ibm22uP_02 -75.76 -75.13 -141471 -137744 3727 -906301 -897859 8442 -18.2% -0.4% -2.3%
ibm22uP_03 8.87 8.92 -14 -6 8 -30 -10 20 6.2% -3.3% -0.4%
ibm22uP_04 -82.13 -82.12 -43263 -42763 500 -76068 -75175 893 -3.6% -0.2% 0.2%
ibm22uP_05 -33.84 -33.07 -14110 -13724 386 -72869 -71636 1232 -15.7% 0.6% -1.8%
ibm22uP_06 -53.03 -53.16 -27185 -24680 2505 -134543 -128356 6187 -9.3% -0.5% -1.9%
ibm22uP_07 -165.32 -16532 -191527 -188435 3092 -1034800 -1022700 12100 -10.2% 0.0% 1.3%
ibm22uP_08 -35.12 -36.35 -67145 -64510 2635 -305053 -290806 14247 -11.6% -2.4% -2.5%
ibm22uP_09 -80.36 -80.36 -39823 -36858 2965 -211734 -201734 10000 -11.4% -0.7% -2.3%
ibm22uP_10 -58.95 -59.05 -6419 -6425 -6 -10950 -10986 -36 -0.5% 0.0% -0.1%
ibm22uP_11 -421.65 -421.53 -359783 -350035 9748 -787596 -764491 23105 -7.8% 2.1% -6.8%
ibm22uP_12 -141.00 -140.28 -3030 -2752 278 -23004 -21656 1348 -6.5% -3.9% -6.0%
ibm22uP_13 -8.38 -7.40 -552 -516 36 -560 -519 41 -0.3% -0.5% -0.1%
ibm22uP_14 -133.37 -133.37 -31798 -30242 1556 -52800 -49614 3186 -2.7% 0.0% 0.0%
Average 2101 7099 -7.2% -1.0% -1.7%
Total 29412 99392 -10.8% -1.4% -1.5%

Table 6.7: Number of gates and runtimes for Table 6.5 and Table 6.6.
(a) Results in Table 6.5.

Design #Gates CPU (s)
ibm22uP_01 70331 17685
ibm22uP_02 95057 24115
ibm22uP_03 8827 2540
ibm22uP_04 15777 1911
ibm22uP_05 17510 4734
ibm22uP_06 20167 3873
ibm22uP_07 24425 9454
ibm22uP_08 124670 32620
ibm22uP_09 17942 5219
ibm22uP_10 12941 785
ibm22uP_11 17480 3758
ibm22uP_12 9260 3400
ibm22uP_13 7293 808
ibm22uP_14 75148 17740

(b) Results in Table 6.6.
Design #Gates CPU (s)
ibm22uP_01 70333 18626
ibm22uP_02 95310 22609
ibm22uP_03 8827 3152
ibm22uP_04 15777 1931
ibm22uP_05 17561 4519
ibm22uP_06 20150 3299
ibm22uP_07 24506 6222
ibm22uP_08 124922 47285
ibm22uP_09 17793 6608
ibm22uP_10 12912 697
ibm22uP_11 17405 4128
ibm22uP_12 9334 2383
ibm22uP_13 7293 826
ibm22uP_14 74976 15579

results show the effectiveness of the proposed ranking method that enables the use of a

sign-off timer for the cell selection algorithm.

The initial lambda tuning method is also analyzed. Table 6.8 shows power results

without the initial lambda tuning iterations. Column "LR Cvg" shows when LR could

converge to a better solution ("Y") or did not provide a solution better than the initial state

("N"). Comparing to Table 6.5, we see a major quality degradation mainly due to lack of

convergence of the LR method. LR is not able to converge for half of the designs, where

118

Table 6.8: Experiments without lambda tuning iterations.

Leakage Power (mW) Dynamic Power (mW) LR

Design) .
before after diff before after diff Cvg

ibm22uP_01 61.16 58.54 -4.3% 12.60 12.60 0.0% Y
ibm22uP_02 80.64 6699 -16.9% 13.47 1341 -04% N
ibm22uP_03 2.76 2.73 -0.8% 51.35 50.83 -1.0% N
ibm22uP_04 19.14 18.37 -4.0% 45.26 4522 -0.1% N
ibm22uP_05 14.81 1291 -12.8% 33.06 33.23 0.5% Y
ibm22uP_06 2030 16.66 -17.9% 61.20 60.86 -0.6% Y
ibm22uP_07 3531 2938 -16.8% 21.54 21.55 0.0% Y
ibm22uP_08 88.39 7897 -10.7% 30536 30494 -0.1% N
ibm22uP_09 16.53 13.77 -16.7% 68.29 68.21 -0.1% N
ibm22uP_10 8.18 8.18 -0.1% 9.68 9.68 0.0% Y
ibm22uP_11 4.25 3.89 -8.5% 20.46 1999 -2.3% Y
ibm22uP_12 1.07 1.04 2.2% 1.28 123 -43% Y
ibm22uP_13 1.59 1.59 -0.1% 1.35 .34 -0.2% N
ibm22uP_14 37.84 37.18 -1.7% 112.03 111.98 0.0% N
Avg. -8.1% -0.6%

Total -10.7% -0.2%

all power improvement is given by PR?. TT'N S degradation for this set of results is more
than 50% greater than results using initial lambda tuning. This shows the importance of

the warm start with the initial lambda tuning.

2This implementation resembles Table 6.5, where PR implementation degrades TT N S.

119

7 CONCLUSION

The cell selection problem has been extensively explored by both industry and
academia in recent years. Since optimal solutions cannot be found by a polynomial-
time algorithm, many techniques have been proposed, with a variety of strengths and
weaknesses.

