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ABSTRACT

Digital videos are among the multimedia applications that have been given the most im-

portance in the recent years, leading to the development of better compression techniques

at the cost of higher computing requirements. In the most recent video-coding standard,

named High Efficiency Video Coding (HEVC), Integer Motion Estimation (IME) is one

of the most computing- and memory-intensive steps. IME exploits temporal redundancy

by minimizing the rate-distortion cost estimated from two metrics: Sum of Absolute Dif-

ferences (SAD) and motion vector cost (MVCost). Partial Distortion Elimination (PDE)

techniques may be used to optimize the calculation of the SAD unit itself, avoiding the

computation of candidates that will certainly not be selected in the IME. This work ex-

plores the impact of employing PDE on circuit area and on energy consumption. Dif-

ferently from related solutions found in the literature, the designed architectures include

the MVCost in its decision, which enhances the compression efficiency by up to 1.5%.

Different designs were also proposed and implemented for the rate-distortion computa-

tion unit, in order to discover the best alternative in terms of energy consumption. The

architectures were synthesized for ASIC with a 65 nm standard cells library, consider-

ing real-input vectors from video sequences to obtain accurate power results. The use of

PDE without theMVCost achieves an average energy reduction of 16.4% for 1080p and of

11.64% for 2160p sequences when compared to non-PDE implementations. By accumu-

lating the MVCost before SAD, approaches using a multiplexer and a Carry-Save Adder

(CSA) were analyzed. Compared to the case that accumulatesMVCost after SAD, average

reductions of 17.51% and 5.05% were obtained when using a multiplexer for the HEVC

Model (HM) and x265 implementations respectively. The comparisons also showed that

using a CSA is the best solution in terms of total energy, with additional reductions of

1.94% (for the HM implementation) and 2.27% (for the x265) when compared to the

multiplexer implementation.

Keywords: High Efficiency Video Coding. Integer Motion Estimation. Sum of Absolute

Differences. Partial Distortion Elimination.



Explorando Técnicas de Eliminação Parcial de Distorções em Arquiteturas da

Soma das Diferenças Absolutas para Estimação de Movimento Inteira no Padrão

HEVC

RESUMO

Vídeos digitais estão entre as aplicações multimídia para as quais têm se dado a maior

importância nos últimos anos, levando ao desenvolvimento de melhores técnicas de com-

pressão ao custo de maiores requisitos computacionais. No padrão de codificação de ví-

deo mais recente, High Efficiency Video Coding (HEVC), a Estimação de Movimento In-

teira (IME) é uma das etapas que demandam maior esforço computacional e mais acessos

à memória. A IME explora a redundância temporal, minimizando o custo rate-distortion

estimado por duas métricas: a Soma das Diferenças Absolutas (SAD) e o custo de vetor

de movimento (MVCost). Técnicas de Eliminação de Distorção Parcial (PDE) podem ser

usadas para otimizar o cálculo da unidade de SAD, evitando a computação de candidatos

que certamente não serão selecionados na IME. Esse trabalho explora o impacto da utili-

zação de PDE na área e no consumo energético do circuito. Diferentemente de soluções

relacionadas encontradas na literatura, as arquiteturas desenvolvidas incluem o MVCost

na decisão, o que melhora a eficiência de compressão em até 1.5%. Diferentes modelos

foram propostos e implementados para a unidade que computa o rate-distortion, para de-

terminar a melhor alternativa em termos de consumo energético. As arquiteturas foram

sintetizadas para ASIC com uma biblioteca de standard cells de 65 nm, considerando ve-

tores de entradas reais de sequências de vídeos para obter resultados de potência precisos.

O uso da PDE sem oMVCost atinge uma redução média de energia de 16.4% para sequên-

cias 1080p e de 11.64% para sequências 2160p quando comparado a implementações sem

PDE. Ao acumular o MVCost antes da SAD, propostas utilizando um multiplexador e um

Carry-Save Adder (CSA) foram analizadas. Comparado ao caso que acumula o MVCost

após a SAD, reduções média de 17.51% e 5.05% foram obtidas ao utilizar um multiplexa-

dor, considerando as implementações do HEVC Model (HM) e do x265 respectivamente.

As comparações também mostraram que utilizar o CSA é a melhor solução em termos de

energia total, com reduções adicionais de 1.94% (na implementação do HM) e de 2.27%

(no x265) quando comparado com a implementação do multiplexador.

Palavras-chave: High Efficiency Video Coding, Estimação de Movimento Inteira, Soma

das Diferenças Absolutas, Eliminação Parcial de Distorções.
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1 INTRODUCTION

The recent advances in semiconductor technology have allowed for the evolution

of several different applications. These improvements were accompanied and enabled

an increase of the demand for more sophisticated services. Multimedia applications are

among the main categories that have evolved in the latest years and, within that range,

digital videos have received remarkable importance, as it can be seen from the increased

resolutions that have been hitting the market. In addition to that, real-time video con-

tent has become more popularized, such as video broadcasting, like Twitch or Youtube.

Such services need to work as smoothly as possible to fulfill the Quality of Service (QoS)

demands. These increases are further supported by recent (as of February 2019) Cisco

market research results (CISCO, 2019), some of which predict that video traffic will rep-

resent 82% of all IP traffic by 2022, a 7% increase of what was observed in 2017 (75%).

This is aggravated by the fact that the annual IP traffic will likely increase and reach 4.8

ZB (Zettabytes) per year by 2022 – this value was around 1.5 ZB in 2017. Therefore,

there is an urgent need for optimizing video applications, in order to alleviate the effects

of their growth.

This issue becomes even more significant when we consider embedded devices,

e.g. smartphones, tablets, camcorders. Dealing with video applications in systems that

depend on limited battery resources is a challenging task, mainly because of the increased

requirements of such services, which implies more energy consumption. Moreover, the

same predictions from Cisco (CISCO, 2019) indicate that smartphone traffic will exceed

PC traffic by 2022: the former will account for 41% of the total IP traffic, while the latter

will represent only 19%. More generally speaking, wireless and mobile devices will ac-

count for 71% of the total IP traffic by 2022. Therefore, with ever-increasing resolutions

in video applications and the increasing share they will represent in the near future, em-

bedded systems will tend to have a smaller battery life. Thus, taking power dissipation

and energy into account when developing video applications is of utmost importance to

overcome such issues.

Handling digital videos in their uncompressed form requires a huge amount of

resources, whether to store or transmit them, becoming prohibitive when dealing with

high resolution videos. The storage and transmission requirements, in bytes and bytes
s

,

respectively, of uncoded videos, are given by equations 1.1 and 1.2, where W and H

respectively denote the width and height of the video sequence, N refers to the represen-
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tation, in bytes, of each pixel, F refers to the frame-rate – in frames per second (fps) –,

and t denotes the time duration of the sequence, in seconds.

Size = W ·H ·N · F · t [bytes] (1.1)

BitRate =
Size

t
[ bytes

s
] (1.2)

As a concrete example, we can consider the Ultra High-Definition 4K (UHD 4K)

(3840×2160 pixels) video sequence – which is a resolution that is becoming increasingly

popular –, recorded at a frame-rate of 30 frames per second (fps), with each of its pixels

being represented by 3 bytes (to form the three color channels). A 10-minute video with

these specifications would require more than 410 GB to be stored. In order to transmit this

video for real-time streaming or broadcasting applications, we would require a bit-rate of

more than 710 MB/s. These values become even higher when considering that the Interna-

tional Telecommunication Union Radiocommunication Sector (ITU-R) recommendation

for UHD Television (UHDTV) states that resolutions should be increased in both spatial

and temporal axes (ITU-R, 2015). Hence, higher frame rates, such as 120 fps, which

would quadruplicate the results of the previous example, have to be supported. Thus, due

to the prohibitive values of dealing with uncompressed videos, there is an evident need

for video compression, in order to alleviate these huge requirements.

Video compression is based on finding redundant information, through several

methods, in video frames, and then suppressing most of these redundancies to minimize

the number of bits required to represent a video sequence. The main goal of video com-

pression is to make the required storage size and transmission rates more feasible.

However, finding redundant information and taking significant advantage of them

is a costly task that demands a significant amount of computational resources. This oc-

curs because modern video encoders perform numerous time-consuming and computing-

demanding operations to efficiently compress data, which increases the time and energy

required. Aggravated by the increasing demands for higher resolutions and frame-rates,

video compression has been receiving major attention in academic and industrial studies.

High Efficiency Video Coding (HEVC) (ITU-T, 2013) is a video coding stan-

dard developed by the Joint Collaborative Team on Video Coding (JCT-VC), as a solu-

tion for the increasing demands for higher resolution videos. HEVC is the sucessor of

the H.264/AVC (Advanced Video Coding) (ITU-T, 2003), and its goal is to double the
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compression efficiency, for the same video quality, when compared to its predecessor

(SULLIVAN et al., 2012). In practice, however, HEVC manages to achieve an average

compression of 39.3% when compared to H.264/AVC (GROIS et al., 2013). These ad-

vances became possible due to more well-structured and flexible block partitioning (KIM

et al., 2012), complex algorithms, advanced motion vector predictions, and the support

for larger block sizes.

The improvements achieved by these new proposals also led to an increase in

the computational effort of HEVC: encoders compliant with this standard are 1.2 - 3.2×

more complex when compared to H.264/AVC-compliant encoders (GRELLERT; BAMPI;

ZATT, 2016). Thus, although it compresses videos better than H.264/AVC, HEVC has

brought an additional issue, especially for embedded devices, due to the higher energy

requirements to encode videos in this standard.

The increased effort required to compress videos represents an additional matter

to be considered when dealing with the embedded devices, such as the ones previously

cited. The limited battery life demands the encoding task to be executed in the most

efficient manner. Processor manufacturers, such as Qualcomm, have recently realized

that using simple general purpose processors (GPPs) for video applications would not

be efficient to tackle these processing requirements (QUALCOMM, 2014). Therefore,

there has been a growing tendency for using dedicated hardware architectures for video

compression.

Along with other techniques, such as clock and data gating, designing dedicated

architectures is one of the main strategies to mitigate power, energy and timing issues,

as they are optimally designed solely for specific applications. Application Specific Inte-

grated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs) are two platforms

for implementing dedicated architectures. ASICs are designed for specific domains, and

represent the class of circuits that contrast the most from software solutions running on

GPPs. The use of FPGAs may represent a good balance standing between the spectre

of GPPs and ASICs. However, when energy-efficiency is the main design restriction to

take into account, designing architectures in ASICs for dedicated execution of certain

key compute-intensive algorithms is still the best approach (SCHMITZ; AL-HASHIMI;

ELES, 2004).

Motion Estimation (ME) is the most costly step of the HEVC standard, in terms

of time. This step is responsible for finding temporal redundancies in video sequences,

in order to decrease the bitstream size at the output of the encoder. To take advantage of
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most of these redundancies, ME has to be executed several times for each frame in the

video sequence. ME is split into two different stages: Integer ME (IME) and Fractional

ME (FME). Figure 1.1 shows an analysis for different video sequences performed in

(GRELLERT; BAMPI; ZATT, 2016), using the reference software for HEVC – HEVC

Test Model (HM) (MCCANN et al., 2013) –, showing that IME and FME are responsible

for a large portion of the execution time in the encoding process for the HEVC standard.

Considering the ME includes the process of IME, FME, Half and Quarter Interpolations,

this analysis shows that it represents about 60.1% of the total encoding process. This

value is further validated by (BOSSEN et al., 2012), which also presents a value close to

60% for the ME process.

Figure 1.1: Time percentage of each stage in the video encoding process.
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The ME stage also represents a bottleneck in terms of power. According to (BA-

HARI; ARSLAN; ERDOGAN, 2009), about 77% of the total power was consumed by

the ME module of the video encoder analyzed in their study.

In the IME stage, the first step of ME, the encoder attempts to find temporal redun-

dancies by measuring similarity between the block being encoded (original) and blocks

(candidates) from previously encoded frames. This similarity is usually measured by us-

ing the Sum of Absolute Differences (SAD) metric, along with the Motion Vector Cost

(MVCost) – the cost, in bits, of the current motion vector pointing to the candidate block.

Some techniques are used to decrease the number of cycles required in the SAD

calculation, such as the Partial Distortion Elimination (PDE) (CHOI; JEONG, 2009; SEI-

DEL; BRäSCHER; GüNTZEL, 2015). This technique consists in an early-termination of

the SAD calculation, which eliminates cycles of useless candidates in the IME step. How-
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ever, related works found in the literature mostly consider algorithms that are unfeasible

to work in real encoders. Also, works regarding this technique do not take the MVCost

into account, which leads to compression efficiency degradation and reduced optimization

results with respect to the reference HEVC implementation.

Considering the aforementioned issues and the additional ones brought by HEVC,

the proposal of this M.Sc. Dissertation is to make a deep analysis in the possible ways to

employ PDE techniques along with theMVCost, mainly by initializing the SAD value with

the MVCost to decrease the cycles requirements even more than conventional PDE usage.

Additionally, by using MVCost, improved compression efficiency results were obtained,

which are also presented in this Dissertation.

The main contributions of this work are the following:

• Comparison, in terms of SAD calls and BD-BR, between two important Block

Matching Algorithms (BMA) from HEVC-compliant encoders: Test Zone Search

(TZS) and Hexagon Search (HS);

• Use of the standard PDE technique in the state-of-the-art HEVC standard and anal-

ysis of its impact in 1080p and 2160p video sequences;

• Analysis of the use of PDE along with the MVCost leading to more precise results;

• Compression efficiency results regarding the use of the MVCost in the total cost of

a block when compared to the cost using only SAD, for HEVC encoders;

• New technique that improves the PDE by including the MVCost, considering IME

algorithms in HEVC standard;

• Two different ways of including theMVCost in the SAD architecture – along with an

adder tree using a Carry-Save Adder (CSA), and independently, with a multiplexer.

This document is structured as follows: Chapter 2 presents a detailed background

on the main concepts regarding video coding, quality metrics, power dissipation and

more; Chapter 3 details some related works found in the literature that address similar

topics regarding SAD, ME and PDE implementations; Chapter 4 presents the methodol-

ogy used, describing the tools and methods employed for obtaining the reported results;

Chapter 5 presents all the PDE analyses proposed in this work, a candidate reordering and

the memory design; Chapter 6 presents the cycles, power and energy results, describing

and justifying them; and Chapter 7 concludes the report, by summarizing the contribu-

tions of the work, and highlighting possible future paths for further research on this topic.
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2 BACKGROUND

In order to understand the technical details of the remaining chapters, the intro-

duction of some of the basic related concepts is essential. This chapter details the topics

related to the scope of this work, including terms related to video coding, motion estima-

tion, sum of absolute differences, power dissipation and more.

2.1 Fundamentals of Video Coding

The entire digital video process begins when a real-life scene is obtained by a

capturing device, e.g. digital video camera, camcorder, etc, through the use of image

sensors. These sensors collect light photons, producing an electrical charge – proportional

to the number of photons collected – that will further be converted to digital signals by

using an analog-to-digital converter (ADC) and produce images (RICHARDSON, 2003).

Digital videos are a set of digital images captured sequentially with a high degree of

temporal proximity, taking advantage of the limitations of the human vision, which will

interpret sequential images as real moving scenes. Each image that composes a digital

video is denoted as a frame.

More specifically, a digital image is represented by a rectangular matrix of color

elements. This matrix is mapped to an exhibition device, in which each of its elements

represents a brightness or color information of a small region of the exhibition device.

Each of these small regions is referred to as a picture element (pixel).

Usually, digital videos need to be encoded in a minimum frame-rate to optimize

user experience, high enough for the human brain not to perceive the video as individual

images. Frame-rate is usually represented in frames per second (fps). Typical values are

30, 60 and 120 fps, the last of which is usually employed in 4K video sequences (ITU-R,

2015).

Several different display resolutions are considered in this work. These resolutions

define the number of pixels in each dimension, and they are defined in a width×height

form. Table 2.1 presents a set of possible display resolutions and their respective notations

employed in this work, for clarification purposes.

A digital video is in its raw form when it is first produced. Due to the fact that

working with raw videos is an unfeasible task, as already mentioned, video coding tech-

niques must be applied, which entails the operation of a video encoder and a decoder. The
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Table 2.1: Popular display resolutions.

Width × Height Notation
416×240 240p
832×480 480p

1280×720 720p
1920×1080 1080p
3840×2160 2160p

Source: The Author.

video encoder is responsible for applying compression techniques and transforming a raw

video in a sequence of bits – referred to as a video bitstream – according to a specific

video standard. Then, the video is combined with other syntax elements at the network

layers, to be further sent by a transmitter. That way, generally speaking, a station can

receive the data, extract the encoded video bitstream from the network layers and process

this bitstream with a decoder that must support the same standard for which the bitstream

was generated. This process regenerates the video, which can be displayed or stored for

future uses. This process is illustrated in Figure 2.1.

The video coding standard defines only the specifications for which the decoder

has to comply. Hence, the encoder can be freely implemented in different ways, by apply-

ing different algorithms and in varied hardware platforms, as long as the output bitstream

generated by the encoder complies to the standard. In other words, the encoded video

bitstream must be able to be processed by any standard-compliant decoder.

2.2 Color Space and Sub-Sampling

Every pixel on a digital video frame can be represented by three color components.

A common color space to represent digital images is RGB (Red, Green, Blue). RGB

employs three different matrices to represent the three colors, whose choice is based on

the three primary colors detected by the human visual system.

