
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

TIAGO JOSÉ REIMANN

Cell Selection to Minimize Power in
High-Performance Industrial

Microprocessor Designs

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Microeletronics

Advisor: Prof. Dr. Ricardo A. da Luz Reis

Porto Alegre
January 2017

CIP — CATALOGING-IN-PUBLICATION

Reimann, Tiago José

Cell Selection to Minimize Power in High-Performance
Industrial Microprocessor Designs / Tiago José Reimann. –
Porto Alegre: PGMICRO da UFRGS, 2017.

130 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2017. Advisor: Ricardo A. da Luz Reis.

1. Gate Sizing. 2. Threshold Voltage Assignment. 3. La-
grangian Relaxation. 4. EDA. 5. Microelectronics. I. Reis, Ri-
cardo A. da Luz. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do PGMICRO: Prof. Gilson Inácio Wirth
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Seja você quem for, seja qual for a posição social que você tenha na vida, a

mais alta ou a mais baixa, tenha sempre como meta muita força, muita

determinação e sempre faça tudo com muito amor e com muita fé em Deus, que

um dia você chega lá. De alguma maneira você chega lá."

— AYRTON SENNA

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS..6
LIST OF FIGURES ...7
LIST OF TABLES ...9
ABSTRACT..10
RESUMO..11
1 INTRODUCTION...12
2 STATIC TIMING ANALYSIS ...14
2.1 Standard Cells ...17
2.2 Interconnect Model ...20
2.2.1 Effective Capacitance...23
3 THE CELL SELECTION PROBLEM...25
3.1 Physical Design Flow ..25
3.2 Transistor Sizing ...26
3.3 Gate Sizing...27
3.3.1 Continuous Gate Sizing ...27
3.3.2 Discrete Gate Sizing and Threshold Voltage Assignment28
4 RELATED WORKS AND STATE-OF-THE-ART..31
4.1 Early Literature ..31
4.1.1 TILOS ..31
4.1.2 Gate Sizing in MOS Digital Circuits with Linear Programming...........................32
4.1.3 Delay and Area Optimization in Standard-Cell Design...32
4.1.4 On the Circuit Implementation Problem..33
4.1.5 Gate sizing for constrained delay/power/area optimization...................................33
4.1.6 Fast and Exact Simultaneous Gate and Wire Sizing by Lagrangian Relaxation ...36
4.1.7 Forge ..39
4.1.8 Linear Programming for Sizing, Vth and Vdd assignment41
4.1.9 Timing-aware Power Minimization via Extended Timing Graph Methods...........42
4.1.10 Gate Sizing for Cell-Library-based Designs..42
4.1.11 Gate Sizing for Large Cell-based Designs...43
4.1.12 A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage As-

signment...43
4.1.13 Lagrangian Relaxation for Gate Implementation Selection.................................44
4.1.14 Power Reduction Via Near-optimal Library-based Cell-size Selection...............45
4.1.15 Gate Sizing and Device Technology Selection Algorithms for High-performance

Industrial Designs ..46
4.2 State-of-the-Art ...49
4.2.1 The ISPD Contest 2012 ...49
4.2.2 An Efficient Algorithm for Library-based Cell-type Selection in High-performance

Low-power Designs ...52
4.2.3 Trident..54
4.2.4 The ISPD Contest 2013 ...56
4.2.5 Trident 2.0..58
4.2.6 Fast Lagrangian Relaxation Based Gate Sizing using Multi-Threading60
4.3 Summary and Discussion ...61
5 PROPOSED FLOWS AND TECHNIQUES ..66
5.1 Simulated Annealing-based Algorithm...66
5.1.1 Logical Effort...67
5.1.2 Fanout-of-n Sizing ...67

5.1.3 Timing Engine..68
5.1.4 Simulated Annealing with Dynamic Cost Function ..70
5.2 Empirical Validation...73
5.3 Lagrangian Relaxation-based Algorithm ...77
5.3.1 Proposed Flow for the ISPD 2012 and 2013 Contest Benchmarks79
5.3.2 Eliminating Load and Slew Violations ..82
5.3.3 Cell Selection Problem Formulation..82
5.3.4 Interconnection Modeling..90
5.3.5 Improving the Lagrangian Relaxation Solution...91
5.4 Empirical Validation...92
5.4.1 ISPD 2012 Contest...93
5.4.2 ISPD 2013 Contest...95
6 INDUSTRIAL DESIGN FLOW APPLICATION ...101
6.1 The New Lagrangian Relaxation Formulation ..103
6.1.1 Initializing the Lagrange Multipliers ...106
6.1.2 Lagrange Multiplier Update...107
6.1.3 Filtering Gates Options ..108
6.2 Solution Refinement..109
6.2.1 Enhanced Timing Recovery...109
6.2.2 Enhanced Power Reduction ...110
6.3 Empirical Validation...110
6.3.1 Preliminary results ...110
6.3.2 Final results..115
7 CONCLUSION ...119
REFERENCES...120

LIST OF ABBREVIATIONS AND ACRONYMS

CAD Computer Aided Design

DAG Directed Acyclic Graph

DRC Design Rules Checking

EDA Electronic Design Automation

HDL Hardware Description Language

ISPD International Symposium on Physical Design

IC Integrated Circuit

KKT Karush–Kuhn–Tucker

LR Lagrangian relaxation

NLDM Non-Linear Delay Model

RTL Register Transfer Level

SPICE Simulation Program with Integrated Circuit Emphasis

SA Simulated Annealing

STA Static Timing Analysis

TNS Total Negative Slack

TTNS True Total Negative Slack

TR Timing Recovery

Vt Threshold Voltage

VLSI Very Large Scale Integration

WMIS Weighted Maximum Independent Set

WNS Worst Negative Slack

LIST OF FIGURES

Figure 2.1 Examples of input/output timing arcs for gates of different unateness.16
Figure 2.2 STA applications in the design flow...16
Figure 2.3 (a) Distributed RC model. (b) Examples of parasitics networks...................21
Figure 2.4 Example of reduced order model...22
Figure 2.5 The effective capacitance model for cell delay calculation in the pres-

ence of RC loads. ..23

Figure 3.1 General Electronic Design Automation flow. ..26
Figure 3.2 Sources of leakage power in a MOS transistor. ...29
Figure 3.3 Normalized inverter gate leakage powers in a commercial 45nm library......29

Figure 4.1 Comparison of the behaviors of the proposed method and a greedy
method for power optimization...34

Figure 4.2 Behavior of three different methods for power optimization.35
Figure 4.3 Power-delay curves for different designs for GS and greedy method.35
Figure 4.4 Circuit representation after replacing the components by their models

(dashed lines). ...36
Figure 4.5 Algorithms (a) SOLV E_LRS/µ , (b) SOLV E_LDP , and (c) SGWS−

LR. ..39
Figure 4.6 Optimization flow. ...41
Figure 4.7 Timing optimization gate sizing algorithm (LIU; HU, 2010).44
Figure 4.8 Active area and delay results for continuous and discrete sizing methods....46
Figure 4.9 Step size function for Lagrange multipliers update.......................................48
Figure 4.10 Lagrangian relaxation convergence for (a) objective function and (b) TNS.48
Figure 4.11 Results when using internal or sign-off timer..48
Figure 4.12 Comparison for the DP algorithm and a single node method in LR.49
Figure 4.13 Non-convex gate delays for a 3-inputs medium Vt NAND gate..................50
Figure 4.14 (a) Initial sizing to fix electrical violations, (b) Min-Clock LR, and (c)

Lagrange multiplier update algorithms...52
Figure 4.15 Resizing effect example...53
Figure 4.16 Overall gate sizing flow. ..55
Figure 4.17 Sensitivity functions used. ...55
Figure 4.18 Optimization flow. ...58
Figure 4.19 (a) Impact of calibration frequency and (b) leakage power results for

different calibration strategies...59
Figure 4.20 TNS and power progression over LR iterations on b19fast benchmark.60
Figure 4.21 Greedy sensitivity-based sizing example...63
Figure 4.22 Lagrangian relaxation convergence. ..64

Figure 5.1 Timer Data Structure ...70
Figure 5.2 Number of updated nodes for two different threshold values ε.....................71
Figure 5.3 pci_bridge32 total leakage power and total violation along SA iterations....73
Figure 5.4 High-level view of our cell selection flow. ..81
Figure 5.5 Lambda-Delay Cost Computation ...85
Figure 5.6 Example circuit for delay sensitivity computation.87
Figure 5.7 Leakage power, TNS and solution cost along iterations for cordic_fast.....97
Figure 5.8 Runtime breakdown for (a) slow and (b) fast corners.98

Figure 5.9 Gate usage by sizes and Vth for the cordic benchmark. (a) and (b) for
cordic_slow, (c) and (d) for cordic_fast. ...100

Figure 6.1 The proposed cell selection flow..102
Figure 6.2 TNS change along LR iterations. ..112
Figure 6.3 Leakage power improvement at the end of LR in five different scenarios

for physical synthesis slack target (target clock period).114

LIST OF TABLES

Table 2.1 NLDM lookup table from the ISPD Contest 2013. Transition times in ps
and load capacitances in fF . ..19

Table 4.1 Number of combinational gates and leakage power (W) on ISPD 2012
benchmarks. ..51

Table 4.2 Number of combinational gates, leakage power (W) and runtime (min)
on ISPD 2013 benchmarks..57

Table 4.3 Summary of techniques present in references. Optimal refers to the op-
timality claimed for the chosen (inaccurate) models in each work.62

Table 5.1 Leakage power ratio to best solution found for all ISPD’12 circuits.74
Table 5.2 Total violation and total leakage power results with different Fanout-of-n

rules and different flows using one or four SA loops and alternating the use
of an initial solution. ...75

Table 5.3 Total violation and total leakage power results with different flows using
one or four SA loops without an initial solution...76

Table 5.4 Runtime in minutes for the different flows under test.77
Table 5.5 Notation. ..78
Table 5.6 Notation. ..80
Table 5.7 Leakage power (W) for ISPD 2012 benchmarks and number of combi-

national cells for all circuits. ...94
Table 5.8 Runtime (minutes) for ISPD 2012 benchmarks and number of combina-

tional cells for all circuits. Runtimes are taken from the corresponding papers.....95
Table 5.9 Leakage power (W), runtime (min) and clock period (ps) on ISPD 2013

benchmarks comparing the contest results and our new results using accu-
rate timing information in Timing Recovery and Power Reduction algorithms.
Power results are truncated. ..96

Table 5.10 Total leakage power after each step...99

Table 6.1 Characteristics for 14 high performance microprocessor designs.111
Table 6.2 Results assuming timing closure can be achieved. Only LR step in the

flow is executed...112
Table 6.3 Results considering the worst slack as the target for all timing paths.

Only LR step in the flow is executed. ...113
Table 6.4 Results with proposed modifications included for a set of 14 high perfor-

mance microprocessor designs. ..115
Table 6.5 Experimental results for 14 high performance microprocessor blocks.........116
Table 6.6 Experiments without TTNS degradation in PR step.117
Table 6.7 Number of gates and runtimes for Table 6.5 and Table 6.6.117
Table 6.8 Experiments without lambda tuning iterations..118

ABSTRACT

This work addresses the gate sizing and Vt assignment problem for power, area and tim-

ing optimization in modern integrated circuits (IC). The proposed flow is applied to the

Benchmark Suites of the International Symposium on Physical Design (ISPD) 2012 and

2013 Contests. It is also adapted and evaluated in the post placement and post global

routing stage of an industrial IC design flow using a sign-off static timing analysis engine.

The proposed techniques are able to generate the best solutions for all benchmarks in the

ISPD 2013 Contest (in which we were the winning team), with on average 8% lower leak-

age with respect to all other contestants. Also, after some refinements in the algorithms,

we reduce leakage by another 10% on average over the contest results.

The focus of this work is to develop and apply a state-of-the-art cell selection algorithm

to further improve already optimized high-performance industrial designs after the place-

ment and routing stages of the industrial physical design flow. We present the basic con-

cepts involved in the gate sizing problem and how earlier literature addresses it. Several

problems found when applying global optimization techniques in real-life industrial de-

signs, which are not fully covered in publications found in literature, are presented and

discussed. Considering the industrial application, the proposed techniques reduce leak-

age power by up to 18.2%, with average reduction of 10.4% without any degradation in

timing quality.

Keywords: Gate Sizing. Threshold Voltage Assignment. Lagrangian Relaxation. EDA.

Microelectronics.

Seleção de Portas Lógicas para Minimização de Potência em Projetos de

Microprocessadores de Alto Desempenho

RESUMO

Este trabalho aborda o problema de dimensionamento portas lógicas e assinalamento de

Vt para otimização de potência, área e temporização em circuitos integrados modernos.

O fluxo proposto é aplicado aos conjuntos de circuitos de teste dos Concursos do Inter-

national Symposium on Physical Design (ISPD) de 2012 e 2013. Este fluxo também é

adapatado e avaliado nos estágios pós posicionamento e roteamento global em projetos

industriais de circuitos integrados, que utilizam uma ferramenta precisa de análise estática

de temporização.

As técnicas propostas geram as melhores soluções para todos os circuitos de teste do

Concurso do ISPD 2013 (no qual foi a ferramenta vencedora), com em média 8% menos

consumo de potência estática quando comparada com os outros concorrentes. Além disso,

após algumas modificações nos algoritmos, nós reduzimos o consumo em mais 10% em

média a pontência estáticas com relação aos resultados do concurso.

O foco deste trabalho é desenvolver e aplicar um algoritmo estado-da-arte de seleção

portas lógicas para melhorar ainda mais projetos industriais de alto desempenho já otimi-

zados após as fases de posicionamento e roteamento do fluxo de projeto físico industrial.

Vamos apresentar e discutir vários problemas encontrados quando da aplicação de técni-

cas de otimização global em projetos industriais reais que não são totalmente cobertos em

publicações encontradas na literatura. Os métodos propostos geram as melhores soluções

para todos os circuitos de referência no Concurso do ISPD 2013, no qual foi a solução

vencedora. Considerando a aplicação industrial, as técnicas propostas reduzem a potên-

cia estática em até 18,2 %, com redução média de 10,4 %, sem qualquer degradação na

qualidade de temporização do circuito.

Palavras-chave: Dimensionamento de Portas Lógicas, Assinalamento de Tensão de Li-

miar, Relaxação Lagrangiana, EDA, Microeletrônica.

12

1 INTRODUCTION

The growing importance of low power designs for portable devices to extend bat-

tery life and to reduce cooling costs, the challenges imposed by the power density of

new technology nodes and cost of energy for server centers is making both industry and

academia focus on algorithms to provide power optimized IC designs.

One way to achieve this goal is through gate sizing and Vt assignment. The process

of gate sizing defines the sizes of the transistors inside each logic gate that composes the

design. In many technology processes transistors sizes can be continuously assigned, i. e.,

any size is accepted, or previously determined by a standard cell library. In library-based

designs, only discrete gate sizes are available. Gate sizing and Vt assignment optimization

methods can be applied in several stages of the design synthesis flow, from the logic syn-

thesis to post-route optimization, with increasing accuracy in the timing analysis models

as a result of more accurate physical information.

The discrete gate sizing problem has been the subject of many works in the lit-

erature. The techniques proposed are based on different methods like Lagrangian re-

laxation (LR) (CHEN; CHU; WONG, 1999; TENNAKOON; SECHEN, 2005; OZDAL;

BURNS; HU, 2011; FLACH et al., 2013; FLACH et al., 2014), Dynamic Programming

(DP)(OZDAL; BURNS; HU, 2011), Linear Programming (CHINNERY; KEUTZER, 2005),

greedy iterative sensitivity-based methods (LIN; MAREK-SADOWSKA; KUH, 1990;

QIAN; ACAR, 2007; HU et al., 2012; KAHNG et al., 2013), Stochastic optimization

(HU et al., 2012; KAHNG et al., 2013), network-flow (REN; DUTT, 2008; REN; DUTT,

2011), and Sequential Quadratic Programming (SQP) (MENEZES; BALDICK; PILEGGI,

1995; MENEZES; BALDICK; PILEGGI, 1997).

Throughout this work we refer to simultaneous gate sizing and Vt assignment as

cell selection. Despite the many contributions in the field, many of the cell selection

problems are not fully handled by existing methods. Also, most of the previous works

do not present solutions that are practical for industrial designs. Several simplifications

adopted in these works, like simpler delays models and incomplete timing propagation,

are not applicable any more or have inaccuracies that prevent the convergence to a near-

optimal solution.

Power consumption in integrated circuits has two components: static (leakage)

and dynamic. The former is related to the leakage current of the components while the

latter is associated with signal transition and short-circuit currents. Both components can

13

be addressed through gate sizing and Vt assignment.

Most recent works focus only on the leakage power optimization in a timing-

constrained optimization. This focus is a consequence of the problem definition on the

two ISPD Discrete Gate Sizing Contests (2012 and 2013). However, it is important to also

ensure that the other design objectives like timing, dynamic power, and area are (at least)

not degraded by the power optimization process. Moreover, those parameters may also be

an optimization objective. These objectives are conflicting and optimizing only one may

be detrimental to the others. For instance, if a cell with a larger area (size) and higher Vt

(less leakage power) replaces a smaller but lower Vt cell option in a non-critical path, the

leakage power will decrease, but dynamic power may increase because of the increase in

the capacitance of the new cell option. Also, the area in this case will increase. Since

leakage power grows exponentially with respect to reduction in Vt (as detailed later), the

area increase in order to reduce power can be excessive.

A good formulation for gate sizing and Vt assignment must enable an appropriate

balance of those conflicting objectives to further improve the solution provided by the

earlier stages of the physical synthesis flow.

The objective of this work is to develop and apply a state-of-the-art cell selection

algorithm to further improve already optimized high-performance industrial designs after

the placement and global routing stages of the industrial physical design flow, where

wiring parasitics are available and timing models are more accurate.

This work is organized as follows. First, given the importance of timing analysis

for the cell selection algorithms, we introduce some basic concepts of Static Timing Anal-

ysis (STA) and the relevant methods for timing analysis in Chapter 2. Chapter 3 presents

the cell selection problem and gives several options for how it can be inserted in a general

physical design flow with some examples of the different methodologies and applications

of algorithms. In Chapter 4, we revisit the related works and the state-of-the-art prior to

this work. Next, Chapter 5 presents the proposed methodologies to address the cell selec-

tion problem in the ISPD contests. Chapter 6 details the industrial applications proposed,

including the differences in formulations and the respective experimental validation. The

conclusions are presented in Chapter 7.

14

2 STATIC TIMING ANALYSIS

The quality of results given by cell selection algorithms in post-route optimization

strongly relies on the accuracy of the timing models used during the optimization. The

presence of wiring parasitics and the non-linearity of cell delay models undermines the

performance of analytical optimization methods that required closed-form models, which

may present high inaccuracies when compared to the sign-off timing analysis. More

accurate timing enables better optimization results, as presented in recent publications

(KAHNG et al., 2013; FLACH et al., 2014).

In that context, it is important to present the relevant concepts involved in static

timing analysis (STA) that are taken into account for the development of this work.

The concept of static timing analysis (STA) is presented in (HITCHCOCK R.B.,

1982) and other publications, including (HITCHCOCK; SMITH; CHENG, 1982; ABATO

et al., 1996; KIRKPATRICK; CLARK, 1966; GUNTZEL, 2000). Details can be found in

(SAPATNEKAR, 2004; BHASKER; CHADHA, 2009)

The idea of STA is to perform a block-based analysis of the circuit to obtain the

fastest and slowest path delays between all the timing start and endpoints. Also, the slacks

at each cell pin and input–output (I/O) pins are calculated. This is done by propagating

arrival times in topological order and required times in reverse topological order.

Timing startpoints can be either a primary input (PI) or a sequential element (latch,

flip-flop) output. Timing endpoints are the primary outputs (PO) and the data input of

sequential elements.

The blocks in the circuit are usually represented by the gates. The timing informa-

tion for each gate is found in the standard cell library. Gates are modeled with different

delays and slew rates for each transition (rise and fall), depending on input slew and output

load capacitance.

In this work we follow the definitions found in (LEE; GUPTA, 2012) with some

small modifications. The definitions are:

• Primary inputs (PI): input ports in the design that are driven by external sources.

• Primary outputs (PO): output ports in the design.

• Cell rise time or rise delay: time from when the input crosses 50% voltage to when

the rising output crosses 50% voltage.

• Cell fall times or fall delay: time from when the input crosses 50% voltage to when

the falling output crosses 50% voltage.

15

• Cell rise transition or slew: the time elapsed from when the output signal crosses

the 20% voltage to when it crosses 80%.

• Cell fall transition or slew: the time elapsed from when the output signal crosses

the 80% voltage to when it crosses 20%.

• Arrival time (ta): the time that the signal crosses the 50% voltage threshold at a

given point in the circuit. The time associated with a rising and falling signal is

called the rise arrival time and the fall arrival time, respectively.

• Required arrival time (tr): the time a signal needs to cross the 50% voltage thresh-

old at a given point in the circuit to be timing feasible. The required arrival time

associated with a rising and falling signal are called the rise and fall required arrival

time, respectively.

• Slack (s): the difference of the required arrival time and the arrival time, represents

the amount of timing slack available at that point in the circuit.

• Timing arc: a concept used to relate the delay between two adjacent nodes in the

circuit.

• Positive unate: when a rising input to a gate causes a rising output, or a falling input

causes a falling output.

• Negative unate: when a rising input to a gate causes a falling output, or a falling

input causes a rising output.

• Non-unate: when there is no direct relation between the type of transition (rise/fall)

in the input and the type of transition in the output, e.g. XOR gate where a rising or

falling output transition can be triggered by either rising or falling input transition.

• β ratio: the ratio between the width of the PMOS transistors and the width of the

NMOS transistors in a CMOS gate.

The unateness concept is shown in Figure 2.1. Sign-off timers handle rising and

falling delays and transitions separately, and the unateness of a cell will determine the

possible combinations for signal propagation through its timing arcs. The unateness also

determines the timing information available in the cell library. Positive and negative unate

arcs only require two timing tables (rise-to-rise, fall-to-fall or rise-to-fall, fall-to-rise) for

delay and transition times for each input-output pin pair. Non-unate cells require four

timing tables (rise-to-rise, fall-to-fall, rise-to-fall and fall-to-rise) for delay and transition

times for each input-output pin pair.

STA is used in the design flow at several stages, with different levels of accuracy,

16

Figure 2.1: Examples of input/output timing arcs for gates of different unateness.

Source: Bhasker and Chadha (2009)

Figure 2.2: STA applications in the design flow.

Source: Bhasker and Chadha (2009)

as shown in Figure 2.2.

In this work we apply STA with library-based technologies. Although cell selec-

17

tion algorithms do not require a specific timing analysis model to work with, global cell

selection methods in post global routing optimization perform better with sign-off timers,

taking advantage of the actual positive slacks existent in the design and the accurate trade-

offs between timing and power. Simplified timing models, which are linear, convex, or

differentiable introduce inaccuracy that will reduce the ability of the algorithm to find the

actual best combinations of sizes and threshold voltages for a single cell in the design due

to reduced timing slack for the rest of the design caused by timing propagation.

Next we discuss the standard cell library model and the interconnect models com-

monly used in modern designs.

2.1 Standard Cells

Most functions in a chip are designed using basic building blocks which im-

plement simple boolean logic functions such as AND, OR, NAND, NOR, AND-OR-

INVERT, OR-AND-INVERT, XOR, MUX, inverters, and sequential elements (latch, flip-

flop and its variants). There are also utility cells, such as filler cells, antenna cells, and

buffer cells, which are used to help with the physical implementation of the design. These

basic building blocks are referred to as standard cells. The functionality and timing of

the standard cells is pre-designed and pre-characterized and made available to the circuit

designer. Also, larger functional blocks, known as macros, may be in the design and

have similar treatment as standard cells, with timing properties assigned to their input and

output pins. Designers use Electronic Design Automation (EDA) tools to implement the

required functionality of the design using the standard cells as the building blocks.

Usually, several options are available in the library for each logic function. Despite

having the same logic function, each cell has different characteristics regarding: transis-

tor widths and folding (that changes the electrical properties of the transistor), transistor

channel length, threshold voltage (Vt), and β ratios (that affect the timing performance

for different rising and falling output transitions). Those differences imply a change in

timing, area, power, and parasitic characteristics. With those options available, the design

can be optimized for one or more objectives.

The cell library uses table models to specify the delays and timing checks for each

timing arc of the cell. The models used may vary between libraries and technologies

depending on the level of accuracy needed. The table models used for delay, output

slew, or other timing checks are referred to as NLDM (Non-Linear Delay Model). Newer

18

libraries for nanometer technologies may use more accurate current source based timing

models. CCS (Composite Current Source) and ECSM (Effective Current Source Model)

are two examples of these models . Current source models are not used throughout this

work and their characteristics and properties are not relevant to the application of the

methods developed here.

The NLDM table is usually a discretization of simulation data or real prototype

measurements. It contains the delay through the cell for several combinations of input

transition time at the cell input pin and total output capacitance at the cell output. The

models for delay are typically presented in a two-dimensional form, with the two inde-

pendent variables being the input transition time and the output load capacitance, and the

entries in the table denoting the delay. The same is applied to the output transition time

(slew rate) calculation.

The following equation shows the bilinear interpolation to the nearest four data

points in the lookup table used for NLDM calculation.

z = a+ b× x+ c× y + d× x× y (2.1)

where z is the calculated value for delay or slew, x is the input slew, and y is the output

load capacitance.

The timing tables contained in a cell library are:

• Rise delay

• Fall delay

• Rise slew

• Fall slew

• Clock hold time (data input of sequential elements only)

• Clock setup time (data input of sequential elements only)

An example of a delay lookup table is shown in Table 2.1. It represents the delay

for the smallest and slowest inverter in the ISPD Contest 2013 library. The calculation is

done by interpolating/extrapolating the two-dimensional data in the lookup table. Know-

ing the input transition time slewinput and the output load Cload the value from the lookup

table is obtained as follows. The two nearest table indices in each dimension are chosen

for the table interpolation. Assuming that we are calculating the delay DA for a given in-

put transition and output load which the closest indices are x1, x2 and y1, y2, respectively:

19

Table 2.1: NLDM lookup table from the ISPD Contest 2013. Transition times in ps and
load capacitances in fF .

Input transition time

Output load 5.00 30.00 50.00 80.00 140.00 200.00 300.00 500.00

0.00 11.72 18.22 22.67 27.61 34.82 40.44 48.21 61.24

1.00 16.93 23.43 28.60 34.95 44.15 51.18 60.65 75.83

2.00 22.13 28.63 33.83 41.24 52.23 60.57 71.67 89.00

4.00 32.55 39.05 44.25 52.05 66.05 76.76 90.85 112.34

8.00 53.38 59.88 65.08 72.88 88.48 103.09 122.40 151.42

16.00 95.05 101.55 106.75 114.55 130.15 145.75 171.59 213.31

32.00 178.38 184.88 190.08 197.88 213.48 229.08 255.08 307.08

DA = (1− wx)× (1− wy)×D11

+ (1− wx)× wy ×D12

+ wx × (1− wy)×D21

+ wx × wy ×D22

(2.2)

where Dxy is the table entry for indices x, y and

wx =
x0 − x1

x2 − x1

wy =
y0 − y1

y2 − y1

(2.3)

For the example in Table 2.1, assuming slewinput = 220ps and Cload = 4.5fF :

wx =
220− 200

300− 200
= 0.2

wy =
4.5− 4

8− 4
= 0.125

(2.4)

20

DA = (1− 0.2)× (1− 0.125)× 76.76

+ (1− 0.2)× 0.125× 103.09

+ 0.2× (1− 0.125)× 90.85

+ 0.2× 0.125× 122.40

DA = 83.00ps

(2.5)

As aforementioned, the same calculation is done to obtain the output transition

time from its lookup table. When the input transition time and/or the output load are out of

the indices’ ranges, an extrapolation is made with the last two indices in both dimensions.

The calculation process is the same. However, since the cell is not characterized for

such parameters, the resultant delay and output transition time may be quite inaccurate.

Maximum load and maximum transition time are two electrical constraints specified in

the library to guarantee the accuracy of times obtained from the lookup tables.

Each timing arc inside a cell has its respective tables. Timing arcs relate the input

and output pins for both rising and falling transitions and both delay and output slew. In

sequential cells, timing arcs relate the clock pin with the synchronous input and output

pins. The data input is a timing endpoint (sometimes also called a time barrier). Sequen-

tial cells also usually have scan-related pins for testing – scan enable and scan input. Scan

pins and scan timing are omitted in this work for simplicity. They are either not present

(ISPD Contest) or are not setup timing critical (industrial high-performance designs) in

this work. Sequential cells may also have asynchronous inputs (like the clear data pin).

2.2 Interconnect Model

Interconnect models have a significant importance in modern designs where the

interconnect delay has become a considerable percentage of total delay. Also, the slew

propagation through wires has significant impact in timing calculations. Accurate inter-

connection delay and slew propagation metrics must be used in the late stages of physical

design, where parasitics information is available. Interconnect parasitics are extracted

from the circuit layout to form RC (resistance and capacitance) networks. They are com-

monly represented as RC trees or RC meshes – Figure 2.3.

21

Figure 2.3: (a) Distributed RC model. (b) Examples of parasitics networks.

