

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

GABRIEL BARUFI VERAS

Supporting Swarm Debugging in interpreted programming languages

Monografia apresentada como requisito parcial para

a obtenção do grau de Bacharel em Ciência da

Computação.

Orientador: Prof. Dr. Marcelo Soares Pimenta

Co-orientador: Prof. Dr. Fabio Petrillo

Porto Alegre

2018

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Opperman

Vice-Reitor: Prof. Jane Fraga Tutikian

Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informática: Prof. Carla Maria Dal Sasso Freitas

Coordenador do Curso de Ciência da Computação: Prof. Sergio Luis Cechin

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

I want to thank my wife with all my heart for all her support and to encourage me to

always be my better self. I want to thank my family to put me on the path of knowledge since

my early age. And also thank my advisors Fábio Petrillo and Marcelo Pimenta for the

patience and understanding to finish this journey.

ABSTRACT

Debugging a program takes time: nearly a third of the time spent in development is debugging

and it seems that there is a strong correlation between the time of the first breakpoint and the

time necessary to the debugging activity. The model of Swarm Debugging presents as being

able to transfer the knowledge acquired in many sessions of debugging activity to future

developers that would work in that same program. The model of Swarm Debugging was

originally evaluated using the Java programming language being run over the Eclipse

integrated development environment. This work evaluates the Swarm Debugging on the

context of interpreted programming languages. Interpreted programming languages have been

increasing in popularity and seven of the twenty most popular programming languages are

interpreted programming languages. The meta-model of the concepts used in the Swarm

Debugging is mapped to features described in the documentation of interpreted programming

languages to demonstrate the possibility of supporting the Swarm Debugging in interpreted

programming languages. Finally, the Firebug, an extension for Firefox web browser capable

of debugging JavaScript language, and the PyDev, a plug-in to support Python language for

the Eclipse integrated development environment, were changed put in practice the concepts

developed in this work.

Keywords: Interactive debugging. Interpreted programming language. Crowd software

engineering. Software maintenance. Software engineering.

Suporte à Depuração em Enxame em linguagens de programação interpretadas

RESUMO

Depurar um programa leva tempo: quase um terço do tempo gasto no desenvolvimento é

depuração e parece haver uma forte correlação entre o tempo até o primeiro ponto de parada e

o tempo necessário para a atividade de depuração. O modelo de Depuração em Enxame

apresenta como sendo capaz de transferir o conhecimento adquirido em muitas sessões de

atividade de depuração para futuros desenvolvedores que virão a trabalhar no mesmo

programa. O modelo de Depuração em Enxame foi originalmente avaliado usando a

linguagem de programação Java sendo executada sobre o ambiente de desenvolvimento

integrado do Eclipse. Este trabalho avalia a Depuração em Enxame no contexto de linguagens

de programação interpretadas. Linguagens de programação interpretadas têm aumentado em

popularidade e sete das vinte linguagens de programação mais populares são linguagens de

programação interpretadas. O meta-modelo dos conceitos usados na Depuração em Enxame é

mapeado para recursos descritos na documentação de linguagens de programação

interpretadas para demonstrar a possibilidade de suportar a Depuração em Enxame em

linguagens de programação interpretadas. Finalmente, o Firebug, uma extensão para o

navegador Firefox capaz de depurar a linguagem JavaScript, e o PyDev, um plug-in de

suporte à linguagem Python para o ambiente de desenvolvimento integrado do Eclipse, foram

alterados colocando em prática os conceitos desenvolvidos neste trabalho.

Palavras-chaves: depuração interativa, linguagem de programação interpretada. engenharia

de software em multidão, manutenção de software, engenharia de software.

LIST OF FIGURES

Figure 1.1 – Typical software development process ...12
Figure 2.1 – The Swarm Debugger meta-model ...16
Figure 2.2 – The Swarm Debugger Services architecture ...17
Figure 2.3 – The Swarm Debugger metadata ...18
Figure 2.4 – Lexical environment in JavaScript ...20
Figure 2.5 – Creating a class using literal notation in JavaScript ..20
Figure 2.6 – Creating a class using class constructor in JavaScript ...20
Figure 2.7 – Prototypes in JavaScript ..21
Figure 2.8 – Built-in objects in JavaScript ...21
Figure 2.9 – Function objects in JavaScript ...22
Figure 2.10 – Class objects in JavaScript ...22
Figure 2.11 – Function objects in Python – fibonacci.py file ..23
Figure 2.12 – Function objects in Python – importing fibonacci.py file ..23
Figure 2.13 – Package structure for a generic sound library ...24
Figure 2.14 – Importing a specific module of a package in Python...24
Figure 2.15 – Built-in functions in Python ...25
Figure 2.16 – User-defined functions in Python ...25
Figure 2.17 – Generator functions in Python ...25
Figure 2.18 – Lambda expressions in Python ...26
Figure 2.19 – Callable classes in Python ..26
Figure 2.20 – Built-in methods in Python ..27
Figure 2.21 – Class instances in Python ...27
Figure 2.22 – Instance methods in Python ...27
Figure 3.1 – Method calling in Java ...30
Figure 3.2 – A callable object named one ..31
Figure 3.3 – A callable object named one owned by an object named give ...31
Figure 3.4 – A callable object one owned by a callable object number which in turn is owned by an

object give ..32
Figure 3.5 – A callable object value owned by an object one and this object one is owned by a callable

object number which in turn is owned by an object give ..32
Figure 3.6 – A callable object named value not owned but declared inside another callable object
named number ..33
Figure 3.7 – Example of a callable object using lambda expression ...34
Figure 3.8 – Recursive function that calculates the Fibonacci numbers ..34
Figure 3.9 – A breakpoint set in the global environment ..35
Figure 3.10 – The Swarm Debugging meta-model proposed in this work ...35
Figure 4.1 – Anonymous functions in JavaScript ...38
Figure 4.2 – Dynamic functions in JavaScript..38
Figure 5.1 – Check for the main scope in Python ...39
Figure 5.2 – A function declared inside a function in Python ...39
Figure 5.3 – A class declared inside the method of a class ...40
Figure 5.4 – Callable function in Python ...40
Figure 5.5 – Callable lambda expression in Python ..40
Figure 5.6 – Callable class instance in Python ...41
Figure 6.1 – Firefox preference changes to install custom extensions ...42
Figure 6.2 – Firefox extension debugging ..43
Figure 6.3 – Main function in Firebug for adding breakpoints ...43
Figure 6.4 – Main function in firebug for stepping into a function ...43
Figure 6.5 – Source code used in Firebug to test breakpoints ...44
Figure 6.6 – Function scope when adding a breakpoint in Firebug ...44
Figure 6.7 – Function scope when stepping into a function in Firebug ...45
Figure 6.8 – Main function in PyDev for adding breakpoints ...46

