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ABSTRACT

Recovering three-dimensional information from bi-dimensional images is an im-
portant problem in computer vision that finds several applications in our society.
Robotics, entertainment industry, medical diagnose and prosthesis, and even inter-
planetary exploration benefit from vision based 3D estimation. The problem can
be divided in two interdependent operations: estimating the camera position and
orientation when each image was produced, and estimating the 3D scene structure.
This work focuses on computer vision techniques, used to estimate the trajectory
of a vehicle equipped camera, a problem known as visual odometry. In order to
provide an objective measure of estimation efficiency and to compare the achieved
results to the state-of-the-art works in visual odometry a high precision popular
dataset was selected and used. In the course of this work new techniques for image
feature tracking, camera pose estimation, point 3D position calculation and scale
recovery are proposed. The achieved results outperform the best ranked results in
the popular chosen dataset.

Keywords: Computer Vision. Visual Odometry. Visual SLAM. 3D.



Tese de Doutorardo: Odometria Visual Monocular de Alta Precisão

RESUMO

Extrair informação de profundidade a partir de imagens bidimensionais é um impor-
tante problema na área de visão computacional. Diversas aplicações se beneficiam
desta classe de algoritmos tais como: robótica, a indústria de entretenimento, apli-
cações médicas para diagnóstico e confecção de próteses e até mesmo exploração
interplanetária. Esta aplicação pode ser dividida em duas etapas interdependen-
tes: a estimação da posição e orientação da câmera no momento em que a imagem
foi gerada, e a estimativa da estrutura tridimensional da cena. Este trabalho foca
em técnicas de visão computacional usadas para estimar a trajetória de um veículo
equipado com uma câmera, problema conhecido como odometria visual. Para obter
medidas objetivas de eficiência e precisão, e poder comparar os resultados obtidos
com o estado da arte, uma base de dados de alta precisão, bastante utilizada pela
comunidade científica foi utilizada. No curso deste trabalho novas técnicas para
rastreamento de detalhes, estimativa de posição de câmera, cálculo de posição 3D
de pontos e recuperação de escala são propostos. Os resultados alcançados superam
os mais bem ranqueados trabalhos na base de dados escolhida até o momento da
publicação desta tese.

Palavras-chave: Visão Computacional, Odometria Visual, 3D.
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1 INTRODUCTION

"The only thing worse than being blind is having sight but no vision."

— Helen Keller

Vision is one of the base foundations of human civilization. The ability to see,
recognize and interpret a scene, perceiving three-dimensional shape is a trivial task
even to young children. Providing machines with such abilities, however, although
seemed straightforward decades ago, remain as an interesting and unsolved problem.

Computer Vision (CV) is a multidisciplinary field that studies methods to
enable automatic understanding of images (RADKE, 2012). The problems that CV
scientists try to solve range from detecting people in images, recognizing faces and
facial expressions, objects, scene 3D structure, characters and handwriting among
many others. To accomplish those objectives, concepts spanning from image pro-
cessing to algebra, geometry, physics and statistics must be synergistically combined.

During last decades, the exponential expansion in the number of camera
equipped mobile phones, decline of consumer camera price, combined to increased
processing power of embedded devices, pushed for an increased interest of the sci-
entific community towards the development of vision capable embedded solutions.

This work’s main focus is in three-dimensional scene comprehension from two
or more bi-dimensional images. Two closely related and interdependent problems
must be addressed: the assessment of the scene structure and the definition of
camera position and orientation when each image was produced. In the computer
vision community the topic is frequently referred to as Visual Simultaneous Location
and And Mapping (VSLAM). Monocular systems use a single camera to produce the
images while stereo-vision systems use two cameras usually mounted on a rigid rig,
where the relative camera positions is usually approximately known. While stereo
vision frequently provides better estimation accuracy, as it is a more constrained
problem, monocular solutions are appealing due to the simpler hardware and the
number of single camera equipped devices already in use in our society.

The camera model describes how a 3D scene is projected on an image plane,
an operation where depth information is lost. If more than one image of the same
scene are provided, the methods studied in this work, indicate solutions to recover
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the scene structure up to a well defined ambiguity. If no other information besides
the images is provided, the scene scale and absolute position can not be determined,
as the image of a planet can be similar to the sketch of a single atom. In those
cases, if the projection model is accurate, the scene can be estimated up to what is
called a similarity transformation (correct shape up to an unknown absolute scale,
position and orientation), otherwise the scene is only estimated up to a projective
ambiguity. In some applications, scale can be recovered using information from other
sensors (GPS, inertial sensors, ultrasound etc), known image physical characteristics
or provided information about camera relative pose.

Despite the fact that the algorithms developed during this work focus on
a particular purpose, a broad range of applications, and closely related problems,
benefit from advances in scene structure and camera pose estimation. Next section
enumerates some of those applications.

1.1 Motivation - From robots to the movies

The problem of three dimensional information extraction from bi-dimensional
views of the scene has extensive practical applications in different fields. Although
this work targets a singular application (the chosen application is the trajectory
estimation of a camera equipped vehicle), most of the proposed contributions are
equally qualified for any of the uses listed in this section.

1.1.1 Visual Odometry

Vision Odometry (VO), also called motion tracking or camera solving, tries
to estimate the camera position and orientation, i.e. camera pose, when each image
produced by the camera was generated. Monocular Visual Odometry (MVO) and
Stereo Visual Odometry (SVO) terms are used to differentiate cases where a single
camera and a pair of cameras are used respectively.

In order to estimate camera motion, scene structure must be calculated, and
errors in the learned scene will translate into errors in the calculated camera pose.
Scene structure for VO is an intermediary step not evaluated in the final ego motion -
camera relative movement with respect to a static scene (IRANI; ROUSSO; PELEG,
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1994).
Visual odometry is frequently related to robotics, where a camera equipped

robot must find its own location based on the images and possibly other sensors. Au-
tonomous vehicles (FERNANDES et al., 2014), Unmanned Aerial Vehicles (UAVs)
(FORSTER; PIZZOLI; SCARAMUZZA, 2014) and even the Mars exploration rover
(CHENG; MAIMONE; MATTHIES, 2005) are examples of use cases for VO sys-
tems.

In order to gauge the precision of a visual estimation system, a ground truth
must be acquired and used to compare to the estimated output. Camera pose can be
accurately measured and recorded with relative facility, with high precision sensors
(GPS + inertial sensors). Building a high fidelity 3D map of the viewed scene is
more complex. Due to the practical efficacy of recording and comparing real camera
pose to vision based estimations, VO systems are often used to test vision based
systems accuracy.

Figure 1.1 shows a typical trajectory, where the red and black lines show
the estimated trajectory and GPS recorded ground-truth and the camera equipped
vehicle used in a popular VO dataset (GEIGER; LENZ; URTASUN, 2012b).

Figure 1.1: Visiual Odometry trajectory and vehicle
(a) Visual Odometry Trajectory example (b) Camera and GPS equipped vehicle

source: (GEIGER; LENZ; URTASUN, 2012b)

1.1.2 3D Reconstruction

Three-dimensional reconstruction refers to the broad problem of discovering
the structure of an object, not necessarily using images. The use of images from one
or more cameras however, is an important branch in 3D reconstruction work-flow.
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Structure from motion (SfM) aims to reconstruct 3D morphology of a scene
using the images of a moving camera. Analogous to VO, the camera relative position
and orientation must be provided or estimated, as that information is needed for the
reconstruction flow, although in this case, camera pose is not evaluated in the final
result of the reconstructed object or scene. An example of visual 3D reconstruction
is shown in figure 1.2.

Figure 1.2: Visual 3D reconstruction

source: (ENGEL; KOLTUN; CREMERS, 2016)

Discovering an object 3D shape from images, is an important field in geo-
sciences (ALIAKBARPOUR; PALANIAPPAN; SEETHARAMAN, 2017), architec-
ture and civil engineering (MERRELL et al., 2011) and medical applications for
both prosthesis and diagnose (BOYKOV; FUNKA-LEA, 2006) among others.

1.1.3 Visual SLAM

Simultaneous Location And Mapping (SLAM) is the classical robotics prob-
lem, where a robot must build a map of the environment and simultaneously cal-
culate its own position in the map. Originally several sensors have been used for
SLAM, such as radars, ultrasound, laser, Inertial Measurement Units (IMU), GPS
among others. When a camera is used, either alone or combined with other sensors,
the problem is termed Visual SLAM (VSLAM) and is an important bound between
computer vision and robotics.

Visual SLAM could be regarded as a combination of VO and SfM, noting
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that SfM algorithms usually produce a dense map of the scene or object, while Vi-
sual odometry can use a dense map, or a sparse set of a few localized 3D landmarks
depending on the application. Autonomous robots are the main example of appli-
cation, and have been used in autonomous vehicles (FERNANDES et al., 2014),
domestic robots, and even inside the human body (PAHLAVAN; BAO; LIANG,
2013).

1.1.4 Augmented Reality

Augmented Reality (AR) is the technology of combining real world images or
video with computer-generated information and or imagery. As in other examples,
the camera pose and scene structure must be determined. In addition care must be
taken to adjust illumination, shadowing and occlusion (when a scene element covers
part of the artificially generated image).

Possible uses of AR examples include architecture (to furnish and decorate
an empty house), broadcasting (to display statistics information in sports games as
if they belonged to the scene for instance) and the game industry (the pokemon
mobile phone game is an example of AR in the field).

One of the most important uses of AR is probably in the movies industry, in
the AR variant called matchmoving used to provide video sequences with computer
generated effects. According to (RADKE, 2012) 43 of the top 50 greatest films of
all time are visual effects driven. Figure 1.3 shows an AR example. In the left figure
a window on a filming set is shown, and in the right image the final movie scene is
pictured, where the window is artificially mounted on the building brick wall.

Figure 1.3: Augmented Reality example (movie "A Beautiful Mind")
(a) Window on a filming set (b) Final movie scene

source: (RADKE, 2012)
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1.2 Objectives of this study

This work focus is on 3D information extraction from 2D images. The monoc-
ular problem is especially attractive for several reasons. The relative facility to con-
nect a single camera to embedded hardware when compared to a camera array. The
ubiquity of camera equipped processing units such as mobile phones. The challenge
of a less constrained problem, more affected by outliers and stability issues (PERS-
SON et al., 2015) which impose an additional level of difficulty when compared
to multiple camera configurations. And finally the fact that the generic methods of
monocular vision, can be applied to the particular case of stereo vision with minimal
or no modification.

Visual Odometry for camera equipped vehicles was chosen as target applica-
tion: a camera equipped vehicle generates a sequence of images, and the position
and orientation of the camera must be determined for each available image. Good
datasets provide a practical way of objective accuracy measurement and comparison
to state-of-the-art solutions.

This thesis objective is to elaborate a monocular visual odometry pipeline,
able to achieve high accuracy at reduced computational cost, allowing the imple-
mentation of a navigation system for real time operation with moderate hardware
resources.

1.3 Contributions

During the investigation of visual estimation principles, several algorithms
were developed. While solutions to monocular vision odometry can be found in
literature, this thesis innovates according to the following contributions:

● An analysis of instability in forward motion estimation able to determine
source of local-minima problems is conceived (PEREIRA et al., 2017a).

● A new method of ground feature tracking, using perspective image warping
and approximate camera movement is developed (PEREIRA et al., 2017b).

● The use of movement translation for camera nodding approximation and fur-
ther scale adjustment is designed (PEREIRA et al., 2017b).

● A Multi-attribute ground feature selection procedure is formulated (PEREIRA
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et al., 2017b).

● A new two-view bundle adjustment algorithm, based on resection-intersection
is created (PEREIRA et al., 2018).

1.4 Notation

As the notation of different books and technical papers in computer vision
tend to vary as often happens in multidisciplinary fields, this section briefly intro-
duces the notation used throughout this work.

Scalars are denoted by mixed case italics (𝑠, 𝐶), vectors are lower case bold
(v) and unless otherwise stated are column wise. Matrices are uppercase bold (M).

A feature in the 𝑘𝑡ℎ frame is denoted by u𝑘 = (𝑢𝑘, 𝑣𝑘)
𝑇 , and the set of all

features in frame 𝑘 is grouped in the 𝑛 × 2 matrix U𝑘 where each row stores a pair
of coordinates. The matrix P represents a set of points in 3D space, where each
row represents a point p = (𝑥, 𝑦, 𝑧) that can be mapped to an image coordinate
by the camera projection model to position û = (�̂�, 𝑣)𝑇 . The ′ (prime) symbol is
used to denote image coordinate after shifting by the camera center and scaling by
the focal length, in homogeneous coordinates: u′ = K−1u where K represents the
camera intrinsic parameters.

The camera pose is represented by either the vector w = (︀𝜃𝑥, 𝜃𝑦, 𝜃𝑧, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧⌋︀

containing the three rotations and translations relative to the previous camera pose
or by a 3×4 matrix characterizing the rigid-body transformation T = R⋃︀t as explained
in (RADKE, 2012).

1.5 Outline

This work is structured as follows: chapter 2 introduces the fundamental
background and classical algorithms related to 3D estimation from bi-dimensional
images. Chapter 3 brings a survey on recent developments in VO. Peculiarities of
projection error for translation along optical axis is analyzed in chapter 4. Detection
and tracking of scene details on the images are studied in chapter 5. Scale estimation
for camera equipped wheeled robots using detected details on the ground is discussed
in chapter 6. Calculation of point distance to the camera is covered in chapter 7.
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The position of camera and points that minimize reprojection error is computed
in chapter 8. Results of a full odometry system using the concepts considered
and implemented algorithms are presented in chapter 9. Finally a conclusion is
performed in chapter 10.
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2 VISUAL NAVIGATION BACKGROUND

"Poetry is as precise as geometry."

Gustave Flaubert

This chapter describes the fundamental concepts and algorithms related to
visual navigation. Good references for the reader who wishes a more thorough cov-
erage on the topic are the books "Computer Vision for Visual Effects" (RADKE,
2012) from Richard Radke and "Computer Vision Algorithms and Applications"
(SZELISKI, 2010) from Richard Szeliski. For an in depth review of projective ge-
ometry the reader may refer to the milestone work "Multiple View Geometry in
Computer Vision" (HARTLEY; ZISSERMAN, 2004) from Hartley and Zisserman.
Camera pose estimation is extensively covered in the in depth review of bundle
adjustment made in (TRIGGS et al., 2000). Practical approaches using OpenCV
(BRADSKI, 2000) can be found in (DAWSON-HOWE, 2014) and industry applica-
tions on (WOHLER, 2009).

The main classes of algorithms involved in visual navigation can be clas-
sified in image processing algorithms and geometric projection methods. In real
applications, positions orientations and distances can not be exactly measured, but
estimated with a varying level of certainty. Proposed solutions must address both
noisy (with small deviations from the real value) and bad (outliers with large errors)
measurements.

The chapter starts discussing the typical sparse odometry pipeline. Then
the most relevant image processing methods used to select distinguishable image re-
gions, and recognize those regions in subsequent images are addressed. The chapter
continues with projective geometry, describing the basic model that explains how
a 3D scene structure is projected on a 2D image plane. The projection constrains
of epipolar geometry and the main ideas on camera pose and feature depth esti-
mation are illustrated. The chapter concludes elucidating ground plane based scale
estimation mechanism.
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2.1 Sparse Monocular Visual Odometry Overview

Monocular navigation can be split in two interrelated proceedings: the esti-
mation of camera pose at the moment the images were registered and the 3D scene
structure inference. Although Monocular Visual Odometry (MVO) results are only
related to the position and orientation of the camera, the 3D structure of the viewed
scene must be estimated and errors in scene estimation do reflect in localization re-
sults.

