
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

RAFAEL DE JESUS MARTINS

Virtual Functions Orchestration Costs:
from Identification to Prediction

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engineering

Advisor: Prof. Dr. Lisandro Zambenedetti
Granville
Coadvisor: Prof. Dr. Juliano Araújo Wickboldt

Porto Alegre
December 2018

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Wladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Engenharia de Computação: Prof. Renato Ventura Henriques
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisors, professors Lisandro Granville,

Juliano Wickboldt, and Cristiano Both, for all the guidance they offered me not only in

this work, but throughout last years. I would also like to extend my gratitude to my first

advisor, from when I first embarked the joys (and pains) from the academic world, pro-

fessor Alberto Schaeffer-Filho.

Also, this work could not be possible without the persevering help from my labs

colleagues, who were always open to discussion and insightful not only in technical as-

pects, but also in every matter known to man. A non-exhaustive list includes Anderson

Santos, Andrei Rodrigues, Augusto Bardini, Iulisloi Zacarias, Lucas Bondan, and Lucas

Castanheira. Past colleagues, from networks labs and graduation course, are too many to

mention, but also deserving of likewise praise.

I would especially like to thank my parents, Oscar Morency Otto Martins and

Paula de Jesus Martins, and also my sister, Luísa de Jesus Martins, and my grandparents,

Nair and Paulo de Jesus, for being the entire cornerstone upon which I can build all my

dreams. Hopefully, you already know it full well.

Last, but not least, I would like to thank my girlfriend Caroline Grazioso, who is

always by my side and gives me all the emotional support I could ever need. This is not

the last time I will thank you.

ABSTRACT

The advent of function virtualization concept, especially that of network functions (Net-

work Function Virtualization, or NFV), presents critical benefits for networks of the fu-

ture. Offering scalable solutions for network requirements that are dynamic by nature,

virtualized functions can be expanded or withdrawn along the network infrastructure ac-

cording to instantaneous demands. Although the orchestration of virtualized functions

present gains for network operators and clients alike, the overhead for moving functions

has not been thoroughly explored so far, especially considering functions virtualized by

newer container technologies. In this work, we present the most relevant bibliographic

references found in the subject, considering the differences in available virtualization

technologies, and possible network setups. To assert the associated cost posed by the

orchestration of virtualized functions, we utilize a well-known container platform to per-

form a series of experiment in a controlled environment. Quantitative analysis of the

results are then regressed to a mathematical relation for the prediction of time and data

transferred associated with the orchestration of virtual functions. Finally, a use case is pre-

sented, in which the predictor estimations are validated against observed measurements.

Obtained results indicate that predictions can be accurate within reasonable range, and

therefore future orchestration algorithms may benefit from considering such predictions

when defining the best orchestration plan available.

Keywords: Container Virtualization. Virtual Function Orchestration. NFV. Performance

Analysis.

Custos para orquestração de funções virtualizadas: da identificação à predição

RESUMO

O surgimento do conceito de virtualização de funções, em especial as de funções de rede

(NFV, do inglês Network Function Virtualization), traz benefícios críticos para as redes

do futuro. Oferecendo soluções escaláveis para requisitos naturalmente dinâmicos da

rede, as funções virtualizadas podem ser expandidas ou retraídas ao longo da estrutura

de rede de acordo com demandas instantâneas. Embora esta orquestração de funções

represente ganhos tanto para os operadores quanto para os clientes da rede, o próprio

custo da movimentação das funções foi pouco explorado até o momento, especialmente

considerando-se a relativamente nova virtualização de funções por containers. Neste ar-

tigo, são apresentados os principais trabalhos encontrados sobre o tema, considerando as

diferenças presentes entre tecnologias de virtualização disponíveis, e entre estruturas de

rede possíveis. Para afirmar o custo imposto pela orquestração de funções virtualizadas,

uma série de experimentos são executados em um ambiente controlado, utilizando uma

plataforma de virtualização por container bem conhecida. A análise quantitativa dos re-

sultados é então reduzida para uma relação matemática, que auxilia na predição dos custos

de tempo e banda associados à orquestração de funções virtualizadas. Finalmente, um es-

tudo de caso é apresentado, no qual as estimativas fornecidas pelo preditor são validadas

com os resultados observados. Os resultados obtidos indicam que as predições podem ser

precisas dentro de uma faixa razoável, e que portanto futuros algoritmos de orquestração

podem beneficiar-se ao considerar tais predições quando estiverem definindo o melhor

plano de orquestração disponível.

Palavras-chave: Virtualização por Container, Orquestração de Função Virtualizada, FRV,

Análise de Desempenho.

LIST OF FIGURES

Figure 1.1 Architectural comparison of virtualization technologies...............................12
Figure 1.2 Orchestration experiment conducted as part of FUTEBOL research.14

Figure 2.1 Query result: number of indexed documents by year.17

Figure 3.1 Flowchart of the migration process. ..24
Figure 3.2 Overview of the experimental setup. ...25
Figure 3.3 Time results for the decomposed migration experiments.28
Figure 3.4 Data transferred comparison for the live and cold migration experiments....28
Figure 3.5 Comparison of time results for live migration with composed cold mi-

gration. ..29
Figure 3.6 Experiments initial design: variances in output (migration costs) are

seen as result from changes in input (experimental variable).30
Figure 3.7 Results for the growing file experiment...31
Figure 3.8 Results for the Apache processes experiment. ..32
Figure 3.9 Model for linear regression..33
Figure 3.10 Linear regression for migration time as response for inputted file size.......35
Figure 3.11 Linear regression for data transferred during migration as response for

inputted file size. ...36
Figure 3.12 Residual plots for the file size linear regression. ...36
Figure 3.13 Linear regression for migration time as response for inputted Apache

processes. ..38
Figure 3.14 Linear regression for data transferred during migration as response for

inputted Apache processes..38
Figure 3.15 Residual plots for the Apache processes linear regression.39

Figure 4.1 Process of determining system’s internal variables which can be used as
migration costs predictors. ..41

Figure 4.2 Heatmap matrix for variables correlation in the growing file size exper-
iment. ..42

Figure 4.3 Heatmap matrix for variables correlation in the Apache processes ex-
periment. ...43

Figure 5.1 Overview of the Virtual-Scaling Cloud Experiment......................................48
Figure 5.2 Result for orchestration of Cloud vertical scaling experiment.49
Figure 5.3 Overview of the Cloud Experiment with VNF Orchestration.50
Figure 5.4 Result for time prediction and migration in the use case.51
Figure 5.5 Result for data transferred prediction and migration in the use case.............52
Figure 5.6 Console output showing the results for a triggered migration.......................52
Figure 5.7 Conditional prediction example: migration costs predicted considering

application expectations, provided as parameters...54

LIST OF TABLES

Table 2.1 Summary of Related Work. ...22

Table 3.1 Test Environment Configurations..25
Table 3.2 Shortlist for available Linux distributions, with respective image and

filesystem sizes. ...26
Table 3.3 Summary of the regression fit for the file size experiment.34
Table 3.4 Summary of the regression fit for the Apache processes experiment.37

Table 4.1 Normalization formula for the input variables. ...44
Table 4.2 Summary of the multivariable regression fit for the prediction model.45

LIST OF ABBREVIATIONS AND ACRONYMS

ARP Address Resolution Protocol

App Application

Btrfs B-tree file system

CDN Content Delivery Network

COPA Container Orchestration and Provisioning Architecture

CPU Central Processing Unit

CRIU Checkpoint/Restore In Userspace

FRV Função de Rede Virtualizada

FUTEBOL Federated Union of Telecommunications Research Facilities for an EU-Brazil

Open Laboratory

GTP General Packet Radio Service Tunneling Protocol

HPC High-Performance Computing

IoT Internet of Things

IP Internet Protocol

LXC Linux Containers

LXD Linux Containers Daemon

MAE Mean Absolute Error

NFV Network Function Virtualization

OS Operating System

QoE Quality of Experiment

QoS Quality of Service

RAM Random-access Memory

Rsync Remote Synchronization

SDN Software-Defined Network

SC Service Chaining

SGW Serving Gateway

SSE Sum of Squared Errors

TCP Transmission Control Protocol

UFRGS Federal University of Rio Grande do Sul

VF Virtual Function

VM Virtual Machine

VNF Virtual Network Function

VNFC VNF Component

ZFS Zettabyte File System

CONTENTS

1 INTRODUCTION...11
2 RELATED WORK ...16
2.1 Systematic Literature Review..16
2.2 Cloud Computing..18
2.3 Content Delivery Network..19
2.4 SDN and Other Network Paradigms...20
2.5 Influence in Our Research..21
3 EXPERIMENTS: QUANTIFYING MIGRATION COSTS23
3.1 Decomposing the Migration Process ...23
3.2 Experimental Environment..24
3.3 Preliminary Considerations ...26
3.3.1 Linux Distributions ..26
3.3.2 Cold Migration x Live Migration...27
3.4 File Growing Experiment...29
3.5 Apache Processes Experiment ...30
3.6 Simple Linear Regression...32
3.6.1 Regression Applied to the Growing File Experiment ..34
3.6.2 Regression Applied to the Apache Processes Experiment37
3.7 Summary..39
4 PREDICTOR MODELLING ..40
4.1 Variables Correlation..40
4.2 Multivariable Regression ...44
5 USE CASE: PREDICTIONS APPLIED IN A CLOUD NETWORK47
5.1 Use Case Motivation: FUTEBOL Vertically-Scalable Cloud Experiment........47
5.2 Predictor Applied to a Non-Scalable Cloud ...50
5.3 Discussion of Results...51
6 CONCLUSION AND FUTURE WORK ..55
REFERENCES...57
APPENDICES..60
APPENDIXA TG1 ...61

11

1 INTRODUCTION

Future networks, as exemplified by the forthcoming 5G network and its services

for Extreme Mobile Broadband (xMBB) and Massive MTC (mMTC) [Droste et al. 2015],

are being built upon technologies such as Software-Defined Networking (SDN) and net-

work virtualization concepts such as Network Functions Virtualization (NFV) [Ksentini,

Bagaa and Taleb 2016]. Specifically in the case of NFV, network applications that would

traditionally be run only by specialized equipment, appliances known as middle-boxes,

can also be executed by software running on top of general purpose hardware. Therefore,

possibilities offered to network management are massively expanded, since the deploy-

ment of a given network function (e.g., a firewall) does not depend on the acquisition

and physical installation of a specialized hardware; instead, not only the Virtual Network

Function (VNF) can be easily deployed along the network, computational resources for

the VNF can be scaled in and out, for example, according to the perceived network load

in any given moment.

Resource virtualization offers users a series of benefits, such as hardware inde-

pendence, easiness of deployment, and scalability of used resources. Traditionally per-

formed by Virtual Machines (VM), newer container virtualization technologies emerge

with the promise of lighter, more efficient application virtualization [Soltesz et al. 2007].

An overview of the architecture of both systems is shown in Figure 1.1. Several studies

have compared the effectiveness, particularly regarding performance and scalability, of

virtualization by VMs and by modern container virtualization technologies [Felter et al.

2015, Joy 2015]. By sharing the Operating System (OS), and notably its kernel, with the

underlying host, container technologies reduce much of the virtualization overhead mak-

ing container virtualization a feasible option for network environments from IoT Cloud/-

Fog [Celesti et al. 2016] to High-Performance Computing (HPC) [Xavier et al. 2013].

In the context of NFV, studies have been carried out to try to solve problems for

VNF composition, chaining, and placement. Because VNFs can be composed of smaller,

reusable components, known as VNF Components (VNFCs), a single VNF can be com-

posed in multiple ways [Herrera and Botero 2016]. In addition, two or more VNFs can be

interconnected to provide a higher-level service in a process known as Service Chaining

(SC). Moreover, because VNFs and VNFCs are typically designed to run in commodity

hardware, NFV-enabled networks tend to offer multiple host options for each VNF or

VNFCs; selecting the best host to run each function is an open research problem, usually

12

Figure 1.1: Architectural comparison of virtualization technologies.

fffff

Operating System

VM Hypervisor

Operating System

Container Engine

Guest
OS

Guest
OS

Bins/Lib Bins/Lib

Bins/Lib Bins/Lib

App #1

App #1

App #2

App #2

Virtual Machine Container

Infrastructure Infrastructure

Source: Author

referred to as the placement problem. Previous studies have investigated the problem for

VNF composition [Dalla-Costa et al. 2017], chaining [Luizelli et al. 2017], and place-

ment [Cohen et al. 2015] through a theoretical-based approach. To this end, our work

focuses on experimental-based research. We argue that, even if theoretical research is

able to produce increasingly optimized solutions, hardware and software constraints must

be taken into account when adopting such solutions in the real world.

VNF orchestration, i.e., the decision-making to initialize, stop, or move a VNF

from one host to another, plays an important role in optimizing the available network

resources. The decision of which function to orchestrate, and in which way, has been sub-

ject for several studies [Riggio, Rasheed and Narayanan 2015,Li and Qian 2016,Khedher

et al. 2017], each offering a different take on the matter at hand. However, orchestration

algorithms consistently fail to consider the overhead introduced by the orchestration itself

when determining the best available orchestration options. For example, when applying

a load-balancing algorithm, the network transfer required to migrate a function between

two hosts may run on top of an already congested link, reducing the effectiveness of per-

forming such migration. In order to support the decision-making process, an orchestrator

should thus consider what will be the expected cost for implementing such actions.

In the scenario of VNF orchestration, our work as collaborators of the FUTEBOL

project [FUTEBOL 2018] focused on the experimental analysis of orchestration solutions.

FUTEBOL project is a Europe-Brazil partnership to develop and deploy research infras-

13

tructure, particularly in the convergence point between optical and wireless networks.

Three use cases with five experiments are being developed in the project since its incep-

tion to showcase how researchers could benefit from experimenting in the testbeds. In

this context, we developed studies in an experiment titled "Heterogeneous network man-

agement with SDN and virtualization", precisely in the NFV and service orchestration

part. Function placement and Service Chaining problems were among the research ques-

tions proposed to be studied by the experiment. An overview of one of the experiments

proposed in our studies can be seen in Figure 1.2. An early version of the experiment

deployed the VNF (in this case, the video server) in a VM. The migration occurred seam-

lessly for the video clients; yet, the introduced load on the network from issuing a VM

migration could not be ignored: as shown in Fig 1.2c, in order to ease the traffic conges-

tion from Host A to Host B, the VNF must be migrated through the same network link,

further congesting it until migration is completed. In a later improved version, container

virtualization was used in the experiment, in order to minimize the virtualization and mi-

gration overhead. Still, the orchestration algorithm developed for the experiment was

naive on the migration costs, and the question of how costly can a migration be remained

an open one.