Most academic works focus on simplified models that can no longer be applied
to real-life designs. Several challenges found when applying cell selection algorithms in
industrial designs are rarely addressed and are not fully exposed. Lagrangian relaxation-
based algorithms are found in many publications despite the loss of its optimality for the
discrete sizing and non-convex timing models. Another common approach is to model the
problem as continuous optimization with later discretization, since the optimal solution
can be found. However, discretization algorithms are suboptimal and usually lead to a
solution far from optimal.

Recent works show the importance of using a sign-off timer during the optimiza-
tion. Sign-off timing analysis is of extreme importance in the late optimization stages of
industrial designs, where interconnection parasitics can already be extracted or accurately
estimated. However, that leads to excessive runtime when using the full capabilities of
STA, including multiple clock domains, multiple working frequencies, etc.

New algorithms and methods are needed to enable power and area optimization in
late stages of industrial flows for high-performance designs. In this work we presented
our state-of-the-art academic gate sizing and V; assignment methodology that achieved
the 15" Place Award in the ISPD 2013 Contest. This methodology outperforms all other
methods found in literature in all ISPD 2013 Contest benchmarks.

This work focused on the extension of our cell selection methodology in order
to handle industrial designs in the post-placement and post-clock tree synthesis stages
of an industrial design flow for high-performance microprocessors. For this application,
the proposed techniques reduce leakage power by up to 18.2%, with average reduction of
10.4% without any degradation in timing quality. Also, up to 21.8% leakage power reduc-
tion is achieved in the presence of some 7T’ N S degradation. Cell area is also reduced, in
average by 2.2% (with T'T'N S degradation) and 1.7% (no T'T'N S degradation), with up
to 6.8% reduction for the latter case.

These results show the effectiveness of the proposed methodology and the im-

provements in this work over other works found in the literature.

120

REFERENCES

ABATO, R. et al. Incremental timing analysis. Google Patents, 1996. US Patent
5,508,937. Available from Internet: <http://www.google.com/patents/US5508937>.

AFONSO, R. et al. Power efficient standard cell library design. In: Circuits and Systems
Workshop,(DCAS), 2009 IEEE Dallas. [S.1.: s.n.], 2009. p. 1-4.

ALDOUS, D.; VAZIRANI, U. V. “"go with the winners” algorithms. In: 35th
Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico,
USA, 20-22 November 1994. [s.n.], 1994. p. 492-501. Available from Internet:
<http://dx.doi.org/10.1109/SFCS.1994.365742>.

ALPERT, C. J.; DEVGAN, A.; KASHYAP, C. A two moment rc delay metric for
performance optimization. In: Proceedings of the 2000 International Symposium on
Physical Design. New York, NY, USA: ACM, 2000. (ISPD °00), p. 69-74. Available
from Internet: <http://doi.acm.org/10.1145/332357.332377>.

BAZARAA, M. S.; SHETTY, C. M. Nonlinear Programming: Theory and
Algorithms. New York: Wiley, 1979.

BEECE, D. K. et al. Transistor sizing of custom high-performance digital circuits with
parametric yield considerations. In: 47th annual ACM IEEE Design Automation
Conference, DAC’2010. Anaheim, California, USA: [s.n.], 2010. p. 781-786.

BEEFTINK, F. et al. Gate-size selection for standard cell libraries. In: 1998 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1998. San Jose,
California, USA: [s.n.], 1998. p. 545-550.

BERKELAAR, M.; BUURMAN, P.; JESS, J. Computing the entire active area /power
consumption versus delay trade-off curve for gate sizing with a piecewise linear
simulator. In: Computer-Aided Design, 1994., IEEE/ACM International Conference
on. [S.1.: s.n.], 1994. p. 474—-480.

BERKELAAR, M.; BUURMAN, P.; JESS, J. Computing the entire active area/power
consumption versus delay tradeoff curve for gate sizing with a piecewise linear simulator.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
v. 15, n. 11, p. 1424-1434, Nov 1996.

BERKELAAR, M.; JESS, J. Gate sizing in mos digital circuits with linear programming.
In: Design Automation Conference, 1990., EDAC. Proceedings of the European.
[S.1.: s.n.], 1990. p. 217-221.

BHASKER, J.; CHADHA, R. Static Timing Analysis for Nanometer Designs: A
Practical Approach. 1st. ed. [S.1.]: Springer Publishing Company, Incorporated, 2009.

BORAH, M.; OWENS, R.; IRWIN, M. Transistor sizing for low power cmos circuits.
IEEE Transactions on Computer-Aided Design of Integrated circuits and Systems,
v. 15, n. 6, p. 665-671, 1996.

http://www.google.com/patents/US5508937
http://dx.doi.org/10.1109/SFCS.1994.365742
http://doi.acm.org/10.1145/332357.332377

121

BORAH, M.; OWENS, R. M.; IRWIN, M. J. Transistor sizing for minimizing
power consumption of cmos circuits under delay constraint. In: 1995 International

Symposium on Low Power Design. Dana Point, California - USA: [s.n.], 1995. p.
167-172.

BOYD, S. et al. Digital circuit optimization via geometric programming. OQperations
Research, v. 53, n. 6, p. 899-932, Nov.-Dec. 2005.

CELIK, M.; PILEGGI, L.; ODABASIOGLU, A. IC Interconnect Analysis.
Springer, 2002. Available from Internet: <https://books.google.com.br/books?id=
8Nu7STiANNsC>.

CHAN, P. Algorithms for library-specific sizing of combinational logic. In: Design
Automation Conference, 1990. Proceedings., 27th ACM/IEEE. [S.I.: s.n.], 1990. p.
353-356.

