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ABSTRACT

The medical field has an urgent need for new analytical methods that are able to
process complex and voluminous data, improving diagnostic tools and the knowledge
regarding disease risk factors. In this sense, machine learning (ML) algorithms have
become increasingly popular in the analysis of clinical and epidemiological data.
The aim of this work is twofold. First, we carry out a systematic literature review
(SLR) to investigate recent efforts towards the use of ML algorithms in the study of
chronic diseases and summarize, in a comparative way, the performance of distinct
methods for training prediction models and detecting risk factors. Second, based
on the knowledge derived from the SLR, we apply a ML methodology to analyze
data from an epidemiological study that investigated the impact of socioeconomic
factors on the occurrence of chronic diseases, including diabetes. We apply multiple
ML algorithms and assess their performance for training accurate prediction models
and identifying important risk factors for the development of this disease. Our SLR
results corroborate the notion that ML technology is growing exponentially in the
medical research community, with several ML methods presenting promising results,
which are extremely competitive in relation to traditional approaches such as clinical
prediction scores derived by experts. Moreover, our experimental results with the
diabetes dataset suggest that the Random Forest algorithm have the best predictive
capability in the explored scenario, and that ML, in general, has great potential
to elucidate new associations among socio-demographic variables and diabetes that
may be useful for the development of new public health intervention programs to
reduce the incidence of this disease.

Keywords: Machine learning. diabetes. decision tree. support vector machine.
random forest. logistic regression. nested cross validation. disease prediction. risk
factors.



Abordagens de aprendizado de máquina para predição de diabetes e
determinação de fatores de risco a partir de dados epidemiológicos

RESUMO

A área médica tem uma necessidade urgente de novos métodos analíticos capazes de
processar dados complexos e volumosos, melhorando as ferramentas de diagnóstico
e o conhecimento sobre os fatores de risco de doenças. Nesse sentido, algoritmos de
aprendizado de máquina têm se tornado cada vez mais populares na análise de dados
clínicos e epidemiológicos. O objetivo deste trabalho é duplo. Primeiro, realizamos
uma revisão sistemática da literatura para investigar os esforços recentes para o uso
de algoritmos de aprendizado de máquina no estudo de doenças crônicas e resumir,
de forma comparativa, o desempenho de métodos distintos para treinar modelos de
previsão e detectar fatores de risco. Em segundo lugar, com base no conhecimento
derivado da revisão sistemática da literatura, aplicamos uma metodologia de apren-
dizado de máquina para analisar dados de um estudo epidemiológico que investigou
o impacto de fatores socioeconômicos na ocorrência de doenças crônicas, incluindo
diabetes. Aplicamos vários algoritmos de aprendizado de máquina e avaliamos seu
desempenho para o treinamento de modelos precisos de previsão e identificação de
fatores de risco importantes para o desenvolvimento desta doença. Nossos resultados
da revisão sistemática corroboram a noção de que a tecnologia de aprendizado de
máquina está crescendo exponencialmente na comunidade de pesquisa médica, com
vários métodos de aprendizado de máquina apresentando resultados promissores,
extremamente competitivos em relação às abordagens tradicionais, como os escores
de previsão clínica obtidos por especialistas. Além disso, nossos resultados expe-
rimentais com o conjunto de dados do diabetes sugerem que o algoritmo Random
Forest tem a melhor capacidade preditiva no cenário explorado, e que o aprendizado
de máquina, em geral, tem grande potencial para elucidar novas associações entre
variáveis sociodemográficas e diabetes que podem ser úteis para o desenvolvimento
de novos programas de intervenção em saúde pública para reduzir a incidência desta
doença.

Palavras-chave: aprendizado de máquina, diabetes, árvore de decisão, regressão
logística, floresta aleatória, máquina de vetores de suporte, validação cruzada ani-
nhada, predição de doenças, fatores de risco.
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1 INTRODUCTION

According to Mendis (2014), “Noncommunicable diseases (NCDs) are one of
the major health and development challenges of the 21st century, in terms of both the
human suffering they cause and the harm they inflict on the socioeconomic fabric
of countries”. More than 14 million people die each year from noncommunicable
diseases, and most of them are from developing countries (MENDIS, 2014). In
particular, diabetes is a significant contributor to increased mortality rates due
to chronic diseases, being responsible for 1.6 million deaths around the world in
2015, and projected to be the seventh leading cause of worlwide deaths in 2030
(International Diabetes Federation., ). Hence, there is an urgent need for solutions
that may help improve early diagnosis of diabetes and other chronic diseases, as well
as the discovery of risk factors in a cost-effective and efficient way.

Numerous hospitals around the globe are, on a daily basis, collecting and
saving data from their patients in databases, which can be a valuable resource for
developing new methods to assist in clinical decision making. Substantial efforts are,
however, required to integrate and make sense of health care data in a big data scale
(BEAM; KOHANE, 2018). Due to data volume and complexity, new approaches
are necessary to effectively deal with large number of variables and detect the com-
plex relationships in the data. To this end, machine learning (ML) algorithms have
proven to be effective solutions for analyzing sizeable amounts of data simultane-
ously, and have helped to train predictive models with competitive performance in
comparison to traditional statistical methods, such as logistic regression.

Machine learning is a technology that can be observed throughout contem-
porary society and is able to learn a task with little human instruction or prior
assumptions (BEAM; KOHANE, 2018). ML algorithms have undergone continuous
development and have been applied with significant levels of success in almost all
areas of knowledge. Among these areas, medical sciences have profited from ap-
plications of ML in several distinct practical problems, including the procedures of
disease diagnosis and prognosis, prediction of disease recurrence, and identification
of preventable risk factors (KONONENKO, 2001; GUI; CHAN, 2017). It is already
recognized that ML is an increasingly necessary tool for the modern health care sys-
tem (BEAM; KOHANE, 2018). Nonetheless, the depth, power, and effectivenness
of these approaches within the study of the epidemiology of chronic diseases, as well
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as how they compare to traditional statistical predictive models, are still not well
characterized.

Therefore, the goal of this work is to investigate and explore the potential of
ML algorithms in the analysis of epidemiological data with the purpose of training
predictive models for NCDs and identifying preventable risk factors. In this context,
we first perform a systematic literature review (SLR) to identify the the state-of-the-
art on ML approaches in NCDs research and advance our understanding on which
ML methods have been applied and what is their potential in this specific domain.
Second, based on the solid review of the related literature and the practical references
provided by the SLR, we explore and evaluate the incorporation of ML algorithms
in epidemiological studies. Specifically, this research trains and analyzes the results
from four ML algorithms with the intent to advance diagnosis prediction and risk
factor analysis for diabetes disease. The four algorithms trained are the logistic
regression (LR), the decision tree (DT), the random forest (RF), and the support
vector machine (SVM). Our results corroborate the idea that ML has become an
increasingly prominent technology in medical research, especially in epidemiological
studies related to chronic diseases, and that it is extremely competitive in relation to
classical predictive models provided by logistic regression and clinical medical scores.
In addition, our experiments with diabetes-related data evidenced the suitability of
ML methods for pursuing good predictive performance for disease diagnosis and also
for highlithing important contributing factors for increased risk of disease, which
could be useful for the development of new public health intervention programs to
reduce the incidence of diabetes.

This thesis is divided into three major sections, a systematic literature review,
the methodology adopted for our ML experiments, and the results obtained from the
analysis of diabetes-related data using the aforementioned ML algorithms. Firstly,
Chapter 2 summarizes concepts related to ML and its algorithms that are related
to this research. Secondly, Chapter 3 details the SLR protocol, its execution, and
the statistics about the results. Thirdly, Chapter 4 describes the dataset and the
methodology adopted in our ML approach for training predictive models, including
pre-processing strategies. Lastly, Chapter 5 presents the results, the difficulties that
arose during model training, and, importantly, a detailed analysis of the resulting
statistics.
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2 THEORETICAL REFERENCE

This chapter acts as a theoretical basis for the concepts and algorithms uti-
lized and discussed in this thesis. Michalski, Carbonell e Mitchell (2013) provide
a strong conceptual definition of ML: “The field of machine learning is concerned
with the question of how to construct computer programs that automatically im-
prove with experience.”

Machine learning can operate as a set of algorithms that try to imitate the
human mind. ML algorithms achieve this imitation by “learning” a specific subject
without a human having to provide strict rules that define how a given subject
works. There are two major forms of ML algorithms, unsupervised and supervised
learning. Unsupervised learning occurs when there is no output variable. Supervised
learning occurs when both input and output variables are given, and the aim is then
to explain the dependent variable, which is the output, in terms of the independent
variables (ALGHAMDI et al., 2017). The performance of supervised learning is
measured by comparing the value of the known output and the predicted one. Since
the objective of this research is diagnosis prediction, which has a predefined output,
the focus here will be only on supervised algorithms.

2.1 Supervised Learning

Supervised Learning is a form of learning by experience, in which the algo-
rithms try to learn by examining a previously verified set of data, usually called the
‘training data’. This data contains a verified set of input and output combinations,
which allows the algorithm, firstly, to learn the connections between the input and
output values and, secondly, to try to develop a valid strategy to achieve the desired
output from an arbitrary input. After the algorithm has developed a way to predict
the output from the input based on the known data, new data can be fed into the
algorithm so as to predict or evaluate its efficiency.

In short, supervised learning aims to find a relationship between the input
data and the desired output, which is valid beyond specific case analyses. Thus, the
the extracted relationship should function for an arbitrary input, and this makes
it useful in predicting new cases where the same set of independent variables (i.e.
features) is available and the same dependent variable (i.e. class or output value) is
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necessary.