In this work, we describe how understanding the costs associated with VNF migra-

tion, posed to us during our research in FUTEBOL, was approached. First and foremost,

to better understand the associated costs, a systematic review of the relevant peer-reviewed

literature was conducted in order to confirm that the issue was one of interest in the area,

and to identify which metrics were most commonly used. We then chose a well-known

container virtualization platform, namely, LXD1, to carry out our experimental studies,

as we observed the impact of a number of variables in the result for migration costs.

Combining the theoretical background with the observed experimental results, we derive

a mathematical model to predict the costs associated with VNF migration. To verify the

accuracy of our model, a use case is presented, in which our proposed model indicates

to provide accurate estimations under certain conditions. Based on our results, it is thus

indicated that future NFV orchestration algorithms can benefit from including some pre-

diction model feature, as a method to better weigh in available orchestration alternatives.

The remainder of this document is structured as follows. In Chapter 2, we present

the related work on the Virtual Function orchestration problem. In Chapter 3, we present

the experiments conducted to better understand the orchestration-cost relationship. In

1https://linuxcontainers.org/

14

Figure 1.2: Orchestration experiment conducted as part of FUTEBOL research.

Host A Host B

(a) A video server placed in Host A services a small number of video clients in Hosts A
and B.

Host A Host B

Congestion
detected!

(b) As new clients are initialized in Host B, traffic between hosts increases, congesting
the physical link.

Host A Host B

(c) The service orchestrator responds to the increased demand in Host B, by triggering a
video server migration.

Host A Host B

Legend:

Video Transmission Logical Link

Orchestrator

Video Client

Video Server

Server Migration

Physical Link Physical Host

(d) Server is migrated to Host B, mitigating the physical link congestion.

Source: Author, adapted from FUTEBOL deliverable

15

Chapter 4, a quantitative analysis of the experiments’ results is discussed, and we in-

troduce a mathematical model to predict migration costs from an orchestration plan. In

Chapter 5, we present an use case where our prediction model is used and compared to

observed results. In Chapter 6, we present our conclusion to this document and the future

work.

16

2 RELATED WORK

In this Chapter, we present the methodology used to conduct a literature review

on the subject of interest. The relevant results of our research are laid out concerning the

network area of each research. The importance of our work in comparison to the ones

presented is also underlined. Finally, the take away from the bibliography to our work is

highlighted by the end of this chapter.

2.1 Systematic Literature Review

To start this work, a systematic literature review was performed. The objective

of this review is twofold: (I) to confirm that the orchestration cost is a relevant topic in

the field; and (II) having confirmed the relevance of the problem, identify what metrics

are used to determine these costs. To do so, we chose to utilize Scopus1 research tool

and database of peer-reviewed literature. Being one of the largest available database for

academic research, Scopus has the added benefit of providing curatorship for indexed

documents, which thus eliminates most of the scientifically irrelevant results. After some

refining, the following search query was made:
TITLE-ABS-KEY (((nfv OR vnf OR container OR "function virtualization" OR "virtu-

alized function") AND ((migration OR orchestration OR deployment OR placement)

W/3 (cost OR penalty OR tradeoff OR risks)) ANDNOT (ship OR cargo OR sea OR

disease OR patient OR food))) AND (LIMIT-TO (PUBYEAR , 2018) OR LIMIT-TO (

PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016) OR LIMIT-TO (PUBYEAR , 2015

) OR LIMIT-TO (PUBYEAR , 2014) OR LIMIT-TO (PUBYEAR , 2013))
The key aspect of the query is to filter recent documents that explicitly cites costs

associated with the orchestration of virtual functions. A time window of five years was

used since the technologies we consider in this work, such as container virtualization,

were not prominent prior to the considered years. On January 26, 2018, this query re-

sulted in a total of 94 documents. All the indexed documents were passed on to a sheet2,

where each document was systematically categorized [Kitchenham 2004]. The number

of indexed documents by year is shown in Figure 2.1 to exhibit the evolution of inter-

est in the area. Three filters were used in sequence to achieve the categorization of all

documents:

1<https://www.scopus.com>
2<https://goo.gl/wsMiZq>

https://www.scopus.com
https://goo.gl/wsMiZq

17

Figure 2.1: Query result: number of indexed documents by year.

5

10

15

20

25

30

35

40

45

2013 2014 2015 2016 2017
Year

In
de

xe
d

do
cu

m
en

ts

Source: Author; 2018 is excluded from visualization for being a partial year.

1. In the first filter, the title and abstract of all results were read; results found to be

clearly out of scope in this filter are then marked as such, and the remainder results

pass on to the second filter. From the 94 query results, a total of 60 studies passed

the first filter.

2. In the second filter, the sections for Introduction and Conclusion of the remaining

documents were considered; once again, documents considered in the overall scope

were passed on to the third filter, and the remaining results were discarded from

consideration. From the 60 studies that passed on the first filter, 25 also passed this

second filter.

3. Finally, the third filter induces the complete read of the article. Documents that

go through the third filter are grouped by relevance to our research problem, cat-

egorized according to networking and virtualization aspects, and, when deemed

necessary, summarized for easier recapitulation afterward. A total of 12 studies

passed all three filters.

In the following sections, the articles that passed all three filters are discussed.

The studies are grouped in sections according to their network environment. The studies

on the network environment most prominent found in the filtered results, that is, Cloud

Computing, is discussed on the next section.

18

2.2 Cloud Computing

Among the most important scenarios for virtual function orchestration, we can

cite Cloud Computing. In the Cloud Computing area, there is great interest by the Cloud

operator to meet the services agreement with their clients, while minimizing the operating

costs of the Cloud. To do so, it is useful, for example, to deploy an orchestrator in the

Cloud, which migrates virtual functions along the Cloud. An orchestrator thus allows

the more efficient use of Cloud’s resources, by making use of the Cloud scalability in

response to demand fluctuations.

In the context of Cloud Computing, the work by Cerroni et al. [Cerroni and Calle-

gati 2014] focus on the performance analysis of live migrating VNFs. With live migration,

the running state of the function is transferred from the source host to the destination host

before migration is finished. As a result, function downtime noticed by the user is drasti-

cally reduced, even to negligible levels [Liu et al. 2011]. In their work, Cerroni et al. con-

sidered as performance indicators the total time elapsed in a migration, and the service’s

downtime. It is worth noting that, in the same way as most other researches considered do,

the work uses virtualization through virtual machines to deploy their VNFs. As previously

mentioned, the reduced overhead for using container virtualization can positively impact

the effectiveness of virtual functions, when compared to their virtual machines counter-

part [Felter et al. 2015]. Since we are interested in determining the orchestration impact

for some of the lighter virtualization available, namely the container one, the quantitative

performance analysis for container orchestration lies as a central research question.

In the same line of work, Tao et al. [Tao et al. 2016] tackled the problem of

dynamically migrating VMs in Cloud Computing. The authors introduce a proposal to

optimize migration plans, i.e., the intention of performing a series of migrations which

are compared regarding their performance. Once again, total time elapsed for migration

is taken into account when establishing the performance for each plan. The addition

of the data transferred by VMs migration along the network compose the performance

computation.

A different approach was proposed by Lin et al. [Lin et al. 2016] in the per-

formance analysis of migrating VMs in the Cloud. While the authors also considered

elapsed time for migration to determine its cost, the downtime observed by users dur-

ing the migration process was also taken into account. The researchers focused on the

number of memory pages to be synchronized between hosts as a determining factor for

19

the performance evaluation. The explanation is that, since the VNF migration relies on

memory synchronization from origin to destination, VNFs with different memory dirty-

ing rates may require more or less iterations for synchronization, depending on migration

optimization used. Here, we understand as a dirty memory page a page whose content

is not consistent from source to destination. Therefore, VNFs with patterns for higher

memory dirtying rates result in more iterations of the memory synchronization loop in

the migration algorithm, which can be of utmost importance when considering migration

for applications with such patterns.

Lastly, the work by Liu et al. [Liu et al. 2017] focused on utilizing Cloud technol-

ogy to assist live streaming in mobile networks. In their scenario, migrations along the

network are used to maximize the Quality of Experience (QoE) of the users, while also

minimizing the costs for network operators. To achieve that, an orchestrator migrates the

video service along the network, in response to users demand. Due to the application’s

nature, timing and bandwidth requirements are of vital importance in this scenario. That

is, the maximum acceptable delay and the minimum bandwidth available must be ensured

(in reasonable costs) at all times. Therefore, the overhead introduced by a migration must

be carefully weighed against the expected benefits. The traffic introduced in the network,

and the resulting downtime for the service, are considered by the authors as the costs

associated with migration.

The relation between Cloud Computing and NFV can be straightforwardly seen,

but the same can not be said for every other network environment. While Cloud Com-

puting offers remote computational resources, network paradigms that focus on the repli-

cation and reallocation of any information along the network can benefit from NFV con-

cepts. In the next section, we delve into studies on Content Delivery Networks (CDNs).

2.3 Content Delivery Network

Content Delivery Networks improve applications and services by distributing avail-

able content (e.g., multimedia files) along the network, in response to user demand [Vakali

and Pallis 2003]. A step further is taken by virtual CDNs, where servers and networks

themselves are virtualized, using SDN and NFV paradigms, to further improve services

scalability [Herbaut et al. 2017]. By improving the management of resources, the em-

ployment of NFV and SDN by virtual CDN can positively impact users’ QoE, without

burdening the network operating cost. In this topic, the work we developed in FUTE-

20

BOL, as presented in Figure 1.2, can be viewed as a simplified virtual CDN (simplified

because traditional CDN methods, such as replication of content, was not used in the

experiment).

In a series of studies [Ibn-Khedher et al. 2016, Ibn-Khedher et al. 2017, Khedher

et al. 2017], Ibn-Khedher et al. investigated the problem of optimizing orchestration

algorithms for CDNs. The authors propose cost-efficient algorithms for the placement

and orchestration problem of virtual nodes in a CDN. When running their experiments,

the researchers used VMs to virtualize network’s content. The authors considered as main

costs of orchestration the total elapsed time, and the downtime of the migrated service.

The benefits offered by the employment of SDN and NFV by CDNs are a direct

result for maximizing the efficiency in reallocating and replicating content over the CDN

hosts. By combining both paradigms, a network service that relies on permanent moni-

toring and decision-making of available content and users’ patterns can minimize its op-

erating costs, while improving customers satisfaction. Filtered studies for other network

environments that can also benefit from SDN and NFV, individually or in conjunction, are

discussed in the next section.

2.4 SDN and Other Network Paradigms

In Software-Defined Networks, a centralized controller with the view of the pro-

grammable network is used by network carriers to improve network scalability, Quality

of Service (QoS), and service management [Sezer et al. 2013]. In conjunction with NFV,

traffic steering performed through SDN controllers can both prevent the necessity for VNF

migrations, by better balancing traffic load between links, and ease up the VNF migration

process, by optimizing the VNF transfer through the network and assisting the subsequent

re-establishment of VNF connections.

Using SDN in a 5G scenario, Ksentini et al. [Ksentini, Bagaa and Taleb 2016]

looked into costs associated with Serving Gateway (SGW) reallocation. SGW in a 5G

network is responsible for forwarding users’ data traffic [Shariatmadari et al. 2015], mak-

ing the SGW placement problem an important one in the area. In their work, multiple

instances of VNF are deployed in the network, and an SDN controller is responsible for

migrating users between the instances. The proposed cost for these migrations is the

required signalling messages at the SDN controller to synchronize the migration. This

solution, therefore, is not available for every network environment (e.g., networks with

21

no SDN support). In another study, similar results were found by Wang et al. [Wang et

al. 2017] using a more generic network with SDN support, in deploying a load-balance

algorithm in the network.

Three other investigations tackled the problem for VNF migration in generic net-

works. The study by Sun et al. [Sun et al. 2016] investigates the problem with NFV

Service Chaining (SC). Service Chaining is useful when two more VNFs require a con-

nection between them (even when functions run on the same host). The optimization for

the placement problem of a VNF pertaining to a chaining is thus tied to their VNF neigh-

bors in the chain. To minimize the transferring of VNFs on the network, which Sun et al.

consider as the main orchestration cost, the authors look to forecast variances in demand

for VNFs in an SC, thus reducing the need for subsequent migrations in response to de-

mand increase. The authors present results from simulations to compare the performance

for different proposals.

Based on the related work presented in the present and previous sections, a sum-

mary is laid out in the next section. We also highlight how the results affect our research.

2.5 Influence in Our Research

The main aspects of the Related Work are summarized in Table 2.1. As shown by

our research, the problem of determining orchestration costs is one that has been draw-

ing attention in the area. Nevertheless, the research field is still young, as indicated in

Figure 2.1, so investigations tend to be mostly theoretical, resorting to simulation exper-

iment to analyze their proposals. When using a real NFV-enabled network, researchers

preferred method for virtualization was using Virtual Machines. In this work, we focus on

evaluating the migration costs in a real network, using container virtualization, as offered

in FUTEBOL testbeds for external experimenters. The results for conducted experiments

are presented in Chapter 3.

As for the factors that compose the costs associated with an orchestrated migra-

tion, we elected migration time and migration data transferred to compose the migration

cost for this work. Not only they align with our initial suspicion, but both were also the

two variables most recurrently found in related work. Moreover, our experimental net-

work did not offer SDN support, so the inclusion of SDN in our setup would require some

network emulation (e.g., using Mininet3), which would defeat our purpose of experiment-

3http://mininet.org/overview/

22

Table 2.1: Summary of Related Work.
Considered as Orchestration Cost

Reference
Network

Environment
Migration

Time
Data

Transferred
Service

Downtime
Message
Signaling

[Cerroni and Callegati 2014] Cloud X X
[Ksentini, Bagaa and Taleb 2016] 5G X
[Sun et al. 2016] Generic X
[Tao et al. 2016] Cloud X X
[Ibn-Khedher et al. 2016] Virtual CDN X X
[Wang et al. 2017] Generic X
[Xia, Cai and Xu 2016] Generic X
[Xia et al. 2016] Generic X X
[Ibn-Khedher et al. 2017] Virtual CDN X X
[Lin et al. 2016] Cloud X X
[Liu et al. 2017] Cloud X X X
[Khedher et al. 2017] Virtual CDN X X

ing strictly with real equipment. Concerning service downtime, the early investigation

indicated that its measuring would require an active agent4, which could interfere with

the cost measurements for the main variables (i.e., time and data transferred), and there-

fore is singled out for future work.

