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The general dielectric tensor for bi-kappa magnetized plasmas
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In this paper, we derive the dielectric tensor for a plasma containing particles described by an

anisotropic superthermal (bi-kappa) velocity distribution function. The tensor components are

written in terms of the two-variables kappa plasma special functions, recently defined by Gaelzer

and Ziebell [Phys. Plasmas 23, 022110 (2016)]. We also obtain various new mathematical proper-

ties for these functions, which are useful for the analytical treatment, numerical implementation,

and evaluation of the functions and, consequently, of the dielectric tensor. The formalism devel-

oped here and in the previous paper provides a mathematical framework for the study of electro-

magnetic waves propagating at arbitrary angles and polarizations in a superthermal plasma.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4953430]

I. INTRODUCTION

During the last years, a substantial portion of the space

physics community has been interested in plasma environ-

ments which are not in a state of thermal equilibrium, but are

instead in a turbulent state. Several of such environments can

be found in a nonthermal (quasi-) stationary state. When the

velocity distribution functions (VDFs) of the particles that

comprise these turbulent plasmas are measured, they often

display a high-energy tail that is better fitted by a power-law

function of the particle’s velocity, instead of the Gaussian

profile found in plasmas at the thermodynamic equilibrium.

Among all possible velocity distributions with a power-

law tail, the actual VDF that has been marked with a wide-

spread application in space plasmas is the Lorentzian, or

kappa, distribution (or a combination of kappas), and the

number of published papers that employ the kappa velocity

distribution function (jVDF) has been growing by a measur-

able exponential rate.1 However, the interest on the kappa

distribution is justified not only as a better curve-fitting func-

tion. A kappa function is also the velocity probability distri-

bution that results from the maximization of the nonadditive

Tsallis entropy postulate. Hence, the jVDF is also the distri-

bution of velocities predicted by Tsallis’s entropic principle

for the nonthermal stationary state of a statistical system

characterized by low collision rates, long-range interactions,

and strong correlations among the particles. For detailed dis-

cussions of the importance of kappa distributions for space

plasmas and the connection with nonequilibrium statistical

mechanics, the Reader is referred to Refs. 1–4. See also the

Introductions of Refs. 5 and 6 for complementary discus-

sions and references to other formulations for the jVDF.

One of the important problems related to space plasmas

in which the kappa distribution has been increasingly applied

concerns the excitation of temperature-anisotropy-driven

instabilities that propagate in electromagnetic or electrostatic

modes in a warm plasma. These instabilities (among others)

play an important role on the nonlinear evolution and the

steady-state of the measured VDFs. They can also lead to

particle energization and acceleration, and are probably

related to some of the fundamental issues in space and astro-

physical systems, such as the problem of the heating of the

solar corona. Rather than giving here a long list of referen-

ces, we suggest that the Reader consults the cited literature

in our previous works.5,6

In the present work, we continue the development of a

mathematical formulation destined to the study of electro-

magnetic/electrostatic waves (and their instabilities) propa-

gating at arbitrary angles in a warm magnetized plasma, in

which the particles are described by asymmetric superther-

mal, or bi-kappa, VDFs. The formulation presented here

employs the linear kinetic theory of plasmas and is an exten-

sion and generalization of the treatment developed in Refs. 5

and 6.

The structure of this paper is as follows. In Section II,

we derive the dielectric tensor for a bi-kappa plasma. The

tensor components are written in terms of the kappa plasma

special functions introduced and studied in our previous

works. Section III contains several new developments and

properties of the kappa plasma functions, destined to provide

the necessary framework for the evaluation of the functions

and the dielectric tensor. After the conclusions in Section IV,

we have also included Appendixes A, where details about

the derivation of the dielectric tensor are given, and B, where

additional properties of relevant special functions are

derived.

II. DIELECTRIC TENSOR

The dielectric tensor for a bi-kappa superthermal plasma

will be obtained with the use of the velocity distribution

function given by

f að Þ
s vk; v?ð Þ ¼ A

rsð Þ
s 1þ

v2
k

jsw2
ks
þ v2

?
jsw2

?s

 !�rs

; (1)

which is valid for rs > 3=2 and where rs ¼ js þ as and
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A
rsð Þ

s ¼ 1

p3=2wksw
2
?s

j�3=2
s C rsð Þ

C rs � 3=2ð Þ ;

is the normalization constant. The quantities wks and w?s

are, respectively, proportional to the parallel and perpendicu-

lar thermal speeds, but they can be a function of the j param-

eter as well. Finally, CðzÞ is the gamma function.

The VDF (1) is the anisotropic generalization of the iso-

tropic ðwk ¼ w? ¼ wÞ distribution adopted by Refs. 5 and 6.

In these works, it was shown how adequate choices of the

parameters a and w reproduce and formally unify seemingly

different (kappa) velocity distribution functions employed in

the literature. Now, in the anisotropic case, if we set a¼ 1

and

w2
k;? ¼ h2

k;? ¼ 1� 3

2j

� �
2Tk;?

m

� �
;

the function (1) reduces to the “bi-Lorentzian” distribution

introduced by Summers and Thorne7 (see Table I. See also

Eqs. (12a) and 12(b) of Ref. 4). This distribution will be

named here the ST91 model, and in all expressions obtained

below, one can simply drop the parameter a, should the

ST91 model be chosen from the start.

However, the parameter a can also be useful when the

function f
ðaÞ
s ðvk; v?Þ describes (isotropic) one-particle distri-

bution functions with an arbitrary number of degrees of free-

dom. If (1) describes the probability distribution function of

a particle with f degrees of freedom, one can set j ¼ j0,

where j0 is the invariant kappa parameter introduced by

Livadiotis and McComas,1 a ¼ 1þ f=2; w2 ¼ h2 ¼ 2T=m,

v2 ¼
Pf

i¼1 v2
i , and the normalization constant is Aðf Þ

¼ Cðj0 þ 1þ f=2Þðpj0h
2Þ�f=2=Cðj0 þ 1Þ, thereby obtain-

ing Eq. (22c) of Ref. 1.

Particular forms of the bi-kappa VDF (1) or its bi-

Maxwellian limiting case (when js !1) have been fre-

quently employed in the literature in order to study tempera-

ture-anisotropy-driven instabilities that amplify parallel- or

oblique-propagating eigenmodes in a magnetized plasma. Of

particular importance for the present work are the effects of

finite particle gyroradius (or Larmor radius) on the dispersion

and amplification/damping of oblique-propagating modes. For

instance, Yoon et al.8 discovered the oblique Firehose insta-

bility, which is a non-propagating instability excited in a

high-beta bi-Maxwellian plasma when the ions display tem-

perature anisotropy (with Tki > T?i) and which is continu-

ously connected to the left-handed branch of the Alfv�en

waves when the ion gyroradius tends to zero. The same insta-

bility was later rediscovered by Hellinger and Matsumoto.9

Other studies subsequently considered the excitation of

low-frequency instabilities at arbitrary angles in bi-

Maxwellian plasmas for other situations, such as low-beta

plasmas,10 or with additional free energy sources such as

electronic temperature anisotropy,11 field-aligned currents,12

loss-cones,13 and density inhomogeneities14 (see also

reviews by Refs. 15–17).

In comparison, similar studies employing anisotropic

superthermal distributions are rare. Summers et al.18

obtained the first expressions for the general dielectric tensor

of a bi-kappa (bi-Lorentzian) plasma. However, their final

expressions are not written in a closed form, i.e., for each

component of the tensor, there remains a final integral along

v? (the perpendicular component of the particle’s velocity)

that should be numerically evaluated. A similar approach

was later adopted by Basu,19 Liu et al.,20 and Astfalk et al.21

In order to circumvent the mathematical difficulties

involved in the integration along v?, Cattaert et al.22 derived

the dielectric tensor and considered some simple cases of

oblique waves propagating in a kappa-Maxwellian plasma.

More recently, Sugiyama et al.23 employed the same VDF in

a first systematic study of the propagation of electromagnetic

ion-cyclotron waves in the Earth’s magnetosphere.

Closed-form expressions for the components of the

dielectric tensor of a superthermal plasma were for the first

time obtained by Gaelzer and Ziebell,5,6 still for the particular

case of isotropic ðwks ¼ w?sÞ distributions. Here, we will

obtain the dielectric tensor for the bi-kappa VDF given by (1).

The general form of the dielectric tensor can be writ-

ten as6

eijðk;xÞ ¼ dij þ
X

s

vðsÞij ðk;xÞ; (2a)

v sð Þ
ij k;xð Þ ¼

x2
ps

x2

" X1
n!�1

ð
d3v

v? Nnsð Þi N�ns

� �
j
Lfs

x� nXs � kkvk

þ dizdjz

ð
d3v

vk
v?