2.2 Algorithms

The main focus of this study is supervised ML algorithms for the purposes
of classification. Classification is the process of assigning groups or categories for a
determined set of inputs (ALGHAMDI et al., 2017). The supervised ML algorithm
maps each input onto one option among a predefined and limited set of possible
outputs.

In the following section, we provide a brief summary of the particular algo-
rithms that have been selected to be applied in the scope of this work. Since this
thesis does not aim to implement these algorithms, the particulars of this implemen-
tation are not discussed. Instead, this section focus on giving a basic understanding
of the algorithms and how they function.

2.2.1 Logistic Regression

Logistic regression is a linear statistical classifier that provides the probability
for each output class as an equation from the input values (ALGHAMDI et al.,
2017). The algorithm is based in mathematical theorems and can be more or less
sophisticated, depending on the intent, but the basic feature of LR is that the
algorithm, given an input, can predict the probability of a defined output class.

The training of a LR model involves minimizing an equation to a curve, in
a model that has extremely high probabilities in one class (y = 1), and extremely
low probabilities in the other (y = 0). The desired curve model is usually achieved
by a sigmoid function, which is obtained through the combination of all variable
values. There are certain mathematical models which explain how this function is
constructed and how it is minimized to fit the dataset; these explanations are highly
technical, and we refer to Géron (2017) for further details.

The LR algorithm contains a parameter for configuring how quickly the min-
imization function should approach the result. Apart from this, it is an extremely
simple algorithm and it is often considered the “classical” or mathematical form of
ML.
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2.2.2 Decision Tree

Decision trees are versatile ML algorithms, which can perform both classifica-
tion and regression tasks. They are powerful algorithms, capable of fitting complex
datasets (GÉRON, 2017). A DT consists of nodes in the form of a tree; starting
from the root, these nodes evaluate a predefined rule, for example, a condition,
or a mathematical operation. The leaves of the tree represent the predicted class
or value. One of the decision tree’s advantageous features is its transparency, this
means the resulting tree can be read and analyzed by a human (RAMEZANKHANI
et al., 2014). It is, furthermore, interesting to note that important features usually
appear closer to the root of the tree, whereas unimportant ones appear closer to the
leaves; thus the depth of the variables within the DT could be used as a metric of
importance (GÉRON, 2017). The employment of DT algorithms is widespread in
medicine and because of its interpretability feature, it is widely used for evaluating
risk factors (KARAOLIS et al., 2010).

Figure 2.1: Example of a simple decision tree trying to predict if a customer will
buy a computer

Source: Decision Tree page on TutorialsPoint 1

Figure 2.1 gives an example of a DT, where three variables are evaluated,
and the tree tries to predict wether or not a given customer will purchase a com-
puter. Each variable can have multiple values and might or might not branch out,
depending on how relevant a given variable is to the classification. In Figure 2.1,

1Available in <https://www.tutorialspoint.com/data_mining/dm_dti.htm>, accessed in july
2018
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age is the first variable. It branches out into three options, depending on whether
the user is young, middle aged, or senior. It can also function by branching out into
the actual age, by, for example, verifying if the age is higher or lower than 20. As
can be discerned from the figure, middle-aged people will probably buy a computer;
other variables are not relevant in this specific case, and the result can be reached
before evaluating them. In addition, each branch can have different variables that
are under consideration; this allows for different combinations of variables to be
considered independently.

2.2.3 Random Forest

A RF algorithm, is, in fact, an evolved form of the DT algorithm. It follows
the strategy of the ensemble method; the mentioned strategy is the combination of
more than one tree-structured classifiers for improved prediction capabilities. The
RF algorithm can be interpreted as a collection of combined DT, wherein each DT
is trained over a slightly different part of the dataset, causing the DTs to be slightly
different from one another. Once the trees have been trained, they are given a weight
depending on their prediction performance, and the resulting class is calculated
by combining all results and multiplying by their weight. The class with highest
weighted probability is decided as the output value for the RF. This method provides
a higher capacity for complexity and thus allows for higher prediction accuracy
(GÉRON, 2017).

When the nodes are split in a RF algorithm, the internal DT, unlike the
standard decision tree, does not try to find the optimum split among all variables;
instead it performs the splitting action by utilizing a subset of randomly chosen
variables (LIAW; WIENER et al., 2002). This counter intuitive way of splitting
nodes contributes to the process by which each tree inside the RF maintains a
different view of the dataset and thus provides more overall information for the
output prediction.

The RF algorithm can also be used as a tool for understanding which features
are the most important during the training. Since RFs are built from a group of
DTs, a statistical analysis on the depth of variables on each internal DT gives an
extremely useful and, usually, accurate depiction of which variables are important
(GÉRON, 2017).



18

The two main configurable parameters of a RF are the number of classifiers
in the ensemble and the splitting method. The number of classifiers is the number
of DTs to be trained within the Random Forest, which increases the complexity
and the prediction ability of the algorithm. The splitting method is how the node
splitting is applied, both in terms of how many random variables will be selected for
evaluation in each node split and the splitting criterion used to determine the best
variable among this subset (GÉRON, 2017).

2.2.4 SVM

Support vector machines are the state-of-the-art margin classifiers (SCHULDT;
LAPTEV; CAPUTO, 2004). The core SVM algorithm was originally a binary clas-
sification method that was developed by Vapnik and colleagues at Bell Laboratories,
although there were significant improvements and developments to the algorithm by
others (MADZAROV; GJORGJEVIKJ; CHORBEV, 2009).

Figure 2.2: An example of a SVM hyperplane maximizing the margins in relation
to the closest points in each class (i.e., the support vectors).

Source: Support Vector Machine page on Quantra 2

SVM functions by using the inputs as points in space and trying to minimize
the output errors by dividing the classes with hyperplanes, which are called margins
(SCHULDT; LAPTEV; CAPUTO, 2004). This margin can be conceptualized as a
“street” that separates the data in two groups, and the algorithm aims to find the
widest possible “street” between the classes. This means that all new data that lie
outside the boundaries of the street do not affect the training, only points on the

2Available in <https://quantra.quantinsti.com/glossary/Support-Vector-Machine>, accessed in
july 2018
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edge of the margin can change the results. Those points are considered support
vectors (GÉRON, 2017). The classification of a new data point depends on where
this point is located relative to this hyperplane. The success of SVM algorithms
depends greatly on the training data and how the classes are divided in the given
dataset. When the data are not linearly separable and a single hyperplane can not
properly divide the classes, the algorithm adopts a kernel function to transform the
data into a new space where it is separable.

In summary, SVMs locates hyperplanes that aim at dividing the input data
into groups according to their output classes in the best possible way. Two exemples
of SVM applications can be observed in image pattern recognition (SCHULDT;
LAPTEV; CAPUTO, 2004), and disease diagnostic (BERIKOL; YILDIZ; OZCAN,
2016).

2.3 K-Fold Cross Validation

All algorithms base themselves in the training data and this can cause an
effect known as ‘overfitting’, which means that a model has been fitted very well
to the given dataset, but does not generalizes properly to unknown data. Thus,
when an algorithm tries to predict a case that lies outside the previously trained
dataset, the predictions are either poor or are not as efficient as the training scores
may suggest.

To estimate the performance and generalization power of ML models, a fre-
quently employed solution is the holdout strategy, which divides the input data
into two disjoint sets, a training and a testing set. The training set is used during
the training of the algorithm and then the testing set would be used to generate
a standalone prediction and compare the results, generating a score. This means
that the trained algorithm needs to be able to work with unknown data as well
as the training data. In an ideal scenario, the dataset should be large enough so
that the training and testing sets can be sufficiently diverse and large so as to be
representative of the whole process (KRSTAJIC et al., 2014). Since the available
real-world datasets usually are not sufficiently diverse nor large enough, most cases
do not contain sufficient data for a single split. This is why certain solutions had to
be developed.

3Available in <https://www.researchgate.net/The-K-fold-cross-validation-scheme-133-Each-of-
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Figure 2.3: An example of the iterations and data separation for a 10-fold cross
validation

Source: Generalized Methods for User-Centered Brain-Computer Interfacing - Sci-
entific Figure on ResearchGate. 3

In k-fold cross validation the dataset is randomly divided into 𝑘 smaller
datasets known as folds, then the desired ML model is retrained 𝑘 times, such
that each iteration selects one of the subdivisions in the dataset as the testing data,
and all the remaining folds are merged into a training set (KRSTAJIC et al., 2014).
Figure 2.3 shows a 10-fold example of this process. At the end of this process, an
average score for the 𝑘 folds can be calculated. This evaluates the capacity of the
algorithm to work with unknown data in a reliable way, without requiring an over-
sized dataset. The disadvantage to this process is the requirement of approximately
𝑘 times more processing, only to evaluate the real-world score of the given algorithm,
which can be an issue in certain scenarios.

2.4 Parameter Grid Search

Another feature of machine learning algorithms is that they usually contain
several parameters that can be configured for the specific data or domain that is
being trained. This, however, introduces a new problem when training; the optimal
parameter values have to be employed, if not, the algorithm could have an underused
potential.

There are a few options for this problem. The parameters could be manually

the-K-partitions-is-used-as-a-test_fig10_323969239>, accessed in july 2018
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changed to try to find the best score, although this is ineffective and time-consuming.
Another solution is called parameter grid search, in which a grid of the parameter
and the possible values are designed, and the model is then configured so as to train
for every combination of parameter value that is present in the grid (KRSTAJIC
et al., 2014). Similar to the k-fold cross validation, the parameter grid search is a
computationally expensive solution; although for the purpose of finding the optimal
parameter values, it is the most satisfactory method.

