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“You have to make the rules, not follow them.” 
(Isaac Newton)  
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ABSTRACT 

In this work we experimentally and analytically evaluate the reliability of two state-of-

the-art types of neural networks for linear regression and pattern recognition (Multi-Layer 

Perceptron and Single-Layer Perceptron) implemented in a System on Chip composed of an 

FPGA and a microprocessor. Experiments using a controlled heavy-ions beam show that, for 

both networks, only a small portion of the observed output errors actually affect the 

application’s correctness. We identify the causes of critical errors through fault injection, and 

found that faults in hidden layers of the networks are more likely to significantly affect the 

output. 

 
Keywords: reliability, SoC, neural networks, radiation, fault injection, FPGA. 
  



 
 

Análise de Confiabilidade de Redes Neurais em Sistemas Heterogêneos 
 

RESUMO 

Neste trabalho é realizada uma avaliação experimental e analítica de duas redes neurais do 

estado-da-arte, para regressão linear e reconhecimento de padrões (Multi-Layer Perceptron e 

Single-Layer Perceptron) implementadas em um System on Chip composto por uma FPGA e 

um microprocessador. Experimentos utilizando um raio controlado de íons pesados mostram 

que, para ambas as redes, apenas uma porção pequena dos erros observados na saída de fato 

afeta a corretude da aplicação. Foram identificadas as causas dos erros críticos através de 

injeção de falhas, e descobriu-se que falhas nas camadas ocultas das redes são têm maior 

probabilidade de afetarem o resultado. 

 

Palavras-chave: confiabilidade, SoC, redes neurais, radiação, injeção de falhas, FPGA. 
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1 INTRODUCTION 

Artificial Neural Networks (ANNs) are becoming a widely adopted computational 

approach in many fields, from data mining to pattern recognition, high performance computing, 

and data analysis (AMIN et al., 1997). Additionally, ANNs are extremely attractive for safety 

critical applications, such as space exploration, to reduce the communication strain with the 

Earth, and to disclose autonomous driving (NEAGOE et al., 2012). Both applications currently 

rely on multiple pattern recognition algorithms to identify and classify certain objects of interest 

based on captured frames or signals, as well as linear regression to predict behaviors and 

trajectories. Most of these algorithms can be efficiently implemented using ANNs. 

The basic functional principle of ANNs is to compute a solution in a similar way that 

the biological brain solves problems. A number of neurons connected to each other and 

organized in layers, interact via synapses. Each neuron has an activation function that, based 

on the received stimulus, sends a signal to the connected neurons. The ANN needs to be trained 

using a sufficiently complex and representative set of inputs. During the training phase the 

weights of every connection between neurons are tuned. Hence, when an input is given the 

ANN computes a solution based on the training, using the previously established values for the 

connections. 

Due to their intrinsic parallelism and the high number of connections, ANNs map 

efficiently on Field-Programmable Gate Arrays (FPGAs) (HE et al., 2009). In fact, FPGAs offer 

the possibility of configuring logic blocks, used to tune the neuron's activation function, and a 

hierarchy of interconnects, which can be used to create connections between neurons. 

Unfortunately, while being low cost, extremely efficient, and flexible, FPGAs have been 

shown to be prone to be corrupted by radiation (WIRTHLIN, 2015). In particular, SRAM-based 

FPGAs may experience radiation-induced corruptions in the configuration memory, also called 

of Single Event Upsets (SEUs). In SRAM-based FPGAs, an SEU can change the configuration 

of a routing connection, the configuration of a Look-Up Table (LUT), or the configuration of 

an embedded Block RAM memory (BRAM). Moreover, SEUs have a persistent effect, which 

can only be corrected when a new bitstream is loaded to the FPGA. SEUs can also occur in a 

Flip-Flop (FF) of a Configuration Logic Block (CLB) used to implement the user's sequential 

logic. In this case, the SEU has a transient effect and the next load of the FF can correct it. It is 

also worth mentioning that as state-of-the-art SRAM-based FPGAs are built with cutting-edge 

manufacturing processes (sub-28nm) and as they are composed of millions of SRAM cells to 
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store their configuration, they are also very susceptible to Multiple Bit Upsets (MBU) 

(WIRTHLIN et al., 2014). 

In this paper we specifically address the reliability of ANNs implemented on FPGAs. 

We consider two kinds of ANNs: Single-Layer Perceptron (SLP) and Multi-Layer Perceptron 

(MLP). SLP networks have only one hidden layer, while MLPs have more than one hidden 

layers. As examples, we consider the SLP iris flower, that identifies flowers, and the MLP 

Boston housing, that makes a prediction based on inputs approximation. Through controlled 

heavy-ions beams we evaluate the ANN expected output error rate and we analyze the impact 

of radiation-induced errors in the application’s correctness. It is very important to highlight that 

the training phase was performed beforehand, thus without radiation influence. Our results 

show that only a small portion of faults affects is to be considered critical. In fact, while 

radiation perturbs computation, a significant portion of output errors does not impact the 

performed pattern recognition. Then, to identify the causes of critical errors, we perform an 

extensive fault injection campaign. As discussed in the paper, we find that faults injected on 

neurons in the early stages of the ANN are more likely to generate critical errors. 