Lfs

#
; (2b)

where vðsÞij is the susceptibility tensor associated with particle

species s, the set fi; jg ¼ fx; y; zg identifies the Cartesian

(in the E3 space) components of the tensors, with fx̂; ŷ; ẑg
being the basis in E3, Nns ¼ n.�1

s Jnð.sÞx̂ � iJ0nð.sÞŷ
þðvk=v?ÞJnð.sÞẑ, where JnðzÞ is the Bessel function of the

first kind,24,25 .s ¼ k?v?=Xs; Lfs ¼ v?@fs=@vk � vk@fs=@v?,

Lfs ¼ x@fs=@v? þ kkLfs. Also, x2
ps ¼ 4pnsq

2
s=ms and Xs

¼ qsB0=msc are the plasma and cyclotron frequencies of spe-

cies s, respectively, x and k ¼ k?x̂ þ kkẑ are the wave fre-

quency and wavenumber, B0 ¼ B0ẑ ðB0 > 0Þ is the ambient

magnetic induction field and the symbols k ð?Þ denote the

usual parallel (perpendicular) components of vectors/tensors,

respective to B0.

Inserting the function (1) into (2b), we obtain the desired

susceptibility tensor for a bi-kappa plasma. More details on

the derivation of the components of vij are given in

Appendix A. Here, we will presently show the final, closed-

form expressions, given by

v sð Þ
xx ¼

x2
ps

x2

X1
n!�1

n2

ls

�
n0sZ as;2ð Þ

n;js
ls; nnsð Þ

þ 1

2
As@nns

Z as;1ð Þ
n;js

ls; nnsð Þ
�
; (3a)

v sð Þ
xy ¼ i

x2
ps

x2

X1
n!�1

n

�
n0s@ls

Z as;2ð Þ
n;js

ls; nnsð Þ

þ 1

2
As@

2
ls;nns
Z as;1ð Þ

n;js
ls; nnsð Þ

�
; (3b)
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v sð Þ
xz ¼ �

x2
ps

x2

wks
w?s

X1
n!�1

nXs

k?w?s
n0s � Asnnsð Þ

� @nns
Z as;1ð Þ

n;js
ls; nnsð Þ; (3c)

v sð Þ
yy ¼

x2
ps

x2

X1
n!�1

n0sW as;2ð Þ
n;js

ls;nnsð Þþ1

2
As@nns

W as;1ð Þ
n;js

ls;nnsð Þ
� �

;

(3d)

v sð Þ
yz ¼ i

x2
ps

x2

wks
w?s

k?w?s

2Xs

X1
n!�1

n0s � Asnnsð Þ

� @2
ls;nns
Z as;1ð Þ

n;js
ls; nnsð Þ; (3e)

v sð Þ
zz ¼ �

x2
ps

x2

w2
ks

w2
?s

X1
n!�1

n0s � Asnnsð Þ

� nns@nns
Z as;1ð Þ

n;js
ls; nnsð Þ; (3f)

where

W a;bð Þ
n;j l; nð Þ ¼ n2

l
Z a;bð Þ

n;j l; nð Þ � 2lY a;bð Þ
n;j l; nð Þ:

Notice that the off-diagonal components of vij obey the sym-

metry relations vxy ¼ �vyx; vxz ¼ vzx, and vyz ¼ �vyz.

In (3a)–(3f), we have defined the parameters ls ¼ k2
?q

2
s ;

q2
s ¼ w2

?s=2X2
s , and nns ¼ ðx� nXsÞ=kkwks. The parameter

qs is the (kappa modified) gyroradius (or Larmor radius) of

particle s. Hence, ls is the normalized gyroradius, propor-

tional to the ratio between qs and k?, the perpendicular pro-

jection of the wavelength. The magnitude of ls quantifies the

finite Larmor radii effects on wave propagation. On the other

hand, the parameter nns quantifies the linear wave-particle

interactions in a finite-temperature plasma. Also in (3a)–(3f),

the quantity

As ¼ 1� w?s

wks
;

is the anisotropy parameter, which quantifies the effects of

the VDF’s departure from an isotropic distribution, due to

the temperature anisotropy. The symbol @n
z1;…;zn

¼ @n=
ð@z1 � � � @znÞ is the n-th order partial derivative, relative to

z1;…; zn.

Finally, the functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ are the

so-called two-variables kappa plasma functions (2VKPs).

Their definitions were first given in Ref. 6 (hereafter called

Paper I) and are repeated in Eqs. (20a)–(20f). Some proper-

ties and representations of Z and Y were also obtained in

Paper I, and several new properties and representations will

be derived in Sec. III. The evaluation of the functions Z and

Y is determined not only by their arguments l (normalized

gyroradius) and n (wave-particle resonance) but also by a set

of parameters: n (harmonic number), j (kappa index), and

the pair ða; bÞ. Parameter a is the same real number adopted

for the jVDF (1). This parameter can be ignored and

removed from the equations if the distribution model is

fixed. On the other hand, the real parameter b is crucial for

the formalism. The value of b is related to the specific

dielectric tensor component, wave polarization, and mathe-

matical properties of the kappa plasma functions.

The isotropic limit of vðsÞij is obtained from (3a)–(3f) by

setting As¼ 0 (and w?s ¼ wks ¼ ws). In this case, the suscep-

tibility tensor for each particle species reduces to the form

that can be easily gleaned from the Cartesian components of

eij presented in Appendix C of Paper I. On the other hand,

the susceptibility tensor of a bi-Maxwellian plasma is also

obtained from (3a)–(3f) by the process called the

Maxwellian limit, i.e., the result of taking the limit js !1,

for any species s. The Maxwellian limit of vðsÞij is given by

Eqs. (A1a)–(A1f).

Equations (2) and (3) show the general form for the

dielectric tensor of a bi-kappa plasma. These expressions,

along with the representations of the kappa plasma func-

tions derived in Paper I and in Sec. III, contain sufficient

information for a methodical study of the properties of

wave propagation and emission/absorption in a anisotropic,

superthermal plasma. Future works will implement an anal-

ysis of temperature-anisotropy-driven instabilities excited

in low-frequency parallel- and oblique-propagating electro-

magnetic eigenmodes.

III. NEW EXPRESSIONS FOR THE KAPPA PLASMA
SPECIAL FUNCTIONS

A. Superthermal plasma gyroradius function

The function Hða;bÞn;j ðzÞ quantifies the physical effects on

wave propagation due to the particles’ finite gyroradii when

their probability distribution function is described by a kappa

VDF. For this reason, it was named by Paper I as the (kappa)

plasma gyroradius function (jPGF). The basic definition of

this function was given in Eq. (I.20) (i.e., Eq. 20 of Paper I)

and is repeated here

H a;bð Þ
n;j zð Þ ¼ 2

ð1
0

dx
xJ2

n yxð Þ
1þ x2=jð Þk�1

; y2 ¼ 2z
� �

; (4)

where k ¼ jþ aþ b.

The Maxwellian limit of this function is the well-know

representation in terms of the modified Bessel function24

lim
j!1
Hða;bÞn;j ðzÞ ¼HnðzÞ ¼ e�zInðzÞ: (5)

Sections III B and A.2 of Paper I contain several mathe-

matical properties of Hða;bÞn;j ðzÞ and most of them will not be

shown here, with a few important exceptions. One of the

exceptions is its general, closed-form representation in terms

of the Meijer G-function, as shown in Eq. (I.22). Namely

H a;bð Þ
n;j zð Þ ¼ p�1=2j

C k� 1ð ÞG
2;1
1;3 2jz

���� 1=2

k� 2; n;�n

" #
(6a)

¼ p�1=2j

C k� 1ð ÞG
1;2
3;1

1

2jz

���� 3� k; 1� n; 1þ n
1=2

" #
: (6b)

Representation (6b) was obtained by employing the symme-

try property of the G-function given by Eq. (I.11a).

The definition and some properties of the G-function

can be found in Sec. B.2 of Paper I and in the cited literature.
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Some additional properties, employed in the present paper,

are given in Appendix B.

Additional mathematical properties of the H-function,

that were not included in Paper I, will be presented here.

1. Derivatives

Equations (I.25a)–(I.25d) show recurrence relations for

the H-function that involve its first derivative and that in the

Maxwellian limit reduce to the respective relations for

HnðzÞ, easily obtained from the properties of the modified

Bessel function.

It is also possible to obtain closed-form representations

for the derivatives ofHða;bÞn;j ðzÞ in any order. Applying the op-

erator Dk � dk=dzk ðk ¼ 0; 1; 2;…Þ on (6a) and employing

identity (B1a), we obtain

H a;bð Þ kð Þ
n;j zð Þ
�zð Þ�k

¼ p�1=2j

C k� 1ð ÞG
3;1
2;4 2jz

����� 1=2; 0
k; k� 2; n;�n

24 35; (7a)

where HðkÞ ¼ dkH=dzk.

Formula (7a) is valid for any z and k, but the value of H
at the origin must be treated separately. Applying the opera-

tor Dk on the definition (4), we can employ the power series

expansion of J2
nðyxÞ given by Eq. (10.8.3) of Ref. 24 in order

to evaluate the integral in the limit y! 0, thereby obtaining

H a;bð Þ kð Þ
n;j 0ð Þ

2kð Þ!j
¼ �j

2

� �k k� 2ð Þ�k

k� 2

Xk

‘¼0

�ð Þ‘djnj;‘
k þ ‘ð Þ! k � ‘ð Þ!

;

which is valid for k > 2þ k. Here, dn;m is the Kronecker delta

and ðaÞ‘ ¼ Cðaþ ‘Þ=CðaÞ is the Pochhammer symbol. One

can easily verify that the case k¼ 0 reduces to Eq. (I.21).