4https://discuss.linuxcontainers.org/t/how-to-monitor-lxc-running-container-metrices-during-
migration-phase/2112

23

3 EXPERIMENTS: QUANTIFYING MIGRATION COSTS

In this Chapter, we present the theoretical background on the migration process

and optimization. By dividing the migration problem into smaller parts, we can better

understand how each part weigh on total costs for migration. Based on this knowledge,

we propose a series of experiments to gauge how some factors affect the migration costs.

3.1 Decomposing the Migration Process

Live migration1 is a network feature for virtualization which enables VNFs reallo-

cation by transferring a virtual node’s persistent and run-time state between hosts [Brad-

ford et al. 2007]. The benefits from the process include minimal disruption of the service,

since the downtime for the service, that is, the interval for when the node is turned off

in both source and destination, is kept to minimal levels. To perform such migration, the

host system must synchronize with the destination host all data required for the virtual

node to resume its operation, which includes the file system, the memory pages, TCP

connections, etc.

For functions virtualized by LXC containers, migration is largely composed of

three parts: container checkpoint (also known as a container snapshot), system synchro-

nization, and container restore. Parallelism and optimization can be utilized to improve

migration efficiency; as an example, service downtime can be reduced, at the expense of

increasing the total time for migration, when adopting memory pre-copy optimization for

a migration. The migration work-flow is shown in Figure 3.1.

To synchronize the operation between hosts, LXD makes use of three traffic chan-

nels: the control stream, the CRIU stream, and the file system stream2. The control

stream initiates with the migration, and is responsible for exchanging information about

the container, its configuration, and result for the restore operation. Checkpoint/Restore

In Userspace (CRIU) is the tool used by LXD to save and resume a container’s running

state. Therefore, the CRIU stream is used to send over the container checkpoint data,

synchronizing containers’ run-time state. The file system stream is used to synchronize

the container file system between hosts, as one would expect.

1In this work, unless explicitly stated otherwise, migration refers to live migration
2https://lxd.readthedocs.io/en/latest/migration/

24

Figure 3.1: Flowchart of the migration process.

Initial Filesystem
Synchronization

Migration
begins

Checkpoint Container
(generate stateful snapshot)
(includes memory state, CPU

flags, etc.)

Transfer the Snapshot

False

True

Final Filesystem
Synchronization

Restart Container on the
Destination

Migration
Finishes

Optimization
Condition*

*Condition:

No optimization
No condition
(always "True")

Pre-copy optimization
Threshold of memory pages
synchronized is reached
(default equals to 70%)
OR
Maximum number of iterations
is reached
(default equals to 10)

Source: Author

3.2 Experimental Environment

Due to constraints that range from hardware availability to compatibility between

hosts for migration, some parameters were fixed throughout the experiments. The topol-

ogy used in the experiments is presented in Figure 3.2. Two VMs are configured in each

physical host, and their specs, unless stated otherwise, are identical. The Virtual Function

(VF) running is specified in each experiment. The most important specs for the hosts

utilized are found in Table 3.1.

Finally, differences in the container platform versions and configuration can have

a direct impact on observed metrics. For example, storage back-end options provided by

LXD include Directory, B-tree file system (Btrfs), and Zettabyte File System (ZFS). Dif-

ferent storage back-end can offer different features3 and therefore differ in performance

3https://lxd.readthedocs.io/en/stable-2.0/storage-backends/

25

Table 3.1: Test Environment Configurations.
Physical Hosts (Hosts A, B)
OS Version Ubuntu 18.04.1 LTS
Linux Kernel 4.15.0-32
Network Link Gigabit Ethernet
Virtual Hosts (VMs 1-4)
OS Version Ubuntu 18.04.1 LTS
Architecture x86_64
Linux Kernel 4.15.0-36
Memory 16 GB
CPU Cores 6
CPU Frequency 2.0 GHz

Figure 3.2: Overview of the experimental setup.

(a) System topology for the experiments.

(b) Migration alternatives for a VF running in VM 1.

Source: Author

26

Table 3.2: Shortlist for available Linux distributions, with respective image and filesystem
sizes.

Linux Distribution Image Size (MB) Filesystem Size (MB)
Alpine 3.8 2.34 4.4
Debian 7 91 144
Debian 10 122 187
Ubuntu 16.04 105 173
Ubuntu 17.10 118 186
Ubuntu 18.04 119 194
Ubuntu 18.04 (i686) 121 196

particularly for the tasks of container checkpointing and synchronization, relevant to this

work. We utilized LXD 3.0.1, CRIU 3.10, and ZFS 0.7.5 for containers’ storage back-end.

3.3 Preliminary Considerations

To advance our experiments towards estimating migration costs, we first propose

two important considerations. First, we look into the choice of Linux distribution to

be used when implementing a VNF. Second, we observe the impact different container

variations have on each migration step.

3.3.1 Linux Distributions

LXC differs from application containers (e.g., Docker4) by offering OS-level vir-

tualization, and therefore a virtualization environment similar to that of a full-fledged

VM, but with reduced overhead. This lighter VM-like virtualization is achieved by the

sharing of the host’s kernel among containers, which are isolated, secured, and have their

resources managed through kernel Namespaces and cgroups [Rosen 2013]. As a result,

hundreds of distribution images are offered by LXD when deploying a new container, for

multiple OSs and architectures. A non-exhaustive list for available distributions is shown

in Table 3.2.

Ideally, containers with applications that are expected to be frequently reallocated

should rank lighter distributions higher, as to minimize the reallocation overhead; rather

static containers could prefer distributions that are easier to work with, as the overhead

introduced by unwanted pre-installed services, for example, is not as big of a concern.

4https://www.docker.com/

27

While it is clear that the difference in filesystem size between distributions will impact on

migration costs (for data transferred, and as result, for time), it is also noteworthy that a

migration will also have to copy the base image to the destination host if it had not been

previously done so, thus further increasing the costs for such migration.

3.3.2 Cold Migration x Live Migration

Unlike the live migration process, cold migration occurs when there is a non-

negligible interval for stopping the VNF on the origin, moving it to the destination, and

then resuming its operation. A series of experiments were conducted to expose the cost

incurred by each migration step (i.e., snapshotting, moving, and restoring). As discussed

in previous Chapter, we are interested in determining the costs for migration time and data

transferred. Because it would be unfeasible in a timely fashion to consider too many dif-

ferent distributions, we restricted this experiment to three available OSs: Alpine, Debian,

and Ubuntu.

Each container was kept in their minimal state, i.e., no additional applications or

services were installed or run on top of their installation. Each experiment was run 30

times. The results for the time consumed by snapshotting, transferring, and restoring the

containers are shown in Figure 3.3. In Figure 3.3a, it is shown that the time to snap-

shot Alpine and Debian containers are virtually the same at just under four seconds, with

Ubuntu container taking about 35% more time to complete. Pre-installed services on each

distribution, which results in a different number of processes running in each system (5 for

Alpine, 4 for Debian, and 10 for Ubuntu), could help explain the results. In Figure 3.3b,

the time to migrate the stopped container, including the run-time snapshot to be afterward

restored, shows that Debian and Ubuntu containers are proportionally much more costly

than the Alpine alternative; that is, of course, expected, as a direct result for the disparities

in file system and image sizes between distributions, as presented in Table 3.2. The differ-

ence in migrating each distribution between hosts, both through live and cold migration,

is further testified by the comparison of data transferred, shown in Figure 3.4. Figure 3.3c

for the restore times shows a similar pattern to the snapshotting one, albeit the Debian

container fared proportionally worse than the Alpine container.

Finally, we compared the time performance for the sum of individual cold migra-

tion steps with live migration. Because the snapshotting and the synchronizing processes

in live migration are to run in parallel, as seen in Section 3.1, the component with the

28

Figure 3.3: Time results for the decomposed migration experiments.

0

2

4

6

Alpine Debian Ubuntu

Container OS

T
im

e
to

 s
na

ps
ho

t (
in

 s
ec

on
ds

)

(a) Time elapsed in checkpoint-
ing the containers’ run-state.

0

5

10

15

Alpine Debian Ubuntu

Container OS

T
im

e
to

 m
ig

ra
te

 s
to

pp
ed

 c
on

ta
in

er
, i

nc
lu

di
ng

 s
na

ps
ho

t (
in

 s
ec

on
ds

)
(b) Time elapsed in migrating
the stopped container.

0

2

4

6

8

Alpine Debian Ubuntu

Container OS

T
im

e
to

 r
es

to
re

 fr
om

 s
na

ps
ho

t (
in

 s
ec

on
ds

)

(c) Time elapsed in restoring
the run-state of the container.

Source: Author

Figure 3.4: Data transferred comparison for the live and cold migration experiments.

0

64

128

192

256

320

384

448

512

Alpine Debian Ubuntu

Container OS

D
at

a
tr

an
sf

er
re

d
to

 li
ve

 m
ig

ra
te

 c
on

ta
in

er
 (

in
 M

B
)

(a) Data transferred during live migration of
the containers.

0

64

128

192

256

320

384

448

512

Alpine Debian Ubuntu

Container OS

D
at

a
tr

an
sf

er
re

d
to

 m
ig

ra
te

 s
to

pp
ed

 c
on

ta
in

er
, i

nc
lu

di
ng

 s
na

ps
ho

t (
in

 M
B

)

(b) Data transferred for the stopped container,
including snapshot.

Source: Author

worse result (i.e., the higher time to complete) was considered in the cold migration com-

position. The result is shown in Figure 3.5. It is noteworthy that the cold migration

under-performed compared to the live migration for the Alpine and Debian containers,

while the opposite was true for the Ubuntu container; although a definitive answer is yet

to be agreed on, optimization for live migration ignored by cold migration can be a factor

in this equation, while the underlying OS for the host system, i.e., Ubuntu, could help

explain the anomalous behavior for the Ubuntu container.

29

Figure 3.5: Comparison of time results for live migration with composed cold migration.

0

5

10

15

20

25

Alpine Cold Alpine Live Debian Cold Debian Live Ubuntu Cold Ubuntu Live

Container

T
im

e
(in

 s
ec

on
ds

)

Live Migration

Snapshot Restoring

Container Transferring

Source: Author

3.4 File Growing Experiment

In both Section 3.4 and Section 3.5, we present results for experiments conducted

and analyzed in a simplified black box approach. The premise in this approach is that

the output variance is a direct response to the varying of the input, i.e., the controlled

variable for each experiment. The experiments’ design is depicted in Figure 3.6. For both

experiments, the considered output is the migration costs, i.e., migration time and data

transferred.

In this first experiment, we focus on the stateless part of the migration, namely the

required filesystem synchronization between hosts. To do so, we create a file inside the

container, which is gradually increased in size, before migrating it between hosts. The

growing file starts at 1MB and increases exponentially (2n) until 1GB. For each file size

considered, migration was performed five times (due to the low variance expected), i.e.,

the experiment part for each file size was repeated five times, and migration costs for each

repetition were observed. A confidence interval of 95% is used, and error bars may seem

absent due to low variance observed. The results are shown in Figure 3.7.

30

Figure 3.6: Experiments initial design: variances in output (migration costs) are seen as
result from changes in input (experimental variable).

Input:
control variable

Output:
migration time

Output:
migration

data transfered

Black box

Source: Author

As observed in the results, variance in the measurements for data transferred was

negligible, but was noticeable for the time elapsed by migrations. The almost non-existent

variance in data transferred is somewhat expected, since the output is mostly defined by

our control variable, i.e., the input file size. For the time cost, however, the run-time

synchronization is not as ruled by our control variable, and therefore variances of up to 5

seconds, and representing 25% of the total time, have been observed. Still, both results

present a clear linear pattern, that is, the relationship between output and input, which

will be further explored by our initial prediction model in Section 3.6.

3.5 Apache Processes Experiment

Complementary to the file size experiment presented in the previous section, this

second experiment focuses on the stateful part of the migration, which is performed

by synchronizing the run-state of the container between hosts. For this experiment, an

Apache Web Server [Apache Software Foundation 2018] is used to summon an increasing

number of processes inside the container. The choice for Apache arises as a mean to min-

imize migration failures, commonly thrown by CRIU when migrating lesser-supported

applications. The experiment starts with one Apache process summoned and increases

all the way to 1000. Ten runs were performed for each processes count (the number of

runs was increased in comparison to the previous experiment due to the larger variance

expected), i.e., the experiment part for each number of Apache process was repeated ten

times, and migration costs for each repetition were observed. As with previous experi-

31

Figure 3.7: Results for the growing file experiment.

10

15

20

25

30

0 250 500 750 1000
Size of the input file (in MB)

T
im

e
el

ap
se

d
in

 m
ig

ra
tio

n
(in

 s
ec

on
ds

)

(a) Result for time (output) versus file size (input).

0

300

600

900

0 250 500 750 1000
Size of the input file (in MB)

D
at

a
tr

an
sf

er
re

d
du

rin
g

m
ig

ra
tio

n
(in

 M
B

)

(b) Result for data transferred (output) versus file size (input).

Source: Author

ment, a confidence interval of 95% is used, and again and error bars may seem absent due

to low variance observed. The results are shown in Figure 3.8.

Even though experiments are orthogonal by nature, the results show a clear pattern

for a linear component, and even with reduced relative variability in the time result. It is

also clear that, while the results for data transferred in both experiments presented aligned

results, the impact on migration time was much more prominent in the second experiment;

that is aligned with the notion that synchronizing run-time state can be an iterative process

that is costly to the migration.

32

Figure 3.8: Results for the Apache processes experiment.

0

100

200

300

400

0 250 500 750 1000
Number of Apache processes summoned

T
im

e
el

ap
se

d
in

 m
ig

ra
tio

n
(in

 s
ec

on
ds

)

(a) Result for time (output) versus Apache processes (input).

0

250

500

750

1000

0 250 500 750 1000
Number of Apache processes summoned

D
at

a
tr

an
sf

er
re

d
du

rin
g

m
ig

ra
tio

n
(in

 M
B

)

(b) Result for data transferred (output) versus Apache processes (in-
put).

Source: Author

3.6 Simple Linear Regression

A regression model is used to estimate or predict a chosen variable as a function

of one or more other variables [Jain 1990]. As a result for the linearity observed in results

for experiments presented in Figures 3.7 and 3.8, we utilize a simple linear regression

model to estimate costs for migration on both experiments as results for input variables.

33

Figure 3.9: Model for linear regression.

