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Resume. In this paper, we obtain new lower bounds on the Homogeneous Sobolev–norms of
the maximal solution of the Magnetohydrodynamics Equations. This gives us some insight
on the blow-up behavior of the solution. We utilize standard techniques from the Navier–
Stokes Equations.
Key words. Magnethohydrodinamics equations, blow-up criterion, lower bounds

1 Introduction

Magnetohydrodynamics (MHD) describes the motion of electrically conducting fluids,
such as liquid metals, salt water, or plasmas, in the presence of magnetic fields. The
MHD Equations form a system of equations that combine fluid dynamics with Maxwell’s
theory of electromagnetism. For an introduction on the subject, see [14]. In this paper,
we consider the three–dimensional MHD Equations for incompressible flows:

∂u

∂t
+ (u · ∇)u = ν∆u+ σ(b · ∇)b−∇

(
p+

1

2
σ|b|2

)
, in R+ × R3;

∂b

∂t
+ (u · ∇)b = νm∆b+ (b · ∇)u, in R+ × R3;

div u = 0, div b = 0, in R+ × R3;

u(0) = u0, b(0) = b0 with div u0 = 0, div b0 = 0, in R3,

(1)
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where u(x, t) =
(
u1(x, t), u2(x, t), u3(x, t)

)
∈ R3 denotes the velocity field of the fluid and

b(x, t) =
(
b1(x, t), b2(x, t), b3(x, t)

)
∈ R3 the magnetic field. The remaining terms are the

hydrostatic pressure p(x, t) ∈ R, the initial data u0, b0 in L2(R3;R3), and the positive
constants ν, νm, and σ. These constants denote, respectively, the kinematic constant
ν = 1/Re, the magnetic diffusivity constant νm = 1/Rm, and σ = M2/ReRm, where Re
is the Reynolds number, Rm is the magnetic Reynolds number, and M is the Hartman
number.

The existence and the uniqueness of solutions of MHD systems have been extensively
studied [2,4–6,12,13,15,17–19]. Duvaut and Lions [5] introduced a class of weak solutions
with finite energy and proved the existence and uniqueness of weak and strong solutions
of the MHD problem. Sermange and Teman [15] obtained results of regularity for solu-
tion to the MHD system considering fluids in limited regions with appropriate boundary
conditions, or fluids in R3 with periodicity conditions. The problem in limited region was
also studied by Rojas and Boldrini [12] . They showed, by using Galerkin method, the
existence of weak solutions to the MHD problem in two or three dimensions. In general,
one can only ensure the existence of a maximal time T ∗ > 0 for which the MHD system
(1) has a classical solution u(x, t), b(x, t) defined for (t, x) ∈ [0, T ∗)×R3. This is the analog
of the corresponding Incompressible Navier–Stokes problem. In fact, in the absence of a
magnetic field, the MHD Equations reduce to the Navier–Stokes Equations. For regularity
results and blow–up estimates of the Navier–Stokes Equations, see [3, 7–11,16].

For Homogeneous Sobolev Spaces Hs0(R3), Yuan [17] obtained the existence of strong
solutions of (1) in [0, T ∗) × R3. More precisely, for s0 > 3/2 and for divergence–free
u0, b0 ∈ Hs0(R3), there exists a positive time T ∗ > 0, depending on the initial conditions
u0, b0, such that (1) admits a unique classical solution (u, b), defined on [0, T ∗) × R3.
Motivated by He and Xin [6], Yuan also provides blow-up criteria that is independent of
the magnetic field b, see [17, Theorem 1.1].

In this paper, we suppose T ∗ <∞ and we establish properties of the maximal solution
of (1). Inspired by Benameur [3], we obtain blow–up estimates for strong solutions of the
Incompressible MHD Equations in the Homogeneous Sobolev Space Ḣs(R3), for s > 1/2.