The case-study device we have selected for the proposed analysis is a Zynq-7000 

(XILINX, 2015), which offers high configurability, stimulates strong interest in the scientific 

community, and is highly present on the market. Zynq-7000 is composed of two main parts: a 

Processing System (PS) formed around a dual-core ARM Cortex-A9 processor, and 

Programmable Logic (PL) based on a standard Xilinx Artix-7 FPGA. The PL section is ideal 

for implementing high-speed logic, arithmetic, and data processing subsystems, while the PS 

supports software routines and/or operating systems. Therefore, the overall functionality of any 

designed system can be appropriately partitioned between hardware and software. In this 

particular case, the network itself is in the PL section, while the PS is responsible for the final 

comparison between the outputs of the last layer of neurons.  
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2 BACKGROUND 

This section introduces some main concepts like safety, reliability and heterogeneity. 

State-of-the-art devices and machine learning algorithms are also presented. Finally, we discuss 

why it is crucial to consider radiation effects on electronic devices and applications. 

2.1 Safety-Critical Applications 

A regular application is considered safety-critical if its failure can result in loss of human 

lives, harm to private property or environmental damage (IEC, 2017). Systems to be used in 

such applications should present the following properties: reliability, maintainability, 

availability, safety and security. This work focuses on reliability, which is the probability of a 

fail to occur, and safety, which is the probability that the system will not cause any harm in case 

of malfunction (IEEE, 1990). Further properties are defined by (BERNARDESCHI, 2015). 

In order to reach functional safety, a given system must be compliant with given safety 

constraints by knowing how to handle failures, reaching tolerable levels. These constraints are 

defined to help designers on the development and the qualification of reliable systems. 

One of the most actual and important examples of safety-critical applications is the fast-

growing autonomous trend in the automotive sector. Every year, the level of reliability in 

partially self-driving cars rises, and we will inevitably reach fully autonomous conduction, 

sooner rather than later (ELECTREK, 2016). The aerospace sector is also massively dependent 

on the proper fault tolerance techniques, mainly to guarantee functional correctness of missions, 

where billions of dollars are at stake. The safety-critical area is, of course, highly regulated with 

norms such as the IEC 61508, which restricts the set of solutions that can be commercially 

adopted, but of course, does not forbid scientific research. 

Figure 2.1: Tesla’s autopilot  

 
Font: (ELECTREK, 2016) 
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2.2 Machine Learning 

One of the main subareas of Artificial Intelligence (AI) is Machine Learning (ML), 

which consists in a set of algorithms and methods that allow a computer to learn without being 

explicitly programmed (SAMUEL, 1959). Generally speaking, ML adoption is highly 

recommended in applications where the construction of a deterministic algorithm is impossible 

or very time consuming, such as computer vision and predictive systems. 

The actual learning process involves several hours of supervised or unsupervised 

training, where the system is fed several times with large datasets, and adjusts its own behavior 

after each iteration. Essentially, ML algorithms learn from input patterns, and it eventually 

becomes able to spot details that humans are not able to deterministically describe. 

This work explores Artificial Neural Networks (ANNs), which is one of the approaches 

within the ML field. Section 4.2 explains ANNs in detail, but the basic definition is: a network 

of interconnected units, propagating signals based on the received stimulus. 

Recently, the research on ANNs has increased significantly, with large scale topologies 

(surpassing thousands of neurons) and Big Data usage in the training processes. Also, efforts 

towards the construction of dedicated Integrated Circuits (ICs) have been made by big market 

players, such as IBM with its TrueNorth chip, capable of simulating up to 256 million synapses 

in real-time (MEROLLA et al., 2014). In addition, neural networks are consistently proving to 

perform better than human professionals in a number of specific fields, which can be 

exemplified by Google’s DeepMind AlphaGo beating the world’s best player of Go (millenary 

Chinese table game) (QUARTZ, 2016). 

Figure 2.2: Google’s DeepMind AlphaGo vs World Champion Lee Sedol 

 
Font: (QUARTZ, 2016) 
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2.3 Heterogeneous Systems 

As Moore’s law (MOORE, 1965) states, the transistor density in processors doubles 

every 18 to 24 months, and this has been confirmed up until the past decade. Nowadays this 

evolution rate seems to be slowing down, but the highly increased complexity achieved from 

years of improvements led to significantly higher power consumption. One of the most 

promising ways researchers designed to increase performance while being as energy efficient 

as possible, is the adoption of heterogeneous architectures that combine traditional processors 

with other hardware resources or accelerators. This work focuses on heterogeneity by Field-

Programmable Gate Array (FPGA) usage. 