10 20 30 40

5

10

15

20

25

b0

b1

Measured
y

x

y

Estimated
y

Error

Regression
line

Source: Author

A mathematical definition of the linear model is presented in Equation 3.1. Figure 3.9

shows a graphical visualization for the model.

yi = b0 +b1xi + εi (3.1)

In Equation 3.1, yi is the response variable, i.e., the migration costs we considered

as output for the experiments. xi is the variables used as input in the experiments, i.e., the

size of the growing file, and the number of Apache processes run. The b0 term is the y

intercept, i.e., the intersection of the y-axis, when x equals to 0, and the b1 term is the slope

coefficient, i.e., the rate of change in y as a result of changes in x. The ε term represents

the observed error, also known as residual, between expected and measured values. Using

a criterion known as least-squares, our objective is to find the line given by Equation 3.1

that minimizes the Sum of Squared Errors (SSE). In SSE, residuals are squared before

being summed, so that positive and negative errors do not cancel each other out. This

model minimizes the variance of errors, meaning that the best fit for the regression line

should prioritize having fewer large errors, at the expense of having a higher number of

smaller errors.

Results for R-squared, p-value, and residual standard error are considered to assess

how well the regression fits the observed data. The R-squared, also known as the coeffi-

cient of determination, measures the proportion of the variance in the dependent variable

that is predictable from the independent variable. For the p-value, two exclusive hypothe-

ses are considered: the null hypothesis, i.e., there is no such correlation between variables;

and the alternative hypothesis, i.e., the correlation between variables exist. Assuming the

34

Table 3.3: Summary of the regression fit for the file size experiment.

File size
Regression

Adjusted
R-squared p-value

Residual
Standard
Error

Time 0.9443 <22E-17 1.416
Data
Transferred 1 <22E-17 0.120

null hypothesis as true, the p-value indicates the probability of observing an effect at least

as extreme as the one observed in the sampled data, i.e., the correlation found in the sam-

ple is due to chance, and is not found in the population. Small p-values (<0.05) therefore

indicate strong evidence to reject the null hypothesis. Finally, the residual standard error

measures how close the regression line is to the observed results. Residual plots are also

used to confirm further that the model is correct.

3.6.1 Regression Applied to the Growing File Experiment

Applying the linear regression to the first experiment, we derive Equation 3.2 for

the migration time and Equation 3.3 for the data transferred during a migration. The

summary for the fits, on 53 degrees of freedom, is presented in Table 3.3.

Y (seconds) = 11.02+0.02∗FileSize(MB) (3.2)

Y (MB) = 9.3+1.05∗FileSize(MB) (3.3)

The result for Equation 3.2 is plotted in Figure 3.10. A log-scale is used for the x-

axis since the growth of the input file is exponential. The blue line in the figure represents

the given Equation; the greyed area around the line indicates the standard error. The

closeness of the regression line to observed values, combined with the low standard error

obtained, show that the regression offer a reliable prediction model for the experiment.

The dotted red lines delimit a 95% prediction interval; this narrow interval indicates that,

if we were to run the experiment again, 95% of the sampled results are expected to fall

into this approximate 2.5 seconds range from the regression line.

Similarly, the result for Equation 3.3 is plotted in Figure 3.11. Due to the low

variance in the output as a response for each input value, the points for observed values

stack on top of each other; for the same reason, visualization for the standard error and the

35

Figure 3.10: Linear regression for migration time as response for inputted file size.

10

15

20

25

30

250 500 750 1000
Size of the input file (in MB; logarithmic scale)

T
im

e
el

ap
se

d
in

 m
ig

ra
tio

n
(in

 s
ec

on
ds

)

Source: Author

prediction interval are omitted in the graph. The result shows that the migration cost in

terms of data transferred is almost perfectly predictable considering solely the controlled

variable, for this experiment. The perfect fit is also somewhat expected, as discussed in

Section 3.4, since the data transferred in the experiment is mostly defined by the stateless

synchronization.

Finally, we analyze the residuals for each regression in attempt to assess that the

proposed model is appropriate. The residual plots show how each observation differed

from the result expected by the regression. Therefore, the plots help to spot patterns in

error along the regression line, which could suggest that a different model could be a better

fit for the regression. For example, the regression analysis can help spotting outliers in the

results, and correctly dealing with those could help improve the regression for remaining

points; if the residual plot shows a parabola pattern in the results, a quadratic component

may have to be considered in the regression. Therefore, a good fit for the regression

should produce residuals that are close to the regression line (low error), and randomly

dispersed throughout the horizontal axis (model is appropriate).

The residuals observed in Figure 3.12a, i.e., the vertical distance between each

observed value (dots) and the horizontal dotted line (regression line), show a rather ran-

dom pattern, indicating that the proposed model is adequate. In the case of Figure 3.12b,

36

Figure 3.11: Linear regression for data transferred during migration as response for in-
putted file size.

238.42

476.84

715.26

953.67

250 500 750 1000
Size of the input file (in MB; logarithmic scale)

D
at

a
tr

an
sf

er
re

d
du

rin
g

m
ig

ra
tio

n
(in

 M
B

)

Source: Author

Figure 3.12: Residual plots for the file size linear regression.

1 5 10 50 100 500

−
2

−
1

0
1

2
3

4

Input File Size (in MB)

R
es

id
ua

ls
 (

in
 s

ec
on

ds
)

(a) Residuals for time versus file size.

1 5 10 50 100 500−
20

00
00

0
10

00
00

30
00

00

Input File Size (in MB)

R
es

id
ua

ls
 (

in
 B

yt
es

)

(b) Residuals for data transferred versus file size.

Source: Author

albeit errors are relatively low (<2% in every case), it is possible to identify a pattern: file

sizes of 16MB or less are consistently under-predicted by the model, while the opposite

happens for file sizes of 32MB or more. This pattern could be due to a relevant vari-

able being ignored by the model, e.g., an optimization for larger files being triggered by

synchronization tools.

37

Table 3.4: Summary of the regression fit for the Apache processes experiment.

Apache processes
Regression

Adjusted
R-squared p-value

Residual
Standard
Error

Time 0.9995 <22E-17 2.638
Data
Transferred 1 <22E-17 0.730

3.6.2 Regression Applied to the Apache Processes Experiment

Applying the linear regression to the second experiment, we derive Equation 3.4

for the migration time and Equation 3.5 for the data transferred in a migration. The

summary for the fits, on 138 degrees of freedom, is presented in Table 3.4.

Y (seconds) = 13.16+0.42∗ApacheProcesses (3.4)

Y (MB) = 16.93+1.035∗ApacheProcesses (3.5)

It is noticeable that the intercept values are greater in both equations in comparison

to the ones in the previous experiment. That is expected, since the first experiment does

not require any additional package installation from the minimal container, while in this

experiment Apache and other required packages had to be installed. When comparing

the slope coefficients, it is clear that the number of Apache processes and the size of the

growing file impact similarly on the data transferred; also, that the number of Apache

processes is significantly more costly to the migration time when compared to the size of

the growing file, as previously discussed. As in with the previous experiment, results for

the Equations 3.4 and 3.5 are shown in Figures 3.13 and 3.14, respectively.

The residuals analysis for the results shown in Figure 3.15 is similar to that made

for the previous experiment. Residuals for time were randomly distributed along the

graph, while residuals for data transferred, again proportionally small, show a pattern

for under-predicting results for the initial part of the experiment, where lower values for

Apache processes are tested, and over-predicting latter results in the experiment, where

the count for Apache processes reaches higher values.

38

Figure 3.13: Linear regression for migration time as response for inputted Apache pro-
cesses.

100

200

300

400

250 500 750 1000
Number of Apache processes (logarithmic scale)

T
im

e
el

ap
se

d
in

 m
ig

ra
tio

n
(in

 s
ec

on
ds

)

Source: Author

Figure 3.14: Linear regression for data transferred during migration as response for in-
putted Apache processes.

238.42

476.84

715.26

953.67

250 500 750 1000
Number of Apache processes (logarithmic scale)

D
at

a
tr

an
sf

er
re

d
du

rin
g

m
ig

ra
tio

n
(in

 M
B

)

Source: Author

39

Figure 3.15: Residual plots for the Apache processes linear regression.

1 5 10 50 100 500

−
5

0
5

10

Apache Processes Summoned

R
es

id
ua

ls
 (

in
 s

ec
on

ds
)

(a) Residuals for time versus Apache processes.

1 5 10 50 100 500 1000

−
20

00
00

0
−

10
00

00
0

0
10

00
00

0
20

00
00

0

Apache Processes Summoned
R

es
id

ua
ls

 (
in

 B
yt

es
)

(b) Residuals for data transferred versus Apache
processes.

Source: Author

3.7 Summary

In this Chapter, we analyzed the steps performed in a migration. By dividing

the migration in smaller steps, namely the stateless and stateful synchronization, we can

better understand how each step is affected by a particular VNF. To quantitative determine

the impact on migration, two separated experiments were performed, one focused on the

stateless, the other focused on the stateful part of the migration. Simple linear regression

was then done for each result, showing good predictive promise for migration costs as a

response for changes in experiments input.

While the regression lines obtained in this Chapter help understand the behavior

observed in each experiment, the results are too constrained by the experiments’ param-

eters to be useful in a general case. In the next Chapter, we open up the black box and

try to determine which internal variables can be helpful when trying to predict migration

costs for a general environment.

40

4 PREDICTOR MODELLING

In the previous Chapter, the black box analysis and the simple linear regression

for each experiment provided promising results in the prediction of migration costs. The

derived equations, however, are too narrowly fit to the scope of the experiments. To create

a model that can provide cost predictions that are useful for generic applications, we must

open up the black box, by now considering that the output is not directly affected by the

input, but rather indirectly so. To understand the variables relationship, we thus look for

the system’s internal variables relevant to the migration costs prediction, and available

to be used as input for predictions regardless of the application running. This process

is depicted in Figure 4.1. In the next section, we discuss how internal variables were

selected from each experiment, to compose the predictor model we propose for broader

experimentation scenarios.

4.1 Variables Correlation

The breaking down of the growing file size and Apache processes experiments

started with the monitoring of 16 different variables, including one for the experiment

input, and two for the outputs (i.e., migration costs, time, and data transferred). Variables

like usage of swap and cache memories, and variables duplicated from different sources

(e.g., number of processes reported from inside the container and from LXD API informa-

tion), were gradually discarded, as their effect on the migration costs for the experiments

could not be measured as significant. By the end of the process, five internal variables

were considered fit to be used as possible predictors for the migration costs.

To find which internal variables are strongly correlated with the input and output

for each experiment, a correlation matrix was calculated. The correlation results help to

understand the dependency between each internal variable to the input from the experi-

ments, and more importantly, the predictive association of these internal variables to the

output. To assist in the visualization of the correlation results, they are presented in the

form of matrix heat map. The result of the file size experiment is shown in Figure 4.2,

and the result of the Apache processes is shown in Figure 4.3.

As shown in Figure 4.2, the heat map matrix shows how every considered vari-

able, including input, i.e., the file size, and output, i.e., the time and data transferred for

migrations, are correlated to each other. Strong direct or inverse correlations, i.e., values

41

Figure 4.1: Process of determining system’s internal variables which can be used as mi-
gration costs predictors.

Input
...

Time

Transfer

Internal variables observed

(a) A series of internal variables that could be useful as predictors
are monitored during experiments.

Input

...

Time

Transfer

Internal variables that affect outputs

(b) The relation between input, internal variables, and output, is set
out.

Source: Author

42

Figure 4.2: Heatmap matrix for variables correlation in the growing file size experiment.

(input) File Size

(output) Migration Time

(output) Migration Data Transferred

CPU Usage

CPU Load Average

Processes

Disk Usage

RAM Usage

(in
pu

t)
Fi

le
 S

iz
e

(o
ut

pu
t)

M
ig

ra
tio

n
Ti

m
e

(o
ut

pu
t)

M
ig

ra
tio

n
D

at
a

Tr
an

sf
er

re
d

C
PU

 U
sa

ge
C

PU
 L

oa
d

Av
er

ag
e

Pr
oc

es
se

s

D
is

k
U

sa
ge

R
AM

 U
sa

ge

Variable 2

V
ar

ia
bl

e
1

−1.0

−0.5

0.0

0.5

1.0

Pearson
Correlation
Coefficient

Correlation Matrix Heatmap
for Growing File Experiment

Source: Author

close to 1 or -1, respectively, are the ones we look for when composing the predictor

model. In the figure, it is possible to see that "Disk Usage" was the variable with the

strongest correlation to input and outputs. The correlation is also expected since the file

size growth mainly affects the size of the filesystem, which in turn interferes with the

stateless synchronization of the container.

For the variables in the Apache processes experiment, Figure 4.3 shows that both

"Processes" and "RAM Usage" are the strongest correlated variables to the input and

outputs. The correlation between Apache summoned processes, and the total number

of process running on the system is, again, expected. Moreover, it is clear that, as the

number of processes increases, so does the memory used by the system. When deriv-

ing the general-purpose equation for migration costs, it is important to evaluate how both

variables (processes and memory) interact with each other; as different applications may

greatly vary in processes to memory relationship, introducing a new experiment to inde-

43

Figure 4.3: Heatmap matrix for variables correlation in the Apache processes experiment.

(input) Apache Processes

(output) Migration Time

(output) Migration Data Transferred

CPU Usage

CPU Load Average

Processes

Disk Usage

RAM Usage

(in
pu

t)
Ap

ac
he

 P
ro

ce
ss

es
(o

ut
pu

t)
M

ig
ra

tio
n

Ti
m

e

(o
ut

pu
t)

M
ig

ra
tio

n
D

at
a

Tr
an

sf
er

re
d

C
PU

 U
sa

ge
C

PU
 L

oa
d

Av
er

ag
e

Pr
oc

es
se

s

D
is

k
U

sa
ge

R
AM

 U
sa

ge

Variable 2

V
ar

ia
bl

e
1

−1.0

−0.5

0.0

0.5

1.0

Pearson
Correlation
Coefficient

Correlation Matrix Heatmap
for the Apache2 Processes Experiment

Source: Author

pendently verify the impact of each variable in the migration costs. Finally, "CPU Load

Average" also showed a strong correlation, albeit weaker than that of "Processes" and

"RAM Usage"; however, initial regression analysis showed a worse result for including it

in the equation, which was therefore left out for the final predictor.

In this section, we detailed how the system’s internal variables were selected to be

used as input for our general-purpose predictor. In the next section, we investigate into

the regression used to fit all the selected variables in a single prediction equation for each

output.