A common color space used in video coding, however, is the YCbCr. This color

space is split into Y, which is the luminance (luma) component, and two chrominance

(chroma) components Cb and Cr, which denote, respectively, the blue component relative

to the green component, and the red component relative to the green component. YCbCr is

more suitable for video compression due to the fact that the chroma information is totally

separated from the luma component. This allows for distinct compression techniques to
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Figure 2.1: Simplified scheme of encoding and decoding in video transmission.

Source: The Author

be applied for each of them separately (DINIZ, 2009).

This distinction in compression techniques is important given that the human eye

is more sensitive to the luma component than to chroma. Therefore, slightly decreasing

the representation of the chroma matrix, for example, would decrease the total size of

a video without majorly impacting the image visually. This is denoted as color sub-

sampling. Among the several color sub-sampling possibilities, a few of them stand out.

4:2:0 is the most employed one for video compression using the HEVC standard, which

consists of using one Cb and one Cr sample for each set of four Luma samples, which,

in other words, means that there is an horizontal and vertical sub-sampling in both the

Cb and Cr components. 4:2:2 is another possibility to be used, which refers to a sub-

sampling in the vertical axis only. Lastly, 4:4:4 refers to no sub-sampling being employed

(RICHARDSON, 2003).

Some of the concepts presented so far are shown in Figure 2.2, in which the con-

cepts of temporal resolution (for a 30 fps video sequence) (a), spatial resolution (b), color

space (c) – considering the aforementioned YCbCr color space – and color sub-sampling
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(d) are illustrated.

Figure 2.2: Fundamental concepts of digital videos.

Source: Adapted from (BUBOLZ, 2018)

2.3 Quality Metrics

Defining the quality of a video is a rather complex task. Many existing metrics

attempt to objectively measure video quality, given that most subjective criteria are hard

to measure. The most straightforward objective way is by comparing the pixels of the

original frame with the generated pixels after the decoding process, which is mostly useful

for determining the fidelity of the reconstruction of an image. The most accepted metric,

however, is the Peak Signal-to-Noise Ratio (PSNR) (GHANBARI, 2003). The equation

for calculating PSNR is shown in 2.1.

PSNRdB = 20 · log10
(
MAX√
MSE

)
(2.1)

In Equation 2.1, MAX denotes the maximum representation value of a sample,

which equals 2N − 1, where N is the number of bits required to represent one sample.

MSE refers to the Mean-Squared Error, defined in Equation 2.2, where m and n are the

number of pixels in the vertical and horizontal directions of the frame, respectively, and

Oi,j and Ri,j denote the positions within the original and reconstructed frames.

MSE =
1

m · n

m−1∑
i=0

n−1∑
j=0

(Oi,j −Ri,j)
2 (2.2)

Based on the PSNR and on the bit-rate value of an encoded video, Gisle Bjønte-

gaard (BJONTEGAARD, 2001) proposed a model to measure coding efficiency between

two different video compressors (encoders). This proposal was based on approximating

a rate-distortion (R-D) curve given by the set of bit-rate and PSNR values, from which
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a third order logarithmic polynomial fitting has been proposed. This principle gener-

ated two metrics: Bjøntegaard delta bit-rate (BD-BR) and Bjøntegaard delta PSNR (BD-

PSNR) – both of which are widely used for comparing two models. BD-BR represents an

average bit rate difference, measured in %, over the range of four different PSNR values,

in a BR vs. PSNR curve. BD-PSNR is the reverse, and denotes the average PSNR differ-

ence, measured in %, over the range of four different bit-rate values, in a PSNR vs. BR

curve.

2.4 Data Redundancies

Video coding is mainly based on reducing the amount of redundant data in video

sequences. In other words, data that are not relevant for the video representation are

discarded. Data compression algorithms focus on finding these redundancies, which ap-

pear from correlations or repetitions in the video sequence, and exploit them. The four

redundancies explored by video codecs are presented below:

• Spatial Redundancy: this mainly refers to correlations and similarities between

neighboring or spatially distributed pixels in the same frame. This redundancy oc-

curs due to the fact that spatially close pixels have a tendency of presenting similar

values. This redundancy is mainly tackled in the intra-frame prediction stage of the

video encoding process;

• Temporal Redundancy: this is the kind of redundancy that costs the most to be

explored in modern encoders. It is based on the fact that objects tend to slightly

displace from where they originally were in previous frames of a video sequence.

Therefore, it would not be necessary to purely encode an entire block of pixels if

there is a block very similar to it in a previously encoded frame. This is targeted

by the inter-frame prediction, which is one of the most time-consuming tasks in the

encoding process (GONZALEZ; WOODS, 2003; AGOSTINI, 2007; GRELLERT;

BAMPI; ZATT, 2016);

• Entropic Redundancy: this redundancy is related to the occurrence probability of

the coded symbols. It does not have a direct relation to the video content itself,

but with the way data is represented by the standard. This is mainly based on

representing the most frequent information of a video sequence by using symbols,

generating a smaller number of bits in its respective representation;
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• Psychovisual Redundancy: it is responsible for exploiting the human visual system

limitations – as stated in Section 2.2 regarding color sub-sampling –, by decreasing

the least relevant information of an image (MONTEIRO; SANTOS, 2013).

2.5 High Efficiency Video Coding

High Efficiency Video Coding (HEVC) (ITU-T, 2013) is a popular video coding

standard, focused on targeting higher resolution videos than its predecessor H.264/AVC

(Advanced Video Coding) (ITU-T, 2003). HEVC obtains an average compression effi-

ciency of 39.3% (GROIS et al., 2013), for the same video quality, when compared to

H.264/AVC, which became possible due to more complex structures and block partition-

ing (KIM et al., 2012). As an example of its higher complexity, H.264/AVC works with

the concept of macroblocks, whose maximum supported size is 16×16, whereas HEVC

supports blocks of up to 64×64. Hence, the compression improvements of HEVC led to

an increase of 1.2 - 3.2× in the computational effort to encode videos, when compared to

H.264/AVC (GRELLERT; BAMPI; ZATT, 2016). This complexity growth tends to lead

to higher time to encode videos and, therefore, higher energy consumption.

Even though several innovations have been introduced by HEVC, this standard

still employs a well-established hybrid structure (HABIBI, 1974; FORCHHEIMER, 1981)

in its encoder, which has been used since H.261 (ITU-T, 1993). The hybrid term mainly

indicates that the encoder uses several different techniques, such as predictions, trans-

forms, quantization, entropy coding, to encode videos. The encoder has an implementa-

tion of the decoder within its own functioning, in order to use the locally decoded frames

as reference frames – in the same manner that any other separate and dedicated decoder

will eventually proceed. This structure is presented in Figure 2.3.

The process starts by splitting each frame of the video sequence to be encoded in

blocks called Coding Tree Units (CTUs). The CTU size is fixed for the whole encoding

process, and HEVC-compliant encoders usually define this size as 64×64. Each CTU

of the frame to be encoded is applied in the stages of the presented hybrid diagram from

Figure 2.3.

The blocks are used as input for the inter and intra-frame prediction stages, in or-

der to exploit temporal and spatial redundancies. Based on decisions from the encoder –

by choosing between intra or inter-prediction – the encoder generates a predicted block,

which is subtracted from the CTU, producing a residual block. The residue serves as an
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Figure 2.3: Hybrid structure used in HEVC.

Source: The Author

input for the transform and quantization stages, which discards the most irrelevant infor-

mation for our visual system. The quantization stage is usually the step that introduces

losses to the encoder. The quantized output is sent to the entropy stage, which applies

statistical algorithms to generate the output bitstream, to either store or transmit it. The

encoded block also needs to be decoded in the encoding scheme – hence the "hybrid"

terminology – by applying inverse quantization and inverse transform functions in the en-

coder, so that the encoded frame can be recovered and stored to be used as reference frame

for encoding other frames. These inverse operations are needed because some predictions

use information of previously coded frames to find the redundancies in the current frames,

so the previously encoded frames need to be ready to be analyzed.

The HEVC standard supports complex data structures apart from CTUs. Each

CTU can be encoded in several distinct ways by splitting it into smaller squared blocks,

denoted as Coding Units (CUs) in a quad-tree partitioning scheme, and their final par-

titioning is decided by the use of Rate-Distortion Optimization (RDO), which defines a

metric, namely Rate-Distortion Cost (RDCost), given by Equation 2.3. In this formula,

Distortion refers to a similarity metric (which will be explained later in Section 2.7.3;

λmode and Rmode refer to the Lagrange multiplier and the cost in bits of the specific mode

being used, respectively (GRELLERT, 2018). It should be noted that, in order to deter-

mine the number of bits and obtain Rmode, it is necessary to go through the stages of
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transform, quantization and entropy (GRELLERT, 2018).

RDCost = Distortion+ λmode ·Rmode (2.3)

HEVC supports CU sizes of 8×8, 16×16, 32×32 and 64×64. When applying

the prediction modes, CUs are further split into Prediction Units (PUs). This gives more

flexibility to an encoder, given that objects in a CU may be having different behaviors

close to each other, so applying different partitioning schemes and different prediction

choices may lead to better results overall. The PUs can be categorized into Symmetric

Motion Partitions (SMPs) and Asymmetric Motion Partitions (AMPs), each of which has

four possible partitioning schemes. Figure 2.4 shows an example of a CTU being split to

the PU level, highlighting the SMP and AMP PU types for a 32×32 CU size.

Figure 2.4: Example of the partitioning scheme in HEVC.

Source: The Author

The number of PU partitions available for a CU depends on its size and the pre-

diction mode. Table 2.2 shows the partitions for each inter and intra-prediction stages of
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HEVC, referring to D when the partition is disabled and E when it is enabled.

Table 2.2: Partition sizes employed in each prediction stage, for each CU size.

Mode CU 2N×2N 2N×N N×2N N×N 2N×nU 2N×nD nL×2N nR×2N
64×64 E D D D* D D D D
32×32 E D D D* D D D D
16×16 E D D D* D D D D

Intra

8×8 E D D E D D D D
64×64 E E E D* E E E E
32×32 E E E D* E E E E
16×16 E E E D* E E E E

Inter

8×8 E E E D D D D D

* Enabled if minimum CU size is greater than 8×8
Source: The Author, adapted from (SILVA, 2014)

In Table 2.2, 2N refers to the CU dimension – hence, N equals half of it. For

example, the N×2N PU of a 16×16 CU refers to the 8×16 PU. It should also be noted

that N×N is disabled for 8×8 CUs. The reason to that decision, according to (MCCANN

et al., 2013), is to reduce bandwidth requirements.

Despite splitting CUs into PUs, the encoder also divides them into Transform

Units (TUs), for transform and quantization steps to be applied to the residual block.

The different partitions are evaluated so that the encoder can choose which partitioning

models achieve a final smaller video bitstream with the smallest quality degradation pos-

sible. Ideally, encoders would need to apply intra and inter-frame partitioning algorithms

for every possible PU partition in every CU, and test all possible TUs for each of these

combinations. Nevertheless, the intense memory accesses and the demanding required

computation – which increase the encoding time and energy spent per frame to be en-

coded – usually lead to encoders employing heuristics for some of the partitions not to

be evaluated in some iterations, while obtaining acceptable compression results. These

heuristic decisions are left to the encoder developer, to determine whether the PU will be

using an intra or an inter-frame partition, and of which type and size of CTU, CUs, PUs

and TUs partitions will be employed.

The following subsections briefly describe the intra-prediction, transform, quanti-

zation and entropy stages of the HEVC encoding process. The inter-prediction process is

described in a subsection of its own, given that this is the main focus of this work.
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2.5.1 Intra-frame Prediction

The intra-frame prediction stage of HEVC is responsible for finding spatial re-

dundancies in the encoding process. The sizes supported for this stage were presented in

Table 2.2.

Given that it focuses on redundancies occurring spatially, i.e., in neighboring pat-

terns of the same frame, the intra-prediction uses a rationale similar to image compressing

algorithms, such as the ones used by the Joint Photographic Experts Group (JPEG) (PEN-

NEBAKER; MITCHELL, 1992).

In HEVC, there are 35 different intra-prediction methods, 33 of which are denoted

as directional modes, being mostly useful for repeating patterns on frames, like straight

or diagonal lines. Another mode available is the DC, which is based on repeating the

average of the samples in the whole block. The remaining one is the planar mode, which

is based on repeating information from more than one border.

The HEVC standard defines that not every PU size should evaluate every possi-

ble intra-prediction mode, due to the increased amount of computations that would be

required. Therefore, the standard defines that only a subset of modes will be evaluated for

each PU size, accordingly. This is performed by a heuristical algorithm denoted as Rough

Mode Decision (RMD) (SILVA, 2014).

2.5.2 Transform and Quantization

Transform and quantization stages are the two processes that manipulate the resid-

ual block produced by the prediction modes.

The transform stage is responsible for translating the blocks to the frequency do-

main, so that more efficient quantization can be performed. Encoders mostly employ the

Discrete Cosine Transform (DCT) on this step. Additionally, transforms can be applied to

a variety of block sizes, which are equivalent to the TUs previously mentioned. A Resid-

ual Quadtree (RQT) partitioning scheme is employed for each CU in the CTU quadtree,

generating TUs which can range from 4×4 to 32×32.

The quantization process is applied right after the transform stage, and introduces

losses to the encoder by discarding frequencies not so relevant to the human vision. The

frequency range to be discarded is proportional to a parameter called Quantization Pa-

rameter (QP). A higher QP implies that more frequencies will be discarded, hence quality
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losses and compression gains will occur. Analyses for HEVC standard are usually run

with QPs 22, 27, 32 and 37, as stated by the Common Test Conditions (CTC) (SHAR-

MAN; SUEHRING, 2018). The runs with these 4 QPs generate the four points required

by the BD-BR and BD-PSNR metrics.

In addition to the transform and quantization stages which will generate blocks for

the entropy stage, the encoder also performs inverse quantization and inverse transform

stages, to retrieve the original encoded block. These stages are simply inverted versions

of the transform and quantization stages previously described.

2.5.3 Entropy Coding

This stage is responsible for properly generating the compressed bitstream to the

output of the encoder. This process takes advantage of statistical redundancies – the

probability of occurrence of symbols –, applying data compression techniques.

HEVC applies a compression technique denoted as Context-Adaptive Binary Arith-

metic Coding (CABAC). This algorithm was also used in H.264/AVC, but not every pro-

file of the previous standard supported it, given that it required more processing. In sim-

pler profiles of H.264/AVC, Context-Adaptive Variable-Length Coding (CAVLC) was

employed instead.

2.5.4 Encoder implementations

This section briefly describes some encoder implementations of the HEVC stan-

dard, mainly focusing on HEVC Test Model (HM) (MCCANN et al., 2013) and x265

(MULTICOREWARE, 2019a). There are other alternative implementations available on

the Internet, some of which are briefly described in this section; however, the literature

mostly utilizes these two for analyses and comparisons. Some emerging encoders apart

from HEVC are described in Section 2.6.

2.5.4.1 HEVC Test Model Reference Software

The Joint Collaborative Team on Video Coding (JCT-VC) maintains a reference

HEVC software – HEVC Test Model (HM) (MCCANN et al., 2013) – to be used for

research analysis, which contains the main stages presented in the hybrid structure from
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Figure 2.3. The software is written in C++ programming language.

The main goal of HM is to provide a basis upon which experiments can be con-

ducted, by making it easier to verify the coding performance of algorithms and proposals.

HM is not meant to be a fast or efficient implementation, but it is the most recommended

environment for experiments to be performed.

HM has an extensive documentation on every supported parameter, each of which

can be manipulated for analysis. The implementation includes the encoder and the de-

coder, both compliant to the HEVC standard. As of the time of writing this work, HM is

in version 16.20.

2.5.4.2 Efficient implementations of the software encoder

Other implementations of HEVC-compliant encoders can be found, apart from

HM. Most of these implementations have faster execution in their default presets when

compared to HM.

x265 is an open source project for a fast HEVC encoder, led by MulticoreWare, a

provider of video software libraries (MULTICOREWARE, 2019b). The implementation

is mainly written in C++ programming language, just as in HM. This is a faster version

which uses less partitioning structures and less complex algorithms, in its default preset.

Even though the default version is faster than the one in HM, x265 supports the following

presets for execution:

• Ultrafast;

• Superfast;

• Veryfast;

• Faster;

• Fast;

• Medium (default);

• Slow;

• Slower;

• Veryslow;

• Placebo.

These high-level presets determine the values of encoding parameters in the x265

software. These encoding parameters include the CTU size, the minimum CU size, faster
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modes for inter and intra-prediction, limitations on the number of reference frames to be

used, and so on.

x265 supports Wavefront Parallel Processing (WPP) (CHI et al., 2012), which al-

lows for parallel execution of rows of CTUs, without major impacts on the overall quality.

Moreover, some parts of its code are written with Assembly instructions, making it even

faster and, therefore, convenient, for testing and analyzing. This encoder is considered

in some works in the literature, such as (HU et al., 2014; YIN; ZHANG; GAO, 2015;

HUANG et al., 2018; LIU; WANG; LI, 2018), due to it being closer to real-time imple-

mentations when compared to HM.