2.5 Variable Selection

Datasets can contain a substantial number of variables for training, but not
all of these may be useful for predicting the output. Indeed, since there can be
imperfections in the ML algorithms, those extra variables can actually cause nega-
tive impact in the prediction capabilities. The process of selecting which variables
should be included in the training is somewhat difficult; before training one does
not know to what extent a given variable will affect the result. The simplest way to
achieve this is to sort the variables based on a predefined score function and then
select the 𝑘 top variables. This is a currently employed solution, but it is not the
optimal selection procedure, because there is no flexibility with respect to the top
variables that are presented to the algorithm. Another choice, which is well suited
for instances where more than one algorithm needs to be trained, is called recur-
sive feature elimination with cross validation (RFECV). This process identifies the
relevant features by repeatedly removing features that possess small impact on the
trained model and evaluating the prediction capability of the model trained with the
remaining features (JO; AHN; EGGER, 2017). It is an extremely time-consuming
strategy for selecting variables, but still widely applied in several domains.

2.6 Nested Cross Validation

The goal when training ML algorithms is to select the optimal combination
of variables and parameter values. The most effective way to accomplish this, and
to allow the variables and parameter values to converge, is called a nested cross
validation (NCV). An NCV is a combination of three already discussed steps: a
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k-fold cross validation, a parameter selection, and a variable selection. These steps
run in nested loops, comparing every combination of every algorithm possible and
ensuring that models will be evaluated using independent test sets. When compared
to running a feature selection and parameter selection independently, a NCV con-
siderably reduces the bias and features the best optimization possible (KRSTAJIC
et al., 2014). Figure 2.4 and the following bullet points summarize how each loop
in the NCV algorithm functions, according to Krstajic et al. (2014):

Figure 2.4: Diagram showing the processing steps of the Nested K-Fold Cross Vali-
dation

∙ In the first step, the original dataset is splitted into k-folds. Global data pre-
processing techniques that do not take data distribution or class information
into account may be applied previous to this division.

∙ The outermost loop can be compared to a k-fold cross validation, except it
executes the training with the best variables and parameters calculated by
the inner loops. The outer loop is where the score, best variables, and best
parameters are also recorded for later comparison and analysis. At this stage,
local pre-processing techniques that in some way use information on data dis-
tribution and class values may be applied separately for training and testing
sets.

∙ The middle loop executes the parameter selection; on each iteration of this
loop, the algorithm being trained employs the best variables calculated by
the innermost loop, and then runs the desired parameter selection algorithm.
This ensures that the best variables for each combination of parameters is
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used. This step returns the best parameter and variable combination for the
dataset given.

∙ The innermost loop is for variable selection, it receives the current parameters
being tested, and runs the variable selection algorithm, which returns the best
variable combination for that specific algorithm and parameters.

Note that both in model tuning and in model training, the trained mod-
els are evaluated for generalization and performance assessment with completely
independent test sets.

2.7 Score Functions

As a way of comparing the success of different training models, score functions
are employed. There is a substantial number of different performance measures
available, to simplify the understanding, only the three measures employed during
this research are defined: the accuracy, the ROC and AUC score, and the F-measure.

The most straigthforward form of measuring the performance of an algorithm
model is by computing its accuracy. The accuracy is calculated by dividing the
number of correctly predicted entries by the total number of entries (GÉRON, 2017).
This provides an useful, yet, very simple scoring function, which may be largely
biased by unbalanced classes.

The F-measure is the harmonic mean of precision and recall. Precision eval-
uates when an algorithm correctly predicts the positive values. Recall is a metric
indicating the fraction of positive values that the algorithm could correctly identify.
As the harmonic mean of these metrics, the F-measure evaluates how balanced in
terms of positive predictive power and true positive rate an algorithm is (GÉRON,
2017). Here, we adopt the F1-measure, in which recall and precision are evenly
weighted.

Receiver operating characteristic (ROC) is a very common tool used with
binary classifiers. ROC curve plots the fraction of correctly predicted positive ex-
amples (i.e., the true positive rate) in relation to the fraction of negative examples
incorrectly classified as positive (i.e., the false positive rate) for various threshold
settings. The area under the curve (AUC score), which ranges from 0 to 1, provides
a measure of predictive performance for the algorithm and can be understood as
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follows: in a perfect algorithm the AUC score is 1, whereas in a completely random
classifier algorithm the score is equal to 0.5 (GÉRON, 2017).
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3 SYSTEMATIC LITERATURE REVIEW

ML is a large and ever-expanding subject. Within the topic, there is substan-
tial collection of algorithms that are employed. Indeed, ML has numerous sub-areas
of research, and has recently gained the interest of diverse researchers. To better
understand the potential of this data analysis technique and to harness its power
for this research, an systematic literature review (SLR) was executed. An SLR is
an algorithm that is followed when new areas of research are approached. It entails
a well-defined set of instructions on how to identify, evaluate, and summarize the
state-of-the-art within a specific area or theme. It provides a fixed algorithm as a
way of finding the current optimal literature on the specific area of this dissertation,
and it allowed, moreover, to calculate certain statistics about what researchers have
been employing and what results have been reached so far. Altogether, this infor-
mation can help provide the basis for some of the decisions that were made during
the experiments carried out in this work. (MARIANO et al., 2017).

The protocol of SLR has three main phases for the reviewing and filtering of
papers. All the phases are executed independently by at least 2 persons to avoid
personal bias in the results. After each phase, the results from the participants are
compared and only articles that were approved by the majority of the participants
are kept.

The protocol is iterative. This means that at every phase an analysis should
be made over the resulting articles for previously unconsidered cases, or changes
should be made in the protocol for results that better suit the expected knowledge
to be acquired (MARIANO et al., 2017).

3.1 Protocol Definition

This systematic review was designed and performed according to the prin-
ciples of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement and the guideline recently proposed by Mariano et al. (2017)
for conducting SLR in the interdisciplinary field of Bioinformatics. It was chosen
primarily for being a guide based exactly on the bioinformatics field, which is the
focus of this research.

The SLR algorithm requires the definition of its protocol as the first step.
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This protocol should contain information regarding the scope of the algorithms
being searched, the criteria used to include or exclude an article, and certain ques-
tions to be used in ranking the articles according to the information they provide
(MARIANO et al., 2017). In the following bullet points, more specific definition of
the protocol’s composition is provided, which is based on the description given by
(MARIANO et al., 2017):

∙ The main question. This defines the scope of the review in a quite loose or
open-ended manner. In the case of this research, the aim was to find articles
about predictive models and analysis of risk factors that were associated with
diseases, but which also involved experiments so that a comparison with this
research would be possible.

∙ Objective. This contains the main objective when undertaking the SLR; this
is similar to the main question but affirms what the research wants to achieve.
It functions as a reference point for the participants so that they understand
the final goal of the SLR.

∙ Inclusion criteria. This category sets certain criteria to be met by those papers
added to the review; usually not all of these criteria have to be met, but pref-
erence is given to those which meet a greater number. The criteria functions
as a guidance system as to what is expected from the accepted articles, thus
removing somewhat the burden of selection from the participants.

∙ Exclusion criteria. These criteria include certain rules that the selected papers
have to follow. If a paper contains one exclusion criterion, it must be removed.
As the second most important item of the SLR table, the exclusion criteria
defines a few "no exception" rules that the article has to meet.

∙ Specific questions. This is the most important item in the SLR table. It
entails several questions that define more specifically what is wanted from
the review. These questions regarding the expected aspects of the article are
used during the final phase of the review. Papers are given a score based
on whether or not they answer these questions. Each question is given a
value of 0, 1 or 2, depending on whether the article does not fulfill any of the
question requirements, partially fulfill its requirements, or completely fulfill its
requirements, respectively, and all values summed for each participant. This
produces a score between 0 to 10, considering the recommendation of defining
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five specific questions. After all the participants have finished, the average
score is calculated and only articles that reach an average score above 6 are
retained.

Table 3.1 contains the details of the protocol that guided the SLR undertaken
during this research.

Table 3.1: Complete SLR Protocol
Main Question How machine learning has been applied in epidemiological studies to identify

predictive or risk factors associated to chronic diseases, and to build clinical prediction models?

Objective
This SLR aims at evaluating the potential of machine learning methods, applied
to, epidemiological studies, with the goal of elucidating predictive or risk factors
associated to chronic diseases and/or building prediction models.

Inclusion Criteria

Studies that mention Machine Learning or related terms (Data Mining, Supervised
Learning)
Studies that aim to identify factors (risk or predictive) associated to chronic diseases or
build prediction models
Papers that clearly specify the Machine Learning algorithm(s) adopted
Papers that perform experiments based on data derived from epidemiologic studies
(e.g.„clinical, demographic, laboratory, behavior, socioeconomic, symptoms...)
Papers that report performance metrics for the developed approaches, based on
well-estalished statistics for evaluation of ML models (specificity, sensitivity,
ROC curve, accuracy, precision, recal..)

Exclusion Criteria

Studies that aren’t about Human
Studies with no experiments (e.g., reviews)
Studies that aim at evaluating economical costs in Health
Studies that aim at evaluating or comparing drug efficacy
Studies that are based on text mining, solely.
Studies that are related to genetic or genomic data, solely.
Studies that do not clearly specify the machine learning algorithms adopted
and evaluation approaches
Studies that fail in properly evaluating the models or reporting these results

Specific Questions

Is the paper main subject about machine learning applications in the study of
human diseases?
Is the paper concerned with building prediction models or identifying
risk/predictive factors associated to chronic diseases using ML algorithms?
Does the paper methologogy involves data from epidemiologic studies, such
as clinical, demographic, laboratory, behavior, socieconomic, among others?
Is the methodology related to the training and evaluation of the ML
algorithms clear?
Does the paper perform experiments with ML algorithms and clearly reports
results regarding either predictive power or disease-associated factors identified?