(a)

(b)

Source: Bhasker and Chadha (2009)

Lumped capacitance models are inaccurate1 for timing analysis in post global rout-

ing stages.

Electrical simulation (like SPICE – Simulation Program with Integrated Circuit

Emphasis (NAGEL; PEDERSON, 1973)) can be used to accurately calculate timing by

solving the differential equations related to the currents, charges and voltages. However,

the runtime for this approach is prohibitive in large or even mid-size designs. The runtime

of timing analysis is a key aspect for gate sizing and threshold voltage assignment, where

fast delay estimates are needed for optimization.

The Elmore delay (ELMORE, 1948) is a simple method to estimate delays. This

method calculates the first moment of the impulse response applied to the RC network.

The Elmore delay is an upper bound on the actual delay (GUPTA et al., 1995).

However, modern timers employ more accurate methods that utilize higher order

1The lumped capacitance model for interconnects is only accurate when the driver resistance over-
whelms the wire resistance (SAPATNEKAR, 2004)

22

Figure 2.4: Example of reduced order model.

Source: Synopsys (2004)

moments to improve the accuracy. The Asymptotic Waveform Evaluation Method (PIL-

LAGE; ROHRER, 1990; PILLAGE; HUANG; ROHRER, 1989; ODABASIOGLU; CE-

LIK; PILEGGI, 1997; RATZLAFF; PILLAGE, 1994) and Arnoldi-based methods (SIL-

VEIRA; KAMON; WHITE, 1996; ELFADEL; LING, 1997; SILVEIRA et al., 1996)

are examples of higher order models commonly used to model the parasitics network

– Figure 2.4. More details can be found in (SAPATNEKAR, 2004; CELIK; PILEGGI;

ODABASIOGLU, 2002).

The propagation of the output transitions (slews) of cells is also crucial for timing

calculations. Signal slews in the input pins play a major role in determining the output

delay. It is not possible to ignore slew effects in post global route timing analysis. Es-

pecially in cell selection algorithms, ignoring the slew misses the potential in increasing

gate size or decreasing the threshold voltage to improve the slew in its fanout gates, and

the corresponding gate delays.

For simplicity in timing analysis in industrial STA tools (i.e. Synopsys Prime-

Time®) the propagated output slew is usually the slower slew calculated at the output,

regardless of the arrival time associated. However, most sign-off timers can also prop-

agate the slew associated with the greatest arrival time at the output if specified (e.g.

23

Figure 2.5: The effective capacitance model for cell delay calculation in the presence of
RC loads.

Source: Sapatnekar (2004)

path-based static timing analysis).

2.2.1 Effective Capacitance

Interconnect models may be simplified to use only a lumped capacitance to repre-

sent the wires. However, the lumped capacitance model is not accurate when the driver

resistance and the wire resistance are comparable. The phenomenon of resistive shield-

ing causes the delay at the driver timing arc to be equivalent to a delay where the output

load is smaller than the total capacitance in the RC network. This smaller capacitance is

called effective capacitance. Figure 2.5 shows an example of effective capacitance (Ceff)

equivalence.

The effective capacitance models used in accurate STA tools calculate an equiva-

lent capacitance that has the same timing arc delay as the cell with RC tree load. Using

an effective capacitance model is useful because cells may continue to be characterized

in terms of a load capacitance (Section 2.1).

Many methods for effective capacitance calculation can be found in the litera-

ture by O’Brien and Savarino (1989), Dartu et al. (1994), Dartu, Menezes and Pileggi

(1996), Puri, Kung and Drumm (2002), Qian, Pullela and Pillage (2006). The driver

model used for effective capacitance calculations is usually the same used for the para-

sitics network analysis (see Figure 2.4). Dartu, Menezes and Pileggi (1996) propose the

use of a Thevenin model (NILSSON; RIEDEL, 2005) to represent the driver.

The effective capacitance is calculated based on the current necessary to charge the

24

equivalent RC π-model derived from the complete RC network (O’BRIEN; SAVARINO,

1989). The gate is characterized by the determination of the values of a driver resistance

(Rd), transistion delay (t0) and transistion time (∆t), according to the library timing in-

formation (DARTU et al., 1994; DARTU; MENEZES; PILEGGI, 1996).

25

3 THE CELL SELECTION PROBLEM

In this chapter we define the cell selection problem, showing how it can be inserted

in a general physical design flow and give some examples of the different methodologies

and applications of algorithms related to the cell selection problem.

First we talk about the physical design flow and how cell selection algorithms can

be applied in several stages of the flow.

3.1 Physical Design Flow

Cell selection algorithms can be applied in many parts of the design flow, from the

logic synthesis to the post-route stages. Figure 3.1 shows an example of a general Elec-

tronic Design Automation (EDA) flow. For each stage in the flow, the actions expected

can be summarized as follows:

The Logic Synthesis step starts with a Register Transfer Level (RTL)/Hardware

Description Language (HDL) design description, a standard cell library information and

timing constraints for the design. A gate level netlist mapped to the standard cell library

is generated to meet the constraints and optimized different objectives.

The Floorplanning stage creates a floorplan with rows for standard cell placement,

I/O pads and locations for macro blocks.

A Placement step defines the positions for the cells into the rows created by the

floorplanning algorithm, flipping and rotating cells as necessary for the optimization ob-

jectives. The main objective is usually to minimize the wirelength in the resulting layout.

Another common target is routing congestion mitigation and improve timing in critical

paths (timing-driven placement).

The Clock Tree Synthesis stage will create a clock tree of buffers to distribute the

clock signal to all sequential elements of the design. The main goals are to minimize the

size of the clock tree (to minimize clock power and latency), and the skew at each of the

outputs of the clock tree.

Routing connects the pins from the placed cells using wires on the available metal

layers and vias between layers. The objective is to minimize the total wiring needed

(reduce congestion and delay), while avoiding design rule violations and meeting timing

constraints.

Cell selection methods can be used throughout the design flow to:

26

Figure 3.1: General Electronic Design Automation flow.

Source: Lee and Gupta (2012)

• fix timing violations, and to optimize the design.

• fix maximum fanout rule violations or maximum slew violations.

• fix design rule violations.

• optimize the design for timing/area/power/variability/yield.

3.2 Transistor Sizing

The transistor sizing problem has been studied for decades and is applied to han-

dle many different problems. The reader is referred to the following publications Kao,

Movahed-Ezazi and Sabiers (1984), Glasser and Hoyte (1984), Kao, Fathi and Lee (1985),

Fishburn and Dunlop (1985), Pincus and Despain (1986), Matson and Glasser (1986),

Hedlund (1987), Cirit (1987), Marple and Gamal. (1987), Shyu et al. (1988), Marple

(1989), Dai and Asada (1989), Hoppe et al. (1990), Sapatnekar, Rao and Vaidya (1991),

Sapatnekar et al. (1993), Borah, Owens and Irwin (1995), Borah, Owens and Irwin (1996),

Sirichotiyakul et al. (1999), Kasamsetty, Ketkar and Sapatnekar (2000), Sundararajan,

Sapatnekar and Parhi (2002), Santos et al. (2003), Kursun, Ghiasi and Sarrafzadeh (2004),

Chou, Wang and Chen (2005), Santos et al. (2005/a), Boyd et al. (2005), Beece et al.

(2010), Kasamsetty and Sapatnekar (2000), Nikoubin et al. (2010), Liao and Hu (2011),

Marranghello et al. (2011), Yoshida and Fujita (2011), Posser et al. (2012) for more details

about the problem and several formulations and algorithms to handle it.

Transistor sizing can be applied for analog designs and custom digital IC designs.

27

Both cases are not covered in this work since the focus here in on cell selection in designs

using standard cell libraries.

Most formulations for the transistor sizing problem assume a direct and linear

relationship between the delay and the transistor width. However, modern designs have

several sources of non-linearities that make such models inaccurate.

As mentioned before, with the use of standard libraries, digital IC designs rarely

make use of transistor sizing algorithms. One of the major problems is the lack of fast

and accurate characterization tools to provide good models and layout parasitic extraction

for new cell sizes. Tools for library characterization can take weeks, especially with turn

around to correct the generated cells.

The typical formulation for the transistor sizing problem is:

minimize f(x)

subject to Delay ≤ Tspec

Li ≤ xi ≤ Ui

(3.1)

where x is the variable available for optimization (usually transistor width), f(x) is the

objective function (usually area or power), Tspec is the maximum allowed delay and Li, Ui

are the lower and upper bounds for the transistor size.

3.3 Gate Sizing

The gate sizing problem assumes a fixed set of transistor widths for a logic gate in

order to model the gate size. Then, the whole gate is sized, instead of sizing separately

each one of its transistors.

Gate sizing algorithms can be divided in two categories: continuous gate sizing

and discrete gate sizing. We detail both methodologies next.

3.3.1 Continuous Gate Sizing

The continuous gate sizing approach assumes that any size can be implemented

in the layout. This approach is suitable for custom digital designs that do not use a cell

library.

Continuous gate sizing is not in the scope of this work. However, many discrete

28

sizing algorithms use the continuous sizing formulation to find a discrete solution, by dis-

cretizing the continuous solution or using it to guide another discrete approach. Therefore,

this work describes some continuous sizing approaches to explain the concepts behind

such algorithms that can be applied in the discrete problem as well.

Continuous sizing methods model the delay, area and power as continuous func-

tions of the design parameters similarly to the transistor sizing problem. This model is

used to formulate an optimization problem to find a set of continuous sizes that optimize

an objective.

With the use of convex delay models, it can be optimally solved by Lagrangian re-

laxation algorithms. Examples of approaches applied to the continuous gate sizing prob-

lem are presented in Chapter 4.

3.3.2 Discrete Gate Sizing and Threshold Voltage Assignment

Discrete gate sizing is a known NP-hard combinatorial optimization problem (LI,

1993). It has been extensively studied in the last couple of decades with several dif-

ferent focuses. Many approaches have been proposed to handle a variety of objectives.

Sizing algorithms for power (COUDERT; HADDAD, 1996), timing yield (DUTT; REN,

2010), low power standard cell library generation (RAHMAN et al., 2010; AFONSO

et al., 2009), placement (CHEN; HSIEH; PEDRAM, 1999; REN; DUTT, 2011), glitch

reduction (HASHIMOTO; ONODERA; TAMARU, 1998), variation-aware optimization

(SINGH et al., 2005; SINGH; LUO; SAPATNEKAR, 2008) and others have been pub-

lished. More details about related literature can be found in Chapter 4.

Most works use the following problem definition. Given a design, a standard cell

library L and a timing analysis engine:

minimize
n∑
i=1

xi

subject to a0 ≤ T for outputs

aj +Di ≤ ai for j connected to input of i

Dn ≤ an for inputs

i ∈ L

(3.2)

where xi is the objective associated with cell i (usually area or power) , ai is the arrival

29

Figure 3.2: Sources of leakage power in a MOS transistor.

Source: Lee and Gupta (2012)

Figure 3.3: Normalized inverter gate leakage powers in a commercial 45nm library.

Source: Lee and Gupta (2012)

time at i, T is the maximum delay allowed (clock period) and Di is the delay associated

with cell i.

The Vt assignment problem has a formulation similar to the discrete gate sizing

problem. In fact, the formulation is the same if there are no specific rules/constraints to

the use of different Vt levels.

While the delay of a gate decreases linearly1 with increasing width, it decreases

super-quadratically with decreasing Vt (SAPATNEKAR, 2004). This makes Vt decreasing

more effective for reducing the delays of gates.

Figure 3.2 shows the sources of leakage power. The leakage power due to sub-

threshold conduction is exponentially related to the threshold voltage. This is the main

reason for the presence of multiple-Vt cells in standard cell libraries. Since the relation-

ship between leakage and gate size is linear, high-Vt cells enable much bigger leakage

power reduction than using sizing alone. Figure 3.3 shows the normalized leakage power

as a function of the gate size.

1Less than linear if the increase in capacitance for the previous stage of logic is accounted for – internal
capacitances also go up.

30

Most modern technologies allow the use of two or more Vt levels in order to pro-

vide cell options with less leakage power than the standard or fastest Vt. When combined

with gate sizing, Vt assignment adds another dimension to the solution space, making the

use of simplified delay models more complicated. Therefore, many works in literature

deal with the Vt assignment problem separated from the gate sizing, using specific algo-

rithms to solve it. Also, it is common to let the designer choose which Vt are available for

the algorithms, limiting or expanding the number of options.

In this work, we simultaneously address discrete gate sizing and Vt assignment in

order to provide power-optimized solutions. In this way we are able to explore a larger

solution space to find a near-optimal solution.

31

4 RELATED WORKS AND STATE-OF-THE-ART

This chapter presents the previous literature that addresses the cell selection prob-

lem. The first section of this chapter briefly summarizes the early literature and publica-

tions that have relevant contributions to the problem and especially to the development of

this work. The second section summarizes the most recent publications that delimit the

state-of-the-art and the two ISPD contests held in 2012 and 2013.

The titles of subsections reflect the respective paper titles or the name of the pro-

posed tool.

4.1 Early Literature

This section details the most relevant related works. The publications are pre-

sented in a chronological order to better relate the research to the challenges imposed by

the evolution of fabrication process and the design methodologies to which the algorithms

can be applied to.

We briefly describe the methods present in some of the most relevant works in the

literature that have contributed to the development of cell selection algorithms, especially

the algorithms developed and presented in this work.

4.1.1 TILOS

Fishburn and Dunlop (1985) present a transistor sizing algorithm using posyno-

mial programming and convex optimization techniques with a distributed RC model. The

capacitances are proportional to transistor size and the resistance is inversely proportional

to transistor size.

TILOS starts with minimum transistor sizes for all transistors. A static timing

analysis is performed, assigning the latest times (to go low/high) to each node. Then, paths

violating the setup timing constraint are traversed in reverse topological order. Transistors

that are too slow are examined and the transistor with the highest sensitivity is increased.

The sensitivity function is as follows.

D′(x) = RCu −
RuC

x2
(4.1)

32

where x is the transistor width, Cu and Ru are capacitance and resistance of a unit-sized

transistor and C and R are the wire capacitance and resistance, respectively.

Results show that TILOS can improve circuit timing and reduce area. However,

the runtime is proportional to the number of timing paths, which is exponential with the

number of elements, making it impractical to apply such an algorithm to medium size

(10K+) CMOS circuits.

4.1.2 Gate Sizing in MOS Digital Circuits with Linear Programming

References published by Berkelaar and Jess (1990), Berkelaar, Buurman and Jess

(1994), Berkelaar, Buurman and Jess (1996) present an algorithm where the gate siz-

ing optimization problem is mapped into a linear program, which is then solved by the

Simplex algorithm. A simple (nonlinear) delay model is proposed. A piece-wise linear

approximation is performed to reduce linearization error. Any convex delay model can be

used with the algorithm without loss of optimality.

The approach guarantees to find the global optimum (considering the inaccurate

timing model used), and has proven feasible for circuits of up to several thousand cells.

However, this comes with considerable increase in area of up to 172%.

4.1.3 Delay and Area Optimization in Standard-Cell Design

Lin, Marek-Sadowska and Kuh (1990) apply a sensitivity-based heuristic to the

discrete cell selection problem. Sensitivities are defined as the ratio between the variation

of delay and area. This process of choosing cells based on local cost calculations is the

base of several algorithms, with different objectives and different formulations to include,

or not, components that estimate the impact on the global solution.

Another feature used together with sensitivities is the "criticality". The criticality

is the ratio between the cell delay and its weighted slack. The weighted slack is the slack

divided by the path length.

The proposed algorithm starts from all cells set to the smallest option. Then an

iterative phase that increase the sizes is applied to solve timing violations. Next a size de-

creasing phase recovers area on cells on positive slack paths. The two phases are repeated

until convergence or stop criteria are met.

33

The complexity of the proposed algorithm is O(n2). The results show area im-

provements ranging from -2%1 to 29% for a set of nine benchmarks obtained from misII

technology mapping tool (DETJENS et al., 1987).

4.1.4 On the Circuit Implementation Problem

References (LI et al., 1992; LI et al., 1993) present a pseudo-polynomial time

algorithm, applying suitable decomposition techniques and dynamic programming that

obtain optimal solutions for basic series-parallel circuits2.

Six heuristics are presented to obtain minimal area circuit implementations given

a delay constraint. The authors observe that more sophisticated heuristics handle the

problem better than the simpler ones. Also, proofs that both basic circuit implementation

and general circuit implementation problems are NP-hard are presented.

Another publication by Li (1993) proves that the discrete gate sizing algorithm is

strongly NP-hard, implying that for arbitrary DAGs there is no pseudo-polynomial time

algorithm to obtain the exact solution unless P=NP.

4.1.5 Gate sizing for constrained delay/power/area optimization

The works from Coudert (1996), Coudert, Haddad and Manne (1996), Coudert

(1997) present a general purpose gate sizing algorithm GS that is oriented to a pure com-

binatorial problem optimization, enabling the use of complex cost models. To the best

of our knowledge, Coudert (1996) is the first work to address the challenges of gate siz-

ing in modern real-life designs using a standard cell library and an accurate table lookup

based nonlinear delay model. With focus on real-life designs, the proposed algorithm

uses accurate delay and power models during the optimization process.

The proposed method first evaluates all cells with the calculation of gradients

(variation of the cost function when resizing a node). These gradients are used to choose

the new sizes for all cells based on the cost function. Then, a new iteration is performed

only with cells that have an updated gradient. The process repeats until some convergence

criterion is met.

1Degradation in area caused by improvement in delay.
2McNall and Casavant (1990) apply similar techniques (dynamic programming) for the synthesis of

pipelined architectures.

34

Figure 4.1: Comparison of the behaviors of the proposed method and a greedy method
for power optimization.

Source: Coudert (1997)

The proposed algorithm can be applied to delay, area and power minimization. In

the first case, the algorithm will iteratively process the netlist to choose the best (discrete)

sizes that minimize delay. The second and third cases start from a delay optimized solu-

tion (obtained with GS) and then proceeds to area/power optimization for the following

reasons: 1) Optimizing the delay gives plenty of alternatives for area/power optimization,

i.e., going far away from the infeasible region makes power minimization less likely to be

trapped in a local minimum. 2) The power optimization is done within the feasible region

by relaxing the delay constraints using a penalty/benefit function.

This penalty/benefit function will balance the delay and power through the whole

path, as opposed to a greedy method that resizes as many noncritical nodes as possible

to their minimal power. Such a greedy approach would deliver low quality results by

creating critical paths without power savings proportional to the increase in path delays,

preventing most of the other nodes from being resized and saving more power. This

behaviour is exposed in Figure 4.1, showing the superiority of the proposed method over

the greedy method in scenarios with different timing constraints. The shaded areas in the

charts represent solutions with timing constraint violations.

The work also shows a very important analysis of different methods to find a fea-

sible solution with minimal power. Figure 4.2 shows (a) ping-pong, (b) penalty function,

and (c) relaxation based constrained optimization. The case shown in Figure 4.2 (b)

resembles the behavior of the simulated annealing method presented in this work (Sec-

tion 5.1, Chapter 5), where the power reduction is obtained while creating timing vio-

lations until the point where violations are penalized in detriment of power. The main

Lagrangian relaxation algorithm proposed in this work has an hybrid behavior between

Figure 4.2 (a) and (c), where the algorithm finds a feasible solution in terms of timing and

35

Figure 4.2: Behavior of three different methods for power optimization.

(a) (b) (c)

Source: Coudert (1997)

Figure 4.3: Power-delay curves for different designs for GS and greedy method.

Source: Coudert (1997)

then reduces power, but allowing unfeasible solutions with small violations (ping-pong

effect).

Figure 4.3 shows four power-delay curves for different designs for GS and a

greedy method. The curves clearly show the superiority of GS over the greedy method

in terms of power. The smooth behavior of power along with different target delays is

important to measure the quality of the proposed methods because it shows the stability

of the algorithm in different scenarios where delay and power have different weights in

the input design.

36

Figure 4.4: Circuit representation after replacing the components by their models (dashed
lines).

Source: Chen, Chu and Wong (1999)

Both GS and greedy results show good improvements in both delay and power.

Comparing GS with the greedy method, there is only a small difference for delay val-

ues. On the other hand, GS results for power are in average 5.2% better than the greedy

method.

4.1.6 Fast and Exact Simultaneous Gate and Wire Sizing by Lagrangian Relaxation

One of the most relevant Lagrangian relaxation works in gate sizing is presented

by Chen, Chu and Wong (1999). It was the first work to prove convergence and to guar-

antee theoretical optimality for the continuous gate sizing problem using convex delay

model. An exact algorithm for gate and wire sizing based on Lagrangian Relaxation and

"one-gate/one-wire-at-a-time" local optimization is presented. The timing constraints are

defined on the gates rather than on the signal paths. This will generate a linear number of

timing constraints, allowing time complexity of O(n× i), where n is the number of gates

and i is the number of iterations.

The proposed method uses the Elmore delay model (ELMORE, 1948) and the

gate is modelled as a switch-level RC circuit with a resistance proportional to the gate

size. Figure 4.4 shows how the circuit is represented after replacing the components by

the their models (dashed lines).

37

The Primal Problem (PP) in the Lagrangian relaxation is formulated as follows:

PP :

minimize
n∑
i=1

αixi

subject to aj ≤ A0 j ∈ input(0)

aj +Di ≤ ai i ∈ G ∪W ∧ ∀j ∈ input(i)

Di ≤ ai i ∈ D

Li ≤ xi ≤ Ui i ∈ G ∪W

(4.2)

where α is a user-specified constant weight for each component, x represents the area (or

the leakage power) of the component, a is the arrival time, D the delay, L and U are the

lower and upper limits for x. ‘0’ is the sink node of the circuit and A0 the required arrival

time at the output components. G,W andD are respectively the set of component indexes

of gates, wires segments and input drivers in the circuit.

Introducing the Lagrange multipliers for each constraint:

Lλ(x, a) =
n∑
i=1

αixi +
∑

j∈input(0)

αj0(aj − A0)

+
∑

i∈G∪W

∑
j∈input(i)

λij(aj +Di − ai) +
∑
i∈D

λmi(Di − ai)
(4.3)

The Lagrangian relaxation subproblem then becomes:

LRS/λ :

minimize Lλ(x, a)

subject to Li ≤ xi ≤ Ui i ∈ G ∪W

(4.4)

Using the Karush-Kuhn-Tucker (KKT) conditions to optimality, the problem is

greatly simplified, eliminating the arrival time from the equation for the dual problem.

This transformation allows only delay calculation during the LRS solving. The simpli-

fied equation becomes:

Lµ(x) =
n∑
i=1

αixi +
n+s∑
i=1

µijDi (4.5)

where, µi =
∑

j∈input(i) λij for 0 ≤ i ≤ n+ s (any node in the circuit).

38

This equation only depends on the gate delays. Using a convex delay model (like

the Elmore delay model) the solution is guaranteed to be optimal, although such model is

inaccurate.

In order to solve the Lagrangian relaxation subproblem, a new set of sizes for all

components is calculated for a fixed set of multipliers. When i ∈ G, let xi be the gate

size, ri be the output resistance of the gate and ci be the input capacitance of a pin of the

gate. Let r̂i and ĉi be respectively the unit size output resistance and the input capacitance

per unit size of gate i. The optimal local sizing of component i is given by equation 4.6.

x∗i = min

(
Ui,max

(
LI ,

√
µir̂iCi
Riĉi + αi

))
(4.6)

where
Ri =

∑
j∈input(i)

µi
r̂i
xj

Ci =
∑

k∈output(i)

µi
ĉk
xk

(4.7)

The proposed iterative algorithm to solve the Lagrangian relaxation subproblem

SOLV E_LRS/µ is shown in Figure 4.5a. This algorithm performs the sizing (based on

the calculated values of capacitance and resistance) with fixed Lagrange multipliers.

Algorithm SOLV E_LDP shown in Figure 4.5c finds the optimal set of multipli-

ers. Initially, an arbitrary set of Lagrange multipliers respecting the Karush–Kuhn–Tucker

(KKT) conditions (λ ∈ Ωλ, where Ωλ is the set of multipliers that respect the flow con-

servation property) is set (line 1). Then, the iterative sizing algorithm calculates the new

sizes until convergence (line 2). After convergence of SOLV E_LRS/µ, a new set of

Lagrange multipliers is calculated (line 3) and projected into Ωλ (line 4).

The algorithm SGWS−LR shown in Figure 4.5b solves optimally the gate sizing

problem. Line 1 is the the iterative method to find the optimal set of Lagrange multipliers

λ. Then, SOLV E_LRS performs the optimal sizing for each component. Algorithm

SOLV ELDP in Figure 4.5c finds the set of Lagrange multipliers for the new solution,

using an user-defined step size ρk.

Those algorithms are the main inspiration for the Lagrangian relaxation-based al-

gorithm presented in this work. In the discrete case, the optimality properties are lost, but

the algorithm is still able to converge to an optimized solution.

Our work also presents algorithms to circumvent the use of an arbitrary initial set

of multipliers in SOLV E_LDP .

39

Figure 4.5: Algorithms (a) SOLV E_LRS/µ , (b) SOLV E_LDP , and (c) SGWS−LR.

(a)

(b)

(c)

Source: Chen, Chu and Wong (1999)

Another important difference in our work is how the new sizes are selected. The

algorithm SOLV E_LRS/µ uses a closed form to calculate the new widths based on

the convex delay model to determine the new optimal resistance and the capacitance. In

contrast, our proposed model evaluates in one step a cost function for all discrete options

available, choosing the lowest cost solution as the new assigned option.

4.1.7 Forge

Tennakoon and Sechen (2002) presented a new fast gradient-based pre-processing

step to provide an effective set of initial Lagrange multipliers for the continuous gate

sizing problem.

The Lagrangian relaxation method is formulated following the same steps and

simplifications proposed by Chen, Chu and Wong (1999).

The work proposes a method to find an initial set of Lagrange multipliers using

a steepest-descent, gradient-based approach. The goal is to arrive at the desired delay

contour. The steepest descent search is applied in topological order to minimize the delay,

40

using equation 4.83. Re-sizing is repeated until the delay is less than the target delay.

x∗i =

√
r̂iCi
Riĉi

(4.8)

The equation to find the multiplier based on the size of i and its input j is

λ =
αixi

(r̂i/xi)Ci − (r̂j/xj) ĉixi
(4.9)

Deriving this equation to handle n-input gates and assuming λij = µi/n,

µi =
αixi

(r̂i/xi)Ci − 1
n
Rsi ĉixi

(4.10)

where Rsi is the sum of the upstream resistances.

Rearranging and solving for x:

xj =

√
λir̂jCj

(αj + λiRsj ĉj)
(4.11)

This proposed approach shows the importance of the initial set of multipliers and

the effect of such choice in the final convergence even in methods with guaranteed con-

vergence. Forge takes advantage of the closed form calculation that relates delay and

widths (resistance and capacitance). In our proposed lambda initialization we also try to

approximate the multipliers to correspond with delays in the current solution, but without

a closed form equation.

The authors propose a modified subgradient search method for multiplier update

LagrangeM . The idea is to avoid the difficulty in determining the proper factors used to

control the step size adjustments to the multipliers in a subgradient-based method.

The work from Tennakoon and Sechen (2005) extends Forge to handle a novel

piecewise convex delay model for static CMOS gates. The model handles distinct rise/-

fall delays and rise/fall slew rates. The method improves the accuracy of the model by

subdividing the available simulation data in to small regions, fitting one convex function

per region. An overlap between regions is defined in order to prevent the solution get-

ting trapped between two regions. Results comparing with a commercial transistor sizing

tool show an average 28.6% area reduction, showing the superiority of LR methods over

common greedy methods.

3Variables and constants follow definitions of previous reference (CHEN; CHU; WONG, 1999).

41

Figure 4.6: Optimization flow.

Source: Chinnery and Keutzer (2005)

4.1.8 Linear Programming for Sizing, Vth and Vdd assignment

Chinnery and Keutzer (2005) expose the problems of using sensitivity-based greedy

sizing as in (SRIVASTAVA; SYLVESTER; BLAAUW, 2004; SHAH et al., 2005), propos-

ing linear programming for a global sizing approach. The linear program is similar to

Nguyen et al. (2003) but modeling each timing arc and including wire loads.

Figure 4.6 shows the flow for the linear programming (LP) problem formulation.

The flow is divided into two steps, both using linear programming to assign which cells

will change. The first step reduces power from the initial solution (obtained from a com-

mercial design tool) while trying to still meet the timing constraints. Since there is no

guarantee that the timing constraint will be satisfied, the second step reduces the delay for

the cases where timing constraint is violated. The process iterates until power improve-

ments are less than a defined threshold.

Experimental results show 10% to 16% power improvements over commercial tool

solutions when two threshold voltages are available. A greedy post-optimization method

is applied to further reduce sizes of gates in paths with some positive slack left after

LP optimization. Nevertheless, the method presents power increase in one case where

only one threshold voltage is available. Moreover, the LP method used is very timing

consuming when compared to LR methods.

42

4.1.9 Timing-aware Power Minimization via Extended Timing Graph Methods

Qian and Acar (2007) discuss the practical issues in applying gate sizing, and the

experimental validation of the proposed methods with real circuits from high performance

microprocessor designs. The work presents a sensitivity-based method that allows fast

incremental and concurrent gate sizing and Vt assignment.

The method starts with a design meeting the timing requirements and then mini-

mizes the leakage power without creating any timing violations. A graph-based iterative

approach is used to look for an optimal set of gates to modify in each iteration.