Dense or semi-dense solutions like (ENGEL; STURM; CREMERS, 2013) try
to adjust camera pose and scene structure matching all pixels with significant image
gradient. Sparse systems, on the other hand (SONG; CHANDRAKER; GUEST,
2016; Mirabdollah M., Mertshching B. (GET Lab, 2015), select recognizable image
regions, called features, and locate those regions in subsequent images. For sparse
systems the 3D position is only calculated for those points in the scene (features).

Figure 2.1: Generic MVO pipeline

source: author

The typical sparse MVO pipeline is shown in figure 2.1. The system input is
a sequence of images. An image processing unit detects interest points in one image
and tracks those points in the remaining images. The point’s correspondences are
used to estimate scene depth and camera pose, and finally the original scale is
approximated. Next sections detail those operations.

2.2 Feature Detection and Tracking

Feature detection in computer vision refers to methods for computing abstrac-
tions of image information, and making decisions whether an image point matches
a given interest criterion. Throughout this work, feature detection and tracking is
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referred as the process of selecting traceable image regions and locating those re-
gions in subsequent frames. The centers of those regions are called features and 3D
positions are only estimated for those points. Two classes of image processing algo-
rithms are then relevant and will be presented in this section: the methods to select
image regions labeled feature detectors and methods to recognize those regions in
other frames identified as trackers and matchers.

A feature correspondence refers to pairs of pixel coordinates belonging to
the same scene point. as shown in figure 2.2. The green squares in the left part
of figure 2.2 mark three detected features. The squares in the right part of the
figure show the matched features. The red square, marks a matching failure due
to the occlusion of the top of the pentagon. The arrows represent motion vectors,
connecting the feature position in the original image to the tracked position in the
second frame. The section starts with detection algorithms followed by tracking and
matching techniques.

Figure 2.2: Feature Detection and Tracking
(a) Feature detection example (b) Tracking and motion vectors

source: author

2.2.1 Harris Corner Detector

One of the earliest corner detection algorithms was proposed by Moravec
(MORAVEC, 1980) based on the similarity of an image region to overlapping regions
in horizontal, vertical and diagonal neighborhood. Harris and Stephens (HARRIS;
STEPHENS, 1988) built upon Moravec’s ideas using image gradients in stead of
shifted image blocks.

The authors defined the positive definite Harris Matrix H𝑎 as shown in equa-
tion 2.1. In the equation 𝐼(𝑢, 𝑣) is the pixel intensity at coordinates (𝑢, 𝑣), 𝜕𝐼

𝜕𝑢 is the



25

partial derivative of the intensity (image gradient) along direction 𝑢 and the sum
spam over the currently tested image region 𝒲:

H𝑎 =

⎨
⎝
⎝
⎝
⎝
⎪

∑(𝑢,𝑣)∈𝒲(
𝜕𝐼
𝜕𝑢(𝑢, 𝑣))2 ∑(𝑢,𝑣)∈𝒲

𝜕𝐼
𝜕𝑢(𝑢, 𝑣)𝜕𝐼

𝜕𝑣(𝑢, 𝑣)

∑(𝑢,𝑣)∈𝒲
𝜕𝐼
𝜕𝑢(𝑢, 𝑣)𝜕𝐼

𝜕𝑣(𝑢, 𝑣) ∑(𝑢,𝑣)∈𝒲(
𝜕𝐼
𝜕𝑣(𝑢, 𝑣))2

⎬
⎠
⎠
⎠
⎠
⎮

(2.1)

Harris and Stephens proposed an approximate quality measure was based on
the trace of H𝑎 as shown in equation 2.2 where 𝜅 is a tunable sensitivity parameter:

𝑄𝑙 = 𝑑𝑒𝑡(H𝑎) − 𝜅 𝑡𝑟𝑎𝑐𝑒 (H𝑎)
2 (2.2)

Analyzing the eigenvalues (𝜆1, 𝜆2) of the matrix H𝑎 a better approximation
of corner quality can be estimated. If the pixel intensities inside the box are similar
(homogeneous image area), both 𝜕𝐼

𝜕𝑢 and 𝜕𝐼
𝜕𝑣 will be small and both eigenvalues will

present small values. On the occasion that the image region presents a linear edge,
one eigenvalue will be large with associated eigenvector perpendicular to the edge,
while the other will be near zero. When a corner is present in the image crop, both
𝜆1 and 𝜆2 will present non-zero values.

By analyzing the smaller eigenvalue of the Harris Matrix, the quality of the
corner can be defined. In 1994, J. Shi and C. Tomasi proposed a small modification
in their work (SHI; TOMASI, 1994) according to equation 2.3.

𝑄𝑙 = 𝑚𝑖𝑛((𝜆1, 𝜆2) (2.3)

Corners are tested for all pixel positions in an image and regions with the
quality measure above a threshold defined as a fraction of the maximum found
quality are returned. To avoid multiple results in a neighborhood, non-maximum
suppression is usually applied, where only the highest value in a user-defined radius
is retained.

2.2.2 FAST Corner Detector

To avoid calculating Harris matrix and eigenvalues, a low-complexity method
was proposed by Rosten and Drummond (ROSTEN; DRUMMOND, 2005) named
Features from Accelerated Segment Test (FAST). In the method a pixel is compared
to neighbor pixels at a fixed distance 𝑟 as shown in figure 2.3. If a contiguous arc
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of 𝑛 pixels of neighbors are significantly darker or lighter then the central reference,
the patch is selected as a corner.

Figure 2.3: FAST corner detector

source: (ROSTEN; DRUMMOND, 2005)

In the original algorithm sixteen pixels around the central pixel where tested
and 𝑛 = 9. The algorithm was extended with machine learning approach (ROSTEN;
DRUMMOND, 2006) where an extensive set of features were used to build a decision
tree based on the intensity difference of the central pixel to the sixteen neighbors.
On average fewer than three comparisons are made for each patch candidate to test
for corner detection.

2.2.3 Hybrid and Multi-Scale Corner Detector

As FAST verifies a reduced number of pixels around the central feature candi-
date, regions with high spatial frequency, that should be avoided, may be selected by
the feature detector. A common approach in recent solutions is to initially select cor-
ners with the FAST methodology, and reject candidates based on the Harris corner
algorithm. In this way the slower Harris corner detector is only applied to locations
previously selected by the FAST detector, reducing computational complexity and
rejecting high spatial frequency candidates in a hybrid solution.

A sensitive point in corner detection is the scale in which corners are searched.
If small windows are chosen, fine grained corners are returned, whether larger win-
dows return features in a larger image region. Lindeberg (LINDEBERG, 1998)
proposed search for corners in different scales. By searching features in scale-space
and scale-normalizing Harris matrix eigenvalues, to prevent larger windows from
out weighting smaller ones, it is possible to find multi-scale Harris corners and the
natural corner scale.
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2.2.4 Lukas-Kanade Tracker

Once distinguishable image regions have been selected, those regions must be
located in subsequent images. When images are taken sequentially, features in the
new image are expected to be close to the detected features in the original image. A
possible method is to use a search procedure to find the image region most similar
to the target feature.

Considering a series of images registered by a camera and indexed by time
𝐼(𝑢, 𝑣, 𝑡) it is possible to approximate a block 𝒲 of pixels at time 𝑡+ 1 by the block
at time 𝑡 shifted by a vector (𝑥, 𝑦) as in equation 2.4.

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1) ≈ 𝐼(𝑢, 𝑣, 𝑡) ∀(𝑢, 𝑣) ∈𝒲 (2.4)

Using first order Taylor series approximation it is possible to go from equation
2.4 to equation 2.5 (LUCAS; KANADE, 1981).
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(2.5)

Where H𝑎 is the Harris matrix, defined in equation 2.1. Multiplying both
sides of equation 2.5 by the inverse of the Harris matrix the displacement vector can
be iteratively approximated. As the algorithm only works for small displacement
where the used Taylor series expansions are meaningful, a pyramidal implementa-
tion of the algorithm is usually used as proposed by (BOUGUET, 2000). In that
algorithm image pyramids with different resolutions are generated and features are
located in the lowest resolution image. Found positions are subsequently refined in
higher resolution images until the original full resolution image is processed. An in
depth overview of the algorithm can be found in (BAKER; MATTHEWS, 2004).

2.2.5 SIFT Feature Matching

Feature matching is an alternative to tracking. Matching involves computing
image descriptors of detected features on both the reference and target images.
Then a descriptor comparison strategy indicates if those descriptors refer to the
same image feature. The use of descriptors enables algorithms to provide some level
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of robustness to scale, orientation, illumination and position differences.
The Scale Invariant Feature Transform (SIFT) (LOWE, 1999) is an extremely

popular and robust image descriptor (FAN; WANG; WU, 2016) based on histogram
of gradients (HoG). The first step for descriptor extraction in SIFT is the feature
scale detection. Difference of Gaussian (DoG) for differently scaled versions of the
smoothed original image is used and scale with maximum output is chosen. A block
of 16x16 pixels around the feature center oriented by the dominating gradient is
defined and an 8 bin HoG for each 4x4 sub-blocks is calculated as shown in figure
2.4.

Figure 2.4: SIFT

source: https://gilscvblog.com

The 8 bins of each of the 16 sub-blocks form a vector of 128 elements that are
normalized and used to match to candidate descriptors through Euclidean distance
comparison.

Scale detection provide robustness to scale differences, the dominant orien-
tation is used to provide invariance to image rotation differences, gradients provide
robustness to illumination differences and the feature position is irrelevant for the
matching algorithm.

2.2.6 ORB Feature Matching

Although SIFT presents good results, the histogram of gradients and Eu-
clidean distance comparison are computationally demanding for large sets of fea-
tures. A family of so called binary descriptors have been proposed to provide similar
precision of SIFT with a fraction of the computational complexity. Among those
methods Binary Robust Independent Elementary Features (BRIEF) (CALONDER
et al., 2010) that was later improved in Oriented FAST and Rotated BRIEF (ORB)
(RUBLEE et al., 2011) is one of the most relevant.
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ORB uses FAST corners, detect and compensate the feature orientation, and
use a binary descriptor for feature matching. Each descriptor bit is the result of
a binary comparison of pixel intensity of two different positions inside the feature
patch as defined by equations 2.6 and 2.7.

𝜏(𝐼, u, v) ∶=
)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

1 ∶ 𝐼(u) < 𝐼(v)
0 ∶ 𝐼(u) ≥ 𝐼(v)

(2.6)

𝑓𝑛(𝑝) = ∑
0≤𝑖<𝑛

2𝑖𝜏(𝑝, u𝑖, v𝑖) (2.7)

In the equations (u, v) are two pixel positions inside the patch, 𝒲 is the
pixel intensity inside the patch at position u and 𝑓𝑛(𝒫) is the code-word for patch.
The positions of pixel comparison inside the patch (u𝑖, v𝑖) have been defined using
a training set of 300.000 features. The original work used 𝑛 = 256 bit codes for
descriptor size.

2.3 Camera Pose and Scene Structure Estimation

Once feature correspondences have been established, point 3D positions and
the camera poses can be approximated in order to match calculated projections
to found features. This section starts with the camera projection model, followed
by epipolar constraints, and finally introduces camera pose estimation and scene
reconstruction algorithms.

2.3.1 Pinhole Projection Model

This section introduces the model that maps a three-dimensional scene into
a bi-dimensional image. The simple pinhole camera model is explained and rela-
tionship to real cameras is briefly highlighted.

In the pinhole camera model, light from the scene passes through a single
point (the pinhole or principal point) and project an inverted image on a plane as
shown in figure 2.5 (a). For convenience, a virtual image plane, in front of the
principal point is used and a non inverted projection is formed as shown in figure
2.5 (b).
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Figure 2.5: Pinhole Camera Model
(a) Pinhole camera

(b) Pinhole Camera Model

source: (BRADSKI, 2000)

Figure 2.5 (b) shows the used orientation convention, where the optical axis
is aligned with the 𝑧 axis, and axis 𝑥 and 𝑦 are aligned to the image plane. A
point with coordinates (𝑥, 𝑦, 𝑧)𝑇 is projected to image coordinates (𝑢, 𝑣)𝑇 by the
projection equation 2.8.
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(2.8)

On equation 2.8 variables (𝑢, 𝑣)𝑇 are image coordinates in pixels, (𝑓𝑥, 𝑓𝑦) is
the focal length in pixels, (𝑐𝑥, 𝑐𝑦) are pixel coordinates of the camera center, and the
vector (𝑥, 𝑦, 𝑧)𝑇 is the point coordinate in units of distance (meters for example).
Equation 2.8 can be written in the simple form of equations 2.9 and 2.10.

𝑢 =
𝑥

𝑧
𝑓𝑥 + 𝑐𝑥 (2.9)

𝑣 =
𝑦

𝑧
𝑓𝑦 + 𝑐𝑦 (2.10)
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The set of parameters (𝑓𝑥, 𝑓𝑦, 𝑐𝑥, 𝑐𝑦) define the main characteristics of the
pinhole camera model and are referred to as intrinsic camera parameters. When
points position use a different coordinate reference than the camera, the point’s
coordinates must be rotated and translated to the camera frame of reference, before
being projected onto the image plane as shown in equation 2.11.
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(2.11)

The coefficients 𝑟𝑖𝑗 are coefficients of a 3𝑥3 rotation matrix and 𝑡𝑖 are the 𝑥, 𝑦

and 𝑧 translation parameters. The matrix with the intrinsic camera parameters is
denoted by K, replacing the rotation matrix by R and translation vector by t, and
using homogeneous coordinates the proportionality of equation 2.11 becomes the
identity on equation 2.12. The rotation and translation are called camera extrinsic
parameters or camera pose.

ũ = K [︀R ⋃︀ t⌉︀ x̃ (2.12)

Homogeneous coordinates are useful to represent points at infinity and non-
linear relations in a simpler form. The operations on point x̃ on equation 2.12 can be
combined in the matrix T(𝑘,𝑤) as shown in equation 2.13. In equation 2.13 subscripts
(𝑘, 𝑤) indicate that a point in the world frame of reference 𝑤 (an arbitrary fixed
reference) will be projected by T(𝑘,𝑤) in the camera image plane at instant 𝑘.

𝑘ũ = T𝑘,𝑤 . 𝑤x̃ (2.13)

Projection error minimization for pose estimation aims to find a transforma-
tion T𝑘,𝑤 that minimizes the difference between viewed features, and the calculated
projection on the image plane as shown in equation 2.14.

T𝑘,𝑤 = arg min
T
(𝑘,𝑤)

∑
𝑖∈𝑛

⋃︀⋃︀u𝑖 −T(𝑘,𝑤) . 𝑤x̃𝑖⋃︀⋃︀
2 (2.14)

Figure 2.6 exemplifies the projection errors. In the figure three 3D points
p1, p2 and p3 are projected in the blue squares in the image plane. The tracked
feature positions are marked in the plane as the red circle, square and triangle. The
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distances 𝑑1, 𝑑2 and 𝑑3 are the difference from projected position to tracked feature
position called projection error. Projection minimization algorithms try to adjust
the points 3D positions and camera pose in order to minimize the projection errors.

Figure 2.6: Projection Error - difference from calculated projections to tracked
coordinates

source: author

Real cameras employ lenses to allow more light through the principal point,
which commonly cause distortions, mainly in radial direction. Both the intrinsic
parameters and distortion coefficients can be discovered by the process called cam-
era calibration. Distortion arising from camera lenses can be corrected by image
rectification as shown in figure 2.7 and only the main intrinsic parameters of matrix
K used from there on.