As it happens with Hða;bÞn;j ðzÞ, its derivative in any order

has two different representations in terms of more usual

functions, depending on whether k is integer or not. These

cases will now be addressed.

a. Case k noninteger. If k 6¼ 2; 3;…, then we can employ

the representation of the G-function in terms of generalized

hypergeometric functions, given by Eq. (I.B14). Hence, we

have

H a;bð Þ kð Þ
n;j zð Þ
�zð Þ�k

¼ p�1=2j

C k� 1ð Þ

"
C nþ 2� kð ÞC k� 3=2ð Þ

C k� 1þ nð Þ 2� kð Þk 2jzð Þk�2
2F3

k� 3=2; k� 1

k� 1� n; k� 1þ n; k� 1� k
; 2jz

 !

þC k� 2� nð ÞC nþ 1=2ð Þ
C 2nþ 1ð Þ �nð Þk 2jzð Þn2F3

nþ 1=2; nþ 1

nþ 3� k; 2nþ 1; nþ 1� k
; 2jz

 !#
; (7b)

where 2F3ð� � � ; zÞ is another hypergeometric series of class 1,

discussed in Sec. B.1 of Paper I. The case k¼ 0 reduces to

Eq. (I.23).

b. Case k integer. Now, writing k¼mþ2 ðm¼0;1;2;…Þ
in (7a) and looking at the representation (B4b), we notice that

if we choose l¼n�k and �¼nþk and employ the differen-

tiation formula (I.B13a), we can write

H a;bð Þ kð Þ
n;j zð Þ ¼

2j �zð Þ�k �2jzð Þm

C mþ 1ð Þ

� dmþk

dymþk
ykIn�k

ffiffiffi
y
p� �

Knþk
ffiffiffi
y
p� �h i����

y¼2jz

;

where KmðzÞ is the second modified Bessel function.24

Finally, employing Leibniz formula for the derivative26 and

the identities written just before Eq. (I.24), we obtain

H a;bð Þ kð Þ
n;j zð Þ ¼ 2jzk

C mþ 1ð Þ
jz

2

� � mþkð Þ=2Xmþk

s¼0

�ð Þs

�
mþ k

s

 !
Kn�mþs

ffiffiffiffiffiffiffi
2jz
p� �

In�kþs

ffiffiffiffiffiffiffi
2jz
p� �

:

(7c)

As expected, for k¼ 0, this result reduces to (I.24).

2. Asymptotic expansion

The representation of the H-function given by (6b) is for-

mally exact for any z, and the function could be formally

expressed in terms of the 3F0ð� � � ; zÞ hypergeometric series, af-

ter using Eq. (I.B14). However, as explained in Sec. B.1 of

Paper I, 3F0 belongs to class 3, whose series are everywhere di-

vergent, except at z¼ 0. Hence, the representation of Hða;bÞn;j ðzÞ
in terms of 3F0 only makes sense when one is looking for an as-

ymptotic expansion of H, which provides a finite number of

correct digits when z� 1 if only a finite numbers of terms in

the series expansion is kept.

With this caveat in mind, using Eq. (I.B14) in (6b), we

obtain

H a;bð Þ
n;j zð Þ ¼ 1ffiffiffi

p
p jC k� 3=2ð Þ

C k� 1ð Þ
ffiffiffiffiffiffiffi
2jz
p

�3F0

k� 3=2; 1=2þ n; 1=2� n

�
;

1

2jz

 !
;

which, as explained, is only valid on the limit z!1.

Inserting the series (I.B1), we obtain the asymptotic expansion

H a;bð Þ
n;j zð Þ ’ 1ffiffiffi

p
p jC k� 3=2ð Þ

C k� 1ð Þ
ffiffiffiffiffiffiffi
2jz
p

�
X
k¼0

k� 3=2ð Þk 1=2þ nð Þk 1=2� nð Þk
k! 2jzð Þk

: (8)
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Notice that the upper limit of the sum is absent. This upper

limit must be computationally determined, taking into

account the desired number of correct digits in the evaluation

ofHða;bÞn;j ðzÞ.
The Maxwellian limit of (8) renders

Hn zð Þ ’
1ffiffiffiffiffiffiffi
2pz
p

X
k¼0

�ð ÞkC nþ k þ 1=2ð Þ
C n� k þ 1=2ð Þk! 2zð Þk

;

which is exactly the asymptotic expansion of HnðzÞ given

by Eq. (8.451.5) of Ref. 27.

3. Sum rule

Sum rules are useful for the numerical evaluation of spe-

cial functions. If we sum (4) over all harmonic numbers and

use the identity24

X1
n!�1

J2
nðzÞ ¼ 1; (9)

the remaining integral can be evaluated by the definition of

the Beta function,28 resulting in

X1
n!�1

H a;bð Þ
n;j zð Þ ¼ j

k� 2
: (10)

Several other sum rules forH can be found in the same fashion.

4. The associated gyroradius function

Among the representations for the two-variable functions

Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ, derived in the Section III C 3, the

following function appears:

eH a;bð Þ
n;k;j lð Þ ¼

p�1=2j

C k� 1ð ÞG
2;1
1;3 2jl

���� 1=2� k
k� 2; n;�n

" #
; (11)

which is clearly related to Hða;bÞn;j ðzÞ, differing by the parame-

ter k. For this reason, it is christened here as the associated
plasma gyroradius function.

Some properties of the eH-function are now presented. A

trivial property is eHða;bÞn;0;jðzÞ ¼ Hða;bÞn;j ðzÞ.

a. Relation with Hða;bÞn;j (z). The associated PGF is related

to the H-function and its derivatives. First, due to the differ-

entiation formula (B1c), it is clear that we can write

eH a;bð Þ
n;k;j lð Þ ¼ l1=2 dk

dlk
lk�1=2H a;bð Þ

n;j lð Þ
h i

:

Then, using Leibniz’s formula and the formula for Dmzc just

above (B1c), we obtain

eH a;bð Þ
n;k;j lð Þ ¼ C k þ 1

2

� �Xk

‘¼0

k
‘

� �
l‘H a;bð Þ ‘ð Þ

n;j lð Þ
C ‘þ 1=2ð Þ : (12a)

The reciprocate relation is obtained starting from (7a),

which is written in terms of the Mellin–Barnes integral with

the help of (I.B10). Then, we have

H a;bð Þ kð Þ
n;j lð Þ ¼

j �lð Þ�k

2p3=2iC k� 1ð Þ

�
ð

L

C k� 2� sð ÞC n� sð ÞC 1=2þ sð Þ
C nþ 1þ sð Þ 2jlð Þ�s �sð Þkds:

On the other hand, from (11) and (I.B10) again, we have

eH a;bð Þ
n;k;j lð Þ ¼

2p3=2ið Þ�1
j

C k� 1ð Þ

�
ð

L

C k� 2� sð ÞC n� sð ÞC 1=2þ sð Þ
C 1þ nþ sð Þ 2jlð Þ�s

1

2
þ s

� �
k

ds:

Then, if we employ the identity

ðaþ bÞn ¼
Xn

‘¼0

ð�Þ‘ n
‘

� �
ðaþ ‘Þn�‘ð�bÞ‘;

we can finally write the reciprocate relation

H a;bð Þ kð Þ
n;j lð Þ

l�k
¼
Xk

‘¼0

k
‘

� �
1

2
� k

� �
k�‘
eH a;bð Þ

n;‘;j lð Þ: (12b)

b. Representations. The computation of eHða;bÞn;k;jðlÞ can be

carried out as follows. For noninteger k, it is more efficient

to employ identity (I.B14) and evaluate

eH a;bð Þ
n;k;j zð Þ ¼ p�1=2j

C k� 1ð Þ

�
C nþ 2� kð Þ
C k� 1þ nð Þ 2jzð Þk�2

hk zð Þ

þC k� 2� nð Þ
C 2nþ 1ð Þ 2jzð Þngk zð Þ

�
; (13)

where

hk zð Þ
C k� 3=2þ kð Þ¼ 1F2

k� 3=2þ k

k� 1� n; k� 1þ n
; 2jz

 !
gk zð Þ

C nþ 1=2þ kð Þ¼ 1F2

nþ 1=2þ k

nþ 3� k; 2nþ 1
; 2jz

 !
:

On the other hand, for integer k, the only representation

found for eH similar to (7c) contains a double sum.

Consequently, it is equivalent to simply employ Eqs. (12a)

and (7c).

c. Recurrence relation. The numerical computation ofeHða;bÞn;k;jðzÞ can be carried out using either Eq. (13) or Eqs.

(12a) and (7c) combined. However, since the associate func-

tion appears in series involving the parameter k, if a recur-

rence relation for eHða;bÞn;k;jðzÞ � eH½k� on this parameter could

be found, it could substantially reduce the computational

time required for the evaluation of the series.

Such recurrence relation can be found by first consider-

ing the particular case of noninteger k, given by Eq. (13).