3.2 Search Preparation

Prior to the first phase of the SLR, several preparatory actions were required:
the protocol table definition (for a description, see section 3.1); the search terms,
based on the protocol and the selected databases; the specific databases to undertake
the search; and the participants of the SLR.

The databases selected for this research were PubMed and Computer Science
Bibliography (DBLP); they were chosen for containing a large set of articles in the
subject of medicine (PubMed) and computer science (DBLP). Additionally, certain
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articles were obtained from references cited by the selected papers.
Regarding the participants, given the interdisciplinary topic of this SLR,

three reviewers with different backgrounds were responsible for article’s analysis: a
researcher with a focus on machine learning, a researcher with a focus on medicine
and an undergraduate student.

The keywords were selected based on an iterative process, adjusting the query
terms after initial searches. The objective was to obtain a reasonable number of
articles that were as close as possible to the research area of “machine learning
applied to the medical field”. Various synonyms and logical combinations of the
following words were considered: “machine learning”, “data mining”, “supervised”,
“risk factors” and “prediction model”. After they were tested, the optimal search
term was selected for PubMed as follows:

1 (

2 "Machine Learning"[MeSH Terms] OR

3 "Machine Learning"[Other term] OR

4 "Data mining"[MeSH Terms] OR

5 "Supervised Machine Learning"[MeSH Terms]

6 ) AND

7 (

8 "causality"[MeSH Terms] OR

9 "risk factors"[MeSH Terms] OR

10 "risk factor"[Other term] OR

11 "protective factors"[MeSH Terms] OR

12 "prediction model"[Other term] OR

13 "Feasibility Studies"[MeSH Terms]

14 )

For DBLP, search was limited to medicine terms given that all indexed articles
are within computer science bibliography, and the query was adjusted according to
the database’s syntax.
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3.3 Execution

After the search was performed against the databases and all participants
were provided with the list of articles, the SLR was able to be executed. The
first phase entailed evaluating the title of all articles and considering whether a
given article matched or was otherwise related to the main question of the SLR
table. When faced with doubt on accepting or not a specific article, acceptance
is recommended to the participant, because the article can be better scrutinized
later in the process (MARIANO et al., 2017). Even though some degree of personal
bias might have been present, it should be noted that only articles accepted by at
least two, out of the three, participants were considered. The first phase of this
research started with 1429 articles. After the results from individual participants
were combined, 1087 articles were eliminated, thus leaving 342 articles accepted for
the second phase.

The main objective during the second step was abstract evaluation, and,
just as was the case with the first phase, the main question of the SLR protocol
acted as a guideline. During this stage, however, exclusion criteria should also be
examined, so as to remove articles not following the requirements of the protocol
(MARIANO et al., 2017). The second phase started with the aforementioned 342
articles; subsequently 256 articles were eliminated, while 86 articles remained for
the last phase. In this phase it is also important to note that a few points changed
in the protocol definition, because of a few articles that only contained experiments
and information about communicable diseases were being included.

The final phase is the most rigorous stage. It comprises a full textual reading
of all the remaining articles. Each participant must read each article and assign it a
score. In the case of this research, the score was based on the five specific questions
defined in the SLR protocol. Each question was answered with a score ranging from
0 to 2: being 2 assigned when an article completely fulfilled the question; 0 assigned
when the requirements were not met, and 1 assigned in cases of a partial fulfillment.
After gathering the results from all participants, all articles with a score higher than
60% were considered accepted (MARIANO et al., 2017). During the execution of
the protocol, this phase started with 86 articles. Sixteen of those were eliminated
because of a low score or because of a previously unidentified exclusion criteria.
Ultimately, 70 articles remained and were included in this SLR.
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Figure 3.1: SLR algorithm steps, containing the initial search phase, which gather
the initial list of articles for processing up until the very last phase, where the whole
articles are considered

Figure 3.2: The PRISMA flowchart summarizing the phases of this SLR and the
number of articles that passed or were excluded during each phase.
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3.4 Results Overview

As a result of the SLR review, 70 articles were selected as compatible for
studying machine learning in the context of the medical field. All the articles are
referenced in appendix A. In the scope of this work, data extraction from selected
studies was oriented by the research questions and performed using a standardized
form, focused on the analysis of the following aspects: (a) year of publication,
(b) type of analysis (i.e., prediction model, analysis of risk factors), (c) chronic
disease investigated (ICD-10 code), (d) ML algorithm(s) used, and (e) algorithms
performance.
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Regarding the year of publication, as can be seen in Figure 3.3, the interest
in ML is growing at an appreciable rate since 2010. This is probably due to the vast
number of possibilities that ML algorithms provide for parsing and analyzing huge
amounts of data, certainly with much less research effort and human intervention
than was previously needed. Indeed, it coincides with the huge spike observed in
2010 in the area of big data in terms of popularity and development.

Figure 3.3: The yearly distribution of papers resulting from the SLR.
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Figure 3.4 illustrates the number of articles containing each type of ML study:
PD - diagnostic prediction (prediction of the development of a disease), FR - risk fac-
tors (which factors contribute to the development of a disease), and FP - prognostic
prediction (prediction of death or complication after treatment). We may observe
that the great majority of studies was focused on the development of diagnostic
prediction models using supervised ML algorithms.
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Figure 3.4: A graph illustrating the number of papers containing each type of study:
diagnostic prediction (PD), risk factors (FR), prognostic prediction (FP)
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Figure 3.5 illustrates the number of articles referencing each ICD-10 chap-
ter. ICD-10 is the 10th version of the International Classification of Diseases (ICD),
which defines the universe of diseases, disorders, injuries, and other related health
condition, and is the international standard for reporting diseases and health con-
ditions for all clinical and research purposes. As a reference for the understanding
of the graph, the illustrated codes are described below:

∙ II - malignant neoplasms

∙ IV - endocrine, nutritional and metabolic diseases

∙ V - mental and behavioural disorders

∙ VI - diseases of the nervous system
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∙ IX - diseases of the circulatory system

∙ X - diseases of the respiratory system

∙ XI - diseases of the digestive system

∙ XIII - diseases of the musculoskeletal system and connective tissue

∙ XIV - diseases of the genitourinary system

∙ XXI - factors influencing health status and contact with health services

Figure 3.5: The number of papers according to the ICD-10 chapter
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Figure 3.6 shows the top 10 algorithms according to their frequency in the
included papers. As we can observe, the most commonly used algorithms among
the reviewed articles are are DTs, RF, neural networks (ANN), LRs, and SVMs.

To better compare these methods, we analyzed the distribution of their accu-
racy and AUC scores across the 70 papers included in this SLR. Figures 3.7 and 3.8
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Figure 3.6: A graph illustrating the number of articles that included the respective
algorithms in their research
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show these results in the form of a candle graph. As we may observe, none of the
algorithms had an outstanding performance compared to others - both the accuracy
and the AUC scores were largely comparable among the top 10 algorithms. For the
Boosting algorithm, only one paper reports the accuracy metric for this method,
justifying the lack of a proper distribution. While the medians for accuracy demon-
strate great variability among the algorithms, we can see that the AUC score is
quite comparable among the top 10 methods (i.e., around 75%), except for DT and
NB algorithms.

Based on the results of this SLR, the most widespread ML algorithms were
selected for our data analysis methodology if they could prove useful to this research,
specifically with regard to disease prediction models and analysis of risk factors. As



35

Figure 3.7: A candle graph illustrating the ACCURACY score of each algorithm,
according to the measurements of papers resulting from the SLR.
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Figure 3.8: A candle graph illustrating the AUC_ROC score of each algorithm,
according to the measurements of papers resulting from the SLR.
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previously mentioned, the five most common algorithms according to the reviewed
articles are ANN, LR, SVM, DT, and RF. Given their satisfactory and competitive
performance, these methods were chosen for the ML analyses carried out in this
work. The only exception was neural network, which had to be excluded from
the research due to the substantial number of variables to be configured, and the
computational cost for training the algorithm following the developed methodology
(more details will be given on Chapter 4).
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4 METHODOLOGY

The SLR results described in the previous Chapter served as a foundation
for the second specific aim of this work, which concerns the development of a ML
methodology for analyzing a diabetes-related dataset. Diabetes is a disease that
affects millions of people annually, and despite the current technology and the po-
tential for information to reach a wide demographic, it is still affecting an increasing
number of people every year (NCD Risk Factor Collaboration et al., 2016). There-
fore, the main experimental objective in this thesis was to evaluate the possibility
of predicting diabetes from a predetermined set of variables collected in an epidemi-
ological study. In addition, from the most significant variables, we aim at assessing
the potential to determine which variables have the greatest impact on the result
and, on account of this, to determine risk factors for diabetes. To perform these
analyses, we have selected the algorithms that were identified as the most popular
and most efficient during the SLR. In what follows we describe the experimental
methodology adopted in the current work.

4.1 Dataset

The dataset used for this research is from the project named “Education,
knowledge on risk factors, and the use of health services for women residents in a
city in the south of Brazil; a population-based study” (GONÇALVES et al., 2017).
The project consisted of a quiz that was given to a random selection of women (18
years old or above) in the urban municipality area of Rio Grande. The university
responsible for the research was the “Universidade Federal do Rio Grande (FURG)”,
and the study was focused on investigating how education affects women’s knowledge
about key risk factors and preventive services, and in turn, how it affects the use of
public health services. The set of specific diseases investigated by the study included
diabetes, cancer, and cardiovascular diseases (GONÇALVES et al., 2017).

