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ABSTRACT

FPGAs are semiconductor devices that can be reprogrammed to reach different application re-

quirements after manufacturing. The architecture of an FPGA can be homogeneous, containing

only standard blocks of an FPGA, IOs and CLBs, or heterogeneous, being able to include also

other types of blocks such as memory blocks and DSPs.

One of the steps required in the design flow of an FPGA is placement, in which positions for

the inner components of the FPGA are selected, and it is highly dependent upon its architecture,

varying dramatically from one family of FPGA devices to another.

In this work, we present an EDA tool that was developed for placing heterogeneous FPGAs

aiming routability. It is split into two flows, one that was implemented for the ISPD 2016

Placement Contest (ISPD. . . , 2016), in which, the tool got the 4th place, and one with the

partitioning algorithm hMETIS (KARYPIS et al., 1999) in the FPGA placement flow stage.

Keywords: Routability. Optimization. Placement. FPGA. Partitioning. Microelectronics.



UFRGSPlace: Um Algoritmo para posicionamento de FPGAs Visando ao Comprimento

de Fio

RESUMO

FPGAs são dispositivos semicondutores que podem ser reprogramados para atender a diferentes

requisitos de aplicações após a sua fabricação. A arquitetura de uma FPGA pode ser homogê-

nea, contendo apenas blocos padrão de uma FPGA, IOs e CLBs, ou heterogênea, podendo

conter outros tipos de blocos, como de memória ou DSPs. Um dos passos necessários no fluxo

de projeto numa FPGA é o posicionemnto, em que posições para os componentes internos da

FPGA são selecionados, e esse passo é altamente dependente da sua arquitetura, variando dra-

maticamente de uma família de dispositivos FPGA para outra. Neste trabalho, é apresentada

uma ferramenta de EDA que foi desenvolvida para posicionamento de FPGAs heterogêneas,

visando a roteabilidade. Ele é dividido em dois fluxos, um que foi implementado para a com-

petição ISPD 2016 Contest (ISPD. . . , 2016), na qual, a ferramenta ficou na quarta colocação,

e outro com o algoritmo de particionamento hMETIS (KARYPIS et al., 1999) adicionado ao

fluxo de posicionamento.

Palavras-chave: Routing, Optimization, Placement, FPGA, Microelectronics, Partitioning.
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1 INTRODUCTION

1.1 IC Design and Automation

The whole process of designing integrated circuits had been done mainly by hand until

the middle of the 1970s, when CAD software began to exist, for automation and optimization

of design processes. CAD software that aids in the steps of chip design is, nowadays, referred

to as electronic design automation (EDA) software.

In the years following the publication of "Introduction to VLSI Systems" (MEAD; CON-

WAY, 1980), which promoted the concept of chip design beginning with a specification of its

behavior made in a programming language, the complexity of the chips has increased signif-

icantly. This increase was also because designers began to have more access to verification

and simulation tools, so it was easier to check if the design would function accordingly to their

expectations before its construction.

The design flow of a VLSI circuit consists of many steps, as we can see in Figure 1.1.

Physical design is a complex process, as noted by (SHERWANI, 1993), even when it is broken

into steps.

The main focus of this work is on one of the steps into which the physical design flow

is divided, the placement step, when component positions are selected, which is approached in

more detail in Section 1.2. Another important step comes afterward - routing - which is when

we create the wire connections between the logic gates.

Figure 1.1: Typical VLSI design flow (KAHNG et al., ).
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1.2 Placement

Placement is one of the stages of the VLSI circuit physical design flow. In this stage,

valid positions for the minor logic components that comprise the circuit are selected, generally

with the goal of minimizing a cost function. The placement problem is said to be NP-Complete

(SHAHOOKAR; MAZUMDER, 1991), which is typically addressed by using heuristics and

approximation algorithms to acquire solutions in reasonable runtime and providing scalability

when it comes to large circuits.

Traditionally, in this stage, there is an objective to minimize the wirelength of the con-

nections between the components and also try to avoid congested areas - where the number of

connections outcomes the available space for routing -, but other properties of the circuit can be

addressed, such as minimizing the area occupied by the components, or minimizing the propa-

gation delay of a signal. The resulting placement must have all the components occupying valid

positions, meaning that there must be no overlaps between any of them.

The placement step implemented for the tool covered in this work follows an analyti-

cal approach, which is divided into three phases: global placement, legalization and detailed

placement (PAUL; DAS; BANERJEE, 2015).

During global placement, some algorithms relax the overlapping restriction, although

it is sometimes interesting for the algorithm to reduce overlaps. A position is chosen for the

components whilst minimizing wirelength. As said in (BRENNER; VYGEN, 2008), analytical

placement works with the relaxation of allowing overlaps at first, minimizing a function that

estimates wirelength, and then removing the overlaps.

Legalization is the step in which the remaining overlapping is removed, and components

are moved to valid positions. In our case, the legalization step is more complex, because there

are rules only present in the scope of FPGAs: instead of just having to eliminate overlaps and

align the components to rows, we also have to assure that each component is inserted in its right

slot. This scenario will be explained in Chapter 3, Section 3.2.

Detailed placement makes fine adjustments to positions by performing fine-grain opti-

mizations that are hard to be seen during the global placement step, aiming to reduce wirelength

after legalization is done. It can also be implemented to reach a certain goal, for example, min-

imize area.

The general physical design flow of an FPGA can be seen in Figure 1.2. It also com-

pares it with a generic ASIC flow by outlining the steps that are not needed for FPGAs. As

seen in Figure 1.2, FPGAs do not need the steps of scan insertion, clock tree synthesis and
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physical design verification, because the FPGA has already been manufactured and, although

reconfigurable, it already has its resources defined.

Figure 1.2: Generic FPGA physical design flow. (FPGA. . . , 2016a)

Currently, the development of physical synthesis algorithms for FPGAs is in a less ma-

ture stage than for ASICs, mostly due to the complexity in terms of the legalization rules men-

tioned above and the fact that the FPGAs have already been manufactured, with all its resources

already defined. For example, when it comes to ASICs, when trying to meet timing closure in

a circuit’s synthesis, one can apply gate sizing, insertion of buffers to the circuit, or even rely

on the placement algorithm with timing constraints. In the case of FPGAs, the methodology of

gate sizing does not apply anymore, as the FPGA’s hardware has already been manufactured, so,

the developer has fewer degrees of freedom to work with to reach the timing closure objective.

With this kind of situation in mind, the development of algorithms for the synthesis of FPGAs

can be more difficult.



12

1.3 FPGAs

FPGAs are board circuits that can contain from thousands to more than a million logic

gates within them, and their interconnections and cells are programmable after manufacturing.

Since the introduction of the first FPGAs by Xilinx in the 1980s, FPGAs have grown in capacity

by more than a factor of 10000 and performance by a factor of 100. Cost and energy per

operation have decreased by more than a factor of 1000. Figure 1.3 shows this advancement.

Capacity is the number of logic cells that the FPGA lodges, speed is same-function performance

in programmable fabric. Price and power are per logic cell and are scaled up by 10000x.

Figure 1.3: Xilinx FPGA attribute changes through the decades. (TRIMBERGER, 2015)

The architecture of an FPGA can be homogeneous, meaning it contains only the standard

blocks for an FPGA (logic blocks and input and output), or heterogeneous, meaning it can

contain other types of blocks, such as memory (RAMs) and signal processing (DSPs). The

FPGA architecture targeted for placement in this work was from the Ultrascale (XILINX. . . ,

2016) family.

On the next page, in Figure 1.4, we can see what a typical homogeneous FPGA’s layout

would look like. A generic homogeneous FPGA contains a matrix of configurable logic blocks

(CLBs) that, altogether, perform the current function the FPGA was programmed for executing,

and IO blocks, for input and output data. Also, there are switching blocks for selecting the

routes the wires will follow (as they are programmable, the routes are not fixed).
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Figure 1.4: An example of a simple homogeneous FPGA layout. (FPGA. . . , 2016b)

FPGAs differ from standard-cell (XIU, 2008) methodology in ASIC circuits in many

aspects, but this one especially influences on the placement stage: they already have fixed slots

for each logic component; hence, we must only select which component goes where, not having

to worry about them overlapping one another at some point. With that in mind, legalization

regarding FPGA placement becomes more about following manufacturer rules and constraints

regarding shared signals and inputs than actually removing overlaps, as mentioned in Section

1.2.

The following sections display the contributions of this work and the scope of this dis-

sertation.

1.4 Contributions of This Work

The main contributions of this work can be summarized as:

1. An EDA tool for routability driven placement of homogeneous and heterogeneous FPGAs

that supports inputs in the bookshelf format.

2. A set of algorithms capable of generating solutions with completely legal packing. All

of the solutions provided total accordance with the set of packing constraints, which is

addressed in Chapter 3. The main contribution of this tool concerning robustness and

coherence with the design constraints is the packing stage of FPGA placement, which is

the most prone to failures in rule checking because of the complexity of the constraints.

3. The tool implements a novelty packing refinement algorithm that improves the usage of



14

resources.