We observe that the auxiliary functions hkðzÞ and gkðzÞ in

(13) and, consequently, the function eH½k� itself, all obey the

same four-term recurrence relation, which can be derived

from the corresponding relation for the function 1F2ð� � � ; zÞ
in the upper parameter, given by Ref. 29. Namely
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eH kþ 3½ �� kþ 5

2
þ 3k

� �eH kþ 2½ �

þ 2k� n2� 3

4
þ 2 kþ 1þ 3

2
k

� �
k� 2jz

� � eH kþ 1½ �

þ k� 3

2
þ k

� �
nþ 1

2
þ k

� �
n� 1

2
� k

� �eH k½ � ¼ 0: (14)

Although the relation (14) was derived for noninteger k,

it can be easily shown that it is indeed valid for any k.

Substituting into the functions eH½k� in (14), the definition

(11) and then the corresponding representations in terms of

Mellin–Barnes integrals (Eq. (I.B10)), one can show, using

known properties of the gamma function,28 that the identity

(14) is indeed valid for any real k.

B. Superthermal plasma dispersion function

The superthermal (or kappa) plasma dispersion function
(jPDF) was defined by Eq. (I.11), and several of its proper-

ties were discussed in Sections III.A and A.1 of Paper I.

Here, we will merely present a few additional properties,

which were not included in Paper I and are important for the

work at hand.

1. Representations in terms of the G-function

Taking the representations (I.15) for Z
ða;bÞ
j ðnÞ and

(I.B15a) for the Gauss function, we have

Z a;bð Þ
j nð Þ ¼ � p1=2j�b�1n

C r� 3=2ð ÞG
1;2
2;2

n2

j

���� 0; 3=2� k

0;�1=2

" #

þ ip1=2C k� 1ð Þ
jbþ1=2C r� 3=2ð Þ 1þ n2

j

� �� k�1ð Þ

: (15a)

As explained in Paper I, the Maxwellian limit of this repre-

sentation reduces to the known expression of the Fried and

Conte function in terms of the Kummer confluent hypergeo-

metric series.

Another, more compact, representation is obtained if we

first modify the limits of the integral in (I.11) to the interval

0 	 s <1, define the new integration variable s ¼
ffiffiffi
u
p

,

and identify the resulting integration with the identity

(I.B12). Proceeding in this way, we obtain the equivalent

representation

Z a;bð Þ
j nð Þ ¼ p�1=2j�b�1n

C r� 3=2ð Þ G2;2
2;2 �

n2

j

���� 0; 3=2� k
0;�1=2

" #
: (15b)

Taking the limit j!1 of (15b), and identifying the

result with (B4c), we obtain

lim
j!1

Zða;bÞj ðnÞ ¼ nU

�
1

3=2
;�n2

�
;

where Uð� � � ; zÞ is the Tricomi confluent hypergeometric

function.30 This is another known representation of the Fried

and Conte function.31

2. Associated plasma dispersion function

The associated plasma dispersion function, defined by

eZ a;bð Þ
k;j nð Þ¼: j� kþbþ1=2ð ÞC k� 1ð Þffiffiffi

p
p

C r� 3=2ð Þ

�
ð1
�1

ds
s2k 1þ s2=j
� �� k�3=2þkð Þ

s� n
; (16)

is another new special function that appears in the series

expansions derived in Section III C 3 for the two-variables

special functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ. It has the triv-

ial property

eZ a;bð Þ
0;j nð Þ ¼ C k� 1ð Þffiffiffi

j
p

C k� 3=2ð ÞZ
a;b�1=2ð Þ

j nð Þ; (17)

and in the following, alternative representations for theeZ-function will be derived.

a. Representations. The first expression is valid when k
is half-integer ðk ¼ 5=2; 7=2;…Þ. In this case, writing m ¼ k
�3=2þ k ðm ¼ 1; 2;…Þ, all singular points in (16), at s ¼ n
and s ¼ 6i

ffiffiffi
j
p

, are poles, and thus, we are permitted to eval-

uate eZða;bÞk;j ðnÞ using the residue theorem, exactly as was done

by Summers and Thorne.7

Let us consider the contour integral

IB ¼
ð

B

ds
s2k 1þ s2=j
� �� kþk�3=2ð Þ

s� n
;

where the contour B comprises the semicircle in the lower-

half plane of complex s (with radius S!1), which is closed

by the integration along the real line of s, deformed according

to the Landau prescription (i.e., circulating around the pole at

s ¼ n from below). See, for instance, the contour in Fig. 2 of

Ref. 7, but with closing in the lower-half s-plane. Then, it is

easy to show that the contribution along the semicircle of ra-

dius S vanishes as S!1 and IB is simply evaluated from the

residue at s ¼ �i
ffiffiffi
j
p

as IB ¼ �2piResð�i
ffiffiffi
j
p
Þ, since the pole

at s ¼ n is always outside B.

The residue is evaluated by the usual formula for a pole

of order m,32 leading to the representation

eZ a;bð Þ
k;j nð Þ ¼

2
ffiffiffi
p
p

i �ð ÞkC k� 1ð Þ
jbþ1=2C r� 3=2ð Þ

�
XM

‘¼0

Xm�1�‘

r¼0

�2kð Þ‘ mð Þr 1ð Þm�1�‘�r

2mþrC m� ‘� rð Þ‘!r!

� 1� inffiffiffi
j
p

� �� m�‘�rð Þ
; (18a)

where M ¼ minðm� 1; 2kÞ. One can easily verify in (18a)

that for integer j

eZ 1;3=2ð Þ
0;j nð Þ ¼ C jþ 3=2ð Þ

j1=2j!
Z�j nð Þ;

where Z�jðnÞ is given by Eq. (20) of Ref. 7.
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A different expression for the eZ-function will now be

obtained, which is valid for any real k. We already know that

for k¼ 0, the eZ-function is given in terms of the jPDF by

(17). Now, for k 
 1, we modify the limits of the integral in

(16) to the interval 0 	 s <1, define the new variable

s ¼
ffiffiffi
u
p

, and employ identity (I.B12) in order to obtain

eZ a;bð Þ
k;j nð Þ ¼ ij� bþ1=2ð ÞC k� 1ð Þffiffiffi

p
p

C r� 3=2ð ÞC kþ k � 3=2ð Þ

� G2;2
2;2 �

n2

j

���� 1=2; 5=2� k

k; 1=2

" #
; (18b)

which is a G-function representation of the associated PDF.

If we now employ formula (I.B13a), we can write

eZ a;bð Þ
k;j nð Þ ¼ ij� kþbþ1=2ð ÞC k� 1ð Þffiffiffi

p
p

C r� 3=2ð ÞC kþ k � 3=2ð Þ

� n2k dk

dzk
G2;2

2;2 z

���� 1=2; 5=2� k

0; 1=2

" #
;

where we have provisionally defined z ¼ �n2=j. This result

will now be identified with the derivatives of Z
ða;bÞ
j ðnÞ.

If we take representation (15b) of the jPDF, evaluate

the k-th derivative on n and employ the differentiation for-

mula (Eq. 1.1.1.2 of Ref. 33)

dk

dzk
f

ffiffi
z
p� �
 �

¼
Xk�1

‘¼0

�ð Þ‘
C k þ ‘ð Þ

C k � ‘ð Þ‘!

� 2
ffiffi
z
p� ��k�‘

f k�‘ð Þ ffiffi
z
p� �

;

which is valid for k 
 1, we finally obtain

eZ a;bð Þ
k;j nð Þ ¼ j�1=2C k� 1ð Þ

2kC k� 3=2þ kð Þ
Xk�1

‘¼0

C k þ ‘ð Þ
2‘C k � ‘ð Þ‘!

� �nð Þk�‘Z a;b�1=2ð Þ k�‘ð Þ
j nð Þ: (18c)

A final representation for eZða;bÞk;j ðnÞ will be derived by

returning to (16), changing the integration variable to t,
defined as s2 ¼ jt�1ð1� tÞ, and comparing the resulting in-

tegral with the formula (I.B5). In this way, we obtain

eZ a;bð Þ
k;j nð Þ ¼ C k� 1ð ÞB k� 1; k þ 1=2ð Þffiffiffi

p
p

jbþ1C r� 3=2ð Þ

� n2F1

1; k� 1

k� 1=2þ k
; 1þ n2

j

 !
; =n > 0ð Þ;

(18d)

where Bða; bÞ ¼ CðaÞCðbÞ=Cðaþ bÞ is the beta function28

and 2F1ð� � � ; zÞ is the Gauss hypergeometric function34

(see also Sec. B.1 of Paper I). It must be pointed out that

the representation (18d) is only valid for the upper-half of

the n-plane. In order to employ this expression when

=n 	 0, one must evaluate also its analytical continuation,

employing the same technique applied to Eq. (I.13). The

resulting expressions for the functions Z and Y are shown in

Eqs. (25d) and (27c).

b. Recurrence relation. The representation (18d) also

allowed us to obtain a recurrence relation for the associated

PDF on the parameter k. Employing the shorthand notationeZða;bÞk;j ðnÞ � eZ ½k�, we can write

eZ k½ � ¼ C k� 1ð Þ½ �2ffiffiffi
p
p

jbþ1C r� 3=2ð Þ nzk nð Þ;

zk ¼:
C k þ 1=2ð Þ

C k� 1=2þ kð Þ 2F1
1; k� 1

k� 1=2þ k
; 1þ n2

j

 !
:

Hence, if one finds the recurrence relation for the auxiliary

function zkðnÞ, the same relation applies to eZ ½k�.
Such a recurrence relation on the lower parameter of the

Gauss function is given by Ref. 35. Consequently, we obtain

k� 1

2
þ k

� �
1þ n2

j

� �eZ k þ 2½ �

� k� 1

2
þ k

� �
n2

j
þ k þ 1

2

� �
1þ n2

j

� �" #eZ k þ 1½ �

þ k þ 1

2

� �
n2

j
eZ k½ � ¼ 0: (19)

This result can be verified by inserting the definition (16) in

place of eZ ½k� and then adequately manipulating the

integrand.

