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ABSTRACT

Join computations in stream requires support for state management since tuple pairs that

would generate a result might arrive in distinct moments in the application. The solu-

tion offered by Stream Processing Systems (SPS) like Spark and Storm for state man-

agement are windows limited by time or size constraint. Published papers (LIN et al.,

2015; ELSEIDY et al., 2014) offer support for storing tuples without time restriction in

the record-at-a-time model. In this work, we propose a solution for computing joins in

a stream environment under the micro-batch model with support for state management

to theta-joins. The approach stores tuples and uses a broadcast shuffle to run the broad-

cast join algorithm, enumerating the cartesian product between streams and thus allowing

arbitrary predicates. The model is implemented in Spark Streaming and uses RDDs as

storages in main memory and Apache Kafka as message-queue for data input, besides

using HDFS to store results. The methodology focuses on the scalability of the solution,

using the synthetic benchmark TPC-H and the queries in a left-deep-tree model. The ex-

periments investigate the execution time and resources like network and memory for a

different number of nodes. The evaluation was executed in a cluster of virtual machines

orchestrated by Kubernetes in Microsoft Azure. The results show a performance gain of

40% when we double the resources and high network usage as a consequence of Broad-

cast.

Keywords: Stream Processing. Micro-batch. Theta-join. Apache Spark.



Processando Theta-Joins em Ambientes de Streaming sobre o Modelo Micro-batch

RESUMO

A computação de joins em streams requer o suporte de gerenciamento de estados, pois os

pares de tuplas que geram um resultado podem chegar em momentos distintos na aplica-

ção. A solução oferecida por Stream Service Providers como Spark e Storm para o geren-

ciamento de estados são janelas limitas por um intervalo de tempo ou tamanho. Trabalhos

publicados (LIN et al., 2015; ELSEIDY et al., 2014) oferecem suporte a um armazena-

mento sem restrição de tempo no modelo de streams record-at-a-time. Nesse trabalho

propõe-se uma solução para computar joins em stream sobre o modelo micro-batch com

suporte a um gerenciamento de estados em memória para theta-joins. O método arma-

zena tuplas e realiza um broadcast Shuffle para então utilizar o algoritmo broadcast join,

enumerando o produto cartesiano entre streams e permitindo predicados arbitrários. O

modelo foi prototipado sobre a API Spark Streaming e utiliza RDDs como armazena-

mento em memória principal e o Apache Kafka como message-queue (MQ) para entrada

de dados, além do HDFS para armazenamento de resultados. A metodologia foca na es-

calabilidade da solução, utilizando o benchmark sintétipo TPC-H e queries no modelo

left-deep-tree. Os experimentos investigam o tempo de execução e o uso de recursos

como rede e memória para diferentes números de nós . A avaliação foi executada em um

cluster de máquinas virtuais orquestrado pelo Kubernetes na Microsoft Azure. Os resulta-

dos mostram um ganho de desempenho de 40% ao dobrar recursos e um alto uso de rede

como consequência do broadcast.

Palavras-chave: Stream Processing, Micro-batch, Theta-join, Apache Spark.
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1 INTRODUCTION

Join is an operation traditionally used in Relational Database Management Sys-

tem (RDBMS), but also explored in parallel context since the 90’s (WILSCHUT; APERS,

1993). Moreover, some works also used other architectures such as FPGA (TEUBNER;

MUELLER, 2011) for computing joins. However, the focus of recent research is the

implementation of joins in frameworks for batch processing like MapReduce (AFRATI;

ULLMAN, 2010) and real-time stream applications(ELSEIDY et al., 2014; CHU; BAL-

AZINSKA; SUCIU, 2015).

The popularity of the MapReduce paradigm (DEAN; GHEMAWAT, 2008), ini-

tially proposed by Google in 2004, comes mainly from its open-source implementation

- Hadoop MapReduce (HMR) - the precursor of tools like Storm, Spark, and Flink that

consolidates the current scenario of Big Data (MATTEUSSI et al., 2018). Some criticize

MR due to its lack of schema and declarative query language (BLANAS et al., 2010), but

the HMR Ecosystem offers support for SQL queries through extensions like Hive1.

In this scenario, companies use joins - an operation for merging different sources

based in predicate - for processing large volumes of data from continuous incoming

sources. For instance, the Google’s Advertisement System uses an application to join

web search queries with user clicks (ANANTHANARAYANAN et al., 2013). This ap-

plication produces messages containing the terms in the user search, and also the adver-

tisement clicked and can be used to bill advertisers but also extract what customers of a

particular business are searching. Other interesting join applications in stream processing

include Internet Protocol (IP) network management and telephone fraud detection (DAS;

GEHRKE; RIEDEWALD, 2003).