FPGAs enable high flexibility due to their ability to implement arbitrary logic circuits 

using Look-Up Tables (LUTs). These devices have been proven to be very suitable for parallel 

tasks and to deal with pipeline-friendly data flows. Today, this type of heterogeneous device is 

commercially called All-Programmable System-On-Chip (APSoC). In most cases, APSoCs are 

composed of two main parts: Programmable Logic (PL) and Processing System (PS), with the 

PL part being based on a FPGA and the PS part having single or multicore traditional 

processors. Finally, there are bus interfaces for communication between PS and PL, alongside 

optional peripherals. 

Several state-of-the-art APSoCs are currently available on the market, such as the 

Cyclone V (ALTERA, 2015) from Altera, the SmartFusion (MICROSEMI, 2015) from 

Microsemi and the Zynq-7000 (XILINX, 2015) from Xilinx. This work uses as case-study the 

latter, which will be presented in Section 4.1. 

Figure 2.3: Generic architecture of an APSoC 

 
Font: (TAMBARA, 2017) 
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2.4 Radiation Effects on Electronic Devices 

2.4.1 Fault, Error and Failure 

According to (AVIZIENIS et al., 2004), a system is an entity composed by one or more 

subsystems that interact with each other, while the system itself interacts with other systems in 

its environment. Given this scenario, we can say that the service provided by a particular system 

is its behavior as perceived by its users. A system presents an error when its output is different 

from the expected one, and it fails whenever there is a behavior deviation. Finally, we define 

fault, error and failure as concepts linked by a cause-effect relationship, illustrated by Fig. 2.4. 

Figure 2.4: Fault, error and failure propagation 

 
Font: (TAMBARA, 2017) 

2.4.2 Radiation Sources 

Radiation is a naturally occurring phenomena which can basically be described as the 

transmission of energy through particles traveling at high speeds. There are many sources of 

radiation in the universe, such as stars (like our sun) and cosmic rays, but there are also man-

made radiation rich environments like particle accelerators and nuclear reactors, for scientific 

purposes and energy supply, respectively. 
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While most particles are deviated by the terrestrial magnetic field, the most energetic 

cosmic-rays reach the Earth. As they collide with the nuclei of atoms in our atmosphere, they 

produce a variety of secondary particles, including alpha particles, protons, gamma, and, 

mainly, neutrons. Each type of these particles affects the ICs in a different way. 

2.4.3 Radiation Effects 

The advances in both conception and fabrication processes of ICs, over the past two 

decades, has led to a considerable increase in transistor density and a reduction in power 

consumption (due to lower voltages). The combination of these two factors brings a greater 

radiation sensitivity (BAUMANN, 2005). 

As said in Section 2.4.2, different particles interact with electronic devices in distinct 

manners. We classify as Single Event Effect (SEE), when a single particle deposits enough 

energy in the circuit to alter its normal functionality. SEEs can still be subdivided in Destructive 

or Non-Destructive. Destructive SEEs are those in which either the device gets permanently 

damaged or has to be reset. Non-Destructive SEEs on the other hand, comprise the cases where 

the particle-circuit interaction results in system/application error or failure. Fig. 2.5 shows the 

main possible radiation effects. 

Figure 2.5: Radiation effects 

 
Font: (SIEGLE et al., 2015) 
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3 EXPERIMENTAL METHODOLOGY 

Among the methods to evaluate SEEs on electronic devices, the most realistic one is in 

its real application environment (satellites in space, for example). Sometimes however, due to 

practical and/or financial constraints, this approach is not an option. Moreover, it may take large 

periods of time to collect a statistically relevant amount of data. As a result, accelerated 

radiation tests are nowadays the most common way to qualify the reliability of integrated 

circuits for SEEs (JEDEC, 2006). In these experiments the devices are exposed to a radiation 

source with much higher density than the normal levels it would experience in its application 

environment, reducing drastically the amount of time necessary to obtain useful data. 

Accelerator facilities provide a variety of particles, such as neutrons, protons, and heavy ions. 

Neutron facilities like the Los Alamos National Science Center (LANSCE) in the United States, 

and the Rutherford Appleton Laboratory (RAL/ISIS) in the United Kingdom are generally used 

for testing devices to be used in terrestrial and avionic applications. Proton facilities as the Paul 

Scherrer Institut (PSI) in Switzerland are capable of generating protons with enough energy to 

simulate solar flares. Heavy ions facilities like the 8UD Pelletron at Universidade de São Paulo 

(USP), are usually for evaluating devices destined to space and deep space. Finally, there are 

facilities in which the Device Under Test (DUT) is exposed to a very high flux of a cocktail of 

particles. The best example of this facility is the CERN High Energy Accelerator Mixed-field 

(CHARM) located in Switzerland. 