CHEN, C. P,; CHU, C. C.-N.; WONG, D. F. Fast and exact simultaneous gate and wire
sizing by lagrangian relaxation. IEEE Trans. on Computer-Aided Design, v. 18, n. 7,
p. 1014-1025, 1999.

CHEN, W.; HSIEH, C.-T.; PEDRAM, M. Gate sizing with controlled displacement.
In: Proceedings of the 1999 International Symposium on Physical Design. New
York, NY, USA: ACM, 1999. (ISPD ’99), p. 127-132. Available from Internet:
<http://doi.acm.org/10.1145/299996.300038>.

CHINNERY, D.; KEUTZER, K. Linear programming for sizing, Vth and Vdd
assignment. In: ISLPED 2005. [S.1.: s.n.], 2005. p. 149-154.

CHINNERY, D. G. Low Power Design Automation. Thesis (PhD) — EECS
Department, University of California, Berkeley, Dec 2006. Available from Internet:
<http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-182.html>.

CHOPRA, K. et al. Parametric yield maximization using gate sizing based on efficient
statistical power and delay gradient computation. In: Computer-Aided Design,
2005. ICCAD-2005. IEEE/ACM International Conference on. [S.1.: s.n.], 2005. p.
1023-1028.

CHOU, H.; WANG, Y.-H.; CHEN, C. C.-P. Fast and effective gate sizing with
multiple-Vt assignment using generalized Lagrangian relaxation. In: ASPDAC 2005.
[S.1.: s.n.], 2005. p. 381-386.

CIRIT, M. A. Transistor sizing in cmos circuits. In: 24th ACM/IEEE Design
Automation Conference. Miami Beach, Florida - USA: [s.n.], 1987. p. pp. 121-124.

COUDERT, O. Gate sizing: a general purpose optimization approach. In: European
Design and Test Conference, 1996. ED TC 96. Proceedings. [S.1.: s.n.], 1996. p.
214-218.

COUDERT, O. Gate sizing for constrained delay/power/area optimization. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, v. 5, n. 4, p. 465-472, Dec
1997.

https://books.google.com.br/books?id=8Nu7STiANNsC
https://books.google.com.br/books?id=8Nu7STiANNsC
http://doi.acm.org/10.1145/299996.300038
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-182.html

122

COUDERT, O.; HADDAD, R. Integrated resynthesis for low power. In: Proceedings
of the 1996 International Symposium on Low Power Electronics and Design.
Piscataway, NJ, USA: IEEE Press, 1996. (ISLPED °96), p. 169—-174. Available from
Internet: <http://dl.acm.org/citation.cfm?1d=252493.252596>.

COUDERT, O.; HADDAD, R.; MANNE, S. New algorithms for gate sizing: a
comparative study. In: Design Automation Conference Proceedings 1996, 33rd. [S.1.:
s.n.], 1996. p. 734-739.

DAI, Z.-J.; ASADA, K. Mosiz: a two-step transistor sizing algorithm based on optimal
timing assignment method for multi-stage complex gates. In: Custom Integrated
Circuits Conference, 1989., Proceedings of the IEEE 1989. [S.1.: s.n.], 1989. p.
17.3/1-17.3/4.

DARTU, E.; MENEZES, N.; PILEGGI, L. Performance computation for precharacterized
cmos gates with rc loads. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, v. 15, n. 5, p. 544-553, May 1996.

DARTU, F. et al. A gate-delay model for high-speed cmos circuits. In: Design
Automation, 1994. 31st Conference on. [S.1.: s.n.], 1994. p. 576-580.

DETIJENS, E. et al. Technology mapping in mis. In: Proc. of the Intl. Conf. of
Computer Aided Design. [S.1.: s.n.], 1987. p. 116-119.

DUTT, S.; REN, H. Timing yield optimization via discrete gate sizing using globally-
informed delay pdfs. In: Computer-Aided Design (ICCAD), 2010 IEEE/ACM
International Conference on. [S.1.: s.n.], 2010. p. 570-577.

ELFADEL, I. M.; LING, D. D. Zeros and Passivity of Arnoldi-Reduced-Order Models
for Interconnect Networks. In: DAC. [s.n.], 1997. p. 28-33. Available from Internet:
<http://doi.acm.org/10.1145/266021.266030>.

ELMORE, W. The transient analysis of damped linear networks with particular regard to
wideband amplifiers. J. Applied Physics, v. 19, 1948.

FISHBURN, J. P.; DUNLOP, A. E. Tilos: A posynomial programming approach to
transistor sizing. In: Proc. IEEE/ACM Intl. Conf. on Computer-Aided Design. [S.1.:
s.n.], 1985. p. 326-328.

FLACH, G. et al. Simultaneous gate sizing and vth assignment using lagrangian
relaxation and delay sensitivities. In: 2013 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). [s.n.], 2013. p. 84—89. Available from Internet:
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6654627>.

FLACH, G. et al. Effective Method for Simultaneous Gate Sizing and V};, Assignment
Using Lagrangian Relaxation. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, v. 33, n. 4, p. 546557, April 2014. Available from
Internet: <http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6774518>.

FLACH, G. A. Discrete gate sizing and timing-driven detailed placement for the
design of digital circuits. Thesis (PhD) — Universidade Federal do Rio Grande do Sul,
2015. Available from Internet: <http://hdl.handle.net/10183/134330>.

http://dl.acm.org/citation.cfm?id=252493.252596
http://doi.acm.org/10.1145/266021.266030
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6654627
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6774518
http://hdl.handle.net/10183/134330

123

GHIASI, S. et al. A unified theory of timing budget management. In: Computer Aided
Design, 2004. ICCAD-2004. IEEE/ACM International Conference on. [S.l.: s.n.],
2004. p. 653-659.