The three-term recurrence relation (19) can potentially

reduce the computational time for the evaluation of

the functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ, discussed in

Section III C.

C. Two-variables kappa plasma functions

The dielectric tensor of a superthermal (kappa) plasma

is written in terms of the special functions Zða;bÞn;j ðl; nÞ and

Yða;bÞn;j ðl; nÞ, collectively called the two-variables kappa

plasma functions (2VKPs), as can be verified in Eqs.

(I.6a)–(I.6d), for an isotropic jVDF, or in Eqs. (3a)–(3f), for

a bi-kappa distribution.

The functions Z and Y were defined in Eqs.

(I.26a)–(I.26b) in terms of a single integral involving the

superthermal plasma dispersion function (jPDF) Z
ða;bÞ
j ðnÞ

(see Sec. III.A of Paper I). These definitions will be repeated

below. We will include equivalent definitions in terms of

double integrals, which will also be used in this work.

Hence, we define

Z a;bð Þ
n;j l; nð Þ ¼ 2

ð1
0

dx
xJ2

n �xð Þ
1þ x2=jð Þk�1

Z a;bð Þ
j

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=j

p !
(20a)

¼ 2

p1=2j1=2þb

C k� 1ð Þ
C r� 3=2ð Þ

ð1
0

dx

ð1
�1

ds
xJ2

n �xð Þ
s� n

� 1þ x2

j
þ s2

j

� �� k�1ð Þ

; (20b)
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Y a;bð Þ
n;j l;nð Þ¼ 2

l

ð1
0

dx
x3Jn�1 �xð ÞJnþ1 �xð Þ

1þx2=jð Þk�1
Z a;bð Þ

j
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þx2=j
p !

(20c)

¼ 2

p1=2j1=2þbl

C k� 1ð Þ
C r� 3=2ð Þ

ð1
0

dx

ð1
�1

ds

� x3Jn�1 �xð ÞJnþ1 �xð Þ
s� n

1þ x2

j
þ s2

j

� �� k�1ð Þ

;

(20d)

where �2 ¼ 2l and, as usual, r ¼ jþ a and k ¼ rþ b.

Other definitions in terms of a single integral can be

obtained, which are the counterparts of Eqs. (20a) and (20c).

If we change the order of the integrations in (20b) and (20d)

and define a new integration variable by x ¼ ffiffiffi
v
p

t, where

v ¼ 1þ s2=j, the integral in t can be identified with (4), and

we can write

Z a;bð Þ
n;j l; nð Þ ¼ p�1=2

jbþ1=2

C k� 1ð Þ
C r� 3=2ð Þ

ð1
�1

ds
1þ s2=j
� �� k�2ð Þ

s� n

�H a;bð Þ
n;j l 1þ s2

j

� �� �
; (20eÞ

Y a;bð Þ
n;j l; nð Þ ¼ p�1=2

jb�1=2

C k� 2ð Þ
C r� 3=2ð Þ

ð1
�1

ds
1þ s2=j
� �� k�4ð Þ

s� n

�H a;b�1ð Þ0
n;j l 1þ s2

j

� �� �
: (20fÞ

The Maxwellian limits of the 2VKPs were already

obtained in Eq. (I.7) and are

lim
j!1
Zða;bÞn;j ðl; nÞ ¼HnðlÞZðnÞ;

lim
j!1
Yða;bÞn;j ðl; nÞ ¼H0

nðlÞZðnÞ;
(21)

where the function HnðlÞ is given by (5) and ZðnÞ is

the usual Fried and Conte function, given, for instance, by

Eq. (I.10).

Some new properties and representations of the func-

tions Z and Y that were not included in Paper I will now be

discussed.

1. Derivatives of Zða;bÞn;j ðl; nÞ

As can be seen in Eqs. (3a)–(3f), almost all tensor com-

ponents are given in terms of partial derivatives of the func-

tion Zða;bÞn;j ðl; nÞ. These derivatives can be easily computed

from the direct function, if one uses relations derived from

the definitions (20).

We need the partial derivatives @nZ; @lZ and the mixed

derivative @2
n;lZ. Applying @n on (20a) and using Eq. (I.18a),

we can identify with (4) and (20a) and write

@nZ a;bð Þ
n;j l; nð Þ ¼ �2

�
C k� 1=2ð Þ

jbþ1C r� 3=2ð ÞH
a;bþ1=2ð Þ

n;j lð Þ

þnZ a;bþ1ð Þ
n;j l; nð Þ

�
: (22a)

Now, applying @l on (20b) and integrating by parts the

x-integral, the resulting expression can be manipulated in

order to provide the relation between the derivatives

l@lZ a;bð Þ
n;j l; nð Þ � 1

2
n@nZ a;bð Þ

n;j l; nð Þ

¼ k� 2ð ÞZ a;bð Þ
n;j l; nð Þ � jZ a;bþ1ð Þ

n;j l; nð Þ:

Hence, after inserting (22a), there results

l@lZ a;bð Þ
n;j l; nð Þ ¼ k� 2ð ÞZ a;bð Þ

n;j l; nð Þ

�j 1þ n2

j

� �
Z a;bþ1ð Þ

n;j l; nð Þ

� C k� 1=2ð Þ
jbþ1C r� 3=2ð Þ nH

a;bþ1=2ð Þ
n;j lð Þ: (22b)

Finally, the crossed derivative can be obtained from ei-

ther of the results above, leading directly to

@2
n;lZ a;bð Þ

n;j l; nð Þ ¼ 2
n
l

"
j 1þ n2

j

� �
Z a;bþ2ð Þ

n;j l; nð Þ

� k� 1ð ÞZ a;bþ1ð Þ
n;j l; nð Þ

#

þ 2C k� 1=2ð Þl�1

jbþ1C r� 3=2ð Þ

"
k� 1

2

� �
1þ n2

j

� �

�H a;bþ3=2ð Þ
n;j lð Þ � k� 3

2

� �
H a;bþ1=2ð Þ

n;j lð Þ

#
:

(22c)

2. Values at n 5 0 or l 5 0

From the definitions (4), (20b), (20d), and (I.11), we

obtain the following limiting expressions:

Zða;bÞn;j ð0; nÞ ¼ Zða;b�1Þ
j ðnÞdn0; (23a)

Z a;bð Þ
n;j l; 0ð Þ ¼ i

ffiffiffi
p
p

C k� 1ð Þ
jbþ1=2C r� 3=2ð ÞH

a;bð Þ
n;j lð Þ; (23b)

Y a;bð Þ
n;j l; 0ð Þ ¼ i

ffiffiffi
p
p

C k� 2ð Þ
jb�1=2C r� 3=2ð ÞH

a;b�1ð Þ0
n;j lð Þ; (23c)

Y a;bð Þ
n;j 0; nð Þ ¼ � dn;0 �

1

2
djnj;1

� �
Z a;b�3ð Þ

j nð Þ; (23d)

@nZða;bÞn;j ð0; nÞ ¼ Zða;b�1Þ0
j ðnÞdn0; (23e)

@lZ a;bð Þ
n;j l; 0ð Þ ¼ i

ffiffiffi
p
p

C k� 1ð Þ
jbþ1=2C r� 3=2ð ÞH

a;bð Þ0
n;j lð Þ: (23f)

3. Series representations

In Paper I, we have obtained representations for the

functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ in terms of series

involving the jPGF Hða;bÞn;j ðlÞ and derivatives of the jPDF
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Z
ða;bÞ
j ðnÞ. These representations are given by Eqs.

(I.28a)–(I.28b). Subsequent applications have shown that

these expansions start to converge slower when ni ! � 1
2

ffiffiffi
j
p

(ni: imaginary part of n) and may diverge when ni 
 � 1
2

ffiffiffi
j
p

.

Consequently, new function representations are necessary, in

order to enlarge the convergence region of the expansions.

In this section, some new expansions for the 2VKPFs are

derived. Some of the obtained expansions are applicable to

particular regions of the functions’s domain and some are

valid throughout the domain. However, all representations

that have been found have in common that at least one

series expansion is involved, which contains at least one spe-

cial function. This is due to the fact that we were not able to

factor the functions in two simpler terms, i.e., Zðl; nÞ
6¼ F1ðlÞF2ðnÞ, for instance. Indeed, we believe that the func-

tions Zðl; nÞ and Yðl; nÞ are in fact altogether non-separable.