Figure 6.9 – Main function in PyDev for stepping into a function ..46
Figure 6.10 – Source code used in PyDev to test breakpoints ...46
Figure 6.11 – Variables when adding a breakpoint in PyDev ...46
Figure 6.12 – Python project files and folders ..47
Figure 6.13 – Variables when adding a breakpoint in PyDev ...47
Figure 6.14 – Variables when stepping into a function in PyDev ...48

LIST OF TABLES

Table 2.1 – Most popular programming languages in August 2018 ..14
Table 3.1 – Proposed Namespace meta-concept...29
Table 3.2 – Proposed Object meta-concept ..30
Table 3.3 – Proposed Method meta-concept ..30
Table 3.4 – Proposed Call meta-concept ..31
Table 3.5 – Resulting meta-data model of a callable object ..31
Table 3.6 – Resulting meta-data model of a callable object owned by an object32
Table 3.7 - Resulting meta-data model of a callable object owned by a callable object owned by a

callable object ...32
Table 3.8 – Resulting meta-data model of a callable object owned by an object owned by a callable

object owned an object ..33
Table 3.9 – Resulting meta-data model of step-into a function declared inside another function33
Table 3.10 – Resulting meta-data model of step-into a lambda expression ...34
Table 3.11 – Resulting meta-data of step-into a recursive function ..34
Table 3.12 – Breakpoint meta-concept ..35
Table 3.13 – Resulting meta-data of setting a breakpoint in the main script scope35

LISTA DE ABREVIATURAS E SIGLAS

ECMA European Association for Standardizing Information and Communication

Systems

IDE Integrated Development Environment

REST Representational State Transfer

XML Extensible Markup Language

HTTP Hypertext Transfer Protocol

SDK Software Development Kit

URL Uniform Resource Locator

CONTENTS

1 INTRODUCTION ... 12

1.1 Main Objective ... 14
1.2 Secondary Objectives ... 15

1.3 Structure of this work .. 15
2 BACKGROUND ... 16

2.1 Swarm Debugging .. 16
2.2 The JavaScript language .. 19

2.2.1 Lexical environment .. 19
2.2.1 Modules .. 20

2.2.1 Objects .. 20
2.2.1.1 Built-in objects ... 21

2.2.1.2 Function objects ... 22
2.2.1.3 Class Objects .. 22

2.3 The Python language .. 22
2.3.1 Modules .. 23

2.3.2 Packages ... 24
2.3.3 Callable types .. 24

2.3.3.1 Built-in functions.. 25
2.3.3.2 User-defined functions ... 25

2.3.3.3 Generator functions .. 25
2.3.3.4 Lambda expressions ... 26

2.3.3.5 Classes ... 26
2.3.3.6 Built-in methods ... 26

2.3.3.7 Class instances ... 27
2.3.3.8 Instance methods .. 27
3 SWARM DEBUGGING IN INTERPRETED PROGRAMMING LANGUAGES 29

3.1 Namespace meta-concept ... 29
3.2 Object, Method and Call meta-concepts ... 29

3.3 Breakpoint meta-concept ... 35
3.4 Proposed Swarm Debugging meta-model ... 35

4 SWARM DEBUGGING IN JAVASCRIPT ... 37
4.1 Definitions for the Namespace meta-concept in JavaScript 37

4.2 Definitions for the Breakpoint and Call meta-concepts in JavaScript 37
4.3 Definitions for the Object and Method meta-concepts in JavaScript 37

5 SWARM DEBUGGING IN PYTHON ... 39
5.1 Definitions for the Namespace meta-concept in Python ... 39

5.2 Definitions for the Breakpoint and Call meta-concepts in Python 39
5.3 Definitions for the Object and Method meta-concepts in Python 39

6 IMPLEMENTATION TESTS .. 42
6.1 Implementing Swarm Debugger Tracer in the Firebug extension 42

6.2 Implementing Swarm Debugger Tracer in the PyDev plug-in 45
7 CONCLUSION ... 49

7.1 Summary of contributions ... 49
7.2 Limitations of this work ... 49

7.3 Future works .. 49
REFERENCES .. 50

12

1 INTRODUCTION

Software development is a huge task that vastly increases in complexity as the

software being developed grows (BROOKS, 1987). The process of software development has

some basic activities that are agnostic of the methodology of software development being

used. Of these activities, debugging, testing and verification are essential to assure that the

software being develop is reliable, that is, the software is performing accordingly to its

specification bounded by the limitations of its environment (HAILPERN, 2002).

Figure 1.1 – Typical software development process

Source: Hailpern (2002, p. 6).

While debugging is an activity of finding and fixing defects (or bugs) that prevent the

proper operations of software programs, debugger is a tool that helps the developer to analyze

the source code while it runs one step at a time, trying to understand it and find a place to put

breakpoints. The developers need to acquire runtime information and frequently execute the

application using the debugger to understand the program, spending nearly a third of their

time in this debugging activity (PETRILLO, 2015a).

The Swarm Debugger renders the activity of debugging more efficient with this

transfer of knowledge among developers. The model of Swarm Debugging presents as being

able to transfer the knowledge acquired in many sessions of debugging activity by gathering

data from these debugging activities and presenting it through meaningful visualizations to

13

future developers that would work in that same program. The work of Petrillo et al. (2016a)

also demonstrated that there is no correlation between the numbers of invocations or the

numbers of toggled breakpoints and elapsed task time. On the other hand, it also demonstrated

that there is a strong correlation between the task’s first breakpoint and the elapsed task time

in the form of an inverse proportion. Additionally, a questionnaire among the test subjects

showed a support to the usefulness of the Swarm Debugging visualization features. The

model of Swarm Debugging was originally evaluated using the Java programming language

being run over the Eclipse integrated development environment (PETRILLO, 2016b).

Interpreted programming languages have been increasing in popularity year after year

in the last decades owing to its features that help rapid development of small programs

(OUSTERHOUT, 1998). Differently from Java programming language, interpreted

programming languages are usually of higher level and weakly typed which increases the

productivity of the programmer although it runs slower than compiled programming

languages causing them to be largely used in system integration. According to the Institute of

Electrical and Electronics Engineers (CASS, 2018), seven of the twenty most popular

programming languages are interpreted programming languages. Additionally, there are

proposals that interpreted programming languages like Python be the first programming

language of computer science courses (ZELLE, 1999). Also, the Web is increasing in

interactivity thanks to interpreted programming languages embedded in the web pages

(O’REILLY, 2005). As any other software development, the development of web pages also

includes the exercise of debugging the source code directly on the web page using a web

development tool.