4. Another version of the FPGA placement with the same flow as the one above, except for

utilizing graph partitioning before the packing stage.

1.5 Outline of this dissertation

This work is organized in 5 chapters. Chapter 2 describes the state-of-the-art that we

have in FPGA placement as well as one algorithm that is still a foundation for some placement

algorithms. Chapter 3 explains what was the ISPD 2016 Competition, its input files, and rules

that would apply for the packing state (one of the placement stages that are required for an FPGA

architecture). Chapter 4 describes our flow steps, and Chapter 4 explains in detail UFRGSPlace,

which is the main contribution of this work. Chapter 5 finishes with a conclusion and work that

we plan on performing in the future for improving the tool.
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2 RELATED WORK

In this chapter, relevant works with respect to the subject of placement for FPGAs are

summarized. The algorithms that will be cited are based on analytical placement, clustering

FPGA blocks and placing with hierarchical simulated annealing.

2.1 Analytical Placement

Analytical placement, as mentioned in (MONTEIRO et al., 2015) is a technique that

maps the placement problem to another formulation that can be numerically analyzed with the

objective of minimizing a certain parameter. An analytical cost function for the placement

problem is defined and then minimized with the use of numerical optimization methods. Based

on the cost function, analytical placers are classified in either non-linear or quadratic.

2.1.1 HeAP: Heterogeneous Analytical Placer

HeAP (GORT; ANDERSON, 2012) is an analytical placer for heterogeneous FPGAs

comprised of the same type of cells there are in the benchmarks used for the ISPD contest:

DSPs, RAM, LUTs. They adapted a placer that was mainly built for state-of-the-art ASICs to

the heterogeneous FPGA environment. One main difference between ASICs and FPGAs is that

FPGAs contain discrete positions for each type of cell, the slots, so each type must go inside its

own type of slot. It also deals with macros of LUT-based arrangements, such as carry chains.

Instead of counting the runtime based on parallelizing existing algorithms, they focused

on runtime from an algorithmic perspective, presenting a fast approach for placing FPGAs. The

algorithm they adapted is Simpl (KIM; LEE; MARKOV, 2010), and the connections between

blocks are made based on the bound2bound model. They adapt Simpl by extending the concept

of target locations for inserting cells to different block types.

Macros consist of multiple unit-sized blocks having a fixed placement with respect to

one another (e.g. carry chains), and are given a single (x,y) location in the formulation. For

modeling connections to macro blocks properly, they take into account the position of the unit-

sized block within the macro to which the connection is actually made.

Figure 2.1 displays a connection between a unit-sized block and a macro block. It is

made to the middle block within the macro, which has a x offset of 1, relative to the macro
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origin. Such offsets can be modeled by incorporating them into the vector representing the

connections between movable and fixed blocks, allowing the actual connection length to be

minimized, rather than a connection to the origin of the macro.

Figure 2.1: Connection between unit-sized block and macro block. (GORT; ANDERSON,
2012)

As said previously, legalization for FPGAs is more complicated because there are dis-

crete positions, as there are certain kinds of slots for certain kinds of cells. Here, it is done

essentially by recursive partitioning for finding valid positions.

First, they find a subarea of the FPGA that is over-utilized (i.e. illegal), which will

mean that the blocks within this area must be spread to a region with more room. To find this

over-utilized area, adjacent locations occupied by more than one block are repeatedly clustered

together, until all clusters are bordered on all sides by non-over-utilized locations.

Next, the area is expanded in both vertical and horizontal axes until it is enough to

accommodate all blocks that are retained there. The area is expanded as said until its occupancy

(OA) divided by its capacity (CA) is less than a maximum utilization factor β, as in Equation

2.1.

OA/CA < β,whereβ <= 1. (2.1)

The value β used in their experiments was 0.9.

Afterwards, yet still in the legalization process, they make two cuts to the design: a

source cut and a target cut. The source cut refers to to the blocks being placed, and the target

cut refers to the area into which the blocks are placed.

The source cut splits the blocks into two partitions, whilst the target cut splits the area

into two subareas, and the blocks within each partition are spread to these subareas.
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That is made to minimize the imbalance between the number of blocks in each partition

and make the utilization of the subareas closer to equivalent between one another, minimizing

the difference between them.

The term "utilization" (U) is defined as the occupancy (O) divided by the capacity (C)

of the subarea (Equation 2.2).

Usubarea = Osubarea/Csubarea (2.2)

.

For generating the source cut, cells are first sorted by location in x or y axis, depending

on the orientation of the desired cut. After sorting the cells, a pivot is chosen in a sorted list,

where all blocks to the left of it are assigned to the left/bottom partition, and all blocks to the

right of the pivot are assigned to the right/top.

In Figure 2.2, the blocks on the right side of the image are to be placed inside the region

to the left side. There’s a source cut that splits blocks between the partitions as evenly as

possible, and it’s labeled "BAD". It is not possible to make a corresponding target cut so that

Usubarea <= 1.

It is also possible to make bad cuts if choosing the target cut first (label "BAD" on the

left. which does not leave enough room in the upper partition for the tall block on the right).

They mitigate possible issues by allowing the target cut generation phase to perturb the source

cut by moving blocks between partitions.

Figure 2.2: Source and target cuts. (GORT; ANDERSON, 2012)

The target cut labeled "GOOD" would be chosen because it minimizes the difference

between the utilization of the subareas.
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The disturbance to the source cut would be made by moving a block from the over-

utilized partition closest to the cutline to the underutilized partition, which would lead to a legal

source/target cut combination.

Next, cells in subareas are spread to be distributed evenly. The spreading method used is

proposed in SimPL, which splits the subarea into 10 same sized target bins and splits the cells

into 10 same capacity source bins. Mapping cells from their original locations in their source

bins to new locations after spreading in the target bins is acquired by using linear interpolation.

The processes mentioned above, both cut generation and spreading, are done recursively

for each left and right subareas, alternating between x and y cut directions, until a single block

remains in each subarea.

In case of not finding a legal cut, the recursion jumps up one level and switches to a

largest-first greedy packing algorithm, placing blocks in non-increasing order into positions as

close as possible to the ones given by the solver results.

One of two conditions must be met as a stopping criterion: HPWL for the legalized

placement has stalled for a number stallmax of iterations or the quality of the solved solution

is close enough to the quality of the legalized solution, such that there’s no need for further

improvements.

They compare themselves to a tool called QUARTUS II from Altera (QUARTUS. . . , )

for placing and routing Altera Cyclone II 90nm FPGA family (ALTERA. . . , ). Table 2.1 shows

the results of the comparison between the two placers when the flow is not timing-driven. “WL”

columns report postrouted wirelength in micrometers (divided by 1000 ), “MHz” columns give

the circuit speed in MHz, and “RT” columns report placement run-time in seconds.

Table 2.1: Comparison between HeAP and non timing-driven Quartus II flow. (GORT; AN-
DERSON, 2012)
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The last three columns give the ratios of Quartus II to HeAP for wirelength and maxi-

mum frequency, and the speedup in runtime achieved by HeAP over Quartus II. The last row of

the tables gives the geometric mean across all circuits. We see that HeAP offers a 4.1 speedup

comparing to Quartus II’s non timing-driven flow, at a 5% cost to wirelength and roughly flat

maximum frequency.

2.1.2 StarPlace

StarPlace (XU; GRÉWAL; AREIBI, 2011) uses a new net model called star+, an ex-

tension of the star model. The new model is continuously differentiable, meaning minima can

be found analytically, and incremental changes caused by block movement are computed in

O(1). Star+ model addresses weaknesses of the more common routing cost approximations.

Compares itself with HPWL and quadratic wirelength approximation. HPWL lacks accuracy

on nets with more than three terminals and is not minimizable. With quadratic approximation,

minimization is possible, but large nets are favoured.

The star+ model is a linear-like objective function. It takes the distance from all blocks

of the net to the net’s center of mass, squares it, adds a positive number phi, takes the square

root and multiplies by a factor gamma, which is a factor to compensate underestimation of

wirelength. When phi is positive, the model is always differentiable. Benefits of this model

are constant complexity update caused by block swapping and linearity, which addresses the

problem of bias towards big nets. Using HPWL with this model, when compared to VPR,

the current state-of-the-art placer based on simulated-annealing that will be mentioned next,

resulted in lower critical-path delays and an average 9% runtime improvement.

An analytic approach is then presented using the star+ model. It iteratively solves a

system of non-linear equations and partitions solution to converge towards a legal placement.

Conjugate Gradient (CG) (HESTENES; STIEFEL, 1952) and successive over-relaxation (SOR)

(HADJIDIMOS, 2000), two solvers for non-linear equations, are compared alongside VPR’s

simulated annealing.

The two solvers are outperformed by VPR in regards of wirelength, but they are much

faster and reduced critical path delay when compared to VPR. In particular, the SOR method

is 78% faster than VPR, has an increased wirelength of 1.1% and reduces critical path delay

by 8.7%. The authors also highlight that wire-length is usually less important than critical path

delay.
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2.2 Stochastic: Simulated-Annealing Based

2.2.1 VPR: Versatile Place and Route

One of the most well known state of the art FPGA placement algorithms is VPR (BETZ;

ROSE, 1997). The algorithm used is based on simulated annealing. The cost function is a linear

congestion cost function, which is a sum of the horizontal and vertical spans of the nets’ bound-

ing boxes. The span is then divided by the average channel capacity and the result multiplied

by a factor to prevent underestimation of net sizes.