GLASSER, L. A.; HOYTE, L. P. Delay and power optimization in vlsi circuits.
In: Proceedings of the 21st Design Automation Conference. Piscataway,
NJ, USA: IEEE Press, 1984. (DAC ’84), p. 529-535. Available from Internet:
<http://dl.acm.org/citation.cfm?1d=800033.800849>.

GUNTZEL, J. L. A. Functional Timing Analysis of VLSI Circuits Containing
Complex Gates. Thesis (PhD) — Universidade Federal do Rio Grande do Sul,
RS-Brazil, 2000.

GUPTA, R. et al. The elmore delay as bound for rc trees with generalized input signals.
In: DAC ’95: Proceedings of the 32nd annual ACM/IEEE Design Automation
Conference. New York, NY, USA: ACM, 1995. p. 364-369.

HARRIS, D. et al. The fanout-of-4 inverter delay metric. Unpublished Manuscript.
http://odin.ac.hmc.edu/harris/research, 1997.

HASHIMOTO, M.; ONODERA, H.; TAMARU, K. A power optimization
method considering glitch reduction by gate sizing. In: Proceedings of the 1998
International Symposium on Low Power Electronics and Design. New York,
NY, USA: ACM, 1998. (ISLPED °98), p. 221-226. Available from Internet:
<http://doi.acm.org/10.1145/280756.280907>.

HEDLUND, K. Aesop: A tool for automated transistor sizing. In: Design Automation,
1987. 24th Conference on. [S.1.: s.n.], 1987. p. 114-120.

HELD, S. Gate sizing for large cell-based designs. In: Design, Automation Test in
Europe Conference Exhibition, 2009. DATE °09. [S.1.: s.n.], 2009. p. 827-832.

HITCHCOCK, R.; SMITH, G. L.; CHENG, D. D. Timing analysis of computer
hardware. IBM Journal of Research and Development, v. 26, n. 1, p. 100-105, Jan
1982.

HITCHCOCK R.B., S. Timing verification and the timing analysis program. In: Design
Automation, 1982. 19th Conference on. [S.1.: s.n.], 1982. p. 594-604.

HOPPE, B. et al. Optimization of high-speed cmos logic circuits with analytical models
for signal delay, chip area and dynamic power dissipation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, USA, v. 9, n. 3, p.
236-246, 1990.

HU, J. et al. Sensitivity-guided metaheuristics for accurate discrete gate sizing. In:
Proceedings of the International Conference on Computer-Aided Design. New
York, NY, USA: ACM, 2012. (ICCAD ’12), p. 233-239. Available from Internet:
<http://doi.acm.org/10.1145/2429384.2429428>.

HU, S.; KETKAR, M.; HU, J. Gate sizing for cell library-based designs. In: Design
Automation Conference, 2007. DAC ’07. 44th ACM/IEEE. [S.1.: s.n.], 2007. p.
847-852.

http://dl.acm.org/citation.cfm?id=800033.800849
http://doi.acm.org/10.1145/280756.280907
http://doi.acm.org/10.1145/2429384.2429428

124

HU, S.; KETKAR, M.; HU, J. Gate sizing for cell-library-based designs. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, v. 28, n. 6,
p. 818-825, June 2009.

HUANG, Y.-L.; HU, J.; SHI, W. Lagrangian relaxation for gate implementation
selection. In: Proceedings of the 2011 International Symposium on Physical Design.
New York, NY, USA: ACM, 2011. (ISPD ’11), p. 167-174. Available from Internet:
<http://doi.acm.org/10.1145/1960397.1960436>.

KAHNG, A. et al. High-performance gate sizing with a signoff timer. In: Computer-
Aided Design (ICCAD), 2013 IEEE/ACM International Conference on. [S.1.: s.n.],
2013. p. 450-457.

KAO, W.; FATHI, N.; LEE, C.-H. Algorithms for automatic transistor sizing in cmos
digital circuits. In: Design Automation, 1985. 22nd Conference on. [S.1.: s.n.], 1985. p.
781-784.

KAO, W.; MOVAHED-EZAZI, M.; SABIERS, M. Aries: A workstation based,
schematic driven system for circuit design. In: Design Automation, 1984. 21st
Conference on. [S.1.: s.n.], 1984. p. 301-307.

KASAMSETTY, K.; KETKAR, M.; SAPATNEKAR, S. A new class of convex functions
for delay modeling and its application to the transistor sizing problem [cmos gates].
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
v. 19, n. 7, p. 779788, Jul 2000.

KASAMSETTY, M. K. K.; SAPATNEKAR, S. S. A new class of convex functions for
delay modeling and their application to the transistor sizing problem. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, v. 19, n. 7, p. 779-788,
2000.

KASHYAP, C. V. et al. Peri: A technique for extending delay and slew metrics to
ramp inputs. In: Proceedings of the 8th ACM/IEEE International Workshop
on Timing Issues in the Specification and Synthesis of Digital Systems. New
York, NY, USA: ACM, 2002. (TAU ’02), p. 57-62. Available from Internet:
<http://doi.acm.org/10.1145/589411.589424>.

KIRKPATRICK, T.; CLARK, N. Pert as an aid to logic design. IBM Journal of
Research and Development, v. 10, n. 2, p. 135-141, March 1966.

KURSUN, E.; GHIASI, S.; SARRAFZADEH, M. Transistor level budgeting for power
optimization. In: Quality Electronic Design, 2004. Proceedings. Sth International
Symposium on. [S.1.: s.n.], 2004. p. 116-121.