This work evaluates the Swarm Debugging on the context of interpreted programming

languages. The concepts of the meta-model of the Swarm Debugging are mapped to features

described in the documentation of interpreted programming languages to demonstrate the

possibility of supporting the Swarm Debugging in interpreted programming languages. The

Python and JavaScript programming languages were chosen as they are among the most

popular programming languages according various sources. A compiling of the twenty most

popular programming languages according to the IEEE Spectrum (CASS, 2018), the TIOBE

Programming Community index (TIOBE SOFTWARE BV, 2018) and the PYPL Index

(CARBONNELLE, 2018) includes the two interpreted programming languages used in this

work plus the fact that Python is the most popular programming languages in two indexes

(IEEE and PYPL) and JavaScript is the third most popular programming language in one

index (PYPL). Table 2.1 provides the 20 most popular programming languages by each index.

14

Finally, the Firebug, an extension for Firefox web browser capable of debugging JavaScript

language, and the PyDev, a plug-in to support Python language for the Eclipse integrated

development environment, were changed put in practice the concepts developed in this work.

Table 2.1 – Most popular programming languages in August 2018

 Index IEEE TIOBE PYPL

1 Python Java Python

2 C++ C Java

3 C C++ JavaScript

4 Java Python C#

5 C# Visual Basic .NET PHP

6 PHP C# C/C++

7 R PHP R

8 JavaScript JavaScript Objective-C

9 Go SQL Swift

10 Assembly Assembly Matlab

11 Matlab Swift Ruby

12 Scala Delphi/Object Pascal TypeScript

13 Ruby Matlab VBA

14 HTML Objective-C Visual Basic

15 Arduino Ruby Scala

16 Shell Perl Kotlin

17 Perl Go Go

18 Swift R Perl

19 Processing Visual Basic Lua

20 Lua PL/SQL Rust

1.1 Main Objective

The rising importance of the interpreted programming languages provides the first step

to expand the Swarm Debugging approach into different paradigms of programming

languages. If all meta-concepts of the Swarm Debugging could be mapped to a feature of a

target language, then we could say that the Swarm Debugging can support the programming

languages providing all advantages of the Swarm Debugging to the debugging activities in the

programming language. This work tries to find this mapping of the meta-concepts of the

Swarm Debugging into the features of the interpreted programming languages.

15

1.2 Secondary Objectives

In addition to mapping the features of interpreted programming languages to the meta-

concepts of the Swarm Debugging, this work also evaluates the implementation of a version

of the Swarm Debug Tracer to a debugging tool of the JavaScript and Python programming

tool. Namely, the debugging tools changed to have the Swarm Debug Tracer embedded in

them was the Firebug web browser extension and the PyDev Eclipse IDE plug-in.

1.3 Structure of this work

This work is divided in six chapters:

• Chapter 2 presents the main concepts needed to understand the objectives of

this work.

• Chapter 3 provides the proposal of how to support the approach of Swarm

Debugging in interpreted programming languages.

• Chapter 4 provides the proposal of how to support the approach of Swarm

Debugging in the JavaScript programming language.

• Chapter 5 provides the proposal of how to support the approach of Swarm

Debugging in the Python programming language.

• Chapter 6 presents the implementations of two test of concept for the

JavaScript and the Python programming language.

• Chapter 7 gives the final remarks on this work including contributions,

limitations of this work and future works.

16

2 BACKGROUND

This section presents three main topics that should be clear before explaining how to

support Swarm Debugging in interpreted programming languages. These are: how Swarm

Debugging works, how the JavaScript programming language works and how the Python

programming language works.

2.1 Swarm Debugging

The Swarm Debugging concept tries to improve software development activities like

interactive debugging using on the concept of swarm intelligence (PETRILLO, 2016b). The

Swarm Debugging concept works by collecting the actions of several developers during

sessions of interactive debugging and transform this data into knowledge through

visualizations and searching tools designed to be shared among other developers.

The meta-model representing the central concepts of the Swarm Debugger is shown in

figure 2.1. The concepts of the Swarm Debugger data-model comprise the main object-

oriented concepts like Type and Method plus the necessary associations between them like

Invocation and Access.

Figure 2.1 – The Swarm Debugger meta-model

Source: Petrillo (2016a, p. 59).

17

The Swarm Debugging approach to software development is supported by an

infrastructure (called Swarm Debugger Infrastructure) containing tools for store and analyze

debugging data created by the debugging activities of developers while using the Eclipse IDE

and its integrated debugger. The Swarm Debugger Infrastructure is organized in three main

modules: tracer, services and views.

The Swarm Debug Tracer is an Eclipse plug-in responsible to register the interactive

debugging process. Using this plug-in, developers can authenticate their credentials and create

a debug session that will register the developer's actions through the debugging process.

When the developer starts the debugging process, he or she usually mark one point in the

source code where the program should stop to be analyzed step-by-step by the developer: This

mark in the source code is called breakpoint. During the step-by-step analysis, the developer

can choose to follow the program execution inside the method being called by the code

snippet currently being analyzed: This action of following the execution inside the method is

called step into. The Swarm Debugger Tracer is developed to only take breakpoints and step

into as relevant events following the approach of Fleming et al. (FLEMING, 2013).

The Swarm Debug Services (Figure 2.2) provides an infrastructure to store and share

debugging data from and between developers which are composed by the following services:

Swarm RESTful API, SQL Query Console, Full-text Search Engine, Dashboard Service,

Graph Querying Console. For this work, only the Swarm RESTful API is extensively used as

it is the connection point between the Swarm Debugger Tracer and the rest of the Swarm

Debugger Infrastructure.

An instance of the Swarm Debug Services receives messages sent from the Swam

Debugger Tracer. Then the Swarm Debug Services stores the received messages in three

specialized persistence mechanisms: an SQL database (PostgreSQL), a full-text search engine

(ElasticSearch) and a graph database (Neo4J). The three persistence mechanisms use a similar

set of concepts to define the semantics of the Swarm Debugger Tracer messages.

Figure 2.2 – The Swarm Debugger Services architecture

18

Source: Petrillo (2016a, p. 60).

Figure 2.3 presents these concepts using an entity-relationship model.

Figure 2.3 – The Swarm Debugger metadata

Source: Petrillo (2016a, p. 60).

19

Each entity has the following definition:

• Developer is the user of the plug-in.

• Product is the software project which is being debugged.

• Task is the reference to the debugging purpose.

• Session is the Swarm Debugger session.

• Type is the class or interface contained in the project.

• Method is the calling method or method being called.

• Namespace is the container of types.

• Invocation is the link between the method calling and the method being called.

• Breakpoint is the information of breakpoints created by the user.