The annealing schedule starts with a random placement of the circuit. Defining N as the

number of blocks in the circuit, the algorithm performs N pairwise swaps of logic blocks, and

computes the standard deviation of the cost over the N movements. To ensure any movement is

possible at the start of the annealing, the initial temperature is set to 20 times the deviation.

Figure 2.3 shows superficially what VPR does in its flow.

Figure 2.3: VPR CAD flow. (BETZ; ROSE, 1997)

The number of moves for each temperature is 10 times N . The temperature is updated

according to the rate of acceptance of the movements. A factor α multiplies the temperature

after every 10*N moves, and it has a value that depends on the rate of acceptance of the move-

ments performed, trying to keep the rate of acceptance close to 0.44 for as long as possible

(because, according to (LAM; DELOSME, 1988), who developed a theoretically derived statis-

tical annealing schedule, the optimum acceptance rate of proposed new configurations is 44%).

Also, a range limiter is present. Blocks can only be swapped with blocks closer than a

distance D. This distance is updated alongside the temperature, and also depends on the rate of

acceptance. The new limit is the old limit multiplied by a factor of (1− 0.44 +R), being R the
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rate of acceptance of the movements. With many movements being accepted, R is closer to 1,

and the distance limit increases, and when it is closer to 0 the window becomes smaller.

VPR outperformed every comparable algorithm back in the time of its launching (1997)

in number of tracks required for routing. It requires 10% less tracks when compared to TRACER

(LEE; WU, 1997), the second best on the comparisons, and 13% less than the third runner up,

which is VPR combined with SEGA (LEMIEUX; BROWN; VRANESIC, 1997) detailed placer.

It is worth mentioning that the benchmarks used for the comparisons are no bigger than

8383 logic blocks, which is too small for modern FGPAs.

Although the classic version being too simple (only reaches homogeneous FPGAs) and

being too slow for large circuits (runtime bottleneck of simulated annealing), VPR is important

because it is one of the foundations of modern FPGA placement and because it still manages to

outperform modern day algorithms in wirelength (even though more wirelength may not be a

big issue if the signal that passes through the wires has a large frequency).

Many algorithms of nowadays consist partially of making some changes to VPR’s struc-

ture, such as the next algorithm in 2.2.2.

2.2.2 Congestion Driven Placement

The work "A Congestion Driven Algorithm Placement For FPGA Synthesis" (ZHUO;

LI; MOHANTY, 2006) aims to improve the standard wire cost function. The authors argue that

nets that overlap cause congestion, so there must be a trade-off between net size and overlap.

The new factor CC (congestion cost) penalizes logic block slots that are inside the bounding

boxes of multiple nets. The introduction of such factor reduces the channel width by an average

of 7.1% and critical path delay by 0.7% when compared to the default VPR. Figure 2.4 displays

the cost function that was used formerly by VPR and Figure 2.5 displays the congestion factor

they made for overlapping nets to join the former equation that is shown in Figure 2.4, which

uses sempiperimeter-based logic.

The algorithm in Figure 2.6 is simulated-annealing based and uses the wiring cost func-

tion of VPR, with another factor that takes into account the congestion that happens when there

are overlaps. There is a multiplication factor called CC, it has an exponent that is dynamically

decreased as the temperature cools down.
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Figure 2.4: Semiperimeter-based logic cost function applied to VPR.

Figure 2.5: Congestion factor that multiplies the wire cost now

Figure 2.6: Simulated annealing based algorithm (ZHUO; LI; MOHANTY, 2006).
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Table 2.2 was extracted from (ZHUO; LI; MOHANTY, 2006), and it shows the results

comparing this algorithm ("ours" in the table) with VPR and VPRb, which is a version of

VPR that is run without the timing-driven constraints in the cost function, so it just focuses on

congestion and is similar to the algorithm in Figure 2.6. CP is critical path delay, to show that

this algorithm doesn’t make the original solution worse, and CW is channel width for routing.

Circuit
VPR VPRb Ours

CP CW CP Ratio CW Ratio CP Ratio CW Ratio minExp maxExp
tseng 55.62 8 71.56 1.2866 7 0.875 53.65 0.9646 7 0.875 1 2
apex4 93.25 14 131 1.4048 13 0.9286 92.75 0.9946 13 0.9286 1 3
misex3 95.74 12 107.7 1.1249 11 0.9167 82 0.8565 11 0.9167 1 3
dsip 70.79 7 82.14 1.1603 6 0.8571 66.62 0.9411 6 0.8571 1 4
ex1010 195.3 12 206.1 1.0553 10 0.8333 182.6 0.935 11 0.9167 2 4
clma 228.4 14 243.7 1.067 13 0.9286 213.7 0.9356 13 0.9286 3 5
diffeq 101.5 8 93.38 0.92 7 0.875 63.44 0.625 8 1 1 3
spla 203.1 15 181 0.8912 14 0.9333 158.9 0.7824 15 1 1 4
seq 95.72 12 109.7 1.1461 12 1 81.65 0.853 12 1 1 3
elliptic 137.2 12 187.1 1.3637 11 0.9167 126.8 0.9242 11 0.9167 1 4
pdc 193.5 19 211.3 1.092 17 0.8947 198.9 1.028 17 0.8947 2 4
frisc 135 14 176 1.3037 12 0.8571 142.7 1.057 13 0.9286 1 4
bigkey 78.56 7 88.7 1.1291 7 1 99.46 1.266 6 0.8571 1 4
des 121.2 8 114.7 0.9464 8 1 124.2 1.0248 7 0.875 1 4
alu4 82.1 11 121.7 1.4823 10 0.9091 98.93 1.205 10 0.9091 1 3
apex2 90.02 12 134.8 1.4974 11 0.9167 111.8 1.242 11 0.9167 1 3
ex5p 84.06 15 129.4 1.5394 13 0.8667 87.1 1.0362 13 0.8667 1 1
s298 135.7 8 204 1.5033 8 1 148.5 1.0943 8 1 1 4
s38417 103.3 8 156.9 1.5189 7 0.874 112.3 1.087 8 1 2 5
s38584.1 97.92 8 126.7 1.2939 8 1 98.21 1.003 8 1 2 5
Ave. 1.2363 0.9192 0.9928 0.9294

Table 2.2: Results of the comparison between Congestion Driven Placement, VPR and VPRb
(ZHUO; LI; MOHANTY, 2006).

2.3 Simultaneous Timing Driven Clustering and Placement (KARYPIS; KUMAR, 2000)

for FPGAs

The authors explain that an efficient clustering requires placement information, which

is possible if you optimize both simultaneously. It achieves better results than VPR alone in

wirelength as well as critical path delay.

Table 2.3 displays the results within a table with respect to wirelength, which is the main

goal of the work proposed here, explained in more detail in Chapter 4.
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Circuit VPR SCPlace Improvement
ex5p 112.47 98.91 13.71%
apex4 113.639 101.45 12.02%

misex3 123.616 105.63 17.02%
tseng 94.9456 70.57 34.55%
alu4 123.03 104.68 17.53%
dsip 195.544 138.69 41.00%
seq 173.641 152.99 13.50%

diffeq 132.271 107.2 23.39%
apex2 190.324 165.73 14.84%
s298 166.899 164.96 1.17%
des 278.122 257.286 8.10%

bigkey 171.986 196.81 -12.61%
spla 426.227 352.635 20.87%

elliptic 359.011 284.821 26.05%
ex1010 463.618 364.774 27.10%

pdc 704.286 580.969 21.23%
frisc 584.732 482.289 21.24%

s38584.1 576.457 354.476 62.62%
s38417 696.701 494.657 40.85%
clma 1701.02 1271.88 33.74%
Ave. 21.89%

Table 2.3: Results of the comparison between Simultaneous Timing Driven Clustering and
Placement (SCPlace) and VPR in terms of wirelength, using the total weighted bounding box
wirelengths as the only optimization objective, in which both algorithms are given initial clus-
tering solutions. They outpreform VPR in terms of wirelength improvement by 22% on aver-
age.(CHEN; CONG, 2004).

2.4 Summary

Table 2.4, below, summarizes the main characteristics of the works that were mentioned

previously in Section 2.1, 2.2 and 2.3.

Parameter VPR HeAP Congestion
Driven

Simultaneous
Timing Driven

Packing
Technique

V-Pack
(clustering BLEs)

Omitted, but invoked
in few cases V-Pack During placement

Placement
Technique

Simulated Annealing
(stochastic)

Based on Simpl,
bipartitions

VPR with
cost insertion

Quadratic programming

Table 2.4: Summary of the main characteristics of the works that were cited previously.
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2.5 HMETIS (KARYPIS et al., 1999) and (KARYPIS; KUMAR, 2000)

HMetis is a software package for partitioning large hypergraphs that implements the con-

cept of multilevel partitioning based on the partitioning described in (KARYPIS et al., 1999)

and (KARYPIS; KUMAR, 2000). Figure 2.7 displays the difference between a traditional par-

titioning approach and a multilevel one. It is said to deliver partition solutions that are consis-

tently better than KL (KERNIGHAN; LIN, 1970), FM (FIDUCCIA; MATTHEYSES, 1988)

and other popular partition algorithms would.