The work also addresses constraints of industrial design flows usually not ad-

dressed in literature works, such as Notouch designation and cell Grouping, presenting

how the proposed methods handle such constraints.

4.1.10 Gate Sizing for Cell-Library-based Designs

The work presented in (HU; KETKAR; HU, 2007; HU; KETKAR; HU, 2009)

proposes a continuous solution guided dynamic programming algorithm to directly solve

the discrete gate sizing problem. The algorithm is a combination of continuous sizing

and discrete sizing methods. The search space of the dynamic programming (discrete)

is significantly narrowed down under the guidance from a good continuous solution. At

each gate node, instead of every discrete gate size, only those close to the continuous

solution will be investigated, avoiding excessive runtime.

The continuous problem is solved using the Lagrangian relaxation formulation

from (CHEN; CHU; WONG, 1999) with Elmore delay model. Partial discrete solutions

are selected for investigation using a simulated annealing-like randomized process based

on the proximity to the continuous solution. More gate assignments are investigated for

timing critical nodes.

Two types of pruning are used. The first is called node pruning which is performed

when a node is processed. Solutions with known inferiority based on delay and area are

pruned. Only the solution with either a smaller maximum delay or smaller total area sur-

vives. The second type is called solution-set pruning which is performed after a node is

processed and when the size of the solution set is greater than a threshold. Similar solu-

tions are grouped and then the representative one from each group is selected for further

propagation. The solutions which have not been selected are pruned to save runtime, en-

43

abling the LR-based method to achieve runtimes similar to other simpler techniques. In

our work, pruning techniques are also employed to make the LR methodology runtime

feasible.

Results are compared with an implementation of (COUDERT, 1997). 1%–21%

of area-cost reductions are obtained. The runtime including computing the continuous

solution is, on average, about 50% higher than that of (COUDERT, 1997).

4.1.11 Gate Sizing for Large Cell-based Designs

Reference (HELD, 2009) uses slew targets instead of delay budgets to guide the

sizing process. Gates are sized (chosen from cell library) to meet the slew target on its

successors input pins. Similar to our work, it is applied to industrial designs.

First, the algorithm sets the slew targets. Then, an iterative approach repeatedly

chooses the cell sizes to meet the slew targets, updates timing and computes new slew

targets based on an estimate of the slew gradient. The gradient guides the cell to a locally

optimum solution. The algorithm avoids expensive incremental timing updates. Instead,

the timing is updated for the complete design by a timing oracle once per iteration.

After the fast global sizing, a local search (greedy) sizing is applied to further

improve the result. The greedy algorithm is applied to gates in the most timing critical

paths and their fanout gates (bounded to 0.2% of total circuit size) to improve timing.

Results comparing to a industrial tool show an 60% average improvement in TNS

with similar WNS. Area is increased by 7% on average. The total runtime is 5X faster

than the industrial tool for the chosen set of benchmarks (ranging from 64K to 5879K

cells).

4.1.12 A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage As-

signment

References (LIU; HU, 2009) and (LIU; HU, 2010) propose two new techniques

which enable a DP-like solution search for gate sizing and Vt assignment. One is based

on relaxing the presented history consistency constraint. The other is an iterative bi-

directional search that seeks solutions along both the forward and the backward topolog-

ical directions.

44

Figure 4.7: Timing optimization gate sizing algorithm (LIU; HU, 2010).

Compared to the sensitivity driven heuristics, the algorithm is more systematic and

therefore can lead to improved solution quality. The algorithm can be directly applied

on DAG topology. This is achieved using two techniques: consistency relaxation and

coupled bi-directional search. Those techniques are combined in the timing optimization

flow as shown in Figure 4.7.

The solution found by one iteration of relaxation and restricted bi-directional

search may be a local optimum. Therefore, multiple iterations of relaxation and restriction

are used. This approach is thus called iterative joint relaxation and restriction (IJRR).

The disadvantages of Phase I are compensated by an iterative refinement procedure

in Phase II. Each iteration of Phase II consists of a backward search followed by a forward

search.

The authors also present a timing-constrained power optimization flow based on

Lagrangian relaxation. As in our work, the approach follows the methods proposed in

(CHEN; CHU; WONG, 1999).

A parallel GPU-based implementation of the techniques proposed in this work

is presented in reference (LIU; HU, 2011), which provides the same power and timing

results with an average runtime speedup of 39x.

4.1.13 Lagrangian Relaxation for Gate Implementation Selection

Huang, Hu and Shi (2011) present a Lagrangian relaxation-based method for dis-

crete gate sizing using a projection-based descent method for solving the Lagrangian dual

45

problem. The method predicts the timing constraint vs. Lagrangian multiplier behavior

based on the history of previous iterations and then speculates the direction and step size

of the descent move.

First, the expected arrival time for all the fan-in gates is calculated such that the

sum of multipliers distributing to them is equal to what the gate received from its fan-in

gates. The equation used is

∑
vj∈fanin(vi)

aexp − aj
η′(Tj, µj)

=
∑

vk∈fanout(vi)

∆λki = ∆µi (4.12)

where η′(Tj, µj) is based on the history of previous iterations, with more emphasis on

recent history. This approach was tested in our flow but did not present valid results (LR

could not converge).

Then multipliers are calculated for each fan-in gate and also KKT is guaranteed

to be satisfied. Authors claim better convergence in the discrete sizing problem for the

proposed method when compared to sub-gradient method from (CHEN; CHU; WONG,

1999).

4.1.14 Power Reduction Via Near-optimal Library-based Cell-size Selection

Rahman, Tennakoon and Sechen (2011) extend the continuous sizing formulation

in (CHEN; CHU; WONG, 1999) to handle separate rise and fall delays.

The discrete cell sizing is a branch-and-bound methodology guided by continuous

solution. Each cell is assigned a candidate set of discrete sizes that are “close” in some

sense to the continuous size, and which preserve the continuous beta ratio (β) as much

as possible, since PMOS and NMOS transistors’ widths are chosen separately. Upper

bounds (bounding box) in both active area and delay based on the continuous solution are

set to minimize the number of retained partial solutions. Candidate partial solution points

are discarded if they fall outside these bounds.

In the new discrete cell size selection algorithm, the decision on the discretization

of a particular cell is delayed until it is clearer how it will globally impact active area

and delay for the whole circuit. Each generated partial solution, with one additional

discretized gate, requires a call to STA to evaluate its delay. This is the most CPU intensive

part of the algorithm. Authors exploit parallelism to reduce the total number of required

STA runs as well as the CPU time for each STA run.

46

Figure 4.8: Active area and delay results for continuous and discrete sizing methods.

Source: Rahman, Tennakoon and Sechen (2011)

The effectiveness of the proposed discretization method is shown in Figure 4.8

where it is shown that the average delay difference from continuous solution is around

4%.

Results show that the active area is reduced by an average of 40% and leakage

power by an average of 40% compared to leading commercial tools as used in a specific

design flow.

Reference (RAHMAN; SECHEN, 2012) proposes a Vt selection algorithm that

is performed before sizing using the method proposed in (RAHMAN; TENNAKOON;

SECHEN, 2011). In that algorithm, the threshold voltages are raised as much as possible

while strictly maintaining the delay goal. A cost function that is globally aware of the

entire circuit is used to rank the solutions.

The algorithm iteratively globally ranks all of the cells based on a cost function

which is the total slack elimination (in the whole circuit) divided by the leakage reduction

(for that cell). The lowest cost cell is swapped to the next highest available a Vt, as long

as the delay is not increased. The procedure iterates until no cell can feasibly be swapped

to a higher a Vt.

4.1.15 Gate Sizing and Device Technology Selection Algorithms for High-performance

Industrial Designs

Ozdal, Burns and Hu (2011) and Ozdal, Burns and Hu (2012) list the main opti-

mization challenges in modern industrial designs. The main issues are: discrete cell sizes,

cell timing models, complex timing constraints, interconnect timing models, slew effects,

47

many near-critical paths, and large design sizes.

The timing related challenges can be handled by an accurate commercial timer.

However the formulation must enable the use of such a tool, since accurate timing analysis

is very expensive in terms of runtime.

The authors propose a Lagrangian relaxation formulation that decouples timing

analysis from the optimization engine without resulting in loss of accuracy. Also, a graph

model that captures the delay costs of discrete cells accurately based on timing tables

in the cell library is presented. A delta-delay cost metric is proposed to alleviate the

suboptimalities due to double counting in directed acyclic graph (DAG) optimization by

combining fanin and fanout costs in the subnode costs. A dynamic programming (DP)

algorithm based on critical tree extraction is used to solve the LRS optimization problem

for discrete cells.

Following a formulation similar to Chen, Chu and Wong (1999) the authors pro-

pose the decoupling of timing engine and optimization, through the use of slack values to

model the timing constraints. These slacks can be obtained from any commercial sign-

off timer. The use of slacks makes the optimization relevant to multiple clock domains

and false path calculations, since they are provided by the timing engine. The LRS then

becomes

αpower +
∑
po

µpompo +
∑
u→v

µu→v(mu→v −mv) (4.13)

where α is the scaling factor that trades-off power and timing, mu→v = au + du→v − rv
and mv = av − rv. ai and rI are the arrival and required time at node i, respectively.

The method for the Lagrange multiplier update is the same as defined by Chen,

Chu and Wong (1999). The step size function for the subgradient method is shown in

Figure 4.9.

Results show a good convergence for around 30 iterations of LR – see Figure 4.10.

This number of iterations is similar (but larger) than the number of iterations of our in-

dustrial version of LR-based algorithm. However, it is smaller than the iterations needed

in our implementation for the ISPD contest.

The authors present comparisons with respect to the use of an internal (faster but

less accurate) timer, showing great improvements when a sign-off timer is used – Fig-

ure 4.11.

Another point made by the authors is the considerable improvement in quality

seen when comparing the proposed DP-based method against a configuration where LR

48

Figure 4.9: Step size function for Lagrange multipliers update.

Source: Ozdal, Burns and Hu (2012)

Figure 4.10: Lagrangian relaxation convergence for (a) objective function and (b) TNS.

Source: Ozdal, Burns and Hu (2012)

processes gates one-by-one – Figure 4.12.

Figure 4.11: Results when using internal or sign-off timer.

Source: Ozdal, Burns and Hu (2012)

49

Figure 4.12: Comparison for the DP algorithm and a single node method in LR.

Source: Ozdal, Burns and Hu (2012)

4.2 State-of-the-Art

4.2.1 The ISPD Contest 2012

The ISPD Discrete Gate Sizing Contest 2012 brought attention back to the discrete

gate sizing problem (OZDAL et al., 2012). The Contest focuses on simultaneous gate siz-

ing and Vt assignment to optimize static (leakage) power under performance constraints.

The simplified problem formulation comprises a standard cell library and a set of

netlists with fixed timing constraints and interconnect parasitics. As the output of the

problem, cell sizes and Vt should be provided. The first goal is to satisfy all performance

constraints: maximum slew, maximum load capacitance, and setup timing constraints.

The second goal is to minimize total leakage power.

An industrial timing engine is used as the reference timer. All benchmarks pro-

vided are guaranteed to have a feasible solution with all constraints being satisfied.

The main objective of the contest was to expose industrial challenges in the gate

sizing problem to academia. The most common industrial challenges pointed out by the

contest are: discrete cell sizes, continuous optimization and rounding, typically subopti-

mal non-convex cell timing models due to transistor folding in the layout, slew dependen-

cies and max slew constraints, and large design sizes. This contest was not covering other

challenges as: multiple clock domains, false paths, interconnect models.

The cell library was created specifically for the contest, with realistic non-convex

timing models (Figure 4.13) and realistic cell sizes and Vt levels. Timing tables were

generated based on a simple current source model.

There were two main sources of non-convexities in the models: transistor folding

50

Figure 4.13: Non-convex gate delays for a 3-inputs medium Vt NAND gate.

Source: Ozdal et al. (2012)

in the layout and p/n transistor size ratios not always constant due to discreteness.

A runtime limit is imposed for the execution of each benchmark. It depends lin-

early on the number of gates in the design, as follows:

Runtime = 5h+ 1h×
⌈

#gates

35K

⌉
(4.14)

For the primary ranking, the metric used prioritizes the minimization of the to-

tal number of violations. Since all benchmarks had violation-free solutions, the second

metric (total leakage power) becomes the real goal in the contest.

In the secondary ranking, violations are still the primary metric, but all the solu-

tions with the same number of violations are ranked based also on the runtime necessary

to generate a solution, as defined in 4.15. This metric trades quality by runtime improve-

ment with respect to a reference power and runtime values.

cost =
Power

PowerREF
+ γ × Runtime

RuntimeREF
(4.15)

PowerREF and RuntimeREF are the measurements from the best quality solution (ac-

cording to primary ranking metric) for each benchmark, and γ is set to 0.05, e.g., 1%

degradation in the solution quality can be compensated by a 20% runtime reduction with

respect to reference values.

Different techniques were presented by the contestant teams (only one methodol-

ogy published by Reimann et al. (2013)) and a new set of benchmarks together with a

51

Table 4.1: Number of combinational gates and leakage power (W) on ISPD 2012 bench-
marks.

Benchmark
of Clock Leakage Power (W)

Gates (ps) 1st 2nd 3rd Best

DMA_slow
25K

900 0.205 0.158 0.147 0.147
DMA_fast 770 0.511 0.323 0.312 0.312

pci_bridge32_slow
33K

720 0.203 0.115 0.116 0.115
pci_bridge32_fast 660 0.512 0.168 0.226 0.168

des_perf_slow
111K

900 0.674 0.884 0.697 0.674
des_perf_fast 735 2.390 3.520 2.320 2.320

vga_lcd_slow
165K

700 0.415 0.378 0.391 0.378
vga_lcd_fast 610 0.758 0.580 0.773 0.580

b19_slow
219K

2500 0.627 0.614 0.736 0.614
b19_fast 2100 2.710 - 4.490 1.040

leon3mp_slow
649K

1800 1.420 1.790 2.960 1.420
leon3mp_fast 1500 - - 4.940 2.020

netcard_slow
959K

1900 1.770 1.970 1.940 1.770
netcard_fast 1200 2.010 2.300 2.970 2.010

cell library based on recent technologies were publicly released for the evaluation of the

submitted tools. The results are presented in Table 4.1.

However, the results of the contest could still be improved by considerable margin

(OZDAL et al., 2012). Lee and Gupta (2012) also stated their concern with the quality of

results presented in the contest, highlighting that no method was able to establish as the

“best" method. The authors also urged that more work is needed to properly develop the

state-of-the-art.

That led to the publication of much more improved results after the contest (LI et

al., 2012; HU et al., 2012) using the same set of benchmarks and cell library.

New results were presented further improving the best results published after the

contest (FLACH et al., 2013). These state-of-the-art results are part of this work, as

detailed in next chapter.

52

Figure 4.14: (a) Initial sizing to fix electrical violations, (b) Min-Clock LR, and (c) La-
grange multiplier update algorithms.

(a)

(b) (c)

Source: Li et al. (2012)

4.2.2 An Efficient Algorithm for Library-based Cell-type Selection in High-performance

Low-power Designs

Authors of reference (LI et al., 2012) propose a flow to take advantage of the

emerging many-core systems to effectively reduce the design cycle time for modern de-

signs. Another concern is that the designer should have a clear picture of the performance

(timing) limit of a design, as well as the possible power-performance trade-off.

The work is based on the ISPD Contest 2012 formulation. The proposed flow in-

cludes a Minimum Clock Period Lagrangian Relaxation (Min-Clock LR) method to gen-

erate the fastest design with all possible cell-types. After finding the highest-performance

design, a min-cost network flow based method is used to optimize the power consump-

tion while maintaining the timing feasibility of the design. Further improvement in power

is achieved by a greedy heuristic to prune power by maximally utilizing any remaining

timing slacks.

An initial sizing is performed in order to provide a electrical violation-free design

to the Min-Clock LR algorithm. The algorithm is shown in Figure 4.14a. α ≤ 1 is an

empirical parameter to control the load ratio between a driver cell and its fanout cells.

α = 1 produces the slowest design without any capacitance or slew violation. For the

53

Figure 4.15: Resizing effect example.

Source: Li et al. (2012)

experiments, the authors use 0.6 ≤ α ≤ 0.8.

The algorithm of Min-Clock LR is shown in Figure 4.14b. The LRS is approxi-

mately solved in the inner for loop. The outer while loop is to solve the LDP. In order

to avoid the excessive use of incremental timing updates with an accurate timing model,

the authors present a heuristic for the LRS which avoids the incremental timing update.

A novel parallel-friendly approach to the LR subproblem (LRS) is presented. It is im-

portant to note that these procedures cause timing inaccuracies and sub-optimality – such

methods are not employed in our work. Nevertheless, our approach can achieve similar

runtimes – see Section 5.4.

The example in Figure 4.15 is used to show the comprehensive effect of resizing

a cell. When resizing cell A, while all other cells remain unchanged, all cells connected

to input and output pins of A are considered for timing analysis. Cell resizes that create

electrical violations are not considered. The delays on timing arcs b1, b2, c1, c2 need

to be re-estimated due to load changes. With the slew change in nets x and y, f2 and g1

also need a timing update. The same is true for timing arcs a1 and a2 for the new size

of cell A. Then timing on net z and arcs d1 and e1 is updated. The authors claim that no

further propagation is needed for accuracy, and even cells F and G could be skipped in

some cases (if input pin capacitances of cell A are reduced by a resize).

The LR convergence speed is boosted by a modified subgradient method. The

algorithm to update the Lagrange multipliers is shown in Figure 4.14c. Authors propose

a new multiplier update method that adjusts sub-gradients according to local delay and

arrival time. The parameter β defines the step size. A larger β implies a faster but less

controlled convergence. The authors found that β = 2 is a proper trade-off between

54

stability and fast convergence.

The min-cost flow algorithm is modified to handle discrete non-convex timing

models. The network flow formulation is based on the work by Ma and Young (2008).

In order to speed up the heuristic, a fast and coarse-grained timing update technique is

developed to replace the accurate but expensive timing update. After the min-cost flow

algorithm, the solution is further improved by a sensitivity-based greedy method called

Power Pruning.

Experimental results show that the algorithm can achieve 13% more power savings

on designs with fast timing constraints compared to the best ISPD Contest 2012 results

– those results are outperformed by our methods (Section 5.4). The algorithm exhibits a

near-linear empirical runtime, with processing rate from 1 to 1.5 hours per million cells.

4.2.3 Trident

(HU et al., 2012) presents a sensitivity-guided heuristic approach based on sequen-

tial importance sampling (ALDOUS; VAZIRANI, 1994) that integrates power and timing

optimization, and handles several types of constraints.

Total Negative Slack (TNS) estimation is used in the sensitivity functions rather

than just the worst slack. A parameterized space of sensitivity functions for gate sizing is

defined. The method traverses this space using a multistart technique that naturally lends

itself to efficient parallelization on multi-core and shared memory CPU architectures, and

distributed systems.

The proposed heuristic has two stages – Global Timing Recovery (GTR), and

Power Reduction with Feasible Timing (PRFT). GTR first seeks violation-free (feasible)

solutions, and then PRFT iteratively reduces total leakage power of sizing solutions by

local search. The overall flow is presented in Figure 4.16.

GTR starts with minimum-leakage cell configurations that are incrementally re-

fined by increasing/decreasing gate sizes or decreasing/increasing threshold voltages. Both

cell upsizing and decreasing Vt are performed in the smallest possible increments; the or-

dering of these actions is determined by their sensitivities, which are calculated by the

impact on TNS and leakage power.

sensitivityGTR =
∆TNS

∆leakage_powerα
(4.16)

55

Figure 4.16: Overall gate sizing flow.

Source: Hu et al. (2012)

Figure 4.17: Sensitivity functions used.

Source: Hu et al. (2012)

All cell modifications are evaluated assuming other cells are fixed. In order to

prevent inaccuracies in sensitivities calculation, only the first γ% of modifications are

committed between consecutive STA invocations. The variables 0 ≤ α ≤ 3.0 and 0 <

γ ≤ 60% determine specific multistart configurations.

The sensitivity-guided greedy sizing (SGGS) method downsizes cells according

to the sensitivity while avoiding timing violations. The sensitivities used in SSGS are

presented in Figure 4.17.

ISTA(ci) is an incremental STA operation after cell ci is changed. The SGGS algo-

rithm starts with STA and initializes all timing nodes. Sensitivities are computed for all

downsizable cells. Both gate downsizing and increasing Vt for the sensitivity calculation.

In order to reduce leakage power, the algorithm selects a cell ci with maximum

sensitivity, and downsizes ci or increases its Vt. Incremental timing analysis and checking

56

for violations is performed to avoid inserting electrical violations. The loop continues

until M becomes empty. The slack legalization phase fixes timing violations present after

the execution of SGGS. Furthermore, bottleneck cells are identified and sped up to create

more space for downsizing and Vt increase in other cells belonging to the same paths.

PRFT repeats until no more improvements are found.

The experimental results presented in the paper show considerable improvements

over the best results in the ISPD Contest 2012 and similar quality to the results in (LI et

al., 2012). Again, the quality of our results outperforms these improvements.

4.2.4 The ISPD Contest 2013

The second contest presented more challenging benchmarks and also a more real-

istic delay model (OZDAL et al., 2013). For static timing analysis, interconnecting wires

are represented as an RC tree, different from the lumped capacitance model used in 2012.

This model makes the correct assessment of timing and electrical violations much more

challenging, since the algorithms used in the reference commercial sign-off timer are not

publicly available.

The introduction of distributed wire delays and slew degradation in the contest

makes the contestant’s internal STA tools inaccurate with respect to the commercial accu-

rate timer used for the solution evaluation. This inaccuracy will vary based on the chosen

timing models used in each tool.

As in the first contest, there are two rankings, the primary and the secondary. For

the first ranking the metrics are the same from previous contest. The new runtime limit

for the primary ranking is set as:

RuntimePRIMARY = 3h+ 1h×
⌈

#gates

40K

⌉
(4.17)

For the secondary ranking a tighter runtime is defined:

RuntimeSECONDARY =

⌈
RuntimePRIMARY

5

⌉
(4.18)

In the secondary ranking, the quality metric considers the runtime following the

equation:

cost = Power +

(
(1− γ) + γ × Runtime

RuntimeREF

)
(4.19)

57

Table 4.2: Number of combinational gates, leakage power (W) and runtime (min) on
ISPD 2013 benchmarks.

Benchmark
of Leakage Power (W) Runtime (min)

Gates 1st 2nd 3rd 1st 2nd 3rd

usb_phy_slow 609 0.001 0.001 0.001 9.90 0.60 0.79
usb_phy_fast 0.002 0.002 0.007 0.58 0.42 6.75

pci_bridge32_slow 31K 0.058 0.059 0.077 14.28 6.60 225.37
pci_bridge32_fast 0.097 0.107 - 87.03 11.62 -

fft_slow 32K 0.090 0.095 0.107 36.63 23.17 121.07
fft_fast 0.226 0.321 0.638 52.15 35.25 229.38

cordic_slow 42K 0.324 0.4441 1.0781 94.7 92.421 244.731

cordic_fast - - - - - -

des_perf_slow 113K 0.353 0.380 2.392 96.05 69.17 350.20
des_perf_fast - - - - - -

edit_dist_slow 131K 0.447 0.468 - 116.23 107.93 -
edit_dist_fast 0.596 0.639 - 185.50 166.07 -

matrix_mult_slow 155K 0.470 0.5131 1.381 243.40 215.781 416.28
matrix_mult_fast - - - - - -

netcard_slow 982K 5.302 5.371 5.2461 549.40 1680.27 1655.421

netcard_fast 5.318 - 19.152 613.25 - 1655.03

1 Solutions had very small violations (< 0.1 – ps and/or pF).

RuntimeREF is fixed and defined as half of the runtime limit. Also, γ is set to 0.05,

e.g., using the full runtime limit will represent an increase in 5% in the solution cost. A

runtime close to zero represents a reduction of close to 5% in the final cost.

The winning team – called SOUTH-Brazil, and which algorithms are part of this

work – presented a good margin against the second placed tool (∼8%). Contest results

are presented in Table 4.2. For three designs, none of the submitted tools were able to

find a violation-free solution.

After the contest, the results of the winning tool were further improved by about

10% after changes in the internal timing engine and the use of a commercial accurate

timer in some stages of the proposed flow (FLACH et al., 2014). These methodologies

are also part of this work. Different from the first contest, the proposed flow finds the

best solution for all benchmarks. This method is also the only published work to present

results with violation-free solutions for all designs.

58

Figure 4.18: Optimization flow.

Source: Kahng et al. (2013)

4.2.5 Trident 2.0

Kahng et al. (2013) present a multi-threaded, stochastic optimization tool for cell

selection to minimize leakage power subject to capacitance, slew and timing constraints.

The overall optimization flow is shown in Figure 4.18.

The first stage of Trident2.0, called Global Timing Recovery without a sign-off

timer (GTRwoST), uses a multi-threaded meta-heuristic to optimize individual parameters

of lower-level search heuristics with interconnect delay models and constraints, relying

only on internal timer calculations. The second stage also seeks to produce a feasible so-

lution, but performing timing calibration with the sign-off timer. The third stage performs

power reduction with feasible timing (PRFT), also using timing calibration. A sensitivity-

guided greedy downsizing (SGGS) is used with different sensitivity functions. The best

59

Figure 4.19: (a) Impact of calibration frequency and (b) leakage power results for different
calibration strategies.

(a) (b)

Source: Kahng et al. (2013)

solution is carried to the second phase of PRFT where the best sensitivity function from

first phase is used with greedy downsizing as in (HU et al., 2012).

The internal timer applies an offset-based timing calibration method that invokes

the sign-off timer periodically and stores the slack differences at every timing endpoint.The

accuracy of the internal timer decreases as the number of cell changes accumulates, re-

quiring a new calibration every time the number of cell changes reaches 5% or 10%.

Figure 4.19a shows the impact of calibration frequency in the slack error.

Authors also discuss the impact of timing accuracy on leakage power results,

showing that frequent timing calibration presents the best leakage power results when

compared to less frequent or no calibration results. Figure 4.19b shows the leakage com-

parison between runs with different calibration strategies. It is shown that methods using

calibration are more efficient than using a guardband (GB) to compensate the slack error.

The more frequent the calibration (more accuracy), the better are the leakage power re-

sults. The D2M (delay with two moments) (ALPERT; DEVGAN; KASHYAP, 2000) and

PERI (KASHYAP et al., 2002) models are used for wire delay and slew model, respec-

tively.

Trident 2.0 outperforms the winners in the secondary-metric of ISPD Contest 2013

and places between first and second for the primary metric.

60

Figure 4.20: TNS and power progression over LR iterations on b19fast benchmark.

Source: Sharma et al. (2015)

4.2.6 Fast Lagrangian Relaxation Based Gate Sizing using Multi-Threading

Sharma et al. (2015) propose techniques to speedup Lagrangian relaxation-based

gate sizing. The proposed flow is tested with the ISPD 2012 Contest benchmark suite.

The authors present two main techniques to explore parallelism in the LR itera-

tions without loosing significant quality in the results of a flow similar to the LR flow

described here in Section 5.3. Instead of using the more common leveling and cluster-

ing techniques for parallel processing of several gates, it is suggested the use of mutual-

exclusion edge (MEE) and directed acyclic graph (DAG) netlist traversal (DNT). These

techniques allow better load balancing among threads and a reduction in thread idle time

than the former approaches.

Another technique proposed addresses the local resizing during LR iterations. The

local search is performed from smallest to largest cell size in the vicinity of current solu-

tion and is halted when no improvement in the cost is found in this search window. That

approach reduces cell evaluations by 3.3x less and overall LR runtime by 3x.

Figure 4.20 shows the TNS and leakage power convergence for the two optimal

local resizing (OLR) implementations. Fast-OLR includes the technique just described.

The local search also improves convergence by avoiding disruptions in solution timing

quality. We can see in the final iterations of LR that disruptions in timing generate less

improved power results.

61

4.3 Summary and Discussion

Beyond the aforementioned works, many other publications also address the tran-

sistor/gate sizing and the device selection problem but are not detailed in this work. The

reader can refer to the works from Beeftink et al. (1998), Harris et al. (1997), Sapat-

nekar (2004), Berkelaar, Buurman and Jess (1994), Berkelaar, Buurman and Jess (1996),

Nguyen et al. (2003), Srivastava and Sylvester (2005.), Ghiasi et al. (2004), Santos (2005),

Santos et al. (2005/b), Shah et al. (2005), Chopra et al. (2005), Singh et al. (2005), Roy,

Chen and Chen (2005), Chinnery (2006), Roy et al. (2007), Singh, Luo and Sapatnekar

(2008), Dutt and Ren (2010), Ren and Dutt (2011), Rahman, Tennakoon and Sechen

(2013) to find more algorithms and further insights related to the cell selection problem.

Also, Wang, Das and Zhou (July 2009) revisit the Lagrangian relaxation gate sizing for-

mulation, correcting misunderstandings and extending it to handle general convex delay

models.

Table 4.3 presents a summary of the techniques described in previous section and

some characteristics of each one. Trans./Gate refers to the application of the method:

transistor or gate sizing. Sign-off column shows whether the method uses a commer-

cial/industrial sign-off timer during the optimization. C/D shows whether the method is

applied to the continuous or discrete problem.