The transcendental relation between the variables l
ð�w?Þ and n ð�wkÞ ultimately stems from the physical na-

ture of the jVDF (1). According to the interpretation of

Tsallis’s entropic principle, one-particle distribution func-

tions such as (1) describe the statistical distribution of par-

ticles in a (almost) noncollisional system, but with a strong

correlation between the different degrees of freedom.1,4 This

strong correlation prevents the jVDF (1) from being separa-

ble in different velocity components. In contrast, a physical

system in thermal equilibrium has an entropy given by the

Boltzmann–Gibbs statistical mechanics and is characterized

by short-range Coulombian collisions and absence of corre-

lation between the degrees of freedom. As a consequence,

the equilibrium Maxwell–Boltzmann VDF is completely

separable. Therefore, the non-separable nature of the func-

tions Zðl; nÞ and Yðl; nÞ is a mathematical consequence of

the strong correlation between different degrees of freedom

of the particles that compose physical systems statistically

described by the jVDF.

It is worth mentioning here that the nonadditive statisti-

cal mechanics also admits that particles without correlations

may be statistically described by separable one-particle dis-

tribution functions.4 This is the case of the product-bi-kappa

(or product-bi-Lorentzian) VDF,4,7 of which the kappa-

Maxwellian distribution22,36 is a particular case. For such

distributions, the functions Zðl; nÞ and Yðl; nÞ result to be

completely separable, and the mathematical treatment is

much simpler. Future works will also consider this

possibility.

The first representation to be derived is a power series in

n, valid when jnj <
ffiffiffi
j
p

. Starting from (20a), we introduce

the form (I.15) for the jPDF and obtain

Z a;bð Þ
n;j l;nð Þ

¼ � 4C k�1=2ð Þn
jbþ1C r�3=2ð Þ

ð1
0

dx
xJ2

n �xð Þ
1þ x2=jð Þk�1=2

� 2F1

1;k�1=2

3=2
;� n2=j

1þ x2=j

 !
þ 2ip1=2C k�1ð Þ

jbþ1=2C r�3=2ð Þ

�
ð1

0

dx
xJ2

n �xð Þ
1þn2=jþ x2=j
� �k�1

:

The second integral can be evaluated. If we initially

assume that n is real and define a new integration variable by

x ¼
ffiffiffiffi
w

p
t, where w ¼ 1þ n2=j, then we can identify the

resulting integral with (4) and writeð1
0

xJ2
n �xð Þdx

1þ n2=jþ x2=j
� �k�1

¼
H a;bð Þ

n;j l 1þ n2=j
� �
 �

2 1þ n2=j
� �k�2

: (24)

Identity (24) can be analytically continued to the com-

plex plane of n as long as it stays within the principal branch

of Hða;bÞn;j ðzÞ (i.e., of the G-function). Since the origin is a

branch point of the G-function and the infinity is an essential

singularity,37 the complex-valued H-function in (24) has

branch cuts along the lines ð�i1;�i
ffiffiffi
j
p
� and ½i

ffiffiffi
j
p

; i1Þ.
Hence, we can employ result (24) when jnj <

ffiffiffi
j
p

.

On the other hand, if the Gauss function in the above

expression for Z is substituted by its power series (I.B4), the

series will also converge if jnj <
ffiffiffi
j
p

, and we are then

allowed to integrate term by term and obtain

Z a;bð Þ
n;j l; nð Þ ¼ � 2C k� 1=2ð Þn

jbþ1C r� 3=2ð Þ

�
X1
k¼0

k� 1=2ð Þk
3=2ð Þk

� n2

j

� �k

H a;bþkþ1=2ð Þ
n;j lð Þ

þ ip1=2C k� 1ð Þ
jbþ1=2C r� 3=2ð Þ

H a;bð Þ
n;j l 1þ n2=j

� �
 �
1þ n2=j
� �k�2

:

(25a)

For the next series expansions, we will consider the

H-function in (20e). Since 1þ s2=j 
 1, we can use the

multiplication theorem (B2) to write

H a;bð Þ
n;j l 1þ s2

j

� �� �
¼ 1þ s2

j

� ��1
2

�
X1
k¼0

1

k!

s2

j

� �k

1þ s2

j

� ��k eH a;bð Þ
n;k;j lð Þ:

(25b)

In this result, the function eHða;bÞn;k;jðlÞ is the associated plasma
gyroradius function, defined by (11).

In this way, the Z-function can be written in the generic

(and compact) form

Z a;bð Þ
n;j l; nð Þ ¼

X1
k¼0

1

k!
eH a;bð Þ

n;k;j lð ÞeZ a;bð Þ
k;j nð Þ; (25c)

where, accordingly, the function eZ ða;bÞk;j ðnÞ is the associated
plasma dispersion function, defined by (16).

Therefore, we can evaluate the function Zða;bÞn;j ðl; nÞ
using for eHða;bÞn;k;jðlÞ representations (12a) or (13), and foreZða;bÞk;j ðnÞ representations (18a)–(18c).

For the eZ-function, we can also employ representation

(18d); however, in this case, as was then mentioned, we also

need to include the analytical continuation when ni ¼ =n 	 0.

The necessary expressions can be gleaned from the discussion

concerning the related continuation of Eq. (I.13). In this
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process, one would have to include the continuation of the

Gauss function. Alternatively, one can start anew from Eq.

(20b) and introduce the adequate continuation for the s-integra-

tion. In this way, one would end up with an additional term,

which is proportional to Eq. (24). Proceeding in this way, the

last series expansion for the Z-function is finally

Z a;bð Þ
n;j l; nð Þ ¼

X1
k¼0

1

k!
eH a;bð Þ

n;k;j lð ÞeZ bð Þ
(18d) nð Þ

þ 2
ffiffiffi
p
p

iC k� 1ð ÞH �nið Þ
jbþ1=2C r� 3=2ð Þ 1þ n2

j

� �� k�2ð Þ

� H a;bð Þ
n;j l 1þ n2

j

� �� �
; (25d)

where we have used the shorthand notation eZðbÞ(18d)ðnÞ

� eZ ða;bÞk;j ðn; Eq:18dÞ. We have also employed the Heaviside

function HðxÞ ¼ þ1 (if x 
 0) or HðxÞ ¼ 0 (if x< 0).

The series expansions for the function Yða;bÞn;j ðl; nÞ follow

the same methodologies, and their derivations will not be

repeated. The only intermediate result shown here is the identityð1
0

dx
x3Jn�1 �xð ÞJnþ1 �xð Þ

1þ n2=jþ x2=j
� �� k�1ð Þ

¼ 1

2

jl
k� 2

1þ n2

j

� �� k�4ð Þ

H a;b�1ð Þ0
n;j l 1þ n2

j

� �� �
; (26)

which is derived similarly to Eq. (24) and to which apply the

same considerations about the analyticity domain.

Without further ado, the series expansions for

Yða;bÞn;j ðl; nÞ are

Y a;bð Þ
n;j l; nð Þ ¼ � 2C k� 3=2ð Þn

jbC r� 3=2ð Þ
X1
k¼0

k� 3=2ð Þk
3=2ð Þk

�H a;bþk�1=2ð Þ0
n;j lð Þ �

n2

j

� �k

þ ip1=2C k� 2ð Þ
jb�1=2C r� 3=2ð Þ

�
H a;b�1ð Þ0

n;j l 1þ n2=j
� �
 �

1þ n2=j
� �k�4

; (27a)

valid for jnj <
ffiffiffi
j
p

,

Y a;bð Þ
n;j l; nð Þ ¼

X1
k¼0

1

k!
eH a;b�1ð Þ0

n;k;j lð ÞeZ a;b�1ð Þ
k;j nð Þ; (27b)

valid for any n, and

Y a;bð Þ
n;j l; nð Þ

¼
X1
k¼0

1

k!
eH a;b�1ð Þ0

n;k;j lð ÞeZ b�1ð Þ
(18d) nð Þ

þ 2
ffiffiffi
p
p

iH �nið ÞC k� 2ð Þ
jb�1=2C r� 3=2ð Þ 1þ n2

j

� �� k�4ð Þ

� H a;b�1ð Þ0
n;j l 1þ n2

j

� �� �
; (27c)

also valid for any n.

The series expansions and the other properties derived

in this section and in Paper I are sufficient to enable a com-

putational implementation of the functions Zða;bÞn;j ðl; nÞ and

Yða;bÞn;j ðl; nÞ, and hence for the evaluation of the dielectric

tensor (2a) for a bi-kappa plasma.

The numerical evaluation of the series can be substan-

tially accelerated if one also employs the recurrence rela-

tions (14) and (19). However, we must point out that so far

no analysis of the stability of these relations for forward

recursion has been made. It is possible that for a given set

of parameters either or both relations are only stable for

backward recursion, and so different strategies must be

implemented.

4. Asymptotic expansions

Here, we will derive expressions valid for either jnj � 1

or l� 1. Starting with n, the expansion we want to derive is

not the ordinary series representation for jnj >
ffiffiffi
j
p

. Although

such a series can be easily obtained from the expressions al-

ready shown, they would be unnecessarily complicated, as it

was hinted by the derivation of the representation (I.16) for

the jPDF. Instead, we want to derive an expansion valid for

jnj �
ffiffiffi
j
p

, convenient for a fluid approximation of the

dielectric tensor.