HEVC Open Mpeg Encoder (HOMER) (CASAL, 2019) is another alternative for

efficient implementations. It is an open-source, real-time and multiplatform video en-

coder, developed by Juan Casal. The encoder includes every prediction and transform

sizes, supports parallelism using WPP and applies every possible intra-frame prediction

mode. The encoder does not apply inter-frame prediction for SMPs or AMPs, which

reduces encoding complexity. There were no papers found in the literature that present

HEVC results using the HOMER encoder.

Kvazaar (VIITANEN et al., 2016a) is an open-source HEVC encoder, developed

in C programming language. It is developed by the Ultra Video Group (UVG) (GROUP,

2018). Its main goal is to achieve real-time coding with an efficiency close to HM.

Kvazaar is employed in some papers in the literature, such as (VIITANEN et al., 2015;

LEMMETTI et al., 2016; VIITANEN et al., 2016b), but none of them focus on PDE

solutions, which is the scope of this work.

2.6 Emerging Video Codecs

Other standards apart from HEVC can be found. Among the most popular ones is

an encoder software from the group Alliance for Open Media (AOMedia), called AOMe-

dia Video 1 (AV1) (RIVAZ; HAUGHTON, 2019), which is an open and royalty-free video

coding standard (MEDIA, 2019). Governing members of the AOMedia include Amazon,

Apple, ARM, Google, Facebook, and others. However, only HEVC encoders will be em-

ployed in this work, given that AV1 is not considered in the related works that have been

found. Moreover, primary analyses performed with the encoder indicated that its default

implementation was much slower, given its higher focus on achieving an optimal bit-rate,

which would make the analysis much more time-consuming.
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Lastly, there is another video standard, which is shaping up to be an evolution of

HEVC. Versatile Video Coding (VVC) (BROSS; CHEN; LIU, 2018) is a video coding

standard recently developed by the Joint Video Experts Team (JVET) in 2018. VVC aims

to achieve an average of 50% in the compression efficiency when compared to HEVC,

and its innovations tend to bring even more computational effort for VVC-compliant en-

coders. Even though this standard is still in development, primary implementations –

VVC Test Model (VTM) (BROSS; CHEN; LIU, 2018) – have already been released and

are constantly being updated. However, this standard was not considered in this work

given that the standard and its reference software are still in process of being stabilized,

differently from HEVC and HM, which are already well-developed.

2.7 Inter-frame prediction

Inter-frame prediction is the stage responsible for exploiting temporal redundan-

cies, as mentioned in Section 2.4. The lack of movement and the high frame-rate values

usually favor the inter-frame prediction in achieving good compression results. In HEVC,

the inter-prediction determines four modes for a PU to be encoded: inter, SKIP, Merge

and Pulse Code Modulation (PCM).

When a PU is set to SKIP mode, the encoder has defined that the best choice is

to not send residual information to the next stages of the encoding process. This occurs

mainly when no movement has been detected in the block being analyzed. The chosen

PUs in this mode are always squared blocks. Given that no residual is sent, this mode

results in considerable compression gains (SILVA, 2014).

In the Merge mode, the motion parameters of the current PU being encoded are

generated based on the information from neighbors, both spatial and temporal. Therefore,

the decoder only needs a flag indicating that the mode is Merge and the PU index, so that

its neighbors can be obtained and the block can be generated.

The PCM mode consists in sending the raw pixels of the block – instead of a resid-

ual one – to the bitstream, which harms the overall compression of the video. However,

even though this is defined in the HEVC standard, this mode is not used in the default

preset of both HM and x265.

The inter mode is the main one in the inter-prediction stage. It defines that a

search should be performed in possibly more than one reference frame (previously en-

coded frame) to find a block similar to the one being encoded. The main part of this stage
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is the Motion Estimation (ME). In the encoder implementation, the inter-frame prediction

performs a loop through the PU partitions and through several reference frames – specified

by the encoder implementation – in which the predictions will be performed. The inter-

frame prediction performs two different prediction types, namely uni- and bi-prediction,

to both of which the Motion Estimation (ME) is applied.

Motion Estimation (ME) is essentially the stage responsible for resolving the tem-

poral redundancies in a video sequence, when inter mode is applied. ME finds the most

similar block compared to the one being encoded. Thus, the information needed to be sent

to the output of an encoder is just the difference between both blocks (namely, the block

of residuals) and a vector pointing to the best matching block – Motion Vector (MV) –

so that the decoder has sufficient information, along with the previously decoded frames,

to recover the original block. The ME is split into two subsequent stages: Integer Mo-

tion Estimation (IME) and Fractional Motion Estimation (FME). These two modules are

explained in a more detailed manner in the following subsections, with a special focus

on the IME module, given that this is the main encoding stage which is dealt with in this

work.

2.7.1 Integer Motion Estimation

Integer Motion Estimation (IME) is the first step of the ME and finds the best

matching block between PUs in two different frames (current and reference), using only

integer-pixel displacement vectors to compare blocks, by applying a block-matching al-

gorithm (BMA) to the blocks being encoded in the current frame. This search algorithm

defines a pattern of positions – represented by motion vectors with integer-pixel x- and

y-components – in which the most similar block will be searched in the reference frame.

The BMA is only applied in a given search area of the frame, which consists of a window

typically smaller than the frame itself, because image patterns tend to slightly displace

from the area where they were in a previous frame. Figure 2.5 generically presents the

concepts involved in the IME.

Encoders usually define that a BMA will start in a position whose vector is de-

fined by a stage called Advanced Motion Vector Prediction (AMVP). This stage obtains

the resulting vectors from ME executions of previously encoded CUs, and checks which

of them is the best one to start the search for the current block being encoded. More

specifically, a subset of vectors from spatial neighbors – above-left, left, below-left, above



34

Figure 2.5: Generic search in a previously coded frame.

Source: (PORTO, 2008)

and above-right –, along with temporal neighbors, such as the vector from the co-located

block, will decide the starting point of the BMA.

Many different BMAs have been proposed and are employed in current encoder

implementations. The following subsections present some of the main BMAs mentioned

in the literature.

2.7.1.1 Full Search

The Full Search (FS) is the most naïve BMA implementation in the literature. FS

applies the search for the most similar block by displacing to every pixel in the search

window, and it always finds the best possible matching block contained in the search

window. For that reason, FS obtains an optimal result in temporal redundancy within the

search window, resulting in a smaller bitstream at the encoder output.

The number of candidates evaluated by FS is equal, in magnitude, to the area, in

pixels, of the search window, given that these are all the possible integer displacements.

Due to the large number of candidates being tested, FS requires the higher number of
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memory accesses and calculations among all the search algorithms. For that reason, real-

time implementations employ other solutions and search heuristics, so that the search is

performed for a smaller number of motion vector displacement candidates, while still at-

tempting to find residual blocks very similar to the best possible within the search window

considered.

Even though this algorithm is mostly not suitable for real-time implementations,

FS has the advantage of not being data-dependent. In other words, all candidates to be

evaluated are known from the moment the start position is found, so pre-fetching mech-

anisms to gather block data can be applied. As it will be seen in the next subsections,

the other presented BMAs all depend on block data from previous iterations of the search

algorithm being employed.

HM reference software employs the FS algorithm in the bi-prediction stage of the

ME stage, by default. The x265 software does not use FS in any of the high-level presets;

placebo, which is its most complex preset, uses Star Search (SS), whose behavior will be

explained later.

2.7.1.2 Test Zone Search

Test Zone Search (TZS) is the main BMA employed by the HM reference soft-

ware. TZS represents a better trade-off between time and quality, i.e., even though it

does not always find the optimal block inside the search window, it ends up perform-

ing a much smaller amount of block comparisons when compared to FS, making it less

time-consuming.

The default configuration of TZS is based on a diamond-shaped search, and it is

split into four subsequent stages (CRISTANI, 2014):

• Search Vector Initialization: this stage checks whether the colocalized vector –

pointing to the colocalized candidate block from the reference frame – or the vector

resulting from the IME iteration of the 2N×2N partition are better than the current

start vector, which was chosen by the AMVP stage. The start search vector is then

set as the best one out of the three. Sometimes, these vectors may already have

been evaluated, so the encoder performs in the most optimal way to not check these

vectors more than once;

• First Search (FiS): in this stage, the main diamond-shaped search is performed,

starting from the position defined from the first step. The diamond pattern checks
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four, eight or sixteen candidates, depending on the number of iterations it requires,

which is incremented after each diamond step. FiS ends when the algorithm does

not find any better candidates for three iterations. Basically, HM implements a

loop with a variable denoted as iDist, and this variable is squared at each iteration,

increasing in powers of two. This value indicates the distance of the diamond shape

from the current center. The higher the value iDist is, the more candidates are

evaluated, with a maximum of sixteen candidates per iteration;

• Raster Search (RS): this step searches through the entire search area with a step of

pixels between each candidate defined by a variable denoted as iRaster. Also, this

stage only executes if the vector generated so far by the algorithm is larger than the

same value defined by iRaster. This variable is set to 5 in the default preset of the

encoder. This stage can also be seen as a more generic case of the FS BMA. A RS

execution with a step of 1 would imply just in the execution of the FS. This step,

just as FS, is also fully independent on its own, so the candidates can be evaluated

in parallel, if enough resources are available to perform that;

• Refinement Search: the last stage also performs a diamond-shaped search, just

like in FiS. However, it performs some iterations of that same algorithm – which

is already composed of numerous iterations. This step, as well as the whole IME

stage, stops when no better candidates have been found in an entire iteration. The

best motion vector from this stage is chosen as the global motion vector of the IME

execution, and it is ready for the FME to be applied.

These stages are illustrated in Figure 2.7.1.2 in a simplistic way, highlighting the

possible diamond and raster patterns, with a vector starting from the decision in the search

vector initialization step.

The diamond shape from TZS may also be replaced by a squared shape, by varying

the presets in the HM software. Moreover, several other additional stages may be applied

to enhance the block search. In other words, the TZS algorithm can be seen as a template,

in which different combinations may be used in each of its steps. The x265 software also

implements an algorithm that follows the same stages of the TZS, namely Star Search

(SS). This algorithm is executed in the Slow, Slower, Veryslow and Placebo versions of

x265. There is a small variation in the Placebo version, however, given that the ME Range

parameter – related to the size of the search window, which has been previously explained

– is 92, whereas it is defined as 57 for the remaining presets. This specially makes the

execution of RS even more costly, given that its number of candidates is proportional to
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Figure 2.6: Search shapes for the TZS.

FIRST LEVEL SECOND LEVEL THIRD LEVEL RASTER

Source: The Author (ABREU et al., 2018)

the number of pixels in the search window.

2.7.1.3 Hexagon Search

Hexagon Search (HS) is the BMA implemented in the medium (default) preset of

x265. This algorithm follows a hexagon-shaped pattern, and it has a simpler execution

flow than TZS, which is one of the reasons why x265 is so much faster than HM, since

IME represents a large portion of the total execution time. HS has three stages, which are

described below:

• Search Vector Initialization: this stage works similarly to the Search Vector Ini-

tialization in the TZS algorithm, only differing in the number of candidates evalu-

ated to decide the initial center of the search;

• Hexagon: this step performs a six-point search in a hexagon-shaped format around

the center of the search, considering the initial center defined by the previous step.

Whenever there is a candidate more similar to the block being encoded than the one

in the center, the new center is set as the vector associated with that new candidate.

Then, the iteration is applied again, starting from the new center of the search. This

stage stops when none of the candidates are better than the current center. The x265

software applies an optimization to this stage: starting from the second iteration of

the hexagon search, only three candidates need to be evaluated instead of six, since
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the three remaining points will always have been evaluated in the previous iteration;

• Square Refinement: after the Hexagon step defines the best candidate, an 8-point

square refinement is applied around that point. The final vector value is defined by

the best candidate evaluated at this stage. If none of the candidates are better than

the current center, then the center defined by the previous step is the best vector.

Figure 2.7 illustrates the whole process of the HS algorithm, considering an 8×8

PU, in which four iterations of the Hexagon are performed. In the last one, no candidates

were more similar to the block being encoded than the center, so the square refinement

was applied, resulting in a better block found in one of its eight candidates.

Figure 2.7: Search shapes for the HS.

Source: (SILVEIRA et al., 2017)

It should be noted that, for both TZS and HS, the decision of which blocks to
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compare heavily depends on the previous stage, as most of the steps start from the best

current vector of a previous one. This severely harms pipeline implementations, possibly

resulting in pipeline stalls, due to the fact that the decision on the next candidate to be

gathered is still executing.

2.7.1.4 Alternative BMAs

Apart from the main BMAs presented in the previous subsections, and from the

few BMAs proposals that will be seen in Chapter 3, there are some other BMA imple-

mentations in both HM and x265 encoder softwares. These will be briefly explained in

the following items:

• Diamond Search: this is the BMA employed in the ultrafast preset of the x265

encoder. This pattern simply evaluates four candidates, i.e., above, right, left and

below, all of them with a distance of one pixel from the original block, and iterates

through this evaluation several times, until similarity conditions are met, or until

the search hits the search window borders;

• Uneven Multi-Hexagon (UMH) Search: this is implemented in the x265, and it is

an adaptation of the BMA used in x264 – the x265 equivalent for H.264/AVC. UMH

has a rather complex flow: it starts with a refinement of its predictors, contains

a few early-termination mechanisms, uses an adaptive search range based on the

variability of the MV candidates, and also uses a shape similar to a hexagon;

• Successive Elimination Algorithm (SEA): also implemented in x265, this BMA

is very similar to FS, but attempting to perform it faster, applying different metrics

than usual;

• Selective TZS: this is a version of TZS with its main stages, but with weaker early

termination restrictions, ending the execution earlier when compared to normal

TZS. This is implemented in HM as an alternative to TZS, but it is not used by

default.

2.7.2 Fractional Motion Estimation

Fractional Motion Estimation (FME) is applied after the IME and it is responsible

for finding the best match at the fractional-pixel level, starting from the most similar block

found in the IME. Since the frames are formed only by integer pixels, FME requires the
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use of an interpolator to estimate fractional pixels positioned between the integer pixels

of the image. FME is responsible for increasing image quality in video sequences due to

the fact that real-life patterns most frequently move at a rate that is not a good match to

the integer-pixel displacement between two simultaneous video captures.

HEVC defines 48 possible candidates to be compared in the FME: 8 half-precision

and 40 quarter-precision candidates. Fig. 2.8 presents the set of fractional points needed to

gather all the information regarding the 48 fractional blocks. In this figure, green positions

correspond to integer pixels, blue positions correspond to half-precision pixels and white

positions correspond to quarter-precision pixels. Half and quarter-precision pixels are

generated by interpolation using 7-taps and 8-taps FIR filters (RABINER; GOLD, 1975),

depending on the specific point. The highlighted partition shows the 48 possible points to

which comparisons will be performed.

Figure 2.8: FME fractional pixels window for a 4×4 PU.

Source: The Author

In x265 and HM, only a subset of these candidates are evaluated. In both encoders,

only 8 half-precision and 8 quarter-precision candidates are evaluated. The execution first

evaluates the 8 half precision pixels, and based on the best one, the 8 quarter precision

candidates surrounding the best half precision candidate are evaluated.
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2.7.3 Metrics for Block Similarity

Several metrics can be applied to determine the degree of similarity between two

blocks. They differ from each other in ease of implementation, efficiency and result ac-

curacy, i.e. how precisely they can define the similarity between the blocks. The main

metrics used to estimate block similarity in video codecs are shown in the next subsec-

tions.

2.7.3.1 Sum of Absolute Differences

Sum of Absolute Differences (SAD) is the simplest similarity metric used in the

video encoding process and it is applied by calculating the differences between the co-

localized pixels of a current and a candidate block, performing an absolute operation in

these differences, and then adding the values. SAD is employed in the IME and is also

one of the most used metrics in the video encoding process, representing, on average,

22.4% of the encoding time in the HM reference software (ABREU et al., 2017). The

complete formula is given by 2.4, in which O and R denote the current and the candidate

blocks, respectively; m and n refer to the width and height of the blocks (correspondent

to the shape of the PU being considered).

SAD =
m−1∑
i=0

n−1∑
j=0

|Oi,j −Ri,j| (2.4)

SAD architectures are mostly implemented using subtractors, absolute operators,

and an adder tree, with an accumulator on the output so that SAD for bigger blocks can

also be calculated. Most architectures use pipeline schemes so that several sum stages can

be done concurrently and the resulting critical path is shortened. An 8×8 SAD architec-

ture is shown in Fig. 2.9, in which the sizes are presented in bits.

The presented architecture calculates SAD for an 8×8 block in each cycle after

the pipeline is filled. The 4×4 SAD blocks correspond to simple adder trees, including

the subtractors and absolute operators. The 2-1 multiplexer is used to extend the block

sizes possibilities so that receiving 8×8 blocks several times would allow the architecture

to calculate SAD for larger block sizes. Considering a generic SAD architecture, the

number of cycles required to calculate an W × H block is given by Equation 2.5. In

this formula, inputW is the input width, in bytes, of all the candidate partitions; W and

H refer to the width and the height of the PU to be calculated, respectively; and Pdepth
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Figure 2.9: 8×8 SAD architecture.

Source: The Author

corresponds to the number of pipeline levels in the architecture.

cycles = Pdepth +
(W ·H)

inputW (bytes)
(2.5)

It should be noted that an increase in the minimum block size of the architecture

implies in more area for the dedicated parallel hardware operators, resulting in power

and energy increases. However, small architectures spend more time calculating SAD for

larger blocks, since the number of accumulations needed is higher. SAD is a bottleneck in

terms of power when used in ME architectures. The work in (MIYAKOSHI et al., 2005)

demonstrates that SAD computation accounts for 59%-66% of the total power dissipation

in ME architectures.