Lee and Gupta (2012) present a comprehensive study of the cell selection problem

going through the details of several works in the literature and proposed techniques. The

work classifies the methods by their techniques and presents useful comparisons between

the algorithms.

Many of the issues faced by cell selection algorithms are not new and are exten-

sively studied in literature. However, the difficulty of applying academic algorithms in

industry is still one of the major problems. As stated by Coudert (1996), approaches

found in literature typically suffer from at least one of the following problems:

1. The cost models, especially for gate delay, slew, wire delay, and power, are not

realistic, or are oversimplified to fit an optimization technique.

2. Some methods assume that the gates can be continuously sized, with the idea of

solving an easier problem and then projecting the continuous solution on a discrete

solution. But projective methods can even fail to find a feasible solution: gate sizing

is essentially a combinatorial problem (NP-complete).

3. Some methods make crude assumptions on the optimality criterion, e.g., minimiz-

62

Table 4.3: Summary of techniques present in references. Optimal refers to the optimality
claimed for the chosen (inaccurate) models in each work.

Reference Trans./Gate Core Method Optimal Sign-off C/D

Fishburn and Dunlop (1985) Trans. Posynomial Progr. No No C
Chan (1990) Gate Heuristic Yes No D
Berkelaar and Jess (1990) Gate Linear Program Yes No C
Lin, Marek-Sadowska and Kuh (1990) Gate Sensitivities Yes No D
Li et al. (1993) Gate Heuristic No No D
Coudert (1997) Gate Heuristic No Yes D
Chen, Chu and Wong (1999) Gate Lagrangian Yes No C
Tennakoon and Sechen (2005) Gate Lagrangian Yes No C
Chinnery and Keutzer (2005) Gate Linear Progr. No Yes D
Qian and Acar (2007) Both Sensitivities No Yes C/D
Hu, Ketkar and Hu (2009) Gate Lagrangian No No D
Held (2009) Gate Slew target No Yes D
Liu and Hu (2010) Gate Lagrangian No No D
Huang, Hu and Shi (2011) Gate Lagrangian No No D
Rahman, Tennakoon and Sechen (2011) Gate Lagrangian No No C/D
Ozdal, Burns and Hu (2012) Gate Lagrangian No Yes D
Hu et al. (2012) Gate Sensitivities No No D
Kahng et al. (2013) Gate Stochastic No Calibr. D

ing a weighted power and delay product is the best power/delay trade-off, while the

problem is about constrained optimization.

4. Some methods assume that the objective function or/and the feasible region is con-

vex, which does not hold with accurate delay and power model.

5. Some methods are too runtime expensive to be applied on circuits with more than

1000 nodes.

Also, as detailed by Coudert (1996), several of the industry problems in cell se-

lection are not considered in most publications. The constraints also include maximum

fanout load or maximum transition time. Accurate delay models make gate sizing a non-

linear, non-convex, constrained, discrete, optimization problem. Moreover, that it is not

even unimodal, i.e., several local extrema exist. Because of the delay dependency on out-

put load and input transition time, sizing a gate affects the propagation times and output

transition times of its fanin and of its fanout gates, demanding many timing updates. De-

lay optimization can encounter (and get trapped in) several local extrema because of the

non-convexity of the delay model. This makes more important to have a method that can

avoid such traps (COUDERT, 1996).

Another industry concern is the application of cell selection when the design is

63

Figure 4.21: Greedy sensitivity-based sizing example.

Source: Chinnery and Keutzer (2005)

infeasible, violating some timing constraints. The objectives become different than most

works found in the literature. In industry, a practical objective is to maximize the worst

slack, but to also push less critical negative slacks towards zero. This approach reduces

the need for other more resource-consuming optimization routines (HELD, 2009).

The importance of using cell selection algorithms in incremental optimization

tools is examined by Lee and Gupta (2012). Performing gate sizing and changing Vt

levels is less disruptive than changing placement and/or routing of tens or hundreds of

cells.

References also highlight that known and widely used methods can also fail even

in simple cases. Chinnery and Keutzer (2005) present an example of how greedy sensitivity-

based methods fail to find local optimal solutions in simple cases (Figure 4.21). Just

choosing the gate with the maximum sensitivity is suboptimal. For instance, if all the

gates in the above example are initially sized with the X2 option, the critical path delays

is 2ns and total power consumption is 12mW. Considering a 3ns delay target, the max-

imum power_reduction/delay_increase sensitivity choice wiil be to downsize the AND4

gate, resulting in 10mW total power. Nevertheless, downsizing the four AND2 results in

8mW total power.

Considering the objectives of cell selection optimization, the reader can notice a

very clear shift from timing/area optimization to power optimization in the literature. This

is caused by the increasing challenge of power in modern technologies and designs for

portable low power devices. Dynamic power is still dominant in some designs, partic-

ularly for process technologies 22nm and below with FinFETs. According to Chinnery

and Keutzer (2005), more than 95% of the change in power can be calculated at that gate:

switching power due to Cin; switching power of the load with Vdd; leakage power; and

internal power. Slew changes cause small total power changes of typically less than 10%.

From a practical perspective, runtime is always a limiting factor when applying

realistic and accurate delays models, as highlighted by Li et al. (2012): Also, it is known

64

Figure 4.22: Lagrangian relaxation convergence.

Source: Liu and Hu (2010)

that the continuous sizing model may work well for traditional transistor sizing, but it is

not a good option when designing with macrocells and standard cells (CHAN, 1990).

However, with standard cell libraries, the delay model is not convex, eliminating

the guarantee of finding the optimal solution. Also, the delay directly depends on slew

propagation, implying the same effort of propagating arrival times. Those issues will be

discussed in more detail in Chapter 5.

Comparing with many other techniques applied to this problem, Lagrangian relax-

ation algorithms have shown the best results in the recent literature (FLACH et al., 2013;

FLACH et al., 2014). However, applying LR is not an easy task. Tennakoon and Sechen

(2002) emphasize the difficulties of convergence in LR formulations for cell selection. In

practice, it has been seen that the LR convergence guarantee when using subgratient is

not easy either (BAZARAA; SHETTY, 1979; LORENA; SENNE, 1999). The subgra-

dient optimization is very sensitive to the initial values for the multipliers and the step

size (TENNAKOON; SECHEN, 2002).

More drawbacks of sub-gradient method are also presented by Huang, Hu and Shi

(2011). Discrete cell sizing presents either drastic changes in slack, causing the ping-pong

effect on solution, or very small changes, when LR needs to waste several iterations to

cause a simple change in size/Vt.

Another know problem of applying LR is the convergence. Figure 4.22 shows

an example of convergence that takes around 15 iterations to start reducing power. With

the use of sign-off timing analysis, it is desirable to speed up convergence as much as

possible.

All the aforementioned issues are still faced when solving the cell selection in

65

modern real-life industrial designs. Algorithms to handle such issues and provide highly

optimized solutions are needed in industry. The goal of this work is to provide a solid

problem formulation to apply a state-of-the-art cell selection algorithm in real industrial

designs, considering all the necessary quality metrics involved in a industrial design flow.

The publications Reimann et al. (2013), Flach et al. (2013), Flach et al. (2014),

Reimann, Sze and Reis (2015), Reimann, Sze and Reis (2016), Reimann, Sze and Reis

(2016) are part of this work and all algorithms, flows, discussions and results contained

in them are presented in this work. Flach (2015) also presents parts of the work detailed

in this thesis.

66

5 PROPOSED FLOWS AND TECHNIQUES

In this chapter we detail the algorithms proposed in this work. As previously in

the text, the methods are presented in a chronological order for better comprehension of

the timeline and the evolution of this work.

5.1 Simulated Annealing-based Algorithm

This is the first method developed for discrete gate sizing and Vt assignment in

this work. This method was evaluated and compared with respect to the other contestant

teams in the ISPD Contest 2012. Part of this work is already published in (REIMANN et

al., 2013).

The proposed methodology is composed of a set of heuristic algorithms to address

the cell selection problem for timing-constrained leakage power minimization while satis-

fying maximum load capacitance and maximum input slew constraints. The cell selection

flow combines the Fanout-of-4 (FO4) empirical rule, the Logical Effort (LE) concept, a

Simulated Annealing (SA) as the main optimization engine, as well as a new set of spe-

cific optimization strategies to solve the problem as formulated in the 2012 ISPD Gate

Sizing Contest. No initial solution is provided. Therefore, not only power optimization

but also timing closure must be achieved, what is a challenge by itself in designs with

thigh constraints.

The main contribution of this work is to show how a sequence of Simulated

Annealing runs, starting from a timing-infeasible solution improved by Logical Effort,

Fanout-of-4 rule, and employing a set of new techniques can be used together to solve

cell selection problems of up to a million gates.

A new dynamic cost function is used. It enables SA to deal with the conflicting

objectives during the optimization. The entire flow was able to achieve the second and

first ranks in the ISPD 2012 Contest. Here we present a set of different experiments to

support design decisions and highlight the quality of the achieved results.

67

5.1.1 Logical Effort

The logical effort (LE) method is based on a simple model of the delay through a

single logic gate (SUTHERLAND; SPROULL; HARRIS, 1999). Each different combi-

national function in the library has a different logical effort. The logical effort calculation

is based on an inverter, which has a logical effort of 1. For a logic gate, it tells how much

slower it will drive a load than would do a reference inverter, i.e., how much more input

capacitance a gate must present in order to deliver the same output current as an inverter

(SUTHERLAND; SPROULL; HARRIS, 1999). It is defined as the ratio of the input

capacitance of a gate to the input capacitance of an inverter delivering the same output

current.

LE =
Cingate

Cininv

(5.1)

For example, if the inverter has three units of input capacitance while the NAND

gate has four, the NAND gate has a logical effort of LE = 4/3.

5.1.2 Fanout-of-n Sizing

Fanout-of-4 (FO4) is a simple and efficient rule for delay-optimal gate sizing

(SUTHERLAND; SPROULL; HARRIS, 1999; RABAEY; CHANDRAKASAN; NIKOLIC,

2002). It is based on the idea that an inverter can drive a load approximately four times

larger than its input capacitance. This ratio closely relates to the best delay in an inverter

chain that drives a large capacitance. The fanout ratio is given by the following equation:

Fanout =
Cload
Cin

(5.2)

where, Cload is the load capacitance (including wire load in our case) and Cin is the input

capacitance of the gate.

Considering the fanout of 4 rule, the input capacitance is given by:

Cin =
Cload

4
(5.3)

In this work we show the impact of different values of "n" (fanout) on the SA

convergence and solution quality. The initial solution finds which cell options have fanout

68

ratio equal to or closer to "n". The cells are ordered according to their leakage power, so

the algorithm will choose the cell option with smallest leakage that satisfies the fanout

ratio rule. The cells are evaluated in reverse topological order, since the output loads are

fixed.

If a cell is in a path with negative slack, only the faster cell options, i.e. options

with smaller Vt , are considered, resulting in gates with more leakage power. Therefore,

to calculate the fanout of each cell we combine the fanout ratio with LE as follows:

Fanout =
Cload

Cin ∗ LEgate
(5.4)

where LEgate is the logical effort of the gate as defined above.

This equation is used to produce the initial solution that is provided to the SA

algorithm. Such an initial solution is considered to have a relatively good timing quality

and few or none electrical violations. However it is not power-optimized.

5.1.3 Timing Engine

The most important aspect that need to be addressed to make SA scalable (and

feasible for the expected runtime) is the process of timing updates after changes in size

and Vt of gates. Since SA only performs a single cell change per iteration, the timing

engine must do many updates during execution. In order to enable such a methodology,

the timing analyser must be highly efficient. To achieve that, logical depths are pre-

computed and contiguous data structures are used to enhance cache-obliviousness while

executing timing updates, as detailed below.

The timing model defined in the ISPD 2012 Contest (OZDAL et al., 2012) is used

for static timing analysis. This model propagates only the worst slews and worst arrival

times, using NLDM with delay and slew lookup tables and lumped wire capacitance.

Logical depths are useful as they define a proper order to process cells for static timing

analysis. A cell with logical depth n should be processed before all cells with logical

depth n+ 1.With this, the arrival times can be updated without the need for an extra loop

over the circuit.

Prior to the data structure construction, a pre-processing step is performed where

the logical depth of each cell is computed. Logical depths are propagated from path

drivers (a primary input or the output of a sequential element) to path sinks (primary

69

outputs and/or data inputs of sequential elements). Primary inputs and sequential elements

are defined as having a logical depth of zero. The logical depth of a combinational cell is

set to the maximum logical depth among its driving cells plus one.

The netlist is modeled as a directed graph where edges represent the timing arcs

and nodes represent circuit nets. The graph structure is stored in a way similar to the

Compressed Row Storage (CRS) format (SILVA, 2005) used to store sparse matrices.

The necessary data is stored in three vectors as depicted by Figure 5.1:

• Vector of Timing Arcs - stores slew and delay information of timing arcs com-

puted directly from the library lookup tables, as well as the pointer to the respective

lookup table;

• Vector of Nets - stores slew and delay information, arrival and required times,

capacitive load, as well as pointers to the vector of Timing Arcs and to the vector

of Sink Net Pointers. The net vector is sorted by increasing logical depth, with the

logical depth of a net being equal to the logical depth of its driving cell;

• Vector of Sink Net Pointers - stores pointers to the Vector of Nets. These pointers

are used to easily find sink nets being driven by a specific net.

Dummy nets and timing arcs are left at the beginning of vectors to avoid dealing

with special cases when calculating timing for zero-logical depth nets. A dummy net is

created for each primary input and another one represents the clock net. For each dummy

net, a respective dummy timing arc is added. They are used to model the pre-defined pri-

mary input delays and account for special timing characteristics of sequential elements.

This allows the timing engine to treat both cell types, sequential and combinational, uni-

formly.

Two modes for the static timing analysis are available in order to enable many

timer calls: full timing analysis and incremental timing analysis.

The full timing analysis is used to update timing for the whole circuit. It is required

during start up and whenever more than one cell is changed at once without the respective

incremental timing update. As the timing data structure keeps nets organized by logical

depth, the timing analysis can be performed by simply sweeping nets, without relying

on any extra data structure such as a queue. Nets are swept from logical depth zero to

the highest logical depth. This ensures that, when a cell is being updated, all required

information have already been calculated. Furthermore, cells with the same logical depth

may be computed in parallel.

70

Figure 5.1: Timer Data Structure

Source: from author (2016)

Incremental timing analysis is used to keep timing updated when a single cell is

changed. Differently from full timing analysis, the incremental timing update relies on a

queue data structure to update only the paths which are affected by the change.

When a cell size is changed, all cells in the fanout cones of its drivers must be

updated. These fanout cones may have a large number of cells in common so that updating

cells in a simple breadth-first manner may perform a lot of unnecessary work. This issue

is simply solved by replacing the queue used in the breadth-first walking by a priority

queue where cells with lower logical depth are processed first.

As the timing changes propagate through the netlist away from the changed cell,

the timing variations may become less and less significant. Therefore, the proposed

methodology uses a threshold limit (ε) for the timing variation that stops further prop-

agation, saving runtime with no impact on the accuracy of final timing results. This

threshold to stop propagation leads to up to 17X savings in node updates and an average

3X overall faster timing calculation when executing the proposed flow. Figure 5.2 shows

the number of updated nodes for six benchmarks from the ISPD 2012 Contest using ε = 0

and ε = 1E-6.

5.1.4 Simulated Annealing with Dynamic Cost Function

It is well known that SA requires large runtime and typically does not scale well

to large problem sizes. To compensate for this downside of the SA, heuristics combined

with a reasonable temperature schedule are needed.

Some empirical tests showed that an appropriated schedule alone would not have a

71

Figure 5.2: Number of updated nodes for two different threshold values ε.

Source: from author (2016)

reasonable runtime and would also not respect the hard runtime limit set in the ISPD 2012

Contest. In the proposed flow, each SA iteration randomly selects a cell instance over the

circuit and randomly chooses its new size. The new cost is then evaluated (incremental

timing update) and the new solution is accepted or rejected, as usual in SA-based methods.

The main conflict in cell selection using SA is that the algorithm needs to accept

violations to reduce leakage and keep the violations under control at the same time. How-

ever, a static cost function would penalize violations with a constant value during the

entire annealing process. This approach is extremely inefficient due to single cell changes

performed in SA. Changing only a single cell in each SA iteration may lead to violations

(to reduce leakage power) that can only be solved in subsequent iterations (for example

by reducing other cells, i.e., output load). A cost function that penalizes every violation in

the same way would reject several changes that could be fixed later, preventing the algo-

rithm from finding a good solution in terms of leakage, since it loses the “hill climbing”

capability.

In this work, a dynamic cost function is proposed to allow a certain amount of

violations during initial SA iterations, when temperature is still high, and reject violations

when the temperature is reduced. This change in the cost function emulates a relaxation-

like methodology.

The dynamic cost function used is defined in equation 5.5. The dynamic feature

of the function is given by α and β , both dependent on the current temperature, as shown

72

in equations 5.6 and 5.7.

cost = α× (timingviol + slewviol) + β × loadviol + leakagetot (5.5)

α = temp−1 (5.6)

β = temp−2 (5.7)

The original flow submitted to the ISPD 2012 Contest uses an initial solution with

Fanout-of-n, where n = 2, but only the larger cells (with lower Vt) are considered to apply

the fanout rule in paths with negative slack. Then a sequence of four SA loops iterate over

the circuit to find the final power-optimized solution. The runtime limit for each SA loop

is empirically defined as 10%, 30%, 50% and 100% of total maximum runtime. As the

temperature decay actually gives iteration count, it must be directly related to the circuit

cell count (slower decay for bigger circuits).

The first SA loop starts with a low temperature in order to generate a solution free

from timing violations. The loop is not always executed since some circuits already have

no timing violations at this point. Timing critical cells (belonging to paths with negative

slack) have the priority when SA randomly chooses the cell to be changed in the design.

The next three loops perform like a typical SA algorithm. The goal of having

three loops is to avoid locally optimal solutions, since a good temperature schedule would

not be practical due to the runtime limit. With this approach, violations are allowed to

increase three times during the SA execution.

Figure 5.3 shows how total leakage power and total violation behave along SA

iterations (sampling). The three violations peaks are related to initial iterations of each SA

loop, when the higher temperature allows violations to increase while decreasing power

(leakage).

During all loops, a max-load violation control heuristic is used to keep this kind

of violation as low as possible. This heuristic performs a greedy search and increases the

size of a cell with load/slew violation on its output and/or reduces the sizes of its fanout

cells (i.e. cells connected to its output). Although this violation control may interfere

with timing violations, it avoids excessive searching during SA to solve max-load and

73

Figure 5.3: pci_bridge32 total leakage power and total violation along SA iterations.

Source: from author (2016)

slew violations. Electrical violations are difficult to solve since the only way to do so is

by changing the cell with the violation and/or its fanout cells would solve the violation.

On the other hand, timing violations can be solved by changing any cell in the path that

has the negative slack.

5.2 Empirical Validation

The methodology described herein was submitted to the ISPD 2012 Contest and

was able to generate the best solution in 5 out of 14 benchmark circuits in the benchmark

suite. Despite having the most consistent results over all circuits, the flow did not find

violation-free solutions for two circuits: b19_fast and leon3mp_fast.

Table 5.1 shows the ratios from each tool to best leakage result reported in the

ISPD 2012 Contest. Considering only violation free solutions, the proposed flow presents

the best average ratio between its solutions and the best solution found. It also presents

the lowest maximum deviation (i.e. 52%) and at least half the average deviation of the

other tools submitted to the contest.

Additional experiments were performed to determine the most suitable value for

n and to evaluate different approaches in SA loops and also omitting the initial solution.

All experiments have the same original flow submitted to the ISPD 2012 Contest, with

only a few corrections in the code.

The fanout-of-n is an empirical rule, and can be affected by aspects such as tech-

nology parameters, or how large the actual capacitances are in a design. The flow submit-

74

Table 5.1: Leakage power ratio to best solution found for all ISPD’12 circuits.

Benchmark NTUgs Ours PowerValve Goldilocks eOPT CUsizer

DMA_slow 1.39 1.07 1.00 1.46 3.07 2.50
DMA_fast 1.64 1.04 1.00 2.20 2.75 1.57

pci_bridge32_slow 1.77 1.00 1.01 6.05 1.97 2.50
pci_bridge32_fast 3.05 1.00 1.35 5.64 2.43 2.02

des_perf_slow 1.00 1.31 1.03 1.41 3.38 1.68
des_perf_fast 1.03 1.52 1.00 4.23 2.53 1.05

vga_lcd_slow 1.10 1.00 1.03 1.22 1.70 1.99
vga_lcd_fast 1.31 1.00 1.33 - 1.32 1.48

b19_slow 1.02 1.00 1.20 1.23 1.40 8.18
b19_fast 2.61 - 4.32 1.71 1.82 -

leon3mp_slow 1.00 1.26 2.08 1.04 1.32 1.35
leon3mp_fast - - 2.45 1.00 1.20 1.03

netcard_slow 1.00 1.11 1.10 1.02 1.19 1.13
netcard_fast 1.00 1.14 1.48 1.02 1.41 1.22

Avg.a 1.45 1.12 1.53 2.25 1.96 2.13
Avg.b 1.36 1.13 1.21 2.41 2.11 2.29

a Ignoring results with violation.
b Ignoring Vga_lcd_fast, leon3mp_fast and b19_fast for all tools.

ted to the contest used fanout-of-2 (4SA/FO2-LE), as it was empirically determined at first

that it produced the best results in some test circuits. New experiments were performed

with n = 3 and n = 4 (hereafter called 4SA/FO3-LE and 4SA/FO4-LE, respectively) to

finally check which generates a better initial solution for SA optimization. Choosing a

lower value of n means that the cells will be bigger and faster (for the same Vt level).

That helps the critical paths to have no timing violations but also increases total leakage

power. The better is the power-timing trade-off provided by the initial solution, the better

will SA perform.

The results for all these experiments are presented in Table 5.2 and Table 5.3.

The first column of Table 5.2 reports the proposed flow submitted to the ISPD 2012

Contest (4SA/FO2-LE). Column 4SA/FO3-LE shows some better solutions compared to

4SA/FO2-LE but in average it shows inferior results. It also results in more solutions with

timing violations when compared to the other method.

The 4SA/FO4-LE method mostly generates lower leakage solutions than both

other methods. This shows that n = 4 has the most balanced trade-off between timing

and leakage power. However, this configuration also presents less violation-free solutions

when compared to 4SA/FO2-LE.

75

Table 5.2: Total violation and total leakage power results with different Fanout-of-n rules
and different flows using one or four SA loops and alternating the use of an initial solution.

Benchmark
4SA/FO2-LE 4SA/FO3-LE 4SA/FO4-LE 1SA/FO2-LE

Total Leakage Total Leakage Total Leakage Total Leakage
Viol. (W) Viol. (%) Viol. (%) Viol. (%)

DMA_slow - 0.157 - 1.1 - −0.8 - 0.6

DMA_fast - 0.341 - 28.4 - −3.4 - −12.5

pci_bridge32_slow - 0.119 - −1.0 - −4.6 - −4.0
pci_bridge32_fast - 0.176 - 31.7 - −5.1 - −2.4

des_perf_slow - 0.694 - −2.6 - −5.0 5.21E0 6.3

des_perf_fast - 3.40 - −20.2 - −25.6 1.04E5 −50.4

vga_lcd_slow - 0.395 9.68E2 −1.3 4.45E2 −0.7 3.13E0 3.1

vga_lcd_fast 3.27E3 0.545 5.05E3 −0.6 3.06E3 −3.6 2.37E3 4.5

b19_slow 7.90E2 0.646 3.19E2 −0.7 3.04E3 −5.7 3.77E3 −6.7
b19_fast 1.37E4 0.713 1.25E4 −1.2 1.52E4 −4.5 1.40E4 0.1

leon3mp_slow 2.24E6 2.40 1.52E6 27.8 3.73E3 7.9 9.49E3 31.0

leon3mp_fast 8.21E3 2.58 1.42E5 27.6 6.39E6 37.0 2.68E4 94.5

netcard_slow 2.62E3 2.87 7.73E2 5.6 3.96E2 0.9 7.64E3 12.0

netcard_fast 5.84E3 3.51 7.11E3 −1.2 1.04E5 0.3 8.24E3 4.1

#viol. / avg. 7 - 8 6.7 8 −0.9 10 5.7

Runtime Ratio 1.00 1.08 1.02 1.09

1SA/FO2-LE represents the flow with a single SA run. The 1SA/FO2-LE flow

is not able to generate as many violation-free solutions as the original flow. This single

loop configuration has a slower temperature decay in order to have a similar number of SA

iterations and runtime. The difficulty to solve the violations created with high temperature

increases the runtime to generate the final solution.

The results in Table 5.3 show how simulated annealing struggles to find violation-

free solutions by itself when starting with an arbitrary solution. For such experiments, the

initial solution provided to SA is the smallest leakage option for all cells in the design. It

is clear that the flow with four fast SA runs – 4SA – is more effective than a single SA

loop – 1SA. However, both algorithms cannot converge to good solutions without timing

violations. 4SA generates only three violation-free solutions and 1SA a single one.

4SA and 1SA are the two flows without the initial heuristic solution. 4SA keeps

the original flow but ignores the sizing based on fanout and logical effort. The last con-

figuration has only one SA loop and no initial sizing with fanout-of-n and logical effort

(1SA). Table 5.3 presents the results of the proposed configuration that employs no initial

solution and four separate SA runs, by comparing it to a single SA algorithm, also without

76

Table 5.3: Total violation and total leakage power results with different flows using one
or four SA loops without an initial solution.

Benchmark
4SA 1SA

Total Viol. Leakage (%) Total Viol. Leakage (%)

DMA_slow - 4.1 - 13.0
DMA_fast - 4.5 5.21E2 20.7

pci_bridge32_slow 5.14E3 37.3 1.59E3 46.7
pci_bridge32_fast 1.36E2 17.1 2.62E4 40.1

des_perf_slow - -1.5 7.70E2 27.5
des_perf_fast 7.63E4 2.9 3.36E5 -58.4

vga_lcd_slow 4.63E3 -3.2 5.17E3 -3.6
vga_lcd_fast 9.38E3 -8.1 1.00E4 -12.9

b19_slow 1.44E4 -4.3 1.63E4 -2.6
b19_fast 1.42E4 8.6 2.06E4 5.9

leon3mp_slow 1.63E6 5.7 1.36E6 29.7
leon3mp_fast 1.61E6 38.2 2.29E7 103.9

netcard_slow 8.10E2 -18.8 6.24E3 -20.5
netcard_fast 3.17E7 53.4 1.15E7 151.7

#viol. / avg. 11 9.7 13 24.4

Runtime Ratio 1.05 1.10

the initial heuristic solution.

Results show that the flows without initial solution (4SA and 1SA) completely

fail to generate a violation free solution for almost all circuits. It becomes clear that

the process of solving violations is very hard for the Simulated Annealing even with the

proposed heuristics. The single cell change approach would require a large amount of

iterations to find the right combination of cells without any heuristic solution.

All runtimes for the experiments described are reported in Table 5.4. These exper-

iments were performed on a machine with two AMD(R) Opteron(R) @ 2.3GHz CPUs1.

1This machine is slower than the one used to run the tools in the ISPD 2012 Contest. Therefore, the
quality of results presented in Tables 5.2 and 5.3 are considerably inferior than those reported in the ISPD
2012 Contest.

77

Table 5.4: Runtime in minutes for the different flows under test.

Benchmark 4SA/FO2-LE 4SA/FO3-LE 4SA/FO4-LE 1SA/FO2-LE 4SA 1SA

DMA_slow 81 80 94 139 99 136
DMA_fast 73 352 192 159 183 360

pci_bridge32_slow 32 53 53 352 106 311
pci_bridge32_fast 69 351 72 352 100 237

des_perf_slow 293 514 324 479 540 541
des_perf_fast 529 529 529 529 543 540

vga_lcd_slow 600 600 600 600 600 600
vga_lcd_fast 600 600 600 600 600 600

b19_slow 720 720 720 720 720 720
b19_fast 720 720 720 720 720 720

leon3mp_slow 1440 1440 1440 1440 1440 1440
leon3mp_fast 1440 1440 1440 1440 1440 1440

netcard_slow 1980 1980 1980 1980 1980 1980
netcard_fast 1980 1980 1980 1980 1980 1980

Ratio 1.00 1.08 1.02 1.09 1.05 1.10

5.3 Lagrangian Relaxation-based Algorithm

The second methodology developed uses Lagrangian relaxation as the main en-

gine for timing-constrained power optimization. This approach is applied in two different

situations: the ISPD Contest Benchmark Suites; and inside an industrial design flow for

high-performance microprocessor blocks. Both applications share the same core method-

ologies but differ considerably in several aspects that are detailed in the next sections.

First, we describe the general formulation for the Lagrangian relaxation applied

to the cell selection problem. We follow the basic formulation found in (CHEN; CHU;

WONG, 1999) for the continuous gate sizing problem, as described in Section 4.1.6.

Table 5.5 shows the notation used in this section.

The timing-constrained power2 optimization problem, here called the Primal Prob-

2Here we use power as an example of the optimization objective to present the general formulation. As
we show later in this work, other objectives like area can be in the optimization objective.

78

Table 5.5: Notation.