2.2 The JavaScript language

JavaScript was defined in 1997 by Brendan Eich from Netscape Communication Corp.

for use with the version 2.0 of its Navigator web browser in 1995. A year later, Microsoft

Corp. added support to JavaScript in the version 3.0 of its Internet Explorer web browser.

Netscape Communication Corp. submitted JavaScript to Ecma International to set a standard

specification in 1996 and, in 1997, Ecma International published the first standard version of

the JavaScript specification under the name of ECMAScript (ECMA INTERNATIONAL,

2018).

This work follows the specification of the ECMAScript but is limited to the features

present in the JavaScript implementation of the most used browsers as provided by Mozilla

Developer Network (MOZILLA DEVELOPER NETWORK, 2018). For reference, the most

used web browsers are Google Chrome, Apple Safari, Mozilla Firefox and Microsoft Internet

Explorer (WIKIMEDIA FOUNDATION, 2018).

2.2.1 Lexical environment

A lexical environment is a specification type (meta-values that are used within

algorithms to describe the semantics) used to define the association of Identifiers to specific

variables and functions based upon the lexical nesting structure of JavaScript code. There are

three types of Lexical Environment: global environment, module environment and function

environment.

20

A global environment is a lexical environment which does not have an outer

environment. A module environment is a lexical environment that contains the bindings for

the top-level declarations of a Module. A function environment is a lexical environment that

corresponds to the invocation of an JavaScript function object.

Figure 2.4 – Lexical environment in JavaScript

In the example of Figure 2.4, foo and bar is defined in the global environment while

input in defined in the function environment.

2.2.1 Modules

Modules are not covered in this work because this functionality is not yet supported in

any implementation of JavaScript of the most used web browsers (MOZILLA DEVELOPER

NETWORK, 2018) although there is definition for modules in the ECMAScript specification.

2.2.1 Objects

In the JavaScript programming language, objects are not strictly based on classes as

much as the Java programming language. There is more than one way to create an object like

using the literal notation (Figure 2.5) or the class constructor (Figure 2.6).

Figure 2.5 – Creating a class using literal notation in JavaScript

Figure 2.6 – Creating a class using class constructor in JavaScript

21

All objects are logically collections of properties, but there are multiple forms of

objects that differ in their semantics for accessing and manipulating their properties. A

property of an object can be explained as a variable or another object that is attached to the

object.

When it comes to inheritance, JavaScript only has one construct: objects. Each object

has a private property (referred to as [[Prototype]]) which holds a link to another object called

its prototype. That prototype object has a prototype of its own, and so on until an object is

reached with null as its prototype. Null has no prototype by definition and acts as the final

link in this prototype chain. Nearly all objects in JavaScript are instances of the Object object

which sits on the top of a prototype chain.

Figure 2.7 – Prototypes in JavaScript

In the example of Figure 2.7: obj has the property a therefore obj.a has value 2; obj

has the property b therefor obj.b has value 3 despite its prototype also having the property b;

obj does not have the property c but its prototype has the property c} therefore obj.c has value

5; finally obj does not have the property d neither its prototype has the property d therefore

obj.d has undefined value.

2.2.1.1 Built-in objects

There are certain built-in objects available whenever an JavaScript Script or Module

begins execution. The unique global object which is part of the lexical environment of the

executing program and is created before control enters any execution context. Others built-in

objects are accessible as initial properties of the global object or indirectly as properties of

accessible built-in objects.

Figure 2.8 – Built-in objects in JavaScript

22

In the example of Figure 2.8, Object is a property of the global object. Although there

is not an explicit reference to the global object, every variable, function, etc. defined in the

global environment is a property of the global object.

2.2.1.2 Function objects

In JavaScript, function objects encapsulate parameterized JavaScript code closed over

a lexical environment and support the dynamic evaluation of that code. A function object in

JavaScript is an ordinary object and has the same internal slots and the same internal methods

as any other ordinary object. All JavaScript function objects have the [[Call]] internal method

defined here. JavaScript functions that are also constructors have in addition the [[Construct]]

internal method. Anonymous functions objects that do not have a contextual name associated

with them by this specification do not have a name own property but instead inherit the name

property of %FunctionPrototype%.

Figure 2.9 – Function objects in JavaScript

2.2.1.3 Class Objects

Classes in JavaScript works almost equals to any other object-oriented programming

language that also have classes. The example in Figure 2.9 shows one way of creating an

object by calling the class constructor:

Figure 2.10 – Class objects in JavaScript

2.3 The Python language

23

Python is an interpreted dynamic programming language developed by Guido van

Rossum in early 1990s that uses the object-oriented programming paradigm. As an interpreted

programming language, Python does not need to be translated to machine language to be

executed and, as a dynamic programming language, Python executes, at run time, actions that

would otherwise be executed during compilation (VAN ROSSUM, 2003).

In the Python programming language, all data is an object composed of identity, type

and value. The identity is an integer number that never changes once the object is created. The

type determines the domains of a given object and what operations it supports. The value of

objects may be changeable or not, thus objects whose values can be changed are called

mutable and objects whose values cannot be changed are called immutable.

2.3.1 Modules

Modules are files containing source code written in the Python programming language

and its name is the name of the file without the .py suffix. Modules can be imported using the

import statement creating an object that enables the reference to objects declared inside the

module.

Consider the fibonacci.py module file:

Figure 2.11 – Function objects in Python – fibonacci.py file

Now, the fibonacci.py module file can be used as following:

Figure 2.12 – Function objects in Python – importing fibonacci.py file

24

2.3.2 Packages

A collection of multiple modules can be organized hierarchically inside a folder to

create packages and sub-packages. The package and each of its sub-packages must have an

initialization file called __init__.py to it be considered a package. Using this system, it is

possible to import the package, modules inside the package or even specific objects of a given

module.

Figure 2.13 – Package structure for a generic sound library

The following piece of code shows how it is possible to use a specific module of a

package or an effect from the sound library based on the example package given above.

Figure 2.14 – Importing a specific module of a package in Python

2.3.3 Callable types

The Python programming language defines some types that have the function call

operation. This operation enables the type to behave as a function that executes a piece of

25

code. The Python programming language defines the following callable types: built-in

functions, user-defined functions, generator functions, lambda expressions, instance methods,

built-in methods, classes and class instances.

2.3.3.1 Built-in functions

Build-in functions are all function objects defined by the implementation of the

interpreter of the Python programming language. Examples include the chr() function which

returns the Unicode character of an integer.

Figure 2.15 – Built-in functions in Python

2.3.3.2 User-defined functions

User-defined functions are callable objects in form of functions that can be defined by

the user. The following piece of code examples how to create user-defined functions.