2.7.3.2 Sum of Absolute Transformed Differences

The Sum of Absolute Transformed Differences (SATD) is a more complex met-

ric for similarity evaluation during the inter-prediction process. SATD is calculated by
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taking the frequency transform of the differences between pixels of current and candidate

blocks. Equation 2.6 presents the formula to calculate SATD. SATD represents, on aver-

age, 27.1% of the encoding time (SILVEIRA et al., 2017). In Equation 2.6, Ti,j refers to

the coordinate (i, j) of the block after being transformed to the frequency domain, and m

and n denote the block dimensions, just as in SAD.

SATD =
m−1∑
i=0

n−1∑
j=0

|Ti,j| (2.6)

In HEVC, SATD is the metric used by default during the FME, and Hadamard is

the transform function used for the space-to-frequency transformation. Although SATD

is a more accurate metric to determine the most efficient block match, its hardware archi-

tectures have a more complex implementation when compared to SAD architectures.

2.7.3.3 Sum of Squared Errors

Sum of Squared Errors (SSE) is one of the most complex metrics to measure

similarity in the HEVC standard. This is due to the fact that its implementation requires

the use of squared operators, which are more costly in terms of hardware. Therefore, even

though this operation is more precise in finding similarity than SAD, encoders usually

avoid applying it. The operation is shown in Equation 2.7, where Oi,j , Ri,j , m and n have

the same meaning as in SAD.

SSE =
m−1∑
i=0

n−1∑
j=0

(Oi,j −Ri,j)
2 (2.7)

HM and x265 do not apply this metric in the ME process, by default. SSE is

only used after the inter-frame prediction stage occurs, in code portions that are not as

frequently executed.

2.7.4 Motion Vector Cost

In order to define the similarity of blocks, the three aforementioned metrics can be

used. However, the end goal of an encoder is to decrease the output bitstream size, while

keeping the quality level of the video.

It is known that very similar blocks will generate residual blocks with many of its

matrix values as zeros (0’s), which will likely be more optimized in the transform and
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quantization stages when compared to candidate blocks that were not as similar. These

high quantities of zeroes will likely enhance the entropy algorithms that will be able to

represent the output bitstream with less bits.

However, it is important to notice that the motion vector (MV), i.e., the vector

pointing to the best candidate block, also needs to be sent to the decoder through the

bitstream, so that it can retrieve the original block. Therefore, the bit cost of the MV –

MVCost – also needs to be taken into account when calculating the total cost of an IME

execution.

In other words, if a less similar candidate block (with a higher SAD/SATD/SSE

value) has a motion vector with a bit cost smaller than another candidate block’s motion

vector, and the bit difference of the motion vector compensates the smaller similarity of

the candidate block, the less similar one should be chosen, given that it decreases the final

bitstream size.

The total cost of a block in modern encoders is represented by Equation 2.8. In

this equation, Distortion refers to the value of the chosen similarity metric, e.g., SAD,

SATD, SSE, etc.

RDMotion = Distortion+MVCost (2.8)

The MVCost value is calculated in encoders as an estimate of how much the en-

tropy algorithm will optimize it, so it does not need to go through the transform, quanti-

zation and entropy stages. This value denotes a prediction of the bit cost of the motion

vector, to assist the entropy stage with motion vectors with a smaller bit cost, decreasing

the final size of the bitstream.

The value of MVCost is given by Equation 2.9. In this formula, λMotion denotes

the Lagrange multiplier, which depends on the chosen QP, and RMotion is associated to

the number of bits to encode the MV (SULLIVAN; WIEGAND, 1998).

MVCost = λMotion ·RMotion (2.9)

2.8 Partial Distortion Elimination in SAD

The main idea of partial distortion elimination (PDE) techniques is to early-terminate

the calculation of block candidates whose distortion values will certainly exceed the cur-
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rent best one. Therefore, the earlier we find out that a candidate will not be the best one,

the less cycles we need in the overall execution. This optimization can be used in any dis-

tortion metric, as long as there are ways of prematurely eliminating the candidates. This

work, however, focuses on using PDE in SAD architectures, given that this is the most

popular one for IME.

The use of PDE is possible in SAD due to the implementation scheme of the ar-

chitectures. Due to the large block sizes supported by HEVC, SAD units for this standard

usually do not compute the entire block in a single cycle, requiring several iterations to

calculate them. Therefore, PDE acts when there is a way to find out in fewer cycles that a

candidate is worse than the current best one.

More details on PDE is presented in related works from Chapter 3. The PDE

techniques described and proposed in this work are presented in Chapter 5.

2.9 Power Dissipation in CMOS Circuits

Power dissipation is one of the main parameters to be considered when designing

digital circuits. Within this context, peak power is used as one of the main aspects of the

reliability analysis of circuits. However, the most critical factor is the average power

consumption of the circuits that operate during a time interval (CHANDRAKASAN;

BRODERSEN, 1995). Power dissipation in CMOS circuits is split into dynamic and

static power. These power sources will be detailed in the following subsections.

2.9.1 Dynamic Power

Dynamic power is the main source of power dissipation, even though the differ-

ences when compared to static power are becoming smaller in newer technologies that

involve larger integration scales. Dynamic power can be split into switching power and

short-circuit power, both of which are presented below.

2.9.1.1 Switching Power

This portion of the dynamic power is a result of the charging and discharging of the

capacitances of the circuit, as a consequence of the switching activity of CMOS circuits

(RABAEY, 1996).
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Switching power in a logic is measured based on Equation 2.10, where we assume

that a load capacitance CL will be charged or discharged based on a change in the gate

output. In Equation 2.10, A denotes the output node activity, measured in events/second,

Vdd is the input source voltage, f is the frequency of operation. It may be more convenient

to use a probability value α, which represents the node activity factor, along with f , given

that most of the circuit nodes will not change at every clock cycle.

Pswitching = CL · A · V 2
dd = α · f · CL · V 2

dd (2.10)

Most tools for measuring power consider α as a fixed value. This is employed

as a methodology for power extraction in many works, which does not lead to accurate

results, given that the input variations depend on the application for which the developed

architecture will be used.

2.9.1.2 Short-Circuit Power

Short-circuit is part of the dynamic power, and it occurs when a direct current flows

through a path from the voltage supply to ground, in a CMOS network. This happens

when a static CMOS circuit is switched on by an input signal with rising and fall times

different from zero, which leads to the PMOS and NMOS transistors of both networks

being active simultaneously for a short period of time. This situation leads to the direct

current to flow directly to ground.

This concept is seen in Figure 2.10, using the example of an inverter gate. As

it can be seen, in the rise transition, the NMOS transistor starts to drive when the input

voltage Vin is equal to the threshold voltage Vtn of the NMOS. The PMOS transistor will

stop conducting when Vin is equivalent to the difference between Vdd and the threshold

voltage of the PMOS transistor Vtp.

Short-circuit power can be expressed by Equation 2.11, where ICC is the average

short-circuit current, and β is a factor related to the input signal transition time to the cell

peak short-circuit current.

PSC = β · ICC · Vdd (2.11)
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Figure 2.10: Short-circuit current for an inverter gate.

Source: (Costa, Eduardo Antonio César da, 2002)

2.9.2 Static Power

Static power occurs due to leakage, even when the circuit is in an idle state. Leak-

age currents in CMOS transistors are due to three factors: subthreshold transistor currents,

reversely biased diodes and gate-to-channel or gate-to-drain tunneling effects (RABAEY,

1996). These factors can be seen in Figure 2.11, using an inverter gate as an example.

Figure 2.11: Sources of leakage currents, in a CMOS inverter gate.

Source: (RABAEY, 1996)
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Static power is given by Equation 2.12, where Istatic is the static current.

Pstatic = Istatic · Vdd (2.12)

2.9.3 Total Power

Taking the dynamic – switching and short-circuit – and static power into account,

we can define the total power as in Equation 2.13.

Ptotal = Pdyn + Pstatic = Pswitching + PSC + Pstatic (2.13)

When considering the characteristics of a digital integrated circuit, in which there

are N nodes, each of which containing its own capacitive loads CLi
, we can extend this

model, based on the equations presented in the previous subsections, obtaining the for-

mula in Equation 2.14.

Ptotal =
N∑
i=1

αi · f · CLi
· V 2

dd +
N∑
i=1

βi · f · Vdd +
N∑
i=1

Istatic · Vdd (2.14)
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3 RELATED WORKS

For this dissertation, an extensive research in related works has been performed

to find related proposals in the literature. This chapter will present and describe works

regarding analyses of SAD, SATD, IME or entire ME works, and works focused on PDE

techniques.

3.1 SAD and SATD works

Several works are focused on implementations of SAD and SATD modules, in

several different ways.

Silveira et al. (SILVEIRA et al., 2017) propose a low-power SAD architecture

using adder compressors. Structures for 3-2, 4-2, 5-2 and 7-2 adder compressors are

presented in the work. This work is an extension of the one presented in (SILVEIRA et al.,

2016). Based on a throughput analysis, the work decided a frequency for the architecture

to be synthesized, to simulate a real-time scenario. The work also employed a power

estimation methodology using real-input vectors from the encoder, which increases the

accuracy of the final power results. The work obtained a power and energy reductions of

25.5%, on average, when compared with the SAD architecture using conventional adders.

However, the work does not present any optimizations in order to decrease the number of

SAD computations.

Abreu et al. (ABREU et al., 2017) present an extensive analysis on different ab-

solute operators implementations to be used in SAD architectures. This analysis com-

prised ten different architectural models for the absolute operator, some of which have

been based on related works found. The work compared all the versions with the base-

line implementation – using the "abs" macrofunction from the synthesis tool. The work

performed implementations for a SAD architecture considering 8×1 modules, with and

without the use of pipeline. The target frequency for the synthesis was set based on the

work from (SILVEIRA et al., 2017). The architectures were also fed with real-input vec-

tors from the encoder software, to obtain accurate power results. The best design achieved

a power reduction of 20.4% and a 7.8% reduction in area.

Kumm et al. (KUMM; KLEINLEIN; ZIPF, 2016) propose an architecture for

computing SAD in an efficient manner, for FPGA devices. The architecture is based on

a configurable adder/subtractor model where both inputs can be negated. The synthesis
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was performed for Xilinx Virtex-6 FPGA. The work managed to achieve higher maxi-

mum frequency results when compared to related works presented, while decreasing the

required Look-up Table (LUT) usage. Overall, the proposed circuit reduces the resources

in 17.4%. However, no analysis is presented regarding frequencies of real-time scenarios,

nor any optimizations in an encoder-level are presented.

Vanne et al. (VANNE et al., 2006) propose a high-performance SAD architecture

for ME. Even though the work is focused on previous standards as well, a more detailed

analysis on the SAD architecture is presented. Some absolute difference operators are

considered in this paper (VASSILIADIS et al., 1998; JEHNG; CHEN; CHIUEH, 1993)

in order to present an improved absolute difference module. The absolute differences is

based on inverting one of the inputs, adding the values and maintaining or inverting the

output based on the carry-out bit of the addition. Moreover, correction bits are required to

be added in the compression array unit, to make up for the incorrect result of the current

absolute operation. The paper also employs a compression array unit with carry save

adders (CSA) trees for the SAD module. The full module proposed by Vanne et al. is

shown below, in Figure 3.1.

Figure 3.1: Vanne et al. proposed 3-stage SAD architecture.

Source: (VANNE et al., 2006)

However, the work does not present any power results for the presented modules.

Also, even though early-termination mechanisms have been presented, the analysis does
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not consider its real impact in cycles, power and timing. Also, the work does not take

MVCost into account, which leads to less efficient compression.

Shah et al. (SHAH; DALAL, 2018) present a SAD system with parallel memory.

An extensive analysis on hardware proposals for different BMAs and SAD architectures

is presented. However, no analysis is presented regarding SAD optimizations. Also, the

synthesis was performed for FPGA and power results were not presented.

Yufei et al. (YUFEI; XIUBO; QIN, 2007) propose a high-performance low cost

SAD architecture. The work present the absolute stages, the compression array unit, and

describes in a detailed manner how each component of the SAD tree was implemented.

The architecture manages to achieve considerable area gains (15.3% - 22.9%) when com-

pared to related works. However, no optimizations in the context of decreasing cycles

were presented. Also, the work does not present power results, and no analyses are per-

formed in the context of specific video encoders.

Dang et al. (DANG; CHANG; KIM, 2014) propose a power-efficient SAD unit for

H.264/AVC encoder, by approximating several most significant bits (MSBs) into a single

one, while managing to not degrade the video quality. The architecture presented power

results considering effect of fan-it, fan-out and interconnections, which lead to more ac-

curate results. An improvement of 18% was obtained when compared to the architec-

ture from (VANNE et al., 2006). However, the work was proposed for the predecessor

H.264/AVC standard, which leads to the fact that it may not be thoroughly suited for more

recent standards, such as HEVC. Also, no PDE techniques were employed, which could

improve the results even more.

Soares et al. (SOARES et al., 2016) propose energy-efficient SATD architectures

for HEVC based on approximate computing concepts. A pruning-based algorithm is pro-

posed, to remove least significant coefficients and the associated terms, to decrease even

more the operation complexity. The architectures with varied number of discarded coeffi-

cients were synthesized for 45nm CMOS standard cells library, and a maximum of 52.7%

of power was saved with the pruning techniques.

Seidel et al. (SEIDEL et al., 2016) present two approaches for calculating SATD

for any N×N block. The proposals use a transpose buffer and a linear buffer. As it could

be seen from the results, the scalability of the method using linear buffers was the best

in terms of area. However, when using Low-Vdd/High-Vt synthesis, the most energy-

efficient architecture was the one using transpose buffers.
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3.2 IME/ME works

Some works also propose complete IME/ME solutions, which usually contain

SAD modules within them.

Chen et al. (CHEN et al., 2006) design an architecture for ME, considering SAD

as the similarity metric. Two IME modules are presented, focused on low and high-

resolution applications. Partial SAD techniques are employed to reduce the circuit area

of the search mechanism. The synthesis results estimated a gate count of 330.2k, running

at a target frequency of 108 MHz. The proposed architecture achieves 720p real-time

throughput, considering a single reference frame. This consideration harms the video

quality, given that encoders usually employ more reference frames per IME execution.

Furthermore, power results were not presented.

Yap et al. (YAP; MCCANNY, 2003) implement a ME architecture for the FS

BMA. SAD architecture is included within the proposal. However, the analysis considers

previous and outdated video coding standards. Furthermore, the analysis considers an

unfeasible BMA for real-time encoding of high resolution videos.

Porto et al. (PORTO et al., 2010) propose a ME architecture using 4-2 and 8-2

adder compressors (similar to the ones used in (SILVEIRA et al., 2017) to implement

the adder tree of SAD architecture. The BMA employed in the algorithm was the Quar-

ter Sub-sampled Diamond Search with Dynamic Iteration Control. The architecture was

synthesized to FPGA devices and to a 180nm CMOS standard cell library. The maximum

target frequencies for FPGA and ASIC were 213.3 MHz and 287.3 MHz, respectively.

Processing rate gains of up to 12% were obtained when compared to their previous im-

plementation.

Sanchez et al. (SANCHEZ; PORTO; AGOSTINI, 2013; SANCHEZ et al., 2015)

propose hardware-friendly IME algorithms and respective VLSI designs. The propos-

als are named spread and iterative search (S&IS) and low density and iterative search

(LD&IS). Tese proposals are based on employing parallel diamond search executions.

Some improvements were performed for the proposals to have regular memory accesses.

The work achieves 1080p real-time throughput, considering one reference frame, which

causes quality degradation. The synthesis was performed for FPGA at 210 MHz and for

ASIC 90 nm standard cells library at 42.3 MHz (to target 1080p). The ASIC synthesis for

LD&IS and S&IS obtained power results of 12.5mW and 13.5mW, respectively.
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3.3 PDE Works

Some works can be found in the literature focusing on PDE techniques.

Chiu et al. (CHIU; SIU, 2006) propose an approach similar to PDE in ME, using

a Successive Elimination Algorithm (SEA). The goal is to eliminate as many redundant

operations as possible. The paper early-terminates SAD calculations. However, no archi-

tectures are implemented in order to obtain power, energy and area results. The analysis

also does not consider state-of-the-art BMAs such as TZS, and does not consider the

effects of PDE in newer standards, such as HEVC. Moreover, no considerations of the

MVCost value is presented, as it considers that the distortion cost is only composed by

SAD.

Choi et al. (CHOI; JEONG, 2009) propose a PDE algorithm based on correlations

found in the distances between the blocks and the SAD values. The proposal attempts

to change the order of the pixels to calculate partial SAD, operating with the pixels with

higher contributions to the total SAD, as to converge to an approximation of the true

SAD faster. To do that, the work performs a relationship between the SAD values and

the distances from the mean value of a block. Experimental results show improvements

of about 45% compared to typical PDE. However, this analysis considers a full scanning

BMA, and it becomes unfeasible for state-of-the-art encoders. Also, changing the order

of the pixels may lead to memory issues, as this rearranging scheme may be critical and

influence on the throughput. Also, no architectures were presented, and therefore it is not

possible to define the power effects of the proposals. Lastly, MVCost was not considered

in the total distortion cost.