A third method of qualification is fault injection by emulation or simulation. This 

method is, at the same time, the less costly and the most flexible, but it does not waive the 

necessity of a radiation test. Usually, fault emulation is an attractive technique to predict the 

susceptibility of a system before submitting the device to an accelerated test, for example. This 

approach basically consists in flipping bits of memory components of FPGAs and processors 

through the assistance of an embedded circuit or a monitoring computer. Single Event Upsets 

(SEUs) can be emulated randomly or sequentially (when every configuration bit is flipped in a 

sequential order). Thus, fault injection provides deeper information when compared to radiation 

experiments, since the correlation between the flipped bit’s location and the fault effect is 

known. 

In this work, we exploit both radiation and fault injection experiments, which are 

described in Sections 3.1 and 3.2, respectively, along with the main metric of each experiment. 
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3.1 Radiation Experiment 

3.1.1 Setup 

Radiation experiments were conducted with heavy ion particles at the Laboratório 

Aberto de Física Nuclear (LAFN), located in Universidade de São Paulo, Brazil (AGUIAR et 

al., 2014), where the ion beams are produced and accelerated by the 8UD Pelletron Accelerator. 

We included a standard Rutherford scattering setup using a gold foil to achieve a very low 

particle flux in the range from 102 to 105 particles.cm-2.s-1, as recommended by the European 

Space Agency (ESA) for SEU tests (ESA, 2005). The experiment was performed in vacuum. A 

silicon barrier detector was mounted inside the vacuum chamber at 45º to monitor the beam 

intensity. The SEU events were observed using a 16O beam, scattered by a 184 µg/cm2 gold 

target, with an energy of 56 MeV, which provides an effective Linear Energy Transfer (LET) 

on the active region of 5 MeV/mg/cm and a penetration in Si of 28.5 µm. To achieve the desired 

particle fluence, the DUT was positioned at a scattering angle of 90º, resulting in an average 

flux between 2.0x102 and 2.5x102 particles.cm-2.s-1. Such configuration was chosen based on 

several trials and it was the most suitable in terms of particle flux and number of errors for our 

purposes. For this analysis, the package of a Xilinx Zynq-7000 device, part XC7Z020-CLG484, 

was thinned to allow that irradiated particles could penetrate the active region of the silicon, as 

Fig. 3.1 illustrates. 

Figure 3.1: The thinned Zynq-7000 device in the irradiation chamber 
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A heterogeneous setup based on the PS and PL parts of the Zynq-7000 was developed 

for testing the Design Under Test (DUT), as illustrated in Fig. 3.2. On the PS part, a software 

running on one of the ARM Cortex-A9 cores controls the DUT. It is worth highlighting that the 

L2 Cache of the PS part was disabled to not compromise the processor's reliability, while the 

L1 Cache of the processor was left enabled to not compromise the processor's performance. 

Such choice was based on the results obtained by (TAMBARA et al., 2016). The 

communication between PS and PL parts is performed through General Purpose (GP) ports, 

which provide a very high data throughput. On the PL part, the Control DUT hardware block 

monitors the memory space of the DUT. This block is implemented with Triple Modular 

Redundancy (TMR) aiming to mask SEUs. If the block detects errors, it sends them to a script 

running on a monitor computer, which time-stamps the errors and logs them for future analysis. 

Figure 3.2: Block diagram of the developed setup for testing the DUT 

 

3.1.2 Cross Section 

In a radiation experiment, the most important metric is the cross section (!), and it 

quantifies the sensitivity of a system to particles (JEDEC, 2006). The cross section is measured 

dividing the number of observed errors (Nerrors) by the particles fluence ("particles). 
 

(Equation 3.1)   

 

(Equation 3.2)           !	= 
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3.2 Fault Injection 

3.2.1 Framework 

This work uses the fault-injection framework presented in (TONFAT et al., 2016), 

which is based on the Internal Configuration Access Port (ICAP) block of Xilinx FPGAs, an 

ICAP controller and a monitor computer. The ICAP block can read and write the configuration 

memory of the FPGA using the readback and dynamic reconfiguration capabilities of the 

FPGA. Hence, the fault-injection framework can emulate SEUs in the configuration memory 

of the FPGA. 

The flow of a fault-injection campaign is presented in Fig. 3.3. The first task is the 

definition of the injection area and the type of fault-injection campaign. For the case considered 

in this paper, the injection area is the area of a given neuron of the ANN, implemented in the 

FPGA and an exhaustive fault-injection campaign is selected to known which configuration 

bits produce errors on the outputs of the artificial neural network. The exhaustive fault-injection 

campaign produces bit-flips on all the configuration bits of the injection area, one at a time. 

Figure 3.3: The fault injection flow 
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3.2.2 Architectural Vulnerability Factor (AVF) 

The fault injection test, as in any higher abstraction level simulation, cannot measure 

the cross section, since it depends on the physical-level sensitivity to radiation, as defined in 

Section 3.1.2. An alternate metric for fault injection is the Architectural Vulnerability Factor 

(AVF), which represents the probability that a visible error will occur at the output of a system 

given a bit-flip in a hardware structure (MUKHERJEE et al., 2003). It is simply obtained by 

dividing the number of observed errors (Nerrors) by the number of injected faults (Nfaults) as 

show in Eq. 3.3. 