Figure 2.16 – User-defined functions in Python

2.3.3.3 Generator functions

Generator functions are any function object that uses the yield statement thus creating

an iterator. When the generator function is called and reached the yield statement, the

program flow stops the function and returns an iterator. Any further call to the generator

function resumes the execution of the generator function from the former yield statement.

Figure 2.17 – Generator functions in Python

26

2.3.3.4 Lambda expressions

Lambda expressions are just like functions except defining a lambda expression create

an anonymous function that have only one statement. The following piece of code shows

lambda expressions in the example of a function that takes another function and a list as

argument and apply the function to each element of the list.

Figure 2.18 – Lambda expressions in Python

2.3.3.5 Classes

Classes are objects that when called returns a new instance object of that class.

Optionally, classes can have a special __init__ method that will be executed when a class is

called to create an instance object.

Figure 2.19 – Callable classes in Python

2.3.3.6 Built-in methods

27

Build-in methods are all methods pertaining to objects and defined by the

implementation of the interpreter of the Python programming language. Examples include the

list.append() of any list object as presented in the piece of code below.

Figure 2.20 – Built-in methods in Python

2.3.3.7 Class instances

Class instances can be callable by having the special __call__ method implemented.

The __call__ method will be executed whenever the class instance is called like it was an

function or method.

Figure 2.21 – Class instances in Python

2.3.3.8 Instance methods

Instance methods are objects that connects a class, a function object and an instance

object. The following piece of code shows that accessing the method from the class returns a

function but accessing the method from the class instance returns a method bound to the

instance object.

Figure 2.22 – Instance methods in Python

28

29

3 SWARM DEBUGGING IN INTERPRETED PROGRAMMING LANGUAGES

To implement the Swarm Debug Tracer for interpreted programming languages, it is

necessary that the Swarm Debugging meta-model supports concepts that are intrinsic to

interpreted programming languages. Therefore, this section compares the key concepts of

interpreted programming languages with the concepts of Swarm Debugging meta-model

defined by Petrillo (2016a).

The Swarm Debugging meta-model makes mention to source-code versioning in the

meta-model model but accepts it as limitation that should be addresses in future works. The

meta-model proposed in this work does not make references to versioning and therefore focus

is kept on defining features necessary for supporting interpreted programming languages in

the Swarm Debugging.

3.1 Namespace meta-concept

The proposed Namespace meta-concept is the same as the path of the file in the file

system because namespaces already work in that manner in most programming languages.

For example, the namespace is a facade to the file path of the source code in the Java

programming language. The JavaScript running in web browsers does not support packages

yet and packages is just a way to unify a collection of modules in Python. In the end,

packages boil down to files and folders in most languages.

Table 3.1 presents the proposed Namespace meta-concept.

Table 3.1 – Proposed Namespace meta-concept

Namespace:

id internal id

full_path path of the file within the system

name name of the script file

3.2 Object, Method and Call meta-concepts

The previous sections of this work have shown that interpreted programming

languages uses the object-oriented programming paradigm much less based on classes than

Java which was the main programming language used to conceive the Swarm Debugging. In

the Java programming language, all methods belong to a class therefore it makes sense that

30

Swarm Debugging follow these steps and stated that all methods had a reference to class in

the meta-model.

The source code in Figure 3.1 was written in the Java programming language and

exemplifies a typical case of a method calling another method. In this example, the main

method of Test class calls the one method of Numbers class.

Figure 3.1 – Method calling in Java

On the other hand, interpreted programming languages have a trend to use objects as

its main concept instead of classes and to have objects that can be executed as if they were a

method. At least, those are trends found in the studied languages which are also the most

popular interpreted programming languages. The first mentioned trend means that everything

is an object and its attributes are also objects (except when it is a built-in data type instead of

an object). In programming languages based mainly in objects, there is no need to declare a

class then instantiate it in an object as objects could be created directly. The second trend

mentioned means that some objects are of types that can be called in the same way as class

methods without the requirement that the called object be a method belonging to a class.

Finally, to better represent the object-oriented paradigm that is used by all

programming languages mentioned, Type should be called Object as it refers objects more so

than anything else.

Table 3.2 presents the proposed Object meta-concept.

Table 3.2 – Proposed Object meta-concept

Object:

id internal id

name name of object if there is one

namespace_id namespace of the object

session_id session where this object appeared

Table 3.3 presents the proposed Method meta-concept.

Table 3.3 – Proposed Method meta-concept

31

Method:

id internal id

name name of method if there is one

signature defined parameters of the method

object_id object that owns the method

Table 3.4 presents the proposed Call meta-concept.

Table 3.4 – Proposed Call meta-concept

Call:

id internal id

caller_id method that calls

called_id method being called

session_id session where this call happened

The following examples written in the JavaScript programming language illustrates

the nesting of objects with some of them also being callable objects. Tables representing the

resulting meta-data of the debugging session of each example is presented together with the

source code.

Figure 3.2 – A callable object named one

In the example of Figure 3.2, it is made a step from the __main__ function of the

script.js object into the one function of the script.js object in line 2. This debugging session

results in the meta-data contained in Table 3.5.

Table 3.5 – Resulting meta-data model of a callable object

Object Function Call

id name id name id id caller_id called_id

1 script.js 1 __main__ 1 1 1 2

 2 number 2

Figure 3.3 – A callable object named one owned by an object named give

In the example of Figure 3.3, it is made a step from the __main__ function of the

script.js object into the one function of the give object in line 3. This debugging session

results in the meta-data contained in Table 3.6.

32

Table 3.6 – Resulting meta-data model of a callable object owned by an object

Object Function Call

id name id name id id caller_id called_id

1 script.js 1 __main__ 1 1 1 2

2 give 2 one 2

Figure 3.4 – A callable object one owned by a callable object number which in turn is owned by an

object give

In the example of figure 3.4, it is made a step from the __main__ function of the

script.js object into the number function of the give object in line 10 then a step from the

number function of the give object into the one function of the number object in line 8. This

debugging session results in the meta-data contained in Table 3.7.

Table 3.7 - Resulting meta-data model of a callable object owned by a callable object owned by a

callable object

Object Function Call

id name id name id id caller_id called_id

1 script.js 1 __main__ 1 1 1 2

2 give 2 number 2 2 2 3

3 number 3 one 3

Figure 3.5 – A callable object value owned by an object one and this object one is owned by a callable

object number which in turn is owned by an object give

33

In the example of Figure 3.5, it is made a step from the __main__ function of the

script.js object into the number function of the give object in line 11 then a step from the

number function of the give object into the value function of the one object in line 9. This

debugging session results in the meta-data contained in Table 3.8.