Figure 2.7: Image distortion correction
(a) Distorted Image (b) Rectified Image

source: (www.edwardrosten.com/work/)

Once a camera is calibrated, and distortion removed, the pinhole camera
model can be used as an accurate projection model for real cameras.
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2.3.2 Epipolar Geometry

This section presents the projection constraints for a scene viewed from two
different perspectives. In stereo vision two cameras are used, usually side by side, to
simultaneously acquire what is called a stereo image pair. The geometric difference
from stereo to monocular configurations is that in stereo case the camera intrinsic
parameters (focal distance, camera center and distortion coefficients) may be dif-
ferent but the relative camera position is usually known (at least approximately).
While in the monocular case, intrinsic camera parameters are the same, but cam-
era relative pose must be estimated for each frame. Extrinsic parameters however
(camera position and orientation) have equivalent properties, and the topics covered
in this section are equally valid for both situations.

Consider a 3D point p viewed by two cameras with known intrinsic parame-
ters. The point and both camera centers form a plane in space, and the intersection
of that plane with the image planes forms a line in each image, the epipolar lines
(EL) as shown in figure 2.8. In the figure p is a point in 3D space, 𝐶0 and 𝐶1 are
the camera centers, û0 and û1 are projections of the point on the image planes, e0

and e1 are the epipoles and the dashed red lines are the epipolar lines.

Figure 2.8: Epipolar Geometry

source: author

Once the relative camera pose is known, the point projection in one image
(û0 for example), constrains the image region where the point projection in the other
image (û1) can be located to the epipolar line. The position along the EL where the
second projection is located, defines the point’s depth (distance from point to the
camera center). Figure 2.9 shows a real example, where a temple is photographed
from different perspectives. The green lines are epipolar lines. It is possible to
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note that the top line of the left figure crosses the top roof and intercepts a tip of
the second roof. The same points are also located in the top line of the image on
the right. The same happens to all the lines in both images, any image point in a
particular line in one image, will be found along the corresponding line in the other
image (provided it is visible in both images).

Figure 2.9: Epipolar lines example

source: (RADKE, 2012)

The epipole is the point of intersection of the line joining the camera center
and the image plane, it is the position in one image of the camera generating the
other image. All epipolar lines intersect at the epipole.

2.3.3 Triangulation

Triangulation is the algorithm used to find the 3D position of a point from
its projection in images. Triangulation assumes known relative camera position and
orientation and known intrinsic camera parameters. In this section triangulation
from two images, i.e. two-view triangulation is briefly revised.

In the absence of errors exact triangulation can be calculated by finding the
3D intersection of the lines that connect the camera centers to the image feature
position as shown in figure 2.8.

Several sources of errors such as occlusions, false-positives on tracking, mov-
ing objects in the scene, motion-blur and other artifacts, cause errors in feature
image position and camera pose estimation. In the presence of errors the lines no
longer intersect in space and inexact triangulation algorithms must be used.

The naive approach, used when the lines from the camera centers trough the
tracked features do not intercept in space, is to find the mid of the line segment that
is perpendicular to both lines. Figure 2.10 exemplifies the situation.
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Figure 2.10: Mid of Perpendicular Segment Triangulation

source: author

Hartley and Sturm in the work "Triangulation" (HARTLEY; STURM, 1997)
proposed the theoretical optimal method which finds the 3D point that minimizes
the distance of projected and viewed feature in both images as shown in figure 2.11.
In the figure the distances 𝑑0 and 𝑑1 measured in pixels are jointly minimized. As the
method involved solving a sixth degree polynomial, Kanatani et al. (KANATANI;
SUGAYA; NIITSUMA, 2008) later proposed an iterative non-linear optimization
solution. In both works the method that finds the midpoint of the perpendicular
line segment is proven not to be a good solution.

Figure 2.11: Optimal Triangulation

source: author

Lindstrom with "Triangulation Made Easy" (LINDSTROM, 2010), provided
a non-iterative improvement for Kanatani’s method finding the optimal step size
for non-linear optimization. Both (KANATANI; SUGAYA; NIITSUMA, 2008) and
(LINDSTROM, 2010) lack an analysis of camera relative pose estimation error in
the estimated depth.
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Chapter 7 presents a fast triangulation method based on a simplification of
optimal triangulation by minimizing the reprojection error in a single image.

2.3.4 Camera Pose Estimation

The problem of non-linear optimization for jointly estimating scene structure
and camera position is termed Bundle Adjustment (BA). The name is inspired in
the bundle of light rays entering the camera lenses. When the camera pose is the
only parameter to be estimated, a term often used is motion-only BA.

Structure-only BA uses non-linear minimization to estimate the scene struc-
ture when camera poses are immutable. It is similar to the triangulation viewed in
last section, with the difference that multiple views are usually used.

Closely related to Motion-only BA is Perspective-n-Point (PnP), which can
be defined as the process of, given a set of 3D point coordinates and their projection
on the image plane, find the camera position and orientation that minimizes the
projection error (FISCHLER; BOLLES, 1981). Figure 2.12 demonstrates the con-
text. On the simplest form three points are used in the P3P algorithm (GAO et al.,
2003). Other solutions have been proposed in literature such as EPnP (LEPETIT;
MORENO-NOGUER; FUA, 2008) and P5P (NISTER, 2004), as well as non-linear
iterative methods for arbitrary number of points such as Gauss-Newton (GN) and
Levenberg-Marquardt (LM) (BJORCK, 1996).

Figure 2.12: Perspective-n-Point

source: (BRADSKI, 2000)

When camera intrinsic parameters are not known, reconstruction can be per-
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formed up to a projective ambiguity, where reconstructed lines are not guarantee
to remain parallel or perpendicular. When cameras are calibrated, or parameters
estimated accurately, Euclidean or metric reconstruction is possible, where the esti-
mations only differ from the ground truth by and unknown similarity transformation
(i.e. scale and absolute position) (HARTLEY; ZISSERMAN, 2004).

Section 8.2 proposes a new method for two view camera pose estimation based
on alternation of triangulation and non-linear minimization of projection residuals.

2.3.5 Numerical Optimization

Optimization is an important field in decision making research and physical
systems analysis. In scientific context optimization means the selection of the best
alternative with respect to a specified criterion.

This criterion must be objectively defined as a measure of system perfor-
mance (such as time, profit, cost etc) and is dependent on system variables. System
modeling is the process of identification of the relationship between objective func-
tion and system variables. Once the model is defined the optimization algorithm
aims to adjust those variables in order to optimize the objective.

In the optic-geometric problems studied in this work, the data available
is the tracked feature position and the calculated projection of points, from the
camera model. The obvious objective is to minimize the distance from tracked to
projected coordinates as was shown in figure 2.6. The 3 × 4 matrix T = R⋃︀t is
replaced by the vector containing the three camera rotations and three translations
(w = (︀𝜃𝑥, 𝜃𝑦, 𝜃𝑧, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧⌋︀). The Rodrigues formula (BRADSKI, 2000) can be used to
translate between the rotation matrix and the three rotation angles.

The objective function 𝑠 that will be minimized for a set of 𝑚 features is the
sum of squared residuals r = (𝑟0, . . . 𝑟2𝑚−1) as shown:

𝑠(w) =
2𝑚−1
∑
𝑖=0

𝑟2
𝑖 (w) (2.15)

Where the residuals are defined as the horizontal and vertical difference from
projection to tracked feature coordinate:

𝑟2𝑛 = �̂�𝑛 − 𝑢′𝑛; 𝑟2𝑛+1 = 𝑣𝑛 − 𝑣′𝑛 ⋃︀ ∀𝑛 ∈ (︀0, 𝑚 − 1⌋︀ (2.16)
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The Gauss-Newton (GN) algorithm is an approximation of the Newton’s
method to minimize a sum of squared function values with the advantage that
second order derivatives calculations are not needed.

Starting from an initial estimation w(0) the algorithm iteratively approximate
the system variables according to:

w(𝑠+1) = w(𝑠) − (J𝑇 J)−1J𝑇 r(w) (2.17)

Where J is the Jacobian matrix defined as:

J(𝑖,𝑗) =
𝜕𝑟𝑖(w)

𝜕w𝑗

(2.18)

Gauss-Newton algorithm presents a rapid conversion rate, but is prone to
stability issues. Levenberg-Marquardt (LM) algorithm is a damped variation of GN
as shown in equation 2.19. In LM robustness in the situations where the inverse of
the approximate Hessian (J𝑇 J)−1 is ill conditioned is improved by the use of the
damping term 𝜆𝑑I.

b(𝑛+1)
= b(𝑛) − (J𝑇 J + 𝜆𝑑I)−1J𝑇 r (2.19)

Where 𝜆𝑑 is an adjustable damping parameter. Values closer to zero approx-
imate LM to GN, and increasing the parameter value shifts the solution closer to
gradient-descent. A common variation is to replace the identity matrix I by the
diagonal of the approximate Hessian (J𝑇 J).

Thrust region methods like Dog-Leg (CONN; GOULD; TOINT, 2000) try to
robustly balance gradient-descent and Gauss-Newton. Although such methods have
been proposed for multi-view triangulation (HEDBORG; ROBINSON; FELSBERG,
2014), they are less used in practice for BA.

2.4 Scale Recovery

As mentioned in section 2.3 the feature position and camera relative pose
can be estimated up to a similarity ambiguity. That is the translation and depth
scale, and absolute camera orientation can not be recovered directly. Figure 2.13
exemplifies the situation showing a model of a road. By looking at the picture it is
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not possible to know the absolute size and orientation of the road.

Figure 2.13: Scale Ambiguity

source: https://br.all.biz/maquete-de-estradas-de-cidade-g90239

Since scale information is absent from monocular image series, a strategy to
infer the correct scale must be adopted. Monocular systems must rely on either other
sensors or a previously known image physical characteristic to recover the movement
scale. The common approach used in camera equipped vehicles applications is to
use the camera height and relative ground position to estimate the scene depth and
movement scale as explained in (SCARAMUZZA et al., 2009) and overview in the
next subsection.

2.4.1 Scale Extraction from Camera Height

Figure 2.14 (a) show the basic setup of the application in study. The camera
matches a feature on the ground where 𝑑 is the feature depth and ℎ the camera
height with respect to the ground. The image plane in detail is shown in image 2.14
(b).

Figure 2.14: Scale from Camera Height
(a) Setup (b) Ground Feat. on the Img Plane

source: Author

From figures 2.14 (a) and (b) a triangle similarity can easily be devised as
shown in equation 2.20. In the equation 𝑓 is the focal length (in pixels), 𝑔 is the
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difference from the image center to the found feature position (in pixels), 𝑑 is the
feature depth, and ℎ is the camera height.

𝑑

ℎ
=

𝑓

𝑔
(2.20)

Isolating 𝑑:

𝑑 =
𝑓ℎ

𝑔
(2.21)

The absolute scene size can be adjusted approximating the depth 𝑑 calculated
with triangulation to the depth calculated with equation 2.21. The equation assumes
negligible rotation along 𝑧 axis (roll). Rotation along 𝑦 axis (yaw - camera side
turning) have no impact on scale estimation. This simple model oversights rotations
on 𝑥 axis (pitch or camera nodding) even though this parameter present a heavy
impact on scale estimation.

A capital step in ground based scale estimation is robust and accurate ground
feature tracking. Another issue that must be carefully addressed is the detection
and compensation for angular oscillations around 𝑥 axis (camera nodding).

Chapter 6 introduces developed algorithms for ground feature tracking, ground
feature selection and camera nodding compensation.

2.5 Chapter Conclusion

This chapter presented an overview of the main operations related to visual
navigation. The three main operations related to monocular visual odometry are
feature detection and tracking, camera pose and scene structure approximation and
scale recovery.

Feature detection and tracking uses image processing algorithms. Feature
detection selects distinguishable image regions and tracker locates those regions in
following frames. An alternative to tracking is to use feature descriptors where image
patches are transformed in a code-word and those codes are compared to decide if
they belong to the same scene point. Once feature correspondences coordinates are
available, the considered geometric techniques use re-projection error minimization
to find camera pose and feature 3D position that harmonize the tracked position
and calculated feature projections.
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Finally the camera height and tracked ground features are used to recover
the true scale of both scene depth and camera translation.

Table 2.1 relates the most relevant methods over-viewed in this section to
their corresponding category.

Table 2.1: Algorithms summary
Method Category
Harris/Shi-Tomasi Detection
FAST Detection
Lucas-Kanade Tracking
SIFT Matching
BRIEF/ORB Matching
Triangulation Scene Structure
PnP Camera Pose
BA Structure and Pose
GN/LK Optimization
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3 VISUAL ODOMETRY IN THE LITERATURE

"Those who do not remember the past are condemned to repeat it."

George Santayana

This chapter reviews some of the most relevant works in monocular visual
odometry and summarizes the advances achieved in last decades.

In 1985, Chatila and Laumond (CHATILA; LAUMOND, 1985) proposed
performing localization and mapping in a concurrent manner, what was later called
SLAM. Early visual navigation systems used a binocular stereo system (SE; LOWE;
LITTLE, 2002). A successful monocular localization and mapping technique that
influenced many authors is MonoSLAM (DAVISON et al., 2007), where an extended
Kalman filter (EKF) was used to update a probabilistic 3D scene map. Filtering
approach became a popular technique at the time, shared by implementations like
(CHEKHLOV et al., 2006) and (MENG; HONG; CHEN, 2009).

The milestone work PTAM from Klein and Murray (KLEIN; MURRAY,
2007) was the first work to split image processing (tracking) and geometrical pro-
cessing (camera pose and scene structure) in separate threads. Using a keyframe-
based framework that influenced many solutions (FORSTER; PIZZOLI; SCARA-
MUZZA, 2014), (SONG; CHANDRAKER; GUEST, 2013) and is still a reference
for present implementations (SONG; CHANDRAKER; GUEST, 2016), (PERSSON
et al., 2015).

Dense or semi-dense propositions (ENGEL; STURM; CREMERS, 2013) use
the whole image, acting directly on pixel intensities, warp the image to produce a
dense 3D structure of the scene. Those methods valuable when the objective is to
build a detailed scene map, as depth is estimated for every pixel presenting relevant
graphical gradient. When used for camera tracking however, they tend to be more
susceptible to outliers in non-static scenes.

Sparse systems on the other hand, must select and recognize traceable image
regions, and commonly use a key-frame based approach (KLEIN; MURRAY, 2007;
FORSTER et al., 2015; SONG; CHANDRAKER; GUEST, 2016). Keyframes are a
subset of the generated images, and new feature are only detected in those frames.
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As full Bundle-Adjustment (BA) for a large set of images is computationally de-
manding, most solutions tend to use a subset of the images in what is called local
BA. ORB-SLAM (MUR-ARTAL; MONTIEL; TARDóS, 2015) use a co-visibility
graph to select frames for local BA, while the most common approach in VO is to
use the last frames as used by (ENGEL; KOLTUN; CREMERS, 2016), (SONG;
CHANDRAKER; GUEST, 2013) and (Mirabdollah M., Mertshching B. (GET Lab,
2015).

The robustness and generality of monocular techniques are assessed in the
work from Persson et al. (PERSSON et al., 2015). In that work, the authors adapted
monocular algorithms like tracking by matching and long optimization windows to a
binocular stereo vision system. The work achieved remarkable results outperforming
other solutions proposed at the time.

In order to compare the developed solutions to other implementation, this
work uses a public dataset. The KITTI dataset for odometry is a collection of 22
image sequences recorded with a camera equipped vehicle. For 11 of the sequences
the GPS recorded path is supplied, and may be used for system calibration. Results
of the remaining 11 sequences can be uploaded to the site and used for comparison.
The following sections detail the monocular works that achieved most notorious
results when tested with the Dataset. More details about the sequences will be
dicusssed in chapter 9.