 

(Equation 3.3) 

 

3.3 Comparison of Experiments 

While in radiation experiments, the entire device is irradiated, leading to a more realistic 

prediction of the error rate, using fault injection, we corrupt specific portions of the hardware, 

in order to correlate the fault source to the observed effect in the output. 

In addition, the cross section is a metric in terms of area [cm²], while the AVF is 

dimensionless, which means they provide complementary information about the studied 

system, thus, one experiment does not exempts the execution of the other.  
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4 CASE STUDIES 

This section presents the Zynq-7000 APSoC, the design strategy for the neuron’s 

activation function, as well as the chosen ANNs and their correspondent datasets. Finally, we 

stablish the error criticality definition and the heuristics for the reliability evaluation. 

4.1 Zynq-7000 APSoC 

The Zynq-7000 is a device designed by Xilinx using a 28nm technology. In specific, 

this work utilizes the XC7Z020-CLG484 part, which is commercially available in the ZedBoard 

Development Board. Fig. 4.1 shows its block diagram. 

Figure 4.1: Zynq-7000’s block diagram 

 
Font: (XILINX, 2017) 
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As we can see from Fig 4.1, there are two main parts in the Zynq-7000, which are the 

Processing System (PS) and the Programmable Logic (PL), and they are connected mainly 

through Advanced eXtensible Interface (AXI) ports. 

The PS has a dual core ARM Cortex-A9 processor alongside other resources such as 

Floating Point Units (FPUs) and Memory Management Units (MMUs). The complete block 

diagram of the PS part is showcased by Fig 4.2. 

Figure 4.2: Zynq-7000’s PS part 

  
Font: (XILINX, 2015) 

The PL part of the Zynq-7000 has the same internal architecture as two other families 

of Xilinx FPGAs: Artix-7 and Kintex-7. This architecture is composed mainly of Configurable 

Logic Blocks (CLBs), Digital Signal Processor (DSP) blocks and embedded memory blocks 

(BRAM). A set of programmable interconnections creates an array of programmable logic 

blocks of different types. All of these components are configured by the bitstream file, which 

loads into the configuration memory during the device power-up, ultimately defining a circuit 

previously described in a Hardware Description Language (HDL). 
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CLBs are used to implement the logic of the user’s design. Each CLB is composed of 

one or more slices, and a slice contains one or more LUTs, Flip-Flops (FFs), and routing 

structures. Fig 4.3 illustrates the relationship between CLBs and slices. 

Figure 4.3: Relationship between CLBs and Slices in the Xilinx 7-Series FPGAs 

 
Font (XILINX, 2014) 

Logic functions, and their respective truth-tables, described in the HDL code are 

implemented in the LUTs as multiplexers with 2n inputs and n selectors (Fig 4.4 serves as an 

example). 

Figure 4.3: Example of a 2-input function implemented in the LUT 
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4.2 Artificial Neural Networks implemented in FPGAs 

Artificial Neural Networks (ANNs) are a computational concept of the Machine 

Learning area, inspired on the biological structure of animal brains (MCCULLOCH et al., 

1943). Analogously, the main component of an ANN is the neuron, which basically sums its 

inputs and applies an activation function, simulating the behavior of an axon, from a biology 

standpoint. The neurons are organized in layers, in a fully connected way. In other words, every 

neuron of a given layer L is connected to every neuron of the layers L-1 and L+1. Every 

connection has an associated weight, which multiplies its input and passes it to the following 

neuron, similarly to what occurs during a synapse (ROSENBLATT, 1958). It is worth 

mentioning that the Input Layer does not perform any arithmetic operation. 

The intelligence of a particular ANN varies with the topology (number of neurons and 

layers), and with the synaptic weights (for each connection between neurons). The topology is 

defined by the system designer, while the synaptic weights are defined during the training 

phase, where a large set of data is presented to the network, and the weights get updated 

depending on the discrepancy between the output and the expected value for each iteration. 

There are many variations of training algorithms, but the most commonly adopted nowadays is 

the Backpropagation (RUMELHART et al., 1986). 

Figure 4.4: Sample structure of an ANN 

 
Font: (WIKIPEDIA, 2017) 
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4.2.1 Neuron’s Activation Function 

The activation function produces a non-linear decision boundary. It is an abstraction of 

the action potential concept from biology that, when applied to neurons, is also known as nerve 

impulse. The most used mathematical expressions of the activation function are sigmoidal, such 

as the hyperbolic tangent and the logistic. In this work, we analyze the logistic activation 

function shown in Fig. 4.5. 

Figure 4.5: The original logistic function and the three levels of discretization 

 
We can quickly notice that the sigmoid output is comprised between 0 and 1. Its 

mathematical expression involves an exponentiation as in Eq. 4.1. 