Table 3.8 – Resulting meta-data model of a callable object owned by an object owned by a callable

object owned an object

Object Function Call

id name id name id id caller_id called_id

1 script.js 1 __main__ 1 1 1 2

2 give 2 number 2 2 2 3

3 one 3 value 3

Figure 3.6 – A callable object named value not owned but declared inside another callable object

named number

In the example of Figure 3.6, it is made a step from the __main__ function of the

script.js object into the number function of the script.js object in line 7 then a step from the

number function of the script.js object into the value function of declared inside the number

object in line 1. In cases like this, the function is created referencing the object where it was

created. This debugging session results in the meta-data contained in Table 3.9.

Table 3.9 – Resulting meta-data model of step-into a function declared inside another function

Object Function Call

id name id name id id caller_id called_id

1 script.js 1 __main__ 1 1 1 2

2 number 2 number 1 2 2 3

 3 value 3

The previous examples also showed another characteristic of interpreted languages

and how they are handled in this work: the program starts to run from the first line of the

script file. The name of the script file is recorded as the object and the function is a special

predefined entry (e.g. __main__ and script.js in the previous examples).

34

The lambda expressions and anonymous functions are another case where special

entries on the meta-concept should be defined. The following example provides a lambda

expression written in the Python programming language.

Figure 3.7 – Example of a callable object using lambda expression

In the example of Figure 3.7, a step is made from the apply function of the script.py

object into the __lambda__ function of the apply object in line 3. This debugging session

results in the meta-data contained in Table 3.10.

Table 3.10 – Resulting meta-data model of step-into a lambda expression

Object Function Call

id Name id name id id caller_id called_id

1 script.js 1 apply 1 1 1 2

2 Apply 2 __lambda__ 1

Figure 3.8 – Recursive function that calculates the Fibonacci numbers

Recursion is an important feature of many programming languages. In the example of

Figure 3.8, a step is made from the fibonacci function of the script.py object into the fibonacci

function of the script.py object in line 6 then another step-into in the same line 6. This

debugging session results in the meta-data contained in Table 3.11.

Table 3.11 – Resulting meta-data of step-into a recursive function

Object Function Call

id name id name id id caller_id called_id

1 script.js 1 fibonacci 1 1 1 1

 2 1 1

35

3.3 Breakpoint meta-concept

In the Swarm Debugging as proposed by Petrillo (2016a), every breakpoint is set

inside a class following the logic of the Java programming language. In interpreted

programming languages, breakpoints need an entry specially defined for when the breakpoint

is set outside an object. This usually happens when the breakpoint is set in a line of the script

file that does not correspond to any object in the source code.

Table 3.12 presents the proposed Breakpoint meta-concept:

Table 3.12 – Breakpoint meta-concept

Breakpoint:

id internal id

date_created creation date of the breakpoint

line_number line number inside the script

object_id object where the breakpoint was created
Source: Veras (2018, p. 31).

Figure 3.9 – A breakpoint set in the global environment

In the example of Figure 3.9, a breakpoint is set in line 3 which does not reference the

inside of any object. In this case, the breakpoint is defined as being set in the script.py object.

This debugging session results in the meta-data contained in Table 3.13:

Table 3.13 – Resulting meta-data of setting a breakpoint in the main script scope

Object Breakpoint

id name id line obj_id

1 script.js 1 4 1
Source: Veras (2018, p. 31).

3.4 Proposed Swarm Debugging meta-model

No changes are proposed to the Session, Developer and Project meta-concepts because

they are not related to the programming language being used in the Swarm Debugging.

Figure 3.10 – The Swarm Debugging meta-model proposed in this work

36

The Figure 3.10 presents the Swarm Debugging meta-concept as proposed by this

work. Comparing Figure 2.4 with Figure 3.10, it shows that there is not much difference

between the original meta-concept and the new meta-concept being proposed. The largest

difference between the Swarm Debugging as initially proposed by Petrillo (2016a) and the

Swarm Debugging as proposed in this work is the new set rules necessary to create entries

when it is not clear how to define some features of interpreted programming languages in the

original meta-model of the Swarm Debugging. This uncertainty exists because the core

differences between the Java programming language and the many interpreted programming

languages where the former is strongly based on classes and the latter are usually more based

on objects.

37

4 SWARM DEBUGGING IN JAVASCRIPT

The JavaScript programming languages may differ in some points from other

interpreted languages. One of these points is the concept of namespace, module or package

may it be the definition or the inclusion of it as a feature of the language. Other points are

how to handle breakpoints and calls involving the top-level scope and the many ways objects

can be created.

4.1 Definitions for the Namespace meta-concept in JavaScript

The Swarm Debugging has a container of types called Namespace in its meta-model.

This concept of Namespace is like what is called Package in the Java programming language

and Module in the JavaScript programming language. Unfortunately, translating Module to

Namespace has no practical use because the Modules of JavaScript has no implementation in

any version of JavaScript that runs in web browsers currently (MOZILLA DEVELOPER

NETWORK, 2018). One work-around to keep using Namespace in a meaningful way is to

translate the file path of the script file being run to Namespace.

4.2 Definitions for the Breakpoint and Call meta-concepts in JavaScript

The Swarm Debugging presupposes that every breakpoint is created inside a Type and

that Types have names. This is false in JavaScript as the program starts from the first line of a

script file and breakpoints inside the starting global environment of the program is not

considered to be inside a class, method or anything else. Furthermore, any method calls made

from the global environment will not have a Type to reference as a source of the method call.

A special Type could be used to indicate the global environment when a breakpoint in created

or a method is called.

4.3 Definitions for the Object and Method meta-concepts in JavaScript

The Types as specified by the Swarm Debugging acts as a meta-concept for classes

and interfaces, but one could write an object-oriented program without declare a single class

and interfaces does not even exist in the JavaScript programming language. That happens

because JavaScript is weakly typed, its objects are not strictly based on classes and can be

created directly without being an instance of a class or type. Additionally, JavaScript objects

38

can be anonymous which means that their identification for use in the Swarm Debugging is

even more hampered.

Figure 4.1 – Anonymous functions in JavaScript

The JavaScript source code in Figure 4.1 creates an anonymous function object and

then call it. After the function runs, the object vanishes from the global environment as it is

not referenced anymore. When debugging this line of code and calling for a Step Into event,

there is no source Type as it is a call made from the global environment and the target Type is

an anonymous function. Having a name field in Type loses its significance entirely when

many anonymous objects starts to appear in the source code.

Functions in JavaScript are just like any other object except they have a [[Call]]

internal method that dynamically evaluates a runnable piece of code when the function object

is called. To translate JavaScript function calls to be used in the Swarm Debugging, the

function object will be considered an Object and the [[Call]] internal method will be recorded

as the method being called when the function object is called.