LEE, J.; GUPTA, P. Discrete circuit optimization. Foundations and Trends® in
Electronic Design Automation, v. 6, n. 1, p. 1-120, 2012. Available from Internet:
<http://www.nowpublishers.com/article/Details/EDA-019>.

LI L. et al. An efficient algorithm for library-based cell-type selection in high-
performance low-power designs. In: Proceedings of the International Conference on
Computer-Aided Design. New York, NY, USA: ACM, 2012. ICCAD ’12), p. 226-232.
Available from Internet: <http://doi.acm.org/10.1145/2429384.2429427>.

http://doi.acm.org/10.1145/1960397.1960436
http://doi.acm.org/10.1145/589411.589424
http://www.nowpublishers.com/article/Details/EDA-019
http://doi.acm.org/10.1145/2429384.2429427

125

LI, W. Strongly np-hard discrete gate sizing problems. In: Computer Design: VLSI in
Computers and Processors, 1993. ICCD ’93. Proceedings., 1993 IEEE International
Conference on. [S.1.: s.n.], 1993. p. 468—471.

LI, W. et al. On the circuit implementation problem [combinatorial logic circuits]. In:
Design Automation Conference, 1992. Proceedings., 29th ACM/IEEE. [S.1.: s.n.],
1992. p. 478-483.

LI, W.-N. et al. On the circuit implementation problem. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, v. 12, n. 8, p. 1147-1156,
Aug 1993.

LIAO, C.; HU, S. Approximation scheme for restricted discrete gate sizing targeting delay
minimization. Journal of Combinatorial Optimization, Springer US, v. 21, n. 4, p. 497-
510, 2011. Available from Internet: <http://dx.doi.org/10.1007/s10878-009-9267-0>.

LIN, S.; MAREK-SADOWSKA, M.; KUH, E. Delay and area optimization in
standard-cell design. In: Design Automation Conference, 1990. Proceedings., 27th
ACMV/IEEE. [S.1.: s.n.], 1990. p. 349-352.

LIU, Y.; HU, J. A new algorithm for simultaneous gate sizing and threshold voltage
assignment. In: Proceedings of the 2009 International Symposium on Physical
Design. New York, NY, USA: ACM, 2009. (ISPD ’09), p. 27-34. Available from
Internet: <http://doi.acm.org/10.1145/1514932.1514940>.

LIU, Y.; HU, J. A new algorithm for simultaneous gate sizing and threshold voltage
assignment. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, v. 29, n. 2, p. 223-234, Feb 2010.

LIU, Y.; HU, J. Gpu-based parallelization for fast circuit optimization. ACM Trans.
Des. Autom. Electron. Syst., ACM, New York, NY, USA, v. 16, n. 3, p. 24:1-24:14, jun.
2011. Available from Internet: <http://doi.acm.org/10.1145/1970353.1970357>.

LORENA, L. A.; SENNE, E. L. F. Improving traditional subgradient scheme for
lagrangean relaxation: an application to location problems. International Journal of
Mathematical Algorithms, v. 1, p. 133151, 1999.

MA, Q.; YOUNG, E. Network flow-based power optimization under timing constraints
in msv-driven floorplanning. In: Computer-Aided Design, 2008. ICCAD 2008.
IEEE/ACM International Conference on. [S.1.: s.n.], 2008. p. 1-8.

MARPLE, D. Transistor size optimization in the tailor layout system. In: Design
Automation, 1989. 26th Conference on. [S.1.: s.n.], 1989. p. 43-48.

MARPLE, D. P.; GAMAL., A. E. Optimal selection of transistor sizes in digital
vlsi circuits. In: Advanced Research in VLSI, Proceedings of the 1987 Stanford
Conference. [S.1.]: MIT Press, 1987. p. 151-172.

MARRANGHELLO, FE. S. et al. Transistor sizing analysis of regular fabrics. In: 1st
Exploiting Regularity in the Design of IPs, Architectures and Platforms Workshop,
(ERDIAP 2011). Como, Italy: [s.n.], 2011. p. 235-242.

http://dx.doi.org/10.1007/s10878-009-9267-0
http://doi.acm.org/10.1145/1514932.1514940
http://doi.acm.org/10.1145/1970353.1970357

126

MATSON, M.; GLASSER, L. Macromodeling and optimization of digital mos vlsi
circuits. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, v. 5, n. 4, p. 659-678, October 1986.

MCNALL, K.; CASAVANT, A. Automatic operator configuration in the synthesis of
pipelined architectures. In: Design Automation Conference, 1990. Proceedings., 27th
ACM/IEEE. [S.1.: s.n.], 1990. p. 174-179.

MENEZES, N.; BALDICK, R.; PILEGGI, L. A sequential quadratic programming
approach to concurrent gate and wire sizing. In: Computer-Aided Design, 1995.
ICCAD-95. Digest of Technical Papers., 1995 IEEE/ACM International Conference
on. [S.l.: s.n.], 1995. p. 144-151.

MENEZES, N.; BALDICK, R.; PILEGGI, L. A sequential quadratic programming
approach to concurrent gate and wire sizing. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, v. 16, n. 8, p. 867-881, Aug 1997.

NAGEL, L. W.; PEDERSON, D. SPICE (Simulation Program with Integrated
Circuit Emphasis). [S.1.], 1973. Available from Internet: <http://www.eecs.berkeley.
edu/Pubs/TechRpts/1973/22871.html>.

NGUYEN, D. et al. Minimization of dynamic and static power through joint assignment
of threshold voltages and sizing optimization [logic ic design]. In: Low Power
Electronics and Design, 2003. ISLPED ’03. Proceedings of the 2003 International
Symposium on. [S.1.: s.n.], 2003. p. 158-163.

