THE EFFECT OF TRANSCRANIAL DIRECT CURRENT STIMULATION (TDCS) ASSOCIATED WITH HYPOCALORIC DIET IN SUBJECTS WITH DIFFERENT DEGREES OF GLUCOSE TOLERANCE

Carina de Araujo¹, Raquel C. Fitz¹, Poliana E. Correia¹, Daniela A. Nogara³, Ricardo M. Nader³, Juan P. U. Osório³, Cristiane Rodrigues³, Vitória Marques Brito³, and Prof. Pedro Schestatsky MD, PhD², Prof. Fernando Gerchman MD,PhD¹.

¹Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; ² Neurology Service, Hospital de Clínicas de Porto Alegre, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil. ³ Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil.

Background

- Non-adherence to lifestyle modification is an important determinant of failure to treat obesity.
- The dorsolateral prefrontal cortex (DLPFC) plays an important role in appetite and food intake regulation and may be a target for electric brain stimulation

Aims

To test the effect of active tDCS over the right DLPFC associated with a hypocaloric diet on weight loss in overweight or obese adults.

Methods

• Randomized, placebo-controlled, double-blind pilot study.

• ClinicalTrials.org NCT 02683902, approved at UFRGS IRB 150119. Consent term was applied in all subjects.

Results

Question 1. How was the baseline and follow-up characteristics of the population at study according to the intervention?

	Active (n= 4)		Sham (n= 6)		_ p	GEE
	Baseline	Post tDCS	Baseline	Post tDCS	value*	<i>p</i> value [#]
Age, years	38.2 ± 7	-	38.0 ± 2	-	0.940	-
Female sex, n(%)	3 (75)	-	3 (50)	-	0.571	-
Weight, kg	80.0 [62.4, 97.7]	77.3 [59.3, 95.0]	92.7 [82.5, 101.9]	90.9 [81.9,99.8]	-	0.091
Physical activity, steps / day	4190.0 [2529.2, 5850.9]	3849.1 [2460.5, 5327.6]	5172.0 [3323.7, 7020.3]	5087.9 [3500.2, 6675.6]	-	0.849
Glucose, mg/dL	91.8 [88.2, 95.4]	93.6 [86.4, 99]	91.8 [82.8, 99]	90 [82.8, 97.2]	-	0.503
2h glucose, mg/dL	104.4 [73.8, 135]	108 [104.4, 113.4]	102.6 [86.4, 117]	113.4 [91.8, 136.8]	-	0.683
A1c, %	5.8 [5.3, 6.3]	5.7 [5.2, 6.2]	5.3 [5.0, 6.0]	5.1 [4.9, 5.4]	-	0.379

Table 1. Data are expressed as absolute number (%), mean \pm SD, or mean [95% CIs]; *p value was tested by Fisher's exact $\chi 2$ test for or Student's t test; #p value for interaction (tDCS by time) was tested by generalized estimated equation (GEE).

Question 2. How was the effect of tDCS over body weight and BMI?

Figure 1. Data are means [95% CI]. *p* value for interaction (tDCS by time) was tested by GEE. *Significant difference between Active and Sham tDCS at a specific moment in the study. A, B and C indicates Bonferroni post- hoc analysis, means without a common capital letter differ in *time*, p<0.001.

Question 3. How was the adherence to the prescription diet of participants between groups?

Figure 2. Data are means [95% CI]. *p* value for interaction (tDCS by time) was tested by GEE.

Question 4. How was the effect of tDCS over the glycemic-insulinemic status?

Figure 3. Data are means [95% CI]. * p value for interaction (tDCS by time) was tested by GEE.

Question 5. How was the effect of tDCS over depression and anxiety?

	Active (n= 4)		Sham	tDCS by		
	Baseline	Post tDCS	Baseline	Post tDCS	— time p value*	
BDI, score	10.3 [4.8, 15.7]Aa	2.8 [0.5, 5.1]Ba	5,7 [3.2, 8.1]Aa	5.3 [2.5, 8.2]Aa	0.013	
STAI- S, score	41.5 [32.9, 50.1]	32.3 [29.1, 35.5]	37.2 [30.6, 43.7]	30.7 [27.4, 33.9]	0.655	

Table2. Data are expressed as means [95% CI]. * p value for interaction was tested by GEE. Means without common capital letter differ in time, p < 0.05

Conclusions

This preliminary analysis suggests that repetitive active a-tDCS may be a potential non-invasive and adjunctive treatment in addition to life style modification for obesity management.