Set λ = min{ν, νm} and κ = max{1, σ}−1. Our main theorem is the following:

Theorem 1.1. Fix s0 > 3/2 and let u0, b0 ∈ Hs0(R3) be such that div u0 = div b0 = 0.
Consider u, b ∈ C

(
[0, T ∗), Hs(R3)

)
the strong solution of (1), defined in its maximal

interval of definition [0, T ∗). If T ∗ < +∞, then for every δ ∈ (0, 1) and for every s ≥
1/2 + δ, we have ∥∥(u, b)(t)∥∥

Ḣs(R3)

∥∥(u, b)(t)∥∥p(s,δ)
L2(R3)

≥ c(s, δ, σ)λq(s,δ)

(T ∗ − t)r(s,δ)
, (2)

where

p(s, δ) :=
2s

1 + 2δ
− 1, q(s, δ) :=

(2− δ)s
1 + 2δ

, and r(s, δ) :=
sδ

1 + 2δ
.

Remark 1.1. We observe that Theorem 1.1 extends and improves the results of [3]. If
b = 0, the MHD Equations become the Navier–Stokes Equations. In this case, the choice
δ = 1/2 provides us with Benameur’s estimate, see [3, Theorem 1.3, (1.2)]. Moreover, our
approach allows us to consider any s > 3/2 whereas in [3], the author assumes s > 5/2.
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Remark 1.2. Now, we show how different choices of δ and s can provide powerful esti-
mates.

i. Follows from Theorem 1.1, by chossing δ = 1/2, that, for each s ≥ 1,

∥∥(u, b)(t)∥∥
Ḣs

∥∥(u, b)(t)∥∥s−1
L2 ≥

c(s, σ)λ3s/4

(T ∗ − t)s/4
, for all t ∈ [0, T ∗). (3)

ii. It suffices to take s = 1 in remark (1.2.i.) to get a version of Leray’s Inequality [9]
for the MHD Equations

‖(∇u,∇b)(t)‖L2(R3) ≥
cλ3/4

(T ∗ − t)1/4
for all t ∈ [0, T ∗), T ∗ <∞. (4)

iii. For each 1
2 < s < 3

2 ,

‖(u, b)(t)‖Ḣs(R3) ≥
c(s, σ)λ

5
4
− s

2

(T ∗ − t)
s
2
− 1

4

for all t ∈ [0, T ∗). (5)

This is Theorem 1.1 with s = δ + 1/2.

Structure of the paper. In the next section, we fix the notation, and we state the
results needed in the proof of Theorem 1.1. The section three is concerned with the proof
of Theorem 1.1. In the section four, we present a brief conclusion of our work.

2 Preliminaries

Here, we introduce some notations and state the results that we use in the rest of the
paper.

If u = (u1, u2, u3) and v = (v1, v2, v3) are vector fields, the tensor product u ⊗ v is
u⊗ v := (v1u, v2u, v3u) and its divergence is div(u⊗ v) =

(
div(v1u), div(v2u),div(v3u)

)
.

The Fourier Transform of f is given by F(f)(ξ) = f̂(ξ) :=
∫
R3 e

−iξ·xf(x) dx. We
consider the Euclidean norm |z|2 = z · z in C3.

For s ∈ R, the Homogeneous Sobolev Space Ḣs(R3,R3) is the space of tempered

distributions f for which ‖f‖Ḣs

def
=
√∫

R3 |ξ|2s|f̂(ξ)|2 dξ < +∞. In this way, we note that

if u, b ∈ Ḣs(R3,R3), we have ‖(u, b)‖Ḣs =
√
‖u‖2

Ḣs
+ ‖b‖2

Ḣs
. The inner product in given

by 〈f, g〉Ḣs

def
=
∫
R3 |ξ|2sf̂(ξ) · ĝ(ξ) dξ, where f̂ · ĝ =

∑3
i=1 f̂iĝi. For Homogeneous Sobolev

Spaces, we refer to the book [1].
For instance, the following basics interpolations inequalities holds:

Lemma 2.1. For 0 < s0 ≤ s, the space L2 ∩ Ḣs is a subset of Ḣs0, and we have

‖f‖Ḣs0 ≤ ‖f‖
1−s0/s
L2 ‖f‖s0/s

Ḣs
.
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Proof. This is a particular case of [1, Proposition 1.32].