Lee et al. (LEE et al., 2009) propose a PDE algorithm employing a mechanism of

maximum error constraint. This proposal introduces losses to the encoder. Also, the paper

also considers the FS algorithm. The use of FS in such analysis tends to be optimistic,

due to the fact that it evaluates every candidate of the window, including the ones that are

not even close to similar. Also, no architectures are implemented with this proposal, so

only theoretical results are presented.

Seidel et al. (SEIDEL; BRäSCHER; GüNTZEL, 2015) evaluate the use of PDE

for H.264/AVC. The implementation of the SAD architecture along with the modifica-

tions in the control unit to include PDE verification incurred in an increase in area of up

to 10.9%. The energy requirements of using SAD with PDE decrease in 47.94%. How-

ever, even though an architecture was implemented to verify the energy reductions of the
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PDE usage, exhaustive BMAs were considered, which may not reflect actual real-time

implementations. The fact that the predecessor standard H.264/AVC was employed also

indicates that these results may be outdated, given the different block partitions that are

evaluated in newer standards, which may impact PDE results.

Several other works regarding SAD, SATD or ME architectures have been found.

However, most of these works do not present power results, or do not run the synthe-

sis for ASIC circuits. Moreover, even the ones that present power results for ASIC are

not viable for comparison, given that they do not focus on PDE techniques, which is

an optimization in SAD. Within the scope of PDE works found in the literature, to the

best of our knowledge, none of them implement PDE techniques considering the HEVC

standard, and considering higher resolution video sequences (4K). Moreover, the related

works found do not consider the MVCost in the calculation of the total cost of the blocks,

which leads to a loss in compression efficiency in the overall encoder, whose results will

be presented in the next chapters. Moreover, considering the MVCost along with SAD

allows for different architectural possibilities that improve PDE in different ways, two

of which will be presented in Chapter 5. This new technique and discovery is important

given that the IME stage is one of the bottlenecks of the encoding process and decreas-

ing cycles without severe additional costs is important, especially when the compression

efficiency is increased when compared to PDE implementations without the MVCost.

3.4 Literature Summary

In order to summarize the related works, we present their general characteristics,

contrasting them with the ones from the work presented in this report. This is shown

in Table 3.1. We analyze whether the related works employed SAD as the similarity

metric, considered MVCost as well, used the HEVC standard, presented power results,

used real-input vectors for any power analysis and employed PDE techniques. As it can

be seen, most works mainly lack the use of the MVCost in the total distortion cost and

do not present power results. Also, most of the ones that present power values do not

consider real-input vectors from video sequences. Moreover, all the works that analyze

PDE techniques do not take MVCost into account, and only one of them includes power

results. It is important to notice that the work in (VANNE et al., 2006) includes a similar

technique to PDE, but the logic is not exactly the same as employed in the other related

works, so it is represented with an approximation symbol. Also, the work in (SEIDEL et
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al., 2016) considers an analysis considering standards beyond HEVC, so it is also marked

with a specific notation.

Table 3.1: Characteristics of Related Works.

Power Real-inputSAD MVCost HEVC ASIC FPGA
Results Vectors

PDE

(SILVEIRA et al., 2016) - - -
(SILVEIRA et al., 2017) - - -

(ABREU et al., 2017) - - -
(KUMM; KLEINLEIN; ZIPF, 2016) - - - - - -

(VANNE et al., 2006) - - - - - ≈
(SHAH; DALAL, 2018) - - - - - -

(YUFEI; XIUBO; QIN, 2007) - - - - - - -
(DANG; CHANG; KIM, 2014) - - - - -

(SOARES et al., 2016) - - - - -
(SEIDEL et al., 2016) - - 1 - - -
(CHEN et al., 2006) - - - - - -

(YAP; MCCANNY, 2003) - - - - -
(PORTO et al., 2010) - - - - -

(SANCHEZ; PORTO; AGOSTINI, 2013) - - - -
(CHIU; SIU, 2006) - - - - - -

(CHOI; JEONG, 2009) - - - - - -
(LEE et al., 2009) - - - - - -

(SEIDEL; BRäSCHER; GüNTZEL, 2015) - - - -
This work -

1 Beyond HEVC.
Source: The author
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4 METHODOLOGY

In order to obtain BD-BR, cycles and power results for the proposals, several con-

siderations and decisions were made, and several different tools to perform the required

tasks were used. The following sections detail the methodology used in each step of this

work.

4.1 BD-BR analysis implementations using the software encoders

The analysis in this work was performed with both the HM and x265 encoder

softwares. The use of both encoders was important given that they contain the main

implementations of TZS and HS, respectively. A first comparison was performed in order

to decide which BMA to use for the remaining analyses, and HS was the initial choice,

so only x265 was going to be used. However, for the main proposal – which includes the

use of SAD along with MVCost – that will be shown in the next chapter, it was decided

to run the simulations for both HM and x265. This is mainly due to the fact that HM is

the reference software, and it is more used by the literature for academic purposes. This

work used version 16.9 of HM. Even though 16.20 is the last version of the software so

far, no significant changes in the results should occur, as no abrupt modifications have

been made in the modules being targeted in this work.

All the BD-BR results were obtained by running simulations using the baseline as

the default implementation of the respective encoder, and running the modified version

of the encoder, for QPs 22, 27, 32 and 37, in accordance to the CTCs. Moreover, bench-

mark video sequences, also recommended by the CTC, have been employed. Some 4K

video sequences have been also considered, from the Ultra Video Group (UVG) (GROUP,

2018), to increment the analysis to higher resolutions. The video sequences employed are

shown in Table 4.1, both from the CTC and from UVG.

For the BD-BR analysis, apart from the main parameters available from both en-

coders, we needed to introduce two additional ones. The variables and functions shown

below are from the HM reference software implementation. However, the implementa-

tions for the x265 software are fairly similar, apart from their specific names, as the same

operations are performed.

• useMVCost: this parameter has a Boolean type, and disables or enables theMVCost
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Table 4.1: Video sequences considered in the analysis.

Resolution Video Sequence
BasketballPass

240p
RaceHorses

BasketballDrill
480p

PartyScene
FourPeople

720p
SlideEditing

Cactus
ParkScene

BasketballDrive
BQTerrace

Kimono

CTC

1080p

Tennis
Beauty

Bosphorus
HoneyBee

Jockey
ReadySteadyGo

UVG 2160p

YachtRide
Source: The author

in the encoder. Therefore, instead of the total distortion being composed of the

sum of SAD with MVCost, it will only consist of SAD. MVCost is added after the

SAD value is calculated, when it is added to the return value of the SAD function.

useMV Cost will simply set MVCost as zero before it is added to the SAD value;

• useMVCostFME: it has similar functionality to useMV Cost. However, this is

used to specifically disable MVCost in the FME operation. As both HM and x265

use SATD for the FME, in their default presets, this variable disables the use of

MVCost with SATD.

Then, by running the encoders by enabling and disabling the desired parameters, a

set of PSNR and bit-rate values were obtained, for each QP. A BD-BR calculator received

these values as inputs, to calculate the degradations in the compression efficiency.
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4.2 Cycles count

In order to obtain the cycles count of each of the proposed cases, this was per-

formed in two different ways.

Our first analysis of employing PDE in SAD, without considering MVCost, was

performed in the x265 encoder. The relative vector position of the current candidate

of the IME execution was extracted – regardless of its absolute position on the reference

frame, so that we could apply some scheme of candidate reordering, that will be explained

in the next chapter –, along with data of the 8×1 SAD chunks of the specific candidate.

Due to the fact that SAD is executed in other portions of the encoder software, we had to

limit the data extraction through the use of flags that dictate that SAD will be extracted

only within the IME execution. Also, given that there are several different SAD functions

in x265, we extracted data from the functions sad_x3 and sad_x4, which are the ones

executed in the HS BMA. These functions respectively calculate SAD for three – half of

the hexagon pattern – and four – half of the square pattern – candidates, for optimization

purposes. It is important to emphasize that, in order to easily extract the data from the

encoder, we needed to turn off the assembly functions for SAD, given that it would require

unnecessary work to properly extract the SAD chunks from assembly code. This led to a

slightly slower execution of the encoder. The extraction was performed as shown in Table

4.2.

Table 4.2: Chunk model for estimating PDE for SAD.

Data
Coordinate 0×-1

SAD Chunks 83 85 86 103 93 85 ... 97
SAD Chunks 98 113 79 93 93 88 ... 93

...
...

Coordinate 1×-1
SAD Chunks 95 93 86 100 82 82 ... 80
SAD Chunks 90 105 95 86 86 86 ... 83

...
...

Source: The author

These extractions were further analyzed through the use of a Python script, that is

responsible for reading the input files that contain the pre-calculated 8×1 SAD chunks for

each candidate, and apply normal SAD and SAD with PDE, to obtain the total number of

cycles. It is important to notice that the PU area is unnecessary, given that we can infer it
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from the number of 8×1 SAD chunks contained in one specific line.

The second analysis, which included the MVCost value, was an improved version

of the first one. Due to the fact that we were already aware that purely extracting the data

and post-analyzing it with a script would lead to heavy files, we decided to implement the

whole cycles analysis inside the encoder software. For this, we implemented the entire

logic inside the same SAD functions – but now including the HM software as well – and

using auxiliary variables for storing the SAD chunks and determining the effects of our

several PDE proposals with MVCost. The auxiliary variables were needed so we did not

change the overall execution of the encoder, given that we were not interested in making

changes that would lead to different candidates being calculated or different prediction

modes being taken, when compared to the default implementation.

4.3 Power Estimation Methodology for ASIC Design Flow

The methodology used to obtain accurate power results for our architectures was

based on the one used in works such as (SILVEIRA et al., 2017). The method uses

a design flow based on using real-input vectors from a specific application, in order to

better estimate the dynamic power dissipation.

It is known that signal transitions cause dynamic power dissipation in digital inte-

grated circuits. However, the estimations performed by commercial synthesis tools, such

as Cadence Genus Synthesis Solution (CADENCE, 2019), are fairly pessimistic, rarely

representing the actual behavior of the specific application for which the circuits were

proposed. This is because such tools consider probalistic default input values to estimate

the circuit total power dissipation.

Due to that, we require a more accurate method to obtain power, so that it rep-

resents, in a more precise manner, the real behavior, providing the designer with more

reliable results, enabling the optimization of critical power-hungry modules.

The proposed methodology employed in this work to obtain the power results is

shown in Figure 4.1. The whole process begins by describing the proposed architectures

in some hardware description language. At the same time, we can use the video codecs –

HM, x265, or some other encoder implementation – to extract the inputs from benchmark

videos with the register-transfer level (RTL) description of the proposed architectures,

which will be synthesized, in this case, using Genus, generating a netlist of the circuit,

in Verilog hardware language. This netlist contains elements from the standard cell li-
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brary employed. In our case, the architectures were synthesized for a 65 nm commercial

standard-cell library from ST, at 1.0 V voltage supply Also, a file named Standard Delay

Format (SDF) is generated, which contains the specific delays for gates and nets and the

area, power and timing reports. A simulation tool, such as Cadence Incisive, simulates

this generated netlist along with the testbench files implemented – which read the input

data from the video codec. This process generates a dump file, which can be either in

Value Change Dump (VCD) or Toggle Count Format (TCF) file formats.

Figure 4.1: Methodology used to obtain accurate power results for video applications.

Source: The author (submitted)

In addition to that, Cadence Genus Synthesis Solution (CADENCE, 2019) has a

mode denoted as physically-aware layout estimation (PLE). This mode takes into account

the gate interconnection penalties in terms of area, power and timing. This is performed

by estimating the length of the circuit nets and taking the load capacitance effects into

account for the power dissipation. PLE considers a relatively pessimistic layout routing

estimation, however.

The analysis with PLE requires the use of Library Exchange Format (LEF) files,

which contain the physical layout information of the library, essential for these intercon-

nections to be taken into account. The LEF macro includes the capacitance of the inner

library cell. The tech LEF comprises the process metal capacitance for the estimation

of the interconnection capacitance. A capacitance table file (CapTBL) can also be made

available by the library, which contains descriptions of the technology capacitances in a

fine-grained way, by considering process variations.
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4.4 SAD Input Vector Acquisition

We also needed to obtain inputs from the video sequences which would feed the

architectures, to better estimate power results, using the methodology explained in the

previous section. The inputs were obtained from the HM reference software. To ob-

tain these, we analyzed the inputs of our architectures, disregarding their implementation.

Considering that our architecture would calculate the distortion costs of SAD (and possi-

bly MVCost), we needed to extract data of these values from the encoder. However, given

that our input width was already previously defined as 8×1, we generated eight binary

outputs of each candidate and original block, totalizing 16 output files, each of which

contains data from one pixel of each respective block. The pixel values are 8-bit long.

The decision on using an 8×1 SAD architecture was reinforced by the work in

(SILVEIRA et al., 2017), which also employed a SAD architecture with the same width.

Moreover, every PU area defined in the HEVC process is divisible by eight, which implies

that, with proper memory management, no hardware would be unused at any time, as there

would not be remaining samples of less than 8 bytes to be fed to the circuit.

Besides extracting SAD andMVCost data, we also needed to extract data regarding

the number of accumulations that would be required for a specific PU. This would allow

the architecture to properly manage when the register should stop accumulating and start

a new PU. This value was extracted by obtaining the PU area and dividing it by the chunk

size (8, in this case), and the formula used is shown in Equation 4.1.

#accumulations =
(W ×H)

inputW (bytes)
(4.1)

Equation 4.1 is similar to Equation 2.5 apart from the initial number of cycles due

to the pipeline latency, i.e., the terms W , H and inputW all have the same meaning. The

number defined in Equation 4.1 is simply the number of accumulations for any block,

given its dimensions and the input width of the architecture, supposing that pipeline is

full (or supposing there is no pipeline) and the operation is constantly running. Table 4.3

presents the number of accumulations required per PU partition of the HEVC process,

considering an 8×1 SAD architecture.

It is important to mention that SMP and AMP partitions from Table 4.3 are not

considered in the default preset of the x265. This encoder only considers 2N×2N parti-

tions, whereas HM considers all the possible partitions.

After the SAD values from both candidate and original block, MVCost and PU
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Table 4.3: Number of accumulations required to calculate SAD for every PU partition in
HEVC, for an 8×1 SAD architecture.

PU Area (pixels) # Accumulations
64×64 4096 512
64×32 2048 256
32×64 2048 256
64×48 3072 384
48×64 3072 384
64×16 1024 128
16×64 1024 128
32×32 1024 128
32×16 512 64
16×32 512 64
32×24 768 96
24×32 768 96
32×8 256 32
8×32 256 32

16×16 256 32
16×8 128 16
8×16 128 16

16×12 192 24
12×16 192 24
16×4 64 8
4×16 64 8
8×8 64 8
8×4 32 4
4×8 32 4

Source: The author

accumulations were generated accordingly, we obtained the inputs, which would later be

fed to the testbench of each respective architecture.

4.5 Description of the Architectures

After obtaining the cycles reduction results, which will be presented in the next

chapters, we decided to implement the architectures for all the different proposals of our

work. Every architecture was described using VHSIC Hardware Description Language

(VHDL). The correspondent testbenches were described in Verilog. These testbenches

are responsible for reading the input files from the SAD values, the MVCost values (when

MVCost was employed) and the file that contains the number of chunks, so that the test-
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bench knows when to stop accumulating the current block.

All the architectures descriptions were based on a default implementation of SAD

using conventional adders for the tree. The implementation of the absolute operators and

the subtractors was based on the results obtained from our previous work (ABREU et al.,

2017).

Due to the fact that we were focused on obtaining power-aware results, the archi-

tectures were employed without pipeline. Additionally, due to the fact that we are dealing

with data-dependent BMAs, i.e., both depend on data from previous block executions at

each iteration, we opt not to employ pipeline, given that this would result in occasional

stalls that could harm the circuit throughput.

This disadvantage of pipeline implementations can be exemplified if we consider a

generic SAD architecture with full pipeline implementation, in an adder level (no pipeline

is implemented inside the conventional adders), and considering the HS BMA. It was

explained in Chapter 2 that HS evaluates six (or three) candidates around the current

center, and if any of them has a smaller cost value than the current center, this will be the

new center of the search for the next iteration. However, in order to reliably calculate the

new center of the search, the last remaining SAD chunk of the last candidate has to be

calculated, and therefore we would not know at that moment what the next candidate to be

sent to the pipeline would be. Hence, pipeline stalls will happen between each iteration.

This logic would also occur in the FiS and Refinement Search stages of TZS – RS would

not present these issues given that it is not data-dependent.

Based on this decision, the only registers contained in the architecture are input

registers, the accumulation register and the best SAD/cost register. A generic model of

the architectures employed is shown in Figure 4.2. Depending on the model, MVCost may

not be included.

Figure 4.2: Generic model of the architectures in this work.
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+ >acc
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Candidate 
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Source: The author
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5 ANALYSIS AND ARCHITECTURE DESIGN

5.1 Choice of Block-Matching Algorithm

Given that this work is focused on performing an optimization on SAD architec-

tures within the IME execution, it is important to choose a BMA to be used as a case

study. In order to decide the best one, we can consider the number of candidates evalu-

ated – which consequently dictates the execution time – and the quality results of each

one.