Figure 4.2 – Dynamic functions in JavaScript

The JavaScript source code in Figure 4.2 is an example of how to implement a

dynamic function object with dynamic parameters. Despite functions objects and methods

having a signature defining its parameters, they can be omitted, or additional parameters can

be passed when calling a function or method. The fact that parameters of a function object are

not set on stone lessens the meaning of having a signature field in the Method meta-concept

although it does not hinder it either.

39

5 SWARM DEBUGGING IN PYTHON

The Python programming languages may differ in some points from other interpreted

languages. One of these points is the concept of namespace, module or package may it be the

definition or the inclusion of it as a feature of the language. Other points are how to handle

breakpoints and calls involving the top-level scope and the many ways objects can be created.

5.1 Definitions for the Namespace meta-concept in Python

Modules and packages have the same name of its folder in the Python programming

language thus they may be converted into the namespaces of the Swarm Debugging as they

have similar functions of the packages of the Java programming language. This approach also

is very similar to the approach being used in the JavaScript programming language thus the

concept that represents the namespace in Java, JavaScript and Python programming languages

are nearly the same after all.

5.2 Definitions for the Breakpoint and Call meta-concepts in Python

In the Python programming language, there is no main class or main method: The

program starts to run from the beginning of the script file as is usual in other interpreted

programming languages that uses script files. In the Python programming language, this top-

level scope has the reserved name __main__ and the script program can check if it is running

from this top-level scope by checking the __name__ global variable as presented in the source

code of Figure 5.1.

Figure 5.1 – Check for the main scope in Python

Every breakpoint being created in the top-level scope of a module will be defined as if

being created in an object with the same name of the module based on behavior presented in

Figure 5.1 that was defined by the documentation of the Python programming language.

5.3 Definitions for the Object and Method meta-concepts in Python

Figure 5.2 – A function declared inside a function in Python

40

Figure 5.3 – A class declared inside the method of a class

Despite functions in the Python programming language being very similar to functions

in other object-oriented programming languages, the Python programming language offers the

possibility to define methods, functions and classes inside any function or method. The source

code in Figure 5.2 and Figure 5.3 provide examples of a function declared inside a function

and a class declared inside the method of a class, respectively.

In the source code of Figure 5.2 and Figure 5.3, the objects being called from the top-

level scope of a script or module are not being called by another object in lines 5 and 9,

respectively. Call of objects directly from the execution scope should create calls with the

caller object_id representing the module scope. Other callable types of the Python

programming language are functions, lambda expressions and classes with the __call__

special method. Figures 5.4, 5.5 and 5.6 provide an example of each type.

Figure 5.4 – Callable function in Python

Figure 5.5 – Callable lambda expression in Python

41

Figure 5.6 – Callable class instance in Python

42

6 IMPLEMENTATION TESTS

New versions of the Swarm Debugger Tracer were made for the JavaScript and

Python programming languages by changing the source code of a debugging tool for each of

the two interpreted programming languages. The source code of the Firebug web browser

extension was changed to support Swarm Debugging in the JavaScript programming language

and the source code of the PyDev plug-in was changed to supporting Swarm Debugging in

the Python programming language. Both Firebug web browser extension and PyDev plug-in

provide tools to execute debugging activities in their respective interpreted programming

language and both are an open source project which enabled modifications directly in their

source code.

6.1 Implementing Swarm Debugger Tracer in the Firebug extension

The Firebug is a web browser extension for the Mozilla Firefox web browser that

provides many tools needed in web development. Among its features, the Firebug web

browser extension supports interactive debugging of the JavaScript source code that is

running on the web pages. The complete setup used in the implementation test was the

Firefox web browser version 56.0 and the Firebug extension version 2.0.17.

Figure 6.1 – Firefox preference changes to install custom extensions

For security reasons, it is necessary to set the value of the xpinstall.signatures.required

preference to false in the Firefox configuration (about:config) to install a custom extension as

demonstrated in Figure 6.1.

43

Figure 6.2 – Firefox extension debugging

Firefox extensions are capable of being debugged as show in Figure 6.2 thus

answering the question: “who debugs the debugger tool?”.

Figure 6.3 – Main function in Firebug for adding breakpoints

Figure 6.4 – Main function in firebug for stepping into a function

The source code of the Firebug extension was analyzed and changed to watch these

debugging activities, catching the developer interactions and sending them to the Swarm

Debug Services. All the information about the developer interaction is sent to the Swarm

Debug Services via RESTful messages during the debugging activities. The function that

catches the event of adding a breakpoint in found in line 224 of

/firebug/debugger/breakpoints/breakpointStore.js file (Figure 6.3) and the function that

44

catches the event of stepping into a function is found in line 391 of

/firebug/debugger/debugger.js file (Figure 6.4). It is then used an XMLHttpRequest in each

function to send the developer interaction information to the Swarm Debug Services.

However, there is limitations to this approach. The debugger tool of the Firebug

extension does not have any syntactic information about the program. When a breakpoint is

set, the debugger tool does not know if the breakpoint was set inside a class method or

function.

Figure 6.5 – Source code used in Firebug to test breakpoints

Figure 6.6 – Function scope when adding a breakpoint in Firebug

In Figure 6.5, if a breakpoint is set on line 24 of the source code, it is not possible to

know that the breakpoint is set inside a function or class method because there is no

45

information about the syntax of the program inside the debugger tool of the Firebug web

browser extension when a breakpoint is set. Figure 6.6 shows that the available information

inside the debugger tool only regards to which line of which file the breakpoint was set.

Figure 6.7 – Function scope when stepping into a function in Firebug

Another limitation to this approach happens during the interactive debugging of

stepping into a function or class method. The step into activity does not receives information

to where it is going in the source code. This happens because the debugging tool of the

Firebug web browser extension and the JavaScript interpreter of the Firefox web browser are

not the same thing. Only the JavaScript interpreter of the Firefox web browser knows the state

of the script execution while the debugging tool just wait for when the JavaScript interpreter

warns that it stopped running the code without give the reason for why exactly it stopped like

when it found a breakpoint, made step into, got paused, etc.

6.2 Implementing Swarm Debugger Tracer in the PyDev plug-in

The PyDev is an open source plug-in for the Eclipse IDE to support software

development in the Python programming language. The PyDev plug-in supports debugging

activities in the Python programming language directly in the Eclipse IDE. The complete

46

setup in the implementation test was the Eclipse SDK version Photon (4.8), the PyDev

version 6.5.0 and the Python interpreter version 3.7.0.