 

(Equation 4.1) 

 

 Implementing an exponential, for fixed or floating point data representations, in a HDL 

is not trivial and can lead to inefficiencies in the FPGA. A few solutions were proposed for this 

problem (BUI et al., 1999), but this work adopts the discretization strategy (AMIN et al., 2004). 

We use three levels of discretization of the activation function (shown in Fig. 4.5), resulting in 

three different neuron designs. As it can be noticed, Sigmoid 19 (that divides the sigmoid in 19 

steps) is very similar to the continuous function. 
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4.2.2 Boston Housing Dataset 

This dataset was first introduced by (HARRISON et al., 1978) and has been utilized in 

a number of relevant Machine Learning papers, such as (MERZ et al., 1999). It has a total of 

506 instances, where each instance has fourteen attributes, thirteen of which being inputs and 

one being the output, as Table 4.1 shows. 

Table 4.1: Instance attributes for the Boston Housing dataset 

Attribute Description 

Input 1 Per capita crime rate 

Input 2 Proportion of residential land zoned for lots over 25,000 sq.ft. 

Input 3 Proportion of non-retail business acres 

Input 4 Charles River dummy variable (=1 if tract bounds river, 0=otherwise) 

Input 5 Nitric oxides concentration (parts per 10 million) 

Input 6 Average numbers of rooms per dwelling 

Input 7 Proportion of owner-occupied units built prior to 1940 

Input 8 Weighted distances to five Boston employment centers 

Input 9 Index of accessibility to radial highways 

Input 10 Full-value property-tax rate per $10,000 

Input 11 Pupil-teacher ration 

Input 12 1000(Bk-0.63)² where Bk is the proportion of blacks 

Input 13 Percentual lower status of the population 

Output 1 Median value of owner-occupied homes in $1000’s 

 

The ANN implements a linear regression algorithm in order to predict the output value 

given the thirteen inputs. Its topology is illustrated in Fig 4.6. It is worth highlighting that for 

this particular case, the neuron in the output layer doesn’t apply the activation function, since 

the expected value is not restricted to any subinterval of �. 
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Figure 4.6: Boston Housing ANN’s topology 

 
In addition, Table 4.2 presents the Zynq’s FPGA resource utilization by our 

implemented topology of the ANN. It is very noticeable that the FF and DSP percentages are 

equal across all cases. This is due to the fact that the pipeline structure (FFs) doesn’t depend on 

the level of sigmoid discretization, nor do the connections between the neurons (DSPs). 

Table 4.2: Zynq’s FPGA resource utilization by the linear regression ANN 

Resource (#) Sigmoid 19 Sigmoid 11 Sigmoid 5 

FF     (106,400) 3.1% 3.1% 3.1% 

DSP  (220) 96.3% 96.3% 96.3% 

LUT (53,200) 57.9% 42.1% 27.2% 
 

4.2.3 Iris Flower Dataset 

In order to evaluate another type of algorithm in ANNs (specifically: classification), we 

chose the Iris Flower dataset, which is well-know in the Pattern Recognition literature, and was 

first introduced by (FISCHER, 1936), but the actual data was collected by (ANDERSON, 1935) 
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who wanted to quantify the morphologic variation of three related species of the Iris Flower: 

Setosa, Versicolor and Virginica. The dataset has a total of 150 instances, divided in three 

classes of 50, where each class refers to a species. Table 4.3 shows the seven attributes of each 

instance. 

Table 4.3: Instance attributes for the Iris Flower dataset 

Attribute Description 

Input 1 Sepal Length 

Input 2 Sepal Width 

Input 3 Petal Length 

Input 4 Petal Width 

Output 1 Iris Setosa 

Output 2 Iris Versicolor 

Output 3 Iris Virginica 
 

These instances differ from the ones presented in Section 4.2.2 because there is more than 

one output for every set of inputs. The actual classification is obtained by verifying which 

output is higher. Fig. 4.7 illustrates this ANN’s topology 

Figure 4.7: Iris Flower ANN’s topology 
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Finally, Table 4.4 presents the Zynq’s FPGA resource utilization by our implemented 

topology of the ANN. Once again, the percentage of utilized FF and LUT resources is the same 

for all sigmoids. 

Table 4.4: Zynq’s FPGA resource utilization by the classification ANN 

Resource (#) Sigmoid 19 Sigmoid 11 Sigmoid 5 

FF     (106,400) 1.5% 1.5% 1.5% 

DSP  (220) 34.6% 34.6% 34.6% 

LUT (53,200) 44.2% 29.2% 14.0% 
 

4.3 Error Criticality and Reliability Evaluation 

A radiation-induced output error is not always critical for the ANN. In fact, while the 

result is based on the output of the last neurons layer, a corrupted output can still lead to a 

correct behavior. In other words, the particle can induce the ANNs to produce wrong output 

values but, based on these (corrupted) values the system can still be considered properly 

functional. In this situation, we consider the error as tolerable. Otherwise, the error is marked 

as critical. Note that we adopt this nomenclature to facilitate the understanding, since the formal 

definition in Section 2.4.1 might be confusing to readers who are unfamiliar with the area. 