We decided to make a comparison between TZS and HS, which are the default

BMAs employed in the two encoder softwares HM and x265, respectively. Both TZS and

HM are prominent alternatives for implementation in IME architectures, so a preliminary

analysis was performed in this work in order to assess the computational requirements

of each one. A similar analysis was already performed for a previous work. However,

that analysis compared both BMAs in their respective encoders. This consideration leads

to an unfair comparison, given that a BMA may present much higher cycles results just

because of the number of partitions evaluated by that encoder. Therefore, this analysis

was performed in the same encoder software (x265) for both BMAs so that there was no

interference from using different mode decisions in distinct encoders. For TZS, we used

the adaptation implemented by the x265 software, SS, based on the algorithm coded in

the HM software model. This adapted algorithm is very similar to the one in HM, as it

presents the same TZS stages explained in the previous sections.

The results displayed in Table 5.1 show the number of 8×1 SAD calls required to

encode one second of six Full-High Definition (FHD) (1080p) and six Ultra-High Def-

inition (UHD) 4K (2160p) sequences using the TZS and HS algorithms, as well as the

reduction obtained when using HS. This analysis was performed for the random access

configuration of x265, and the default preset was considered for every other parameters

apart from the IME algorithm. The 8×1 size was used to standardize the number of cal-

culations from both algorithms, since counting only the total SAD operations performed

would not consider the size of the blocks in each calculation. This size has also been used

in several related works regarding SAD implementations. The cycles count was obtained

for a QP of 32. Table 5.1 also shows the BD-BR decrease resulting from replacing the

TZS for the HS. For this quality analysis, the results were run for QPs 22, 27, 32 and 37,

as stated by the CTC.
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Table 5.1: Number of 8×1 SAD calculations for different BMAs (QP=32) and BD-BR
increase of the HS (using TZS as anchor).

# SAD calculations (1s)

TZS HS Red. BD-BRResol. Video
(106) (106) (%) (%)

BasketballDrive 14.11 2.39 83.1 0.11
BQTerrace 6.36 2.24 64.8 0.56

Cactus 6.37 1.81 71.6 1.27
Kimono 5.24 1.14 78.2 0.66

ParkScene 1.81 0.82 54.7 0.55
Tennis 9.32 1.27 86.4 4.1

1080p

Average 7.2 1.61 73.13 1.21
Beauty 134.7 23.46 82.6 0.84

Bosphorus 47.64 18.44 61.3 ≈ 0

HoneyBee 21.54 14.97 30.5 1.48
Jockey 85.88 19.83 76.9 3.14

ReadySteadyGo 69.09 18.74 72.9 1.46
YachtRide 111.19 22.61 79.7 2.9

2160p

Average 78.34 19.68 67.32 1.64
Source: Paper published by the author (ABREU et al., 2018)

As it can be observed from Table 5.1, even though the TZS method is much more

costly in terms of SAD calculations than HS – about 4.5× and 4× for FHD and 4K videos,

respectively –, the compression efficiency of using TZS is higher, surpassing 1.5%, on

average for 4K videos. At first, we considered this a negligible BD-BR increase, and in

the primary analysis on PDE without MVCost, we considered the x265 encoder.

However, many members of video-coding scientific community consider this BD-

BR increase not negligible, especially for applications concerned with coding efficiency.

In addition, in order to maintain our analysis more faithful to the CTC, we decided to in-

clude the TZS algorithm in the remaining experiments, which is the default search method

of the HM reference software. Therefore, in our latest approaches including MVCost, we

perform the analysis for both HM and x265 softwares.

5.2 Partial Distortion Elimination Proposals

The following subsections will detail each one of the proposals from this work. A

general flow chart of the possible solutions analyzed is presented in Figure 5.1. This flow

is split into the Standard (non-PDE) implementations, which do not employ any PDE
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solutions, containing the accumulations of SAD and of SAD with MVCost. The PDE

solutions are also presented, including the already existent proposal of PDE with SAD,

and the newly proposals of PDE with SAD and MVCost. Even though PDE with SAD has

already been proposed, related works have only considered naïve BMA implementations,

such as FS, and no data-dependent BMAs have been analyzed. We also analyzed the

impacts of PDE with SAD in 4K video sequences, to deepen the already-existent proposal.

Figure 5.1: Flow chart of solutions for calculating distortion.
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Source: The author

The solutions with the same colors in the flow chart from Figure 5.1 are imple-

mented with similar architectures. For different colors, different architectural solutions

are required. As it can be seen, the PDE architectures in fact are employed with similar

components when compared to architectures without PDE. The main difference resides in

the fact that the data from the next PUs will be requested to the memory module, which

will act differently.
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We begin by presenting the MVCost-Oblivious Implementations (both without and

with PDE), considering only SAD. The remaining subsections present the MVCost-aware

approaches.

5.2.1 MVCost-Oblivious Implementation

The first analysis performed disregarded the use of MVCost in the total distortion

cost of a block being calculated in the IME stage. Similar analysis is already presented in

some related works such as (CHOI; JEONG, 2009; SEIDEL; BRäSCHER; GüNTZEL,

2015), as mentioned in Chapter 3. However, only the work in (SEIDEL; BRäSCHER;

GüNTZEL, 2015) presented any form of architecture implementation. Moreover, none

of these works considered the use of more recent BMA proposals, and did not consider

higher resolutions such as 4K, in this case.

The PDE technique, in this case, basically consists in what was already defined in

Chapter 2. Due to how SAD is implemented, using conventional adders in an adder tree

scheme, the smaller block chunks are accumulated at each cycle. This accumulation is

stored in an accumulator register, which is compared to an overall SAD register, that con-

tains the smallest SAD value of the whole IME iteration. This comparison is performed

at every time. PDE consists in prematurely ending the SAD calculation of the current

candidate w.r.t. to the block being encoded, when the accumulator register has a value

higher than the best current SAD value. Therefore, the architecture would not need to

keep calculating candidates whose SAD is already worse than the best current one, which

incurs in the accumulation of unnecessary chunks.

This logic can be presented in the example from Table 5.2. This example consid-

ers the middle of an execution, with a best SAD register already with a value different

from the initial one, and a PU of 8×8. This PU requires eight 8×1 SAD chunks to be

accumulated, so that the entire SAD can be calculated.

In the beginning of the execution, the best SAD register is initialized as the max-

imum SAD value possible. This maximum value was determined from a worst case sce-

nario, considering the largest block size of 64×64. Therefore, considering that every pixel

difference from the two blocks being compared is maximum – for an 8-bit pixel –, then

we have a maximum SAD value of (28− 1) · 64 · 64 = 1044480. This value can be stored

in a register of 20 bits. Therefore, we initialized the best SAD register with all 20 bits as

’1’ logic level.
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Table 5.2: Example case of comparison between standard and PDE approaches of
MVCost-Oblivion implementations, for an 8×8 PU.

Best SAD = 280, PU = 8×8
Cycle SAD Chunk Standard PDE

0 73 0 0
1 87 73 73
2 79 160 160
3 82 239 239
4 84 321 321
5 82 405 DONE
6 80 487 DONE
7 98 567 DONE
8 - 665 DONE
9 - DONE DONE

Source: The author

The architecture for this module is presented in Figure 5.2.

It is important to notice that no significant additional hardware resources are re-

quired to implement this module. This is because the comparator module is already part

of well-established SAD architectures, given that this comparison is performed at the end

of the SAD calculation. However, this PDE analysis performs this comparison in all cy-

cles and sends output data to the memory controller indicating that the next PU should be

retrieved.

This solution is more suitable for a hardware implementation of the IME mod-

ule than for the encoder software, due to the fact that a conditional operation would be

needed after each chunk is calculated, and it would be costly in terms of software per-

formance. The algorithm for PDE is more clearly illustrated in Algorithm 1. However,

in a hardware implementation, the comparator logic works in parallel with the SAD cal-

culation itself, thus this solution becomes viable. In this algorithm, bestSAD refers to

the best current SAD which receives a value N from a current iteration, currentSAD

is the current SAD value being accumulated, chunkSize is the size, in pixels, of a SAD

chunk, chunkNr is a counter that increments every time an absolute difference of a pixel

is accumulated to currentSAD, and the value of chunkNr is limited to the value of

chunkSize; isCandBetter is a variable that indicates whether the current candidate for

which SAD is being calculated is a better one than the current best. Also, nrColumns

and nrRows consist of the width and height of the PU, and org[x][y] and ref [x][y] re-

fer to the pixel position inside the PU, for the original and reference (candidate) blocks,
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Figure 5.2: (a) 8×1 SAD Architecture. (b) PDE logic module with an added NOR gate
for the best SAD register load operation.

Source: Paper published by the author (ABREU et al., 2018).

respectively.

bestSAD = N ;

currentSAD = 0;

chunkSize = 8;

chunkNr = 1;

isCandBetter = 1;

for ( x = 0; x < nrColumns; x+ 1 ) {

for ( y = 0; y < nrRows; y + 1 ) {

chunkNr+ = 1;

currentSAD+ = abs(org[x][y]− ref [x][y]);

if chunkNr == chunkSize then

chunkNr = 1;

if currentSAD >= bestSAD then

isCandBetter = 0;

end

end

}

}
Algorithm 1: PDE in an MVCost-oblivious approach, if it was proposed in a software

encoder.
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When designing a solution with PDE, we have to account for the fact that, if we

waste many cycles finding out that the current SAD being calculated is higher than the

current best SAD, the next candidate is possibly already being sent to the architecture,

so attempting to send a signal for the output to send new data would be useless. Due to

the fact that there is an accumulator, which means one cycle is wasted before knowing

whether the signal requesting data ahead of time should be sent to the output, we only

achieve cycles reduction if we discover that the SAD being calculated is useless at least

two cycles before, for an architecture without pipeline. Therefore, this solution is most

suitable for energy-efficient architectures, due to the fact that the more pipeline levels we

have, the sooner we will have to figure out whether the SAD is useless, making it difficult

to achieve any effective reduction. Therefore, we implemented SAD with PDE for an

architecture without pipeline.

Additionally, we have considered the input width of the architecture as 8 bytes

(16 considering both blocks being compared), just as shown in Chapter 2 regarding SAD

architectures. It is important to notice that using larger input widths would lead to higher

circuit area and power dissipation. Moreover, we would have to accumulate partial SADs

in larger chunks. Hence, there would be fewer cycles available for optimization when

using PDE.

A script was employed to perform this cycles analysis, as described in Chapter 4.

The results of this PDE approach will be presented in Chapter 6.

5.2.2 Compression impacts of disregarding MVCost in the total distortion cost

The issue of this primary analysis without the MVCost is that it is imprecise: sim-

ply extracting the SAD values from the encoder software without removing the MVCost

from the whole process would result in inaccurate values. For example, if we extract a

best SAD value of a specific iteration, and we obtain the cycles calculations without/with

PDE of a given candidate, even though the results would be correct locally, they would not

reflect what the encoder was actually executing. This is due to the fact that the encoder,

after the calculation of the SAD value – outside of its function and outside of where data

was being obtained – adds the value of the MVCost to the total cost of a block. These

imprecisions could lead to another candidate being chosen different from the chosen can-

didate of our script analysis, that only considers SAD. This difference could escalate to

different MVs being chosen, leading to different AMVPs being decided as initial search
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points for the next blocks, and so on.

We also need to account for the fact that disregarding MVCost leads to a loss in

compression efficiency when compared to the default case. Both HM and x265 encoders

add the value of MVCost by default, in the IME stage.

Usually, works tend to consider only the SAD cost as part of a block total cost,

which brings considerably less compression efficiency in the overall video sequence. An

analysis was performed to compare the BD-BR increase of ignoring the MVCost in the

total cost when compared to a full implementation that considers both SAD and MVCost

in the total cost.

From this point, we decided to include the HM reference encoder – along with

x265 – for the analyses and proposals, due to the compression , and to stay faithful to

the CTC. The analysis considered the two variables described in Chapter 4: useMV Cost

and useMV CostFME. We ran the configurations disabling both parameters, which

disables MVCost, and enabling them, which is equivalent to the default encoder. This

analysis was performed for both encoders, using the TZS and HS BMAs, for several video

sequences, and the BD-BR percentages are presented in Table 5.3. The PSNR and bit-rate

values were obtained from QPs 22, 27, 32 and 37. Also, for a more general analysis, we

considered the runs for several video sequences from different resolutions.

Table 5.3: BD-BR percentages of encoding a video without considering the MVCost in
the total distortion value.

BD-BR
Video HM x265

24
0p BasketballPass 1.28% 0.9%

RaceHorses 1.21% 0.3%

48
0p BasketballDrill 0.82% 1.53%

PartyScene 0.77% 0.31%

72
0p FourPeople 0.16% 1.12%
SlideEditing 0.41% ≈ 0%

10
80

p Cactus 0.55% 1.12%
ParkScene 0.49% 0.99%

Source: The author (accepted for publication)

The results show that the difference in bitrate is not negligible, especially for ap-

plications concerned with compression efficiency. This degradation tends to be smaller

for higher resolutions, in the case of HM. This may be due to the influence of the MVCost

in the total distortion cost: given the tendency of larger PU blocks being chosen more

often with a resolution increase, there is also a tendency for higher SAD values to be
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achieved. Therefore, MVCost will not be as influential. The x265 encoder software

presents a slightly different behavior, which may be due to different mode decisions, vari-

ations from the video sequences, or simply the tendency of its BMA being much more

simple, resulting in different decisions being taken which may lead to blocks with differ-

ent MVCost being chosen. Therefore, even though there are different behavior between

both encoders, the compression efficiencies can be significant when certain types of ap-

plications are considered, so including MVCost in the total distortion cost is important.

5.2.3 MVCost-Aware Implementation

Given that loss in compression efficiency is present in the way SAD with PDE is

calculated in the previous case (and in related works in general), we decided to propose

an improved method of including MVCost, to increase the compression results.

The following subsections present a new proposal performed with PDE, which

includes the use of the MVCost in the total distortion cost. Some details would change in

the implementation: now, the register containing the best SAD value should be referred to

as the best distortion register, given that it no longer contains the value of SAD only, as it

also includes the MVCost. Some possibilities arise with the inclusion of MVCost: we can

choose whetherMVCost should be included before or after the SAD calculation. Different

architectural ways of including the MVCost inside SAD modules are also explored.

The results for all these analyses and proposals will be included in Chapter 6.

5.2.3.1 MVCost accumulation after SAD

The first method of including the MVCost value is to treat it as an additional value

to be accumulated in the accumulator register after SAD is entirely calculated. This is

the trivial proposal, as it is in accordance to the implementation of the encoders, which

accumulate MVCost after the SAD calculation, as presented in the pseudo-algorithm 2.

The algorithm presents a generic case that illustrates both x265 and HM encoders, given

that they both include MVCost after SAD calculation.

An example case of the behavior is presented in Table 5.4. From this analysis, we

can see that the value of MVCost may not even be accumulated in the PDE case, as long

as the sum of the SAD chunks already calculated is large enough to surpass the current

best SAD + MVCost value stored in the best distortion register. The fact that MVCost is
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bestCost = N ;
currentCost = 0;
chunkSize = 8;
chunkNr = 1;
isCandBetter = 1;
for ( x = 0; x < nrColumns; x+ 1 ) {

for ( y = 0; y < nrRows; y + 1 ) {
chunkNr+ = 1;
currentCost+ = abs(org[x][y]− ref [x][y]);
if chunkNr == chunkSize then

chunkNr = 1;
if currentCost >= bestCost then

isCandBetter = 0;
end

end
}

}
if isCandBetter! = 0 then

currentCost+ =MVCost;
if currentCost >= bestCost then

isCandBetter = 0;
end

end
Algorithm 2: PDE in an MVCost-aware approach, accumulating MVCost after the
SAD chunks.

not included in every calculation does not bring any degradation, given that it must be

accumulated only when the current SAD has not yet surpassed the best distortion.

5.2.3.2 MVCost accumulation before SAD

Another method can be employed, which is mainly based in including the MVCost

before the SAD calculation, as opposed to the encoder software implementation. Even

though this proposal may be intuitively equivalent to the other one, we have to consider

the magnitude of the MVCost value when compared to a single SAD chunk. Primary

analysis and extractions showed that the value of MVCost is usually higher than a single

8-byte SAD chunk; therefore, this may be used to obtain an optimization.

The main idea is: if we add MVCost before the rest of the SAD value, we can

obtain a head start with a higher magnitude value than if we first accumulate the SAD

chunks (as in the previous implementation). This may lead to less SAD chunks being

required to be accumulated before finding out that the current candidate is a worse one.

This is more convenient, especially because in this case, with the inclusion of MVCost –
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Table 5.4: Example case of comparison between standard and PDE approach of aMVCost-
Aware implementation, with accumulation after SAD, for an 8×8 PU.

Best Distortion Cost = 298, PU = 8×8
Cycle Chunk Standard PDE

0 78 0 0
1 83 78 78
2 87 161 161
3 93 248 248
4 77 341 341
5 83 418 DONE
6 83 501 DONE
7 88 584 DONE
8 215 672 DONE
9 - 887 DONE

10 - DONE DONE

MVCost chunk.
Source: The author

as opposed to SAD-only implementations –, we also have a higher best distortion cost, so

it is better if we start the accumulation with a higher value.

To illustrate it, we present an example in Table 5.5. It can be seen that the MVCost

chunk arrives to be accumulated before the SAD chunks, which decreases the number of

SAD chunks that need to be accumulated before finding out that the candidate is a worse

one.

Based on this explanation, this logic will likely present better results than the one

presented in the previous subsection. In order to implement this in a hardware architec-

ture, two possible ways have been analyzed, both of which slightly differ in the logic of

the accumulation: with a multiplexer and with a Carry-Save Adder (CSA), which will be

presented in the following subsections.