Figure 6.8 – Main function in PyDev for adding breakpoints

Figure 6.9 – Main function in PyDev for stepping into a function

The PyDev plug-in source code was changed in the in the same way as the Firebug

extension source code, it watches the developer while in debugging activities and reports

these activities to the Swarm Debug Services via RESTful messages during the debugging

activities. The class method that catches the event of adding a breakpoint in found in line 110

of /org/python/pydev/debug/ui/actions/PyBreakpointRulerAction.java file (Figure 6.8) and the

class method that catches the event of stepping into a function is found in line 257 of

/org/python/pydev/debug/model/PyStackFrame.java file (Figure 6.9). It is then used an

HttpURLRequest in each function to send the developer interaction information to the Swarm

Debug Services.

Unfortunately, the PyDev plug-in also has the same problem of the Firebug web

browser extension regarding setting breakpoints within class methods and functions. When a

breakpoint is set, the debugger tool does not know if the breakpoint was set inside a class

method or function.

Figure 6.10 – Source code used in PyDev to test breakpoints

Figure 6.11 – Variables when adding a breakpoint in PyDev

47

In Figure 6.10, if a breakpoint is set on line 16 of the source code, the PyDev plug-in

does not have the necessary syntactic information to tell that the breakpoint is set inside a

class method or function. Figure 6.11 shows that the functionName variable does not have any

information and probably it could have some information.

Lastly, there is a difference in what is the information of the Namespace when setting

a breakpoint in a line and when stepping into a function. The PyDev plug-in defines the

namespace of a breakpoint as the Eclipse project followed by the Python packages then the

script file of the module. Meanwhile the PyDev defines the namespace of a stepping into

starting from the root of the file system all the way up to the script file.

Figure 6.12 – Python project files and folders

Figure 6.13 – Variables when adding a breakpoint in PyDev

48

Figure 6.14 – Variables when stepping into a function in PyDev

The Figure 6.12 presents the folders and files for an example project. The MyProject

project is set to the C:/Extra/tg/python folder and inside the folder there is two packages:

MyPackage and MyProject. In Figure 6.13, the namespace for a breakpoint set inside the

__init__.py module inside the MyProject package is very different from the namespace for a

stepping into made in a function call in the same script file as shows in 6.14.

49

7 CONCLUSION

Debugging activities are essential and make a large portion of the time spent in

software development. The Swarm Debugging approach to software development provides a

way to keep the knowledge gathered during debugging sessions for future developers who

will work in the same source code. Analyzing the documentation of the JavaScript and Python

programming languages, it seems possible to support the Swarm Debugging in these

interpreted programming languages.

7.1 Summary of contributions

The key meta-concepts of the Swarm Debugging were mapped to features of

interpreted programming languages, however it was necessary to define beforehand the

behavior of some edge cases where the Java programming language and interpreted

programming languages differs.

Two versions of the Swarm Debug Tracer are developed for use with the JavaScript

and Python programming languages on top of the Firebug extension and the PyDev plug-in

respectively.

7.2 Limitations of this work

Despite being theoretically possible to support Swarm Debugging in interpreted

programming languages, the viability of this endeavor is compromised by a lack of lexical

and syntactic information about the program during debugging activity in the analyzed

debugging tools. As such, it was not possible to test the effectiveness of Swarm Debugging

with end users in the native environment of interpreted programming languages.

7.3 Future works

There are multiple paths open for future work. One is to improve the debugging tools

used to bring lexical and syntactic information into the target development environment, so it

can be used in the Swarm Debug Tracer and other tools. Another path in future works is to

analyze other debugging tools to see if some of them has all the necessary lexical and

syntactic information necessary to support the development of a Swarm Debug Tracer in

them. Lastly, there is another programming paradigms yet to support Swarm Debugging as

the functional programming paradigm with programming languages such Lisp and Haskell.

50

REFERENCES

BROOKS, F. P. No silver bullet: Essence and accidents of software engineering. IEEE

Computer, v. 20, n. 4, p. 10–19, April 1987.

HAILPERN, Brent; SANTHANAM, Padmanabhan. Software debugging, testing, and

verification. IBM Systems Journal, v. 41, n. 1, p. 4-12, 2002.

PETRILLO, Fabio et al. Swarm debugging: towards a shared debugging knowledge. III

Workshop on Software Visualization, Evolution, and Maintenance (VEM), 2015.

PETRILLO, F. Swarm debugging: the collective debugging intelligence of the crowd.

2016. 125 f. Tese (Doutorado em Ciência da Computação) – Instituto de Informática,

Universidade Federal do Rio Grande do Sul, Porto Alegre, 2016.

O’REILLY, TIM. What is web 2.0: Design Patterns and Business Models for the Next

Generation of Software. 2018. Available in:

<https://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html>. Accessed in: 20 ago.

2018.

OUSTERHOUT, John K. Scripting: Higher level programming for the 21st century.

Computer, v. 31, n. 3, p. 23-30, 1998.

CASS, Stephen. Interactive: The top programming languages 2018. IEEE Spectrum, 2018.

Available in: <https://spectrum.ieee.org/static/interactive-the-top-programming-languages-

2018>. Accessed in: 20 Nov. 2018

ZELLE, John M. Python as a first language. In: Proceedings of 13th Annual Midwest

Computer Conference. 1999. p. 145.

TIOBE SOFTWARE BV. TIOBE Programming Community index, 2018. Available in:

<https://www.tiobe.com/tiobe-index/>. Accessed in: 20 ago. 2018.

CARBONNELLE, Pierre. PYPL PopularitY of Programming Language, 2018. Available

in: < http://pypl.github.io/PYPL.html>. Accessed in: 20 ago. 2018.

PETRILLO, Fabio et al. Towards understanding interactive debugging. In: Software Quality,

Reliability and Security (QRS), 2016 IEEE International Conference on. IEEE, 2016. p.

152-163.

FLEMING, Scott D. et al. An information foraging theory perspective on tools for debugging,

refactoring, and reuse tasks. ACM Transactions on Software Engineering and

Methodology (TOSEM), v. 22, n. 2, p. 14, 2013.

ECMA INTERNATIONAL. Standard ECMA-262: ECMAScript 2015 Language

Specification, 9th ed. [S.l.:s.n], 2018.

MOZILLA DEVELOPER NETWORK. JavaScript Reference, 2018. Available in:

<https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/>. Accessed in: 20 ago.

2018.

51

WIKIMEDIA FOUNDATION. Web browser data usage, 2018. Available in:

<https://analytics.wikimedia.org/dashboards/browsers/#all-sites-by-browser>. Accessed in: 20

ago. 2018.

VAN ROSSUM, Guido; DRAKE, Fred L. Python language reference manual. United

Kingdom: Network Theory, 2003.