As described in Sections 4.2.2 and 4.2.3, our datasets are composed of 506 and 150 

instances each. As the radiation-induced error in SRAM-based FPGAs has a persistent effect, 

we want to measure how many of the input instances it affects (in a critical or tolerable way). 

To do so, when a mismatch between the ANN’s output and the expected output is detected 

(either under radiation or in our fault-injection experiment), we run all the instances of the 

datasets and evaluate the error criticality. 

Each application has its proper definition of a critical or tolerable error. For the Boston 

Housing ANN, we consider the Tolerated Relative Error (TRE), which defines an interval with 

boundaries of criticality, mathematically expressed as in Eq. 4.2: 

 

(Equation 4.2) 

 

where x is the ANN’s output and G is the expected/gold value. As an example, with a TRE of 
10%, the tolerable interval would be [0.9x, 1.1x]. 
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For the Iris Flower ANN identifying a critical or tolerable error is easier: if any of the 

three outputs is different than expected, but the flower classification is still correct, the error is 

tolerable, otherwise it is critical. 

Based on these considerations we identify four possible radiation effects on ANNs, 

indicated in Table 4.5: 

Table 4.5: Radiation effects on ANNs 

(1) Single Tolerable one and only one element in the dataset produces output errors, 
but the application’s behavior can still be considered correct 

(2) Multiple Tolerable more than one element in the dataset produces output errors, but 
the application’s behavior can still be considered correct 

(3) Single Critical 
one and only one element in the dataset produces an output 
errors considered critical for the application (there may be one 
or more tolerable errors) 

(4) Multiple Critical 
more than one element in the dataset produces output errors 
which are considered critical for the application (there may be 
one or more tolerable errors) 

 

In Section 5, we consider both radiation and fault injection results based on (1) to (4). 
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5 RESULTS 

In this section we present and discuss the results obtained through our beam experiments 

and fault-injection framework. Then, we utilize both experimental methodologies to draw 

generic conclusions on ANN reliability. 

5.1 Radiation Experiment 

Using the setup described in Section 3.1.1 we have irradiated the device for about 15 

hours, for a total fluence of 1.14x107ions/cm². We have collected more than 100 errors for each 

configuration, and they are divided in the four categories discussed in Section 4.3. 

Fig. 5.1 shows the heavy ions cross section of the Boston Housing ANN for the three 

different levels of discretization of the neuron’s activation function. We divide the contribution 

of single/multiple tolerable/critical errors as a function of the TRE, which we vary from 0% 

(any difference from the expected value is critical) to 100% (a relative error as high as the 

output value is tolerable) in 10% increments. 

Figure 5.1: Heavy-ions cross section of the Boston Housing ANN 
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From Fig. 5.1 it is clear that a more complex and precise discretization of the sigmoid 

function makes the ANN more likely to be corrupted. In fact, Sigmoid 19 cross section is 30% 

higher than Sigmoid 11 and 40% higher than Sigmoid 5. An important observation from our 

experimental data is that the probability of all error types scales with the sigmoid complexity. 

Unfortunately, multiple errors (when more than one instance generates an unexpected output), 

are predominant over single occurrences. Multiple errors are likely to be caused by particles 

affecting the connections among neurons more than the neurons themselves. Also, when the 

TRE is 0%, by definition every error is considered critical, but as the TRE is incremented, the 

number of critical errors decreases. 

The cross section of the Iris Flower ANN is plotted in Fig 5.2. It is interesting to notice 

that Iris Flower cross section has a very similar trend compared to Boston Housing. It is 

reasonable to state that less precise discretization leads to smaller cross section. 

Figure 5.2: Heavy-ions cross section of the Iris Flower ANN 

 
Experimental data also highlights that most of radiation-induced errors on the tested 

ANNs are not to be considered critical. As discussed in Section 4.3, both single and multiple 

tolerable errors identify those corruptions that do not compromise the application’s correctness. 

In other words, those are not failures in the particular application. As shown in Fig. 5.2, about 

65% of radiation-induced corruptions lead to single or multiple output errors, without any 

impact on classification of the Iris Flower. 
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5.2 Fault Injection 

While offering several advantages, radiation experiments allow little visibility of error 

propagation. As radiation-induced errors are detected only at the output, it is not possible to 

correlate the observed errors with the source of corruption. We take advantage of the fault-

injection framework described in Section 3.2.1 to better understand the observed phenomena. 

We decide to inject faults all in neurons from different layers of the networks, and not in the 

connections between neurons. In fact, our intent is to comprehend the impact of faults in 

neurons and their propagation through the connections. This choice is also justified by the 

relevance of the neuron as the main and most original component of ANNs. 

It is worth noting that a direct comparison between fault-injection and radiation-

experiment results is not possible. In fact, while beam experiments provide the probability of 

errors to occur, fault-injection evaluates the probability of a fault to affect the output. As such, 

fault injection can provide deeper insights on ANN reliability. 