44

4.2 Multivariable Regression

In the previous Chapter, it was explained how simple linear regression was used in

the experiments to derive migration cost equations concerning input values. As detailed

in the previous section, multiple variables are now to be used in the model for migration

costs prediction [Teetor 2011]. The model for the multiple variable regression is shown

in Equation 4.1.

y = b0 +b1x1 +b2x2 + ...+bkxk + ε (4.1)

As with Equation 3.1, y is the response variable, b0 is the y-intercept, and ε is the

error term. Each bn term indicates the regression coefficient for a particular variable and is

multiplied by the respective variable value, xn. More complex models, where interaction

effects between terms are considered, were also tried. The increased complexity of the

models, however, did not improve the accuracy of the predictor in our tests and were

therefore discarded.

Chosen variables are orthogonal by nature, and thus to minimize the effect of the

different scales we utilize normalization for feature scaling. Values are thus normalized

prior to being used in the regression, so that the values found for each variable is scaled

to the range of [0, 1]. The normalization formula is given by Equation 4.2. The result for

the normalization equations for each variable is presented in Table 4.1.

Normalized(x) =
x−min(x)

max(x)−min(x)
(4.2)

Table 4.1: Normalization formula for the input variables.

Input Variable Normalization Formula

Disk Usage x−5.16
994.84

Ram Usage x−4.11
333.5

Number of Processes x−5
1001

As discussed in the previous section, we initially consider all strongly correlated

variables in our prediction model. Gradually, we fine-tuned the regression parameters, to

obtain a model that, while keeping simplicity, better estimates the output values concern-

ing the chosen input variables. We utilize R [R Core Team 2015] to perform the regres-

sions, and ggplot2 package [Wickham 2016] to provide the visualization of the results

45

Table 4.2: Summary of the multivariable regression fit for the prediction model.

Multivariable
Regression

Adjusted
R-squared p-value

Residual
Standard
Error

Time 0.9994
<22E-17

(<2E-16 for all terms) 2.562

Data
Transferred 0.9992

<22E-17
(<2E-16 for all terms) 8.479

when needed. The best fit found for the migration time cost is presented in Equation 4.3,

and for the data transferred in migration, in Equation 4.4.

Y (seconds) = 12.00+16.98∗ Normalized DiskUsage+420.68∗ Normalized Processes

(4.3)

While the y-intercept is similar to what was obtained in the previous Chapter’s

models, the slope rate is now determined by disk usage and number of processes execut-

ing. The disk and processes parameters are a direct result of the migration stateless and

stateful synchronization processes, respectively. The regression coefficients show that the

run-time state synchronization is potentially much more time-costly for migration than the

stateless one. It is also noteworthy that the number of processes is used as a factor for the

run-time state, but the memory usage is not; since both variables show a strong correla-

tion internally, regression analysis for using both terms showed an increase in uncertainty.

When considered independently, for the migration time prediction the processes variable

performed better; that can be understood as the most time-consuming synchronization for

the running state is not that of transferring the memory pages allocated by each process,

but rather by iteratively confirming that every process is synchronized between hosts.

Y (MB) = 9.7+1073.4∗ Normalized DiskUsage+1039.6∗ Normalized RAMUsage

(4.4)

Similarly to the previous result, Equation 4.4 shows a y-intercept consistent with

what has been observed in Chapter 3. Disk and memory usage are the observed parame-

ters for stateless and stateful data transfer, respectively. It is noticeable that, in contrast to

the time model presented in Equation 4.3, regression coefficients do not show an as large

discrepancy between variables, even when accounting for the normalization applied (i.e.,

that the maximum value for disk usage is about three times the maximum for memory

46

usage, before normalization). This result further confirms that run-time state synchro-

nization is disproportionally more costly to the migration time than it is to the migration

data transferred. Finally, the representative variable for the run-time transfer is "RAM us-

age", in opposition to the "number of processes" used prior; while the number of processes

impact on the time to confirm synchronization between hosts, as already explained, the

majority of data transferred is related to the copying of memory pages between hosts. The

memory usage is, therefore, the best parameter to forecast the total amount of data being

transferred during a migration. The statistical summary for both time and data transferred

fits are presented in Table 4.2.

In this Chapter, we described how the predictor modeling evolved from experiment-

aware ones, towards a generic, experiment-independent predictor. In the next Chapter, we

present an use case developed in the FUTEBOL project, which we use to evaluate the

accuracy of the proposed predictor model.

47

5 USE CASE: PREDICTIONS APPLIED IN A CLOUD NETWORK

In this Chapter, we present an use case as a way to evaluate the accuracy of our

prediction model. A Cloud Computing experiment conducted in the FUTEBOL project

is presented, and adaptations to our scenario are discussed before the predictor results are

analyzed.

5.1 Use Case Motivation: FUTEBOL Vertically-Scalable Cloud Experiment

Initially, we proposed to utilize a different FUTEBOL experiment for the use case,

as can be seen in Appendix A, in which core elements from a 5G network are migrated

in response to user demand. Unfortunately, the core functions use General Packet Radio

Service Tunneling Protocol (GTP) for connection, which by the time of this work was not

supported by CRIU1. We thus consider another FUTEBOL experiment, in the context of

Cloud Computing, to be used in our predictor evaluation.

The proposed Cloud experiment introduces an orchestrator of computational re-

sources, namely CPU cores, and RAM, to provide vertical scaling for a virtualized ser-

vice running in a container. This service is a Web application that analyzes sound signals

provided by mobile users. In this application, users worried with the quality of their sleep

can use a smartphone to record the ambient sound for a night of sleep and have the audio

analyzed remotely. In this context, recorded sound signals are sampled, and sent to the

Web service to be analyzed. Received audio samples are processed through a machine

learning algorithm, which identifies patterns consistent with sleep disorders [Bublitz et

al. 2017]. Clients, therefore, enter and leave the service according to their sleep sched-

ule, which for the service’s load roughly translates into periodic rises, followed later by

matching falls, for the number of clients connected to the service. Additionally, due to

intrinsic variances in audio sampling, the time interval between requests from a client is

not constant, and the difference in processing required by any two samples can vary sig-

nificantly (e.g, samples with fewer frequencies are easier to process than those with more

frequencies). An overview of the scenario for the experiment is presented in Figure 5.1.

In this experiment, the number of concurrent clients is linearly increased over time,

to a maximum of 50, at which point it briefly stabilizes, before starting to decrease until

the end of the experiment, analogously. The experiment duration is of approximately 24

1https://github.com/checkpoint-restore/criu/issues/405

48

Figure 5.1: Overview of the Virtual-Scaling Cloud Experiment.

Legend:

Mobile User

Virtual Machine

Virtualized Service

Cloud Structure

Resource Orchestrator

Orchestrated RAM

Orchestrated CPU Cores

Client Request

Service Monitoring

Resources Orchestration

Resources Allocation

Source: Author

minutes, with clients stepping in or out every one minute. The orchestration performed

scales server’s resources up and down, in response to perceived utilization; orchestrated

resources are RAM, from 1 to 4 GB, and virtual CPU cores, from 1 to 4. Results for the

experiment are presented in Figure 5.2, where the time evolution is registered in the lower

x-axis, and the clients’ ladder, in the upper x-axis; the y-axis in the graph shows the pro-

cessing time for every request performed along the experiment. Scaling events, i.e., time

instant when orchestration actions increase or decrease server’s resources, are marked

with vertical lines; after such event, status on the allocation of resources are depicted in

the upper part of the graph.

An important aspect of the experiment result is showing that the vertical scaling

allows for a more efficient use of resources by the Cloud. Throughout the experiment,

the average resource allocation for the server was of 2.97 virtual CPU cores, and of 2.71

GB of RAM. In a non-orchestrated environment, running the same service would require

the constant allocation of 4 virtual CPU cores, and of 3.86 GB of RAM. This vertical-

scaling represents an average resource-saving about 1.03 virtual CPU cores, and of 1.15

GB of RAM, over the 24 minute period of the experiment. In the next section, we adjust

the experiment so that the orchestration towards efficient resource allocation is performed

horizontally, rather than vertically.

49

Figure 5.2: Result for orchestration of Cloud vertical scaling experiment.

Source: Author; expected to appear in a future FUTEBOL journal publication

50

Figure 5.3: Overview of the Cloud Experiment with VNF Orchestration.

Legend:

Mobile User

Virtual Machine

Virtualized Service

Cloud Structure

VNF Orchestrator

Available RAM

Available CPU Cores

Client Request

Service Monitoring

VNF Orchestration

VNF Migration

Source: Author

5.2 Predictor Applied to a Non-Scalable Cloud

To evaluate the accuracy of our prediction model, we use a variation of the Cloud

experiment presented in the previous section. Since we are interested in VNF migrations,

we propose a Cloud where VMs with different configuration are available hosts for a

given VNF; analogously to the FUTEBOL Cloud experiment, an orchestrator reallocates

the VNF in response to the users’ demand. The virtualized service is the same as presented

in Section 5.1. The proposed scenario is shown in Figure 5.3.

In the use case, the number of connected clients varies between low (10 to 25

clients), medium (26 to 40 clients), and high (41 to 60 clients) demand. The range for

each workload is based on the results from FUTEBOL experiment, as presented in the

previous section. An audio file is associated with each connected client, and the size for

each file is randomly chosen from 1 to 25 MB. The file transferring is abstracted from

this evaluation. Once a minimum or a maximum threshold for the VM resource usage is

reached, an orchestrator consults our predictor to estimate the expected migration costs,

before performing a migration to a more/less resourceful VM, accordingly. Because our

intention is solely to evaluate the accuracy of the predictor, and not the orchestration

algorithm, migration intentions are always confirmed by the orchestrator. On the same

note, our analysis is focused on the results of the predictions disregarding the impact on

service performance, and thus total clients pattern is chosen, so migrations are frequently

triggered. An example of a single prediction against measured migration costs is provided

in Figure 5.6. The result for migrations prediction and measurements performed during

51

the use case experiment is shown in Figure 5.4, concerning time, and in Figure 5.5, for

data transferred.

Figure 5.4: Result for time prediction and migration in the use case.

20

30

40

50

60

70

0 25 50 75
Migration instance

T
im

e
el

ap
se

d
in

 m
ig

ra
tio

n
(in

 s
ec

on
ds

)

Legend
Prediction
Migration
Error

Source: Author

In both figures, it is possible to see the predicted time or data transferred cost for

each triggered migration and the subsequent real measurement for its completion. The

dashed red lines in the graph indicate the observed error between predicted cost and actual

measurement.

5.3 Discussion of Results

The result for time costs shown in Figure 5.4 indicates that 59.34% of the mea-

surements were under-predicted, while 40.66% were over-predicted. The Mean Absolute

Error (MAE) for all observations was of 3.08 seconds, with MAE for over-predictions

being of 3.15 seconds, and of 3.03 seconds for under-predictions. Considering that the

average time cost was of 30.40 seconds, the mean expected error is roughly in 10% range

of the predicted value. Therefore, we argue that the results are within a reasonable range

from the prediction for most applications. If the same accuracy is needed in a narrower

prediction range, however, the inclusion of more parameters in the regression analysis

52

Figure 5.5: Result for data transferred prediction and migration in the use case.

476.84

953.67

1430.51

1907.35

0 25 50 75
Migration instance

D
at

a
tr

an
sf

er
re

d
du

rin
g

m
ig

ra
tio

n
(in

 M
B

)

Legend
Prediction
Migration
Error

Source: Author

Figure 5.6: Console output showing the results for a triggered migration.

Source: Author

may be required. For example, the analysis of the load in both source and destination host

systems, and not only on the container, may provide additional resources to fine-tune the

prediction model.

If we consider the residual standard error of 2.56 seconds obtained in the regres-

sion model, as presented in Section 4.2, and add a ±5% range in the upper and lower

prediction limits, we obtain a prediction range that correctly predicts 74.73% of the ob-

served results. As presented thoroughly in the previous Chapter, the variance in time cost

is observed even in our controlled variable experiments. Therefore, the accuracy obtained

within reasonable prediction range can be trustfully considered by orchestration decisions

when trying to forecast expected costs.

While the results in time predictions showed some slight bias towards under-

predicting the costs, Figure 5.5 shows that the prediction regarding data transferred holds

53

a much stronger bias in the same direction. Considering the exact predicted value, 83.52%

of measurements were over the estimated value, and only 16.48% were under the same

value. This consistent tendency to underestimate data transferring cost indicates to us that

the regression for data transferred obtained in Section 4.2 did not address all relevant pa-

rameters correctly. For example, some interaction of parameters in the use case container,

not forecasted in the prediction model, result in the migration transferring consistently

more than what was expected. Moreover, MAE for over-predictions was of 29.15 MB,

and 56.97 MB for over-predictions, with an overall of 52.39 MB. The average data trans-

ferred in migration was of 911.54 MB, indicating that the mean error was considerably

under 10% from the predicted value.

Additionally, if we shift all predictions up by 50MB to account for the observed

bias throughout the use case observations, and use a ±5% variance to calculate the range

for predictions, a total of 87.91% of the measurements would fall into the predicted

range. This high accuracy obtained in such range indicates that, although the calculated

y-intercept can be affected by the experimental scenario, and should be adjusted accord-

ingly, the slope coefficient for the variance in data transferred during migration is precise

in estimating the expected variance in a series of migrations. The reasons to why such

difference was observed in the data transferred predictions are the theme for further inves-

tigation, but an experimental-based adjustment could be used in the predictor to help the

adaptation to various scenarios. For example, a feedback loop extension could gradually

reduce the observed bias in the experiment by increasing or decreasing the y-intercept

term in the prediction model, according to observed errors patterns.

Finally, an additional module was included in the predictor so it can be further

used by an application-aware orchestrator to estimate the costs for future migrations. If

the orchestrator is knowledgeable of the VNF patterns for resources usage, it can ask the

predictor for a future estimation considering the expected increase or decrease in VNF

parameters. If even further, the orchestrator can alter the service behavior, it can , for

example, decide that the best course of action is to cache new requests for 10 seconds,

perform a rather inexpensive migration, and then to resume the requests from the new

host. This conditional prediction is performed when the query to the predictor informs

which parameters it expects to change, and by how much; current values are used for

parameters omitted in the query. Figure 5.7 shows an example of this functionality.

54

Figure 5.7: Conditional prediction example: migration costs predicted considering appli-
cation expectations, provided as parameters.

Source: Author

55

6 CONCLUSION AND FUTURE WORK

In this work, we investigated the costs associated with the orchestration of VNFs

along the network. NFV is expected to play an important role in future networks, and a

fundamental feature to be provided by these networks is the ability to move VNFs over

time. Through a systematic bibliographic review, we were able to identify what costs

can are present when migrating a function between hosts. Using a well-known container

virtualization platform, we performed a series of experiments to better understand the

association between different parameters, and the specified migration costs. The theo-

retical background for the migration implementation is used to separate the analysis in

two major steps: stateless synchronization (i.e., regarding the filesystem), and run-time

synchronization (i.e., regarding the memory pages, processes, etc.).