3.1 VISIO-2-M

Originally focused on stereo scene reconstruction, Visio 2-M was the first
work that tried monocular estimation on the KITTI dataset (GEIGER; ZIEGLER;
STILLER, 2011). Image descriptors were not used and sum of absolute difference
(SAD) over an 11x11 block of pixels with SSE instructions were employed for feature
tracking and matching. A circular matching algorithm searched for detected fea-
tures in the next frame, and found features were traced back in the original frame.
Features that presented a mismatch from the original position to the back-traced
position are discarded as possible outliers.

Non-maximum and non-minimum suppression have been used to reduce the
total number of features to values between 200 and 500. Camera pose is calculated
through non-linear reprojection error minimization using Gauss-Newton adjusting
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the six pose parameters (three translation distances and three rotation angles) and
depth is calculated through triangulation.

The original stereo system was adapted to monocular case, and produced
interesting results at the time, with some of its ideas inspiring more recent solutions
with better estimation results.

3.2 MLM-SFM

Song et al (SONG; CHANDRAKER; GUEST, 2013) presented a multi-threaded
system largely enhancing the monocular odometry precision in 2013. The work
was later improved in 2016 (SONG; CHANDRAKER; GUEST, 2016). FAST cor-
ners and ORB descriptors were used for detection and matching and 4 point PnP
(LEPETIT; MORENO-NOGUER; FUA, 2008) used for camera pose calculation.
The pose with largest consensus in a RANSAC framework was further refined with
Levenberg-Marquard non-linear optimization.

Camera pose and 3D point positions were additionally improved with a slid-
ing window resection-intersection (RI) bundle adjustment with the last 10 frames.
The SBA package (LOURAKIS; ARGYROS, 2009) was used, in a sequence of op-
erations that alternate triangulation and pose estimation. Scale was estimated by
triangulating points on the ground and using a fixed ground projection.

In the more recent version (SONG; CHANDRAKER; GUEST, 2016) scale
estimation was enhanced by the combination of multiple cues. A dense homography
was used for ground plane projection. Objects detected in the scene were used to
find vertical lines and approximate camera pitch angle. And triangulation of ground
points improved the ground plane position estimation. The error distribution of
each cue was approximated to a Gaussian distribution and a Kalman Filter (KF)
was adopted to combine the different cues in a statistical framework.

When proposed for the first time, this solution presented precision compara-
ble to stereo systems of the time, with results that outperformed all other published
MVO system so far.



45

3.3 FTMVO

MLM-SFM remained as the most accurate VO system tested on the KITTI
dataset until 2015 when Mirabdollah and Mertsching published FTMVO (Mirab-
dollah M., Mertshching B. (GET Lab, 2015).

That solution used the five point algorithm (NISTER, 2004) for initial camera
pose estimation. Point positions were calculated with a probabilistic multiple view
triangulation. Errors in camera pose estimation and feature tracking were modeled
as Gaussian random variables, and the maximum of their approximated probability
distribution used to calculate feature depth.

To improve camera pose estimation and reduce scale uncertainty, a window
with the last 10 observations of features was used in a local bundle adjustment
step. Features were divided in two groups, with low and high parallax (far and close
features). Epipolar based error is used for far points and a projective error for close
points.

The system runs in a single thread, using Harris corners (HARRIS; STEPHENS,
1988) and Lucas-Kanade (BOUGUET, 2000) for feature detection and tracking.

With the innovative approach of treating differently far and close features,
and the probabilistic triangulation framework, the achieved precision estimation on
camera pose improved over previously published solutions.

3.4 PMO / PbT-M2

The interesting work of Fanani Et al. (FANANI et al., 2016), innovated
using only two frames for camera pose estimation, renouncing RANSAC for outlier
removal and not using re-projection error minimization.

Most of the works based on sparse visual navigation isolate image processing
and geometric re-projection error. That is after the use of images for feature tracking
pixel intensities are no longer used.

In (FANANI et al., 2016) a regular feature detection/tracking is used to find
an initial camera pose. And the found pose is refined using non-linear optimization.
The big difference is that the residual function used in minimization is not re-
projection error, but pixel intensity difference of pixel positions around the feature
centers in both the original and projected pixel coordinates.
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This idea was previously explored in the work DSO from Engel Et al. (EN-
GEL; KOLTUN; CREMERS, 2016). The use of pixel intensity minimization pro-
vides robustness at the cost of a higher computational complexity due to two reasons.
A single feature generates several pixel residuals. And several pixel positions must
be interpolated at every optimization cycle.

The robustness provided by the proposed optimization enabled (FANANI et
al., 2016) to replace RANSAC by sequential outlier removal.

3.5 Chapter conclusion

This chapter presented a brief review of most relevant works in monocular
visual navigation that use the KITTI dataset (GEIGER; LENZ; URTASUN, 2012a)
as evaluation platform. The seminal works MonoSLAM (DAVISON et al., 2007)
and PTAM (KLEIN; MURRAY, 2007) inspired solutions that achieved remarkable
results. Table 3.1 lists significant methods used in those solutions.

Table 3.1: MVO solutions summary
SOLUTION detection tracking pose est. struc. est. Transl Err[%]
VISIO-2 M SAD SAD+circ GN triang. 11.9
MLM-SFM FAST ORB wBA[EPnP] wndTriang 2.54
FTM-VO KLT LK P5P mvTriang 2.24
PMO KLT LK LM (pixel int) triang 2.05

source: author

In the table the detection and tracking methods are named as SAD for sum
of absolute difference, FAST and HARRIS are the corner detector from sections
2.2.2 and 2.2.1 and KLT is the Kanade-Lucas-Tomasi expression that combines Shi-
Tomasi (SHI; TOMASI, 1994) detector and Lucas-Kanade (LUCAS; KANADE,
1981) tracker.

The pose estimation and structure estimation algorithms GN and LM are the
classical non-linear optimization Gauss-Newton and Levenberg-Marquardt. Triang
refers to the triangulation method from section 2.3.3, windowed methods wndTri-
ang use a set of frames. Perspective-n-point (EPnP, P5P) and windowed Bundle-
Adjustment (wBA) are used for camera pose estimation as overviewed in section
2.3.4.

The last column brings the average translation error as measured by the
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Dataset developers, for an idea of the relative accuracy of each solution.
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4 ANALYSIS OF PROJECTION ON MOVEMENT ALONG THE OP-

TICAL AXIS

"Life can only be understood backwards; but it must be lived forwards."

Søren Kierkegaard

It is well understood that different camera translations have different impacts
on camera pose estimation. Movement along the optical axis (forward or backward)
produces lower parallax than movement perpendicular to the optical axis (sideways
translations). This chapter presents an analysis of projection characteristics of a
camera moving along the optical axis and suggests a backward looking strategy
for camera pose estimation. This investigation was presented in (PEREIRA et al.,
2017a) and was selected as a best paper on the conference.

4.1 Projection Error in Backward Movement

The camera frame of reference has the camera center as origin and the 𝑧 axis
perpendicular to the image plane as shown in figure 4.1.

Figure 4.1: Optical Axis

source: Author

When a camera moves sideways, objects closer to the camera present a larger
image displacement when compared to a further away background. In motions along
the z axis (forward or backward), closer features near the image borders present a
higher parallax when compared to points distant to the camera and closer to the
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image center. As a consequence, the same error in estimated depth produces a larger
image projection difference for closer points. Accordingly, the 3D position of points
closer to the camera can be estimated with superior accuracy for the same image
tracking precision.

Figures 4.2 and 4.3 taken from the KITTI database (GEIGER; LENZ; UR-
TASUN, 2012a) exemplify this situation: In the upper image area three points ’A’,
’B’ and ’C’ are marked. Since the camera relative position and orientation, as well as
camera calibration, are given by the database developers, the points can be tracked
in the next image and the depth can be estimated by triangulation (HARTLEY;
STURM, 1997). In the present case they are 7.5m, 12.8m and 72.2m.

The blue line segments in figure 4.3 are the projected position interval, when
the estimated depth is within a ±25% interval of the estimated depth, whose length
in pixels are respectively 16.2, 6.5, 0.54. The difference in the interval in pixels
illustrate that the same error in depth generates a larger projection error for closer
points.

It is also possible to calculate the depth accuracy for a given image tracking
precision. If for instance it is supposed that the image tracker finds features within
a circle of radius of 0.2 pixel, the estimated depth in meters of feature ’A’, ’B’ and
’C’ would be inside the intervals 7.5 ± 0.3%, 12.8 ± 1.2% and 72.2 ± 11%.

Figure 4.2: Initial points in tracking environment

source: (GEIGER; LENZ; URTASUN, 2012a) modified by author

Figure 4.3: Predicted position with +/- 25% depth range

source: (GEIGER; LENZ; URTASUN, 2012a) modified by author

On a forward moving camera, new features are usually detected for the first
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time in their most distant position from the camera. Depth is estimated, and those
features are used for further camera pose estimation. When backward movement is
used, the camera moves away from the scene, and new features are located for the
first time in their closest position to the camera. In the latter case, the feature three
dimensional position is estimated with superior accuracy, improving future camera
pose calculations. In the example of figure 4.2 point ’𝐴’ would shortly move out of
sight in forward movement, while remaining visible in following images if backward
movement is used.

The second and complementary effect of backward movement is the projec-
tion error amplification on approaching features. Because of the same discussed
characteristics of forward movement, the projection error for small depth inaccura-
cies is amplified when a feature approaches the camera. This effect is intensified in a
RANSAC framework (FISCHLER; BOLLES, 1981), where good close features may
be ignored due to projection errors as a result of small estimated depth inaccuracies.
Points with low parallax present projections sensitive to camera rotation but their
image position is slightly affected by camera translation, especially on the 𝑧 axis.
To recover 𝑧 translation, close points are of paramount importance, and should not
be ignored.

When good points are ignored and points with larger position estimation
errors are used to calculate camera pose, a third effect may occur: camera pose
estimation and scene structure can converge to local minima not corresponding to
the correct pose as shown in figure 4.4.

In the figure a camera at position 𝑎 ’sees’ four features. In a second moment
the same features move to the left on the image plane where the center features move
slightly less then the outer features. Two possible camera movements and feature
positions are then shown. Either the camera moved to the right to position ’𝑏’ and
the center features are further away from the camera than the other features (in
position 2𝑏 and 3𝑏), or the camera translated to the left an rotated to position ’𝑐’
and the center features (2𝑐 and 3𝑐) are closer to the camera than the outer features
(1 and 4).

Backward movement, for up-to-scale camera pose estimation, improves pre-
cision due to superior accuracy for depth calculation of new points because they are
usually closer to the camera. Robustness is improved as points close to the camera
are hardly skipped in a RANSAC scheme reducing the chances of Local-minima
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Figure 4.4: Camera pose ambiguity

source: author

problems on camera pose and scene structure estimation. Finally well estimated
points are used in following estimations as they remain in sight until they are far-
ther from the camera. Those characteristics allow a system that rely on only the last
two views for camera pose estimation and feature depth calculation. Next section
presents a simple visual navigation system that proves these conclusions.

4.2 Backward Based Visual Odometry

This section presents a backward moving visual odometry system that takes
advantage of the principles discussed in last section. The system is based on simple
camera pose estimation using reprojection error minimization followed by two-view
triangulation. The backward movement is simulated by processing images in re-
versed order. Figure 4.5 shows the system architecture.

Figure 4.5: Backward VO System Architecture

source: author

In the proposed application, features are detected in the current camera frame
and tracked in the new frame. A feature is described by its coordinates in both
images and estimated depth with respect to the current frame. Features not located
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are removed from the feature set, and new features are detected in every new frame.

4.2.1 Implementation

This section provides an overview of the system used to validate the conclu-
sions of the last section. The reader interested in implementation details may refer
to the conference paper (PEREIRA et al., 2017a). The Image Processing Unit is
responsible for feature detection and tracking, and the Triangulation & Pose Es-
timation module finds the camera pose by re-projection error minimization. The
last estimated camera rotation and translation 𝑇𝑘,𝑘−1 is used as initial estimate of
current camera relative pose.

The Image Processing Unit used Shi-Tomasi corners (SHI; TOMASI, 1994)
and Lucas-Kanade tracker (LUCAS; KANADE, 1981) to find feature correspon-
dences, as this combination presented lower re-projection errors than the descriptor
based methods. The unit output is a matrix of feature coordinates 𝑈𝑘−1,𝑘.

The system used a list of outliers (non-static features) that should be removed
from camera estimation. When the tracked image position does not remain along
the epipolar line the feature is marked as a bad feature. It continues to be tracked,
but is not considered for pose estimation. If in future localization, the feature is
found to be in the EL, it is removed from the bad features list, and can be used in
the pose estimation algorithm.

The pose estimation used the EPnP algorithm (LEPETIT; MORENO-NOGUER;
FUA, 2008) followed by non-linear Levenberg-Marquardt optimization. The opti-
mal triangulation proposed by (HARTLEY; STURM, 1997) is used. Both algorithms
have implementations available in OpenCV (BRADSKI, 2000).

4.2.2 Backward Visual Odometry Results

The proposed system was implemented in Python, using SciPy (JONES et
al., 2001–) and OpenCV (BRADSKI, 2000). The achieved results on the KITTI
dataset (GEIGER; LENZ; URTASUN, 2012a) are presented in this section.

Minimum feature distance used was 15 pixels; LK used 3 pyramid levels for
normal features and 2 levels for ground points. Newer features that move inside
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an occupied 15x15 pixels grid position are removed to prevent excessive clustering.
Found features are traced back in the original picture to avoid bad matches and
occlusions.

The localization step minimized the reprojection error in sets of 10 features,
and 𝑛𝑅 = 45 repetitions. Far features are added to the blacklist if projection error
is above 0.5 pixels, and removed from the list if the projection error falls below 0.1
pixels. The median re-projection error after scene-pose stabilization was in the order
of 0.2 pixels.

Table 4.1: Per trajectory results
sequence 00 01 02 03 04 05 06 07 08 09 10 Avg
rot [10−3deg/m] 4.8 2.6 3.9 2.3 3.2 3.0 2.8 2.8 3.7 3.0 3.6 3.2

source: author

Figure 4.6: Estimated trajectory and ground truth for the first sequence

source: author

Table 4.1 shows the results rotation results for the first 11 routes. Translation
errors are heavily dependent on scale estimation and are outside the scope of this
chapter. Figure 4.6 shows the car path in meters for the first trajectory (estimated
in blue and ground truth in green) for a qualitative idea of estimation precision.

The errors in table 4.1 are measured in 10−3 degrees per meter. The values
in the table present low orientation drift, that can be visually verified in figure 4.6.
The figure shows the car trajectory over several hundred meters and very accurate
orientation estimation, for the simple backward proposed system.

The high level Python implementation running in a single thread, in an Intel
core i7-3770K CPU @ 3.5GHz achieved real time performance (0.09s per frame
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on average). Since there is no key-frame selection, complex feature descriptors or
windowed bundle adjustment, memory requirements should be convenient to lower
capacity hardware.

4.3 Chapter Conclusion

In this chapter the advantages of pose estimation for a camera looking at
features that move away from the camera were discussed. This effect can be achieved
with a backward looking camera or processing images in reverse order.

A Monocular backward VO system was implemented to validate the drawn
conclusions. The system used a simple two-view feature tracking and pose estimation
approach. A list of not trusted features was used to improve robustness to outliers.

The python and OpenCV implementation, achieved real time performance of
10 frames per second on an Intel core i7. A low level C implementation targeted to
an embedded platform, with parallel processing of feature correspondence and geo-
metrical estimation, with a thorough analysis of worst case execution time remains
as a future work.

The concepts presented in this chapter provide the conceptual base over which
the ideas and algorithms presented in the following chapters were founded.
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5 DETERMINING IMAGE CORRESPONDENCES

“Do not go where the path may lead, go instead where there is no path and
leave a trail.