NIKOUBIN, T. et al. Simple exact algorithm for transistor sizing of low-power
high-speed arithmetic circuits. VLSI Design, New York, v. 2010, 2010.

NILSSON, J.; RIEDEL, S. Electric Circuits. Pearson/Prentice Hall, 2005. Available
from Internet: <https://books.google.com.br/books?1id=1Cs9kgEACAAJ>.

O’BRIEN, P.; SAVARINO, T. Modeling the driving-point characteristic of resistive
interconnect for accurate delay estimation. In: Computer-Aided Design, 1989.
ICCAD-89. Digest of Technical Papers., 1989 IEEE International Conference on.
[S.L.: s.n.], 1989. p. 512-515.

ODABASIOGLU, A.; CELIK, M.; PILEGGI, L. Prima: passive reduced-order
interconnect macromodeling algorithm. In: Computer-Aided Design, 1997. Digest of
Technical Papers., 1997 IEEE/ACM International Conference on. [S.1.: s.n.], 1997.
p. 58-65.

OZDAL, M.; BURNS, S.; HU, J. Gate sizing and device technology selection algorithms
for high-performance industrial designs. In: Computer-Aided Design (ICCAD), 2011
IEEE/ACM International Conference on. [S.1.: s.n.], 2011. p. 724-731.

OZDAL, M.; BURNS, S.; HU, J. Algorithms for gate sizing and device parameter
selection for high-performance designs. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, v. 31, n. 10, p. 1558-1571, Oct 2012.

OZDAL, M. M. et al. The ISPD-2012 Discrete Cell Sizing Contest and Benchmark
Suite. In: ISPD 2012. Napa, CA, EUA: [s.n.], 2012. p. 161-164.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
https://books.google.com.br/books?id=1Cs9kgEACAAJ

127

OZDAL, M. M. et al. An Improved Benchmark Suite for the ISPD-2013 Discrete Cell
Sizing Contest. In: ISPD 2013. The Ridge Tahoe, Stateline, NV, EUA: [s.n.], 2013. p.
168-170.

PILLAGE, L.; HUANG, X.; ROHRER, R. Awesim: Asymptotic waveform evaluation
for timing analysis. In: Design Automation, 1989. 26th Conference on. [S.1.: s.n.],
1989. p. 634-637.

PILLAGE, L.; ROHRER, R. Asymptotic waveform evaluation for timing analysis.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
v. 9, n. 4, p. 352-366, Apr 1990.

PINCUS, J. D.; DESPAIN, A. M. Delay reduction using simulated annealing. In:
Proceedings of the 23rd ACM/IEEE Design Automation Conference. Piscataway,
NJ, USA: IEEE Press, 1986. (DAC ’86), p. 690—695. Available from Internet:
<http://dl.acm.org/citation.cfm?id=318013.318141>.

POSSER, G. et al. Gate sizing using geometric programming. Analog Integrated
Circuits and Signal Processing, v. 73, n. 3, p. 831-840, 2012.

PURI, R.; KUNG, D. S.; DRUMM, A. D. Fast and accurate wire delay estimation for
physical synthesis of large ASICs. In: Proceedings of the 12th ACM Great Lakes
Symposium on VLSI. New York, NY, USA: ACM, 2002. (GLSVLSI *02), p. 30-36.
Available from Internet: <http://doi.acm.org/10.1145/505306.505314>.

QIAN, H.; ACAR, E. Timing-aware power minimization via extended timing graph
methods. ASP Journal of Low Power Electronics, p. 318326, 2007.

QIAN, J.; PULLELA, S.; PILLAGE, L. Modeling the "Effective capacitance" for the RC
interconnect of CMOS gates. Trans. Comp.-Aided Des. Integ. Cir. Sys., IEEE Press,
Piscataway, NJ, USA, v. 13, n. 12, p. 1526-1535, nov. 2006. Available from Internet:
<http://dx.doi.org/10.1109/43.331409>.

RABAEY, J. M.; CHANDRAKASAN, A. P.; NIKOLIC, B. Digital Integrated Circuits.
[S.1.]: Prentice-Hall, 2002.

RAHMAN, M. et al. Design automation tools and libraries for low power digital design.
In: Circuits and Systems Workshop (DCAS), 2010 IEEE Dallas. [S.1.: s.n.], 2010.
p. 1-4.

RAHMAN, M.; SECHEN, C. Post-synthesis leakage power minimization. In: Design,
Automation Test in Europe Conference Exhibition (DATE), 2012. [S.I.: s.n.], 2012.
p- 99-104.

RAHMAN, M.; TENNAKOON, H.; SECHEN, C. Power reduction via near-optimal
library-based cell-size selection. In: Design, Automation Test in Europe Conference
Exhibition (DATE), 2011. [S.1.: s.n.], 2011. p. 1-4.

RAHMAN, M.; TENNAKOON, H.; SECHEN, C. Library-based cell-size selection
using extended logical effort. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, v. 32, n. 7, p. 1086-1099, July 2013.

http://dl.acm.org/citation.cfm?id=318013.318141
http://doi.acm.org/10.1145/505306.505314
http://dx.doi.org/10.1109/43.331409

128

RATZLAFF, C.; PILLAGE, L. Rice: rapid interconnect circuit evaluation using awe.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
v. 13, n. 6, p. 763-776, Jun 1994.

REIMANN, T. et al. Simultaneous gate sizing and vt assignment using fanin/fanout
ratio and simulated annealing. In: 2013 IEEE International Symposium on Circuits
and Systems (ISCAS2013). [s.n.], 2013. p. 2549-2552. Available from Internet:
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6572398>.