HMETIS’s step by step flow follows what is mentioned above, that is, a phase of coars-

ening for producing a sequence of successive smaller graphs, an initial partition solution for

the coarsened graph (hMETIS uses the algorithm of multiple random bisections followed by

the Fiduccia-Mattheyses(FM) refinement algorithm in this step), successive uncoarsening and

partition refinement of the graph, and, finally, a refinement step which they call "V-cycle".

Figure 2.7: (a) Traditional partitioning algorithms and (b) multilevel partitioning algorithms.
(HMETIS. . . , )

The version of HMetis utilized in this work is the last version, published in 2007, for

which the developers did not provide full disclosure regarding the changes made in the "V-

cycle" refinement algorithm, but the first version of this algorithm is implemented as follows:

it consists of two phases, the coarsening and the uncoarsening phase. The coarsening phase

preserves the initial partitioning that is input to this algorithm. the groups of vertices that are

combined to form the vertices of the coarse graphs correspond to vertices that belong only to one

of the two partitions. As a result, the original bisection is preserved through out the coarsening

process, and becomes the initial partition from which we start performing refinement during

the uncoarsening phase. The uncoarsening phase is identical to the uncoarsening phase of
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the multilevel hypergraph partitioning algorithm described earlier. It moves vertices between

partitions as long as such moves improve the quality of the bisection.

The 2007 version also carries these changes: a new set of coarsening schemes that lead

to better and more stable cuts, better refinement routines for circuits with non-unit cell weights,

floating point numbers for cell and net weights, support for 64 bit architectures and KPM-based

k-way refinement routines.

2.6 Top 3 Placement Algorithms of ISPD 2016 Competition

2.6.1 GPlace

Gplace (PATTISON et al., 2016) consists of two tools altogether: GPlace-pack and

GPlace-flat. I was based on the tool StarPlace, mentioned in Subsection 2.1.2, developed by

the same authors. GPlace-pack is an adaptation of StarPlace for the Ultrascale TM. In this al-

gorithm, before packing stage, cells are spreaded randomly, and a simple optimization aiming

wirelength is applied, in a similar fashion to Star+, but trying to maintain the cells near the

regions they belong to, for example, LUTs near slice slots, and RAMs near RAM slots.

After that the circuit region is split into bins. Inside each bean, a cell is selected to be the

seed of a slice. The other cells in the bin are added to the slice in case they do not violate any

legalization constraint and do not contribute to the slice with many external pins (as the cost for

connections external to the slice is not zero as it is inside the slice). The candidates for being

selected to be placed within the slice are ordered by affinity to the slice, meaning, in this case,

the number of edges (external connections) between the candidate and the slice. From the cells

of the bins that were not clusterized into a slice, another cell is selected to be the seed of a new

slice, and so on, until there are no more unclusterized slice-type cells.

GPlace-pack estimates routing cost using wirelength per area, in which, the wire length

model used is the weighted half-perimeter wirelength of VPR, the algorithm mentioned in Sub-

section 2.2.1.

After the Contest, they developed GPlace-Flat, which has no explicit packing stage.
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2.6.2 UTPlaceF

UTPlaceF (LI; DHAR; PAN, 2018) was the algorithm that took the first place at the

ISPD Contest. It has, as main contributions, a packing algorithm that uses placement informa-

tion, congestion control techniques, and a detailed placement that improves wirelength without

worsening routability.

The flow starts with a quadratic placement, an approximate legalization, then, optimizes

wirelength and improves density. After a satisfactory solution is reached, one in which wire-

length in limited by a certain threshold, detailed placement begins, running three iterations of

it, each one beginning with a congestion estimate. Based on the estimate, cells that occupy

congested regions are swollen, occupying a bigger area. With this new area, another iteration

of quadratic placement is done, and the solution goes under approximate legalization. At this

moment, cells that are non slice-type, meaning RAMs, DSPs and IOs are legalized and moved

with the objective of preserving the global density.

After three iterations, if HPWL is within a certain threshold, packing stage begins. If

not, three more iterations are performed, until HPWL is, finally, limited by the threshold. In

packing, each LUT whose fan out is one, a connection with an FF, makes a LUT-FF pair with

it. The pairs formed are combined when they respect the legalization rules, and then slices that

are disjoint are merged. If packing extrapolates a maximum amount of slices, it is remade with

the relaxation of some criteria, until the amount of slices is under the limit.

After packing another quadratic placement is performed, this time, considering slices as

cells, abstracting LUTs and FFs, and considering the placement initial information acquired at

the beginning of the flow. Finally, the placement final solution is legalized, giving priority to

congested regions.

2.6.3 RippleFPGA

RippleFPGA (PUI et al., 2016) consists of partitioning, packing, global placement with

congestion estimation, window-based legalization and routing resource-aware detailed place-

ment, in a fashion similar to ASIC placement. It starts with partitioning, considering the cells as

a set of vertices V and the connections among them as a set of edgesE of the graphG = (V,E),

setting the weights of the edges wu,v to be the number of nets that connect vertices u and v.

They partition the graph G into two clusters recursively until the sizes of the clusters are

too small (set as 25% of the total number of vertices of G, and the minimum cut should be, at
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most, 5% of the total number of nets). The resulting clusters are stored as leaves of a tree called

clusterTree.

In global placement, the initial position of each cluster is determined by the connections

to IO and the connections between the clusters. Since the connections to IO have small con-

tribution in the routed wirelength, their reallocation algorithm only minimizes the disturbance

with respect to the connections among clusters. A few iterations of global placement (quadratic)

are performed with legalization for RAM and DSP cells in between the process, until finding

the physical location of each cell considering their connections globally. The global placement

phase is also congestion driven, utilizing a congestion map for the circuit, build according to

the net bounding box, estimating routing congestion by how many nets may use the routing

resources of that site, by accumulating the number of bounding boxes overlapping a site.

In the stage of packing, they group LUTs and FFs into BLEs (basic logic element), each

one consisting of one single LUT and one or more FFs that are connected to it. After that, they

try to merge two BLEs into one if they respect certain constraints.

After this stage, they perform the legalization only of the BLEs into the slices, deciding

when to place the whole BLE into a slice as a single block and when to split it into its basic

components, LUT and FF cells, and place them by themselves within slices. If they decide

to keep the BLEs as blocks, they will mat them into their positions in the next stage, detailed

placement. The final stage is detailed placement, they perform BLE assignment to slices and

slice swapping.

2.6.4 Summary

Table 2.5, below, summarizes the main characteristics of the works from the Top 3 that

were mentioned previously in this section and also UFRGSPlace, which took the fourth place.

Parameter UTPlaceF RippleFPGA GPlace UFRGSPlace

Packing
Technique

Position based
merges

Position based
merges Bin based Net based

Placement
Technique

POLAR
(quadratic)

Ripple
(quadratic)

StarPlace
(quadratic)

Quadratic

Congestion
Estimation

Density based
cell bloating

Weighted bounding box
per GCell

Wire-length
per area HPWL

Table 2.5: Summary of the main characteristics of the works that were cited previously.
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3 PROJECT RULES AND EVALUATION METHOD

In this chapter, the project rules and evaluation method for the ISPD Contest are ex-

plained. The tool that was developed in this work was tested using the benchmark suite provided

by this contest, therefore, supports all the design constraints that the contest proposed.

The ISPD 2016 Contest (ISPD. . . , 2016) was about routability-driven FPGA placement

for Xilinx’s Ultrascale architecture. The contenders should provide a placement solution con-

cerning routability, which not only can consist of minimizing wirelength, but also optimizing

the use of routing resources, especially having in mind that some congested areas may appear

after routing. The benchmark suite used to obtain all the results shown in this work was the one

provided for this contest.

Regarding routability, CAD tools for physical design must perform with balanced use of

routing resources to be up to date with competitive high-performance architectures of nowadays.

While the wider bus implementation in FPGAs that aid in applications that demand large data

throughput might lead to the need for a lower system clock frequency, significant timing-closure

challenges now arise due to a lack of routing resources required to support systems with wide

buses. With this in mind, the bottleneck of the routing problem regarding throughput becomes

the lack of routing resources (especially, wider bus wire resources in antiquated FPGAs) other

than the clock frequency.

Some FPGA vendors use algorithms based on simulated annealing, which are blind to

global design metrics (otherwise, the algorithms would be way too slow), hence, these place-

and-route algorithms contribute to aggravate this situation of being up to date with the demands

of the applications.

When modern day architectures such as Ultrascale are taken into consideration and het-

erogeneity becomes present, not only there might be a need for wider buses as mentioned,

but also the number of cells may increase dramatically. The concern about the scalability of

the flow is, as well, a sign of the upcoming obsolescence of a pure simulated annealing ap-

proach (KIRKPATRICK; GELATT; VECCHI, 1983). The top five tools on ISPD 2016 Contest

(ISPD. . . , 2016) all implemented quadratic flows for placement.