— Ralph Waldo Emerson

The first step in classical sparse navigation pipeline is to find image corre-
spondences. That is, to find the position in more than one image where the same
scene point is projected. A process that is divided in two steps, detection of interest
points and tracking or matching of those points in another image.

Interesting regions must present an image intensity gradient different than
zero, as uniform areas are not distinct form neighbors. Pixel gradients must occur in
more than one direction, otherwise there would be a single border in the image area,
and displacements along the border are not noticeable. Those interesting regions are
called image features and are classified in two main categories: blobs and corners.

Figure 5.1: Corner Candidates

source: (RADKE, 2012)

Figure 5.1 shows four feature candidates. Region 𝐴 is a clear corner, region
𝐵 is a blob, region 𝐶 is a homogeneous region that is similar to neighboring regions
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and region 𝐷 is a border in which vertical displacement can hardly be noticed.
It is clear that regions 𝐴 and 𝐵 are preferable over candidates 𝐶 and 𝐷. Once

interesting regions have been recognized, those regions must be identified in following
images. Two classes of algorithms are used to accomplish this task, matching and
tracking as explained in section 2.2.

Matching refers to the process of detecting interest regions in both the original
and the target frames, and using a strategy to decide if they belong to the same
scene point. The naive approach would be Sum of Absolute Difference (SAD). The
transformation of the image area in a feature descriptor is able to provide some level
of robustness to orientation, scale and illumination variation.

In the target application, where a camera mounted on a vehicle produces
several images per second, the images present a high degree of similarity and feature
displacement between consecutive frames are of the order of a few pixels. In that con-
text tracking algorithms that iteratively search the neighboring area, tend to present
higher localization performance and fewer outliers when compared to matching so-
lutions. Tracking methods are better suited for low-frequency corners. For those
reasons, in table 3.1 most of the analyzed solutions combine corner detection with
the pyramidal implementation of Lucas-Kanade tracker (BOUGUET, 2000). The
tests performed during the course of this work have shown lower computational ac-
curacy when FAST corner detector (ROSTEN; DRUMMOND, 2005) and ORB fea-
ture tracker (RUBLEE et al., 2011) where used, when compared to Shi-Tomasi (SHI;
TOMASI, 1994) corner detector and pyramidal LK tracker (BOUGUET, 2000). The
second configuration have shown lower number of outliers and higher detection accu-
racy, and for those reasons were chosen for feature correspondence generation. Next
sections explain the strategies used to further improve detection accuracy, remove
outliers and prevent feature clustering.

5.1 Grid Based Clustering Prevention

Corner detection algorithms calculate a score for every pixel position in the
image. It is common that pixel positions close to a corner present high scores
in image areas overlapping the detected feature. To prevent overlapping feature
detection, or even feature clustering (many features detected close to each other)
non-maximum suppression is usually used.
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Classical non-maximum suppression save the highest score position and set
the area where the scores was located (up to a predefined distance) to a minimum
value guaranteeing neighbors won’t be selected. The process repeats finding the next
highest score and performing the same actions. The algorithm guarantees that best
corners will be selected and a minimum distance between features will be respected.

Since the camera is moving and some scene objects may not be static, the
feature position change from one frame to the next, either approaching other features
or moving away from them. Camera pose estimation benefits from spread features
over the image area and excessive clustering should be avoided. A faster alternative
for the iterative non-maximum suppression algorithm mentioned above is explained
in this section.

The grid based clustering prevention is a fast approximation of non-maximum
suppression. In the algorithm features are sorted by their score value, and the image
is divided in a square grid (blocks of 𝑛×𝑛 pixels). Then, the block address of every
feature is calculated according to equation 5.1. In the equation 𝐵𝑎 is the linear block
address, 𝑢 and 𝑣 are feature coordinates, 𝑛 is the block size and 𝑛𝐵𝑥 is the number
of block columns (horizontal picture resolution divided by the block size).

𝐵𝑎 =
𝑣 ∗ 𝑛𝐵𝑥

𝑛
+

𝑢

𝑛
(5.1)

The final step is to go through the sorted feature list, and mark only the first
feature of each block as a valid feature, removing the remaining occurrences. Figure
5.2 shows an example of the classical non-maximum suppression (a) and the fast
grid based clustering prevention (b).

Figure 5.2: Clustering Prevention
(a) Non-maximum suppression (b) Grid Based

source: KITTI Dataset (GEIGER; LENZ; URTASUN, 2012a) modified by author

In the figure features are marked with red dots, and the grid lines forming
image blocks are shown in the left image (b). The algorithm prevents more than
one feature per image block.

The draw back is that features detected close to a grid border can present
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a short distance o another feature in a neighboring block. This, however, is not a
major problem. The used algorithm ensures that the best features will be selected
and prevents excessive clustering at a fraction of the computational cost.

5.2 Perspective Warping for Tracking Enhancement

Features on the ground are especially important for scale estimation, and
especially difficult to track due to low gradients on asphalt and high graphical
distance for higher vehicle speeds. The ground plane however, remains in a virtually
constant position. Figure 5.3 (𝑎) shows an image example from the KITTI dataset
(GEIGER; LENZ; URTASUN, 2012a) where the ground zone is delimited. Figure
5.3 (𝑏) is the subsequent image in the sequence, where two features are marked.

Figures 5.3 (𝑐) and (𝑑) show warped versions of the first image. In figure 5.3
(𝑐), the original image 0 is warped to match the ground zone of image 1 (the reader
can notice the green squares in similar positions in both images). In figure 5.3 (𝑑)
the original image 0 is warped to match mid depth details of image 1 (as highlighted
by the similar yellow circle position in both images).

In order to calculate the perspective warping, four virtual control points are
used. In ground plane matching, the virtual points are placed in the approximated
constant ground position, and for a constant depth approximation, the virtual points
are placed at a constant distance from the camera.

The last relative camera pose 𝑇𝑘,𝑘−1 is used to project the control points into
the next frame. Then using four projections in both frames, a perspective warping
transformation can be calculated. No pixel intensities are used in this operation,
only geometric point projections.

Feature coordinates tracked in the warped image are translated to their true
positions by the inverse of the perspective warping used in the image.

A problem that occurs especially when the car drives at higher speeds, are
similar patterns along epipolar lines. On figure 5.3 (a) the guard rails on both sides
of the road are very similar and thus difficult to differentiate for correct matching.
In stereo cases, the stereo calculated depth can be used to help choosing the correct
match, but on monocular situations, the correct correspondence is very difficult
to find, as different estimated depths provide different matches with equivalent re-
projection errors.
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Figure 5.3: Perspective Warping for Tracking Enhancement
(a) Original Image 0

(b) Original Image 1

(c) Img 0 warped for ground matching (as shown by the box)

(d) Img 0 warped for close object matching (as shown by the circle)

source: (GEIGER; LENZ; URTASUN, 2012a) modified by the author

The warping used in image 5.3 (d) can help to mitigate this problem. By
warping the image for two different depths and checking if features are located to
corresponding locations outliers due to repetitive patterns can be identified and
eliminated. In the figure, a small difference in the warping of figure 5.3 (d) is not
likely to disturb the tracking of the feature marked with the yellow circle, but would
probably change the tracking position of features along the guard-rails.
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5.3 Chapter Conclusion

This chapter focused in the used feature generation mechanism, illustrating
why the Shi-Tomasi (SHI; TOMASI, 1994) and pyramidal LK (BOUGUET, 2000)
were chosen as detector and tracker.

An algorithm to avoid feature clustering that approximate non-maximum
suppression at lower computational cost was described.

Finally the use of image warping for tracking enhancement was unfolded. In
the algorithm four virtual points are projected in both images, and the projections
are used to calculate a perspective image transformation, used to improve feature
tracking.
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6 GROUND BASED ABSOLUTE SCALE ESTIMATION

"Lice don’t seem so small when they get in your hair."

Marty Rubin

In monocular vision systems, absolute scale is an inherently absent informa-
tion, and must be recovered either by other sensors (odometers, GPS, laser scanners,
ultrasound, inertial sensors, etc) or inferred from known image characteristics. In
the case of autonomous vehicles, the camera distance to the ground can be measured,
as it remains nearly constant, and used to estimate the scene scale as explained in
(SCARAMUZZA et al., 2009). It is important to note that scale estimation is not
dependent on up to scale camera pose estimation as those steps are loosely coupled.
This chapter describes the algorithms developed to ameliorate scale estimation.

The absolute distance of a point on the ground can be calculated by triangle
similarity as explained in 2.13. Ignoring usually negligible rotations around optical
axis (roll) and rotations around the vertical axis (yaw), the depth of a ground
point can be calculated from equation 6.1 and figure 6.1 (a) (repeated here for
convenience). By comparing the depth from triangulation and the calculated ground
depth, the whole scene scale can be approximated. In the equation 𝑓 is the focal
length, 𝑣𝑜 and 𝑣ℎ are the vertical position of the object and the horizon in the image
in pixels. The objects depth is 𝑑𝑢 and ℎ is the camera height. The position of the
horizon is initially set to the center of the image (considering the camera optical
axis is perfectly parallel to the ground plane, or pitch is zero). Figure 6.2 shows
an example of a point marked in the ground and the horizon line and the vertical
position of the object.

Figure 6.1: Scale estimation
(a) Triangle similarity (b) Pitch angle

source: author
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Figure 6.2: Detail of feature vertical position

source: (GEIGER; LENZ; URTASUN, 2012a) modified by author

𝑑𝑢 =
𝑓ℎ

𝑣ℎ − 𝑣𝑜

(6.1)

The developed scale enhancement mechanism is based on pitch angle recovery
and multi-attribute ground feature selection. Following sections cover these topics.

6.1 Pitch Recovery

For a camera equipped wheeled robot, scale estimation is less affected by
small oscillations in camera height (distance from the ground) or rotation around 𝑧

axis (roll), than it is by rotations on 𝑥 axis (pitch or camera nodding), as shown in
figure 6.1(b), relative to the ground plane. Pitch angle variations affect the position
of the horizon 𝑣ℎ in equation 6.1.

Average pitch angle is not constant from trajectory to trajectory as small
difference in the car weight (another passenger, or whether the gas tank is filled
or not), may pose small differences to 𝑣ℎ that cause scale offsets. The proposed
algorithm estimates camera average orientation with respect to 𝑥 axis, based on
translation movement.

When 𝑧 camera axis is parallel to ground, average vertical translation (𝑡𝑦)
should be zero and 𝑣ℎ of figure 6.1 (a) is on the calibrated camera center 𝑐𝑦. By the
ratio of forward and vertical movement Δ𝑡𝑦⇑Δ𝑡𝑧 the angle between 𝑧 axis and the
ground plane can be approximated and 𝑣ℎ adjusted. Figure 6.3 shows the translation
decomposition when the optical axis is not parallel to the ground.

Since 𝑦 translation Δ𝑡𝑦 is also affected by short time oscillations in camera
height, a low-pass filtering is applied and in every new frame a smoothed horizon line
image position 𝑣ℎ is updated through equations 6.2 and 6.3, where 𝜆𝑣 is a smoothing
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Figure 6.3: Camera Movement Decomposition

source: Author

factor between 0 and 1:

𝑛𝑣ℎ =
𝑓𝑡𝑦

𝑡𝑧

+ 𝑐𝑦 (6.2)

𝑣ℎ = 𝜆𝑣.𝑛𝑣ℎ + (1 − 𝜆𝑣)𝑣ℎ (6.3)

Although algorithms that take into account ground pitch angle have been pro-
posed in (KITT et al., 2011), (ZHOU; DAI; LI, 2016) and (SONG; CHANDRAKER;
GUEST, 2016) those works try to estimate the angle from features on the ground,
generally using an homography. This work applies a different approach that relies in
the ratio of forward and vertical translation movement for ground plane orientation
estimation.

6.2 Ground Point Selection

The success in scale estimation is based on absolute distance estimation of
points on the ground. It is therefore evident that the selection of a static point that
is actually on the ground and correctly tracked is mandatory. Although this might
seem a minor task at a first glance, distinguishing correct static matches on the
ground from non ground objects (like parked cars or trees), incorrect matches (in
low textured asphalt) and non-static objects (pedestrians, bicycles etc) can prove
to be non-trivial. A good ground point should be in the bottom center area of
the image, should present a good image gradient along the epipolar line to enhance
matching precision and is expected to be close to the estimated ground.

On figure 6.4 a typical example is shown, where points 𝐴, 𝐵, 𝐶 and 𝐷 show
ground candidates. The line is the ground area, and the cross is the center ground
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point at (𝑐𝑥, 𝑐𝑦). Point 𝐴 is a ground point with low image gradient and therefore
prone to tracking errors. Feature 𝐵 lies in a parked car and is not on the ground.
Candidate 𝐶 has good gradient and is on the ground but is not static since the
feature will follow a moving shadow. Finally candidate 𝐷 is a good ground point.

Figure 6.4: Ground Point Selection

source: (GEIGER; LENZ; URTASUN, 2012a) modified by the author

A multi-objective cost function is used to elect the best ground point candi-
date. The function, shown in equation 6.4, calculates a cost based on three charac-
teristics, and the point with lowest cost score is selected. In the equation, 𝑐𝑖 is the
combined cost, parameter 𝑙𝑖, is the feature cost related to image position, 𝑔𝑖 is the
score related to graphical tracking quality and 𝑠𝑖 is a height related cost of the 𝑖𝑡ℎ

candidate.

𝑐𝑖 = 𝑙𝑖 + 𝑔𝑖 + 𝑠𝑖 (6.4)

The cost calculation follow a two step procedure, first a raw cost 𝑟𝑙𝑖, 𝑟𝑔𝑖 and
𝑟𝑠𝑖 are calculated, and then a sigmoid function is used for scaling and smoothing of
cost scores.

6.2.1 Positional Cost

The positional raw cost 𝑟𝑙𝑖 penalizes points far from the bottom center of the
image with the equation 6.5.

𝑟𝑙𝑖 = 𝑠(
⌈︂
(𝑣 − 𝑐𝑦)

2 + (𝑢 − 𝑐𝑥)
2⇑𝑞𝑢) (6.5)

In the equation 𝑐𝑥 and 𝑐𝑦 are coordinates of a constant point in the center-
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bottom of the image. The feature coordinates are 𝑢 and 𝑣 and 𝑞𝑢 is a parameter
used to widen the ground area.

6.2.2 Tracking Quality Cost

Tracking quality is measured by calculating SAD of pixel intensity difference
over two image areas displaced one pixel along the epipolar line. Different depths
result in different point projection along the epipolar line.

The first image area is a box centered in the detected feature location. The
estimated relative camera pose T𝑘+1,𝑘 is used to find the epipolar line, and calculate
a 1 pixel displacement along the line (the second box center). The position of the
second box can be calculated applying a variation to the feature depth, projecting the
feature and normalizing the vector from the first box position to the new projection
to length 1 pixel.

Both positions present sub-pixel accuracy and interpolation is used to find
pixel intensities inside the box.

6.2.3 Feature Height Cost

The last quality measure is the feature height with respect to the estimated
constant ground.

Both static features not in the ground (trees, parked cars or guard-rails), will
present a position far from the estimated ground plane.

Non-static features present a high error in depth triangulation. Those fea-
tures are also penalized by the feature height estimation.

6.2.4 Sigmoid Scaling

A smooth transition function of the form of equation 6.6 is used to scale and
smooth the calculated costs. Costs are bounded in the (︀0, 1⌋︀ interval and a smooth
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threshold is used to distinguish good ground point from low confidence ones.

𝑙 =
1

1 + 𝑒
𝑟𝑙−𝑚

𝑎

(6.6)

Parameters 𝑚 the mean and 𝑎 the aperture, are used to calibrate the sigmoid
scaling as shown in figure 6.5.