Using linear regressions for the observed results in two experiments conducted,

we were able to derive a prediction model for the time and data transferring costs due

to migration. Variables observable in non-specific function container, namely the disk

and memory usage, and the number of running processes, are used to estimate migration

costs at run-time, whenever an orchestrator intends to migrate a VF, and queries the pre-

dictor accordingly. The model is evaluated in a use case, in which a Cloud Computing

setup produces the migration of a virtualized service between available hosts. Results for

the predictions indicate that, under certain conditions, high accuracy is possible for the

predictions of both costs. The predictor also offers the option for an application-aware

orchestrator to forecast what are the costs expected for migration in the future so that a

well-informed decision for orchestration can be taken.

Because several parameters can impact the costs for migrations, this work keeps

fixed or ignores some of the parameters that can help to improve the accuracy and the

adaptability of the model. For example, the network topology and links remained constant

throughout our analysis, and were therefore left out of the proposed models; although the

cost for data transferred in a migration should not be significantly affected by this vari-

able, the cost in time for performing the migration is obviously affected by the available

bandwidth, for instance. Therefore, improving the predictor requires the removal of fixed

constraints, and the consideration for variance in each parameter is an iterate process until

the model is generic and accurate enough to be used in a variety of scenarios.

Another important aspect for the future work is to make the predictor available

for FUTEBOL experimenters is to integrate it with COPA. Developed in the FUTEBOL

56

project as a tool to assist monitoring and orchestration of services virtualized in con-

tainers, COPA allows experimenters to easily deploy and migrate containers along their

experimental network. There is thus great synergy to be explored between COPA and

the predictor, as COPA monitoring can be used by the predictor to improve its accuracy

further, while the migration costs predictions can be fed back to COPA, improving its

orchestration capabilities. A more audacious setup could include some machine-learning

technique to use the migration results from users of the testbed to further enhance the

predictor accuracy.

57

REFERENCES

Apache Software Foundation. Apache HTTP Server. 2018. Available from Internet:
<https://wwww.apache.org>.

BRADFORD, R. et al. Live wide-area migration of virtual machines including local
persistent state. In: ACM. Proceedings of the 3rd international conference on Virtual
execution environments. [S.l.], 2007. p. 169–179.

BUBLITZ, C. F. et al. Unsupervised segmentation and classification of snoring events
for mobile health. In: IEEE. GLOBECOM 2017-2017 IEEE Global Communications
Conference. [S.l.], 2017. p. 1–6.

CELESTI, A. et al. Exploring container virtualization in iot clouds. In: 2016 IEEE
International Conference on Smart Computing (SMARTCOMP). [S.l.: s.n.], 2016.
p. 1–6.

CERRONI, W.; CALLEGATI, F. Live migration of virtual network functions in cloud-
based edge networks. In: 2014 IEEE International Conference on Communications
(ICC). [S.l.: s.n.], 2014. p. 2963–2968. ISSN 1550-3607.

COHEN, R. et al. Near optimal placement of virtual network functions. In: 2015
IEEE Conference on Computer Communications (INFOCOM). [S.l.: s.n.], 2015. p.
1346–1354. ISSN 0743-166X.

DALLA-COSTA, A. G. et al. Maestro: An nfv orchestrator for wireless environments
aware of vnf internal compositions. In: 2017 IEEE 31st International Conference on
Advanced Information Networking and Applications (AINA). [S.l.: s.n.], 2017. p.
484–491. ISSN 1550-445X.

DROSTE, H. et al. The metis 5g architecture: A summary of metis work on 5g
architectures. In: IEEE. Vehicular Technology Conference (VTC Spring), 2015 IEEE
81st. [S.l.], 2015. p. 1–5.

FELTER, W. et al. An updated performance comparison of virtual machines and linux
containers. In: 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). [S.l.: s.n.], 2015. p. 171–172.

FUTEBOL. Federated Union of Telecommunications Research Facilities
for an EU-Brazil Open Laboratory. 2018. Available from Internet: <http:
//www.ict-futebol.org.br/>.

HERBAUT, N. et al. Dynamic deployment and optimization of virtual content delivery
networks. IEEE MultiMedia, IEEE, v. 24, n. 3, p. 28–37, 2017.

HERRERA, J. G.; BOTERO, J. F. Resource allocation in nfv: A comprehensive survey.
IEEE Transactions on Network and Service Management, v. 13, n. 3, p. 518–532,
Sept 2016. ISSN 1932-4537.

IBN-KHEDHER, H. et al. Opac: An optimal placement algorithm for virtual cdn.
Computer Networks, v. 120, p. 12 – 27, 2017. ISSN 1389-1286. Available from
Internet: <http://www.sciencedirect.com/science/article/pii/S1389128617301391>.

https://wwww.apache.org
http://www.ict-futebol.org.br/
http://www.ict-futebol.org.br/
http://www.sciencedirect.com/science/article/pii/S1389128617301391

58

IBN-KHEDHER, H. et al. Scalable and cost efficient algorithms for virtual cdn
migration. In: 2016 IEEE 41st Conference on Local Computer Networks (LCN).
[S.l.: s.n.], 2016. p. 112–120.

JAIN, R. The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. [S.l.]: John Wiley &
Sons, 1990.

JOY, A. M. Performance comparison between linux containers and virtual machines.
In: IEEE. Computer Engineering and Applications (ICACEA), 2015 International
Conference on Advances in. [S.l.], 2015. p. 342–346.

KHEDHER, H. et al. Optimal and cost efficient algorithm for virtual cdn orchestration.
In: 2017 IEEE 42nd Conference on Local Computer Networks (LCN). [S.l.: s.n.],
2017. p. 61–69. ISSN 0742-1303.

KITCHENHAM, B. Procedures for performing systematic reviews. Keele, UK, Keele
University, v. 33, n. 2004, p. 1–26, 2004.

KSENTINI, A.; BAGAA, M.; TALEB, T. On using sdn in 5g: The controller placement
problem. In: 2016 IEEE Global Communications Conference (GLOBECOM). [S.l.:
s.n.], 2016. p. 1–6.

LI, X.; QIAN, C. An nfv orchestration framework for interference-free policy
enforcement. In: IEEE. Distributed Computing Systems (ICDCS), 2016 IEEE 36th
International Conference on. [S.l.], 2016. p. 649–658.

LIN, C. C. et al. A practical model for analyzing push-based virtual machine live
migration. In: 2016 7th International Conference on Cloud Computing and Big Data
(CCBD). [S.l.: s.n.], 2016. p. 347–352.

LIU, H. et al. Performance and energy modeling for live migration of virtual machines.
In: ACM. Proceedings of the 20th international symposium on High performance
distributed computing. [S.l.], 2011. p. 171–182.

LIU, J. et al. Migration-based dynamic and practical virtual streaming agent placement
for mobile adaptive live streaming. IEEE Transactions on Network and Service
Management, 2017. ISSN 1932-4537.

LUIZELLI, M. C. et al. A fix-and-optimize approach for efficient and large scale virtual
network function placement and chaining. Computer Communications, Elsevier,
v. 102, p. 67–77, 2017.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
Austria, 2015. Available from Internet: <https://www.R-project.org/>.

RIGGIO, R.; RASHEED, T.; NARAYANAN, R. Virtual network functions orchestration
in enterprise wlans. In: IEEE. Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on. [S.l.], 2015. p. 1220–1225.

ROSEN, R. Resource management: Linux kernel namespaces and cgroups. Haifux,
May, v. 186, 2013.

https://www.R-project.org/

59

SEZER, S. et al. Are we ready for sdn? implementation challenges for software-defined
networks. IEEE Communications Magazine, v. 51, n. 7, p. 36–43, July 2013. ISSN
0163-6804.

SHARIATMADARI, H. et al. Machine-type communications: current status and future
perspectives toward 5g systems. IEEE Communications Magazine, IEEE, v. 53, n. 9,
p. 10–17, 2015.

SOLTESZ, S. et al. Container-based operating system virtualization: a scalable,
high-performance alternative to hypervisors. In: ACM. ACM SIGOPS Operating
Systems Review. [S.l.], 2007. v. 41, n. 3, p. 275–287.

SUN, Q. et al. Forecast-assisted nfv service chain deployment based on affiliation-aware
vnf placement. In: 2016 IEEE Global Communications Conference (GLOBECOM).
[S.l.: s.n.], 2016. p. 1–6.

TAO, F. et al. Bgm-bla: A new algorithm for dynamic migration of virtual machines in
cloud computing. IEEE Transactions on Services Computing, v. 9, n. 6, p. 910–925,
Nov 2016. ISSN 1939-1374.

TEETOR, P. R cookbook: Proven recipes for data analysis, statistics, and graphics.
[S.l.]: " O’Reilly Media, Inc.", 2011.

VAKALI, A.; PALLIS, G. Content delivery networks: status and trends. IEEE Internet
Computing, v. 7, n. 6, p. 68–74, Nov 2003. ISSN 1089-7801.

WANG, C. et al. A switch migration-based decision-making scheme for balancing load
in sdn. IEEE Access, v. 5, p. 4537–4544, 2017.

WICKHAM, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York, 2016. ISBN 978-3-319-24277-4. Available from Internet: <http://ggplot2.org>.

XAVIER, M. G. et al. Performance evaluation of container-based virtualization for
high performance computing environments. In: 2013 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing. [S.l.: s.n.],
2013. p. 233–240. ISSN 1066-6192.

XIA, J.; CAI, Z.; XU, M. Optimized virtual network functions migration for nfv. In:
2016 IEEE 22nd International Conference on Parallel and Distributed Systems
(ICPADS). [S.l.: s.n.], 2016. p. 340–346. ISSN 1521-9097.

XIA, J. et al. Reasonably migrating virtual machine in nfv-featured networks. In: 2016
IEEE International Conference on Computer and Information Technology (CIT).
[S.l.: s.n.], 2016. p. 361–366.

http://ggplot2.org

60

Appendices

TG1 - Predição de Custos para Orquestração de Funções
Virtualizadas por Containers

Rafael de Jesus Martins1
Orientador: Lisandro Zambenedetti Granville1

Co-orientadores: Juliano Wickboldt1, Cristiano Bonato Both2

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

2DECESA - Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)
CEP 90.050-170 – Porto Alegre - RS - Brazil

Abstract. The advent of function virtualization concept, especially that of
network functions (NFV), presents critical benefits for networks of the future.
Offering scalable solutions for dynamic network requirements, virtualized func-
tions can be expanded or withdraw along the network infrastructure accordingly
instantaneous demands. Although this functions orchestration present gains for
network operators and clients alike, the overhead for moving functions has been
little explored so far. In this paper, we present the most relevant works found in
this subject, and the plans of developing a cost predictor for the migration of
virtualized functions, to be done in the sequent work (TG2).

Resumo. O surgimento do conceito de virtualização de funções, em especial
as de rede (NFV, do inglês Network Function Virtualization), traz benefı́cios
crı́ticos para as redes do futuro. Oferecendo soluções escaláveis para requisitos
dinâmicos da rede, as funções virtualizadas podem ser expandidas e retraı́das
ao longo da estrutura de rede de acordo com necessidades instantâneas. Em-
bora esta orquestração de funções represente ganhos para os operadores e os
clientes da rede, o próprio custo da movimentação das funções foi pouco explo-
rado até o momento. Neste artigo, são apresentados os principais trabalhos en-
contrados sobre o tema, além dos planos para o desenvolvimento de um preditor
de custos para migrações de funções virtualizadas, a ser realizado no trabalho
sequente (TG2).

1. Introdução
Redes do futuro, como por exemplo a nova geração LTE 5G, serão construidas com ali-
cerces em tecnologias como redes definidas por software (SDN, do inglês Software Defi-
ned Network), e virtualização de funções de rede (NFV) [6]. No caso especı́fico de NFV,
aplicações que tradicionalmente seriam realizadas apenas por equipamento especializado,
conhecidos como middleboxes, poderão também ser oferecidas por software executando
em hardware genérico. As possibilidades portanto oferecidas à gerência da rede são mas-
sivamente ampliadas, uma vez que a implantação de uma função de rede qualquer (e.g.
um firewall) independe da aquisição e instalação de equipamento especı́fico; ao contrário,
para a função virtualizada podem ser oferecidos mais ou menos recursos de processa-
mento, por exemplo, de acordo com a carga percebida na rede em cada instante.

61

AppendixA TG1

A orquestração de funções virtualizadas de rede (VNFs, do inglês virtuaized
network functions), i.e., a tomada de decisão para inicializar, parar, ou migrar uma VNF de
um host para outro, desempenha um papel importante na otimização de uso dos recursos
de rede. A decisão de qual função orquestrar, e de que forma, têm sido alvo de múltiplos
estudos, com abordagens por ângulos diversos. Contudo, nem sempre são considerados
no cômputo do algoritmo de orquestração o custo induzido pelas próprias mudanças exe-
cutadas na rede, e.g. a transferência sobre a rede para migrar uma função entre hosts ao
executar um balanceamento de carga. O foco deste trabalho é justamente esclarecer quais
são estes custos, e de que forma eles podem implicar na decisão de orquestração. Em es-
pecial, este trabalho considera o cenário das funções virtualizadas em uma rede LTE 5G,
onde funções bem definidas do núcleo da rede podem ser virtualizadas, e orquestradas
conforme as necessidades do operador.

O restante deste artigo está estruturado da seguinte forma: na Seção 2, os princi-
pais trabalhos relacionados são discutidos; na Seção 3, a proposta para o TG2 é descrita;
resultados preliminares são apresentados na Seção 4; e na Seção 5, os comentários de
conclusão são apresentados.