Accordingly, in the s-integrals of Eqs. (20b) and (20d),

we will approximate

1

s� n
’� 1

n
1þ s

n
þ s2

n2
þ � � �

 !
¼ � 1

n

X
‘¼0

s‘

n‘
;

i.e., we ignore the high-energy particles at the tail of

the VDF and the kinetic effect of the pole at s ¼ n.

Notice also that we have not written the upper limit of

the sum above, since such expansion is only meaningful

for a finite number of terms. Inserting this expansion into

the s-integrals, all the terms with ‘ odd vanish and the

others can be easily evaluated. However, these integrals

only exist if the additional condition k > k þ 3=2 ðk ¼ 0;
1; 2;…Þ is satisfied.

Identifying the remaining x-integrals with (4) and (26),

we obtain

Z a;bð Þ
n;j l; nð Þ ’ � p�1=2j�b

C r� 3=2ð Þ
1

n

X
k¼0

C k� k � 3

2

� �

� C k þ 1

2

� �
jk

n2k
H a;b�k�1=2ð Þ

n;j lð Þ; (28a)

Y a;bð Þ
n;j l; nð Þ ’ � p�1=2j1�b

C r� 3=2ð Þ
1

n

X
k¼0

C k� k � 5

2

� �

� C k þ 1

2

� �
jk

n2k
H a;b�k�3=2ð Þ0

n;j lð Þ: (28b)

Now, the large gyroradius expansion ðl� 1Þ is

obtained if we start from (20e), (20f) and introduce the

expansion (8). The resulting integrals can be identified with

the definition of the jPDF in (I.11). Hence, we obtain
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Z a;bð Þ
n;j l; nð Þ ’ 1ffiffiffiffiffiffiffiffi

2pl
p

X
k¼0

1=2þ nð Þk 1=2� nð Þk
k! 2lð Þk

� Z a;bþk�1=2ð Þ
j nð Þ; (28c)

Y a;bð Þ
n;j l; nð Þ ’ �1ffiffiffiffiffiffiffiffiffiffi

2pl3
p X

k¼0

1=2þ nð Þk 1=2� nð Þk k þ 1=2ð Þ
k! 2lð Þk

� Z a;bþk�3=2ð Þ
j nð Þ: (28d)

5. Closed-form expression forZða;bÞn;j ðl; nÞ

Since Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ are non-separable

functions of two variables, it is a relevant question whether

they can be represented by some special function discussed

in the literature. Here, we will show for Zða;bÞn;j ðl; nÞ that

indeed it can be represented in closed, compact form by the

relatively newly defined Meijer G-function of two variables,

introduced in Appendix B 2.

Returning to the definition (20b) and defining the new

integration variables x ¼
ffiffiffiffiffiffi
ju
p

and s ¼
ffiffiffiffiffi
jv
p

, the double inte-

gral can be written as

I2 ¼
ffiffiffi
j
p

4

ð1
0

du

ð1
0

dv v�1=2J2
n

ffiffiffiffiffiffiffiffiffiffiffi
2jlu

p� 
1þ uþ vð Þ� k�1ð Þ

v� n2=j
:

Introducing now the function representations (B4a),

(I.B15c), and (B9), and then expressing the last in terms of

the double Mellin–Barnes integral (B5), one obtains

I2 ¼ �
j3=2n�2

4
ffiffiffi
p
p

C k� 1ð Þ
1

2pið Þ2
ð

Ls

ð
Lt

dsdt C k� 1� s� tð ÞC sð ÞC tð Þ

�
ð1

0

du u�sG1;1
1;3 2jlu

���� 1=2

n;�n; 0

" #( ) ð1
0

dv v�t�1=2G1;1
1;1 �

jv

n2

���� 00
" #( )

;

where we have also interchanged the order of integrations.

The u- and v-integrations can now be performed by means of the Mellin transform (B3), resulting

I2 ¼
ffiffiffi
j
p

2jlð Þ�1

4
ffiffiffi
p
p

C k� 1ð Þ �
j

n2

� �1=2 1

2pið Þ2
ð

Ls

ð
Lt

dsdt C k� 1� s� tð Þ

� C �1=2þ sð ÞC nþ 1� sð Þ
C nþ sð Þ C tð ÞC 1

2
þ t

� �
C

1

2
� t

� �
2jlð Þ�1

h i�s

� n2

j

� ��t

: (29)

This result can be compared with (B5), in which case we obtain finally

Z a;bð Þ
n;j l; nð Þ ¼ � p�1j1�b

C r� 3=2ð Þn G0;1:1;1:2;1
1;0:2;1:1;2

2jlð Þ�1

�n2=j

���� 7=2� k : 1� n; 1þ n : 1

� : 1=2 : 1=2; 1

" #
: (30)

The final expression for the Z-function in (30) was obtained

after employing also the translation property (B7).

The Maxwellian limit of (30) can be obtained.

Expressing again the Gð2Þ-function in (30) in terms of the defi-

nition (B5), and applying the limit j!1 on the resulting

expression, one can evaluate the limit using Stirling’s for-

mula.28 As a result, the s- and t-integrations factor out, and

the remaining integrals can be identified with G-functions

from the definition (I.B10), which in turn can be identified

with representations (I.B15d) and (B4c). After employing

properties (I.B11a), one finally obtains

lim
j!1
Zða;bÞn;j ðl; nÞ ¼ e�lInðlÞnU

�
1

3=2
;�n2

�
¼HnðlÞZðnÞ;

as expected.

Formula (30) is the more compact representation of the

function Zða;bÞn;j ðl; nÞ that we have obtained. However, de-

spite being a closed-form for Z, this representation is not

yet very useful, since there is no known computational

implementation that evaluates the Gð2Þ-function, contrary

to the one-variable G, which is implemented by some

Computer Algebra Software and also by the python library

mpmath.38 Nevertheless, we find it important to include the

derivation of formula (30) in order to stress the necessity of

further development on the numerical evaluation of these

special functions and also to present to the plasma physics

community the techniques involved with Meijer’s G- and

Gð2Þ-functions and Mellin–Barnes integrals in general, since

we believe that as more complex aspects of the physics of

plasmas are considered, such as more general VDFs and

dusty plasmas, for instance, the techniques employed in this

work and in Paper I have the potential to provide mathemati-

cal answers to the challenges that will appear.

IV. CONCLUSIONS

In this paper, we have presented two major developments

for the study of waves with arbitrary frequency and direction

of propagation in anisotropic superthermal plasmas. First, we

have derived the dielectric tensor of a bi-kappa plasma. This

tensor will be employed in future studies concerning wave
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propagation and amplification/damping in anisotropic super-

thermal plasmas.

The tensor components were written in terms of the kappa

plasma special functions, which must be numerically eval-

uated for practical applications. To this end, we have derived

in the present paper (and in Paper I) several mathematical

properties and representations for these functions. With the de-

velopment presented here and in Paper I, we believe that all

the necessary frameworks for a systematic study of electro-

magnetic/electrostatic waves propagating at arbitrary angles in

a bi-kappa plasma have been obtained. In future studies, we

will apply this formalism to the specific problems concerning

temperature-driven-instabilities in kappa plasmas.
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APPENDIX A: DERIVATION OF THE SUSCEPTIBILITY
TENSOR

The derivation of vðsÞij for a bi-kappa plasma (or for any

VDF, for that matter) is simplified if one observes that all

tensor components have common factors. First, inserting the

function (1) into the tensor (2b), all components contain the

derivatives Lfs and Lfs. Using these derivatives, one can pro-

ceed with the evaluation of the integrals. Using a cylindrical

coordinate system and defining the nondimensional integra-

tion variables t ¼ v?=w?s and u ¼ vk=wks, one obtains, after

some straightforward algebra, the unified form

v sð Þ
ij ¼ 2

x2
ps

x2

rsg js; asð Þ
p1=2js

X1
n!�1

�
ð1

0

dt

ð1
�1

du I
sð Þ

ij;n 1þ u2

js
þ t2

js

� ��rs�1

;

where

I
ðsÞ
ij;n ¼ ðn0s � AsuÞJðsÞij;n;

I
ðsÞ
iz;n ¼ ðn0s � AsnnsÞKðsÞij;n;

J sð Þ
xx;n ¼

n2

ls

tJ2
n �stð Þ

u� nns

J sð Þ
xy;n ¼

ffiffiffi
2
p

i
n

ls

t2Jn �stð ÞJ0n �stð Þ
u� nns

J sð Þ
yy;s ¼ 2

n2

2ls

tJ2
n �stð Þ � t3Jn�1 �stð ÞJnþ1 �stð Þ

u� nns

K sð Þ
xz;n ¼

ffiffiffi
2
p wks

w?s

n

ls

tuJ2
n �stð Þ

u� nns

K sð Þ
yz;n ¼ �2i

wks
w?s

t2uJn �stð ÞJ0n �stð Þ
u� nns

K sð Þ
zz;n ¼ 2

w2
ks

w2
?s

nns

tuJ2
n �stð Þ

u� nns
;

with gðjs; asÞ ¼ j�3=2
s CðrsÞ=Cðrs � 3=2Þ, �s ¼ k?w?s=Xs,

and where the anisotropy parameter As ¼ 1� w2
?s=w2

ks appears

for the first time. These results were obtained using the identity

(9) and the recurrence relations of the Bessel functions.