REIMANN, T.; SZE, C. C.; REIS, R. Challenges of cell selection algorithms in industrial
high performance microprocessor designs. Integration, the {VLSI} Journal, v. 52,

p. 347 — 354, 2016. Available from Internet: <http://www.sciencedirect.com/science/
article/pii/S0167926015001169>.

REIMANN, T.; SZE, C. C. N.; REIS, R. Gate sizing and threshold voltage assignment
for high performance microprocessor designs. In: The 20th Asia and South Pacific
Design Automation Conference. [s.n.], 2015. p. 214-219. Available from Internet:
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7059007>.

REIMANN, T. J.; SZE, C. C.; REIS, R. Cell selection for high-performance designs in
an industrial design flow. In: Proceedings of the 2016 on International Symposium
on Physical Design. Santa Rosa, California, USA: ACM, 2016. (ISPD ’16), p. 65-72.
Available from Internet: <http://doi.acm.org/10.1145/2872334.2872358>.

REN, H.; DUTT, S. A network-flow based cell sizing algorithm. In: The International
Workshop on Logic Synthesis. [S.1.: s.n.], 2008. p. 7-14.

REN, H.; DUTT, S. Effective power optimization under timing and voltage-island
constraints via simultaneous v,q, vy, assignments, gate sizing, and placement.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
v. 30, n. 5, p. 746759, May 2011.

ROY, S.; CHEN, C.-P.; CHEN, C. Convexfit: an optimal minimum-error convex fitting
and smoothing algorithm with application to gate-sizing. In: Computer-Aided Design,
2005. ICCAD-2005. IEEE/ACM International Conference on. [S.1.: s.n.], 2005. p.
196-203.

ROY, S. et al. Numerically convex forms and their application in gate sizing. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, v. 26, n. 9,
p. 1637-1647, Sept 2007.

SANTOS, C. et al. Effects of using a pin-to-pin delay model on a library-free
transistor/gate sizing scheme. In: IEEE International Midwest Symposium on
Circuits and Systems, MSCAS 2005. Covington, KY: [s.n.], 2005/a. v. 1, p. 315-318.

SANTOS, C. et al. Incremental timing optimization for automatic layout generation. In:
IEEE International Symposium on Circuits and Systems, ISCAS 2005. Kobe, Japan:
[s.n.], 2005/b. v. 4, p. 3567-3570.

SANTOS, C. et al. A transistor sizing method applied to an automatic layout generation
tool. In: 16th Symposium on Integrated Circuits and Systems Design, SBCCI 2003.
Sao Paulo: [s.n.], 2003. p. 303-307.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6572398
http://www.sciencedirect.com/science/article/pii/S0167926015001169
http://www.sciencedirect.com/science/article/pii/S0167926015001169
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7059007
http://doi.acm.org/10.1145/2872334.2872358

129

SANTOS, C. L. dos. Verificacao e Otimizacido de Atraso durante a Sintese Fisica de
Circuitos Integrados CMOS. Dissertation (Master) — PPGC - UFRGS, Porto Alegre,
RS, 2005.

SAPATNEKAR, S.; RAO, V.; VAIDYA, P. A convex optimization approach to transistor
sizing for cmos circuits. In: IEEE International Conference on Computer-Aided
Design, ICCAD 1991. Santa Clara, CA , USA: [s.n.], 1991. p. 482—-485.

SAPATNEKAR, S. S. Timing. [S.1.]: Springer US, 2004.

SAPATNEKAR, S. S. et al. An exact solution to the transistor sizing problem for CMOS
circuits using convex optimization. IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, v. 12, n. 11, p. 1621-1634, 1993.

SHAH, S. et al. Discrete vt assignment and gate sizing using a self-snapping continuous
formulation. In: Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM
International Conference on. [S.1.: s.n.], 2005. p. 705-712.

SHARMA, A. et al. Fast Lagrangian Relaxation Based Gate Sizing Using Multi-
Threading. In: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. Austin, TX, USA: [s.n.], 2015. (ICCAD ’15), p. 426-433.
Available from Internet: <http://dl.acm.org/citation.cfm?id=2840819.2840879>.

SHYU, J.-M. et al. Optimization-based transistor sizing. Solid-State Circuits, IEEE
Journal of, v. 23, n. 2, p. 400—409, April 1988.

SILVA, M. Sparse matrix storage revisited. In: Proceedings of the 2nd conference
on Computing frontiers. New York, NY, USA: ACM, 2005. (CF ’05), p. 230-235.
Available from Internet: <http://doi.acm.org/10.1145/1062261.1062299>.

SILVEIRA, L.; KAMON, M.; WHITE, J. Efficient reduced-order modeling of
frequency-dependent coupling inductances associated with 3-d interconnect structures.
Components, Packaging, and Manufacturing Technology, Part B: Advanced
Packaging, IEEE Transactions on, v. 19, n. 2, p. 283-288, May 1996.

SILVEIRA, L. M. et al. A coordinate-transformed arnoldi algorithm for generating
guaranteed stable reduced-order models of RLC circuits. In: ICCAD. [s.n.], 1996. p.
288-294. Available from Internet: <http://dx.doi.org/10.1109/ICCAD.1996.569710>.

SINGH, J.; LUO, Z.-Q.; SAPATNEKAR, S. A geometric programming-based worst
case gate sizing method incorporating spatial correlation. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, v. 27, n. 2, p. 295-308,
Feruary 2008.

SINGH, J. et al. Robust gate sizing by geometric programming. In: Design Automation
Conference, 2005. Proceedings. 42nd. [S.1.: s.n.], 2005. p. 315-320.