Figure 6.5: Sigmoid function

source: from author

The sigmoid function parameters depend on application specific conditions,
such as image illumination, camera intrinsic parameters, camera position with re-
spect to the ground among others. In the test database, for half of the sequences
the GPS recorded camera position is given, to be used for system calibration. Those
sequences were used to find the sigmoid parameters. In this work the values for 𝑚

and 𝑎 for each of the costs were: 𝑚𝑙 = 80, 𝑎𝑙 = 40, 𝑚𝑔 = 8, 𝑎𝑔 = 4, 𝑚𝑠 = 0.5, 𝑎𝑠 = 0.25.
The used weights were 𝑤𝑙 = 2, 𝑤𝑠 = 0.5 and 𝑤𝑔 = 0.5.

6.3 Chapter Conclusion

This chapter presented a scale recovery strategy for camera equipped wheeled
robots. The algorithm uses points in the ground and measured camera height to
estimate absolute scene scale.

The estimated scale is corrected by a translation based pitch angle recovery
algorithm. The method uses the forward and vertical translation ratio to continu-
ously track the estimated horizon position in the image.

The ground point selection algorithm combines three different criteria to cal-
culate a selection cost. The scores are based on point position in the image, graphical
tracking quality and estimated point height. Calculated scores are smoothed and
scaled with a sigmoid function and added. The candidate with lowest cost score is
selected.
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Implementation and results of the developed algorithms are presented in
chapter 9.
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7 FAST TRIANGULATION

"A man only becomes wise when he begins to calculate the approximate depth
of his ignorance."

Gian Carlo Menot

As explained in section 2.3.3, triangulation is the algorithm used to find the
3D position of a point from its projection in two images, for which the camera
relative position is given. It is the method used to recover the sparse scene depth.
In this chapter the low complexity method proposed in (PEREIRA et al., 2018) is
explained.

In the absence of errors exact triangulation can be calculated by finding the
3D intersection point of the lines that connect the camera centers to the image
feature position. Due to errors in feature tracking and camera pose estimation, the
lines from the camera center through feature positions usually do not meet in space.
In those cases inexact triangulation must be used.

The optimal method from section 2.3.3, proposed by Hartley and Sturm in
"Triangulation" (HARTLEY; STURM, 1997), finds the 3D point that minimizes the
distance of projected and viewed feature in both images.

7.1 The Proposed Fast Triangulation

The proposed fast triangulation method is based on Euclidean distance min-
imization of projection error in a single image. The method is shown in figure 7.1.
In the figure two cameras at positions C0 and C1 locate a 3D point p in positions
u0 and u1. The point depth 𝑑 is the distance from the point to the center of camera
0. The epipolar line is marked as the dashed line on image plane 1.

Inexact triangulation methods minimize the combined distance that both
viewed points must be moved along the image planes to ensure that the rays of light
meet on space. The method described in this chapter, restricts the position of the
point to be along the line that passes through the feature position viewed by camera
0 u0, and finds the depth 𝑑 that minimizes the distance from the point viewed by
camera 1 u1 to the epipolar line as shown in equation 7.1. The ’ ′ ’ (prime) symbol
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Figure 7.1: Triangulation Methods
(a) Standard Two-View Triangulation (b) Proposed Fast Triangulation

source: Author

indicates origin in the camera center and unit focal distance as mentioned in section
1.4.

arg min
𝑑

𝑔(𝑑) = (︀(�̂�′1(𝑑) − 𝑢′1)
2 + (𝑣′1(𝑑) − 𝑣′1)

2⌋︀ (7.1)

The known rigid body transformation matrix T = R⋃︀t, changes the reference
frame of a 3D point from camera 0 (𝐶0) to camera 1 (𝐶1). The point viewed in
camera 0 will be transported by T to (�̂�1, 𝑦1, 𝑧1)𝑇 as:
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where:
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(7.3)

And from the pinhole camera model (HARTLEY; ZISSERMAN, 2004):

�̂�0 = 𝑢′0𝑑; 𝑦0 = 𝑣′0𝑑, 𝑧0 = 𝑑 (7.4)

Isolating �̂�′1 and 𝑣′1:
�̂�′1 =

�̂�1

𝑧1
(7.5)

𝑣′1 =
𝑦1

𝑧1
(7.6)
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Equations 7.7 and 7.8 can be rewritten using equations [7.2-7.4]:

�̂�′1 =
𝑟00𝑢′0𝑑 + 𝑟01𝑣′0𝑑 + 𝑟02𝑑 + 𝑡𝑥

𝑟20𝑢′0𝑑 + 𝑟21𝑣′0𝑑 + 𝑟22𝑑 + 𝑡𝑧

(7.7)

𝑣′1 =
𝑟10𝑢′0𝑑 + 𝑟11𝑣′0𝑑 + 𝑟12𝑑 + 𝑡𝑦

𝑟20𝑢′0𝑑 + 𝑟21𝑣′0𝑑 + 𝑟22𝑑 + 𝑡𝑧

(7.8)

For simplicity of notation the rotation part of matrix T multiplied by the
viewed point in homogeneous coordinates, is introduced as the known constant
vector k:
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(7.9)

And Equations 7.7 and (7.8) may be rewritten as:

�̂�′1 =
𝑘𝑥𝑑 + 𝑡𝑥

𝑘𝑧𝑑 + 𝑡𝑧

(7.10)

𝑣′1 =
𝑘𝑦𝑑 + 𝑡𝑦

𝑘𝑧𝑑 + 𝑡𝑧

(7.11)

There is a restriction that 𝑘𝑧 0𝑧 + 𝑡03 can not be zero, and actually it has to
be positive, otherwise the point would not be visible on camera 1 (would be behind
it).

Equation (7.1) can be solved by replacing the results of (7.10) and (7.11) on
(7.1) and setting the derivative with respect to 0𝑧 to zero. Isolating 0𝑧 results in:

𝑑 =
(𝑡𝑥 − 𝑢′1𝑡𝑧)(𝑘𝑧𝑡𝑥 − 𝑘𝑥𝑡𝑧) + (𝑡𝑦 − 𝑣′1𝑡𝑧)(𝑘𝑧𝑡𝑦 − 𝑘𝑦𝑡𝑧)

(𝑘𝑥 − 𝑘𝑧𝑢′1)(𝑘𝑥𝑡𝑧 − 𝑘𝑧𝑡𝑥) + (𝑘𝑦 −𝐾𝑧𝑣′1)(𝑘𝑦𝑡𝑧 − 𝑘𝑧𝑡𝑦)
(7.12)

7.2 Discussion

While in theory, optimal methods provide a better approximation of the real
distance from point to camera, in practice both methods yield very similar results
as will be shown in the next section. Equation 7.12 requires only 39 floating point
operations to estimate depth (22 additions, 16 multiplications and one division), a
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negligible computational cost when compared to the standard optimal method and
less then half the complexity of other published solutions such as (KANATANI;
SUGAYA; NIITSUMA, 2008; LINDSTROM, 2010).

For pure camera rotations (translation vector is zero), there is no parallax,
and no depth information can be extracted. Similarly, when the epipole lies inside
the image region (when the camera moves along the optical axis for instance), points
whose image coordinates are close to the epipoles present low parallax. On those
cases the numerator and denominator of equation (7.12) will become very small and
depth estimation accuracy decreases. Another critical situation happens when the
point is close to the infinity, when only the denominator of equation (7.12) tends
to zero, or is found to be beyond the point at infinity (due to measurement errors),
and triangulation will find negative depths. Infinity problems can be avoided with
the use of inverse depths (flipping numerator and denominator of equation 7.12).

Figure 7.2: Triangulation example (Top image shows three manually selected points,
and the bottom image present difference projection based on depth variation)

source: (GEIGER; LENZ; URTASUN, 2012a) modified by the author

To illustrate those points, Fig. 7.2 shows a real example of triangulation. The
two first images from sequence 3 of the KITTI dataset (GEIGER; LENZ; URTA-
SUN, 2012a) for which the absolute camera displacement is given by the database
developers, are displayed. In this case the camera moved forward approximately
96 centimeters. Three traceable points have been marked on the first image and
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were projected on the second (using equations [7.2 - 7.8] with arbitrary depths
𝑑 = (4, 8, 16...512) meters.

Points (A, B, C, D) on the lower image, are the projected position of the
upper left window corner (marked with a red box in the top image) if the distance
from the feature to the camera were respectively (4, 8, 16, 512) meters. If the
distance from the window marked with the left most square in the top of figure 7.2
from the camera were 4 meters, the window’s top left corner in the bottom image
would be on the position marked by point ’A’. Noticing that the window’s in the
bottom image corner is actually near point ’C’, the true distance from that point
to the camera should be around 16 meters. Point ’D’ is close to the projection at
infinity as large increases in depth will have little impact on projected position.

The same is true for points (E, F, G) for depths (4, 8, 512) meters and points
(I, H) for 𝑑 (4, 512) meters. For the feature in the asphalt, point F is closer to the
searched point, while the center’s point depth can not be calculated by triangulation
as different distances from the camera generate the same projection.

Figure 7.3: Distance from the tracked points on fig 7.2 to their reprojections for
various depths

source: author

Figure 7.3 shows the distance in pixels from the same projected points to
the tracked feature positions, for different depths. The minimum of those curves is
determined by Equation 7.12. If looked closely we can see that the red curve does
not reach zero, as a small re-projection error is always present, as the tracked point
does not rest exactly on the EL.
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Table 7.1: Simulation test configuration
Parameter value
Resolution 10242

Focal length 512
Number of feats 1000
Angular error 𝜎𝑎 [deg] (︀0.005, 0.01, 0.02, 0.04, 0.08⌋︀
Translation error 𝜎𝑡 [dist u] (︀0.0025, 0.005, 0.01, 0.02, 0.04⌋︀
graphical error 𝜎𝑝 [pixel] (︀0.1, 0.2, 0.4, 0.8, 1.6⌋︀

7.3 Results on Synthetic Data

This section presents synthetic data results for depth calculation of the pro-
posed algorithm, when compared to the theoretical optimal method proposed by
Hartley (HARTLEY; STURM, 1997) in two different camera pose configurations.

For this test two virtual cameras are created, a set of 3D coordinates are
generated and projections on both image planes are calculated. No shapes or colors
are generated, only 3D coordinates and 2D image positions. Then noise is added
to camera poses or 2D feature positions and the original depth is compared to the
triangulation output.

In the first case, cameras are placed side by side as in a stereo rig, while the in
the second, both cameras are aligned along the optical axis (second camera moved
forward with respect to the first) as shown in fig 7.4.

Figure 7.4: Test case scenarios: stereo and forward camera configuration

source: author

In order to test the estimation robustness to errors in camera relative orienta-
tion, camera relative translation and graphical tracking, Gaussian error was added
to those parameters, and the error in depth estimation is compared.
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Figure 7.5: Triangulation depth error comparison
(a) Stereo case: depth error for (b) Forward case: depth error for

angular noise on cam relative pose angular noise on cam relative pose

(c) Stereo case: depth error for (d) Forward case: depth error for
transl. noise on cam relative pose transl. noise on cam relative pose

(e) Stereo case: depth error for (f) Forward case: depth error for
tracking noise in pixel location tracking noise in pixel location

source: author
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Camera relative pose is composed of six parameters, three orientation angles
𝜎𝑎 and three translation displacements 𝜎𝑡 as shown in equations 7.13 and 7.14, one
for each axis. Gaussian noise was added to each orientation angle with zero mean
and standard deviation degrees. Error in camera relative translation used standard
deviation of units of distance.

𝜎𝑎 = (︀0.005, 0.01, 0.02, 0.04, 0.08⌋︀ (7.13)

𝜎𝑡 = (︀0.0025, 0.005, 0.01, 0.02, 0.04⌋︀ (7.14)

The third main source of error in triangulation is inaccuracy in feature track-
ing. To test robustness for image processing errors Gaussian noise was added to the
located pixel coordinates 𝜎𝑝 = (︀0.1, 0.2, 0.4, 0.8, 1.6⌋︀ pixels in both images.

The test used a virtual camera with resolution of 10242 pixels and focal length
of 512 pixels. In each iteration, a random point set of 1000 points were generated in
front of the cameras, with distances ranging uniformly from 5 to 25 units of distance.
Distance between cameras is one unit of distance.

Table 7.1 resumes the test set parameters. The test was repeated 1000 times.
Average depth error is plotted in the charts of figure 7.5. On the charts the yellow
bars show the depth error of the optimal method and the red bars the errors of
the proposed method for the different noise levels in different parameters. In the
absence of errors both methods yield results that are equal up to the sixth decimal
digit.

It is possible to note that for the stereo case (figs 7.5 𝑎, 𝑐 and 𝑒), the proposed
and optimal methods have equivalent depth estimations, and in fact the average error
in all stereo cases are in accordance in at least up to the fifth decimal digit. Those
results show that for stereo applications that aim at finding feature distance from
the camera, the proposed method can replace the optimal method with virtually no
loss of precision.

The forward case is much less stable as can be seen by the error scale of
figures 7.5 𝑏, 𝑑 and 𝑓 . The proposed method shows larger discrepancies from the
optimal method for forward motion in most cases, the error increase however is not
significantly worse. In some cases, probably due to stability issues when finding poly-
nomial roots, the proposed method slightly outperforms the optimal triangulation
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method.

7.4 Chapter Conclusion

This chapter presented a simple light-weight triangulation method proposed
in (PEREIRA et al., 2018) that is suitable for practical applications in which the
system was tested.

The chapters starts with the development of the fast triangulation methods,
followed by a comparison of the estimated depth to the optimal method developed
in (HARTLEY; STURM, 1997).

For the error levels of camera pose estimation seen in the performed tests
(10−3 degrees per meter and translation errors in the order of 1%) both the proposed
and the optimal methods present coincident depth estimations. The proposed trian-
gulation method’s utility is addressed in section 8.2. Results of the fast triangulation
with real data are analyzed in chapter 9.
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8 CAMERA POSE ESTIMATION

"There is nothing insignificant in the world. It all depends on the point of
view."

Johann Wolfgang von Goethe

This chapter considers the estimation of camera relative translation and ro-
tation. Section 2.3.4 mentions the Perspective-n-Point (PnP) problem, which is the
estimation of camera pose based on the 3D positions of points and their projections
on the image plane.

In this application the scene structure, and therefore the 3D position of points,
is not known and must be estimated along with the camera pose. The method that
alternates triangulation and PnP is called Resection-Intersection (RI).

In RI an initial camera pose is used for triangulation and initial point po-
sitions are estimated. The calculated point positions are then used to update the
camera pose. And the algorithm repeats the process until a stop criterion is met.

As mentioned in section 1.4, camera pose is represented by either a vector
w containing three rotations and three translations relative to the last estimated
camera pose, or by the 3×4 matrix T. The Euler-Rodrigues formula (BANCHOFF,
1990) can be used to convert between the vector w and the matrix T. In the next
sections two methods based on triangulation followed by PnP are addressed.

8.1 Cyclic Three-View Pose Estimation: CYC_MVO

Regular RI suffers from slow convergence and local minima problems as ana-
lyzed in (TRIGGS et al., 2000). An alternative to two-view RI is to use a sequence
of frames and perform triangulation and camera pose estimation in pairs of frames
inside the window. The work (SONG; CHANDRAKER; GUEST, 2013; SONG;
CHANDRAKER; GUEST, 2016) uses groups of 10 frames for pose estimation.

The method presented in this section CYC_MVO was proposed in (PEREIRA
et al., 2017b). It combines the use of feature correspondences in a small set of three
frames and the ideas from chapter 4 to estimate camera pose.
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The module receives as inputs the (𝑢, 𝑣) image coordinates of corresponding
matched image regions, and the last camera displacement to calculate the new
camera displacement as shown in figure 8.1.