These examples represent the simplest case of join where only two relations are

considered. However, there are joins with multiple relations, defined multiway joins (MJ).

MJ introduce some complexities, such as the order of joining relations to mitigate re-

sponse time. Although not very common, MJs also appears in real world: at LinkedIn2,

multiples stream sources are joined to produce an aggregated view on the dashboard

(ZHUANG et al., 2016)

This work presents a solution for computing joins with arbitrary predicates in a

streaming environment. The proposed model discuss different alternatives, such as storing

intermediate and optimizations for equijoins. The implemented prototype is analyzed by

1https://hive.apache.org/
2https://www.linkedin.com
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measuring the execution time and the tradeoff between network and memory when using

left-deep trees. Results show the stability of the application and the advantages of using

intermediate results, but also that it is not a suitable solution when the join selectivity is

close to the cartesian product.

1.1 Motivation

Stream applications deal with continuous and unbounded sources of data in the

form of tuples or events (BORDIN, 2017). These applications consist of multiple oper-

ators, which can be either stateless or stateful. Stream Processing Systems (SPS) offers

limited support for stateful operations since this introduces additional complexities such

as fault-tolerance and in some cases persistence (FERNANDEZ et al., 2013). Joins in

streaming environments requires stateful management (FERNANDEZ et al., 2013), not

only processing tuples but maintaining them for a possible result with late arriving tuples.

Most proposed solutions for joins are window-based, where the window is either

time or size constraint (GULISANO et al., 2017). The solutions in the literature offer state

management for joins (ELSEIDY et al., 2014; LIN et al., 2015) in record-at-a-time SPS,

where a detailed routing is required. This motivates research towards a new alternative by

using the micro-batch processing model, that mitigates difficulties such as tuple routing.

1.2 Goals

The focus of this work is to propose a solution for computig joins involving mul-

tiple relations with arbitrary predicates in streaming environment, ensuring correctness of

the result with an exactly-once semantic (i.e., no duplicate results). To achieve this, we

define the following specific goals:

• Promote a study of the state-of-the-art for computing joins in distributed environ-

ments to understand the challenges in the area and implement a solution capable of

addressing such problems;

• Present a model for processing theta-joins in streaming micro-batch model using a

stateful operator, implementing a prototype for this model in Spark Streaming;

• Present the scalability of the model, showing a consistent performance when more

resources are added;
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1.3 Organization

This text is organized as follows. Chapter 2 presents the background and is di-

vided into two parts. The first part focuses on stream processing, with a review of some

concepts and the mechanisms of frameworks. The second part of the chapter reviews join

as in relational databases and also introduces some algorithms in online join processing.

The chapter is concluded with some remarks of the limitations in the standard imple-

mentations of joins, which motivates the research of join processing. Chapter 3 explores

recent works of join processing in both batch and streaming distributed environments.

Chapter 4 presents the system design and also the implementation in Spark, along with

the methodology and evaluation. At last, Chapter 5 concludes the research with a few

observations and suggestions for future works.



12

2 BACKGROUND

This chapter shows a brief introduction to Big Data, with a focus in real-time pro-

cessing by exploring SPSs used in this research and also recent work. We exploit the

features and limitations of these tools (described in section 2.3). The second part reca-

pitulates joins as defined in RDBMS, and also introduces some algorithms for processing

join in different scenarios.

2.1 Real-time Analysis

With the capacity offered by modern hardware and the demand for applications

with answers in the order of seconds, arises the need for tools processing data in real-

time or near real-time (BORDIN, 2017). These tools take away responsibilities from the

programmer, such as task schedule and fault tolerance and uses the concept of streams:

continuous and simultaneous data sources with unpredictable flows (JUNIOR, 2018).

SPS uses a Directed Acyclic Graph (DAG) to design applications, where each

node is an operation. An operator can be stateless (e.g.,filter and map), processing tuples

without storing them or stateful (e.g., joins and aggregations). An example of stateful

application is the word-count that requires to store the number of words for updating.

A stream can be modeled in a record-a-time approach, where operators process

tuples individually, or micro-batch, where a discrete period of time is defined to track a

set of incoming tuples instead of processing them individually.
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2.1.1 Hadoop MapReduce

Figure 2.1: MapReduce flow

(a) Image extracted from (KOLBERG et al., 2013)

MR (DEAN; GHEMAWAT, 2008) is a programming abstraction for parallel and

distributed programming based in map and reduce functions from functional program-

ming. A MR application has two three main phases: map, shuffle and reduce (KOLBERG

et al., 2013). First, the map function takes a single instance of data as input and produces a

set of intermediate key-value pairs. Secondly, the intermediate data sets are automatically

grouped over the keys. Finally, the reduce function takes as input a single key and a list of

all values generated by the map function for that key(MATTEUSSI et al., 2018). MapRe-

duce uses a Master-Slave architecture, where the Master node controls task distribution

and scheduling and workers execute map and reduce functions (KOLBERG et al., 2013).