The quiz had 136 questions related to several factors including social-economic
factors, access to information, access to internet and usage of technology, lifestyle
habits, general knowledge regarding certain chronic diseases and risk factors, and
health status. Some of these questions, however, were divided in a number of vari-
ables for facilitating digital processing of answers prior to pre-processing (see section
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4.3). A total of 434 variables were collected. This dataset was primarily chosen for
its potential in linking the development of diabetes in an individual with her knowl-
edge about the disease. As a secondary reason, their preemptive thinking on digital
processing also facilitated its choosing: the quiz variables were described in a way
that facilitates parsing and processing.

4.2 Framework

The purpose of this research is to assess and compare the performance of ML
algorithms with regard to their ability to predict a diagnosis and identify risk factors
related to diabetes. For this reason, a ML framework was the optimal option for
model training and evaluation. The python language with the scikit-learn framework
was decided as the best option, given its popularity and the solid and comprehensive
set of tools it provides for ML.

4.3 Pre-processing

Pre-processing is an important component of a ML methodology, in which
the input data needs to be processed and standardized so that it is able to ensure
accurate and meaningful analysis by ML algorithms. In the context of this work,
data pre-processing was a time-consuming task, in which a large part of the practical
development of this research was concentrated.

This pre-processing was initially divided into two steps, a global and a lo-
cal step. The global pre-processing was executed against the whole dataset, with-
out considering the division of data into training and testing sets. At this stage,
pre-processing included everything that could be globally executed without leaking
information from the testing dataset to the training one, a phenomenon that could
introduce bias in the model’s results. After the dataset was divided into training
and testing sets, a local pre-processing was applied separately to the training and
testing data; this pre-processing consisted of transformations and standardizations
that were, in some respect, based on information about data distribution, and thus,
could cause the data leakage phenomenon.

Data leakage is when data from the testing set can leak into the training set,
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causing the algorithms to indirectly receive information from the testing set during
the training phase. For example, if an average function is applied over the complete
dataset, the calculated average will include data from the testing set as well, and
this may cause an improper positive impact on the training process of the model.

4.4 Global Pre-processing

The global pre-processing entailed six steps. Because these steps may cause
the removal of unexpected fields or entries, they were applied in a predefined order
to avoid conflicts in the data. In what follows, these six steps are presented and
explained.

4.4.1 Quiz Fields

The dataset and the quiz contained certain diverging fields. There were fields
present in the dataset that were not present in the quiz, which probably derived from
a combination of other fields. However, since it is not possible to decipher exactly
how these fields were related to the actual data, they were removed from the dataset.

4.4.2 Transformation of Field Values

The dataset contained a small number of invalid variable values, which were
determined by the quiz. For example, a question could be answered with “Yes”,
“No”, or “I don’t know”. Those values were originally converted into a numerical
representation, such as 0, 1, or 88. The value of “I don’t know” is far greater than
the other two. Since a normalization was later applied to the data, this could have
created problems in the training process, because the “I don’t know” response would
have represented a much higher weighting than the others. For that reason, those
invalid values were removed and they were set as null for later recalculation (for
more on the recalculation, see section 4.5), allowing the values to remain in the
dataset without affecting the result too much.
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4.4.3 Ignored Fields

Some fields were completely ignored during the training process, because they
were completely unrelated to the research, were text inputs, or contained invalid
values that did not have a clear meaning in the context of this work. These invalid
values could affect the training performance or even invalidate results, their removal
was required.

4.4.4 Mandatory Variables

The current research was based on an output variable that contained the
answer to the question: "Do you have diabetes?". Thus, the variable containing the
answer to this question was mandatory, and those responses that did not contain
an answer or that represented an invalid answer were removed.

4.4.5 Balanced Class Size

The dataset used during this research presented a significant imbalance in the
sizes of output classes for the diabetes answer. The ratio of classes was 1:20; this
means that for every “Yes”, there were 20 answers indicating “No”. As Alghamdi
et al. (2017) discuss, “In practice, several studies have shown that better prediction
performance can be achieved by having balanced data”. For that reason, during the
preprocessing phase we applied an upsampling strategy such that for every “Yes”
entry found, an arbitrary “No” from the dataset was included, therefore, maintaining
a 1:1 ratio. Since the dataset used by this research followed no pattern as to the
order of the entries, the applied upsampling function selected the “No” entries based
on their position, the closest entry after the “Yes” was the one selected.

4.4.6 Invalid Values

After all the previous pre-processing steps, there were still multiple fields
with empty values and there were participants who answered a negligible number of
questions in the quiz. As a way to keep the results sane and not include invalid or
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duplicated data, all columns and rows of the dataset were analyzed and those that
contained more than 5% of null values, were completely removed from the training
data. This 5% value was chosen so as not to remove too great a number of entries.

4.5 Local Pre-processing

Local pre-processing was applied separately to the training data and testing
data, so that information from the testing data would not leak into the training
data. After data partitioning, the training data is pre-processed considering only
data distribution and characteristics of this subset of instances. Next, testing data
is pre-processed considering characteristics from the complete dataset to guarantee
that data distributions and other aspects are comparable among training and testing
examples. The reason for this difference is that, in the real world, we do not have
the future values to influence our predictions, but we do have the past data when
testing the predictions.

The following two methods of pre-processing were applied locally onto the
dataset (in the order in which they were executed): firstly, all invalid and missing
values were filled with the average value of the respective attributes; secondly, the
data was normalized so that all numeric attributes had their values within the
interval [0, 1].

4.6 Algorithms

The selection of the ML algorithms trained during this research was based
on the results from the SLR. Except for the ANN, the four most popular algorithms
were chosen: DT, RF, SVM, and LR. They represent a variety of induction biases
within the field of ML and provide the opportunity for comparison with the previous
work in this research area.

The ANN algorithm has a substantial number of variables to be configured,
and the computational cost for training the algorithm is significantly higher; this
ensured that a full-scale training, which followed the same protocol as the other
algorithms, was not practical on account of available resources and time.
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4.7 Training

The training was executed by means of a NCV, wherein three main loops
are nested into each other; it is a highly efficient way of dealing with parameter
and feature selection. The strategy functions by separating the training process into
three steps: feature selection, model tuning, and model training (for more details,
see 2.6).

4.7.1 Feature Selection

Feature selection is the step that selects the optimal variables for the training
process. Normally, the best solution when working with a feature selection is to test
all combinations of all variables; this was not possible in this research because of the
large number of variables (more than 200) after pre-processing. This step entailed
choosing the optimal number of variables by an incremental analysis, the process
was executed by means of a pre-implemented function in Python’s machine learn-
ing framework, recursive feature elimination and cross-validated (RFECV). This
function iteractively removes the least relevant variables for the given algorithm or
model, and for each attempt it performs a k-fold cross-validation training on the
algorithm. In the end, the variables associated to the best score are selected.

4.7.2 Model Tuning

Model tuning selects the optimal set of parameters for the defined model.
This model tuning was carried out by using the GridSearchCV from Python for
each algorithm selected, which receives a list of parameters and possible values ac-
cording to the specific algorithm considered and, thereafter, exhausts every possible
combination so as to find the one with the optimal score. For each combination tried,
a k-fold cross-validation training is executed with the feature selection embedded;
this, ultimately, determines the optimal model’s parameters and features.

The adjustable parameters available for each algorithm may be implementa-
tion specific, and thus their detailed description is not in the scope of this research.
In the following subsections, a brief summary of their definition is given. The defini-
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tion is based on the framework documentation (for more specific details, see Géron
(2017)).

4.7.3 Logistic Regression Model Tuning

Table 4.1: Logistic Regression Parameters
Parameter Values

Penalty L1, L2
C 0.001, 0.112, 0.223, 0.334, 0.445, 0.556, 0.667, 0.778, 0.889, 1.0

In Table 4.1, the term Penalty is used to specify the norm used during
the penalization, during which both supported L1 and L2 functions are tested.
C denotes the inverse of regularization strength, for which smaller values mean
stronger regularization, on this research 10 values ranging from 0.001 to 1.0 and
linearly spaced were tested.

4.7.4 SVM Model Tuning

Table 4.2: SVM Parameters
Parameter Values

C 0.001, 0.112, 0.223, 0.334, 0.445, 0.556, 0.667, 0.778, 0.889, 1.0

In Table 4.2, C is the penalty parameter for the error term and tells the
SVM optimization how much it should avoid misclassifying each training example
by choosing the margins width. Large values of C will cause a smaller-margin
hyperplane to be fitted, whereas a very small value of C will cause the optimizer
to look for a larger-margin separating hyperplane. Here, 10 values, ranging from
0.001 to 1.0 and linearly spaced were tested. The predefined kernel used during this
research was the linear SVM kernel.

4.7.5 Decision Tree Model Tuning

In Table 4.3, Criterion denotes the function used to measure the quality
of a node split, for which both supported values, “gini” and “entropy” were tested.
Splitter is the strategy used to choose the split at each node; both supported values
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Table 4.3: Decision Tree Parameters
Parameter Values

Criterion gini, entropy
Splitter best, random

“best” and “random” were tested.

4.7.6 Random Forest Model Tuning

Table 4.4: Random Forest Parameters
Parameter Values

N. Estimators 3, 6, 9, 12, 15, 18, 21, 24, 27, 30
Criterion gini, entropy

In Table 4.4, N. Estimators denotes the number of trees in the forest, for
which 10 values between 3 and 30 were tested. Criterion is, again, the function
that determines strategy to evaluate the quality of a node split, for which both
supported values “gini” and “entropy” were tested.

4.7.7 Model Training

At the outermost loop, a normal k-fold cross-validation was executed, for
making sure that our algorithm has not been overfitted for the training set. In this
step, the local pre-processing is executed for each k-fold and then the inner loops for
model tuning and feature selection are run as previously explained. The result from
each of the k-folds is kept and their average is calculated as the general performance
of the algorithm.