3.1 Inputs, Outputs and Metrics

As input, the organizers provided a benchmark suite using enhanced bookshelf format.

Each design in the benchmark suite had the following files:
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• design.aux: auxiliary file listing the files as the input of the placer;

• design.nodes: as shown in Figure 3.1, a snippet from the file, specifies instance/object

attributes (name, master cell and dimensions etc.);

Figure 3.1: Snippet from nodes file.

• design.nets: as shown in Figure 3.2, a snippet from the file, specifies the set of nets in the

design;

Figure 3.2: Snippet from nets file.

• design.pl: specifies the location of the instances/objects including I/O and fixed instance

locations;

• design.scl: as shown in Figure 3.3 and Figure 3.4, (enhanced) extended from the original

bookshelf format to represent FPGA placeable area and architecture specific placement

information;

• design.wts: currently unused as all instances/objects and nets have the same weight;

• design.shapes: (new to the bookshelf format, not actually provided in the benchmarks)

specifies the shapes/groups of the instances/objects that are placed together.

The placement result for each benchmark was then evaluated by the routing tool Vivado

Router (VIVADO. . . , 2016) by Xilinx Inc.

These were the evaluating criteria:

1. Legality of the placement

2. Routability of the placement (routable or not within a time-out limit, 12 hours)

3. Routed total wire-length

4. Placement runtime
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Figure 3.3: Snippet from scl file.

Figure 3.4: Another snippet from scl file.

Metric is in Equations 3.1 and 3.2, where RuntimeFactor is between -0.1 and 0.1, there

is 1% scaling factor for every runtime reduction or addition of 10% against the median runtime

of all place and route solutions. Hence, the runtime factor is a means of penalizing or rewarding

a solution by a character of up to 10% regarding its runtime. Routed wirelength is the base of

the score.

Score = RoutedWirelength ∗ (1 +RuntimeFactor) (3.1)

RuntimeFactor = −(Runtime−MedianRuntime)/10.0 (3.2)

3.2 Rules and Main Information

As previously mentioned, placement must be implemented for a heterogeneous architec-

ture, where the space for each CLB is called "SLICE", and "SITE" for BRAM and DSP blocks.

The dimensions for each FPGA that was benchmarked are of 168 rows and 480 columns.

Aside from having to assign row-aligned positions to the components, they must as well

be inserted in the right places for their type, for instance, a LUT cell must be inserted in a slot

called "SLICE", a BRAM cell must be inserted in a slot for BRAMs, not in a "SLICE". That’s

why the legalization step is more complex than it would be for ASICs (just the general concept

of legalization, as, of course, there are different constraints that may be applied for each, which

would increase the difficulty). There is one specific kind of slot for each type of cell, so there is
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not as much freedom to move as it would be in a simple case scenario legalization for an ASIC.

As for the FPGA components, DSP cells will go inside the DSP site, IO cells will go

inside the IO site, and so on, except for the "SLICE", where CLB components will fit: there are

three different types of cell that go there, which are FLIP-FLOPs, LUTs and CARRY8s.

The step in which we assign "SITE" positions for FLIP-FLOPs, LUTs and CARRY8s,

clustering them, is called "PACKING". This step must be performed in agreement with "SLICE"

legality, referring to internal "SLICE" connectivity rules.

Each CLB "SLICE" contains 33 different slots that cells should be assigned to: 16 for

LUTs, 16 for FFs and 1 for CARRY8. Below, the packing rules:

• LUT Packing

• If implementing a 6-input LUT with one output, one can only use LUT 1 (leaving

LUT 0 unused) or LUT 3 (leaving LUT 2 unused) or ... or LUT 15 (leaving LUT 14

unused).

• If implementing two 5-input LUTs with separate outputs but common inputs, one

can use LUT 0, LUT 1 or LUT 2, LUT 3 or ... or LUT 14, LUT 15.

• The above rule of coming LUTs with separate outputs but common inputs, holds

good for 5-input LUTs (as mentioned above) or fewer input LUTs as well.

• If implementing two 3-input (or fewer input) LUTs together (irrespective of com-

mon inputs), one can use LUT 0, LUT 1 or LUT 2, LUT 3 or ... or LUT 14, LUT

15.

• FF Packing , with distribution shown in Figure 3.6

• All FFs can take independent inputs from outside the SLICE, or outputs of their

corresponding LUT pair (FF 0 can take LUT 0 or LUT 1 output as input, ..., FF 15

can take LUT 14 or LUT 15 output as input).

• All can be configured as either edge-triggered D-type flip-flops or level-sensitive

latches. The latch option is by top or bottom half of the SLICE (0 to 7, and 8 to 15).

If the latch option is selected on an FF, all eight FFs in that half must be either used

as latches or left unused. When configured as a latch, the latch is transparent when

the clock input (CLK) is High.

• There are two clock inputs (CLK) and two set/reset inputs (SR) to every SLICE for

the FFs. Each clock or set/reset input is dedicated to eight of the sixteen FFs, split

by top and bottom halves (0 to 7, and 8 to 15). FF pairs (0,1 or 2,3 or ... or 14,15)

share the same clock and set/reset signals. The clock and set/reset signals have pro-
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grammable polarity at their slice inputs, allowing any inversion to be automatically

absorbed into the CLB. Figure 3.5 displays the distribution of signals.

Figure 3.5: FFs clock and control distribution.

• There are four clock enables (CE) per SLICE. The clock enables are split both by top

and bottom halves, and by the two FFs per LUT-pair. Thus, the CEs are independent

for: FF 0, FF 2, FF 4, FF 6 , FF 1, FF 3, FF 5, FF 7 , FF 8, FF 10, FF 12, FF 14 , FF

9, FF 11, FF 13, FF 15.

When one storage element has CE enabled, the other three storage elements in the

group must also have CE enabled. The CE is always active High at the slice, but

can be inverted in the source logic. For FFs without any net connections to CE

pin, Vivado TM software automatically inserts a constant 1, so they are not to be

combined up with other FFs that have their CE pins connected

• The two SR set/reset inputs to a SLICE can be programmed to be synchronous or

asynchronous. The set/reset signal can be programmed to be a set or reset, but

not both, for any individual FF. The configuration options for the SR set and reset

functionality of a register or latch are: No set or reset, Synchronous set (FDSE

primitive), Synchronous reset (FDRE primitive), Asynchronous set (preset) (FDPE
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primitive), Asynchronous reset (clear) (FDCE primitive). The SR set/reset input

can be ignored for groups of four flip-flops (the same groups as controlled by the

CE inputs). When one FF has SR enabled, the other three FFs in the group must

also have SR enabled.

• The choice of set or reset can be controlled individually for each FF in a SLICE. The

selection of synchronous (SYNC) or asynchronous (ASYNC) set/reset (SYNC_ATTR)

is controlled in groups of eight FFs, individually for the two separate SR inputs.

Figure 3.6: FF Packing (ISPD. . . , 2016).

Figures 3.7 and 3.8 illustrate a bit more how this process applies. It is important to pack

the slices efficiently, because the routing cost inside each slice is zero. Figure 3.7, associates the

occupation of the slices with the wirelength, being the right side’s packing distribution denser,

having more than one slice fully packed, against the more sparse packing from the left side,

and, assumingly, more wirelength.
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Figure 3.7: Packing (XILINX. . . , 2014).

In Figure 3.8, a LUT6 is in the slot 0. As it is a LUT6 and, therefore, uses 6 inputs,

the other LUT in the pair (slot 1) must be left unused. Also, LUT3 must only drive up to two

flip-flops inside the same slice, and they must be accommodated in the same LUT-FF pair that

LUT3 is at.

Figure 3.8: Some of the LUT rules.
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3.3 Benchmark Information

Table 3.1 show how many cells of each type there are in the benchmarks of the ISPD

2016 Contest. For example, in benchmark 2, there are 100 DSP cells (DSP48E2), 100 RAM

cells (RAMB36E2), 98K LUTs, 74K flip-flops (FDRE) and 150 I/O cells (IBUF and OBUF).

The benchmarks have a much more significant number of "SLICE" type cells, which means that,

as all "SLICE" cells need to be packed, the packing stage has a high impact on the placement

solution.

Benchmark #LUT #FF #RAM #DSP #IO
FPGA01 49K 55K 0 0 150
FPGA02 98K 74K 100 100 150
FPGA03 245K 170K 600 500 400
FPGA04 245K 172K 600 500 400
FPGA05 246K 174K 600 500 400
FPGA06 345K 352K 1000 600 600
FPGA07 344K 357K 1000 600 600
FPGA08 485K 216K 600 500 400
FPGA09 486K 366K 1000 600 600
FPGA10 346K 600K 1000 400 600
FPGA11 467K 363K 1000 400 600
FPGA12 488K 602K 600 500 400

Table 3.1: Xilinx benchmark statistics.
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4 UFRGSPLACE PLACEMENT ALGORITHM

This algorithm is divided into two flows, almost identical to one another. Both have

the same stages of placement and packing explained in detailed below, with the difference that

the 2018 version, outlined in Section 4.6, implements the partitioning algorithm HMetis for

delivering partitions of cells to the packing stage instead of nets, as in the tool developed for the

ISPD 2016.