Fig. 5.3 shows the results of our fault injection in the Boston Housing ANN, expressed 

as AVF. We divide the fault-injection outcomes based on the four categories discussed in 

Section 4.3. Faults were injected separately in the Hidden Layer 1 (HL1), Hidden Layer 2 (HL2) 

and Output Layer (OL) neurons of the chosen ANN. 

Figure 5.3: AVF of the Boston Housing ANN 
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It is clear from Fig. 5.3 that injections in the initial layers are more likely to generate 

errors and failures. In addition, the trend of single/multiple tolerable/critical errors is very 

similar to the observed in the radiation experiment (Fig. 5.1). 

In Fig. 5.3 the AVF is inversely proportional to the discretization level of the activation 

function, only in apparent contrast with radiation experiment results. In fact, the higher cross 

section for more precise discretization is mostly justified by the higher amount of resources 

used to implement the circuit. Fault-injection results, on the contrary, are dependent on the 

probability for a fault in a used resource to affect computation. The AVF, then, removes the 

dependence on the exposed area and is focused on the effect of radiation-induced faults. As 

shown in Fig. 5.3, the higher the precision of the neuron’s response is, the lower its architectural 

vulnerability will be. This may seem odd at first sight, but it is due to the fact that a more precise 

discretization for the neuron’s activation function implies in higher LUT utilization, and the 

number of essential configuration bits is proportional to the design’s complexity. In the first 

studied case, for example, the corruption of a single bit through fault injection represents 

0.00011% of the neuron’s circuit using sigmoid 19, while the same corruption represents 

0.00043% (4 times more) of the neuron using sigmoid 5. 

As for the classification ANN, the faults were injected separately in the Hidden Layer 

(HL) and Output Layer (OL). Results are shown in Fig. 5.4. 

Figure 5.4: AVF of the Iris Flower ANN 
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Once again the likeability of error and failure occurrence decreases as the affected layer 

is closer to the output. This means that hardening strategies should have priority of adoption in 

the earlier layers of the network. 

To demonstrate that both experiments are in total accordance, we present Fig 5.5 and 

Fig 5.6. They show the absolute number of observed errors during the fault injection campaigns 

for the Boston Housing ANN and the Iris Flower ANN, respectively. 

Figure 5.5: Total observed errors in fault injection (Boston Housing ANN, TRE= 10%) 

 

Figure 5.6: Total observed errors in fault injection (Iris Flower ANN) 
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5.3 Discussion 

Analyzing the beam experiments and fault-injection results presented in Sections 5.1 

and 5.2 respectively, we can primarily perceive that tolerable errors are dominant over critical 

errors. Hence, while transient faults affect the ANN execution, in most of the cases their effect 

is not sufficient to jeopardize the application’s purpose. Interestingly, the portion of errors that 

are to be considered critical is similar between beam experiments and fault-injection. This 

suggests that the criticality of errors in the ANNs is an intrinsic property of the circuit, and does 

not depend on the source of error or the probability of corruption. Using fault-injection results 

it is then possible to harden the ANN circuit, protecting the sources of critical errors. 

Furthermore, it is unlikely for radiation to affect the computation of one single instance 

at the time, for both beam experiment and fault-injection. In other words, in the majority of 

cases when corruption occurs, it appears in multiple instances of the dataset. This is because 

the ANNs use all neurons and connections to determine its output. Modifying one neuron or 

connection is then likely to affect more than one output.  
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6 CONCLUSIONS 

Experimental results indicate an overall low probability of error occurrence in the ANNs 

implemented on an FPGA due to the intrinsic masking effect capability of the neurons. 

Additionally, the application’s functionality is maintained even for most of the observed output 

errors, for all studied cases. The critical errors represent the smaller portion of the total number 

of events. Our results attest that not all the radiation-induced errors are critical in the ANNs, 

which is a promising result for safety-critical applications. Moreover, thanks to our fault-

injection campaign we discovered that the inner layers of neurons may be more critical, and 

should be carefully hardened by fault tolerant techniques. 

As a personal experience, we learned that fault injections are significantly more time 

consuming than standard radiation tests (in this particular case, 20 times more). This is due to 

the fact that fault injection campaigns are performed extensively (in every bit of the FPGA’s 

configuration memory, that corresponds to the determined injection area), while beam 

experiments are conducted for just enough time to observe a statistically significant number of 

errors. But as briefly explained in Section 3.3, both results are necessary in order to perform a 

complete analysis of a system’s reliability, since, by definition, they provide different 

perspectives on fault effects. 

As future work, we intend to evaluate the behavior of more complex ANNs, as well as 

to reduce the resource utilization of the neuron’s activation function by exploring its aspect of 

symmetry, and to implement fault tolerance techniques such as Triple Modular Redundancy 

(TMR) in the initial layers of the network. 
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