T clock period
TNS total negative slack
i→ j timing arc from node i to node j
di→j delay of timing arc i→ j

ai arrival time at node i
qi require time at node i
λ Lagrangian multiplier

lem (PP), can be defined as follows:

Primal Problem (PP):

minimize
∑
i

poweri

subject to ai + di→j ≤ aj, for each timing arc i→ j

ak ≤ T, for each path output node k

(5.8)

By applying the Lagrangian Relaxation technique we can bring the constraints

inside the minimization function by the use of Lagrange multipliers. Thus, we obtain the

Lagrangian Relaxation Subproblem LRS shown in Equation (5.9).

LRS:

minimize
∑
i

poweri +∑
λi→j(ai + di→j − aj) +∑
λk(ak − T)

(5.9)

Chen, Chu and Wong (1999) show that by applying the Karush–Kuhn–Tucker

(KKT) conditions to optimality, the problem in Equation (5.9) can be simplified, as shown

in Equation (5.10). This simplification makes the minimization objective dependent only

on the delays of timing arcs, reducing the number of calculations required from the timing

engine.

LRS (simplified):

minimize
∑
i

poweri +×
∑

λ
′

i→jdi→j
(5.10)

Hereafter, the sum
∑
λi→jdi→j is referred as lambda-delay.

The relaxed version of the sizing problem can be viewed as the selection of gate

79

versions which minimizes the objective plus lambda-delay with no explicit information

about arrival and/or required times. Finally, LDP is simply the maximization of LRS

where λ is also variable as shown in Equation (5.11).

LDP: maximize
λ

(∑
i

poweri +×
∑

λ
′

i→jdi→j

)
(5.11)

Following this formulation we propose new algorithms to handle the cell selection

problem in modern designs.

The new algorithms are developed to handle the set of benchmarks from the ISPD

2013 and 2012 Discrete Gate Sizing Contests. In both cases, no initial solution is provided

with the benchmarks. Also, this work later presents an extension of this formulation

to adapt the algorithms to optimize real-life industrial high-performance designs in an

industrial design flow.

In the next sections and following chapter we present the proposed flows that have

LR as the core optimization technique. The empirical results show the effectiveness of

the proposed frameworks.

5.3.1 Proposed Flow for the ISPD 2012 and 2013 Contest Benchmarks

The methodology here presented is partially published in (FLACH et al., 2013).

This work has received the best paper award in the 2013 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI 2013). The extension of the methodology to handle the

new set of benchmarks from the ISPD 2013 Contest is partially published in (FLACH et

al., 2014).

This is a fast and efficient approach to select the gates in a design producing state-

of-the-art results. The gate sizing tool was first built based on the infrastructure provided

in the ISPD 2012 Contest Benchmark Suite (OZDAL et al., 2012). It was later adapted to

handle the modifications introduced in the ISPD 2013 Contest.

As mentioned in Section 4.2.1, the contes benchmarks consist of a modern standard-

cell library, including 11 different combinational functions and 1 flip flop, and designs

ranging from 23k to 861k cells, For each combinational logic function, 30 different cell

types are available (composed by 3 threshold voltages and 10 sizes for each Vt). The

benchmarks contain a Verilog netlist, a SDC (Synopsys Design Constraints) file with the

timing constraints and interconnect parasitics in IEEE SPEF format. The objective is to

80

Table 5.6: Notation.

slewi slew at node i
∆Di→j delay change given a change in input slew of arc i→ j

∆Dn delay change given a change in slew of net n
δdi→j

δslewi
delay sensitivity to input slew of arc i→ j

δslewj

δslewi
output slew sensitivity to input slew of arc i→ j

φ cumulative back-propagated arc delay sensitivity

reduce the leakage power while all performance and design constraints are satisfied.

The highlights of the methodology here presented are:

• A fast, effective, and simple methodology to solve the discrete gate sizing prob-

lem, that employs a selected set of techniques in a much improved way. The core

step models the gate selection problem using Lagrangian relaxation. The relaxed

problem is solved by a greedy one-gate-at-time algorithm applying only local mod-

ifications while relying on both precise local timing information and fast global

timing estimation.

• A fast technique based on sensitivities to estimate the global delay impact of a gate

sizing without re-running a complete incremental timing analysis.

• Best results for all ISPD 2012 benchmarks compared to previous state-of-the-art

works, with leakage power improvements of up to 27.73%. On average, the our

flow reduces leakage power by 9.53% compared with (HU et al., 2012) and by

12.45% compared with (LI et al., 2012). Moreover, the method is, on average, 19X

faster than (HU et al., 2012) and 1.18X faster than (LI et al., 2012).

• Best results for all ISPD 2013 benchmarks compared with all contestants (including

our previous flow submitted to the contest). Our new flow provides on average

9.62% power reduction compared to the best contestant’s results, with up to 30%

power reduction in one circuit. It is also the first gate sizing method to report

violation-free solutions for all benchmarks of the ISPD 2013 Contest.

In this section, a circuit is described by its logical and memory elements called

gates and the connections between them called nets. Only combinational gates are con-

sidered for sizing. Gates are attached to nets at specific points of the net topology named

driver and sink nodes. A gate is composed by one or more timing arcs which describe the

timing characteristics of the gate. Table 5.6 summarizes the additional notation for this

section.

81

Figure 5.4: High-level view of our cell selection flow.

set all gates to
smallest leakage

version

remove load and
slew violations

power reduction

timing recovery

update λs LRS/λ solver

Lagrangian Relaxation

LDP solver

Source: Flach (2015)

When connections are modeled using a simple lumped capacitance as in the ISPD

2012 Contest, timing information (arrival, required and slew) at sink nodes is equal to the

values at the driver node. In this case, driver and sinks share the same name borrowed

from the net which connects them.

To keep the notation simple, rise and fall edges are not represented separately

throughout this paper, but the proposed method is developed for considering them sepa-

rately for timing accuracy.

Figure 5.4 depicts a high-level view of the flow developed in this work. As de-

scribed in Section 4.2.1, the method developed for the ISPD Contest starts with a timing-

infeasible solution. By definition, the proposed methodology will ignore the input solu-

tion (since it is not by any means useful), setting all gates to the smallest option available

with the highest Vt. Then, a solution without electrical violations is generated by apply-

ing the initial sizing algorithm from (LI et al., 2012). This solution is the input to the

Lagrangian relaxation method, which is constrained to keep the solution free of electrical

violations. Next, any timing violations left are eliminated by a Timing Recovery method.

Finally the leakage power is further reduced by a Power Reduction algorithm.

Every method developed in this work has a linear complexity vs. circuit size per

iteration. The number of iterations for each iterative method depends on several aspects

related to the quality of the solution provided as the input of each method. It is hard to

predict the final number of iterations and runtime, but for most cases only a few (tens to

hundred) are required.

82

5.3.2 Eliminating Load and Slew Violations

As mentioned before, load and slew violations have to be removed from the initial

minimum leakage solution, which is also needed in order to avoid extrapolations when

computing timing from the library lookup tables. Without such an approach, the LR

method would be misguided by unrealistic timing information. Since LR convergence

highly depends on timing information in each iteration, all kinds of electrical violations

must be avoided.

The removal is performed by means of the iterative method presented in (LI et al.,

2012) (see Figure 4.14a), with α = 0.7. The procedure visits all gates, one at a time,

from outputs (where output capacitances are fixed) to the inputs. For each gate, the gate

version with least leakage that respects both slew and load constraints is selected. In our

implementation, as the gates are visited, timing is updated only locally as explained in

detail in this section.

The αL ∈ (0, 1] parameter is used to control the ratio between driver strength and

the load capacitance. The smaller is the αL value, the larger should be the driver strength,

but also its input capacitance. In all results obtained in this work we use αL = 0.7.

5.3.3 Cell Selection Problem Formulation

This section details timing-constrained leakage power minimization. However,

more objectives can also be optimized as explained in Chapter 6.

A concise way to represent timing constraints is by imposing constraints on the

arrival times. In this case, arrival times are seen as dependent variables by the optimization

problem, allowing a linear number of constraints with circuit size instead of path-based

constraints (CHEN; CHU; WONG, 1999).

There are several methods in the literature to solve the Lagrange Dual Problem

(LDP). Most share very similar steps when applied to the gate sizing problem. Algo-

rithm 1 presents an overview of the iterative method used to look for a competitive solu-

tion to the LDP. The idea of the LDP solver is straightforward. It sequentially combines

two algorithms: (1) greedy cell selection and (2) Lagrange multiplier update. The second

algorithm requires a previous timing analysis to obtain the updated timing information

after the changes made by the first algorithm.

Using the current solution, the Lagrange multipliers are updated to reflect how

83

Algorithm 1: LDP Solver
1 store initial solution
2 set an initial value for λs
3 update timing (STA)
4 update λs // Alg. 2
5 repeat
6 solve LRS/λ // Alg. 4
7 update timing (STA)
8 update λs // Alg. 2
9 if new solution is better than stored one then

10 store solution
11 end
12 until convergence;
13 restore best solution found

much a constraint, now incorporated to the objective function, is being violated. This

generates a new instance ofLRS/λwhich is then solved again by the greedy cell selection

method. A cost function is used to evaluate the best LR solution:

cost = totalLeakage+ TNS ∗ (α +WNS)β (5.12)

Different from the simplified convex continuous sizing problem (CHEN; CHU;

WONG, 1999), the sub-gradient method does not guarantee the optimality of the LDP

maximization with an accurate, i.e. non-convex, library of discrete gate sizes. Consid-

ering that, other methods for the λ update process are presented in the literature (TEN-

NAKOON; SECHEN, 2002; LI et al., 2012). Here we also present a new methodology for

Lagrangian multiplier update that leads to direct improvement in convergence and quality

of the final solution.

The initial multiplier value is set to a constant value for all timing arcs. This value

is scaled by the KKT propagation performed in the Lagrange multiplier update method.

The empirically chosen initial multiplier value used for the experiments is 12. A

solution is said to be better than another one if its TNS is less than 10% of T and it has

smaller leakage.

The updating of Lagrange Multipliers is accomplished in two steps: (1) slack

scaling and (2) KKT projection. Algorithm 2 presents the method used to update them.

Initially Lagrange Multipliers are scaled according to the slack of the respective

timing arcs. The idea is to increase proportionally the importance (λ value) for timing

arcs with negative slack and to decrease the importance for those with positive slack. The

84

Algorithm 2: Updating Lagrange Multipliers
1 for each timing arc i→ j do
2

λi→j ← λi→j ×

{(
1 +

aj−qj
T

)+1/k
aj ≥ qj(

1 +
qj−aj
T

)−k
aj < qj

3 end
4 KKT projection

Algorithm 3: Update Lambdas KKT (CHEN; CHU; WONG, 1999)
1 for each net n of the circuit do
2 for each edge (rise and fall) do
3 if sum of driver timing arc lambdas > 0 then
4 for each driver timing arc do
5 λarc = sum_sink_lambdas ∗ λarc/sumλdrivers)
6 end
7 end
8 else
9 for each driver timing arc do

10 λarc = sumλsinks/num_sinks
11 end
12 end
13 end
14 end

higher is the λ value the higher is the impact of the respective timing arc delay in the

objective function.

KKT projection is performed to ensure that multipliers obey the KKT conditions

for optimality. These conditions imply that the sum of multipliers driving a net must be

equal to the sum of multipliers being driven by that net (CHEN; CHU; WONG, 1999).

In our flow, the projection is performed by traversing the circuit in reverse topo-

logical order distributing proportionally the sum of multipliers being driven by a net to the

ones driving the net. The proportion is defined by the updated multiplier value of driving

timing arcs. Algorithm 3 shows the pseudo code for KKT projection.

In order to find a solution for each LRS/λ instance, differently from (OZDAL;

BURNS; HU, 2011), which uses dynamic programming for multi-gate-at-a-time changes,

the one-gate-at-a-time greedy method presented in Algorithm 4 is employed. It works by

scanning all gates in topological order, trying to properly select a new version to each of

them. The new selected version is the one which locally minimizes leakage power plus

the lambda-delay cost.

85

Algorithm 4: LRS/λ Solver
1 compute lambda-delay sensitivities // Eq. 5.19
2 for each gate g in topological order do
3 select a gate version for g // Alg. 5
4 end

Figure 5.5: Lambda-Delay Cost Computation

0

1

2

3

97

11

4

8

10

12

13

6

5

Source: Flach (2015)

As the impact on lambda-delay requires an incremental STA to be performed,

it would be infeasible to use updated information every time a gate option is analyzed.

Therefore, the greedy method relies on local timing information and global estimation to

approximate the global impact on lambda-delay of affected gates.

In most cases, the timing impact of a gate resize is absorbed within a few logic

levels. Therefore the global impact on circuit timing can be estimated considering only

local information. However, to deal with the cases where a local change greatly affects

the overall timing – i.e. a change in a gate belonging to a path highly sensitive to slew

changes – a global sensitivity-based lambda-delay function is developed below.

The objective of the LRS problem is the minimization of the lambda-delay plus

leakage power. Since a gate resize may affect several other delays, how the total lambda-

delay is affected needs to be taken into account together with the leakage change. The

lambda-delay cost of a gate option indicates how the gate version impacts on lambda-

delay. This is not exact and is computed mostly relying on local information, but the

sensitivity-based global estimation helps the calculation of such impact.

The lambda-delay cost for the current version of a gate g (e.g. darker gate in

86

Figure 5.5), lambdaDelayCost(g), is shown in Equation 5.13.

lambdaDelayCost(g) =∑
i→j∈driverArcs(g)∪gateArcs(g)∪sinkArcs(g)

λi→jdi→j+

∑
i→j∈sideArcs(g)

∆Dλ
i→j +

∑
n∈drainNets(g)

∆Dλ
n

(5.13)

where

• driverArcs(g) is the set of arcs driving the driver nets of gate g (e.g. arcs {0, 1} →

6, {2, 3} → 5 and {5, 4} → 8 in Figure 5.5);

• sinkArcs(g) is the set of arcs which are driven by gate g (e.g. arcs 10→ {12, 13}

in Figure 5.5);

• sideArcs(g) is the set of arcs which are driven by gate g’s driver nets but which do

not belong to g itself (e.g. arcs 6→ 9 and 5→ 8 in Figure 5.5);

• gateArcs(g) is the set of arcs which belong to gate g (e.g. arcs {6, 5, 8} → 10 in

Figure 5.5);

• drainNets(g) is the set of nets driven by sink gates of g (e.g. nets 12 and 13 in

Figure 5.5).

The timing arc sensitivity measures how the delay/slew of an arc changes given

a change on its context (i.e. input slew, output load). It linearly approximates the de-

lay/slew from the lookup table at around the current context. Sensitivities are combined

and propagated back from path outputs to inputs. This enables the use a single operation

to approximate the effect of a local change in the timing of the whole fanout cone.

The cumulative sensitivity of an arc estimates how the total delay of the fanout

cone changes given a change on its input slew. For sensitivity computation, a lumped

capacitance interconnection model is assumed.

Next follows an example for a better understanding of this process. Consider the

simple inverter chain example in Figure 5.6.The Lagrange multipliers λs are omitted to

facilitate the comprehension. They are easily accounted for just by multiplying each arc

delay sensitivity to input slew by its respective multiplier.

The delay change due to an input slew change of timing arc 2 → 3, is simply the

87

Figure 5.6: Example circuit for delay sensitivity computation.

0 1 2 3

Source: Flach (2015)

timing arc sensitivity itself times the input slew change, as in Equation 5.14.

∆D2→3 = ∆slew2
δd2→3

δslew2

(5.14)

Similarly, for timing arc 1 → 2, the delay change is the input slew change times

timing arc delay sensitivity plus the delay change for timing arc 2 → 3 as in Equation

5.15.

∆D1→2 = ∆slew1
δd1→2

δslew1

+ ∆D2→3 (5.15)

Combining (5.14) and (5.15), and noting that Equation 5.16 holds

∆slew2 ≈ ∆slew1
δslew2

δslew1

(5.16)

we end up with the Equation 5.17 that depends on only one unknown, ∆slew1.

∆D1→2 = ∆slew1

(
δd1→2

δslew1

+
δslew2

δslew1

δd2→3

δslew2

)
(5.17)

Finally, the delay change for timing arc 0→ 1 is shown in Equation (5.18).

∆D0→1 = ∆slew0

[
δd0→1

δslew0

+
δslew1

δslew0

(
δd1→2

δslew1

+
δslew2

δslew1

δd2→3

δslew2

)] (5.18)

Note that such propagation could continue on for as many levels as necessary till

reaching the path input. Note also that D0→1 provides the whole path delay change due

to a change in the slew at net 0.

In general terms, the back-propagate lambda-delay sensitivity of a timing arc i→

j is defined by the recurrence Equation 5.19 for every timing arc i′ → j′ driven by arc

i → j. Note that, differently from the aforementioned example, the Lagrange multiplier

88

λ associate to the timing arc is now being shown.

φi→j = λi→j
δdi→j
δslewi

+
δslewj
δslewi


∑
φi′→j′ dominant arc

0 otherwise
(5.19)

In order to handle multiple fanout nets and to avoid counting multiple times the

delay change, only the arc with the worst slew rate – that is propagated to the output,

here called the dominant arc – propagates back the cumulative sensitivity. The remaining

arcs see the cumulative sensitivity as zero since they are likely dominated by the arc with

worst slew and hence, they should not affect the timing of gates ahead.

The delay change of timing arc i→ j is then calculated as in Equation 5.20.

∆Dλ
i→j = ∆slewiφi→j (5.20)

For a net, the delay change is equal to the sum of the delay changes of all timing

arcs driven by it, as shown in Equation 5.21.

∆Dλ
n = ∆slewn

∑
φi→j (5.21)

Algorithm 5 presents the method that selects a new gate version. In this method,

all options available in the library are tested.

To improve overall convergence and guide our flow to a good solution, there are

two conditions that a gate option should obey to be qualified to replace the current option:

(1) not increasing any load violation and (2) not impacting too much the local negative

slack as we explain below.

In order to replace the current option, the new one must not increase electrical

violations (line 6). For the library used in the contest, slew violations only exist at nodes

with load violations. Thus, preventing load violations also prevents slew violations at that

node. As our flow starts with a solution with no load violations, this implies that no load

violations will be ever generated.

Most load violations lead to slew violations which are harder to keep track of be-

cause they may be generated at many logic levels after the perturbation. They may also be

propagated throughout the circuit. Prohibiting the increase of load violations avoids the

method from wandering through solutions with lots of slew violations, which are difficult

to recover back and cause lookup table extrapolations. As mentioned before, extrapola-

tions may generate exaggerated delay/slew values that affect the overall convergence of

89

Algorithm 5: Gate Option Selection
1 originalSlack ← computeLocalNegativeSlack(g)
2 bestCandidate← version(g)
3 bestCost← lambdaDelayCost(g) + leakage(g)
4 foreach gate option t ∈ options(g) do
5 option(g)← t
6 if load violation has increased then
7 go to the next version
8 end
9

10 update timing locally
11

12 slack ← computeLocalNegativeSlack(g)
13 if slack < γ ∗ originalSlack then
14 go to the next version
15 end
16

17 cost← lambdaDelayCost(g) + leakage(g)
18 if cost < bestCost then
19 bestCandidate← t
20 bestCost← cost

21 end
22 end
23 option(g)← bestCandidate
24 update timing locally

the flow.

Similarly to slew violations, timing violations generated due to a single pertur-

bation may spread out to all logic levels until reaching a timing endpoint. This is more

apparent when critical paths are passing through the vicinity of the current gate.

In order to keep TNS under control, a gate option must not increase the local

negative slack above a certain threshold (empirically defined). This control is performed

in line 13.

As keeping track of the actual slack would require running a complete incremental

STA, the solution proposed in our method looks only at the slack perturbation in the

vicinity of the current gate, so as to minimize runtime. This slack calculation uses the

required arrival time from the previous timing update. On the other hand, arrival times

used are up-to-date since they are calculated in local timing updates.

Local negative slack is defined simply as the sum of negative slacks (positive

slacks are not included) of the driver nets and the sink net of the current gate.

To allow some sort of "hill climbing" like in stochastic methods, the local negative

90

slack is allowed to increase a small amount controlled by the parameter γ as defined in

Equation 5.22. The idea is to allow larger changes at the first iterations when the timing

violations are likely to be high and to avoid them as the method converges to a low timing

violation solution. Not allowing any sort of local TNS degradation restricts too much the

search space, reducing the leakage power optimization.

γ = (−(min(0, worstSlack))/T + 1) (5.22)

The local negative slack constraint indirectly controls the trade-off between leak-

age and lambda-delay in the objective function. It avoids choosing an option which re-

duces locally the objective function but is likely to cause a large impact on timing viola-

tion.

5.3.4 Interconnection Modeling

Another important aspect for designs with realistic wire models (i.e. not the

lumped wire load model in ISPD 2012 Contest) is how delay and slew propagation are

calculated. The interconnection modeling used in the internal timing analysis engine is

based on the Elmore delay (GUPTA et al., 1995). It is fast enough to be used several

times during the optimization process. However, it is still slower than the lookup table

gate timing propagation (∼10X). The flow submitted to the ISPD 2013 Contest only relies

on the method described in (PURI; KUNG; DRUMM, 2002).

It starts by computing the effective capacitance for the driver node of the net using

the method presented in (QIAN; PULLELA; PILLAGE, 2006). The effective capacitance

is then used to obtain delay and slew information from the lookup table. Next, delay and

slew are propagated in topological order to the sink nodes of the net. Algorithm 6 presents

the interconnection timing calculation.

However, this modeling presents several inaccuracies when compared to commer-

cial timing analysis tools that employ reduced order models described in Section 2.2.

More details about the effect of this inaccuracy are presented ahead in the text.

91

Algorithm 6: RC Interconnection Model
1 compute effective capacitance for driver node
2 obtain delay and slew from lookup table for driver node using effective

capacitance
3 foreach node n (6= driver) in topological order do
4 R← resistance connecting n to parent node
5 C ← downstream capacitance
6 delayn ← delayparent +RC

7 slewn ←
√
slew2

parent + 1.93 ∗ (RC)2

8 end

5.3.5 Improving the Lagrangian Relaxation Solution

It is expected that Lagrangian relaxation generates a solution that does not respect

all timing constraints in the discrete problem. This is mainly due to the lost of optimal-

ity in the discrete case and also the use of incomplete timing propagation during gate

resizing. Thus, after performing several iterations of Lagrangian relaxation, the solution

provided can still be improved using two other specific methods for both timing and power

optimization.

In this work we apply two straightforward greedy methods to do local optimiza-

tion. They are called Timing Recovery (TR) and Power Reduction (PR).

The first method fixes the timing violations left by LR. It is executed only if the

Total Negative Slack (TNS) is higher than a threshold ε. The implementation submitted

to both contests uses ε = 1e-6 ps, i.e., Timing Recovery is executed when the solution has

any path with negative slack.

Algorithm 7 shows the pseudo code for the Timing Recovery algorithm. The nets

n are sorted in decreasing order of the number of critical paths passing through them.

Here, all paths reaching the timing endpoints with negative slacks are considered critical.

The algorithm tries to decrease the delay of the gate driving n by changing the current

gate-version to the next larger gate size with the same Vt.

In this method, Vt decrease is not applied since it would lead to a high leakage

power increase for this particular library. At the same time, iteratively increasing gate

sizes is efficient enough to solve small timing violations left by the LR while not increas-

ing leakage power too much.

A gate g is considered upsizable if changing the original gate version to the next

bigger size does not generate electrical violations. Moreover, the TNS with this change

92

Algorithm 7: Timing Recovery
1 g ← most critical gate
2 previousTNS ← TNS
3 while g do
4 if g is upsizable then
5 upsize g
6 run incremental STA
7 if TNS < previousTNS and no load/slew violations generated then
8 previousTNS ← TNS
9 re-sort gates

10 else
11 undo
12 end
13 end
14 g ← next critical gate
15 end

must be smaller than the TNS of the previous solution.

The second method searches for local gate changes that optimize power without

creating timing violations. The greedy Power Reduction algorithm is presented in Algo-

rithm 8. For each gate g it tries to increase the Vt and/or to downsize the gate g.

Vt can be increased if the gate with higher Vt does not generate any electrical

violation and the TNS is smaller than or equal to the previous TNS. The same is valid for

downsizing a gate.

5.4 Empirical Validation

We evaluate our academic discrete gate sizing approach using the ISPD 2012 and

2013 Discrete Gate Sizing Contest infrastructures and benchmark suites.

The main difference between ISPD 2012 and 2013 contests is the interconnec-

tion modeling. Therefore, the overall Lagrangian relaxation-based flow applied to both

infrastructures is the same.

The proposed approach is fully implemented in C++ without any third-party li-

braries.

All the results presented in this section are validated using Synopsys PrimeTime®

to check the design constraints.

93

Algorithm 8: Power Reduction
1 repeat
2 changedCounter ← 0
3 for each gate g of the circuit in topological order do
4 if Vt of g is increasable then
5 increase Vt of g
6 update timing (STA)
7 if TNS ≥ 0 and no electrical violations generated then
8 changedCounter + +
9 else

10 undo
11 end
12 end
13 end
14 for each gate g of the circuit in topological order do
15 if g is downsizable then
16 downsize g
17 update timing (STA)
18 if TNS ≥ 0 and no load/slew violations generated then
19 changedCounter + +
20 else
21 undo
22 end
23 end
24 end
25 until changedCounter = 0;

5.4.1 ISPD 2012 Contest

In this section we evaluate our flow using the infrastructure and benchmarks from

the ISPD 2012 Discrete Gate Sizing Contest. The number of combinational gates in those

circuits ranges from 23K to 861K combinational gates.

For the 2012 contest, the interconnections are modeled as simple lumped capaci-

tances. Therefore, the RC interconnection model presented in Section 5.3.4 is not used.

Since the proposed lambda-delay sensitivities technique is compatible with the

lumped capacitance model, it is applied in the experimental results presented in this sec-

tion.

The final leakage power results in Watts (W) for each benchmark-constraint com-

bination are presented in Table 5.7.

Our results for these benchmarks are compared with recent publications from Hu

et al. (2012) and Li et al. (2012), that are also based on the ISPD 2012 Contest Bench-

94

Table 5.7: Leakage power (W) for ISPD 2012 benchmarks and number of combinational
cells for all circuits.

Benchmark
Leakage Power (W) Power Difference

Comb. HU et al. LI et al. Ours Compared to Compared to
Cells 2012 2012 HU et al. LI et al.

DMA_slow
23K

0.145 0.153 0.132 -8.73% -13.50%
DMA_fast 0.299 0.281 0.238 -20.29% -15.19%

pci_bridge32_slow
30K

0.111 0.111 0.096 -13.31% -13.31%
pci_bridge32_fast 0.183 0.167 0.136 -25.51% -18.37%

des_perf_slow
102K

0.614 0.671 0.570 -7.14% -15.03%
des_perf_fast 1.842 1.930 1.395 -24.27% -27.73%

vga_lcd_slow
148K

0.351 0.375 0.328 -6.61% -12.59%
vga_lcd_fast 0.471 0.460 0.413 -12.22% -10.12%

b19_slow
213K

0.583 0.604 0.564 -3.28% -6.64%
b19_fast 0.771 0.784 0.717 -7.06% -8.61%

leon3mp_slow
540K

1.341 1.400 1.334 -0.53% -4.72%
leon3mp_fast 1.487 1.640 1.443 -2.99% -12.04%

netcard_slow
861K

1.770 1.780 1.763 -0.41% -0.97%
netcard_fast 1.861 2.180 1.841 -1.07% -15.55%

Avg. 0.845 0.895 0.784 -9.53% -12.45%

mark Suite. The methodology proposed in this work is able to find the best solution

among all algorithms, i.e., the solution with smallest leakage power and no constraints

violations.Leakage power reduction of up to 27.73% is obtained with the proposed flow.

Compared to Hu et al. (2012), our solution reduces leakage power in 9.53% on average

and 12.45% on average when compared to (LI et al., 2012).

Considering the smaller circuits (DMA, pci_bridge32, des_perf and vga_lcd), our

approach reduces leakage power by 14.76%, on average, compared to (HU et al., 2012)

and 15.73% compared to (LI et al., 2012). As Hu et al. (2012) stated, the timing con-

straints for larger circuits (except for netcard) are tighter than for the smaller ones, and

thus it is more difficult to reduce leakage power keeping a violation-free circuit in the

former case.

Table 5.8 shows the runtimes to obtain the results in Table 5.7. Our solution is

19X faster than Hu et al. (2012) and 1.18X faster than Li et al. (2012) considering the

total runtime for all benchmarks. Li et al. (2012) run the experiments on a Linux work-

station with six 2666 MHz two-socket cores and 72 GB memory, using multi-threading.

95

Table 5.8: Runtime (minutes) for ISPD 2012 benchmarks and number of combinational
cells for all circuits. Runtimes are taken from the corresponding papers.

Benchmark
Runtime (min) Speedup (X)

Comb. HU et al. LI et al. Ours Compared to Compared to
Cells 2012 2012 HU et al. LI et al.