4.1 Packing

Upon parsing the input files, the tool has access to all cells and nets. However, for most

of the cases, cells aren’t directly placeable into the circuit. The complex cells - that is, RAM

and DSP blocks - can be directly placed, but all LUTs, FFs and IO cells must be packed first.

The actual structures that can be placed for these cases are slices and IO blocks. The IO block

is elementary: 64 IO cells are allowed inside it, with no legalization issues at all. The slices, on

the other hand, are very intricate and troublesome when it comes to legalization. There are 16

slots for LUTs, another 16 slots for FFs and one slot for a CARRY8.

The good aspect of packing is that routing inside slices is entirely free when it comes to

resource usage. That means an algorithm that can effectively deal with legality and generate an

outstanding packing result reduces the difficulty of the placement dramatically, creating slices

with reasonable connectivity and a small number of placeable objects. After all cells are packed,

the actual placement can take place.

4.2 Placement

Given a set of blocks - which can be RAM, DSP, IO blocks or slices -, a placement

algorithm is used to determine in which slot every block will be placed. There are specific

slots for each type of block. This could effectively make legalization heavily interfere with the

initial placement it was given, which is very undesirable. An example of a situation that could

potentially happen when this isn’t taken into account is a DSP block that happened to be placed

in the middle of a "slice-only" region. It will suffer a rather large displacement towards a valid

position, increasing dramatically the routing resources necessary to route its nets - especially

when one considers that it was initially placed in that specific region because it is connected to
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cells there.

With this in mind, we developed a placement flow that consists of packing, placement

and legalization.

4.3 2016 Contest Placement Flow

Initially, without taking into account the actual architecture and clusters, we perform a

quadratic placement. Given the result of this initial placement (seen in Figure 4.1), we legalize

all complex cells (RAM, IO and DSP), trying to move all of them to positions that are nearest

to the ones they had in the initial placement solution, as seen in Figure 4.2.

Figure 4.1: Initial quadratic placement. Rectangles in black are fixed IO cells, rectangles in red
are FF and LUT cells, blue rectangles are DSP and green rectangles are RAM.

The objective with this sequence of steps is making sure the lack of freedom of the

position of these cells is compensated by placing them first, so that the other cells - especially

slices, which have much more freedom - can be placed closer to the complex cells with which

they share connections. We also spread the cells that were attracted to a single region after

quadratic placement. We tried to spread the cells radially so that they would move equivalently,

and we used the clique model for nets with up to 4 nodes and the star model for bigger nets

(Figure 4.3).
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Figure 4.2: Legalization of DSP and RAM..

Figure 4.3: Radial spreading of slice cells during a quadratic placement flow.

After this initial step, a new quadratic placement is performed (similar to the first one, but

only with slice cells) and a packing flow. The structure of a slice is fundamental to understand
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the legality constraints. The idea of our particular flow is removing whole nets from the circuit

when possible. To accomplish this, the whole net must be inside a single slice, which is difficult

because of legality constraints.

The nets are sorted in decreasing size because we want to fit a whole net into as few

slices as possible (remembering that the routing cost inside a slice is zero). Starting with the

smallest nets will allow this to occur more often than not. We used two pointers to manage the

list of slices we are using when packing a net. These two pointers allow for quick access to

a slice that has a good chance of being suitable to fit the cell. Not needing checking on every

slice is important because it would be too slow for the bigger nets. When the cell could not be

packed, due to the legality or the slice being full, the pointer points to the next slice, be it an

already partially used slice or a brand new one.

For nets that start with a large number of LUTs followed by a large number of FFs, the

pointer for a slice with free FFs will remain untouched until FFs start getting placed, while the

pointer for the slice with free LUTs will go further on its own.

The function packCell is optimized in the sense of using the slots entirely. There is

a check for signal sharing that would make it legal for it to occupy a position, and the rule

for FFs placed together with sink LUTs is checked as well (rules were mentioned in Chapter

3, Section 3.2). Figures 4.4, 4.5 and 4.6 show what it would be like to perform the packing

functions. Packing poses as a challenge because of legality constraints. However, it is beneficial

to routability, because connections inside a slice don‘t use any routing resources, therefore, have

no cost.

Our algorithm keeps track of the last slice with free space for FFs and the last slice with

free space for LUTs. So we can always know which ones are available for LUTs and FFs.

This way, when we are packing a large set of cells, we won‘t have a massive overhead looking

through many slices for a free and legal spot. Finding slices with room for FFs is of much need,

because, as in Figure 4.4, LUT 1 is the driver of FF 2 and also of FFs from 5 to 10, and one

LUT may only be in the same slice as the maximum of two of its FF sinks. The other FF sinks

must, then, be packed somewhere else.

Figure 4.5 shows how the net with blue and orange cells would be clustered. Its LUTs

can occupy slice 1, but only two of the sink FFs can fill the same slice as the driver LUT 1. The

others are clustered in slice 2, respecting the signal rules. Figure 4.6 shows an example of a

merging of two slices into one. To respect legality, however, many slices are left with a single

type of cell packed in them. Another step (Figure 4.6) on the packing flow will address this

problem.
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Our algorithm tries to pack a whole net in the least amount of slices possible. If a net

happens to be packed entirely in a single slice, we effectively save routing resources.

The pointers to the last slice with free space are updated when the packing fails. There

is no attempt of trying to place a cell on a previous slice, nor trying to see which legality rule

would have been broken. This is because packing is already a prolonged process, and adding a

considerable overhead must carry its own weight;

The problem with this algorithm is that it generates too many slices, making it impossi-

ble to place. This is due to the large number of small nets - with 2 or 3 cells. These tiny nets are

packed using a single slice, because it would require too much overhead of management to try

fitting them into some other slice previously used by another net. This leaves most slices in the

circuit with a huge waste, with nearly 90% of the slice being left unused.

To address this issue, we chose to apply a merging flow after all cells were packed (which

is also a means of optimizing the wirelength), with an example shown in Figure 4.6.

There are four types of merges we perform:

• LUT only: merges slices with only LUTs in them;

• FF only: merges slices with only FFs in them;

• FF and LUT merge: merges slices with only LUTs with slices with only FFs;

• Mixed merge: merges slices with both LUTs and FFs freely.
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Figure 4.4: Packing CLB cells (FFs and LUTs) into slices part 1.

Figure 4.5: Packing CLB cells (FFs and LUTs) into slices part 2.

Figure 4.6: Example of merging two slices.

The algorithm for the merges is as follows in Algorithm1:
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Algorithm 1 Merge Algorithm

forall slice1 in slices do

forall slice2 in slices do

if slice1.isLUTOnly and slice2.isLUTOnly then
MERGELUTONLYSLICES(slice1, slice2)

end

if slice1.isFFOnly and slice2.isFFOnly then
MERGEFFONLYSLICES(slice1, slice2)

end

end

end

forall slice1 in slices do

forall slice2 in slices do
if (slice1.isLUTOnly() and slice2.isFFOnly()) or (slice1.isFFOnly() and

slice2.isLUTOnly()) then
MERGELUTANDFFSLICES(slice1, slice2)

end

end

end

forall slice1 in slices do

forall slice2 in slices do
MERGEMIXEDSLICES(slice1, slice2)

end

end

The reasoning behind this specific order is trying to reduce the number of slices for the

last iteration - merge mixed -, because it proved to be the best merge in terms of reducing the

number of slices but also very slow. None of the merge functions will do a partial merge - that

is, a merge where not all the cells could be reallocated to the other slice. This is because a

net that has been absorbed by a slice - that is, the slice contains all the cells of the net - could

reappear if we did partial merges. The situation this could occur is: slice1 contains 10 LUTs

and 3 FFs and slice2 contains 10 LUTs and 3 FFs.

Obviously, the slices cannot be merged completely because there are only 16 LUT slots

at most. We could do a partial merge such as: slice1 contains 16 LUTs and 6 FFs and slice2

contains 4 LUTs and 0 FFs.
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Since slice2 now becomes a great candidate to be merged with another slice, but if the

slice 2 contained an entire net, this net would stop being routed for no cost, since connections

will appear between the 4 LUTs left on slice2 and the cells moved to slice1.

The results were better, but not enough; runtime was prohibitive. To improve this sit-

uation, we implemented a pseudo-usage attribute for each slice. This attribute is increased as

more cells are packed inside the slice. Inserting a LUT will increase it by 1/16; inserting an

FF will increase it by 1/16, but inserting one or more FFs that have a LUT as the driver will

increase by more. Two FFs and a LUT driver will increase the pseudo-usage by 5/16, and one

FF with a LUT driver increase it by 3/16. The pseudo-usage then is used when selecting good

candidates to be merged. If the usage of two slices combined is more than a factor, the algo-

rithm doesn’t bother trying to merge them, since it is very likely not possible and potentially a

waste of precious time.