Lemma 2.2. Let θ be a tempered distribution. Then, for 0 < δ < 1 and s ≥ 1/2 + δ, we
have

‖θ‖Ḣs+1−δ ≤ ‖θ‖δḢs‖∇θ‖1−δḢs

Proof. Since ∇̂θ(ξ) = iξ θ̂(ξ), the proof is a simple application of Hölder’s inequality

Next, we state a version of what is known as Chemin’s Lemma:

Lemma 2.3. Fix δ ∈ (0, 1), let η = 1/2 + δ < 3/2 and η′ = s+ 1− δ < 3/2. Then there
exists a constant C(s, δ) > 0 such that, for every f, g ∈ Ḣη(R3) ∩ Ḣη′(R3),

‖fg‖Ḣs ≤ C(s, δ) ‖f‖Ḣη ‖g‖Ḣη′ .

Proof. Observe η + η′ = s+ 3/2 and apply Chemin’s Lemma [3, Lemma 3.1].

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Proof. Since div u = div b = 0, by taking the Ḣs–scalar product of the first equation in
(1) with u, we obtain

1

2
∂t ‖u‖2Ḣs + ν ‖∇u‖2

Ḣs −Re[〈u⊗ u,∇u〉Ḣs ] +Re[σ〈b⊗ b,∇u〉Ḣs ] = 0, (6)

where Re[z] denotes the real part of the complex number z. Then,

1

2
∂t ‖u‖2Ḣs + ν ‖∇u‖2

Ḣs = Re[〈u⊗ u− σ(b⊗ b),∇u〉Ḣs ]

≤ ‖u⊗ u‖Ḣs ‖∇u‖Ḣs + σ ‖b⊗ b‖Ḣs ‖∇u‖Ḣs .

Now, we apply Lemma 2.3 and Lemma 2.2 to the right hand side of (7) to obtain

1

2
∂t ‖u‖2Ḣs + ν ‖∇u‖2

Ḣs ≤ c(s, δ)
[
‖u‖Ḣ1/2+δ ‖u‖Ḣs+1−δ + σ ‖b‖Ḣ1/2+δ ‖b‖Ḣs+1−δ

]
‖∇u‖Ḣs

≤ c(s, δ, σ)
[
‖u‖Ḣ1/2+δ ‖u‖δḢs ‖∇u‖2−δḢs + ‖b‖Ḣ1/2+δ ‖b‖δḢs ‖∇b‖1−δḢs ‖∇u‖Ḣs

]
.

(7)

Thus, Young’s Inequality implies

∂t ‖u‖2Ḣs + ν ‖∇u‖2
Ḣs ≤ c(s, δ, σ)

[
ν−

2−δ
δ ‖u‖2/δ

Ḣ1/2+δ
‖u‖2

Ḣs + ν−1 ‖b‖2
Ḣ1/2+δ ‖b‖2δḢs ‖∇b‖2−2δḢs

]
.

(8)

From the second equation of the system (1), we obtain an analogous estimate:

∂t ‖b‖2Ḣs + νm ‖∇b‖2Ḣs ≤ c(s, δ)
[
ν−1m ‖b‖

2
Ḣ1/2+δ ‖u‖2δḢs ‖∇u‖2−2δḢs + ν

− 2−δ
δ

m ‖u‖2/δ
Ḣ1/2+δ

‖b‖2
Ḣs

]
(9)
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Now, we set λ = min{ν, νm} and add (8) and (9). We obtain

∂t ‖(u, b)‖2Ḣs + λ ‖(∇u,∇b)‖2
Ḣs ≤ c(s, δ, σ)

[
λ−

2−δ
δ ‖u‖2/δ

Ḣ1/2+δ

(
‖u‖2

Ḣs + ‖b‖2
Ḣs

)
+ λ−1 ‖b‖2

Ḣ1/2+δ ‖b‖2δḢs ‖∇b‖2−2δḢs + λ−1 ‖b‖2
Ḣ1/2+δ ‖u‖2δḢs ‖∇u‖2−2δḢs

]
.

By Young’s inequality again, it follows that

∂t ‖(u, b)‖2Ḣs +
λ

2
‖(∇u,∇b)‖2

Ḣs ≤ c(s, δ, σ)λ−
2−δ
δ

[
‖u‖2/δ

Ḣ1/2+δ
+ ‖b‖2/δ

Ḣ1/2+δ

]
‖(u, b)‖2

Ḣs .