2. Trabalhos Relacionados
Para iniciar este trabalho, uma revisão sistemática da literatura foi realizada. Utilizando
a ferramenta de busca Scopus1, cuja principal vantagem é apresentar curadoria dos traba-
lhos indexados, e portanto oferecer maior relevância nos resultados, a seguinte busca foi
feita:

TITLE-ABS-KEY (((nfv OR vnf OR container OR ”function virtualization”OR ”virtu-
alized function”) AND ((migration OR orchestration OR deployment OR placement)
W/3 (cost OR penalty OR tradeoff OR risks)) ANDNOT (ship OR cargo OR sea OR
disease OR patient OR food))) AND (LIMIT-TO (PUBYEAR , 2018) OR LIMIT-TO (
PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016) OR LIMIT-TO (PUBYEAR , 2015
) OR LIMIT-TO (PUBYEAR , 2014) OR LIMIT-TO (PUBYEAR , 2013))

No dia 26/01/2018, tal pesquisa resultou em 94 documentos. Todos estes docu-
mentos foram transportos para uma planilha2, onde foram sistematicamente categoriza-
dos, e excluı́dos de considerações futuras quando considerados fora do escopo. Para tal,
três filtros foram aplicados sequêncialmente, com os resultados considerados irrelevantes
sendo excluidos para os filtros seguintes. No primeiro filtro, o tı́tulo e o resumo de cada re-
sultado encontrado foram considerados. No segundo filtro, adicionou-se na consideração
a introdução e a conclusão de um artigo relevante para o primeiro filtro. No terceiro e
último filtro, o artigo inteiro é considerado. As observações mais relevantes para cada
artigo, e em cada filtro, são copiadas para a planilha de resultados.

Dentre os cenários mais importantes para a orquestração de funções virtualizadas,
temos o de computação na Nuvem. Na computação na Nuvem há grande interesse por
parte do operador da Nuvem de obedecer os requisitos mı́nimos previstos em contrato
com seus clientes, enquanto minimiza os custos de operação da Nuvem. Para tal, é im-
portante, por exemplo, poder migrar as funções ao longo da Nuvem de acordo com a carga

1https://www.scopus.com
2https://docs.google.com/spreadsheets/d/1zy8nuEDackDtBhioGpzQt96bPDg4d_

dltYCBIXR1cAI/edit#gid=710132590

62

computacional percebida em cada instante.

Quatro trabalhos de destaque foram categorizados no cenário de computação na
Nuvem. O trabalho de Cerroni et al. [1] foca na análise de desempenho quando da
migração ativa (i.e., quando o estado em execução da função é movido para um outro
host) de funções de rede virtualizadas. O desempenho é considerado pela composição do
tempo total que um conjunto de migrações demora a ser realizado, e do downtime (in-
tervalo mı́nimo em que a função é parada na origem, e retomada no destino) do serviço.
Vale apena notar que, a exemplo da maior parte dos artigos verificados, o trabalho usa
máquinas virtuais (VMs, do inglês virtual machines) para encapsular as funções virtua-
lizadas, o que pode incutir em uma eficiência menor ao serviço, quando comparado ao
uso de containers [2]; este ponto torna-se relevante quanto à proposta para o trabalho se-
quente, onde serão explorados os impactos de orquestração utilizando-se virtualização por
containers. Na mesma linha de trabalho, Tao et al. [10] trataram do problema de migração
dinâmica de VMs na computação na Nuvem. Os autores introduzem uma proposta para
a otimização nos planos de migração, que são comparados quanto ao desempenho. Mais
uma vez, o tempo total para a execução das migrações é levado em consideração para o
cômputo do desempenho, com a adição do custo de transferência das VMs pela rede neste
cálculo.

Ainda na análise de desempenho de migrações de VMs na computação na Nu-
vem, Lin et al. [7] utilizaram uma abordagem um pouco distinta dos anteriores. Enquanto
também consideraram o custo da migração como o tempo total para esta ser realizada, e
o downtime observado para o serviço, os autores focaram nas métricas quanto às páginas
de memória a serem transferidas. Como a função a ser migrada precisa ter a memória no
destino e na origem sincronizadas para finalizar o processo de migração, os autores com-
pararam diferentes taxas de dirtying das páginas de memória (i.e. páginas que são modi-
ficadas na origem depois de já terem sido transferidas ao destino). Taxas de dirtying mais
altas provocam uma necessidade de mais iterações no laço para sincronia de memória en-
tre origem e destino, o que pode ser fundamental quando são consideradas as migrações
de aplicações com tais padrões. Os resultados apresentam diferenças bastante significan-
tes no custo de migração quando do aumento na taxa de dirtying das páginas de memória,
algo que provavelmente deve ser considerado quando da predição de custos para se exe-
cutar um plano de migrações. Por fim, Liu et al. [8] focam no cenário para transmissão
de vı́deo ao vivo. Em tal cenário, as migrações ao longo da rede são utilizadas para maxi-
mizar a qualidade de experiência dos usuários, enquanto minimiza os custos ao operador
da rede. Para tais fins, dependendo do consumo de vı́deo requisitado pelos usuários, o
serviço de vı́deo pode ser migrado ao longo da rede. Devido aos requisitos temporais e de
banda presentes no cenário, isto é, os limites de atraso e de taxas mı́nimas de transferência
aceitáveis, por se tratar de uma transmissão ao vivo de vı́deo, os custos induzidos por uma
migração devem ser bem pesados contra os beneficios esperados de uma migração. Neste
caso, mais uma vez o tempo total para migrar, o downtime causado pela migração, e o
tráfego introduzido na rede, são considerados custos da operação de migração.

Outros três trabalhos em cenários mais genéricos foram considerados neste levan-
tamento. Nestes trabalhos, a rede onde realiza-se as migrações de FV apenas é conside-
rada como uma com suporte a tal, sem outras caracterı́sticas ou requisitos especiais que a
diferencie. Dentre estes resultados, o estudo de Sun et al. [9] foca no problema de encade-

63

amento de serviços (SC, do inglês Service Chain) de VNFs. O encadeamento de serviços
é necessário quando duas ou mais funções virtualizadas precisam estar conectadas pela
rede (mesmo quando encontram-se em um mesmo host fı́sico); o posicionamento ótimo
então de uma VNF pertencente a um chainning depende também das VNFs as quais ela
se conecta. Para reduzir a necessidade de transferência das funções pela rede, o que é
eleito como principal custo de orquestração neste trabalho, os autores buscam predizer
as demandas futuras das VNFs em um encadeamento, reduzindo a necessidade de pos-
teriores migrações em resposta a variações na demanda. Resultados de simulação são
apresentados, corroborando com a argumentação teórica. Ainda em cenários de redes
genéricas com suporte a NFV, dois trabalhos [12, 13] por Jing Xia et al. aparecem com
a proposta clara de otimizar as migrações de funções virtualizadas. Como em trabalhos
apresentados anteriormente, os principais custos considerados para uma migração são os
de transferência total, e do tempo total para a operação. Os autores propõem soluções
com heurı́sticas para resolver o problema de reposicionamento das funções, e apresentam
resultados de simulação para comparar os desempenhos das soluções.

Em uma série de trabalhos [3, 4, 5], os autores investigaram o problema de
otimização na orquestração em Redes de Distribuição de Conteúdo (CDN, do inglês Con-
tend Delivery Network). Em CDNs, o conteúdo (e.g. vı́deo) disponibilizado em uma rede
pode ser distribuido ou movido ao longo dos servidores desta rede, de acordo com o con-
sumo apresentados pelos usuários. O uso de NFV e SDN por tais redes pode impactar
significativamente tanto a qualidade do serviço entregue ao usuário, quanto o custo de
operação da rede, implicando em grande interesse na orquestração para a área. Utilizando
VMs, novamente como custos de migração são considerados o downtime e o tempo para
concluir a operação.

Também foram encontradas abordagens diferentes para soluções usando SDN,
por exemplo. No cenário de 5G, Ksentini et al. [6] investigaram os custos quanto as
realocações necessárias do SGW. Neste caso, múltiplas instâncias da função virtualizada
são utilizadas, e o controlador SDN é quem exerce o trabalho de ”migrar”os usuários de
uma instância da função para outra. O custo considerado para uma migração é, portanto,
o da troca de mensagens no controlador para a sinalização da migração. Contudo, esta
solução não é viável para todos os cenários, e.g. redes sem suporte SDN, ou funções com
fortes requisitos de contexto. Um resultado parecido foi encontrado para cenários mais
genéricos por Wang et al. [11], também utilizando SDN para a migração, buscando-se
balancear a carga na rede.

Como apresentados até então, a maior parte dos trabalhos focou no aspecto teórico
do problema, geralmente demonstrando resultados de simulação. Ademais, os trabalhos
com componente experimental utilizaram máquinas virtuais para encapsular as VNFs,
tendo pouco explorado meios de virtualização mais atuais, como a virtualização por con-
tainers. Quanto à composição dos fatores que devem ser considerados como custo de
migração, aspectos como o tempo total para se realizar uma migração, e a transferência
necessária entre origem e destino, foram recorrentes na maior parte dos trabalhos; ainda
assim, apesar da aparente convergência, meios para prever com acurácia tais custos, dado
um plano de migrações arbitrário, foram pouco desenvolvidos até então.

64

3. Planejamento para o TG2
O trabalho proposto para o TG2 focará no aspecto prático do problema de estimativa de
custos na orquestração de funções virtualizadas, utilizando um ambiente experimental
para a obtenção de resultados. A virtualização por containers será utilizada para o en-
capsulamento das VNFs; este ponto é relevante, como citado anteriormente, dada a maior
eficiência deste tipo de virtualização quando comparada a virtualização por máquinas
virtuais, principal utilizada pelos trabalhos relacionados. Espera-se, pois, que os custos
de migração observados sejam atenuados no caso médio utilizando-se containers, mas
diferenças entre as implementações de virtualização, e.g., nos processos de sincronização
de memória entre origem e destino, podem influenciar estes resultados. É parte do tra-
balho proposto, pois, esclarecer de que forma impacta nos fatores de custo de migração
a utilização de uma técnica de virtualização distinta daquela utilizada na maior parte dos
trabalhos relacionados.

O ambiente para execução dos experimentos será aquele fornecido pelo projeto
FUTEBOL3. Como colaboradores do projeto, os recursos disponibilizados pelos ambi-
entes experimentais do FUTEBOL são bastante conhecidos, facilitando a execução do
trabalho proposto. Em especial, será utilizada uma ferramenta desenvolvida no projeto es-
pecificamente com o intuito de facilitar o manejo de containers por um experimentador,
conhecida como COPA (Container Orchestrator and Provisioning Architecture, ou Ar-
quitetura de Orquestração e Provisionamento de Container, em tradução livre). O COPA
oferece uma interface amigável para o usuário gerenciar e monitorar um ou mais con-
tainers em múltiplos servidores, os quais são alocados nos ambientes de experimentação
disponibilizados pelo projeto. Além disso, o COPA também oferece seus recursos através
de uma API, que será utilizada para a realização do experimento de forma automática,
incluindo a coleta de resultados (e.g. tempo para migrar, tráfego entre os servidores).

O cenário avaliado será um de extensão ou sub-conjunto de um experimento do
FUTEBOL. No contexto do experimento do projeto, um serviço de streaming de vı́deo
virtualizado é consumido por múltiplos clientes; a conexão destes clientes dá-se através
de uma rede LTE 5G, onde elementos do núcleo são virtualizados. Neste cenário, um
orquestrador manipula uma ou mais das funções virtualizadas nada rede de forma a me-
lhorar a qualidade do serviço de usuários, enquanto mantém o consumo dos recursos de
rede a um mı́nimo. O objetivo aqui será, então, dado um plano de modificações planeja-
das pelo orquestrador, criar um método para predizer os custos esperados para a execução
deste plano. As estimativas dadas por este preditor serão, então, comparadas ao resul-
tado efetivo observado quando da execução do plano de mudanças. Espera-se que, com
um preditor suficientemente confiável, suas estimativas possam ser utilizadas como nova
entrada para o orquestrador, para que o custo-benefı́cio de um dado plano possa melhor
refletir o observado na prática.

A Tabela 3 apresenta a sequência de passos a serem seguidos para a realização
do trabalho, incluindo um plano de cronograma. O plano indica a sequência esperada de
execução do trabalho, considerando o prazo para a finalização do trabalho no próximo
semestre. A escrita da monografia, bem como a montagem da apresentação final, requisi-
tos para a diplomação, dar-se-ão em paralelo com as atividades práticas, conforme estas
avançarem.

3http://www.ict-futebol.org.br

65

Ainda quanto ao cronograma, caso os resultados esperados sejam obtidos em
tempo, espera-se explorar outras opções para a solução. Como exemplo, a adição de
aprendizado de máquina (do inglês, machine learning) no cômputo da predição de custo
pode permitir ao preditor maior precisão e adaptabilidade em cenários não considerados
neste trabalho. Neste caso, se o trabalho for considerado suficientemente maduro para tal,
planeja-se uma submissão para uma (ainda a definir-se) revista ou conferência cientı́fica.

Agenda de Atividades Cronograma
Execução do experimento utilizando o orquestrador Setembro
Análise de custos experimentais Setembro
Comparação estatı́stica de predição com observado Outubro
Refinamento do preditor Outubro
Finalização dos resultados Novembro

Tabela 1. Atividades previstas e prazos esperados para a realização do TG2.

4. Resultados Preliminares

De forma a melhor compreender o trabalho proposto para o TG2, um cenário de
experimentação simplificado foi criado. Como pode-se ver na Figura 4, utilizamos dois
hosts fı́sicos, conectados por um switch em uma rede local. Em cada um dos hosts são
instanciadas duas máquinas virtuais. A função virualizada, ou mais precisamente, o con-
tainer que a encapsula, pode então estar executando em qualquer uma das quatro VMs.
Além disso, a migração desta VF pode ser feita de qualquer VM origem, para qualquer
VM destino (12 cenários possı́veis, pois). Por exemplo, na Figura 4 considera-se o caso
em que a VF inicialmente está rodando na VM 1. Por razões quaisquer, e.g. outras funções
executando na mesma VM saturam o poder computacional nesta VM, deseja-se migrar
a VF para outra VM. As opções de migração são, pois, para a VM 2, que encontra-se
no mesmo host fı́sico da VM 1, ou para uma das duas VMs que encontram-se no outro
host (VM 3 e VM 4). Nota-se que as razões que levam a uma migração, bem como o
estado instantâneo do cenário proposto, compõe a escolha do melhor destino para a VF.
Mais importantemente, o interesse é comparar o impacto de migrações entre os hosts A
e B, e de migrações entre VMs de um mesmo host. Uma diferença considerável deve ser
observada, uma vez que a migração inter-hosts necessita de transferência de rede, mais
lenta quando comparada a transferência ocorrida na migração intra-host.

Para este primeiro teste, foi criado um container de teste com uma imagem dis-
ponı́vel da distribuição Linux Alpine 4. Esta distribuição objetiva oferecer uma solução
com foco em segurança e simplicidade, ideais para cenários de virtualizações de funções,
pois. A imagem base é copiada para o sistema de cada uma das quatro VMs; desta forma,
a migração do container entre as VMs é feita à partir da diferença entre o container e a
imagem base; de outra forma, o container em sua totalidade teria que ser migrado quando
direcionado aos servidores que não possuem a imagem, induzindo a um grande aumento
na transferência (e por coseguinte, no tempo) necessária para a migração. Para este pri-
meiro teste, não foram executadas quaisquer funções adicionais, para que o resultado seja
utilizado como base de referência para containers futuros, executando de fato funções

4https://alpinelinux.org/

66

Figura 1. Cenário simplificado representando as alternativas de posicionamento
de uma VF.