With this packing flow, we ended up with these results in Table 4.1 in terms of number

of slices after each step. It also displays the HPWL acquired for each benchmark. It can be

noted that the slice count slowly decreases during each stage. When the slices are merged by

the merge mixed algorithm, the count falls very rapidly. Given that the FPGA in question can

contain up to 67200 slices, this flow can place all benchmarks but FPGA12 successfully. Figure

4.7 shows the efficiency of merges in terms of reducing the number of slices. It can be noted that

the merges that are the most successful are "merge LUT", which merges LUT-only slices, and

"merge mixed", which merges mixed slices that have both LUTs and FFs. Slices that contain

only FFs are not many, and it might be more difficult to merge the slice’s FF area than the LUT

area, as there are stringent rules for the signals of the FFs when they are inserted in the slice.

Benchmark #slices initially #slices after LUT merge #slices after FF merge #Slices after LUT&FF merge #Slices after Mixed merge HPWL
FPGA 1 31331 22025 20310 18718 6562 4.10e06
FPGA 2 40297 27239 26639 24397 12268 7.35e06
FPGA 3 130296 79541 70336 60204 31725 4.04e07
FPGA 4 149725 90994 80206 71338 33000 4.61e07
FPGA 5 158684 94565 86762 78129 34821 5.62e07
FPGA 6 234703 157273 148915 133358 53669 9.96e07
FPGA 7 248988 151181 140741 121728 50034 1.09e08
FPGA 8 217897 129558 122590 112692 60576 1.07e08
FPGA 9 307801 167929 157024 134154 62967 1.59e08

FPGA 10 300117 217241 202391 188099 66056 1.34e08
FPGA 11 306115 205091 187716 172879 61419 1.44e08
FPGA 12 359239 266552 242697 225529 69448 1.79e08

Table 4.1: Number of slices before and after the merging steps.
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Figure 4.7: Number of slices being reduced through the flow. The dashed horizontal line stands
at the number of slices that can fit in the entire FPGA.

After the slices are generated and merged, we perform a simple quadratic placement

flow. The complex blocks are considered fixed, and the cells are not considered part of a slice

just yet. We perform a spreading force radially from the center of mass of the circuit, and spread

the cells with a force proportional to the distance from the center. When the quadratic flow is

done, all cells that belong to a slice are imploded into the center of the mass - calculated with

the cells in the slice.

Legalization then takes place. It is briefly summarized in Algorithm 2. It goes through

all slices and places them in the unused slice slot that is closest to the position of the slice after

the quadratic placement flow. Note that if there are more slices to be legalized than slice slots in

the FPGA architecture, this algorithm fails. In that case, the program is terminated completely,

and an error message is displayed.

Algorithm 2 Legalization

forall slice in slices do
PLACESLICE(slice, FINDCLOSESTLEGALPOSITION(slice.getPosition()))

end

Finally, we run a threshold acceptance algorithm as detailed placement. The refinement
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of the placement solution has the only objective of improving routability, not taking timing or

power into consideration. The metric used is HPWL, that is, half the perimeter of the bounding

box for a net (Algorithm 3):

Algorithm 3 Threshold Acceptance

while threshold < threshold_limit do
threshold = threshold*threshold_reduction_constant

option = RANDOM(0, 100)

if option < 90 then
hpwl_before = CALCULATEHPWL( )

SWAPTWORANDOMLYSELECTEDSLICES( )

hpwl_after = CALCULATEHPWL( )

if hpwl_after − hpwl_before > threshold then
UNDOSWAP( )

end

else
hpwl_before = CALCULATEHPWL( )

MOVERANDOMSLICETOEMPTYSPACE( )

hpwl_after = CALCULATEHPWL( )

if hpwl_after − hpwl_before > threshold then
UNDOSWAP( )

end

end

end

Whenever a movement is done, the algorithm checks if it respects the threshold accep-

tance approach. There are two possible movements, the first being a swap between two cells

and the second being a movement of a cell to a free position. The proportion of 90% swaps to

10% moves to empty spaces was determined empirically. After this optimization step is done,

the placement solution is outputted to the specified output file so the router can work on it.

4.4 Results of the competition ISPD

Table 4.2 shows the contenders that acquired the first three positions on the competition

and the fourth column with our results, as we got the 4th place. It must be noted that this

acquisition is, more than anything, due to the fact that it passed every single placement phase
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for all benchmarks, which means that all the benchmarks were placeable, with the exception

of the benchmark FPGA 12, where all the slices were legal, but the number of slice slots in

the FPGA is smaller than the number of slices generated. We believe running another merge

flow would reduce even further the number of slices generated, making the benchmark FPGA

12 placeable. As for all other benchmarks, our tool was able to place all cells without violating

any legalization rule or overusing resources. This leads to future work to be done, covered in

the next section.

Designs TOP 1 TOP 2 TOP 3 OURS
FPGA01 PLACE-ERROR ROUTED ROUTED PLACED
FPGA02 ROUTED ROUTED ROUTED PLACED
FPGA03 ROUTED ROUTED ROUTED PLACED
FPGA04 ROUTED ROUTED ROUTED PLACED
FPGA05 ROUTED PLACED PLACED PLACED
FPGA06 ROUTED ROUTED ROUTED PLACED
FPGA07 ROUTED ROUTED ROUTED PLACED
FPGA08 ROUTED ROUTED ROUTED PLACED
FPGA09 PLACED ROUTED PLACED PLACED
FPGA10 PLACE-ERROR PLACE-ERROR PLACED PLACED
FPGA11 ROUTED ROUTED PLACED PLACED
FPGA12 ROUTED PLACE-ERROR PLACED PLACE-ERROR

Table 4.2: Comparison with top 3 in ISPD 2016 Routability Driven FPGA Placement Contest.

Table 4.3 shows a comparison concerning wirelengths among our tool and three other

algorithms, the top 3 of the ISPD 2016 Contest. The values for the three algorithms are the ones

reported by Vivado; our values were measured by calculating HPWL. Even though HPWL is

not a very precise measurement, this is the measure that we used for comparison because the

benchmarks did not pass the Vivado routing stage. It delivered an error message saying that

more than 90% of the vertical wiring resources were being used, hence, the solution could not

be successfully routed.
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Design UTPlaceF RippleFPGA GPlace-flat Ours (HPWL)
FPGA01 3.84 ∗ 105 3.62 ∗ 105 4.93 ∗ 105 4.10 ∗ 106
FPGA02 6.52 ∗ 105 6.77 ∗ 105 9.03 ∗ 105 7.35 ∗ 106
FPGA03 3.18 ∗ 106 3.61 ∗ 106 3.90 ∗ 106 4.04 ∗ 107
FPGA04 5.50 ∗ 106 6.03 ∗ 106 6.27 ∗ 106 4.61 ∗ 107
FPGA05 1.00 ∗ 107 1.04 ∗ 107 7.64 ∗ 106 5.62 ∗ 107
FPGA06 6.41 ∗ 106 6.96 ∗ 106 - 9.96 ∗ 107
FPGA07 1.00 ∗ 107 1.02 ∗ 107 1.12 ∗ 107 1.09 ∗ 108
FPGA08 8.11 ∗ 106 8.87 ∗ 106 9.32 ∗ 106 1.07 ∗ 108
FPGA09 1.36 ∗ 107 1.29 ∗ 107 1.40 ∗ 107 1.59 ∗ 108
FPGA10 8.86 ∗ 106 8.56 ∗ 106 - 1.34 ∗ 108
FPGA11 1.08 ∗ 107 1.12 ∗ 107 1.23 ∗ 107 1.44 ∗ 108
FPGA12 8.24 ∗ 106 8.92 ∗ 106 - 1.79 ∗ 108

Table 4.3: Comparison with three tools running on ISPD 2016 benchmarks. UTPlaceF, Rip-
pleFPGA and GPlace-flat’s result are reported in routed wirelength reported by Vivado, and our
results were measured in HPWL.

4.5 Placement Flow With HMetis

In this section, the placement flow containing the implementation of the partitioning

algorithm hMETIS is presented. It is used mainly before the packing stage described in Chapter

3, as a new bias to clustering the CLB cells into slices. Before, the aim was to try to pack whole

net clusters into the same slices, as the routing cost inside a slice is zero. Now, the aim is to

pack whole partitions, even though it may only be possible idealistically.

4.5.1 Partitioning

Graph partitioning is a problem in which we consider a graph G = (V,E,Wv,We), in

which V corresponds to the graph’s set of vertices, E corresponds to the set of edges, Wv is the

set of vertex weights, and We is the set of edge weights. We have to choose a partition solution

in clusters V = V1UV2U....UNp such that the sum of the node weights in each set of vertices

is distributed evenly (load balance), and the sum of all edge weights of edges connecting all

different partitions is minimized, decreasing parallel overhead. (LECTURE. . . , 2014).