The remaining integrals in the Js and Ks can now be

identified with the definitions of the two-variables kappa

plasma functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ and their deriv-

atives, given by Eqs. (20) and (22). In this way, one arrives

at the final expressions shown in Eqs. (3a)–(3f).

The Maxwellian limit of the partial susceptibility tensor

is obtained by the process js !1. Upon applying this limit,

one must replace wkð?Þ ! vTkð?Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tkð?Þ=m

p
, and the

kappa plasma functions are replaced by their limiting repre-

sentations (21). In this way, one arrives at

v sð Þ
xx ¼

x2
ps

x2

X1
n!�1

n2

ls

Hn lsð Þ n0sZ nnsð Þ þ 1

2
AsZ

0 nnsð Þ
� �

;

(A1a)

v sð Þ
xy ¼ i

x2
ps

x2

X1
n!�1

nH0
n lsð Þ n0sZ nnsð Þ þ 1

2
AsZ

0 nnsð Þ
� �

;

(A1b)

v sð Þ
xz ¼ �

x2
ps

x2

vTks
vT?s

X1
n!�1

nXs

k?vT?s
n0s � Asnnsð Þ

�Hn lsð ÞZ0 nnsð Þ; (A1c)

v sð Þ
yy ¼

x2
ps

x2

X1
n!�1

n2

ls

Hn lsð Þ � 2lsH
0
n lsð Þ

" #

� n0sZ nnsð Þ þ 1

2
AsZ

0 nnsð Þ
� �

; (A1d)

v sð Þ
yz ¼ i

x2
ps

x2

vTks
vT?s

k?vT?s

2Xs

X1
n!�1

n0s � Asnnsð Þ

�H0
n lsð ÞZ0 nnsð Þ; (A1e)

v sð Þ
zz ¼ �

x2
ps

x2

v2
Tks

v2
T?s

X1
n!�1

n0s � Asnnsð Þ

� nnsHn lsð ÞZ0 nnsð Þ: (A1f)

These results agree with expressions that can be found in the

literature. See, e.g., Eq. (20) of Ref. 22.

APPENDIX B: THE ONE- AND TWO-VARIABLES
MEIJER G-FUNCTIONS

1. G-function

The definition and some properties of the G-function are

given in Sec. B.2 of Paper I. All identities shown there and

in the following can be found in Refs. 37 and 39, except

when explicitly mentioned.

a. Derivatives

We have

dk

dzk
Gm;n

p;q z

���� apð Þ
bqð Þ

" #
¼ �zð Þ�kGmþ1;n

pþ1;qþ1 z

���� apð Þ; 0
k; bqð Þ

" #
: (B1a)
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We will now derive a formula that is not usually found

in the literature. If n 
 1, we can employ the definition of

the G-function in terms of a Mellin–Barnes integral, given

by (I.B10), and evaluate, for k ¼ 0; 1; 2;…

dk

dzk
zk�a1 Gm;n

p;q z

���� a1;…; ap

bqð Þ

" #( )

¼ 1

2pi

ð
L

Qm
j¼1 C bj � sð Þ

Qn
j¼1 C 1� aj þ sð ÞQq

j¼mþ1 C 1� bj þ sð Þ
Qp

j¼nþ1 C aj � sð Þ

� C 1� a1 þ k þ sð Þ
C 1� a1 þ sð Þ z�a1þsds; (B1b)

since Dmzc ¼ Cðcþ 1Þzc�m=Cðcþ 1� mÞ. Consequently,

we obtain the differentiation formula

dk

dzk
zk�a1 Gm;n

p;q z

���� a1;…; ap

bqð Þ

" #( )

¼ z�a1 Gm;n
p;q z

���� a1 � k;…; ap

bqð Þ

" #
n 
 1ð Þ: (B1c)

b. Multiplication theorems

If <w > 1=2 and n> 0

Gm;n
p;q zw

���� apð Þ
bqð Þ

" #
¼ wa1�1

X1
k¼0

1� 1=wð Þk

k!

� Gm;n
p;q z

���� a1 � k; a2;…; ap

bqð Þ

" #
: (B2)

c. Mellin transform

The Mellin transform of the G-function isð1
0

ys�1Gm;n
p;q gy

���� apð Þ
bqð Þ

" #
dy

¼
Qm

j¼1 C bj þ sð Þ
Qn

j¼1 C 1� aj � sð Þg�sQq
j¼mþ1 C 1� bj � sð Þ

Qp
j¼nþ1 C aj þ sð Þ

: (B3)

d. Function representations

A short list of function representations is

1þ xð Þ�q ¼ 1

C qð Þ
G1;1

1;1 x

���� 1� q
0

" #
; (B4a)

Il
ffiffi
z
p� �

K�

ffiffi
z
p� �

2
ffiffiffi
p
p� ��1

¼ G2;2
2;4 z

����� 0; 1=2

lþ �
2

;
l� �

2
;�l� �

2
;� lþ �

2

24 35;
(B4b)

C að ÞU a
b

; z

� �
C a� bþ 1ð Þ½ ��1

¼ G2;1
1;2 z

���� 1� a
0; 1� b

" #
: (B4c)

2. Two-variables Meijer function

The logical extension of Meijer’s G-function for two

variables was first proposed by Agarwal40 in 1965.

Subsequent publications proposed slightly different defini-

tions for the same extension.41–43 In this work, we will

adopt the definition by Hai and Yakubovich (Eq. 13.1 of

Ref. 43)

Gm1;n1:m2;n2:m3;n3
p1;q1:p2;q2:p3;q3

x

y

�����
ða 1ð Þ

p1
Þ : ða 2ð Þ

p2
Þ : ða 3ð Þ

p3
Þ

ðb 1ð Þ
q1
Þ : ðb 2ð Þ

q2
Þ : ðb 3ð Þ

q3
Þ

264
375

¼ 1

2pið Þ2
ð

Ls

ð
Lt

W1 sþ tð ÞW2 sð ÞW3 tð Þx�sy�tdsdt; (B5)

where for k¼ 1, 2, 3,

Wk rð Þ ¼
Qmk

j¼1 C b kð Þ
j þ r

� Qnk

j¼1 C 1� a kð Þ
j � r

� 
Qpk

j¼nkþ1 C a kð Þ
j þ r

� Qqk

j¼mkþ1 C 1� b kð Þ
j � r

�  :
The Reader is referred to Sec. II.13 of Ref. 43 for an expla-

nation on the notation and a discussion on the general condi-

tions on the validity of (B5). Whenever convenient and

unambiguous, we will refer to the two-variables Meijer func-

tion as the Gð2Þ-function.

We list some elementary properties of the Gð2Þ-function,

some of which are employed in this work. The symmetry

property

Gm1;n1:m2;n2:m3;n3

p1;q1:p2;q2:p3;q3

x

y

�����ða
ð1Þ
p1 Þ : ða

ð2Þ
p2 Þ : ða

ð3Þ
p3 Þ

ðbð1Þq1
Þ : ðbð2Þq2

Þ : ðbð3Þq3
Þ

264
375

¼Gn1;m1:n2;m2:n3;m3
q1;p1:q2;p2:q3;p3

x�1

y�1

�����1�ðb
ð1Þ
q1
Þ : 1�ðbð2Þq2

Þ : 1�ðbð3Þq3
Þ

1�ðað1Þp1 Þ : 1�ðað2Þp2 Þ : 1�ðað3Þp3 Þ

264
375;

(B6)

and the translation property

xaybGm1;n1:m2;n2:m3;n3
p1;q1:p2;q2:p3;q3

x

y

�����ða
ð1Þ
p1 Þ : ða

ð2Þ
p2 Þ : ða

ð3Þ
p3 Þ

ðbð1Þq1
Þ : ðbð2Þq2

Þ : ðbð3Þq3
Þ

264
375

¼Gm1;n1:m2;n2:m3;n3

p1;q1:p2;q2:p3;q3

x

y

�����ða
ð1Þ
p1 Þþaþb : ðað2Þp2 Þþa : ðað3Þp3 Þþb

ðbð1Þq1
Þþaþb : ðbð2Þq2

Þþa : ðbð3Þq3
Þþb

264
375:

(B7)

A product of two G-functions can be written as a single

Gð2Þ-function as
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G0;0:m2;n2:m3;n3

0;0:p2;q2:p3;q3

x

y

����� : ðað2Þp2
Þ : ðað3Þp3

Þ
� : ðbð2Þq2

Þ : ðbð3Þq3
Þ

24 35
¼ Gm2;n2

p2;q2
x

���� ðað2Þp2 Þ
ðbð2Þq2
Þ

24 35Gm3;n3
p3;q3

y

���� ðað3Þp3 Þ
ðbð3Þq3
Þ

24 35: (B8)

We will also use the function representation

1þ xþ yð Þ�a ¼ 1

C að ÞG
1;0:0;1:0;1
0;1:1;0:1;0

x
y

���� � : 1 : 1

a : � : �

" #
: (B9)

Properties (B6)–(B8) can be inferred from the definition

(B5). The identity (B9) is given in Sec. II.13 of Ref. 43.
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