DMA_slow
23K

9.90 0.60 0.79 12.53 0.76
DMA_fast 13.90 0.60 0.92 15.11 0.65

pci_bridge32_slow
30K

10.20 1.20 0.87 11.72 1.38
pci_bridge32_fast 13.00 1.20 0.92 14.13 1.30

des_perf_slow
102K

70.10 6.00 25.31 2.77 0.24
des_perf_fast 82.70 6.60 16.37 5.05 0.40

vga_lcd_slow
148K

87.50 7.80 5.67 15.43 1.38
vga_lcd_fast 45.60 10.20 8.37 5.45 1.22

b19_slow
213K

213.90 10.20 9.15 23.38 1.11
b19_fast 206.50 12.00 11.75 17.57 1.02

leon3mp_slow
540K

1274.00 43.80 38.98 32.68 1.12
leon3mp_fast 1323.20 54.60 46.62 28.38 1.17

netcard_slow
861K

299.90 48.00 34.39 8.72 1.40
netcard_fast 1096.90 88.80 47.41 23.14 1.87

Sum (h) 79.12 4.86 4.13 19.18 1.18

Compared to our work, Li et al. (2012) use a slower machine, but uses a multi-threaded

implementation. Hu et al. (2012) performed the experiments on a 3.2GHz Intel Xeon

E31230 Linux workstation with 8GB of memory. The ISPD 2012 and 2013 Contests

results were obtained on a Linux system with 2.93GHz CPU and 48GB memory.

As we can observe, the methods described in this work presents the best results for

power and runtime compared with the state-of-the-art works. Considering the efficiency

of this flow, a set of changes were made in this approach to support the ISPD 2013 Discrete

Gate Sizing Contest infrastructure. The changes and results for the benchmarks of the

ISPD 2013 Contest are presented next.

5.4.2 ISPD 2013 Contest

In this subsection we evaluate our flow using the infrastructure and benchmarks

from ISPD 2013 Discrete Gate Sizing Contest. The number of combinational gates in

those circuits ranges from 510 to 884K gates as shown in Table 5.9.

In the 2013 contest, interconnections are modeled as RC trees for which the timing

96

Table 5.9: Leakage power (W), runtime (min) and clock period (ps) on ISPD 2013 bench-
marks comparing the contest results and our new results using accurate timing information
in Timing Recovery and Power Reduction algorithms. Power results are truncated.

Benchmark
of Clock Leakage Power (W) Power Runtime (min)

Comb. Period Best Ours Ours Savedb Best Ours
Gates (ps) ISPD’13 New Besta ISPD’13 New

usb_phy_slow
510

450 0.00107 0.00107 0.00106 0.05% 0.6 0.5
usb_phy_fast 300 0.00160 0.00155 0.00153 3.36% 0.6 0.4

pci_bridge32_slow
28K

1000 0.05789 0.05696 0.05694 1.61% 14.3 10.5
pci_bridge32_fast 750 0.09651 0.08543 0.08503 11.47% 87.0 22.6

fft_slow
31K

1800 0.09034 0.08660 0.08654 4.14% 36.6 25.7
fft_fast 1400 0.22620 0.19430 0.19390 14.10% 52.2 40.4

cordic_slow
42K

3000 0.32379 0.27051 0.26566 16.45% 94.7 69.0
cordic_fast 2626 1.43057 1.00099 0.98017 30.03% 94.8 117.1

des_perf_slow
104K

1300 0.35300 0.33042 0.32728 6.40% 96.1 132.3
des_perf_fast 1140 0.79399 0.64882 0.64449 18.18% 280.9 347.9

edit_dist_slow
121K

3600 0.44740 0.42549 0.41603 4.90% 116.2 123.9
edit_dist_fast 3000 0.59632 0.53978 0.53547 9.48% 185.5 353.0

matrix_mult_slow
153K

2800 0.46973 0.44427 0.44291 5.42% 243.4 226.1
matrix_mult_fast 2200 2.13007 1.61093 1.54156 24.37% 416.5 396.0

netcard_slow
884K

2400 5.24566 5.15523 5.15483 1.72% 549.4 483.6
netcard_fast 2000 5.31783 5.20015 5.18158 2.21% 613.3 400.9

Avg. (all) 1860 9.62% 180.1 171.9
Avg. (only fast) 1677 14.15% 216.4 209.8

a Our solution without the runtime limit set in the ISPD 2013 Contest.
b Our solution with the runtime limit (“Ours New") compared to ISPD 2013 Contest.

is computed using the algorithm presented in Section 5.3.4. As the lambda-delay sensitiv-

ities technique is not compatible with the RC model, it is not applied in the experimental

results presented in this subsection. Moreover, the flow includes a timing validation step

which performs timing recovery using accurate timing and effective wire capacitance val-

ues from Synopsys PrimeTime® to ensure a violation-free solution.

The tool described is this section achieved the first place in the ISPD 2013 Contest.

The results presented at ISPD 2013 Contest were further improved, reducing the leakage

power and producing solutions with no violations for all benchmarks.

The new results compared with the best results obtained at the ISPD 2013 Contest

including ours are presented in Table 5.9. The timing results are also validated using

Synopsys PrimeTime®. For the three circuits without power and runtime values at ISPD

2013 Contest (cordic_fast, des_perf_fast, matrix_mult_fast) we are considering

97

Figure 5.7: Leakage power, TNS and solution cost along iterations for cordic_fast.

Source: from author (2016).

our solution that was submitted to ISPD 2013 Contest.

The new results provide on average 9.62% power reduction compared to the best

Contest results with up to 30% power reduction. The runtime is on average 1.28X faster

than the best Contest results. Considering only the fast circuits, leakage power is reduced

by 14.15% and the runtime is 1.41X faster than the best Contest results.

Table 5.9 shows the results of using accurate timing analysis in the Timing Recov-

ery and Power Reduction algorithms. It can be observed how the accurate timing helps

achieving improved results. This also indicates that relying on our simplified internal

STA might be preventing the Lagrangian Relaxation optimization algorithm from achiev-

ing even better results earlier. Table 5.9 also reports the best results achieved with this

flow without considering the runtime limit.

The leakage power and TNS behavior along iterations is presented in Figure 5.7

with the cost metric that chooses the best solution (line 9 in Algorithm 1) to be stored. The

trend break observed in iteration 57 is due to the change of k (Algorithm 2). Setting k to

a value close or smaller than one helps the convergence of TNS to a near zero value. With

a k greater than one lambdas will decrease faster than increase, helping leakage power to

reduce faster, as observed in the chart. Considering this, k is set to one in the beginning of

LR and set to 4 when TNS is considered small (iteration 57 in this case) and is kept with

this value until the final iterations. At this point k is set again to a value equal or smaller

than one in order to reduce the remaining timing violations at the end of LR.

In Figure 5.8 the runtime breakdown of each algorithm for all benchmarks is pre-

sented. One can notice that the Timing Recovery algorithm only requires a significant

runtime for some of the fast benchmarks. This behavior is expected since circuits with

98

Figure 5.8: Runtime breakdown for (a) slow and (b) fast corners.

(a) (b)

Source: from author (2016).

slow constraints do not require hard timing legalization after the Lagrangian Relaxation

optimization.

The Power Reduction (PR) algorithm shows almost the same runtime proportion

for both constraints in the same circuits, varying for the different benchmarks.

A close look at the PR runtime shows which circuits need more local optimization

after LR but it can also show how the incremental timing analysis used in PR is slower

than the local timing update performed in LR. To better understand when each case oc-

curs, Table 5.10 shows the total leakage power after each step of the proposed flow.

Comparing Figure 5.8 and Table 5.10 it is clear that the PR step for the netcard

and edit_dist benchmarks does not improve leakage power significantly despite requiring

a significant runtime. So, it is possible to conclude that this large runtime is due to slow

incremental STA caused by the characteristics of those circuits and their number of gates.

On the other hand, for the cordic and matrix_mult benchmarks the significant runtime

reflects directly into power savings. That represents the case when the PR step needs more

iterations to exhaust all possible local optimizations left by the LR.

The runtime breakdown for the LR algorithm alone shows that 97% of total run-

time is spent performing STA, being 87% calculating wire timing, 3% calculating gate

timing and only less than 2% performing Lagrangian Relaxation. This runtime break-

down shows that LR is fast to execute and the runtime is dominated by timing analysis

even with LR relying only in local timing updates.

Finally, Figure 5.9 shows the gate usage for the cordic benchmark. The difference

between the gate usage for the two clock constraints shows how the sizing tool chooses

faster gates to get timing closure with a tighter clock period. Not only bigger gates but

99

Table 5.10: Total leakage power after each step.

Benchmark

Leakage Power - After:

LR TR PR

W W diff. W diff.

usb_phy_slow 0.0010735 0.0010735 – 0.0010735 –
usb_phy_fast 0.0015450 0.0015830 +2.46% 0.0015770 -0.38%

pci_bridge32_slow 0.0571730 0.0571730 +0.26% 0.0571580 -0.29%
pci_bridge32_fast 0.0880710 0.0895070 +1.63% 0.0879155 -1.78%

fft_slow 0.0872705 0.0873675 +0.11% 0.0871495 -0.25%
fft_fast 0.2039270 0.2047320 +0.39% 0.2014390 -1.61%

cordic_slow 0.3091530 0.3091530 – 0.2810640 -9.09%
cordic_fast 1.6646800 1.6693800 +0.28% 1.1387300 -31.79%

des_perf_slow 0.3389120 0.3389120 – 0.3387110 -0.06%
des_perf_fast 0.7499550 0.7764230 +3.53% 0.7625440 -1.79%

edit_dist_slow 0.4293730 0.4297370 +0.08% 0.4293020 -0.10%
edit_dist_fast 0.5726620 0.5729100 +0.04% 0.5670630 -1.02%

matrix_mult_slow 0.4630130 0.4630130 – 0.4611650 -0.40%
matrix_mult_fast 2.0324600 2.0392700 +0.34% 1.6879700 -17.23%

netcard_slow 5.1169900 5.1170700 +0.00% 5.1146100 -0.05%
netcard_fast 5.1483100 5.1679200 +0.38% 5.1540800 -0.27%

also faster Vths are chosen to provide the best trade-off between timing and total leakage

power. Also, the number of gates of each size/Vth shows how much effort is needed to

get timing closure and how much leakage power the sizing tool must sacrifice to meet the

desired clock constraint.

100

Figure 5.9: Gate usage by sizes and Vth for the cordic benchmark. (a) and (b) for
cordic_slow, (c) and (d) for cordic_fast.

(a) (b)

(c) (d)

Source: from author (2016).

101

6 INDUSTRIAL DESIGN FLOW APPLICATION

In this chapter we detail the algorithms and the proposed modifications necessary

to enable the cell selection flow to work in an industrial design flow, specifically in the

post global route stage. In such a flow, different objectives must be optimized while other

quality metrics are treated as constraints to the problem.

Different from the aforementioned contests, the initial solution provided to this

flow (i.e. the solution after place and route) is considered to have a good quality. There-

fore, that solution can be used as a reference to the cell selection optimization and also to

provide a guidance to the Lagrangian relaxation-based algorithm.

The first benefit of having a good initial solution is the electrical violations. They

have already been resolved to the fullest extent practical. Since the input designs may not

be closed, it is expected that electrical violations exist and are not solvable at this stage.

To take that into account, the cell selection algorithm used in the Lagrangian relaxation

iterations should see those violations as the maximum violation allowed for those specific

nets. A decrease in the number of violations is acceptable but it is not a direct objective

of the algorithm.

The second insight taken from the initial solution is the current timing information.

In a pure power/area optimization stage of an industrial flow, the input timing quality must

be considered as a hard constraint in the Lagrangian relaxation algorithm, i.e. timing

results may not be degraded.

Another positive effect of the initial solution in our cell selection framework is a

consequence of the greedy sizing method used in LR. Since the greedy algorithm relies

on the cell options currently assigned to the gates, the first LR iteration will benefit from

the fact that those gates already represent good choices of sizing and Vt. This also helps

the algorithm to keep equal or less electrical violations than the initial solution, avoiding

disruptions in the solution quality.

As mentioned before, one of the major challenges of gate sizing algorithms is the

use of complex timing models needed in modern technologies and designs. The complex-

ity of those models, and the existence of different clock domains, clock gating, accurate

wire models for interconnect delay and slew propagation, make the sign-off timing en-

gines too excessive in runtime to be used throughout the proposed optimization flow. The

use of simpler timing models and/or timing estimation techniques is required to enable

the use of the proposed flow in the chosen target environment.

102

Figure 6.1: The proposed cell selection flow.

Source: from author (2016).

The placement of gates is also important in a late optimization stage of an indus-

trial design flow. A big change in placement will directly affect routing and, as a conse-

quence, timing. Testing every placement change, even in a greedy way (i.e. the change

caused only by the cell option being tested in the greedy cell sizing algorithm), would be

prohibitive in runtime. Thus, the cell selection algorithm needs to take into account the

area of the gates, also preventing overlapping and excessive (or any) overall area increase.

However, limiting the maximum footprint of a cell to be the current cell area or less will

degrade the final solution and also prevent further optimization.

The proposed flow incorporates the area into the objective minimization function.

By doing so, the optimization objective will balance area and power accordingly. This will

require scaling factors to set the correct proportion between the power, area and timing

units. Also placement legalization must be performed to ensure an overlap-free design

after cell selection optimization.

The new proposed flow is shown in Figure 6.1 and the details of each step are

discussed in the next sections.

The two initial steps set the timing and electrical violation targets for each pin

in the design. The sizing algorithm will consider the existing electrical violation as the

violation limit for each pin, not allowing increase in electrical violations. The third step

implements the iterative LR-based cell selection algorithm described in Section 6.1. Sec-

103

tions 6.1.1 to 6.1.3 discuss the initial Lagrange multiplier estimation method, the new

multiplier update and the ranking algorithm, respectively. After that, a placement legal-

ization is performed to fix any placement overlaps created.

In the Solution Refinement step, Enhanced Timing Recovery will work to improve

solutions with slack degradation. Next, Enhanced Power Reduction will further reduce

leakage power and area by a greedy method. The last step is a second run of Enhanced

Timing Recovery. Both refinement methods are based on the algorithms already presented

in Section 5.3 with proposed changes as discussed below.

Another placement related feature introduced in our flow is the legalization test

during the post-LR solution refinement. This legalization test ensures that the new solu-

tion will have the desired effect after the final placement legalization.

In the late optimization problem, designs may have timing violations that cannot

be solved by applying only cell selection algorithms. As a consequence of that, the typical

LR formulation would lead to an increase in power/area in an attempt to fix all timing

violations. This is not the desired effect of such an optimization process in an industrial

IC design flow.

The main goal is to keep the same quality of results for timing and electrical vi-

olations (or improve them) and improve power and/or area of the design. To accomplish

that, a change in the typical LR formulation (presented in Section 5.3) is required.

6.1 The New Lagrangian Relaxation Formulation

The cell selection optimization problem here, the Primal Problem (PP), can be

formulated as:

PP:

minimize β × power + θ × area

subject to ai + di→j ≤ aj ,∀ timing arc i→ j

ao ≤ T ,∀ timing endpoint o

(6.1)

where β and θ are the scaling factors for each optimization objective in order to scale the

different units. Both scaling factors are calculated based on the input standard cell library

104

as follows. They reflect the average power/area change between cell options in the library.

β =
Nc

Pl(cn)− Pl(c0)
, θ =

Nc

A(cn)− A(c0)
(6.2)

where cn and c0 are the largest (lowest Vt) and smallest (higher Vt) cell in the library.

The θ calculation involves only a single Vt level. Applying the scaling factors makes the

optimization free of power and area units. Such units may change between standard cell

libraries and technologies.

The library-based parameters may also be replaced by design-dependent param-

eters like average power and average area for all cells in the design. We have found by

experimentation that both methods lead to similar results.

Applying the Lagrangian relaxation method we obtain the LR Sub-problem (LRS)

in (6.3).

LRS:

minimize β × power + θ × area +∑
λi→j(ai + di→j − aj) +∑
λo(ao − T)

(6.3)

Further simplification can be achieved by applying Karush-Kuhn-Tucker (KKT)

conditions to optimality (λ ∈ Ωλ) (CHEN; CHU; WONG, 1999). Then, (6.3) is simplified

resulting in the form in (6.4).

LRS (λ ∈ Ωλ):

minimize β × power + θ × area+ α×
∑

λi→jdi→j
(6.4)

Here, the α scaling factor is introduced to normalize the timing unit. It is defined

as follows:

α =
Nc

D(cn)−D(c0)
(6.5)

where delays D(cn) and D(c0) are calculated based on the standard cell library with the

same reference output load.

We apply a method similar to (FLACH et al., 2014) to solve the LRS. Algorithm 9

shows the pseudo-code for the LRS solver. The sum
∑
λi→jdi→j is referred as lambda-

delay in the algorithms. lambda-delay(c) is the lambda-delay for all timing arcs connected

to the input and output pins of the gate c. optioNc represents the library option currently

105

Algorithm 9: SolveLRS
1 foreach gate c ∈ Design do
2 best_option← optioNc

3

best_cost← α× lambda-delay(c)

+ β × (Pl(c) + Pd(c))

+ θ ×A(c)
4 foreach gate option g ∈ F (c) do
5 optioNc ← g
6 if electrical violations bigger than initial then
7 go to the next option
8 end
9 local timing update

10 if new_slack < γ ∗ original_slack then
11 go to the next option
12 end

13

cost← α× lambda-delay(c)

+ β × (Pl(c) + Pd(c))

+ θ ×A(c)
14 if cost < best_cost then
15 best_option← g
16 best_cost← cost

17 end
18 end
19 optioNc ← best_option
20 local timing update
21 end

assigned to c. Pl(c) and Pd(c) represent the leakage and the dynamic power for cell c,

respectively.

Then, the new problem is to find the optimal set of lambdas that solve the PP .

Thus, LDP is simply the maximization of LRS where λ is the variable, as presented in

Chapter 5.

Algorithm 10 shows the new proposed method to solve the LDP problem. The

first loop (lines 3-9) performs initial lambda estimation (details in Section 6.1.1). Second

loop (lines 10-18) is the main LR flow that is limited by a maximum number of iterations

or by convergence metrics.

The overall solution quality is measured by a score function. The score function

penalizes timing degradation exponentially, as follows:

score = −
(
∆Power + ∆Area+ 2−∆TV − 1

)
(6.6)

where ∆TV represents the percentage of change in timing violation. All ∆s are calculated

with respect to input solution. Positive scores represent improved solutions while negative

scores show solution degradation.

106

Algorithm 10: SolveLDP
1 store initial solution
2 set initial multipliers
3 repeat
4 SolveLRS
5 update timing
6 UpdateLagrangeMultipliers
7 restore initial solution
8 update timing
9 until iteration limit;

10 repeat
11 SolveLRS
12 update timing
13 UpdateLagrangeMultipliers
14 if new_score > best_score then
15 store solution
16 best_score← new_score
17 end
18 until converged or iteration limit;
19 restore best solution found

6.1.1 Initializing the Lagrange Multipliers

A well known issue in Lagrangian relaxation-based methods is how to define the

initial values for the Lagrange multipliers. The initial set of multipliers plays a significant

role in convergence and final quality of results, as shown in (TENNAKOON; SECHEN,

2005). However, finding a set of multipliers for a given input set of gate sizes and thresh-

old voltages with the respective delays is a problem with a similar difficulty to the cell

selection problem. Moreover, considering the KKT conditions, it may be impossible to

find such a set of multipliers.

We propose a simple and straightforward method to overcome the lack of a good

set of initial multipliers. The method consists of a few LR iterations where we solve

the LRS problem, update the multipliers and restore the initial solution. The new set of

multipliers represents a LRS solution with delays closer to the delays present in the input

solution. This estimation method provides a set of initial multipliers to the main LR flow

simulating an incremental approach and avoiding quality disruption.

In order to avoid excessive runtime due to sign-off timer calls, only the ranking

method (Section 6.1.3) is used to solve the LRS, i.e., F (c) has only one option that is

always chosen in SolveLRS, with no need to update timing.

107

Algorithm 11: UpdateLagrangeMultipliers
1 ρinc = ρinit × (1 + it)
2 ρdec = ρinit × (15 + it)
3 foreach timing arc i→ j do
4

λi ← λi ×


(

1− Scurr−Sinit

∆WNS×ρinc

)kinc

aj ≥ qj − Sinit(
1 + Scurr−Sinit

T×ρdec

)kdec
aj < qj − Sinit

5 end
6 KKT projection (λ ∈ Ωλ)

6.1.2 Lagrange Multiplier Update

In the late optimization problem in industrial flows, designs may have timing vi-

olations that are expected to not be solved by any means. As a consequence, a normal

LR formulation would lead to an increase in power/area in an attempt to fix all timing

violations, which is not the desired effect of such optimization process. The main goal

must be to keep the same timing quality of results (or improve it) and to improve power

and area of the design. To accomplish that, a change in the LR formulation is required.

Reference (REIMANN; SZE; REIS, 2015) presents a new lambda update method

that enables LR-based algorithms to handle designs with negative slacks. New lambda

values are calculated to target the initial timing arc slack Sinit. In this work we apply

a similar but more aggressive method for the Lagrange multiplier update. Algorithm 11

shows the new update approach.

In order to achieve fast convergence and better timing quality of results, the timing

reference for the multiplier increase (T) is replaced by the worst slack degradation in the

current solution with respect to the initial state – called ∆WNS. Also, two step factors

(ρ) are included to smooth convergence. These factors are similar to step sizes in the

subgradient method. Without step factors, the solution quality has large variations along

iterations (due to the discreteness of the problem) that lead to a slower convergence and

degradation in quality of results.

Exponents kinc and kdec are defined as kdec = −k and kinc = 1/k. The variable

k will determine the convergence priority: the constraints or the optimization objective.

For k < 1, multipliers will increase faster, resulting in faster delay reduction in the next

SolveLRS run. On the other hand, k > 1 results in faster multiplier decrease, allowing

more power/area savings while increasing delay in non-violating paths. The ranges for

108

Algorithm 12: OptionRanking
1 foreach gate option g ∈ G(c) do
2 estimate local delays for g

3
cost← α× lambda-delay(c) + β × Pl(c) + θ × A(c)

+ ζ × C(c)

4 insert g in cost-ordered vector F (c)

5 end

k are empirically defined according to the quality of previous LR iteration, as shown in

(6.7). Different choices for k do not significantly affect the final quality of results, but

allow faster convergence, reducing the number of iterations required.

k =



5 if λ initialization

0.2 ≤ k < 1 if TNS degraded

1.5 ≤ k ≤ 4 if new_score > score

1 otherwise

(6.7)

Scurr is the current worst slack obtained from the sign-off timer. Such a method

makes the presence of multiple clock domains transparent to the LR engine, as derived by

Ozdal, Burns and Hu (2012).

6.1.3 Filtering Gates Options

The use of a high accuracy timer to evaluate all cell options is not feasible in terms

of runtime. A less accurate timing model can be used instead. However, the less accurate

timer may not only evaluate (rank) the options differently but also make any electrical

violation control ineffective.

Considering these limitations, we propose the use of a less accurate timing model

to rank all gate options using the same cost function of the SolveLRS algorithm. The

less accurate timer ignores the delay and slew rate changes in the interconnect parasitics.

It also ignores effective capacitance calculations. Timing arc delays and output slews are

calculated using the lookup tables in the standard cell library. After that, the sign-off

timer only evaluates the top t ranked gate options, skipping several high accuracy timing

updates to reduce runtime.

The ranking method is presented in Algorithm 12. Since there is no timing update

109

when ranking the options, there is no accurate dynamic power calculation available, as

updated input slews would be needed. Dynamic power is estimated by using the input

pin capacitance of the new gate option. The input pin capacitance must also be properly

scaled to become unitless. The input pin capacitance scaling factor ζ is calculated as

follows.

ζ =
Nc

C(cn)− C(c0)
(6.8)

Similar to the other scale factors, ζ can also be calculated using design statistics

like average input pin capacitance.

6.2 Solution Refinement

The fast and highly constrained convergence adopted during LR iterations gener-

ates solutions that still show space for local optimizations.

In some cases, timing must be improved to better resemble the timing quality of

the initial state. The algorithm used for that end is described next. Also, power can be

locally optimized by a greedy algorithm as detailed hereafter.

6.2.1 Enhanced Timing Recovery

The Timing Recovery algorithm is here adapted to handle placement legalization

for each gate size/Vth change. Also, a new ordering for the search is set. Instead of order-

ing the gates as in the original work, we order the gates by their worst slack, processing

the most critical gates first.

For each new gate option under test, the algorithm checks if the gate needs to be

moved from its current location to fit the new size option. In the cases where the gate

has its footprint increased and there is no free space to fit it, a new placement location

with available space is found. Thereby, the timer takes into account the routing parasitics

changes to update timing.

The second run takes advantage of capacitance and area reduction obtained in the

Enhanced Power Reduction step. Only paths violating the initial worst slack are searched

in both runs.

110

6.2.2 Enhanced Power Reduction

The Power Reduction algorithm can further improve the solution after LR, reduc-

ing power and area of cells. Since it only performs downsizing and Vth increase, place-

ment legalization is usually not required. Nevertheless, the algorithm is also placement-

aware and can find new cell placement locations if necessary.

The algorithm is here adapted to prioritize downsizing in non-critical gates in the

fanout of critical paths, reducing the output load of critical gates and allowing more im-

provements in the next run of Enhanced Timing Recovery.

We also improve the algorithm to prevent True Total Negative Slack (TTNS)

degradation. The original implementation would take advantage of worst slack propaga-

tion, powering down gates in paths dominated by a side negative slack. Since TTNS

calculation includes the slacks of side paths, degradations occur when any slack gets

more negative. Our enhanced algorithm checks for slack degradation in the output pin of

all changed gates and rejects solutions with slack degradation.

6.3 Empirical Validation

We evaluate the proposed method in the post-global routing optimization stage

of an industrial design flow with fourteen high-performance industrial microprocessor

blocks with 5GHz clock frequency (174ps clock period) using a 22nm standard cell li-

brary with 2 or 3 threshold voltage levels available, according to the specific design.

First we present the results that do not consider TTNS in the Enhanced Power

Reduction stage. Those results present more leakage power reduction but, as expected,

degrade TTNS. Such an approach may be useful when designers will not apply others

techniques to fix timing and want to find the best power-TNS trade-off.

6.3.1 Preliminary results

As mentioned in the previous section, the slack targets are set based on the con-

verged timing slacks1 and the new Lagrange update method multiplier presented in the

1Here, converged timing slacks refer to the end of “optimization”, “clock insertion and optimization” or
“routing optimization” stages.

111

Table 6.1: Characteristics for 14 high performance microprocessor designs.

Sizeable Worst TNS Power (mW)

Design Gates Slack (ps) Leakage Dynamic Total

ibm2014uP_01 88521 −72.57 −138492 79.08 13.54 92.62

ibm2014uP_02 7346 −142.43 −3004 1.07 1.28 2.35

ibm2014uP_03 7940 8.76 −18 2.73 51.37 54.10

ibm2014uP_04 5848 −8.38 −552 1.59 1.35 2.94

ibm2014uP_05 10448 −87.06 −42914 18.92 45.21 64.13

ibm2014uP_06 60768 −142.67 −37685 37.40 112.03 149.43

ibm2014uP_07 63724 −41.50 −52367 60.51 12.60 73.11

ibm2014uP_08 14372 −72.89 −38053 16.29 68.06 84.35

ibm2014uP_09 15270 −30.74 −13234 14.41 33.03 47.44

ibm2014uP_10 117011 −42.43 −65276 85.01 304.35 389.36

ibm2014uP_11 20929 −164.94 −188713 35.97 21.65 57.62

ibm2014uP_12 14529 −421.29 −363751 4.26 20.47 24.73

ibm2014uP_13 16481 −46.36 −27261 19.90 61.22 81.12

ibm2014uP_14 5595 −61.86 −6525 8.18 9.68 17.86

previous section is used in our implementation. We successfully applied the LR-based

power optimization algorithm on the designs shown in Table 6.1.

First, we would like to understand how timing quality changes in the first several

LR iterations of the algorithm. Figure 6.2 shows the LR convergence for two different

designs. TNS degrades drastically for first several iterations, because the multipliers

(λs) are not properly set to resemble timing quality of the input solution (we initialize all

multipliers with the same constant value). At the same time, these iterations are the price

to pay in order to find out which timing arcs are more timing-critical and which are not.

After that, further iterations can mitigate timing degradation producing a solution with

similar (ibm2014uP_14) or better (ibm2014uP_08) timing quality. The designs shown

in Figure 6.2 converge pretty quickly (at around the 15th iteration) and the cost of “λ-

tuning” is one third of the total CPU time, which is significant considering the LR-based

cell selection algorithm usually takes hours of runtime for our medium-sized designs. It

is good to remember that some oscillation in timing quality is expected during the LR

optimization process, but excessive timing degradation is not desired in a method that is

supposed to be incremental.

As stated before, using a formulation that assumes that all timing constraints can

be respected in the design is not suitable for designs with known negative slack paths.

Moreover, balancing those negative slacks may also degrade the timing quality of results.

This situation is similar to the ISPD contest formulation, where all designs are consid-

ered to have no timing violations, and non-critical paths can have their timing relaxed as

112

Table 6.2: Results assuming timing closure can be achieved. Only LR step in the flow is
executed.