In particular,

∂t ‖(u, b)‖2Ḣs ≤ c(s, δ, σ)λ−
2−δ
δ

[
‖u‖2/δ

Ḣ1/2+δ
+ ‖b‖2/δ

Ḣ1/2+δ

]
‖(u, b)‖2

Ḣs .

Thus, by Gronwall’s Inequality with 0 ≤ a ≤ t < T ∗,

∥∥(u, b)(t)∥∥2
Ḣs ≤

∥∥(u, b)(a)
∥∥2
Ḣs exp

(
c(s, δ, σ)λ−

2−δ
δ

∫ t

a

[
‖u(τ)‖2/δ

Ḣ1/2+δ
+‖b(τ)‖2/δ

Ḣ1/2+δ

]
dτ

)
.

(10)

Set θ := (1 + 2δ)/2s. By Lemma 2.1, whenever s ≥ 1/2 + δ then

‖f‖Ḣ1/2+δ ≤ ‖f‖1−θL2 ‖f‖θḢs . (11)

Estimate (11), applied to u and b, yields

‖u‖2/δ
Ḣ1/2+δ

+ ‖b‖2/δ
Ḣ1/2+δ

≤ 21/δ
(
‖u‖2

Ḣ1/2+δ + ‖b‖2
Ḣ1/2+δ

)1/δ
≤ 21/δ

[(
‖u‖2−2θL2 + ‖b‖2−2θL2

)
‖u‖2θ

Ḣs +
(
‖u‖2−2θL2 + ‖b‖2−2θL2

)
‖b‖2θ

Ḣs

]1/δ
≤ 21/δ

[
‖u‖2L2 + ‖b‖2L2

](1−θ)/δ[
‖u‖2

Ḣs + ‖b‖2
Ḣs

]θ/δ
This and (10) imply

‖u(t)‖2/δ
Ḣ1/2+δ

+ ‖b(t)‖2/δ
Ḣ1/2+δ

≤ 21/δ
∥∥(u, b)(t)∥∥(2−2θ)/δ

L2

∥∥(u, b)(a)
∥∥2θ/δ
Ḣs ×

× exp

(
c(s, δ, σ)λ−

2−δ
δ

∫ t

a

[
‖u(τ)‖2/δ

Ḣ1/2+δ
+ ‖b(τ)‖2/δ

Ḣ1/2+δ

]
dτ

)
Then, by using the decay of the L2–norm, we obtain

f(t) exp

(
− c(s, δ, σ)λ−

2−δ
δ

∫ t

a
f(τ) dτ

)
≤ 21/δ

∥∥(u, b)(a)
∥∥(2−2θ)/δ
L2

∥∥(u, b)(a)
∥∥2θ/δ
Ḣs

where

f(t) := ‖u(t)‖2/δ
Ḣ1/2+δ

+ ‖b(t)‖2/δ
Ḣ1/2+δ
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Now, we integrate on [a, T ], with T < T ∗:

1− exp

(
− c(s, δ, σ)λ−

2−δ
δ

∫ T

a
f(τ) dτ

)
≤

c(s, δ, σ)λ−
2−δ
δ

∥∥(u, b)(a)
∥∥(2−2θ)/δ
L2

∥∥(u, b)(a)
∥∥2θ/δ
Ḣs (T − a).

Let T → T ∗ and use (10):

1 ≤ c(s, δ, σ)λ−
2−δ
δ

∥∥(u, b)(a)
∥∥(2−2θ)/δ
L2

∥∥(u, b)(a)
∥∥2θ/δ
Ḣs (T ∗ − a).

Hence, ∥∥(u, b)(a)
∥∥
Ḣs

∥∥(u, b)(a)
∥∥p(s,δ)
L2 ≥ c(s, δ, σ)λq(s,δ)

(T ∗ − a)r(s,δ)
. (12)

4 Conclusions

In this work, we derived new lower bounds on the Homogeneous Sobolev–norms of the
maximal solution of the Magnetohydrodynamics Equations. Our main result is present in
Theorem 1.1. This estimate give us some insight on the blow-up behavior of the solution.
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