4.8 Output Reporting

For later evaluations of the results and algorithms comparison, a standard
representation of results were adopted for all ML algorithms run. For each iteration
from the outermost loop (model training) the optimal variables, optimal param-
eters, and three scores were saved. The saved scores were selected based on the
popularity on the resulting SLR articles and their availability on the applied frame-
work: ROC_AUC, F1, and ACCURACY. The optimal variables and parameters
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were selected based on their score in the inner loops. For comparing variables and
parameters, when sorting was required, a ROC_AUC scoring function was applied.
In this way, the algorithm with the top score was selected as the most effective, and
the optimal variables and parameters were extracted from it.

For each iteration of the inner loop model tuning, the optimal variables were
saved and later exported to a CSV file. Each iteration is saved as one line in the
output CSV file; each column of the file is a variable; and for each [column, line]
pair, a value of 0 or 1 is written, where 0 denotes that the variable was not used,
and 1 denotes that it was used. This process allows the researcher to obtain a
detailed analysis of the distribution of variable’s inclusion in the trained models, the
average number of variables selected, and, if necessary, the frequency of selection of
a particular variable for the algorithms used.
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5 RESULTS AND COMPARISON

As a result of the extensive training (described in the previous chapter), the
accuracy scores, variable ranking and the average number of variables that constitute
a good prediction were produced. In the following analysis, these scores are discussed
and, ultimately, compared to one another and, moreover, to the articles resulting
from the SLR.

The source code, configuration files and detailed results of the whole experi-
ment are available at <https://github.com/HPerin/tcc-machine-learning.git>. For
each algorithm, a table with those variables considered most important and relevant
is presented. The importance of a variable is a rather difficult concept to define.
The variable might be important during only a single stage of training, or it might
be important only for one particular algorithm. For this research, the objective was
to define the most important variables in a perspective of risk factor analysis, which,
in turn, could be used in practice (even without the algorithms). Thus, the method
adopted for choosing the important variables entailed that the variable should be
contained in all outer loop iterations. Nonetheless, in the results described below,
we present all variables selected in at least five out of the 10 iterations of the k-fold
cross-validation procedure as possible risk factors for diabetes.

5.1 Logistic Regression

Figure 5.1 illustrates all the scores calculated for each iteration, with the
average of all executions in the last column. Table 5.1, shows the average scores
obtained for a LR model.

Table 5.1: LR average scores and their standard deviation
Score Average Standard Deviation

AUC_ROC 0.739 0.133
F1 0.733 0.143

ACCURACY 0.740 0.132

Appendix B shows which variables were most often used during the inner
loop training, it is a representation of the 30 most used variables. The average size
of variables subset used by the LR algorithm was 51.02.

Table 5.2 lists the variables that were present for a minimum of five itera-
tions during training, and their meanings are subsequently described. Among these,

https://github.com/HPerin/tcc-machine-learning.git
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Figure 5.1: LR scores computed from 10-fold cross-validation. The rightmost
columns depics the average over all iterations.

Figure 5.2: Variables selected for at least five iterations of the LR outerloop training.
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six variables were selected in all iterations of the outer CV, thus being the most
important variables for the prediction of diabetes within the current work.

Table 5.2: Description of the most important variables meanings, according to the
results of the LR algorithm.

Iterations Variable Meaning
10 interne Internet usage frequency
10 angstres Knowledge question: does stress lead to heart attack?
10 diabobe Knowledge question: what makes obesity worse?
10 colevnao Avoid or prevent uterine cervix cancer.
10 tempres Has high blood pressure
10 temcol Has high cholesterol
10 temtrig Has high triglycerides
10 percepan How well have been your health on the last 12 months
10 papex Has done preventive exams for uterine cancer
10 mamofez Has done mammography before.
9 anos Age
9 obes Is Obese
9 vercole Has done cholesterol exam or has cholesterol
9 stris Has been feeling sad lately
9 alinterv Knowledge question: how often should a baby by breastfed.
9 alfam Family taught about breastfeeding
8 diabdiet Poor diet makes diabetes worse
8 diabtrat Knowledge questions: not treating can make diabetes worse
7 pulout Knowledge questions: what leads to lung cancer
7 comgord Eat greasy foods
7 sutil Do you have a useful role in your life
7 angpres Knowledge question: high blood pressure leads to heart attack
7 colhpv Knowledge question: virus leads to uterine cancer
7 colevpap Knowledge question: preventive exams help avoid uterine cancer
7 seden Knowledge question: being sedentary leads to heart attack
7 comdoce Eat a lot of candy
6 spraz Do you feel pleasure on your daily activities
6 svalo Do you feel worthless
6 almam Problems using the baby bottle whilst breastfeeding
6 fil Has kids
6 lerliv Reading books frequency
6 asjorn Watch news on television
6 mamexme Does making the exam help find breast cancer earlier
6 tempo Waiting time affects the decision of which clinic to visit
6 exagrat Free exams affects the decision of which clinic to visit
5 estciv Marital status
5 bolsa Do you receive financial aid from the government
5 diabnao Does not know what makes diabetes worse
5 almamad Sees a problem on using the baby bottle when breastfeeding
5 almeio Has learned about breastfeeding through media
5 chefe Are you the householder
5 aidevpre Condoms help avoid AIDS
5 alfrac In your opinion, are mothers with weak milk suitable for breastfeeding

In Tables 5.3 and 5.4, the number of iterations that each parameter has been
selected as the optimal value is shown. We may observe that L2 regularization
yielded the best results in 8 out of the 10 folds of the NCV, while there was no clear
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prevalence of a specific C value as the best performing parameter.

Table 5.3: LR - C parameter iteration use count
C Use Count

0,334000 3
0,223000 2
0,556000 2
0,112000 2
0,778000 1

Table 5.4: LR - penalty parameter use count
Penalty Use Count

L2 8
L1 2

5.2 Decision Tree

Figure 5.3 illustrates all the scores calculated for each iteration, with the
average of all executions in the last column. Table 5.5, shows the average scores
computed from the outerloop of the 10-fold NCV. We may observe that the average
performance metrics are lower as compared to the LR models, and that the standard
deviation for the F1 measure is higher in DT in contrast to LR.

Table 5.5: DT average scores and their standard deviation.
Score Average Standard Deviation

AUC_ROC 0.622 0.126
F1 0.588 0.152

ACCURACY 0.622 0.127

Appendix B shows the top 30 variables most often used during the inner loop
training. The average size of variable subsets used by the algorithm was 52.44.

Table 5.6 lists the variables that were present for a minimum of five iterations
during training, and their meanings are subsequently described. According to the
defined criterion, a smaller number of relevant variables was identified in contrast
to the results obtained by LR.

In Tables 5.7 and 5.8, the number of iterations that each parameter has been
selected as the optimal value is shown. According to these results, DTs trained with
the Gini index and with the random splitter tend to achieve the best performance.
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Figure 5.3: DT scores computed from 10-fold cross-validation. The rightmost
columns depics the average over all iterations.

Figure 5.4: Variables selected for at least five iterations of the DT outerloop training.

Table 5.6: Description of the most important variables meanings, according to the
results of the DT algorithm.

Iterations Variable Meaning
7 tempres Has high blood pressure
5 convtemp For how long has had medical insurance
5 serie Scholarity
5 ren1 Income
5 dentano Has visited a dentist in the previous year
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Table 5.7: DT - criterion parameter iteration use count
Criterion Use Count

Gini 8
Entropy 2

Table 5.8: DT - splitter parameter iteration use count
Splitter Use Count
Random 6

Best 4

5.3 Random Forest

Figure 5.5 illustrates all the scores calculated for each iteration, with the
average of all executions in the last column. Table 5.9, shows the average scores for
the RF algorithms in the NCV.

Table 5.9: RF average scores and their standard deviation.
Score Average Standard Deviation

AUC_ROC 0.781 0.116
F1 0.780 0.120

ACCURACY 0.781 0.115

Figure 5.5: RF scores computed from 10-fold cross-validation. The rightmost
columns depics the average over all iterations.

Appendix B shows which variables were most often used during the inner
loop training, limited to the top 30 most frequent variables. The algorithm’s average
overall variable subset size was 98.02.
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Figure 5.6: Variables selected for at least five iterations of the RF outerloop training.

Table 5.10 lists the variables that were present, as best variables, for a min-
imum of five iterations during training, and their meanings are subsequently de-
scribed. Among these, 18 variables were selected in all iterations of the NCV and
are thus considered the possible risk factors for diabetes.

In Tables 5.11 and 5.12, the number of iterations that each parameter has
been selected as the optimal value is shown. Again, we observed higher predictive
performance associated with the Gini index as the node split method.

5.4 SVM

Figure 5.7 illustrates all the scores calculated for each iteration, with the
average of all executions in the last column. Table 5.13, shows the average scores
for the SVM models.

Appendix B shows the top 30 variables most often used during the inner loop
training. On average, the overall variable subset size used by the algorithm was
49.11.

Table 5.14 lists the variables that were present for a minimum of five iterations
during training, and their meanings are subsequently described. Among these, two
variables were selected in all iterations of the NCV and are thus considered the
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Table 5.10: Description of the most important variables meanings, according to the
results of the RF algorithm.