SIRICHOTIYAKUL, S. et al. Stand-by power minimization through simultaneous

threshold voltage selection and circuit sizing. In: Design Automation Conference,
1999. Proceedings. 36th. [S.1.: s.n.], 1999. p. 436-441.

http://dl.acm.org/citation.cfm?id=2840819.2840879
http://doi.acm.org/10.1145/1062261.1062299
http://dx.doi.org/10.1109/ICCAD.1996.569710

130

SRIVASTAVA, A.; SYLVESTER, D. Statistical Analysis and Optimization for VLSI:
Timing and Power. Boston, MA :: Springer US,, 2005. (Series on Integrated Circuits
and Systems). Available from Internet: <http://dx.doi.org/10.1007/b137645>.

SRIVASTAVA, A.; SYLVESTER, D.; BLAAUW, D. Power minimization using
simultaneous gate sizing, dual-vdd and dual-vth assignment. In: Design Automation
Conference, 2004. Proceedings. 41st. [S.1.: s.n.], 2004. p. 783-787.

SUNDARARAIJAN, V.; SAPATNEKAR, S.; PARHI, K. Fast and exact transistor sizing
based on iterative relaxation. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, v. 21, n. 5, p. 568-581, May 2002.

SUTHERLAND, I.; SPROULL, B.; HARRIS, D. Logical Effort: Designing Fast
CMOS Circuits. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.

SYNOPSYS. PrimeTime® User Guide: Advanced Timing Analysis, Version
V-2004.06. 2004. Available from Internet: <http://www.synopsys.com>.

TENNAKOON, H.; SECHEN, C. Gate sizing using lagrangian relaxation combined
with a fast gradient-based pre-processing step. In: ICCAD 2002. [S.1.: s.n.], 2002. p.
395-402.

TENNAKOON, H.; SECHEN, C. Efficient and accurate gate sizing with piecewise
convex delay models. In: 42nd annual conference on Design automation. Anaheim,
California, USA: [s.n.], 2005. p. 807-812.

WANG, J.; DAS, D.; ZHOU, H. Gate sizing by lagrangian relaxation revisited. IEEE
Trans. on Computer-Aided Design, v. 28, n. 7, p. 1071-1084, July 2009.

YOSHIDA, H.; FUJITA, M. Performance-constrained transistor sizing for different cell
count minimization. Information and Media Technologies, v. 6, n. 1, p. 1-11, 2011.

http://dx.doi.org/10.1007/b137645
http://www.synopsys.com

	Contents
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Abstract
	Resumo
	1 Introduction
	2 Static Timing Analysis
	2.1 Standard Cells
	2.2 Interconnect Model
	2.2.1 Effective Capacitance

	3 The Cell Selection Problem
	3.1 Physical Design Flow
	3.2 Transistor Sizing
	3.3 Gate Sizing
	3.3.1 Continuous Gate Sizing
	3.3.2 Discrete Gate Sizing and Threshold Voltage Assignment

	4 Related Works and State-of-the-Art
	4.1 Early Literature
	4.1.1 TILOS
	4.1.2 Gate Sizing in MOS Digital Circuits with Linear Programming
	4.1.3 Delay and Area Optimization in Standard-Cell Design
	4.1.4 On the Circuit Implementation Problem
	4.1.5 Gate sizing for constrained delay/power/area optimization
	4.1.6 Fast and Exact Simultaneous Gate and Wire Sizing by Lagrangian Relaxation
	4.1.7 Forge
	4.1.8 Linear Programming for Sizing, Vth and Vdd assignment
	4.1.9 Timing-aware Power Minimization via Extended Timing Graph Methods
	4.1.10 Gate Sizing for Cell-Library-based Designs
	4.1.11 Gate Sizing for Large Cell-based Designs
	4.1.12 A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment
	4.1.13 Lagrangian Relaxation for Gate Implementation Selection
	4.1.14 Power Reduction Via Near-optimal Library-based Cell-size Selection
	4.1.15 Gate Sizing and Device Technology Selection Algorithms for High-performance Industrial Designs

	4.2 State-of-the-Art
	4.2.1 The ISPD Contest 2012
	4.2.2 An Efficient Algorithm for Library-based Cell-type Selection in High-performance Low-power Designs
	4.2.3 Trident
	4.2.4 The ISPD Contest 2013
	4.2.5 Trident 2.0
	4.2.6 Fast Lagrangian Relaxation Based Gate Sizing using Multi-Threading

	4.3 Summary and Discussion

	5 Proposed Flows and Techniques
	5.1 Simulated Annealing-based Algorithm
	5.1.1 Logical Effort
	5.1.2 Fanout-of-n Sizing
	5.1.3 Timing Engine
	5.1.4 Simulated Annealing with Dynamic Cost Function

	5.2 Empirical Validation
	5.3 Lagrangian Relaxation-based Algorithm
	5.3.1 Proposed Flow for the ISPD 2012 and 2013 Contest Benchmarks
	5.3.2 Eliminating Load and Slew Violations
	5.3.3 Cell Selection Problem Formulation
	5.3.4 Interconnection Modeling
	5.3.5 Improving the Lagrangian Relaxation Solution

	5.4 Empirical Validation
	5.4.1 ISPD 2012 Contest
	5.4.2 ISPD 2013 Contest

	6 Industrial Design Flow Application
	6.1 The New Lagrangian Relaxation Formulation
	6.1.1 Initializing the Lagrange Multipliers
	6.1.2 Lagrange Multiplier Update
	6.1.3 Filtering Gates Options

	6.2 Solution Refinement
	6.2.1 Enhanced Timing Recovery
	6.2.2 Enhanced Power Reduction

	6.3 Empirical Validation
	6.3.1 Preliminary results
	6.3.2 Final results

	7 Conclusion
	References