Design Worst Slack (ps) TNS (ps) Leakage Power (mW) Dynamic Power (mW) CPU (s)

pre-LR post-LR pre-LR post-LR diff pre-LR post-LR diff pre-LR post-LR diff

ibm2014uP_01 -75.2 -75.1 -138639 -138234 405 80.38 87.88 9.3% 13.46 13.47 0.1% 27486
ibm2014uP_02 -135.1 -135.1 -2973 -3479 -506 1.07 1.18 10.1% 1.30 1.27 −2.1% 4191
ibm2014uP_03 8.9 4.6 -16 -22 -6 2.73 3.16 15.6% 51.24 50.01 −2.4% 2345
ibm2014uP_04 -8.4 -7.7 -552 -529 23 1.59 1.59 0.2% 1.37 1.36 −0.3% 749
ibm2014uP_05 -82.1 -85.1 -43211 -45913 -2702 19.14 19.61 2.4% 45.04 45.12 0.2% 1714
ibm2014uP_06 -133.4 -148.6 -30643 -45586 -14943 38.14 38.31 0.4% 112.01 112.00 0.0% 13312
ibm2014uP_07 -38.4 -39.9 -52648 -56713 -4065 60.97 62.76 2.9% 12.60 12.60 0.0% 23021
ibm2014uP_08 -78.0 -78.0 -37504 -35653 1851 16.56 17.50 5.7% 68.68 69.16 0.7% 3900
ibm2014uP_09 -33.8 -73.3 -14110 -16018 -1908 14.77 15.79 6.9% 33.29 33.56 0.8% 4831
ibm2014uP_10 -34.6 -62.5 -70314 -65161 5153 86.11 90.23 4.8% 303.92 303.71 −0.1% 51932
ibm2014uP_11 -162.8 -162.9 -189618 -186607 3011 36.10 40.14 11.2% 21.59 21.62 0.1% 4938
ibm2014uP_12 -421.4 -421.1 -354649 -337070 17579 4.28 5.36 25.2% 20.37 20.34 −0.2% 4530
ibm2014uP_13 -49.4 -52.2 -26363 -25379 984 20.27 20.98 3.5% 60.93 60.88 −0.1% 3865
ibm2014uP_14 -61.9 -65.1 -6526 -6463 63 8.18 8.19 0.1% 9.68 9.68 0.0% 1027

Figure 6.2: TNS change along LR iterations.

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

5000

0 5 10 15 20 25 30

∆
T

N
S

LR iteration

ibm2014uP_08 ibm2014uP_14

Source: from author (2016).

long as they still respect the defined clock arrival time. Table 6.2 shows the Lagrangian

relaxation result for 10 designs when all timing endpoints are set to target zero slack.

Both of the aforementioned cases of failure are present in the results. For example, de-

sign ibm2014uP_12 shows a small timing improvement while leakage power degrades by

25%. On the other hand, design ibm2014uP_06 shows considerable timing degradation

while leakage power only improves by 0.4%. None of those two cases are acceptable in

an industrial design flow.

A common approach is to set the slack target for all paths as the worst slack in the

design, as mentioned before.The experiment shows the importance of setting a different

timing target for each timing endpoint and not a constant target for all paths. This ap-

113

Table 6.3: Results considering the worst slack as the target for all timing paths. Only LR
step in the flow is executed.

Design Worst Slack (ps) TNS (ps) Leakage Power (mW) Dynamic Power (mW)
CPU (s)

pre-LR post-LR pre-LR post-LR pre-LR post-LR pre-LR post-LR

ibm2014uP_01 -73.1 -95.5 -139703 -369537 80.49 -44.4% 13.45 -0.3% 26867

ibm2014uP_02 -142.4 -142.7 -3004 -16768 1.07 -26.1% 1.29 -9.2% 3842

ibm2014uP_03 8.9 6.1 -16 -80 2.73 27.6% 51.24 -1.4% 2723

ibm2014uP_04 -8.4 -10.0 -552 -1122 1.59 0.0% 1.37 -0.3% 1970

ibm2014uP_05 -83.5 -90.9 -43124 -80768 19.13 -17.7% 45.09 -3.0% 1691

ibm2014uP_06 -142.7 -151.6 -27901 -385203 37.84 -14.1% 112.01 -0.1% 12532

ibm2014uP_07 -38.7 -48.4 -52238 -175215 61.04 -45.7% 12.60 0.0% 21889

ibm2014uP_08 -72.9 -75.8 -38008 -74927 16.56 -43.5% 68.75 -8.0% 4160

ibm2014uP_09 -33.8 -39.1 -14110 -40741 14.77 -30.1% 33.29 -2.2% 4520

ibm2014uP_10 -35.3 -44.2 -69144 -281091 85.81 -46.7% 303.93 -9.9% 45642

ibm2014uP_11 -158.7 -177.4 -191743 -256042 36.17 -46.7% 21.59 -0.2% 5089

ibm2014uP_12 -421.1 -421.1 -359714 -564317 4.26 -21.6% 20.35 -3.1% 4758

ibm2014uP_13 -51.2 -56.3 -26553 -56966 20.29 -41.5% 60.93 -2.8% 3838

ibm2014uP_14 -61.9 -61.7 -6526 -13759 8.18 -1.9% 9.68 0.0% 1080

proach is similar to considering the negative slacks as impossible to solve (i.e. the best

possible timing has already been achieved – or timing has converged) and to promote a

clock period relaxation in order to circumvent those timing violations in critical paths. As

mentioned before, this relaxation will produce a considerable timing degradation (when

considering the actual clock period) in non-critical paths, achieving more power improve-

ments.

Table 6.3 shows the results for 10 designs using this approach. As expect, timing

quality degrades significantly even when WNS is kept almost the same. Such results

can be seen as a lower-bound reference of the worst degradation caused by a method that

ignores the input state and only balances power and timing.

In the middle of the design flow when the designers are still improving the floor

plan and pin assignment, increasing the clock period makes cell selection at the end of

physical synthesis trivial, and a global method (like LR) will not improve much the solu-

tion provided by the greedy algorithm. We tested this possibility by changing the slack

target in the physical synthesis flow to simulate a clock period relaxation. We set the

global slack target to be the worst slack, 3/4, 1/2 and 1/4 of the worst slack of a previous

physical synthesis run.

Figure 6.3 shows the leakage power improvement at the end of LR iterations with

the five different slack targets for the physical synthesis run. The more the clock is relaxed

114

Figure 6.3: Leakage power improvement at the end of LR in five different scenarios for
physical synthesis slack target (target clock period).

Source: from author (2016).

(the left most case) the smaller is the leakage power improvement (leakage power may

even increase). The right most results (“Normal”) are the typical run, where the slack

target is a positive slack value. Results show that a tighter clock period makes the standard

greedy algorithm present in the industrial flow less effective, allowing more leakage power

improvement in our global cell selection method.

The complete results of applying LR-based power-driven cell selection algorithm

with individual slack targets at the end of our physical synthesis flow is shown in Ta-

ble 6.4. “pre-GS” and “post-GS” are measurements just before and after the cell selection

algorithm. It is promising to see that our method can achieve 11.7% of average leakage

power saving on top of our existing physical synthesis flow, which is power-aware and

has components to minimize low-Vt usage. The table also shows that the power reduction

algorithm does not degrade worst slack and TNS.

However, as mentioned in before, focusing only on worst slack and TNS gives the

user of a real industrial design flow a wrong perception. And we would like to also eval-

uate the change of timing quality of results during the run of the Lagrangian Relaxation-

based method. As shown in the columns marked “TTNS” in Table 6.4, the degradation

on timing quality of results is significant which gives a totally different conclusion com-

paring to “worst slack” and “TNS”. Even though the cell selection method maintains

worst slack and the TNS of the designs, the TTNS is worsened significantly for some

designs. This behavior is not desired in this real industrial design flow, since the timing

115

Table 6.4: Results with proposed modifications included for a set of 14 high performance
microprocessor designs.

Design Worst Slack (ps) TNS (ps) Leakage Power (mW) TTNS (ps)
CPU (s)

pre-GS post-GS pre-GS post-GS pre-GS post-GS diff pre-GS post-GS diff

ibm2014uP_01 -72.6 -72.6 -138492 -133799 79.08 58.75 -25.7% -882785 -956814 -74029 37068
ibm2014uP_02 -142.4 -141.3 -3004 -2480 1.07 0.99 -7.3% -24295 -30079 -5784 3064
ibm2014uP_03 8.8 7.0 -18 -14 2.73 2.70 -1.0% -39 -67 -27 3875
ibm2014uP_04 -8.4 -7.4 -552 -513 1.59 1.58 -0.4% -560 -519 41 1021
ibm2014uP_05 -87.1 -86.9 -42914 -42213 18.92 17.53 -7.4% -77630 -80474 -2845 2548
ibm2014uP_06 -142.7 -142.7 -37685 -34145 37.40 34.64 -7.4% -64667 -66497 -1830 19120
ibm2014uP_07 -41.5 -41.8 -52367 -50054 60.51 50.57 -16.4% -390841 -415402 -24561 26886
ibm2014uP_08 -72.9 -72.9 -38053 -33914 16.29 13.68 -16.1% -201562 -200360 1202 5314
ibm2014uP_09 -30.7 -30.7 -13234 -12408 14.41 11.55 -19.9% -65844 -77650 -11806 6083
ibm2014uP_10 -42.4 -42.0 -65276 -62411 85.01 72.85 -14.3% -292779 -306952 -14173 44659
ibm2014uP_11 -164.9 -164.9 -188713 -182711 35.97 28.98 -19.4% -1020419 -1023425 -3006 6848
ibm2014uP_12 -421.3 -421.2 -363751 -352693 4.26 3.74 -12.1% -795556 -830203 -34648 5663
ibm2014uP_13 -46.4 -46.4 -27261 -24594 19.90 16.69 -16.1% -137055 -143574 -6519 5656
ibm2014uP_14 -61.9 -60.9 -6525 -6430 8.18 8.12 -0.7% -11213 -11134 78 1033

Total: -977845 -938379 Total: -3965245 -4143151 -177906

violations are expected to be fixed by other methods in different stages of the flow and less

critical (but yet violating) paths should not be degraded, what would increase the effort to

solve violations and undo the power improvements found. Also, other sizing algorithms

applied in the flow are not allowed to degrade TTNS, so comparison would not be fair if

our methods degrade TTNS.

The runs are performed on a server with 64bit-Linux with 24 Intel X5690 CPUs

running at 3.47Ghz, and 142GB of memory. However, our current implementation of

the LR-based algorithm only uses a single-thread. Also, despite the fact that the timing

engine has multi-thread capabilities, they have insignificant impact on runtime due to the

one-cell change for each timing update call. As shown in the table, the runtime can take

up to 12.4 hours for the biggest design ibm2014uP_10.

6.3.2 Final results

We evaluate the proposed method in the post global routing optimization stage

of an industrial design flow with a set of 14 high-performance mid-size industrial mi-

croprocessor blocks with 5GHz working frequency with a 22nm standard cell library.

Considering that the input solution to our algorithm is already optimized (i.e. the best

solution found by the industrial flow), all designs are challenging in terms of timing, area

and power.

As proposed in (REIMANN; SZE; REIS, 2015), we also include TTNS mea-

116

Table 6.5: Experimental results for 14 high performance microprocessor blocks.
Worst Slack (ps) TNS (ps) TTNS (ps) Power Area

Design before after before after diff before after diff Leakage Dynamic

ibm22uP_01 -39.40 -39.33 -54401 -52860 1541 -392551 -414251 -21700 -16.8% 0.0% -1.9%
ibm22uP_02 -78.34 -77.72 -144167 -132476 11691 -910468 -920704 -10236 -20.0% -0.4% -2.6%
ibm22uP_03 8.87 8.95 -14 -6 8 -30 -11 20 5.2% -2.9% -0.3%
ibm22uP_04 -82.13 -82.02 -43263 -42510 753 -76068 -76794 -726 -6.1% -0.5% -0.2%
ibm22uP_05 -32.74 -32.27 -14491 -13243 1248 -71828 -88072 -16244 -21.8% 0.1% -2.7%
ibm22uP_06 -49.79 -49.75 -26647 -25587 1060 -133504 -137696 -4192 -15.5% -0.5% -2.0%
ibm22uP_07 -165.27 -165.23 -195168 -189647 5521 -1054130 -1075880 -21750 -18.0% 0.0% -0.5%
ibm22uP_08 -34.20 -34.20 -70737 -68875 1862 -322544 -360042 -37498 -20.7% -3.3% -3.5%
ibm22uP_09 -72.89 -72.89 -37290 -34505 2785 -195777 -214362 -18585 -19.8% -1.0% -2.7%
ibm22uP_10 -61.86 -61.16 -6526 -6383 143 -11213 -11069 144 -0.5% 0.0% -0.1%
ibm22uP_11 -421.88 -421.88 -359981 -348969 11012 -777205 -777115 90 -11.3% -2.3% -7.5%
ibm22uP_12 -135.13 -134.29 -2973 -2587 386 -22778 -26917 -4139 -8.3% -4.0% -6.3%
ibm22uP_13 -8.38 -7.40 -552 -515 37 -560 -521 39 -0.4% -0.5% -0.1%
ibm22uP_14 -142.57 -142.57 -36833 -35539 1294 -62323 -67034 -4712 -4.0% 0.0% -0.2%

Average 2810 -9963 -11.3% -1.1% -2.2%
Total 39341 -139489 -16.3% -1.8% -2.1%

surements to show all timing changes in the design including subpaths, not only the worst

timing paths that reach the timing endpoints. Table 6.5 briefly shows the results without

applying the new enhancements to prevent TTNS degradation in the Enhanced Power

Reduction algorithm. Number of gates and runtimes shown in Table 6.7a. It is clear

that ignoring degradation of slacks in side paths results in an unacceptable timing quality

degradation. Such results show that the method is unsuitable for industrial design flows.

Nevertheless, Table 6.6 (refer to Table 6.7b for runtimes) shows results when fully

applying the Enhanced Power Reduction method. This implementation will keep (or

improve) the timing quality obtained in the Lagrangian relaxation stage, for all metrics.

Initial design information varies from Table 6.5 due to the adopted test method-

ology, where all results are generated running the whole physical synthesis flow. Thus,

timing, power, area, number of gates are slightly different comparing both tables.

Although power improvements are smaller, the method is able to deliver consider-

able solution quality enhancements. It is important to remember that such improvements

are over designs already power-optimized by other methods at several stages of the indus-

trial design flow. We achieve 7.2% average (10.8% total and up to 18.2%) leakage power

reduction with similar or better timing quality for all designs tested. Area used is also

improved by 1.7% in average, which is remarkable in post-routing optimization stage.

Experimental data shows 10X average runtime speedup due to ranking method

with less than 2% difference in leakage power improvement. Results are obtained using

t = 2, i.e. only the top two ranked options are evaluated using the sign-off timer. These

117

Table 6.6: Experiments without TTNS degradation in PR step.
Worst Slack (ps) TNS (ps) TTNS (ps) Power Area

Design before after before after diff before after diff Leakage Dynamic

ibm22uP_01 -37.92 -37.92 -52108 -50126 1982 -376012 -357385 18627 -9.4% 0.0% -0.6%
ibm22uP_02 -75.76 -75.13 -141471 -137744 3727 -906301 -897859 8442 -18.2% -0.4% -2.3%
ibm22uP_03 8.87 8.92 -14 -6 8 -30 -10 20 6.2% -3.3% -0.4%
ibm22uP_04 -82.13 -82.12 -43263 -42763 500 -76068 -75175 893 -3.6% -0.2% 0.2%
ibm22uP_05 -33.84 -33.07 -14110 -13724 386 -72869 -71636 1232 -15.7% 0.6% -1.8%
ibm22uP_06 -53.03 -53.16 -27185 -24680 2505 -134543 -128356 6187 -9.3% -0.5% -1.9%
ibm22uP_07 -165.32 -165.32 -191527 -188435 3092 -1034800 -1022700 12100 -10.2% 0.0% 1.3%
ibm22uP_08 -35.12 -36.35 -67145 -64510 2635 -305053 -290806 14247 -11.6% -2.4% -2.5%
ibm22uP_09 -80.36 -80.36 -39823 -36858 2965 -211734 -201734 10000 -11.4% -0.7% -2.3%
ibm22uP_10 -58.95 -59.05 -6419 -6425 -6 -10950 -10986 -36 -0.5% 0.0% -0.1%
ibm22uP_11 -421.65 -421.53 -359783 -350035 9748 -787596 -764491 23105 -7.8% -2.1% -6.8%
ibm22uP_12 -141.00 -140.28 -3030 -2752 278 -23004 -21656 1348 -6.5% -3.9% -6.0%
ibm22uP_13 -8.38 -7.40 -552 -516 36 -560 -519 41 -0.3% -0.5% -0.1%
ibm22uP_14 -133.37 -133.37 -31798 -30242 1556 -52800 -49614 3186 -2.7% 0.0% 0.0%

Average 2101 7099 -7.2% -1.0% -1.7%
Total 29412 99392 -10.8% -1.4% -1.5%

Table 6.7: Number of gates and runtimes for Table 6.5 and Table 6.6.
(a) Results in Table 6.5.

Design #Gates CPU (s)

ibm22uP_01 70331 17685
ibm22uP_02 95057 24115
ibm22uP_03 8827 2540
ibm22uP_04 15777 1911
ibm22uP_05 17510 4734
ibm22uP_06 20167 3873
ibm22uP_07 24425 9454
ibm22uP_08 124670 32620
ibm22uP_09 17942 5219
ibm22uP_10 12941 785
ibm22uP_11 17480 3758
ibm22uP_12 9260 3400
ibm22uP_13 7293 808
ibm22uP_14 75148 17740

(b) Results in Table 6.6.

Design #Gates CPU (s)

ibm22uP_01 70333 18626
ibm22uP_02 95310 22609
ibm22uP_03 8827 3152
ibm22uP_04 15777 1931
ibm22uP_05 17561 4519
ibm22uP_06 20150 3299
ibm22uP_07 24506 6222
ibm22uP_08 124922 47285
ibm22uP_09 17793 6608
ibm22uP_10 12912 697
ibm22uP_11 17405 4128
ibm22uP_12 9334 2383
ibm22uP_13 7293 826
ibm22uP_14 74976 15579

results show the effectiveness of the proposed ranking method that enables the use of a

sign-off timer for the cell selection algorithm.

The initial lambda tuning method is also analyzed. Table 6.8 shows power results

without the initial lambda tuning iterations. Column "LR Cvg" shows when LR could

converge to a better solution ("Y") or did not provide a solution better than the initial state

("N"). Comparing to Table 6.5, we see a major quality degradation mainly due to lack of

convergence of the LR method. LR is not able to converge for half of the designs, where

118

Table 6.8: Experiments without lambda tuning iterations.

Design
Leakage Power (mW) Dynamic Power (mW) LR

before after diff before after diff Cvg

ibm22uP_01 61.16 58.54 -4.3% 12.60 12.60 0.0% Y
ibm22uP_02 80.64 66.99 -16.9% 13.47 13.41 -0.4% N
ibm22uP_03 2.76 2.73 -0.8% 51.35 50.83 -1.0% N
ibm22uP_04 19.14 18.37 -4.0% 45.26 45.22 -0.1% N
ibm22uP_05 14.81 12.91 -12.8% 33.06 33.23 0.5% Y
ibm22uP_06 20.30 16.66 -17.9% 61.20 60.86 -0.6% Y
ibm22uP_07 35.31 29.38 -16.8% 21.54 21.55 0.0% Y
ibm22uP_08 88.39 78.97 -10.7% 305.36 304.94 -0.1% N
ibm22uP_09 16.53 13.77 -16.7% 68.29 68.21 -0.1% N
ibm22uP_10 8.18 8.18 -0.1% 9.68 9.68 0.0% Y
ibm22uP_11 4.25 3.89 -8.5% 20.46 19.99 -2.3% Y
ibm22uP_12 1.07 1.04 -2.2% 1.28 1.23 -4.3% Y
ibm22uP_13 1.59 1.59 -0.1% 1.35 1.34 -0.2% N
ibm22uP_14 37.84 37.18 -1.7% 112.03 111.98 0.0% N

Avg. -8.1% -0.6%
Total -10.7% -0.2%

all power improvement is given by PR2. TTNS degradation for this set of results is more

than 50% greater than results using initial lambda tuning. This shows the importance of

the warm start with the initial lambda tuning.

2This implementation resembles Table 6.5, where PR implementation degrades TTNS.

119

7 CONCLUSION

The cell selection problem has been extensively explored by both industry and

academia in recent years. Since optimal solutions cannot be found by a polynomial-

time algorithm, many techniques have been proposed, with a variety of strengths and

weaknesses.

Most academic works focus on simplified models that can no longer be applied

to real-life designs. Several challenges found when applying cell selection algorithms in

industrial designs are rarely addressed and are not fully exposed. Lagrangian relaxation-

based algorithms are found in many publications despite the loss of its optimality for the

discrete sizing and non-convex timing models. Another common approach is to model the

problem as continuous optimization with later discretization, since the optimal solution

can be found. However, discretization algorithms are suboptimal and usually lead to a

solution far from optimal.

Recent works show the importance of using a sign-off timer during the optimiza-

tion. Sign-off timing analysis is of extreme importance in the late optimization stages of

industrial designs, where interconnection parasitics can already be extracted or accurately

estimated. However, that leads to excessive runtime when using the full capabilities of

STA, including multiple clock domains, multiple working frequencies, etc.

New algorithms and methods are needed to enable power and area optimization in

late stages of industrial flows for high-performance designs. In this work we presented

our state-of-the-art academic gate sizing and Vt assignment methodology that achieved

the 1st Place Award in the ISPD 2013 Contest. This methodology outperforms all other

methods found in literature in all ISPD 2013 Contest benchmarks.

This work focused on the extension of our cell selection methodology in order

to handle industrial designs in the post-placement and post-clock tree synthesis stages

of an industrial design flow for high-performance microprocessors. For this application,

the proposed techniques reduce leakage power by up to 18.2%, with average reduction of

10.4% without any degradation in timing quality. Also, up to 21.8% leakage power reduc-

tion is achieved in the presence of some TTNS degradation. Cell area is also reduced, in

average by 2.2% (with TTNS degradation) and 1.7% (no TTNS degradation), with up

to 6.8% reduction for the latter case.

These results show the effectiveness of the proposed methodology and the im-

provements in this work over other works found in the literature.

120

REFERENCES

ABATO, R. et al. Incremental timing analysis. Google Patents, 1996. US Patent
5,508,937. Available from Internet: <http://www.google.com/patents/US5508937>.

AFONSO, R. et al. Power efficient standard cell library design. In: Circuits and Systems
Workshop,(DCAS), 2009 IEEE Dallas. [S.l.: s.n.], 2009. p. 1–4.

ALDOUS, D.; VAZIRANI, U. V. ``go with the winners” algorithms. In: 35th
Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico,
USA, 20-22 November 1994. [s.n.], 1994. p. 492–501. Available from Internet:
<http://dx.doi.org/10.1109/SFCS.1994.365742>.

ALPERT, C. J.; DEVGAN, A.; KASHYAP, C. A two moment rc delay metric for
performance optimization. In: Proceedings of the 2000 International Symposium on
Physical Design. New York, NY, USA: ACM, 2000. (ISPD ’00), p. 69–74. Available
from Internet: <http://doi.acm.org/10.1145/332357.332377>.

BAZARAA, M. S.; SHETTY, C. M. Nonlinear Programming: Theory and
Algorithms. New York: Wiley, 1979.

BEECE, D. K. et al. Transistor sizing of custom high-performance digital circuits with
parametric yield considerations. In: 47th annual ACM IEEE Design Automation
Conference, DAC’2010. Anaheim, California, USA: [s.n.], 2010. p. 781–786.

BEEFTINK, F. et al. Gate-size selection for standard cell libraries. In: 1998 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1998. San Jose,
California, USA: [s.n.], 1998. p. 545–550.

BERKELAAR, M.; BUURMAN, P.; JESS, J. Computing the entire active area /power
consumption versus delay trade-off curve for gate sizing with a piecewise linear
simulator. In: Computer-Aided Design, 1994., IEEE/ACM International Conference
on. [S.l.: s.n.], 1994. p. 474–480.

BERKELAAR, M.; BUURMAN, P.; JESS, J. Computing the entire active area/power
consumption versus delay tradeoff curve for gate sizing with a piecewise linear simulator.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
v. 15, n. 11, p. 1424–1434, Nov 1996.

BERKELAAR, M.; JESS, J. Gate sizing in mos digital circuits with linear programming.
In: Design Automation Conference, 1990., EDAC. Proceedings of the European.
[S.l.: s.n.], 1990. p. 217–221.

BHASKER, J.; CHADHA, R. Static Timing Analysis for Nanometer Designs: A
Practical Approach. 1st. ed. [S.l.]: Springer Publishing Company, Incorporated, 2009.

BORAH, M.; OWENS, R.; IRWIN, M. Transistor sizing for low power cmos circuits.
IEEE Transactions on Computer-Aided Design of Integrated circuits and Systems,
v. 15, n. 6, p. 665–671, 1996.

http://www.google.com/patents/US5508937
http://dx.doi.org/10.1109/SFCS.1994.365742
http://doi.acm.org/10.1145/332357.332377

121

BORAH, M.; OWENS, R. M.; IRWIN, M. J. Transistor sizing for minimizing
power consumption of cmos circuits under delay constraint. In: 1995 International
Symposium on Low Power Design. Dana Point, California - USA: [s.n.], 1995. p.
167–172.

BOYD, S. et al. Digital circuit optimization via geometric programming. Operations
Research, v. 53, n. 6, p. 899–932, Nov.-Dec. 2005.

CELIK, M.; PILEGGI, L.; ODABASIOGLU, A. IC Interconnect Analysis.
Springer, 2002. Available from Internet: <https://books.google.com.br/books?id=
8Nu7STiANNsC>.

CHAN, P. Algorithms for library-specific sizing of combinational logic. In: Design
Automation Conference, 1990. Proceedings., 27th ACM/IEEE. [S.l.: s.n.], 1990. p.
353–356.

CHEN, C. P.; CHU, C. C.-N.; WONG, D. F. Fast and exact simultaneous gate and wire
sizing by lagrangian relaxation. IEEE Trans. on Computer-Aided Design, v. 18, n. 7,
p. 1014–1025, 1999.

CHEN, W.; HSIEH, C.-T.; PEDRAM, M. Gate sizing with controlled displacement.
In: Proceedings of the 1999 International Symposium on Physical Design. New
York, NY, USA: ACM, 1999. (ISPD ’99), p. 127–132. Available from Internet:
<http://doi.acm.org/10.1145/299996.300038>.

CHINNERY, D.; KEUTZER, K. Linear programming for sizing, Vth and Vdd
assignment. In: ISLPED 2005. [S.l.: s.n.], 2005. p. 149–154.

CHINNERY, D. G. Low Power Design Automation. Thesis (PhD) — EECS
Department, University of California, Berkeley, Dec 2006. Available from Internet:
<http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-182.html>.

CHOPRA, K. et al. Parametric yield maximization using gate sizing based on efficient
statistical power and delay gradient computation. In: Computer-Aided Design,
2005. ICCAD-2005. IEEE/ACM International Conference on. [S.l.: s.n.], 2005. p.
1023–1028.

CHOU, H.; WANG, Y.-H.; CHEN, C. C.-P. Fast and effective gate sizing with
multiple-Vt assignment using generalized Lagrangian relaxation. In: ASPDAC 2005.
[S.l.: s.n.], 2005. p. 381–386.

CIRIT, M. A. Transistor sizing in cmos circuits. In: 24th ACM/IEEE Design
Automation Conference. Miami Beach, Florida - USA: [s.n.], 1987. p. pp. 121–124.

COUDERT, O. Gate sizing: a general purpose optimization approach. In: European
Design and Test Conference, 1996. ED TC 96. Proceedings. [S.l.: s.n.], 1996. p.
214–218.

COUDERT, O. Gate sizing for constrained delay/power/area optimization. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, v. 5, n. 4, p. 465–472, Dec
1997.

https://books.google.com.br/books?id=8Nu7STiANNsC
https://books.google.com.br/books?id=8Nu7STiANNsC
http://doi.acm.org/10.1145/299996.300038
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-182.html

122

COUDERT, O.; HADDAD, R. Integrated resynthesis for low power. In: Proceedings
of the 1996 International Symposium on Low Power Electronics and Design.
Piscataway, NJ, USA: IEEE Press, 1996. (ISLPED ’96), p. 169–174. Available from
Internet: <http://dl.acm.org/citation.cfm?id=252493.252596>.

COUDERT, O.; HADDAD, R.; MANNE, S. New algorithms for gate sizing: a
comparative study. In: Design Automation Conference Proceedings 1996, 33rd. [S.l.:
s.n.], 1996. p. 734–739.

DAI, Z.-J.; ASADA, K. Mosiz: a two-step transistor sizing algorithm based on optimal
timing assignment method for multi-stage complex gates. In: Custom Integrated
Circuits Conference, 1989., Proceedings of the IEEE 1989. [S.l.: s.n.], 1989. p.
17.3/1–17.3/4.

DARTU, F.; MENEZES, N.; PILEGGI, L. Performance computation for precharacterized
cmos gates with rc loads. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, v. 15, n. 5, p. 544–553, May 1996.

DARTU, F. et al. A gate-delay model for high-speed cmos circuits. In: Design
Automation, 1994. 31st Conference on. [S.l.: s.n.], 1994. p. 576–580.

DETJENS, E. et al. Technology mapping in mis. In: Proc. of the Intl. Conf. of
Computer Aided Design. [S.l.: s.n.], 1987. p. 116–119.