Iterations Variable Meaning
10 anos Age
10 pesmora How many people live in your house
10 relig1 Religion
10 serie Scholarity
10 grau Scholarity
10 empreg Working state
10 ren1 Income
10 ouvrad Listen to the radio
10 tempres Has high blood pressure
10 peso Weight
10 percepan Health perception in the last 12 months
10 mamaex Last mamma exam
10 mamonde Location of the last mamma exam
10 verpa Ever measured blood pressure
10 locons Last doctor visit
10 convtemp For how long have had medical insurance
10 baitemp For how long do you have doctor visits in the local clinic
10 almam Problems using the baby bottle whilst breastfeeding
9 estciv Marital status
9 cor Skin color
9 lerjor Reading newspaper frequency
9 lerev Reading magazines frequency
9 interne Internet usage frequency
9 diabtrat Knowledge questions: not treating can make diabetes worse
9 supamig Social events attendance frequency
9 temcol Has high cholesterol
9 papmes Time since last uterine cancer exam
9 vercole Has done cholesterol exam or has cholesterol
9 medtemp For how long have you had the same doctor
9 stris Has been feeling sad lately
9 alleite For how long do you think a baby should only receive breastfeeding
9 alapat How do you feel about the grandmother (from the father family) help during breastfeeding
8 lerliv Reading books frequency
8 colevnao Knows how to avoid Uterine Cervix Cancer
8 temtrig Has high triglycerides
8 alcon How much do you know about breastfeeding
8 altemp For how long should a baby be breastfed
8 alinterv Knowledge question: How often should a baby by breastfed.
7 fumo Do you smoke
7 angstres Knowledge question: does stress lead to heart attack
7 pulout Knowledge questions: what leads to lung cancer
7 mamofez Has done mammography before
6 fil Has kids
6 asjorn Watches news on television
6 angpres Knowledge question: high blood pressure leads to heart attack
6 colevpap Knowledge question: preventive exams help avoid uterine cancer
6 supsoc How often someone has helped you when in need (for example, when sick)
6 seden Knowledge question: being sedentary leads to heart attack
6 obes Is obese
6 comgord Eats greasy foods
6 medef Has a specific doctor for when you have a medical issues
6 internu How many times has been admitted to the hospital in the last 12 months
6 ssono Sleeps poorly
6 almamad Sees a problem on using the baby bottle during breastfeeding
6 alfam Family taught about breastfeeding
5 veteve Television watching frequency
5 infsaud Receives good health tips
5 angfumc Knowledge question: smoking leads to heart attacks
5 bronao Does not know what leads to bronchitis
5 bronout What leads to bronchitis
5 diabobe Knowledge question: what makes obesity worse
5 dentano Has visited a dentist in the past year
5 mednome Knows your doctor’s name
5 spraz Feels pleasure during daily activities
5 sdeci Has a hard time making decisions
5 sinte Has been losing interest in things
5 aldoen Believe breastfed children catch fewer diseases
5 chefe Is the head of the household
5 colhpv Knowledge question: virus leads to uterine cancer
5 comdoce Eats a lot of candy
5 sdoca Has frequent headaches
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Table 5.11: RF - criterion parameter iteration use count
Criterion Use Count

Gini 8
Entropy 2

Table 5.12: RF - N. estimators parameter iteration use count
N. Estimators Use Count

21 3
30 3
24 2
12 2

Table 5.13: SVM average scores and their standard deviation.
Score Average Standard Deviation

AUC_ROC 0.709 0.112
F1 0.700 0.115

ACCURACY 0.709 0.112

Figure 5.7: SVM scores computed from 10-fold cross-validation. The rightmost-
columns depics the average over all iterations.
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Figure 5.8: Variables selected for at least five iterations of the SVM outerloop train-
ing.

possible risk factors for diabetes.

Table 5.14: Description of the most important variables meanings, according to the
results of the SVM algorithm.

Iterations Variable Meaning
10 anos Age
10 percepan How well has felt about your health in the last 12 months
9 vercole Has done cholesterol exam or has high cholesterol
8 angstres Knowledge question: stress leads to heart attack
8 diabobe Knowledge question: what makes obesity worse
8 tempres Has high blood pressure
8 temtrig Has high triglycerides
7 interne Internet usage frequency
7 alinterv Knowledge question: how often should a baby by breastfed.
7 colevnao Know how to avoid uterine cervix cancer
7 temcol Has high cholesterol
7 obes Is obese
7 stris Has been feeling sad lately
7 alfam Family taught about breastfeeding
6 colevpap Knowledge question: preventive exams help avoid uterine cancer
6 papex Has done preventive exams for uterine cancer
6 mamofez Has done mammography before
6 sutil Has a useful role in life
5 diabdiet Poor diet makes diabetes worse
5 lerliv Books reading frequency
5 diabnao Does not know what makes diabetes worse
5 colhpv Knowledge question: virus leads to uterine cancer
5 mamexme Does making the exam help find breast cancer earlier
5 seden Knowledge question: being sedentary leads to heart attack
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In Table 5.15, the number of iterations that each parameter has been selected
as the optimal is shown.

Table 5.15: SVM - C parameter iteration use count.
C Use Count

0.112 4
0.778 3
0.001 2
0.889 1

5.5 Execution

During the execution of the training, a few unexpected problems arose. On
the first run, several algorithms received a perfect score for predicting diabetes. This
is a clear sign of overfitting. The cause behind these problems and how these issues
were solved are discussed below.

The first consideration was whether there might have been a leakage of data
from the testing data to the training during the pre-processing. On account of this
the developed code had to be reviewed and the algorithms retrained with a different
set of pre-processing steps. The removed pre-processing step that provided a helpful
observation on the issue, was the class equalization. This step should not have leaked
data from training to testing dataset, but was removed because it could, depending
on the dataset, have made the number of entries for training too small and thus
"easy" for the algorithms to predict.

As thought, the removal of the class equalization step did not solve the issue,
but it did show where the problem lay. When training without class equalization,
most iterations of the outer loop resulted in a single variable being used for pre-
diction. When the variable meaning was looked up by referring to the research
definition, the following question arose: "Do you have high blood sugar?". This is
obviously directly connected to diabetes. This was a problem, because with that
single variable the algorithms could predict perfectly whether or not a given person
had diabetes. Since we already knew that high blood sugar was part of the diabetes
disease, and it was interfering with the ability of the algorithms to correctly use
other variables for risk factors discovery, it was removed from the training variables
and all algorithms were retrained again.

When executing the training again without the high blood sugar variable,
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the same problem arose again. By repeating the already mentioned steps, another
variable arose as the only factor associated to diabetes. This variable pertained to
whether a given person had been tested for diabetes in the last few months. For
the same reason as the previous one, this variable was removed from the training
dataset. Once those two variables were removed, everything was trained again and
a more useful result surfaced.

5.6 Limitations

Two scaling limitations were found during the training process. They were
not breaking limitations in the sense that they did not stop the progress of the whole
research, but they limited the pool of used algorithms, not allowing the inclusion
of the neural network algorithm. Depending on the circumstances, they could be a
problem for other researches following the same methodology or framework, so it is
important to mention them.

The methodology used in this research is very efficient in finding the best
combination of variables and parameters, but it comes at a cost of computing power.
The required computing power may be a limitation for a few applications of ML,
which is why this methodology would probably not be recommended in the case of
really large datasets or complex algorithms. In those cases, a slightly faster and
more computationally efficient technique may be required.

The “sklearn” framework is also a limiting factor when the training is com-
putationally expensive. It is indeed very easy to use and very friendly for those that
do not have a very extensive knowledge in the ML field, but it does not scale very
well across cores, and cannot be scaled at all across different machines.

5.7 Comparison

In possession of all the information from the training results, we can start
comparing the algorithm values with one another and with the SLR results, evaluate
their efficiency, and analyze the risk factors identified by the algorithms.
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5.7.1 SLR Results Comparison

For a direct comparison of values with the SLR results, only the AUC score
is going to be considered. The statistics from the SLR results are taken from the
candle graph in Figure 3.8 on page 35.

∙ Logistic Regression. The LR algorithm scored 0.739 in this research, which
is located in the upper bounds of the candle graph. This means that the
algorithm developed during this research is highly competitive compared to
the the current state-of-the-art.

∙ Decision Tree. The DT algorithm scored 0.622 during this work, which is
below the lower bounds of the candle graph. This means that the algorithm
is not effective.

∙ Random Forest. The RF algorithm scored 0.781, the highest score in this
research, and above the SLR average. This means that the algorithm can be
considered highly successful for this research and for the medicine field.

∙ Support Vector Machine. The SVM algorithm scored 0.709, which is lo-
cated inside the bounds of the candle graph, although quite close to the bot-
tom. This means that the algorithm is not very effective.

In summary, two algorithms received an excellent score when compared to
the SLR. Both can be used by researchers in the medical field, and perhaps even
doctors, for screening patients at risk.

5.7.2 The Optimal Algorithm

Selecting the optimal algorithm is more challenging than simply identifying
which one has the highest score. In practice, a particular algorithm might be better
suited to a specific scenario. Four scenarios that could change what is perceived as
the optimal algorithm are presented below:

∙ For a doctor performing a priority, it might be more effective to use the al-
gorithm that has a combination of the highest score with the least amount of
variables; since a given doctor would personally assess the situation afterward,
a number of mistakes for the sake of an improved time could be beneficial.
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∙ When one is developing an online quiz for diagnosing possible diseases, it is
definitely better to have a greater accuracy at the cost of a several questions
more, especially since, in this case, there may be no doctors involved in the
analysis.

∙ In a case where the variables have already been gathered, or it is hard to change
which variables are recorded, the diagnosis should be given by means of the
available variables. This situation can happen when trying to use the hospitals
current database for this purpose, where the data is already there, and it is
difficult to make a change in the system to gather different variables. One
could then decide which algorithm to use based on the most commonly used
variables of the algorithms because this would provide the highest accuracy in
the results - even though in a more general case, the given algorithm might
perform less effectively than others.

∙ Depending on how much computing power or time is available, a question
about the complexity of the algorithms is also important to define the best
one. RF is an algorithm that is very effective and has only two important
parameters to configure. On the other hand, neural networks could be bet-
ter than RF, but it has a multitude of parameters, which could lead to an
expensive and time consuming process of training and evaluation.