Figura 2. Migrações possı́veis para a VF em VM 1.

virtualizadas. Como resultado, temos um container mı́nimo, com apenas os processos de
sistema vitais ao seu funcionamento em execução, como pode ser visto na Listagem 1.
Como já mencionado anteriormente, a carga computacional pode interferir nos custos de
uma migração, como é o caso com diferentes padrões de alteração de páginas da memória.
Ademais, o tráfego introduzido por uma função pode competir com o próprio tráfego para
a migração, tornando-a menos eficiente. Desta forma, espera-se que os resultados para as
migrações aqui sejam os melhores obtı́veis neste cenário.

Listing 1. Listagem de todos os processos executando no container mı́nimo de
teste

pool@pool : ˜ $ l x c exec −− a l p ps −A
PID USER TIME COMMAND

1 r o o t 0 :00 / s b i n / i n i t
211 r o o t 0 :00 / s b i n / s y s l o g d −Z
238 r o o t 0 :01 / u s r / s b i n / c rond −c / e t c / c r o n t a b s
282 r o o t 0 :00 udhcpc −b −p / v a r / run / udhcpc . e t h 0 . p i d

− i e t h 0 −x hostname :
293 r o o t 0 :00 / s b i n / g e t t y 38400 c o n s o l e
658 r o o t 0 :00 ps −A

67

Para este cenário de testes, realizou-se a migração entre servidores 60 vezes para
o caso intra-host (30 em cada direção), e 60 vezes para o caso inter-host (novamente, 30
em cada direção), de forma a obter-se um resultado com maior significância estatı́stica.
Observou-se como custos o tempo médio para a migração, o tráfego médio gerado por
uma migração. Deve-se notar que os valores de transferências na rede são obtidos direta-
mente da interface de rede; assim sendo, alguma variância é esperada, devido ao tráfego
de pacotes de ARP, por exemplo. Para a sequência deste trabalho, a ferramenta COPA
deve facilitar na coleta e visualização de medidas mais precisas. Os resultados obtidos
são apresentados na Figura 4.

0

1

2

3

4

5

6

7

8

Inter−host Intra−host
Migração (Origem−Destino)

Te
m

po
 (

s)

0

4

8

12

16

20

24

Inter−host Intra−host
Migração (Origem−Destino)

Tr
an

sf
er

ên
ci

a
(M

B
)

Figura 3. Resultados para custos de migração em tempo e transferência, para
um container mı́nimo.

Os resultados mostram que a migração inter-host em média foi 20% mais lenta do
que a migração intra-host, mesmo com medidas de transferência praticamente idênticas.
Além disso, nota-se que o desvio padrão da transferência é praticamente nulo, e de valor
aproximado de 26MB, o que confirma o pequeno tamanho de imagem da distribuição
utilizada, bem como da facilidade de sincronizar-se o container mı́nimo por conta da
estaticidade de seu estado interno.

Em seguida, sabendo-se que a carga computacional deve impactar nos custos de
migração, um novo caso de teste foi feito. Para este teste, uma função para introduzir
carga de processamento foi virtualizada no container. O script executado por tal função
pode ser visto na Listagem 2 (baseado em resposta fornecida online5).

Listing 2. Script para introduzir carga de processamento no container.

! / b i n / bash

5https://stackoverflow.com/questions/2925606/how-to-create-a-cpu-spike-with-a-bash-command

68

whi le [1] ; do
echo $ ((1 3∗∗9 9)) 1>/ dev / n u l l 2>&1
s l e e p 0 .001

done

Deve notar-se aqui que um primeiro teste foi realizado para uma carga de apro-
ximadamente 100% na CPU (removendo a linha 4 do script), para o qual a migração
falhou. Estima-se que, por ser impossı́vel para o processo da migração sincronizar ori-
gem e destino em tempo hábil, tal função não poderia ser migrada nestes termos. Sendo
assim, alternativas devem ser buscadas para tais funções, como por exemplo a suspensão
da função antes de migrá-la, sendo resumida posteriormente no destino; obviamente, tal
solução incutiria em outros custos, como o downtime da função entre ser suspensa na
origem, e retomada no destino.

Para o caso presente, foi reduzida a carga aplicada à CPU para aproximadamente
20% (novamente, devido a linha 4 do script), permitindo a correta migração da VF entre
as VMs. Novamente, os custos de migração foram obtidos em função do tempo e do
tráfego médios, e são apresentado na Figura 4.

0

1

2

3

4

5

6

7

8

9

Inter−host Intra−host
Migração (Origem−Destino)

Te
m

po
 (

s)

0

4

8

12

16

20

24

Inter−host Intra−host
Migração (Origem−Destino)

Tr
an

sf
er

ên
ci

a
(M

B
)

Figura 4. Resultados para custos de migração em tempo e transferência, para
o container rodando uma VF para carga constante de CPU de aproximadamente
20%.

Comparando os resultados com aqueles obtidos no primeiro teste (Figura 4), ve-
mos que, apesar de os resultados para transferência terem permanecidos praticamente os
mesmos, houve um acréscimo de aproximadamente 0.5 segudos no tempo total, tanto
para o caso intra-host como para o caso inter-host. Mais precisamente, para o primeiro
caso, o tempo representou um acréscimo de aproximadamente 7.3% no tempo total; para
o segundo caso, o acréscimo foi de 7.5%. Vê-se que, embora a diferença possa ser consi-
derada pequena aqui, casos mais extremos podem tanto provocar um maior impacto nos

69

custos de migração (e.g. a migração falha quando a VF consome 100% da CPU), quanto
podem ser mais sensı́veis a estes custos.

Por fim, um novo teste foi feito, adicionando um fluxo de dados entre o container
e a VM destino, de forma a melhor avaliar o impacto no tempo da migração. Para tal,
foi utilizado a ferramenta iperf 6, que possibilita diversos testes referentes a vazão em
redes IP. Com a ferramenta, primeiro constatou-se que a largura da banda entre os hosts
fı́sicos deve ser de 1 Gbit/s (mediu-se 830 Mbit/s com a ferramenta). Aqui, é importante
salientar que a vazão de rede apresentada no cenário (mesmo para o caso inter-host) é
muito superior ao que espera-se em cenários mais complexos, em especial quando consi-
derarmos tráfego sobre redes com menos garantias, como na Internet. Nota-se ainda que,
como mencionado anteriormente, os resultados de tráfego para os experimentos foram
obtidos através dos contadores da interface de rede; como aqui a própria função virtua-
lizada introduz a maior parte do tráfego medido, tal resultado diz menos sobre o custo
de migração do que sobre a execução da própria VF, e portanto foram aqui desprezados.
Vale salientar que os recursos de monitoramento fornecidos pelo COPA devem permitir
análises mais profundas em casos assim, a serem tratados nos experimentos futuros. Os
resultados obtidos são apresentados na Figura 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Inter−host Intra−host
Migração (Origem−Destino)

Te
m

po
 (

s)

Figura 5. Resultados para custos de migração em tempo, para um container
executando uma VF introduzindo tráfego entre as VMs origem e destino.

Como esperado, vê-se que o impacto da migração da VF é substancialmente de-
pendente das definições de host de origem e destino. O tempo acrescido na migração
intra-host, quando comparado ao medido no primeiro experimento (Figura 4), foi de apro-
ximadamente 47%; na comparação análoga para a migração inter-host, o acréscimo foi
de aproximadamente 70%. Além disso, nota-se que o erro padrão foi substancialmente
maior do que nos experimentos anteriores, o que denota o gargalo para a sincronização

6https://iperf.fr/

70

entre origem e destino causado pela VF. Conforme a topologia da rede torna-se mais
complexa, como é de esperar-se em cenários mais realistas, supõe-se que tais diferenças
sejam ainda mais acentuadas, uma vez que a conexão entre dois hosts pode dar-se por
um número muito maior de saltos, com links compartilhados/congestionados, etc. Por
outro lado, redes com suporte a engenharia de tráfego (e.g SDN), podem fazer uso de sua
versatilidade e utilizar links diferentes para o fluxo da VF e o fluxo da migração, evitando
criar tais gargalos na rede.

5. Conclusão
A virtualização de funções de rede terá um papel importante nas redes do futuro, possi-
bilitando uma maior adaptabilidade por parte da rede a um custo financeiramente viável
às operadoras de rede. Para maximizar seu benefı́cio, a orquestração das funções ao
longo da rede de acordo com demandas instantâneas se faz presente. Desta forma, a ca-
pacidade de predizer os custos incorridos por migrações planejadas pode aprimorar um
orquestrador com mais e melhores informações quando da tomada de decisão. O pro-
jeto da sequência deste trabalho é investigar a composição desses custos, e oferecer tais
predições a um orquestrador de funções virtualizadas. Desta forma, um orquestrador pode
comparar predições de custos para planos alternativos, por exemplo, e interferir na rede
da maneira mais eficiente possı́vel.

Para além do trabalho de conclusão de curso, o resultado tanto encontra suporte,
quanto pretende auxiliar no desenvolvimento do projeto FUTEBOL, tal qual posto nas
seções anteriores. Assim sendo, espera-se dar continuação no trabalho como recurso dis-
ponibilizado pelo projeto mesmo após a apresentação do trabalho como tema de TCC, seja
com acréscimos nas funcionalidades, seja com maior integração com os outros recursos
do projeto.

Referências
[1] W. Cerroni e F. Callegati. “Live migration of virtual network functions in cloud-

based edge networks”. Em: 2014 IEEE International Conference on Communica-
tions (ICC). 2014, pp. 2963–2968. DOI: 10.1109/ICC.2014.6883775.

[2] W. Felter et al. “An updated performance comparison of virtual machines and Li-
nux containers”. Em: 2015 IEEE International Symposium on Performance Analy-
sis of Systems and Software (ISPASS). 2015, pp. 171–172. DOI: 10 . 1109 /
ISPASS.2015.7095802.

[3] H. Ibn-Khedher et al. “Scalable and Cost Efficient Algorithms for Virtual CDN
Migration”. Em: 2016 IEEE 41st Conference on Local Computer Networks (LCN).
2016, pp. 112–120. DOI: 10.1109/LCN.2016.23.

[4] Hatem Ibn-Khedher et al. “OPAC: An optimal placement algorithm for virtual
CDN”. Em: Computer Networks 120 (2017), pp. 12 –27. ISSN: 1389-1286. DOI:
https : / / doi . org / 10 . 1016 / j . comnet . 2017 . 04 . 009. URL:
http : / / www . sciencedirect . com / science / article / pii /
S1389128617301391.

[5] H. Khedher et al. “Optimal and Cost Efficient Algorithm for Virtual CDN Orches-
tration”. Em: 2017 IEEE 42nd Conference on Local Computer Networks (LCN).
2017, pp. 61–69. DOI: 10.1109/LCN.2017.115.

71

[6] A. Ksentini, M. Bagaa e T. Taleb. “On Using SDN in 5G: The Controller Placement
Problem”. Em: 2016 IEEE Global Communications Conference (GLOBECOM).
2016, pp. 1–6. DOI: 10.1109/GLOCOM.2016.7842066.

[7] C. C. Lin et al. “A Practical Model for Analyzing Push-Based Virtual Machine
Live Migration”. Em: 2016 7th International Conference on Cloud Computing and
Big Data (CCBD). 2016, pp. 347–352. DOI: 10.1109/CCBD.2016.074.

[8] J. Liu et al. “Migration-based Dynamic and Practical Virtual Streaming Agent Pla-
cement for Mobile Adaptive Live Streaming”. Em: IEEE Transactions on Network
and Service Management (2017). ISSN: 1932-4537. DOI: 10 . 1109 / TNSM .
2017.2740432.

[9] Q. Sun et al. “Forecast-Assisted NFV Service Chain Deployment Based on
Affiliation-Aware vNF Placement”. Em: 2016 IEEE Global Communications Con-
ference (GLOBECOM). 2016, pp. 1–6. DOI: 10 . 1109 / GLOCOM . 2016 .
7841846.

[10] F. Tao et al. “BGM-BLA: A New Algorithm for Dynamic Migration of Virtual Ma-
chines in Cloud Computing”. Em: IEEE Transactions on Services Computing 9.6
(2016), pp. 910–925. ISSN: 1939-1374. DOI: 10.1109/TSC.2015.2416928.

[11] C. Wang et al. “A Switch Migration-Based Decision-Making Scheme for Balan-
cing Load in SDN”. Em: IEEE Access 5 (2017), pp. 4537–4544. DOI: 10.1109/
ACCESS.2017.2684188.

[12] J. Xia, Z. Cai e M. Xu. “Optimized Virtual Network Functions Migration for NFV”.
Em: 2016 IEEE 22nd International Conference on Parallel and Distributed Sys-
tems (ICPADS). 2016, pp. 340–346. DOI: 10.1109/ICPADS.2016.0053.

[13] J. Xia et al. “Reasonably Migrating Virtual Machine in NFV-Featured Networks”.
Em: 2016 IEEE International Conference on Computer and Information Techno-
logy (CIT). 2016, pp. 361–366. DOI: 10.1109/CIT.2016.96.

72

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Related Work
	2.1 Systematic Literature Review
	2.2 Cloud Computing
	2.3 Content Delivery Network
	2.4 SDN and Other Network Paradigms
	2.5 Influence in Our Research

	3 Experiments: Quantifying Migration Costs
	3.1 Decomposing the Migration Process
	3.2 Experimental Environment
	3.3 Preliminary Considerations
	3.3.1 Linux Distributions
	3.3.2 Cold Migration x Live Migration

	3.4 File Growing Experiment
	3.5 Apache Processes Experiment
	3.6 Simple Linear Regression
	3.6.1 Regression Applied to the Growing File Experiment
	3.6.2 Regression Applied to the Apache Processes Experiment

	3.7 Summary

	4 Predictor Modelling
	4.1 Variables Correlation
	4.2 Multivariable Regression

	5 Use Case: Predictions applied in a Cloud network
	5.1 Use Case Motivation: FUTEBOL Vertically-Scalable Cloud Experiment
	5.2 Predictor Applied to a Non-Scalable Cloud
	5.3 Discussion of Results

	6 Conclusion and Future Work
	References
	Appendices
	AppendixA TG1