Figure 8.1: Cyclic Estimation
(a) Estimate points using T1,0 (b) Estimate T0,2 using points

(c) Estimate points using T0,2 (b) Estimate T2,1 using points

source: author

In figures 8.1 three cameras with centers in (𝑐0, 𝑐1, 𝑐2) view three points
(𝑝0, 𝑝1, 𝑝2). The setup is equivalent to a single camera in three different moments.
The parameter being adjusted is marked in red in each image.

In the first moment (𝑎) the last relative camera pose 𝑇1,0 is used to triangulate
the points 3D positions. In the second moment (𝑏) the calculated points are used to
estimate the relative pose from camera 0 to camera 2. Another triangulation step is
performed in image (𝑐) to update the point’s positions. And the relative pose from
camera 2 to camera 1 is finally calculated in (𝑑).

The algorithm then can continue to alternate triangulation and PnP in a
cyclic approach. If it is assume that (𝑐0, 𝑐1, 𝑐2) represent the center of the same
forward-moving camera at moments (0, 1, 2), where 𝑐2 is closer to the features, then
the algorithm behaves as a backward moving estimator inside a three images batch.

In the algorithm 1 features in pairs of images are used in a cyclic way, that is,
first correspondences in images 𝑘, 𝑘 − 1 are used, then 𝑘 − 1, 𝑘 + 1 and finally 𝑘 + 1, 𝑘.
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Algorithm 1 Cyclic BA algorithm
function Cyc_BA(𝑇𝑘,𝑘−1, 𝑈𝑘−1,𝑘,𝑘+1)

num_cyc ← 0,
rep ← max_rep
threshold ← init_threshold
𝑇𝑘−1,𝑘 ← 𝐼𝑛𝑣𝑒𝑟𝑡(𝑇𝑘,𝑘−1)

while rep>threshold & num_cyc<max_cyc do
𝑑𝑘−1 ← 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑇𝑘−1,𝑘, 𝑈𝑘, 𝑈𝑘−1)

𝑇𝑘+1,𝑘−1 ← 𝑆𝑜𝑙𝑣𝑒𝑃𝑛𝑃 (𝑈𝑘−1, 𝑑𝑘−1, 𝑈𝑘+1)

𝑑𝑘+1 ← 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑇𝑘+1,𝑘−1, 𝑈𝑘−1, 𝑈𝑘+1)

𝑇𝑘,𝑘+1 ← 𝑆𝑜𝑙𝑣𝑒𝑃𝑛𝑃 (𝑈𝑘+1, 𝑑𝑘+1, 𝑈𝑘)

𝑑𝑘 ← 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑇𝑘,𝑘+1, 𝑈𝑘+1, 𝑈𝑘)

𝑇𝑘−1,𝑘 ← 𝑆𝑜𝑙𝑣𝑒𝑃𝑛𝑃 (𝑈𝑘, 𝑑𝑘, 𝑈𝑘−1)

𝑟𝑒𝑝← 𝐺𝑒𝑡𝑅𝑒𝑝𝑟𝑜𝑗(𝑈𝑘−1, 𝑈𝑘, 𝑑𝑘, 𝑇𝑘−1,𝑘)

num_cyc, threshold ← num_cyc+1, threshold + 𝛿
end while
return 𝐼𝑛𝑣𝑒𝑟𝑡(𝑇𝑘,𝑘+1)

end function
source: author

The triangulation method of section 2.3.3 is used to calculate depth. SolvePnP uses
Levenberg-Marquardt non-linear optimization in a RANSAC approach to estimate
camera displacement. At each iteration a subset of features is randomly selected
and camera pose is estimated based on the subset. The median error is calculated
for all features and the solution with the lowest error is elected.

Small errors in camera pose estimation, cause larger re-projection errors
in close features due to large displacement along an incorrect epipolar line, and
RANSAC can select only far points which are less sensitive to camera translation.
To avoid this situation, the system divides the points in two sets with the same
number of points, based on their distance to the camera. The median is calculated
for close points and far points and the average of medians is used as the fit criterion
for RANSAC.

When system is initialized the first relative camera pose estimation must be
performed without previous knowledge of motion. Three initial guesses of forward
motion are made, with three different speeds. The solution with lowest reprojection
error is selected and scale of camera translation is set to the first recovered depth to
ground estimation, with the method outlined in chapter 6. Results of camera pose
estimation will be performed in the chapter 9.
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8.2 Two-View Resection-Intersection: RI_MVO

Classical Bundle-Adjustment (TRIGGS et al., 2000) attempts to simultane-
ously optimize the 3D feature position and camera poses as a single sparse opti-
mization problem. The Bundle-Adjustment variation that alternates optimization
of camera pose and point position is called Resection-Intersection (RI) (TRIGGS et
al., 2000) as illustrated in figure 8.2. In the figure, 𝐶𝑘 represents the camera position
and orientation at time 𝑘, w is the vector containing the camera relative translation
and rotation from time 𝑘 to time 𝑘 + 1, P is a set of 3D points and U is the set of
features on the image planes 𝑘 and 𝑘 + 1.

Figure 8.2: Resection Intersection Cycle
(a) Resection (b) -Intersection

source: author

This section addresses resection-intersection technique for two-view camera
pose estimation introduced in (PEREIRA et al., 2018) here referred as RI_MVO.
The key algorithmic change of the proposal is to account for the variation of the 3D
position of points when calculating the incremental adjustments in camera pose.

The technique makes an intense use of triangulation (6 operations for each
camera pose step update), making triangulation a critical element of camera pose
estimation. In order to reduce the cost of feature 3D position estimation, the fast
projective invariant, inexact triangulation method from chapter 7 is used.

8.2.1 Gauss-Newton Applied to Projection Minimization

This subsection describes how nonlinear optimization, in particular the Gauss-
Newton (GN) algorithm (BJORCK, 1996), is used for projection error minimization.
GN is an iterative optimization algorithm that adjusts the parameters w in order



81

to minimize the residual function 𝑓 as shown in equation 8.1. In each step, the al-
gorithm calculates an update increment according to equation 8.2. In the equation,
r is the residual to be minimized, J is the Jacobian matrix of partial derivatives of
r with respect to each parameter of w and 𝑠 is the iteration step.

arg min
w

𝑓(w) =
𝑛−1
∑
𝑗=0

𝑟2
𝑗 (w) (8.1)

w(𝑠+1) = w𝑠 +Δw = w𝑠 − (J𝑇 J)−1 J𝑇 r(w) (8.2)

Although robust residual functions have been proposed (TRIGGS et al.,
2000), in this work the standard projection difference is used as error. That is
r = (Δ0𝑢, Δ0𝑣, Δ1𝑢, ...Δ(𝑛−1)𝑣)𝑇 where Δ𝑖𝑢 and Δ𝑖𝑣 are the horizontal and vertical
differences from projection to viewed position for the 𝑖𝑡ℎ feature: Δ𝑖𝑢 =𝑖 𝑢 −𝑖 �̂�. For
a set of 𝑛 features r is a column vector with 2𝑛 elements, and J is a 2𝑛 × 6 matrix
where each column 𝑖 ∈ (︀0, 5⌋︀ is the partial derivative of r with respect to the 𝑖𝑡ℎ

element of the parameter vector w.

8.2.2 Residual and Partial Derivatives Calculation

Algorithm 2 presents the calculation of the residuals and Jacobian matrix in
each iteration. In the algorithm the residuals are calculated in three steps: (1) trian-
gulation to update the 3D position of points, (2) projection of triangulated positions
onto the image plane, and (3) difference of projection from the image localized fea-
ture. No prior information about the point 3D position is used. For simplicity of
notation the constant camera intrinsic parameters matrix K was suppressed. The
vectorization function 𝑣𝑒𝑐 transforms an 𝑛 × 2 matrix in a vector of size 2𝑛.

Matrix J is calculated numerically, a small variation is applied to each compo-
nent of vector w𝑘 to approximate the partial derivative 𝜕Û⇑𝜕w𝑘(︀𝑖⌋︀. In the algorithm
wΔ,𝑖 is a vector whose 𝑖𝑡ℎ element is a small value in order of 10−6 and every other
element is zero. Functions 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒 and 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 are the fast triangulation and
regular projection of a point into an image.

To calculate one update step seven triangulation and projection operations
are carried out, one for the residual and one for each of the six parameters of the
camera pose. A modification that reduces one triangulation per update cycle and



82

Algorithm 2 Residuals and Jacobian Calculation
1: function Get_J_r(w𝑘, U𝑘, U𝑘+1)
2: /*residuals: triangulation, projection and difference*/
3: P = 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(w𝑘, U𝑘, U𝑘+1)

4: Û𝑘+1 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(w𝑘, P)

5: r = 𝑣𝑒𝑐(Û𝑘+1 −U𝑘+1)

6:
7: /*for each Jac col: calc 𝜕U/𝜕w[i]*/
8: while 𝑖 ∈ (︀0, 5⌋︀ do
9: w𝑘,𝑖 = w𝑘 +wΔ,𝑖

10: PΔ,𝑖 = 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(w𝑘,𝑖, U𝑘, U𝑘+1)

11: Û𝑘+1,𝑖 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(w𝑘,𝑖, PΔ, 𝑖)

12: J𝑖 = 𝑣𝑒𝑐(Û𝑘+1,𝑖 − Û𝑘+1)⇑(w(︀𝑖⌋︀Δ,𝑖)

13: end while
14: return (r, J)
15: end function

the handling of outliers in the feature tracking are further described in section 8.2.3.

8.2.3 Implementation Issues

The proposed resection-intersection algorithm uses feature correspondence
to estimate each new relative camera pose. Non-static scene objects and tracking
failure generate bad feature correspondences that are traditionally dealt with a
RANSAC scheme. In this implementation a sequential backward selection approach
was used. At each iteration the projection error for all features is calculated and
the features with largest errors are removed from the set of features used for camera
pose estimation. The update loop stops when the median projection error of the
features used for estimation falls below a threshold.

Estimating both camera pose and points positions represents an undeter-
mined problem since different scales of translation movement and distances from
points to camera have exactly the same projection characteristics. There is no guar-
antee that the scale of the movement will be maintained when a new camera pose
is estimated. In the present application, the dominant translation direction is along
the 𝑧 axis (forward movement), and abrupt changes in car speed during the 0.1
seconds inter-frame interval are not expected. To remove the extra degree of free-
dom and maintain a scale close to the previously estimated scale, the last calculated
relative camera pose w𝑘−1 is used as initial pose estimation, and the translation on
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𝑧 axis 𝑡𝑧 is kept constant. The update step is calculated for the first five elements
of the relative pose, the last column of the Jacobian is not calculated, and six tri-
angulations and projections are performed for each update cycle. Naturally the car
speed is not constant, but varies smoothly. The true translation is adjusted based
on the absolute scale extraction from chapter 6.

8.3 Chapter Conclusion

This chapter discussed the camera pose estimation from feature correspon-
dences. Two algorithms that minimize the difference from 3D projection to tracked
features are considered.

The Cyclic Three-View Pose Estimation methods use a set of three frames
and emulate backward movement within the frame set. RANSAC is used to detect
and remove outliers.

The Two-View Resection-Intersection uses only two frames and a modified
Jacobian calculation to improve RI convergence rate. The method uses several
triangulations in each camera pose update step, in a Gauss-Newton non-linear op-
timization loop.

The convergence rate allowed sequential backward selection to be used in
stead of RANSAC for outlier removal. Implementation and analysis of the methods
are carried out in chapter 9.
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9 MVO SYSTEM IMPLEMENTATION AND RESULTS

"I love fools’ experiments. I am always making them."

Charles Darwin

In order to verify the conceived algorithms performances, full MVO systems
were assembled. A popular database was then used to measure the system output
and enable comparison to other designs. This chapter describes the developed MVO
solutions and presents the achieved results.

Two systems using a similar architecture have been developed during the
course of this work. The first, proposed in (PEREIRA et al., 2017b) used three
image frames and the cyclic estimator from section 8.1, and the second using two
images as input and the estimator from section 8.2. The feature tracker and scale
estimator present minor changes in both designs. Next section describes the common
architecture.

9.1 Overall System Architecture

As stated in section 2.1, sparse visual navigation pipelines follow a resembling
pattern composed of feature generation, geometric pose-scene estimation and scale
recovery. Figure 9.1 shows the simplified system architecture used in this work.

Figure 9.1: System architecture

Source: Author

The Feature Detection and Tracking module receives as input the images from
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the camera and generates feature correspondences. The Camera Pose and Scene
Solving module uses the tracked features and previously relative camera pose to
calculate the current camera rotation and translation. The Scale Recovery module
extracts and adjusts movement translation scale. The 𝑍−1 symbol represents a
memory used to provide a one frame delay in camera pose.

9.2 KITTI Dataset

Although images of reconstructed scenes and estimated paths give a sub-
jective idea of a 3D algorithm precision, the use of a public dataset provides an
objective way of measuring and comparing achieved results.

In this work the KITTI Dataset (GEIGER; LENZ; URTASUN, 2012a) was
chosen as target application. The dataset for VO comprises a collection of 22
trajectories where a car equipped with cameras and a high precision GPS drives
around cities and in highways. Trajectories are recorded as image sequences at
10 frames per second, and for each image the GPS corrected camera position and
orientation is saved as ground truth.

For 11 of the trajectories the GPS corrected ground truth (camera position
and orientation) is supplied, to be used for system calibration. For the other 11
trajectories the ground truth is not supplied. Trajectories are calculated using the
provided images, and estimated results can be uploaded to the database developer’s
site (GEIGER; LENZ; URTASUN, 2012b). Rotation and translation errors are
published and can be used for comparison to other solutions.

In the trajectories the car speed varies from 0 to around 90 Km/h, pedestri-
ans, bicycles and moving cars, as well as steep turns and fast moving features make
this a challenging application. The number of frames for the first 11 sequences is
shown in table 9.1

Table 9.1: Trajectories Containing Ground Truth
sequence 00 01 02 03 04 05 06 07 08 09 10

num frames 4540 1100 4660 800 270 2760 1100 1100 4070 1590 1200

The metrics used to evaluate the system, proposed by the database developers
are rotation error in degrees per meter and translation errors as a total displacement
percentage. Trajectories are split in segments of 100 to 800 meters, and errors are
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averaged over all trajectory segments.

9.3 System Calibration

In the course of this work, several parameters have been adjusted, the most
important ones will be discussed in this section. In the KITTI dataset (GEIGER;
LENZ; URTASUN, 2012a) the GPS recorded camera pose is provided for the first
11 sequences for system calibration, and used to adjust the following parameters.

In feature detection and tracking the number of images in pyramid was set to
3, and windows sizes for feature detection is 3 by 3 pixels and for feature tracking 21
by 21 pixels. Decrease of pyramid levels led to poor tracking of features with high
inter-frame displacement and increase led to increased number of outliers. Increase
in window size of feature detector penalized system performance and showed no
improvement in feature quality. Increase in tracker windows amplified tracking
error.

Scale estimation needs parameter tuning in both ground feature selection and
absolute scale estimation. Those are related to the ground zone, acceptable image
gradient and tracking characteristics. Those parameters depend on the camera
position and resolution. The camera recorded ground truths of sequences 0 to 11
were used to manually select good ground points and adjust those parameters.

In camera pose estimation step, the iterative estimation loop stops when the
median projection error falls below a 0.1 pixels threshold. This value was calculated
as the average median re-projection error after outlier removal in the test sequences.