Even though the changes between the two modes may seem insignificant, the num-

ber of times a SAD calculation is performed in the encoder is huge, and this stage shares

a representative portion of the total encoding time and power, as shown in the previous

chapters. Therefore, even though we are attempting to perform small modifications, these

reductions will escalate and lead to significant results, which will be shown in Chapter 6.

(a) MVCost accumulation before SAD with Multiplexer

The architecture for this case is presented in Figure 5.3-a. In this case, the ac-

cumulation of MVCost occurs independently from the accumulation of the SAD chunks;
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Table 5.5: Example case of comparison between standard and PDE approach of aMVCost-
Aware implementation, with accumulation before SAD, for an 8×8 PU.

Best Distortion Cost = 298, PU = 8×8
Cycle Chunk Standard PDE

0 215 0 0
1 90 215 215
2 87 305 305
3 93 392 DONE
4 77 485 DONE
5 83 562 DONE
6 83 645 DONE
7 88 728 DONE
8 78 816 DONE
9 - 894 DONE

10 - DONE DONE

MVCost chunk.
Source: The author

in other words, in a given distortion calculation, we first accumulate MVCost in the first

operational cycle, and the next remaining cycles will accumulate the SAD chunks, ac-

cordingly.

This works through the logic explained in the previous paragraphs. It is impor-

tant to notice that this architecture can also be employed in the case of the inclusion of

MVCost after SAD. The only changes here are in the order in which data is received from

the memory. Therefore, the power analysis in Chapter 6 will use this architecture for the

approaches of MVCost after SAD and MVCost before SAD with multiplexer.

(b) MVCost accumulation before SAD with Carry-Save Adder

This case is an attempt to perform even better than the previous one. The use of

a CSA to add more than two inputs is to include the MVCost along with the SAD tree.

Even though this introduces a dependency context to the system, we are now able to add

MVCost along with the first SAD chunk, which may give slightly better cycles results.

However, given our premise of adding MVCost along with the first SAD chunk, it

may be the case that sometimes the SAD chunk is not ready in the output of the encoder

to be accumulated along with it. This may happen when we consider previous cost calcu-

lations that have discovered late that the current result was worse than the best one. More

specifically, the memory module, by default, is supposed to send the data of the new data

blocks whenever the current one has been entirely sent. So, the NextPU data may be
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useless if it discovers too late that the current distortion is already worse, given that the

memory module may already be sending the data. These cases may introduce an increase

in the number of cycles, especially to this CSA mode, given that we have to wait for the

first SAD chunk to have arrived to the input of the CSA, whereas the previous case with

the multiplexer can add the MVCost independently.

The architecture for this case is presented in Figure 5.3-b. We made some analyses

to find out the number of bits used in the represensation of MVCost, and the maximum

number found was 11. Therefore, considering that the width of the adders increase by one

in each level of the SAD tree, we replaced the normal adder of the third level of the tree,

which is an 11-bit adder, for the CSA.

Figure 5.3: Architectures for the calculation of the total distortion cost, considering a
MVCost-aware approach, accumulating MVCost before SAD with (a) a multiplexer or (b)
a Carry-Save Adder.

Next
Candidate

Source: The author

5.3 Candidate Reordering

PDE methods, in general, could be optimized even more, if we guaranteed that a

very similar candidate was evaluated before less similar ones. For example, considering

the HS BMA, we could change the order in which the six candidates are evaluated (reorder

their SAD calculation), so that we evaluate the best ones first. This would be beneficial
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because if we calculate candidates with smaller SAD values before, we may reach this

SAD value in the calculation of the remaining ones before, hence saving cycles.

However, given that there is no way to know before-hand unless we actually per-

formed the calculations, we decided to perform some candidate reordering based on

occurrence probability. To do this, we considered an analysis with the HS BMA, and

counted how many times each of the six candidates were the best in an overall execution,

in each hexagon iteration. These counts were run for every FHD and 4K video sequence,

for one second of execution of each video, and the average results were obtained, which

gives us a candidate ordering to be performed when each hexagon iteration occurs. There-

fore, we may possibly obtain better PDE reductions, given that the best candidates will

likely be evaluated in the first iterations, and thus the other candidates may not calcu-

late the entire SAD for their respective blocks. The analysis performed for the candidate

reordering scheme is briefly presented in Figure 5.4.

Figure 5.4: Cycles analysis with candidate reordering approach.
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Source: The author

The findings of this analysis will be shown in Chapter 6.

5.4 Memory Organization

Given that the ME module is focused on intensively gathering data from refer-

ence frames, and that memory communication can be a computation bottleneck in data-

intensive operations, it is important to design a memory model to verify the feasibility of

designed architectures.

A precise model is highly dependent of the memory hierarchy in each system, but

such in-depth analysis is out of the scope of this work. To simplify this discussion, the
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following assumptions are considered:

• An off-chip memory contains data from the frame being encoded, and this memory

is able to send data of the next CTU to be encoded to an on-chip buffer before the

operation starts;

• An off-chip memory unit (possibly the same one mentioned above) contains data

from the reference frame before the beginning of the current IME execution. This

is commonly referred to as Decoded Picture Buffer (DPB).

In some cases, the DPB is also implemented as an on-chip memory, but this would

not affect our estimates regardless. Based on the assumed off-chip memory, two local

on-chip memories were idealized: the original and the candidates blocks buffers (OBB

and CBB respectively). The generic model considering SAD is shown in Figure 5.5.

Figure 5.5: Memory model.
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The OBB contains the data from the CTU being currently encoded, which will be

used for several IME executions (given that the 64×64 CTU can be interpreted as four
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32×32 CU, and so on). Given that this value is fixed as 64×64, this module contains 64

lines of 64 bytes each. Data from this memory buffer will be sent to the SAD module in

chunks of 8×1, according to what the encoder dictates.

The CBB was optimized in order to minimize its area. This module will contain

data from the current SAD chunk being sent to the SAD module, and from the next SAD

chunk of the same block. Therefore, two lines of 8 bytes each are used to store data of

the current block. However, due to the PDE technique, which causes an early termination

of the SAD operation, it is not exactly known when data from the next block will be

required. Therefore, the next block to be calculated must also be stored speculatively to

prevent execution stalls in such cases.

A second remark is that, due to the candidate reordering scheme, the next can-

didate to be computed may also vary, so we also need to store the first chunk of all the

possible candidates to be calculated in advance.

To circumvent this drawback, the first chunk of every possible candidate in the

next iteration must be pre-fetched before it starts. The number of pre-fetched chunks are

different depending on whether HS or TZS is being used.

Due to the optimizations performed by x265, we know that three of the candidates

are never evaluated, given that they have already been checked in the last iteration, due to

the common points inherent to the hexagon shape. Therefore, only three candidates are

possible, for each possible better candidate in the search. Before the execution of the last

candidate, we already know whether any previous candidates have presented better SAD

values than the current center. Therefore, in the worst case, we would need data from

the three possible candidates of the current best one in that iteration and from the three

possible candidates of the last iteration, whose SAD result has not yet been calculated.

This leads to six lines which need to be stored before the calculation of the last candidate

of that iteration.

Additionally, it is also possible that no candidates are better than the current center,

and the last one may not be either. This would require us to keep the data of the first

chunk of each of the eight candidates of the Square Refinement step. Given that it only

executes around the current center, we already know which candidate would be necessary.

Considering these two possibilities, the memory requires 14 extra lines of 8 bytes each,

apart from the two 8-byte lines of the current candidate being calculated.

The logic is the same when considering TZS. We should consider every possi-

ble step of this specific BMA. In FiS and Refinement Search, we should consider that,
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depending on the iteration being performed (which depends on the iDist value, as ex-

plained in Chapter 2), more candidates can be possibly evaluated in the next steps of the

search. Given that no trivial optimizations are performed in evaluating less candidates

in TZS like in HS, mainly due to the different shapes, we consider the worst case sce-

nario of 16 candidates being evaluated in this case. Following the same logic of saving

the 16 possible candidates of the best current one and the 16 possible candidates of the

possible best one (which is the last candidate), we require 32 lines of 8 bytes each, for

the diamond-shaped search steps. When considering that RS may be executed, we also

leave one additional line of 8 bytes (given that the candidates in RS have fixed positions).

Along with that, the two lines of the current candidate block being calculated are also

required, resulting in a total of 35 lines of 8 bytes each.

In conclusion, the memory buffer required for the candidate block in TZS would

be slightly larger than the one in HS, due to the higher number of possibilities. The

proposed memory buffers for HS and TZS are shown in Figures 5.6 and 5.7, respectively.

Figure 5.6: Proposed memory buffer for HS.
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When taking the bus size into account, for both HS and TZS, the memory must

provide at least 8 bytes per cycle (1 chunk per cycle). In a worst case scenario of the

HS algorithm, when the last candidate of a specific iteration is being evaluated, we would

require that all candidates of the current best, the possible candidates considering that

the last candidate of the hexagon step would be chosen, and the candidates of the worst

case scenario of the square refinement to be retrieved. Therefore, 14 lines of 8 bytes

each for possible next candidates, totalizing 112 bytes, would be required for HS. Using
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Figure 5.7: Proposed memory buffer for TZS.
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the same logic for the worst case scenario in TZS, 264 bytes would be required. It is

important to notice that this amount would only be required when we do not know which

candidate of the next iteration would be evaluated first – because of candidate reordering

that could change the order, depending on the iteration. Also, these values could be

obtained throughout the whole execution of the current block being calculated, so the

obtainment of the predicted chunks could be spread. Therefore, without applying any

candidate reordering, we would only require 3 lines of 8 bytes each in HS – totalizing 24

bytes –, each of which are related to the first chunk of the hexagon step of the next possible

iteration considering that the current best is the chosen one, the first chunk considering

that the last candidate will be the chosen one, and the first line of the first square candidate.

For TZS, in this scenario that we know the candidates order, we would require 3 lines of

8 bytes as well, for the next possible diamond step of the current best, the next possible
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diamond step of the last candidate, and the first candidate of the raster search.

The memory containing MVCost values is also not an issue. This can be treated

as the same external memories containing frame data, as the possible MVCost values are

fixed and usually calculated prior to the execution of the IME stage. The x265 encoder

already maintains the possible values calculated; therefore, a similar implementation will

not bring latency issues.
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6 RESULTS AND DISCUSSIONS

This chapter presents the results of the work developed in this research. We begin

by presenting the results of the PDE proposals in terms of number of cycles. Next, we

present the power and energy results of the architectures designed for the PDE proposals.

6.1 PDE Cycles Results

The cycles analysis was performed as presented in Chapters 4 and 5. The pri-

mary analysis of PDE without MVCost was obtained by extracting the inputs in the model

previously presented in Table 4.2, for the HS BMA. The MVCost-aware analysis was per-

formed by introducing the calculation of the cycles within each encoder, for both the HS

and TZS BMAs.

6.1.1 MVCost-oblivious

This analysis was performed with x265. Before extracting the inputs to calculate

the number of cycles of both no-PDE and PDE approaches, we decided to apply the can-

didate reordering scheme based on the analysis performed in HS. This analysis counted

the number of best candidates in each of the HS iterations, and in the square refinement

step. Then, we decided to reorder the SAD chunks in the model previously presented (the

one from Table 4.2), based on the best candidates found.

The candidate reordering analysis is presented in Table 6.1. It was discovered that,

for the medium preset of x265, HS performs, at most, 28 iterations in its hexagon stage.

After this, the hexagon step reaches the borders of the search window or does not find any

better candidates than the current center, which are the two conditions for it to stop. The

candidates evaluated in the hexagon step are always the ones with coordinates (−2, 0),

(−1,−2), (−1, 2), (1,−2), (1, 2) and (2, 0), w.r.t. to the current center of the search.

The square refinement steps evaluates the candidates (−1, 0), (−1,−1), (0,−1), (1,−1),

(1, 0), (1, 1), (0, 1), (−1, 1). The original order of the hexagon and square refinement step

are presented in the first two lines of Table 6.1. The remaining lines show the reordering

based on the average of all 1080p and all 2160p videos run for one second, for a QP of

32, for the first ten iterations of the hexagon step and for the square refinement (which has
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only one iteration). The order presented is the average case of the videos.

Table 6.1: Reordered candidates using the HS BMA.

Iteration Order
Hexagon Orig. (−2, 0), (−1,−2), (−1, 2), (1,−2), (1, 2), (2, 0)
Square Orig. (−1, 0), (1, 0), (0,−1), (0, 1), (−1,−1), (1, 1), (−1, 1), (1,−1)
Hexagon 1 (2, 0), (−2, 0), (−1, 2), (1, 2), (−1,−2, ), (1,−2)
Hexagon 2 (2, 0), (−2, 0), (1, 2), (−1, 2), (−1,−2, ), (1,−2)
Hexagon 3 (2, 0), (−2, 0), (1, 2), (−1, 2), (−1,−2, ), (1,−2)
Hexagon 4 (2, 0), (−2, 0), (1, 2), (−1, 2), (−1,−2, ), (1,−2)
Hexagon 5 (2, 0), (−2, 0), (1, 2), (−1, 2), (−1,−2, ), (1,−2)
Hexagon 6 (2, 0), (−2, 0), (1, 2), (−1,−2), (−1, 2, ), (1,−2)
Hexagon 7 (2, 0), (−2, 0), (1, 2), (−1,−2), (−1, 2, ), (1,−2)
Hexagon 8 (2, 0), (−2, 0), (1, 2), (−1,−2), (−1, 2, ), (1,−2)
Hexagon 9 (−2, 0), (2, 0), (−1,−2), (−1, 2), (1,−2, ), (1, 2)

Hexagon 10 (−2, 0), (2, 0), (−1,−2), (−1, 2), (1, 2, ), (1,−2)
...

...
Square (−1, 0), (1, 0), (0,−1), (0, 1), (−1,−1), (1, 1), (−1, 1), (1,−1)

Source: The author

The inputs from the IME using the x265 software were extracted and used as input

to a script that calculates the number of cycles wasted in the normal case (no PDE) and the

optimized case. The results without candidate reordering are presented in Table 6.2. The

simulations were performed for 30 frames of six FHD (1080p) and six UHD 4K (2160p)

video sequences, considering the default preset of the x265 encoder software.

This analysis was performed with 4K videos given that this contribution had not

yet been presented in the literature, and the newly results for higher resolution videos

were never explored.

Based on the presented results, we obtained a reduction in the number of cycles

of 16.41% and 11.64%, on average, for 1080p and 2160p videos, respectively. These

results slight differ from related works that employ PDE like (CHOI; JEONG, 2009; SEI-

DEL; BRäSCHER; GüNTZEL, 2015). (CHOI; JEONG, 2009) obtained reductions of up

to 45%, but the work uses the FS algorithm and QCIF (144p). Also, even though the

percentages – for the average of 1080p videos – are lower than the 36.1% obtained by

(SEIDEL; BRäSCHER; GüNTZEL, 2015), our work considers a more realistic scenario

using a fast BMA and the more recent HEVC coding standard, which is different from

H.264/AVC employed in (SEIDEL; BRäSCHER; GüNTZEL, 2015). Additionally, the

solution in (SEIDEL; BRäSCHER; GüNTZEL, 2015) considers a SAD input width of

four pixel comparisons, which is smaller than the size used in this work, and represents



85

Table 6.2: Number of cycles for the HEVC Hexagon Search algorithm execution using
the baseline SAD and with PDE optimization.

# Cycles (×106)
ReductionResolution Video Baseline w/ PDE

(%)

1080p

BasketballDrive 986.53 850.07 13.83
BQTerrace 733.18 482.27 34.22

Cactus 773.94 603.98 21.96
Kimono 1023.47 907.66 11.31

ParkScene 722.71 579.98 19.75
Tennis 1236.37 1153.62 6.69

Average 912.7 762.93 16.41

2160p

Beauty 3850.09 3770.07 2.08
Bosphorus 2938.8 2509.77 14.6
HoneyBee 2419.54 2127.5 12.07

Jockey 3230.77 2897.88 10.3
ReadySteadyGo 2904.01 2246.27 22.65

YachtRide 3702.43 3281.3 11.37
Average 3174.27 2805.46 11.64

Source: The author (ABREU et al., 2018)

an advantage when predicting an useless candidate. However, it reduces the throughput

in two times when compared with our eight pixel comparisons PDE.

Also, FS is unfeasible for real-time solutions with higher resolutions such as UHD,

due to the high number of candidates evaluated. The better results obtained in that analysis

may be explained due to the fact that highly different candidates are being evaluated,

given that the FS evaluates every candidate in the search area. Recent BMA solutions,

such as HS and TZS, tend to calculate SAD for candidates that have better chances of

being similar, and do not perform an extensive search.

Therefore, the contributions in this first analysis are in the fact that the actual PDE

reductions are not as good as it was considered, when popular and non-trivial BMAs are

employed. Moreover, the slightly worse results from 1080p to 2160p are also notice-

able. However, these results may be explained due to variability purposes of the video

sequences, given that the 2160p videos are not from the recommended CTC, whereas the

1080p videos are.