Multilevel partitioning, as stated in (ALPERT; HUANG; KAHNG, 1998), is an approach

useful for when the problem size reaches a level of complexity for which it is not enough to

perform only one application of a clustering algorithm as described above to produce excellent

solutions. A multilevel partitioning algorithm collapses the set of vertices and edgesH1, making

them a coarse set of vertices and edges, performing a recursive clustering of each instance in
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order to make it smaller than a stated threshold and reach Hn. After the threshold is reached,

partitioning is performed. After partitioning, the instance has its coarsened vertices and edges

uncollapsed to reach stage Hn−1, some partitioning refinement is performed, and it follows

these steps until reaching H1, with the final partitioning done, and all the original vertices and

edges from the set H1.

4.6 2018 Placement Flow With hMETIS

This placement flow is identical to the former one, but with one difference. Before,

there was a method called packNet(), which tried to pack a whole net altogether within the

same slice, as the routing cost within a slice is zero. If it was not accomplished, leftover net

cells were packed next within other slices as needed. Using nets as partitions rendered packing

difficult, especially, because nets are not disjoint. The ideal solution would be to have slices

that had minimal connections in between them, as the cost for routing inside a slice is zero.

In the flow with hMETIS, instead of trying to pack a net altogether within the same slice,

the algorithm introduces the concept of partition, and tries to pack as many cells from the same

partition within the same slices as possible, as the partitions are as disjointed as possible.

First, using the script developed in Python language in A, we convert the FPGA cells in

the UFRGSPlace program’s format into hMETIS input rules for partitioning. Then, we partition

the FPGA cells of the benchmark according to the average amount of cells wanted per partition.

Figure 4.8 shows an example of the hMETIS messages during the execution of the partition

algorithm for benchmark FPGA03. The numbers in between parentheses are the amounts of

cells per partition (they are approximate to the chosen value, not always the same).

The placement flow was executed for the benchmarks aiming three different distribu-

tions: an average of 32 cells per partition, 25 cells, 20 cells and 16 cells. The values were

chosen based on the number of cells within each slice, which must be up to 33 (but we set this

value to be 32 because there were no CARRY8 cells in the benchmarks), and in the maximum

number of cells within the LUT and FF spaces, counting at most 16 FFs and 16 LUTs. The

values 20 and 25 were chosen because they are intermediate between 16 and 32.
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Figure 4.8: Display of hMETIS message during the execution of the partitioning of benchmark
FPGA03.
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Figure 4.9: Number of slices being reduced through the flow when using hMetis to generate
the initial partitions. The dashed horizontal line stands at the number of slices that can fit in the
entire FPGA.
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Figure 4.9 displays the statistics of the merges for the benchmarks when we choose 25

cells per partition approximately. The blue dashed line is the maximum amount of slice re-

sources in the FPGA: 67200 slices. As can be noted from the graph, half of the benchmarks

were not aided by the "merge mixed algorithm and cannot be placed due to lack of resources.

The benchmarks that are placeable are not routable because of the same error message by Vi-

vado that happened with the prior flow: the use of vertical wiring resources reached more than

90%.
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Figure 4.10: Average progress of both flows regarding number of slices generated.

Figure 4.10 shows a comparison in the progress of the merges for the flow that packs nets

and the flow that packs partitions with hMetis. The blue dashed line is the maximum number of

slice resources, which is 67200. As seen, the hMetis approach did not take much advantage of

the "merge mixed" algorithm, which is the one that decreases the number of slices the most.

Table 4.4 shows the HPWL for benchmarks from FPGA03 to FPGA06. The ones above

FPGA06 exceeded the resources and were not placed. From observing the table, it seems that

it is inconclusive which partition distribution is the best, as there is no choice of the number of

cells per partition that outperformed the others. Also these values, 16, 20, 25, 32, are very close,

so, aside from the fact that the packing method can be improved to fit the partition approach

better, another modification that could be done would be to choose the number of cells per

partition from a bigger range, therefore, a greater amount of cells per partition. On the other
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hand, as in packing nets, the main objective would be to have a partition fully packed within the

same slice, as the inner connection cost of the slice is zero, and, with a bigger number of cells

per partition, it would be much more difficult to have one whole partition contained inside the

same slice.

16 partitions 20 partitions 25 partitions 32 partitions

FPGA03 3.07E+07 2.90E+07 2.97E+07 3.14E+07

FPGA04 3.76E+07 3.95E+07 3.68E+07 3.89E+07

FPGA05 4.52E+07 4.75E+07 4.62E+07 4.41E+07

FPGA06 8.43E+07 8.13E+07 9.14E+07 9.10E+07
Table 4.4: HPWL of benchmarks after placement.
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5 CONCLUSIONS AND FUTURE WORK

In this work, an EDA tool called UFRGSPlace for homogeneous and heterogeneous

FPGA placement was presented. It implements a complete FPGA placement flow with packing,

global placement, legalization and detailed placement.

The tool supports the ISPD contest input and output formats (which are called extended

bookshelf). Our placement flow was very robust and respected all the FPGA technology con-

straint rules. Moreover, all benchmarks were successfully placed, with exception of FPGA12.

This result achieved fourth place in the ISPD contest of 2016.

We also implemented an alternative flow using hMETIS to partition the netlist. The

secondary flow uses the partitions generated to perform the initial packing as opposed to the

nets. Therefore, in the packing stage, we try to maintain entire partitions within the same

slices as opposed to entire nets. However, this approach has proven faulty because of two main

reasons. Firstly, it is difficult to partition the design in such a way that most of the partitions fit

in a single slice. Secondly, the slices generated have proven to be harder to merge. This can be

caused by FF signal problems when attempting to merge.

The main contribution of this work was the development of a complete FPGA placement

tool. Even though the results of the packing flow have been satisfactory, the placement still

requires refinement. Our estimated routed wire-length is one order of magnitude larger than the

other tools.

It can be concluded that the hierarchical approach to the placement, that is, packing the

cells into slices based on logic alone, is a less efficient strategy when compared to flat placement.

This is further strengthened by the studies of the state-of-the-art algorithms, all of which use

flat placement and perform significantly better.

Future works that are interested in studying the hierarchical approach could attempt to

incorporate physical information into the partitioning algorithm. One way to achieve this is by

performing a flat placement and considering the relative positions of the cells when packing.

Also, other methods can be employed in order to increase the chance of each partition being

packed into a single slice. One of the methods could be forcing restraints on the number of

signal nets that are part of each partition. If the packing stage with partitioning does not improve

after employing new techniques, partitioning still can be applied in another placement stage.

Concerning placement, we understand that a way of estimating congestion needs to be

implemented. HPWL, while being very fast and arguably accurate for both large and very small

nets, lacks this property.
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APPENDIX A — SCRIPT FOR CONVERTING UFRGSPLACE FORMAT CELLS TO

HMETIS INPUT RULES

import s y s

i f l e n ( s y s . a rgv ) != 4 :

p r i n t ( " Usage : py thon3 c o n v e r t e r < d e s i g n . nodes > < d e s i g n . n e t s >

< o u t p u t . hg>" )

s y s . e x i t (−1)

n o d e s _ f i l e _ p a t h = s y s . a rgv [ 1 ]

n e t s _ f i l e _ p a t h = s y s . a rgv [ 2 ]

o u t p u t _ f i l e _ p a t h = s y s . a rgv [ 3 ]

n o d e s _ f i l e = open ( n o d e s _ f i l e _ p a t h , ’ r ’ )

n e t s _ f i l e = open ( n e t s _ f i l e _ p a t h , ’ r ’ )

nodes = d i c t ( )

f o r l i n e in n o d e s _ f i l e :

words = l i n e . s t r i p ( ) . s p l i t ( " " )

nodes [ words [ 0 ] ] = l e n ( nodes ) + 1

h y p e r e d g e s = [ ]

f o r l i n e in n e t s _ f i l e :

words = l i n e . s t r i p ( ) . s p l i t ( " " )

net_name = words [ 1 ]

n u m b e r _ o f _ c e l l s = i n t ( words [ 2 ] )

hype redge = ( net_name , [ ] ∗ n u m b e r _ o f _ c e l l s )

f o r i in range ( n u m b e r _ o f _ c e l l s ) :

n e t _ l i n e = n e t s _ f i l e . r e a d l i n e ( )

n e t _ l i n e = n e t _ l i n e . s t r i p ( ) . s p l i t ( " " )

hype redge [ 1 ] . append ( n e t _ l i n e [ 0 ] )
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h y p e r e d g e s . append ( hype redge )

d u m m y _ f i n a l _ l i n e = n e t s _ f i l e . r e a d l i n e ( ) . s p l i t ( )

o u t p u t _ f i l e = open ( o u t p u t _ f i l e _ p a t h , ’w’ )

f i r s t _ l i n e = " {} { } \ n " . format ( l e n ( h y p e r e d g e s ) , l e n ( nodes ) )

o u t p u t _ f i l e . w r i t e ( f i r s t _ l i n e )

f o r hype redge in h y p e r e d g e s :

n o d e s _ l i s t = hype redge [ 1 ]

l i n e = " "

f o r node in n o d e s _ l i s t :

l i n e = l i n e + s t r ( nodes [ node . s t r i p ( ) ] ) + " "

l i n e = l i n e + " \ n "

o u t p u t _ f i l e . w r i t e ( l i n e )

s y s . e x i t ( 1 )
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