The number of outliers removed in each backward selection iteration used
in this work is 5% of the total number of features. A value of 2% showed similar
accuracy with slower conversion rate (since more iterations are needed to remove
outliers), and values higher then 10 % lead to unstable situations when larger
proportion of outliers are tracked (moving cars and fast turns).

9.4 A Note on Speed

During the sequences contained in the used dataset, there are moments in
which the car speed reaches zero (the car stops). If there is no translation, triangu-
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lation can not be performed and such situations must be avoided.
Most of the works that use the database employ a key-frame based approach.

In those cases a sub-set of images presenting a minimum inter-frame translation are
chosen as reference avoiding low speed problems.

Since the simple used approach uses two consecutive frames, a method to
detect stop condition must be used. In this work if the average feature displacement
is below 2 pixels the car is considered to be stopped and the frame is rejected.

High speed and steep curves, are also challenging, and usually present slightly
higher average error than normal driving. For the speed interval (0 𝑡𝑜 90𝑘𝑚⇑ℎ) and
dataset frame rate (10 𝑓𝑟𝑎𝑚𝑒𝑠⇑𝑠) the error is tolerable and no special algorithm was
used for those cases.

9.5 Results

The algorithms were implemented in Python, using SciPy (JONES et al.,
2001–) and OpenCV (BRADSKI, 2000) for the low level functions. This section
presents the achieved results.

Figure 9.2 shows the estimated trajectories for the first 11 sequences in me-
ters. The figures give a qualitative idea of estimation precision for the monocular
odometry system. Since estimation results for both evaluated pose estimation algo-
rithms are very similar, only the trajectories estimated with algorithm 8.1 is showed.
The ground truth is solid green and estimations in dashed blue.

Although figure 9.2 show only horizontal vehicle displacement, the following
results take into account the three axes for both camera rotation and translation.

Table 9.2 lists the results of both estimation methods for the first 11 routes,
evaluated with the metrics proposed by the database developers. In the table trans-
lation error is measured as total percentage difference from estimated displacement
to the ground truth in the three dimensions. Rotation errors are measured in degrees
per traveled meter.

The table shows that the RI method reaches a slight improvement even using
only two images for estimation. In both methods translation errors are in the order
of 1% while rotation errors are close to 0.003 degrees per meter.
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Figure 9.2: Estimated Trajectories and Ground Truth
(a) traj 00 (b) traj 01 (c) traj 02

(d) traj 03 (e) traj 04 (f) traj 05

(g) traj 06 (h) traj 07 (i) traj 08

(j) traj 09 (k) traj 10

source: author

9.5.1 RI_MVO Convergence Rate

A problem of regular Resection-Intersection is the rate of optimization. In
order to analyze the convergence rate, a standard RI version of the algorithm of
section 8.2 was implemented suppressing the triangulation inside the loop (line 10
in algorithm 2). The image 73 of sequence 3 was used as an example, while the car
performs a right turn (shown in figure 9.3), feature correspondences were tracked
and outliers previously removed. The initial camera pose was set to pure forward
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Table 9.2: Per trajectory translation error in [%] and rotation errors in [deg/m]

seq translation (︀%⌋︀ rotation (︀𝑑𝑒𝑔.10−3⇑𝑚⌋︀

CYC_MVO RI_MVO CYC_MVO RI_MVO
00 1.03 1.16 3.0 3.1
01 1.37 1.18 2.3 3.0
02 1.33 0.99 3.8 2.7
03 0.87 0.87 2.2 2.3
04 0.86 1.12 2.4 3.8
05 0.99 0.68 3.7 2.7
06 0.73 1.69 2.6 2.5
07 1.12 1.21 5.7 6.8
08 1.23 1.05 2.8 2.9
09 1.54 0.96 2.8 2.4
10 1.02 1.49 2.4 2.8

Avg 1.23 1.02 2.8 2.8

movement w = (0, 0, 0, 0, 0, 1) and fed to both the proposed and the standard RI.

Figure 9.3: Car Turn Example
(a) first image (b) second image

source: KITTI Dataset (GEIGER; LENZ; URTASUN, 2012a)

The proposed algorithm finds camera relative pose and point position that
minimize the distance from located features to calculated projections. The median
is regarded as a better error measure then the mean for being less affected by large
errors due to tracking failure or non-static objects. Figure 9.4 shows the median
projection error for both versions.

In the figure the vertical axis represents the median projection error in pixels
and the horizontal axis is the iteration. The loop stops when the median errors falls
below 0.1 pixels. In the proposed method the median projection error falls from
5.7 pixels to about 0.35 in the first iteration, and to about 0.05 in the second. In
the standard version, 14 iterations were required for the projection error to drop to
about 0.098 pixels.

The same test was repeated for all 4660 poses of sequence 02, the longest
of the first 11 sequences. A histogram of the number of iterations needed for the
median residual to reach 0.1 pixels is shown in figure 9.5. For the proposed method,
up to three iterations were needed to reach the stop criterion in 93% of the cases.
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Figure 9.4: Convergence Rate Comparison

Figure 9.5: Number of Iterations Until Convergence Histogram

Source: Author

9.5.2 Scale Estimation

Scale recovery is independent of rotation estimation. Figure 9.6 show the
scale recovery results. The green line is the true absolute per-frame 𝑧 translation,
and magenta points are instantaneous estimations. The red line shows the estimated
speed.

Figure 9.6: Absolute Scale Estimation

Source: Author

In the figure an especially turbulent segment is presented. The car drives
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through irregular asphalt, and bounces up and down (pitch). The oscillations in the
measurements are clear after frame 800.

In the figure very few bad points are selected. The multi-attribute ground
point selector ensures that the magenta circles are close to the green line in figure
9.6.

9.5.3 Throughput

The single thread implementation was executed in an Intel i7-3770K CPU @
3.5GHz. To meet real time requirement, the worst case allowable time per frame
should be below 0.1 second for the used frame rate of 10 images per second. The
average time per frame for the developed methods are shown in table 9.3.

Table 9.3: Seconds per Frame
Method Seconds per Frame
CYC_MVO 0.17s
RI_MVO (opt triang) 0.12s
RI_MVO (fast triang) 0.07s

To highlight the importance of the fast triangulation of chapter 7 two versions
of the RI systems are presented. One that uses the optimal method from OpenCV
and the second that uses the optimal method by the proposed triangulation.

A profiling of the RI_MVO system is shown in table 9.4. In the table it is
possible to note that image processing module is the most time consuming step,
responsible for about half of the system computational load.

Table 9.4: Profiling Results RI_MVO
Operation time [%] avg time/frame [s]
Load Image 06.0 0.0045
Detection and tracking 50.2 0.0375
Resection Intersection 33.9 0.0250
Scale Estimation 08.9 0.0067
Other tasks 01.0 0.0007
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9.6 Analysis and Comparison

This section provides a brief analysis of the results presented in the last
section, and a comparison to other vehicular MVO solutions. The fast triangulation
method is analyzed first, followed by camera estimation algorithm and a comparison
of the MVO results to other implementations.

The proposed triangulation benefits from the projection invariance property,
since the distance minimized is a projection distance and should not be confused
with the midpoint method as explained in (HARTLEY; ZISSERMAN, 2004). Re-
sults from table 9.3 show a significant lower computational cost when compared to
the optimal triangulation from (HARTLEY; STURM, 1997) and no increase in pre-
cision estimation was noticed. Triangulation methods like (KANATANI; SUGAYA;
NIITSUMA, 2008) and (LINDSTROM, 2010) provide results similar to the optimal
method, but still present a computational cost that is at least twice of the proposed
triangulation.

Comparison of triangulation methods with synthetic data, in absence of errors
shows the same result up to the sixth decimal digit. In the presence of errors (both
in camera pose and feature tracking) the two methods generate very similar results.
The main difference is that the optimal triangulation finds the feature 3D position
that minimizes the error in both frames, while the proposed fast method considers
the reference frame as being correct and finds a feature position that minimizes
the projection error in the second frame. For that reason, the residuals (differences
between calculated and traced feature positions) are larger in the second frame when
using the fast triangulation method. Those residuals are the minimization objective
in the proposed Gauss-Newton implementation.

In the in-depth revision of Bundle-Adjustment made in (TRIGGS et al., 2000)
resection-intersection is classified as a low convergence-rate method. The assertion
is verified by the results of figures 9.4 and 9.5. The analysis in (TRIGGS et al.,
2000) is oriented towards large bundle-adjustment problems that concentrate on
minimizing projection related residuals of several views simultaneously, while the
proposed method uses only two images. When more than two views are used, trian-
gulation can be solved either with algebraic solutions as in (KUKELOVA; PAJDLA;
BUJNAK, 2013) or with non-linear optimization as in (HEDBORG; ROBINSON;
FELSBERG, 2014) both with significantly higher computational cost.
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A common problem with optimization based two-view pose estimation is
convergence to local minima. Small errors in camera pose and feature position
estimation may lead to stable configurations of scene structure and camera pose
that do not correspond to the real situation, specially in the presence of outliers.
Robustness to local minima is improved if more views are used in the estimation of
either camera pose or scene structure.

Among the monocular solutions present on the KITTI benchmark, the works
(PEREIRA et al., 2017a), (FANANI et al., 2016) and this work use only two views
for pose estimation. The results from (PEREIRA et al., 2017a) are not comparable,
since the images were processed in reversed order, and the system benefits from
robustness from backward movement. In (FANANI et al., 2016) the intensity dif-
ferences of pixels in a patch around the feature are minimized, instead of projection
distance. In that solution coarse camera pose estimation and outlier removal are
both carried out before the optimization process, which also increases the system
robustness. The methods used in this work use either 3 frames or only the last two
images for pose estimation. The last previously calculated camera pose is enough
for optimization initialization given the constrained movement of a camera equipped
vehicle.

The fast convergence rate of the proposed RI_MVO allows for bad corre-
spondences to be sequentially removed, provided there are less outliers than inliers
or that the outliers are not correlated. For the 22 sequences of the KITTI dataset,
up to three outlier removal iterations were needed in 65% of the cases.

The ground truth (GPS detected camera poses) is not supplied for trajec-
tories 11 to 21, camera pose estimations can be uploaded to the dataset website,
and average results are published. The works presented in this thesis are labeled
RI_MVO and FVO in the benchmark (GEIGER; LENZ; URTASUN, 2012b). Ta-
ble 9.5 use information from the benchmark to compare the achieved estimation to
other monocular published works.

From the comparison of table 9.5, it is possible to note that the achieved
precision in both implementations are very close to each other, which is expected
since both algorithms minimize the projection difference, and the feature tracking
is the same. The RI method achieves lower execution time in the same hardware
platform while using only two views, no tracking cross check and no RANSAC after
initialization.
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Table 9.5: Results Comparison for Trajectories 11-21
Work Transl [%] Rot [deg/m] Runtime Environment
VISO2-M 11.9 0.0234 0.1 1 core @ 2.5Ghz (C/C++)
MLM-SFM 2.54 0.0057 0.03 5 cores @ 2.5Ghz (C/C++)
FTMVO 2.24 0.0049 0.11 1 core @ 2.5Ghz (C/C++)
PMO / PbT-M2 2.05 0.0051 1.0 1 core @ 2.5Ghz (Python + C/C++)
CYC_MVO 1.29 0.0031 0.2 1 core @ 3.5Ghz (Python + C/C++)
RI_MVO 1.13 0.0032 0.07 1 core @ 3.5Ghz (Python + C/C++)

The work named VISO2-M can be found in (GEIGER; ZIEGLER; STILLER,
2011), MLM-SFM is in (SONG; CHANDRAKER; GUEST, 2016), FTMVO is in
(Mirabdollah M., Mertshching B. (GET Lab, 2015) and PMO / PbT-M2 is in (FAN;
WANG; WU, 2016).

An accurate computational complexity analysis is not trivial since different
solutions are developed in different environments and executed in different hardware.
The work from Song and Chandraker (SONG; CHANDRAKER; GUEST, 2016) is
a C/C++ multi-thread system that presents high throughput. Tracking is based
in ORB feature descriptor (RUBLEE et al., 2011) which is faster than the KLT
tracker (HARRIS; STEPHENS, 1988) (BOUGUET, 2000) used by (PEREIRA et
al., 2017b) but in the experiments performed in the course of this work ORB features
presented a lower tracking accuracy.

The combination of scale transmission and absolute scale correction as ex-
plained in 8.2, slightly improved the translation estimation when compared to FVO
(PEREIRA et al., 2017b). The rotation accuracy however was very similar. It is
important no note that scale estimation is important for translation errors, but has
nearly no impact on orientation precision.

9.7 Chapter Conclusion

This chapter presented two variations of a monocular visual odometry system
for camera equipped vehicles. The system used concepts discussed in last chapters
to improve pose estimation.

A cyclic PnP algorithm (CYC_MVO), with variable reprojection threshold
was used to calculate camera pose with the three last images processed in reversed
order or with a resection-intersection two view process (RI_MVO). Scale was recov-
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ered using ground points selected with the multi-attribute ground feature selector.
Fast triangulation was used for depth estimation. And feature tracking was en-
hanced with perspective image transformation.

Python and OpenCV implementations tested on the KITTI dataset, achieved
rotation and translation precision superior to all other published works, using only
the last two or three image frames as input.



96

10 CONCLUSION

"The true sign of intelligence is not knowledge but imagination."

Albert Einstein

This thesis presented a new monocular navigation system for camera equipped
vehicles. The system follows the standard sparse location and mapping pipeline,
incorporating significant advances in feature tracking, scale detection and mainly
camera relative pose estimation.

This work started with an in depth analysis of the characteristics of projection
error in movement along the optical axis. Forward and backward camera movement
are compared and the conclusions of that study point to a cyclic three-view pose
estimation algorithm that outperformed published works of the time.

The cyclic pose estimator is further improved in a two-view Resection Inter-
section (RI) based camera pose estimator that present robustness and convergence
rate superior to other implementations. The conceived method is based on non-linear
optimization for projection residual minimization. The key idea in the formulated
algorithm is to take into account the estimated depth deviation when applying an
incremental camera pose variation.

As the developed RI pose estimator demands multiple triangulations for each
camera pose update iteration, a fast inexact triangulation algorithm is proposed.
The method estimates feature depth based on Euclidean distance minimization from
projection to traced feature in a single image.

The developed two-view camera pose estimation method combines simplic-
ity, performance and robustness like no other two-view bundle adjustment algorithm
used in MVO solutions on the KITTI dataset. It is therefore an important advance-
ment that is likely to present valuable results in other computer vision problems such
as sparse 3D reconstruction, stereo vision navigation or augmented reality applica-
tions. To that end, it is intended to translate the algorithm to C++ and integrate
it into upcoming versions of the OpenCV (BRADSKI, 2000) library.

The feature tracker precision for ground points is improved using Lucas-
Kanade algorithm over a perspective warped version of the original target image.
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The inverse warping map is used to translate the found feature positions to their
real locations in the original image.

Camera nodding detection and compensation enhances scale estimation based
on fixed known camera height. Camera scale transmission based on close points helps
smoothing the predicted movement.

The developments are combined in a monocular odometry system and tested
in a popular vehicle visual navigation database. Achieved precision in camera pose
estimation outperforms the state of the art published works in visual odometry,
proving the efficiency of created algorithms.

Besides the technical contributions of the thesis proposal, the present work
is expected to serve as a seminal work for future academic thesis and dissertations
in Computer Vision and microelectronics. Both extending the camera pose esti-
mation and scene structure aproximation algorithms to other CV related problems
and proposing parallel implementations suitable for hardware accelerated real-time
applications.

Dealing with limited visibility scenarios due to fog, snow or bright sun remain
as a future effort. Other promising continuation directions include tests in different
datasets aimed toward unmanned aerial vehicles, 3D point cloud generation or multi-
camera SLAM systems.
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