The approach applying candidate reordering was run and analyzed, and its results

are presented in Table 6.3. The PDE results varied depending on the video: some of them

presented slightly worse results, and some optimized the number of cycles. On average,
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this solution did not bring satisfactory results. This may be explained by the use of an

average case between video sequences to obtain the best candidates of each step. Using

such an approach ignores the individual characteristics of each video sequence, given that

there is no pattern in which movement is occurring between several videos. Moreover,

we considered the average of the iterations in an isolated manner, which also may have

contributed to the worse results. In other words, the order of the best candidates of one

iteration likely depends on the previous best candidates of other iterations, given that there

is no tendency that a search may lead to a certain direction and go to the opposite one

in another iteration. However, considering these approaches would implicate in higher

complexity, given that a tree of decisions would be required, and the ordering would

depend on the previous best ones, we decided not to use candidate reordering for the

remaining analyses.

Table 6.3: Number of cycles for the HEVC Hexagon Search algorithm with PDE and
candidate reordering.

# Cycles (×106)
w/ PDE and ReductionResolution Video w/ PDE
Reordering (%)

1080p

BasketballDrive 850.07 850.24 -0.02
BQTerrace 482.27 482.51 -0.05

Cactus 603.98 603.94 0.01
Kimono 907.66 907.14 0.06

ParkScene 579.98 580.19 -0.04
Tennis 1153.62 1151.85 0.15

Average 762.93 762.64 0.02

2160p

Beauty 3770.07 3769.91 ≈ 0

Bosphorus 2509.77 2510.73 -0.04
HoneyBee 2127.5 2127.72 -0.01

Jockey 2897.88 2895.42 0.08
ReadySteadyGo 2246.27 2239.05 0.32

YachtRide 3281.3 3279.33 0.06
Average 2805.46 2803.69 0.07

Source: The author

With that mentioned, a promising solution to deal with a generic case in video

sequences for candidate reordering is to apply machine learning techniques. This will be

explored in future works.
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6.1.2 MVCost-aware

For the MVCost-aware approach, we performed an analysis to obtain the number

of cycles (within both HM and x265 encoders) required for each of the presented cases:

• Without PDE (a);

• With PDE, using a multiplexer:

• Accumulating MVCost after the SAD chunks (based on the encoder software

normal execution flow) (b);

• Accumulating MVCost before the SAD chunks (c);

• With PDE, accumulating MVCost along with the first SAD chunk, using a CSA (d).

For this analysis, we used both HM and x265 softwares, with the TZS and HS

algorithms, and ran the simulations for 30 frames of several video sequences for different

resolutions, for a QP of 32. We also considered the SAD architectures without pipeline

for this analysis. The cycles results are shown in Table 6.4 for HM, and in Table 6.5 for

x265, as well as cycles reductions for the versions presented.

Table 6.4: Cycles requirements of different approaches of including MVCost, using HM.

# Cycles (×109) Red. (%)

Video (a) (b) (c) (d) (c) w.r.t. (b) (d) w.r.t. (c)

24
0p BBPass 1.06 0.79 0.65 0.65 17.72 0

RaceHorses 2.22 1.55 1.37 1.36 11.61 0.73

48
0p BBDrill 6.55 4.79 4.05 4.07 15.45 -0.5

PartyScene 6 4.26 3.84 3.83 9.86 0.26

72
0p FourPeople 8.96 6.66 4.91 5.02 26.27 -2.24

SlideEditing 10.1 5.67 4.14 4.28 26.98 -3.38

10
80

p Cactus 28.78 21.34 17.86 17.97 16.31 -0.62
ParkScene 24.3 19.73 16.59 16.65 15.91 -0.36

Avg. 17.51 -0.76
Source: The author (Accepted for publication)

Cycles reductions with respect to the version without PDE (a) are already known

by the literature in works such as (CHOI; JEONG, 2009; LEE et al., 2009; SEIDEL;

BRäSCHER; GüNTZEL, 2015; ABREU et al., 2018), so these reductions are not sum-

marized in Table 6.9. All versions reduce cycles when compared to the baseline case (a).

When comparing (c) – MVCost accumulated before SAD – w.r.t. (b), which accumulates



88

Table 6.5: Cycles requirements of different approaches of including MVCost, using x265.

# Cycles (×106) Red. (%)

Video (a) (b) (c) (d) (c) w.r.t. (b) (d) w.r.t. (c)

24
0p BBPass 34.55 19.73 18.66 18.58 5.42 0.43

RaceHorses 48.4 39.62 38.24 37.45 3.48 2.07

48
0p BBDrill 173.57 127.48 122.74 121.15 3.72 1.3

PartyScene 162.81 108.92 106.21 104.9 2.49 1.23

72
0p FourPeople 286.11 174.23 165.61 164.68 4.95 0.56

SlideEditing 285.03 100.32 86.6 95.91 13.68 -10.75

10
80

p Cactus 813.17 618.94 600.12 593.27 3.04 1.14
ParkScene 759.02 596.52 575.19 570.42 3.58 0.83

Avg. 5.05 -0.41
Source: The author

MVCost after SAD, we obtain an additional average reduction of 17.51% in HM and a

reduction of 5.05% in x265, which indicates that accumulating MVCost before the SAD

chunks – as opposed to the normal flow of the encoder software – results in a reduced

number of cycles. When comparing the version with CSA (d) with respect to (c), we

found out that (d) has an increased number of cycles of, on average, 0.76% and 0.41%

for HM and x265, respectively. This happens because, even though version with CSA

accumulates MVCost along with the first SAD chunk, it has the disadvantage of having to

wait for the first chunk to arrive before accumulating it, while (c) can accumulate MVCost

before the chunks arrive.

The high reduction differences between encoders has two main reasons. The first

one is that the mode decisions of both encoders are different, which may slightly differ

the results. The second one is the most significant one, and it is mainly the fact that the

x265 encoder evaluates less candidates than HM, given that HS has less complex stages

than TZS. This leads to TZS evaluating several distant candidates with small similarities,

which may also lead to an effective head-start when considering MVCost.

6.2 Determination of the target frequency

In order to define the target frequency for the architectures to be run, we opted

to simulate a real-case scenario, for illustrative purposes – given that the main contribu-

tions of this work are in the number of cycles, which are independent from the frequency.
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Therefore, this does not mean that the architecture will necessarily be run in that fre-

quency, as it depends on the requirements of the whole encoder. However, considering

a realistic case will lead to an accurate behavior of the architectures. We decided to ob-

tain a target frequency from an analysis performed in our previous work in (SILVEIRA et

al., 2017). The analysis performed in that work is briefly presented here, for clarification

purposes and given that it justifies the use of the target frequency.

This analysis was conducted with the x265 software, given that it is the closest

one to a real-time scenario. This consisted in counting the number of 8×1 SAD com-

putations in several different configurations of x265, using the HS BMA. The objective

of this analysis is to obtain the best configuration of the encoder software, with the most

feasible frequency estimation results (which is equivalent to the target frequency) while

attempting not to degradate the compression efficiency. Due to the high amount of differ-

ent parameters that can be varied in x265 and given the time that would require to run the

combinations of all parameters, the configurations were run for a subset of the parameters

only. The parameters varied are shown below:

• Reference frames: the number of reference frames to be used in the ME stage;

• Early Skip: this parameter breaks the execution of the CTU tree before it is com-

pletely analyzed, given specific circumstances. This impacts mainly the encoding

time;

• Maximum Iterations: this parameter is a custom one, which early-terminates the

Hexagon stage of HS before a number of iterations specified by this parameters’s

value;

• Test Local Motion Vector Predictors (MVPs): custom parameter, which tests

whether local MVPs in the beginning of the search, such as median and neighbor

MVPs, will be compared to the start point (which comes from the result of AMVP)

to begin the search in some other point;

• Square Refine: this is also a custom parameter, which decides whether the square

refinement stage will be executed or not.

Based on multiple runs of the encoder, three configurations stood out as the best,

which are shown in Table 6.6. The c0 configuration is the default implementation of the

encoder.

The throughput and BD-BR results of this analysis, for these four configurations,

are shown in Figure 6.1.
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Table 6.6: Configurations used to achieve different SAD computation targets.

x265 parameters
Config. Reference Early Max Test Square
Index Frames Skip Iter. Local MVP Refine

c0 3 D – E E
c1 3 D 6 D D
c2 3 E 3 E D
c3 2 E 15 E D

Source: (SILVEIRA et al., 2017)

Figure 6.1: Throughput analysis performed in (SILVEIRA et al., 2017).
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Based on Figure 6.1, the default configuration c0, although it does not present

quality degradation, requires a high target frequency. On the other hand, c1 requires

almost half the frequency in c0, with a slight increase in BD-BR. Configurations c2 and

c3 present high BD-BR increase, with an additional decrease in the required frequency.

For bothMVCost-oblivious andMVCost-aware analyses, we used the configuration

from c1, and employed a target frequency of 300 MHz, given that it presents the most

acceptable frequency value with a quality drop of 0.4%.
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6.3 Power and Energy Results

6.3.1 MVCost-oblivious

The SAD architecture of this case – which was previously presented in Figure 5.2 –

was described in VHDL and synthesized to low-power 65 nm commercial standard-cell li-

brary from ST at 1.0 V voltage supply, using Cadence Genus Synthesis Tool (CADENCE,

2019). The synthesis was run, as mentioned, for a 300 MHz operating frequency target,

using real-input vectors from the aforementioned benchmark video sequences and used

as stimuli to obtain more accurate power estimation results.

Table 6.7 shows the leakage (leak.), dynamic (dyn.) and total power dissipation

and the energy consumption per operation results for an 8×1 SAD hardware architecture.

Table 6.7: Power and energy/operation synthesis results for the 8×1 SAD architecture @
300MHz.

Power Dissipation (µW) Energy per
Video Leak. Dyn. Total Op. (pJ)

10
80

p

BasketballDrive 3.31 699.10 702.41 2.34
BQTerrace 3.31 705.27 708.59 2.36
Tennis 3.31 701.06 704.37 2.35
Cactus 3.31 704.73 708.04 2.36
Kimono 3.31 701.04 704.35 2.35
ParkScene 3.31 708.04 711.34 2.37

21
60

p

HoneyBee 3.31 701.74 705.05 2.35
Bosphorus 3.31 698.56 701.87 2.34
ReadySteadyGo 3.31 709.74 713.05 2.38
Jockey 3.31 697.69 701.00 2.34
YachtRide 3.31 716.57 719.88 2.40
Average 3.31 703.96 707.27 2.36

Source: The author (ABREU et al., 2018)

Finally, based on the average energy consumption per operation and the average

number of cycles for both 1080p and 2160p video sequences, we estimate the total energy

consumption of each solution, which is presented in Table 6.8. Based on the results

presented, we obtained a reduction in the number of cycles (and energy) of 16.41% and

11.64% on average, for 1080p and 2160p videos, respectively, which are equivalent to the

cycles reductions, in magnitude.
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Table 6.8: SAD Average energy results for processing 30 frames of FHD and UHD video
sequences using x265.

Energy Consumption
Resolution Baseline (mJ) w/ PDE (mJ) Savings (%)
1080p 2.15 1.8 16.4
2160p 7.49 6.62 11.6

Source: The author (ABREU et al., 2018)

6.3.2 MVCost-aware

For the MVCost-aware approach, the two distortion architectures from Figure 5.3

were also described in VHDL and synthesized to a low-power 65 nm commercial standard-

cell library from ST at 1.0 V voltage supply, at 300 MHz, based on the same presented

analysis. The synthesis was also performed for ASIC design flow using Cadence Genus

Synthesis Tool (CADENCE, 2019), and real-input vectors were also considered for the

power extraction.

Table 6.9 shows the power dissipation results for the two 8×1 SAD architectures,

with multiplexer and with CSA, as well as the energy reduction of comparing (d) with

(c), for both HM and x265. Reductions of (c) w.r.t. (b) have not been presented given

that both versions use the same architecture (the one with the multiplexers), so the energy

reductions are equal, in magnitude, to the cycle reductions presented in the same Table.

The energy reduction results have shown that, even though (c) beats (d) in cycles, the ar-

chitecture with CSA (which was proposed for the predictions from (d)) dissipates slightly

less power, resulting in an average reduction of 1.94% and 2.27% of (d) w.r.t. (c), in terms

of energy for HM and x265, respectively.
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Table 6.9: Power results and energy reductions of the proposed MVCost-aware architec-
tures @ 300 MHz.

Power (nW) Energy
ReductionMux CSA

(%)
Video Leak. Dyn. Total Leak. Dyn. Total (d)-(c)1 (d)-(c)2

24
0p BBPass 10.86 1364.56 1375.42 10.35 1343.17 1353.51 1.68 2.01

RaceHorses 10.86 1397.26 1408.12 10.36 1377.8 1388.16 2.18 3.45

48
0p BBDrill 10.84 1370.28 1381.12 10.35 1326.37 1336.72 2.53 4.47

PartyScene 10.87 1447.03 1457.9 10.36 1409.16 1419.52 2.89 3.83

72
0p FourPeople 10.87 1023.31 1034.18 10.34 978.53 988.87 2.24 4.92

SlideEditing 10.9 1249.81 1260.71 10.39 1254.97 1265.37 -3.79 -11.16

10
80

p Cactus 10.87 1234.19 1245.06 10.39 1198.78 1209.16 2.28 3.99
ParkScene 10.9 1329.03 1339.92 10.41 1250.8 1261.21 5.53 6.65

Avg. 10.87 1340.15 1351.02 10.38 1301.48 1311.86 1.94 2.27
1 reduction of version (c) w.r.t. to (d) in HM
2 reduction of version (c) w.r.t. to (d) in x265

Source: The author
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7 CONCLUSION

This work presented several analyses of components related to one of the most

time and energy-consuming tasks in the HEVC video coding process: the IME. This

dissertation focused on the core of IME architectures, which is the SAD module.

First, basic video coding and power dissipation concepts were introduced and de-

tailed, to ease the description of the content of the remaining sections. This background

chapter focused on the inter-prediction stage of the video encoding process in HEVC,

which contains the ME stage.

A detailed related works chapter was presented, giving an overview of literature

works regarding video coding. The summarization of the related works was divided in

SAD/SATD, IME/ME, and PDE. Under a more detailed analysis, the author pointed out

that most of the previous works did not present any power results or corresponding ar-

chitectures to their proposals. Also, some of the works did not consider state-of-the-art

search algorithms to perform their analyses, and did not take the MVCost into account,

which harms compression efficiency results.

Then, the methodology chapter presented the main considerations taken for ob-

taining the desired results for the analyses and proposals, which were presented in Chapter

5.

The first analysis presented was the choice of BMA to be used in this work, as a

study case. For our primary analysis, we decided to use HS, due to its smaller number of

SAD calculations. However, a different route was taken in the MVCost-aware proposals,

taking quality into account with a higher degree. Therefore, given that BD-BR results of

this analysis presented a BD-BR increase of up to 4.1% of using HS in comparison with

TZS, we decided to consider the use of TZS. So, the MVCost-aware analysis included the

use of both HS and TZS, running the simulations for both x265 and HM encoders.

The PDE proposals were then presented. Two main approaches were analyzed and

described in Chapter 5: MVCost-oblivious and MVCost-aware, both of which can be em-

ployed with or without the use of PDE. They mainly differ in the resulting compression

efficiency, given that considering MVCost may lead to reduced BD-BR results – this anal-

ysis was also presented in Chapter 5. Inside the scope of MVCost-aware proposals with

PDE, we have analyzed three possibilities: MVCost accumulated after SAD, and MVCost

accumulated before SAD with a multiplexer or with a CSA. Each of these approaches

have their own advantages and limitations. Several architectures were implemented for
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each of these models, considering an 8×1 SAD module.

A candidate reordering scheme was also employed, in order to increase the benefits

of the PDE technique. In addition to that, the memory was modeled, considering the high

dependency of the analyzed BMAs on previous blocks.

In the results chapter, we presented cycles results of all the PDE approaches, per-

forming comparisons between them and with the non-PDE method. For the MVCost-

oblivious methods, PDE obtained a reduction in the number of cycles of, on average,

16.41% and 11.64%, for FHD (1080p) and UHD 4K (2160p) video sequences, respec-

tively, when compared to non-PDE implementation. When taking MVCost into account,

we compared the versions that accumulate the MVCost before SAD with the one that ac-

cumulates it after (which is the normal flow of the encoder software). We found that we

obtained additional average reductions of 17.51% and 5.05% with the multiplexer version,

respectively for both HM and x265, besides the reductions already established for the nor-

mal use of the PDE. These results were slightly better (0.76% and 0.41% less cycles, for

HM and x265, respectively) than the version with CSA.

In order to have most accurate power and energy estimates for the developed hard-

ware, the architectures were synthesized for 65 nm CMOS ST cell-library using real input

vectors. The results for the MVCost-oblivious approach presented the same reductions,

given that both present the same SAD datapath architecture. In the MVCost-aware results,

we found out that, even though the CSA approach presents slightly worse results in terms

of cycles, it beats the multiplexer version energetically, given that its respective archi-

tecture presents reduced power when compared to the multiplexer version. Therefore, the

CSA version was the best in terms of energy, with average reductions of 1.94% and 2.27%

for HM and x265, respectively, besides the normal energy reductions of PDE.

To conclude, new proposals that optimize the number of cycles required to calcu-

late the distortion of blocks in the ME – which is the most time-consuming step in the

video encoding process – were presented in this dissertation. These contributions are im-

portant to alleviate the bottleneck that this stage represents. As future work, it is intended

to introduce other concepts, such as the use of machine learning, to early-terminate the

ME stage based on features obtained before this stage, using decision support tools, e.g.,

decision trees and random forests.
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