In the first scenario, the optimal algorithm, based on the findings of this
research, is the LR. It has a lower score than RF, but only uses 51.02 variables
on average, compared to 98.02 from RF. Furthermore, in LR the importance of
variables declines at a significantly faster pace then in RF; this happens because RF
is an algorithm that by definition is better when dealing with an increased number
of variables, opposite to how LR functions.

In the second scenario, RF is clearly the optimal algorithm: it possesses
the highest accuracy, although this is at the cost of a significantly high variable
requirement. In addition, it has a remarkably steady use of the available variables;
this means that it can consider variables that may not play so important a role in
the prediction of diabetes but can statistically help other, more correlated, variables
with the diagnosis.

The third scenario, presents a significant challenge, and the problem depends
upon what the input data is. If one examines the most important variables from
each algorithm, there might be some overlap, but usually not a complete fit. This
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means that in these cases, it is recommended to train the algorithms again against
the new database. And with those results in mind, decide the optimum algorithm.

5.7.3 Risk Factors

A striking difference between the various algorithms involves the selection of
the top variables. Each algorithm produced a different set of variables that were
selected as the most important risk factors to be considered. The reasons for this
phenomenon go beyond the scope of this research; generally speaking, however, it
involves a difference in how each algorithm sees and interprets the input data, and
how they induce the model through their learning process.

To be characterized as a risk factor, the variable must have a connection
with the output. These connections are about finding a way to correlate directly
a variable with the outcome, usually on a direct relation. With this study, a more
complex form of correlation is available, since the ML algorithms are able to detect
non-linear correlations.

By means of the graphs previously depicted (Figures 5.2 on page 46, 5.4 on
page 49, 5.6 on page 51, and 5.8 on page 54), which showed the variables that were
considered the most relevant according to each iteration, we can produce an analysis
of the most important risk factors discovered. Firstly, one should note that not all
variables considered important by the algorithms should be considered risk factors.
There are other factors to consider: for example, the variable could actually be
a consequence of developing diabetes, and, as such not technically a risk factor,
although a correlation may exist. The algorithms may not be able to differentiate
between the variables that are the cause of diabetes and those that are caused by it.
In this research, those points are not discussed in depth. It is, however, important
to keep in mind that the variables discussed and compared in the following analysis
could be considered consequences and not risk factors, such that a further detailed
analysis by specialists is necessary to confirm the validity of results.

Table 5.16 summarizes the most important variables and lists the different
algorithms that referenced them as risk factors. By analyzing the number of algo-
rithms that point each specific variable as a risk factor, it can be observed that the
first three variables in the table are the ones with higher chance of having an impact.
Following, these variables are described in more detail.
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Table 5.16: Most important variables - summary
Variable Meaning Algorithms
percepan Health perception in the last 12 months LR, RF, SVM
tempres Has high blood pressure LR, RF

anos Age RF, SVM
pesmora How many people live in his/her house RF

relig1 Religion RF
serie Scholarity RF
grau Scholarity RF

empreg Working state RF
ren1 Income RF

ouvrad Listen to the radio RF
peso Weight RF

mamaex Last mamma exam RF
mamonde Location of the last mamma exam RF

verpa Has ever measured blood pressure RF
locons Where was his/her last doctor visit RF

convtemp For how long has he/she had medical insurance RF
baitemp For how long does he/she visit doctors in the local clinic RF
almam Problems using the baby bottle while breastfeeding RF
interne Internet usage frequency LR
angstres Knowledge question: does stress lead to heart attack LR
diabobe Knowledge question: what makes obesity worse LR
colevnao Know how to avoid uterine cervix cancer LR
temcol Has high cholesterol LR
temtrig Has high triglycerides LR
papex Has done preventive exams for uterine Cancer LR

mamofez Has done mammography before LR

The first variable, “Health perception in the last 12 months”, was indicated
by three algorithms. This makes it the most relevant variable and risk factor for
this research. The threefold indication of this variable suggests that a given person’s
perception of his/her own health could be an indication that he/she has diabetes.
It means, moreover, that developing diabetes makes the particular person feel con-
siderably worse with regards to her health. This statement might appear obvious,
but it should be emphasized that not all diseases cause that level of perception on
an individual - sometimes a disease simply functions as something bothering a given
person, but does not really appear terribly important. As indicated above, there is
a the possibility that this results could also be an effect of a given person realizing
he/she has diabetes and thus feeling negative because of it. Having this perception
may also motivate an individual to look for medical assistance, which may aid in
the diagnosis of diabetes.

The second variable, “High blood pressure”, was indicated by two algorithms,
the LR and RF. The variable might appear it is an obvious - and one that does not
need the help of a machine learning algorithm since most patients with diabetes,
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especially those with type 2 diabetes, develop high blood pressure at some stage.
Nonetheless, this result confirms that the algorithms were trained correctly, since
it was pointed as a risk factor, and indeed, it may lead to several complications of
diabetes.

The third variable, “Age”, was indicated by two algorithms, the RF and SVM.
Although middle-aged and older adults are still at the highest risk for developing
type 2 diabetes, a recent work has discussed the greater negative effect of diabetes
on mortality and morbidity for patients diagnosed at young age and their elevated
risk for renal and nerve complications (AL-SAEED et al., 2016). This emphasizes
the importance of age in the time of diagnosis and the need to develop strategies
for management of high-risk patient groups to control mortality.

Besides these three variables, several others have been indicated by a single
algorithm during every iteration of the training; this means that they are worth
examining to a greater extent. However, since these variables are only used by
a single algorithm, they might or might not be useful; thus we shall only cite a
selected number that appeared interesting and worthy of mention in this research.
Furthermore, various theories as to why they appeared are discussed: it is important
to note, however, this reason is not the objective of this research, and, accordingly,
should not be considered as definitive, only as guidelines for future research.

∙ “Internet usage frequency” is the first variable that stands out as an interesting
associated variable. Usually, with a higher frequency of internet usage, the
person tends to be more sedentary, and this might explain why internet usage
may be associated to the development of diabetes. Certainly, it is not common
knowledge that internet usage and diabetes are correlated.

∙ “The number of people living in the same house“ is also correlated with the
development of diabetes. Usually when more people live in the same house, it
is due to the adults deciding to have kids. The children may be able to cause
changes in the habits of the parents: for example, adults eating less healthy,
or neglecting care related to their health due to the attention required by their
children.

∙ The variable “Working state” also deserves some discussion. It is not clear
if people that work have a higher chance of developing diabetes or it is the
opposite that is true. Either way, it is an interesting variable for further
research in the subject.
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∙ A few “Knowledge variables” also appear important indicators in predicting
diabetes, such as the “Scholarity” of a given person or how much they under-
stand about obesity and heart attacks. This is an indication that the knowl-
edge about the disease can actually help in its prevention (these risk factors
were also the original object of research of the dataset in which this work was
based).

∙ “Income” is also an important variable in this research. This is an interesting
finding because there might be a correlation between an individual’s income
and his/her knowledge and, most importantly, interest in his/her health.
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6 CONCLUSION

Noncommunicable diseases are a major public health issue faced worldwide,
specially in developing countries. To help decrease the global burden caused by
chronic diseases such as diabetes, a more efficient system of diagnosis is necessary.
The data that is saved on a daily basis from patients in hospitals and clinics can
be used for that purpose when analyzed by modern solutions as those provided by
ML. ML algorithms allow the analysis of more complex data than traditional statis-
tical approaches, extracting non-linear relationships and representing the gathered
knowledge as applicable predictive models.

In the context of ML applications in the medical field, the SLR performed in
the scope of this work has shown that ML is indeed an increasingly popular analytical
tool in the study of chronic diseases. Numerous articles have adopted a variety of
ML algorithms, among which SVM, RF, and DT stand out, to train predictive
models of diagnoses and to identify potential risk factors for chronic diseases. In
general, these models were highly competitive in relation to LR, which is by far the
most traditional approach for data analysis in epidemiology, as well as in contrast
to clinical prediction scores derived from specialists.

By performing experimental research with SVM, RF, DT, and LR to ana-
lyze a diabetes-related database with the goal of training a predictive model and
determining potential risk factors, we observed that the best overall performance
was achieved by the RF algorithm. The scores given by the algorithms trained
during this research are not the highest in the field, as can be seen by the SLR
comparison. In spite of that, they could be used in multiple scenarios successfully.
It is also important to mention that the notion of best algorithm depends greatly
on the specific scenario for which the ML model would be applied, and should con-
sider the tradeoff between number of variables, variables available, and predictive
performance. We have also noted that the optimal parameters for the algorithms
also suffer large variation among iterations of the training process, suggesting that
parameters configuration is not a straightforward process and that an interaction
among training set, variable selection, and model tuning is important.

Finally, the ML training results provided the means to investigate the most
relevant variables, which may be interpreted as important variables associated with
the occurrence of diabetes. We have highlighted a collection of potential risk factors
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that present some plausibility regarding their association with diabetes. Some of
these were identified by more than one algorithm, increasing their relevance. Fur-
ther research involving specialists is necessary to evaluate their actual relevance and
expand the knowledge about their impact on diabetes onset. Overall, our results cor-
roborate previous studies on the suitability and power of ML approaches for helping
in data analysis to improve medical diagnosis, and may motivate the development
of further works within this interdisciplinary field.
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ANNEX B — BEST VARIABLES RANKING ACCORDING TO THE

INNER LOOP

These are the top 30 variables from each algorithm in the inner loop of the
training, which corresponds to the variable selection.

Figure B.1: LR - inner loop best variables ranking

Figure B.2: DT - inner loop best variables ranking
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Figure B.3: RF - inner loop best variables ranking

Figure B.4: SVM - inner loop vest variables ranking
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