DUTT, S.; REN, H. Timing yield optimization via discrete gate sizing using globally-
informed delay pdfs. In: Computer-Aided Design (ICCAD), 2010 IEEE/ACM
International Conference on. [S.l.: s.n.], 2010. p. 570–577.

ELFADEL, I. M.; LING, D. D. Zeros and Passivity of Arnoldi-Reduced-Order Models
for Interconnect Networks. In: DAC. [s.n.], 1997. p. 28–33. Available from Internet:
<http://doi.acm.org/10.1145/266021.266030>.

ELMORE, W. The transient analysis of damped linear networks with particular regard to
wideband amplifiers. J. Applied Physics, v. 19, 1948.

FISHBURN, J. P.; DUNLOP, A. E. Tilos: A posynomial programming approach to
transistor sizing. In: Proc. IEEE/ACM Intl. Conf. on Computer-Aided Design. [S.l.:
s.n.], 1985. p. 326–328.

FLACH, G. et al. Simultaneous gate sizing and vth assignment using lagrangian
relaxation and delay sensitivities. In: 2013 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). [s.n.], 2013. p. 84–89. Available from Internet:
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6654627>.

FLACH, G. et al. Effective Method for Simultaneous Gate Sizing and Vth Assignment
Using Lagrangian Relaxation. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, v. 33, n. 4, p. 546–557, April 2014. Available from
Internet: <http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6774518>.

FLACH, G. A. Discrete gate sizing and timing-driven detailed placement for the
design of digital circuits. Thesis (PhD) — Universidade Federal do Rio Grande do Sul,
2015. Available from Internet: <http://hdl.handle.net/10183/134330>.

http://dl.acm.org/citation.cfm?id=252493.252596
http://doi.acm.org/10.1145/266021.266030
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6654627
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6774518
http://hdl.handle.net/10183/134330

123

GHIASI, S. et al. A unified theory of timing budget management. In: Computer Aided
Design, 2004. ICCAD-2004. IEEE/ACM International Conference on. [S.l.: s.n.],
2004. p. 653–659.

GLASSER, L. A.; HOYTE, L. P. Delay and power optimization in vlsi circuits.
In: Proceedings of the 21st Design Automation Conference. Piscataway,
NJ, USA: IEEE Press, 1984. (DAC ’84), p. 529–535. Available from Internet:
<http://dl.acm.org/citation.cfm?id=800033.800849>.

GUNTZEL, J. L. A. Functional Timing Analysis of VLSI Circuits Containing
Complex Gates. Thesis (PhD) — Universidade Federal do Rio Grande do Sul,
RS-Brazil, 2000.

GUPTA, R. et al. The elmore delay as bound for rc trees with generalized input signals.
In: DAC ’95: Proceedings of the 32nd annual ACM/IEEE Design Automation
Conference. New York, NY, USA: ACM, 1995. p. 364–369.

HARRIS, D. et al. The fanout-of-4 inverter delay metric. Unpublished Manuscript.
http://odin.ac.hmc.edu/harris/research, 1997.

HASHIMOTO, M.; ONODERA, H.; TAMARU, K. A power optimization
method considering glitch reduction by gate sizing. In: Proceedings of the 1998
International Symposium on Low Power Electronics and Design. New York,
NY, USA: ACM, 1998. (ISLPED ’98), p. 221–226. Available from Internet:
<http://doi.acm.org/10.1145/280756.280907>.

HEDLUND, K. Aesop: A tool for automated transistor sizing. In: Design Automation,
1987. 24th Conference on. [S.l.: s.n.], 1987. p. 114–120.

HELD, S. Gate sizing for large cell-based designs. In: Design, Automation Test in
Europe Conference Exhibition, 2009. DATE ’09. [S.l.: s.n.], 2009. p. 827–832.

HITCHCOCK, R.; SMITH, G. L.; CHENG, D. D. Timing analysis of computer
hardware. IBM Journal of Research and Development, v. 26, n. 1, p. 100–105, Jan
1982.

HITCHCOCK R.B., S. Timing verification and the timing analysis program. In: Design
Automation, 1982. 19th Conference on. [S.l.: s.n.], 1982. p. 594–604.

HOPPE, B. et al. Optimization of high-speed cmos logic circuits with analytical models
for signal delay, chip area and dynamic power dissipation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, USA, v. 9, n. 3, p.
236–246, 1990.

HU, J. et al. Sensitivity-guided metaheuristics for accurate discrete gate sizing. In:
Proceedings of the International Conference on Computer-Aided Design. New
York, NY, USA: ACM, 2012. (ICCAD ’12), p. 233–239. Available from Internet:
<http://doi.acm.org/10.1145/2429384.2429428>.

HU, S.; KETKAR, M.; HU, J. Gate sizing for cell library-based designs. In: Design
Automation Conference, 2007. DAC ’07. 44th ACM/IEEE. [S.l.: s.n.], 2007. p.
847–852.

http://dl.acm.org/citation.cfm?id=800033.800849
http://doi.acm.org/10.1145/280756.280907
http://doi.acm.org/10.1145/2429384.2429428

124

HU, S.; KETKAR, M.; HU, J. Gate sizing for cell-library-based designs. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, v. 28, n. 6,
p. 818–825, June 2009.

HUANG, Y.-L.; HU, J.; SHI, W. Lagrangian relaxation for gate implementation
selection. In: Proceedings of the 2011 International Symposium on Physical Design.
New York, NY, USA: ACM, 2011. (ISPD ’11), p. 167–174. Available from Internet:
<http://doi.acm.org/10.1145/1960397.1960436>.

KAHNG, A. et al. High-performance gate sizing with a signoff timer. In: Computer-
Aided Design (ICCAD), 2013 IEEE/ACM International Conference on. [S.l.: s.n.],
2013. p. 450–457.

KAO, W.; FATHI, N.; LEE, C.-H. Algorithms for automatic transistor sizing in cmos
digital circuits. In: Design Automation, 1985. 22nd Conference on. [S.l.: s.n.], 1985. p.
781–784.

KAO, W.; MOVAHED-EZAZI, M.; SABIERS, M. Aries: A workstation based,
schematic driven system for circuit design. In: Design Automation, 1984. 21st
Conference on. [S.l.: s.n.], 1984. p. 301–307.

KASAMSETTY, K.; KETKAR, M.; SAPATNEKAR, S. A new class of convex functions
for delay modeling and its application to the transistor sizing problem [cmos gates].
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
v. 19, n. 7, p. 779–788, Jul 2000.

KASAMSETTY, M. K. K.; SAPATNEKAR, S. S. A new class of convex functions for
delay modeling and their application to the transistor sizing problem. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, v. 19, n. 7, p. 779–788,
2000.

KASHYAP, C. V. et al. Peri: A technique for extending delay and slew metrics to
ramp inputs. In: Proceedings of the 8th ACM/IEEE International Workshop
on Timing Issues in the Specification and Synthesis of Digital Systems. New
York, NY, USA: ACM, 2002. (TAU ’02), p. 57–62. Available from Internet:
<http://doi.acm.org/10.1145/589411.589424>.

KIRKPATRICK, T.; CLARK, N. Pert as an aid to logic design. IBM Journal of
Research and Development, v. 10, n. 2, p. 135–141, March 1966.

KURSUN, E.; GHIASI, S.; SARRAFZADEH, M. Transistor level budgeting for power
optimization. In: Quality Electronic Design, 2004. Proceedings. 5th International
Symposium on. [S.l.: s.n.], 2004. p. 116–121.

LEE, J.; GUPTA, P. Discrete circuit optimization. Foundations and Trends® in
Electronic Design Automation, v. 6, n. 1, p. 1–120, 2012. Available from Internet:
<http://www.nowpublishers.com/article/Details/EDA-019>.

LI, L. et al. An efficient algorithm for library-based cell-type selection in high-
performance low-power designs. In: Proceedings of the International Conference on
Computer-Aided Design. New York, NY, USA: ACM, 2012. (ICCAD ’12), p. 226–232.
Available from Internet: <http://doi.acm.org/10.1145/2429384.2429427>.

http://doi.acm.org/10.1145/1960397.1960436
http://doi.acm.org/10.1145/589411.589424
http://www.nowpublishers.com/article/Details/EDA-019
http://doi.acm.org/10.1145/2429384.2429427

125

LI, W. Strongly np-hard discrete gate sizing problems. In: Computer Design: VLSI in
Computers and Processors, 1993. ICCD ’93. Proceedings., 1993 IEEE International
Conference on. [S.l.: s.n.], 1993. p. 468–471.

LI, W. et al. On the circuit implementation problem [combinatorial logic circuits]. In:
Design Automation Conference, 1992. Proceedings., 29th ACM/IEEE. [S.l.: s.n.],
1992. p. 478–483.

LI, W.-N. et al. On the circuit implementation problem. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, v. 12, n. 8, p. 1147–1156,
Aug 1993.

LIAO, C.; HU, S. Approximation scheme for restricted discrete gate sizing targeting delay
minimization. Journal of Combinatorial Optimization, Springer US, v. 21, n. 4, p. 497–
510, 2011. Available from Internet: <http://dx.doi.org/10.1007/s10878-009-9267-0>.

LIN, S.; MAREK-SADOWSKA, M.; KUH, E. Delay and area optimization in
standard-cell design. In: Design Automation Conference, 1990. Proceedings., 27th
ACM/IEEE. [S.l.: s.n.], 1990. p. 349–352.

LIU, Y.; HU, J. A new algorithm for simultaneous gate sizing and threshold voltage
assignment. In: Proceedings of the 2009 International Symposium on Physical
Design. New York, NY, USA: ACM, 2009. (ISPD ’09), p. 27–34. Available from
Internet: <http://doi.acm.org/10.1145/1514932.1514940>.

LIU, Y.; HU, J. A new algorithm for simultaneous gate sizing and threshold voltage
assignment. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, v. 29, n. 2, p. 223–234, Feb 2010.

LIU, Y.; HU, J. Gpu-based parallelization for fast circuit optimization. ACM Trans.
Des. Autom. Electron. Syst., ACM, New York, NY, USA, v. 16, n. 3, p. 24:1–24:14, jun.
2011. Available from Internet: <http://doi.acm.org/10.1145/1970353.1970357>.

LORENA, L. A.; SENNE, E. L. F. Improving traditional subgradient scheme for
lagrangean relaxation: an application to location problems. International Journal of
Mathematical Algorithms, v. 1, p. 133–151, 1999.

MA, Q.; YOUNG, E. Network flow-based power optimization under timing constraints
in msv-driven floorplanning. In: Computer-Aided Design, 2008. ICCAD 2008.
IEEE/ACM International Conference on. [S.l.: s.n.], 2008. p. 1–8.

MARPLE, D. Transistor size optimization in the tailor layout system. In: Design
Automation, 1989. 26th Conference on. [S.l.: s.n.], 1989. p. 43–48.

MARPLE, D. P.; GAMAL., A. E. Optimal selection of transistor sizes in digital
vlsi circuits. In: Advanced Research in VLSI, Proceedings of the 1987 Stanford
Conference. [S.l.]: MIT Press, 1987. p. 151–172.

MARRANGHELLO, F. S. et al. Transistor sizing analysis of regular fabrics. In: 1st
Exploiting Regularity in the Design of IPs, Architectures and Platforms Workshop,
(ERDIAP 2011). Como, Italy: [s.n.], 2011. p. 235–242.

http://dx.doi.org/10.1007/s10878-009-9267-0
http://doi.acm.org/10.1145/1514932.1514940
http://doi.acm.org/10.1145/1970353.1970357

126

MATSON, M.; GLASSER, L. Macromodeling and optimization of digital mos vlsi
circuits. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, v. 5, n. 4, p. 659–678, October 1986.

MCNALL, K.; CASAVANT, A. Automatic operator configuration in the synthesis of
pipelined architectures. In: Design Automation Conference, 1990. Proceedings., 27th
ACM/IEEE. [S.l.: s.n.], 1990. p. 174–179.

MENEZES, N.; BALDICK, R.; PILEGGI, L. A sequential quadratic programming
approach to concurrent gate and wire sizing. In: Computer-Aided Design, 1995.
ICCAD-95. Digest of Technical Papers., 1995 IEEE/ACM International Conference
on. [S.l.: s.n.], 1995. p. 144–151.

MENEZES, N.; BALDICK, R.; PILEGGI, L. A sequential quadratic programming
approach to concurrent gate and wire sizing. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, v. 16, n. 8, p. 867–881, Aug 1997.

NAGEL, L. W.; PEDERSON, D. SPICE (Simulation Program with Integrated
Circuit Emphasis). [S.l.], 1973. Available from Internet: <http://www.eecs.berkeley.
edu/Pubs/TechRpts/1973/22871.html>.

NGUYEN, D. et al. Minimization of dynamic and static power through joint assignment
of threshold voltages and sizing optimization [logic ic design]. In: Low Power
Electronics and Design, 2003. ISLPED ’03. Proceedings of the 2003 International
Symposium on. [S.l.: s.n.], 2003. p. 158–163.

NIKOUBIN, T. et al. Simple exact algorithm for transistor sizing of low-power
high-speed arithmetic circuits. VLSI Design, New York, v. 2010, 2010.

NILSSON, J.; RIEDEL, S. Electric Circuits. Pearson/Prentice Hall, 2005. Available
from Internet: <https://books.google.com.br/books?id=1Cs9kgEACAAJ>.

O’BRIEN, P.; SAVARINO, T. Modeling the driving-point characteristic of resistive
interconnect for accurate delay estimation. In: Computer-Aided Design, 1989.
ICCAD-89. Digest of Technical Papers., 1989 IEEE International Conference on.
[S.l.: s.n.], 1989. p. 512–515.

ODABASIOGLU, A.; CELIK, M.; PILEGGI, L. Prima: passive reduced-order
interconnect macromodeling algorithm. In: Computer-Aided Design, 1997. Digest of
Technical Papers., 1997 IEEE/ACM International Conference on. [S.l.: s.n.], 1997.
p. 58–65.

OZDAL, M.; BURNS, S.; HU, J. Gate sizing and device technology selection algorithms
for high-performance industrial designs. In: Computer-Aided Design (ICCAD), 2011
IEEE/ACM International Conference on. [S.l.: s.n.], 2011. p. 724–731.

OZDAL, M.; BURNS, S.; HU, J. Algorithms for gate sizing and device parameter
selection for high-performance designs. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, v. 31, n. 10, p. 1558–1571, Oct 2012.

OZDAL, M. M. et al. The ISPD-2012 Discrete Cell Sizing Contest and Benchmark
Suite. In: ISPD 2012. Napa, CA, EUA: [s.n.], 2012. p. 161–164.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
https://books.google.com.br/books?id=1Cs9kgEACAAJ

127

OZDAL, M. M. et al. An Improved Benchmark Suite for the ISPD-2013 Discrete Cell
Sizing Contest. In: ISPD 2013. The Ridge Tahoe, Stateline, NV, EUA: [s.n.], 2013. p.
168–170.

PILLAGE, L.; HUANG, X.; ROHRER, R. Awesim: Asymptotic waveform evaluation
for timing analysis. In: Design Automation, 1989. 26th Conference on. [S.l.: s.n.],
1989. p. 634–637.

PILLAGE, L.; ROHRER, R. Asymptotic waveform evaluation for timing analysis.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
v. 9, n. 4, p. 352–366, Apr 1990.

PINCUS, J. D.; DESPAIN, A. M. Delay reduction using simulated annealing. In:
Proceedings of the 23rd ACM/IEEE Design Automation Conference. Piscataway,
NJ, USA: IEEE Press, 1986. (DAC ’86), p. 690–695. Available from Internet:
<http://dl.acm.org/citation.cfm?id=318013.318141>.

POSSER, G. et al. Gate sizing using geometric programming. Analog Integrated
Circuits and Signal Processing, v. 73, n. 3, p. 831–840, 2012.

PURI, R.; KUNG, D. S.; DRUMM, A. D. Fast and accurate wire delay estimation for
physical synthesis of large ASICs. In: Proceedings of the 12th ACM Great Lakes
Symposium on VLSI. New York, NY, USA: ACM, 2002. (GLSVLSI ’02), p. 30–36.
Available from Internet: <http://doi.acm.org/10.1145/505306.505314>.

QIAN, H.; ACAR, E. Timing-aware power minimization via extended timing graph
methods. ASP Journal of Low Power Electronics, p. 318–326, 2007.

QIAN, J.; PULLELA, S.; PILLAGE, L. Modeling the "Effective capacitance" for the RC
interconnect of CMOS gates. Trans. Comp.-Aided Des. Integ. Cir. Sys., IEEE Press,
Piscataway, NJ, USA, v. 13, n. 12, p. 1526–1535, nov. 2006. Available from Internet:
<http://dx.doi.org/10.1109/43.331409>.

RABAEY, J. M.; CHANDRAKASAN, A. P.; NIKOLIC, B. Digital Integrated Circuits.
[S.l.]: Prentice-Hall, 2002.

RAHMAN, M. et al. Design automation tools and libraries for low power digital design.
In: Circuits and Systems Workshop (DCAS), 2010 IEEE Dallas. [S.l.: s.n.], 2010.
p. 1–4.

RAHMAN, M.; SECHEN, C. Post-synthesis leakage power minimization. In: Design,
Automation Test in Europe Conference Exhibition (DATE), 2012. [S.l.: s.n.], 2012.
p. 99–104.

RAHMAN, M.; TENNAKOON, H.; SECHEN, C. Power reduction via near-optimal
library-based cell-size selection. In: Design, Automation Test in Europe Conference
Exhibition (DATE), 2011. [S.l.: s.n.], 2011. p. 1–4.

RAHMAN, M.; TENNAKOON, H.; SECHEN, C. Library-based cell-size selection
using extended logical effort. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, v. 32, n. 7, p. 1086–1099, July 2013.

http://dl.acm.org/citation.cfm?id=318013.318141
http://doi.acm.org/10.1145/505306.505314
http://dx.doi.org/10.1109/43.331409

128

RATZLAFF, C.; PILLAGE, L. Rice: rapid interconnect circuit evaluation using awe.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
v. 13, n. 6, p. 763–776, Jun 1994.

REIMANN, T. et al. Simultaneous gate sizing and vt assignment using fanin/fanout
ratio and simulated annealing. In: 2013 IEEE International Symposium on Circuits
and Systems (ISCAS2013). [s.n.], 2013. p. 2549–2552. Available from Internet:
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6572398>.

REIMANN, T.; SZE, C. C.; REIS, R. Challenges of cell selection algorithms in industrial
high performance microprocessor designs. Integration, the {VLSI} Journal, v. 52,
p. 347 – 354, 2016. Available from Internet: <http://www.sciencedirect.com/science/
article/pii/S0167926015001169>.

REIMANN, T.; SZE, C. C. N.; REIS, R. Gate sizing and threshold voltage assignment
for high performance microprocessor designs. In: The 20th Asia and South Pacific
Design Automation Conference. [s.n.], 2015. p. 214–219. Available from Internet:
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7059007>.

REIMANN, T. J.; SZE, C. C.; REIS, R. Cell selection for high-performance designs in
an industrial design flow. In: Proceedings of the 2016 on International Symposium
on Physical Design. Santa Rosa, California, USA: ACM, 2016. (ISPD ’16), p. 65–72.
Available from Internet: <http://doi.acm.org/10.1145/2872334.2872358>.

REN, H.; DUTT, S. A network-flow based cell sizing algorithm. In: The International
Workshop on Logic Synthesis. [S.l.: s.n.], 2008. p. 7–14.

REN, H.; DUTT, S. Effective power optimization under timing and voltage-island
constraints via simultaneous vdd, vth assignments, gate sizing, and placement.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
v. 30, n. 5, p. 746–759, May 2011.

ROY, S.; CHEN, C.-P.; CHEN, C. Convexfit: an optimal minimum-error convex fitting
and smoothing algorithm with application to gate-sizing. In: Computer-Aided Design,
2005. ICCAD-2005. IEEE/ACM International Conference on. [S.l.: s.n.], 2005. p.
196–203.

ROY, S. et al. Numerically convex forms and their application in gate sizing. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, v. 26, n. 9,
p. 1637–1647, Sept 2007.

SANTOS, C. et al. Effects of using a pin-to-pin delay model on a library-free
transistor/gate sizing scheme. In: IEEE International Midwest Symposium on
Circuits and Systems, MSCAS 2005. Covington, KY: [s.n.], 2005/a. v. 1, p. 315–318.

SANTOS, C. et al. Incremental timing optimization for automatic layout generation. In:
IEEE International Symposium on Circuits and Systems, ISCAS 2005. Kobe, Japan:
[s.n.], 2005/b. v. 4, p. 3567–3570.

SANTOS, C. et al. A transistor sizing method applied to an automatic layout generation
tool. In: 16th Symposium on Integrated Circuits and Systems Design, SBCCI 2003.
São Paulo: [s.n.], 2003. p. 303–307.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6572398
http://www.sciencedirect.com/science/article/pii/S0167926015001169
http://www.sciencedirect.com/science/article/pii/S0167926015001169
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7059007
http://doi.acm.org/10.1145/2872334.2872358

129

SANTOS, C. L. dos. Verificação e Otimização de Atraso durante a Síntese Física de
Circuitos Integrados CMOS. Dissertation (Master) — PPGC - UFRGS, Porto Alegre,
RS, 2005.

SAPATNEKAR, S.; RAO, V.; VAIDYA, P. A convex optimization approach to transistor
sizing for cmos circuits. In: IEEE International Conference on Computer-Aided
Design, ICCAD 1991. Santa Clara, CA , USA: [s.n.], 1991. p. 482–485.

SAPATNEKAR, S. S. Timing. [S.l.]: Springer US, 2004.

SAPATNEKAR, S. S. et al. An exact solution to the transistor sizing problem for CMOS
circuits using convex optimization. IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, v. 12, n. 11, p. 1621–1634, 1993.

SHAH, S. et al. Discrete vt assignment and gate sizing using a self-snapping continuous
formulation. In: Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM
International Conference on. [S.l.: s.n.], 2005. p. 705–712.

SHARMA, A. et al. Fast Lagrangian Relaxation Based Gate Sizing Using Multi-
Threading. In: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. Austin, TX, USA: [s.n.], 2015. (ICCAD ’15), p. 426–433.
Available from Internet: <http://dl.acm.org/citation.cfm?id=2840819.2840879>.

SHYU, J.-M. et al. Optimization-based transistor sizing. Solid-State Circuits, IEEE
Journal of, v. 23, n. 2, p. 400–409, April 1988.

SILVA, M. Sparse matrix storage revisited. In: Proceedings of the 2nd conference
on Computing frontiers. New York, NY, USA: ACM, 2005. (CF ’05), p. 230–235.
Available from Internet: <http://doi.acm.org/10.1145/1062261.1062299>.

SILVEIRA, L.; KAMON, M.; WHITE, J. Efficient reduced-order modeling of
frequency-dependent coupling inductances associated with 3-d interconnect structures.
Components, Packaging, and Manufacturing Technology, Part B: Advanced
Packaging, IEEE Transactions on, v. 19, n. 2, p. 283–288, May 1996.

SILVEIRA, L. M. et al. A coordinate-transformed arnoldi algorithm for generating
guaranteed stable reduced-order models of RLC circuits. In: ICCAD. [s.n.], 1996. p.
288–294. Available from Internet: <http://dx.doi.org/10.1109/ICCAD.1996.569710>.

SINGH, J.; LUO, Z.-Q.; SAPATNEKAR, S. A geometric programming-based worst
case gate sizing method incorporating spatial correlation. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, v. 27, n. 2, p. 295–308,
Feruary 2008.

SINGH, J. et al. Robust gate sizing by geometric programming. In: Design Automation
Conference, 2005. Proceedings. 42nd. [S.l.: s.n.], 2005. p. 315–320.

SIRICHOTIYAKUL, S. et al. Stand-by power minimization through simultaneous
threshold voltage selection and circuit sizing. In: Design Automation Conference,
1999. Proceedings. 36th. [S.l.: s.n.], 1999. p. 436–441.

http://dl.acm.org/citation.cfm?id=2840819.2840879
http://doi.acm.org/10.1145/1062261.1062299
http://dx.doi.org/10.1109/ICCAD.1996.569710

130

SRIVASTAVA, A.; SYLVESTER, D. Statistical Analysis and Optimization for VLSI:
Timing and Power. Boston, MA :: Springer US„ 2005. (Series on Integrated Circuits
and Systems). Available from Internet: <http://dx.doi.org/10.1007/b137645>.

SRIVASTAVA, A.; SYLVESTER, D.; BLAAUW, D. Power minimization using
simultaneous gate sizing, dual-vdd and dual-vth assignment. In: Design Automation
Conference, 2004. Proceedings. 41st. [S.l.: s.n.], 2004. p. 783–787.

SUNDARARAJAN, V.; SAPATNEKAR, S.; PARHI, K. Fast and exact transistor sizing
based on iterative relaxation. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, v. 21, n. 5, p. 568–581, May 2002.

SUTHERLAND, I.; SPROULL, B.; HARRIS, D. Logical Effort: Designing Fast
CMOS Circuits. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.

SYNOPSYS. PrimeTime® User Guide: Advanced Timing Analysis, Version
V-2004.06. 2004. Available from Internet: <http://www.synopsys.com>.

TENNAKOON, H.; SECHEN, C. Gate sizing using lagrangian relaxation combined
with a fast gradient-based pre-processing step. In: ICCAD 2002. [S.l.: s.n.], 2002. p.
395–402.

TENNAKOON, H.; SECHEN, C. Efficient and accurate gate sizing with piecewise
convex delay models. In: 42nd annual conference on Design automation. Anaheim,
California, USA: [s.n.], 2005. p. 807–812.

WANG, J.; DAS, D.; ZHOU, H. Gate sizing by lagrangian relaxation revisited. IEEE
Trans. on Computer-Aided Design, v. 28, n. 7, p. 1071–1084, July 2009.

YOSHIDA, H.; FUJITA, M. Performance-constrained transistor sizing for different cell
count minimization. Information and Media Technologies, v. 6, n. 1, p. 1–11, 2011.

http://dx.doi.org/10.1007/b137645
http://www.synopsys.com

	Contents
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Abstract
	Resumo
	1 Introduction
	2 Static Timing Analysis
	2.1 Standard Cells
	2.2 Interconnect Model
	2.2.1 Effective Capacitance

	3 The Cell Selection Problem
	3.1 Physical Design Flow
	3.2 Transistor Sizing
	3.3 Gate Sizing
	3.3.1 Continuous Gate Sizing
	3.3.2 Discrete Gate Sizing and Threshold Voltage Assignment

	4 Related Works and State-of-the-Art
	4.1 Early Literature
	4.1.1 TILOS
	4.1.2 Gate Sizing in MOS Digital Circuits with Linear Programming
	4.1.3 Delay and Area Optimization in Standard-Cell Design
	4.1.4 On the Circuit Implementation Problem
	4.1.5 Gate sizing for constrained delay/power/area optimization
	4.1.6 Fast and Exact Simultaneous Gate and Wire Sizing by Lagrangian Relaxation
	4.1.7 Forge
	4.1.8 Linear Programming for Sizing, Vth and Vdd assignment
	4.1.9 Timing-aware Power Minimization via Extended Timing Graph Methods
	4.1.10 Gate Sizing for Cell-Library-based Designs
	4.1.11 Gate Sizing for Large Cell-based Designs
	4.1.12 A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment
	4.1.13 Lagrangian Relaxation for Gate Implementation Selection
	4.1.14 Power Reduction Via Near-optimal Library-based Cell-size Selection
	4.1.15 Gate Sizing and Device Technology Selection Algorithms for High-performance Industrial Designs

	4.2 State-of-the-Art
	4.2.1 The ISPD Contest 2012
	4.2.2 An Efficient Algorithm for Library-based Cell-type Selection in High-performance Low-power Designs
	4.2.3 Trident
	4.2.4 The ISPD Contest 2013
	4.2.5 Trident 2.0
	4.2.6 Fast Lagrangian Relaxation Based Gate Sizing using Multi-Threading

	4.3 Summary and Discussion

	5 Proposed Flows and Techniques
	5.1 Simulated Annealing-based Algorithm
	5.1.1 Logical Effort
	5.1.2 Fanout-of-n Sizing
	5.1.3 Timing Engine
	5.1.4 Simulated Annealing with Dynamic Cost Function

	5.2 Empirical Validation
	5.3 Lagrangian Relaxation-based Algorithm
	5.3.1 Proposed Flow for the ISPD 2012 and 2013 Contest Benchmarks
	5.3.2 Eliminating Load and Slew Violations
	5.3.3 Cell Selection Problem Formulation
	5.3.4 Interconnection Modeling
	5.3.5 Improving the Lagrangian Relaxation Solution

	5.4 Empirical Validation
	5.4.1 ISPD 2012 Contest
	5.4.2 ISPD 2013 Contest

	6 Industrial Design Flow Application
	6.1 The New Lagrangian Relaxation Formulation
	6.1.1 Initializing the Lagrange Multipliers
	6.1.2 Lagrange Multiplier Update
	6.1.3 Filtering Gates Options

	6.2 Solution Refinement
	6.2.1 Enhanced Timing Recovery
	6.2.2 Enhanced Power Reduction

	6.3 Empirical Validation
	6.3.1 Preliminary results
	6.3.2 Final results

	7 Conclusion
	References