Hadoop MapReduce is a popular open-source implementation of MR which uses

the Hadoop Distributed File System (HDFS) for storing large blocks of data and provides

high throughput for sequential read and writes operations (ANJOS et al., 2018). The MR

paradigm motivated two classes of data processing in Big Data that are not only based in

MR: Stream Processing and Batch Processing (SOUZA et al., 2018)

2.1.2 Apache Storm

Storm is a framework proposed by Twitter for stream processing in the record-at-

a-time model. The streaming operations are defined in Storm topologies, as a graph of
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operations composed of two kinds of vertices: spouts for stream sources and bolts for

general operations. The output of a bolt can be used as the input for a next bolt or just the

output, and the Storm topology can have cycles (TOSHNIWAL et al., 2014). Figure 2.2a

shows a topology example.

Storm permits a fine-grained solution for routing tuples between the vertices in

the topology. Given one producer vertice and a set of possible consumers, tuples can be

either randomly assigned (shuffle) to a consumer, based on a field (hash) or sent to all

consumers.

The Storm topologies are submitted to the Storm cluster, composed of a master

(called Nimbus) that is simmilar to the "JobTracker" in Hadoop, which coordinates the

execution of the cluster and worker nodes; The worker nodes run one or more worker

process, and each process can be assigned for a single topology. Processes manage the

executors, who at last run tasks (bolts and spouts). In a high level, the worker processes are

containers, and a single node can run multiple topologies by hosting multiple processes.

Figure 2.2: Storm topology example

(a) Image extracted from (APACHE. . . , 2019)

2.1.3 Apache Spark

Spark is an engine for processing massive data volumes in main memory, with

support for batch or stream processing. Programmers write batch applications in Spark

using the main RDD API or Spark SQL. Streaming applications can use either DStream

or Structured Streaming, which extends RDD and Spark SQL, respectively. The Spark
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Cluster uses the concept of Master and Workers. However, to allow distinction between

different applications running in the cluster, Spark uses the name Driver for an application

Master and Executor for the workers. Both Driver and Executor are instances running in

Workers, and Spark Master orchestrates applications.

The core abstraction is the RDD (ZAHARIA et al., 2012), immutable collections

of data partitioned among worker nodes that can be interacted through transformations

and actions. Transformations are operations (e.g., map, filter, reduce) that triggers new

tasks in each partition of the RDD and generates a new one as a result. Actions are

output operations, such as counting the number of elements in the RDD or writing data to

persistent storage (MATTEUSSI et al., 2019).

Spark tracks the set of transformations through a DAG, where each node is a trans-

formation except for the last one that must be an action. This property is a consequence of

the lazy evaluation, where no transformation executes if there is no output (i.e., an action)

for data. The lazy evaluation also guarantees that intermediate nodes in the DAG are not

kept in memory, thus saving memory resources. In case an operation executes often, users

can configure Spark to keep that intermediate results stored in memory.

In case of task failure, Spark uses the DAG to recompute the previous transfor-

mations and finally execute the failed task for one of the partitions. This approach has a

lower cost than using replication for the entire RDD.

The Spark Streaming API (ZAHARIA et al., 2013) extends the original RDD

abstraction to enable stream processing. It implements the micro-batch model, where

incoming data from a specific time interval is stored into multiple RDD’s and processes as

a deterministic batch computation (ZAHARIA et al., 2013). Operations in streaming data

can be either stateless like map or stateful through sliding windows. However, continuous

storage through the entire application is not offered.

Spark SQL (ARMBRUST et al., 2015) offers a relational approach to use the RDD

model, using the query optimizer Catalyst to improve performance operations. For in-

stance, Catalyst can optimize an arbitrary Join that would be computed with the cartesian

product to use a broadcast join.

2.1.4 Communication and Storage

Besides the frameworks, it is also worth to mention the following tools used in this

work for the purpouse of storage (HDFS) and communication (Kafka).
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• HDFS: The distributed filesystem offers convenience for dealing with persistence

in a cluster, in comparison with local filesystem;

• Apache Kafka: Distributed message system with high throughput, providing a

partitioned and replicated commit log service named topics for processing data in

real time (JUNIOR, 2018);

2.2 Join Processing

This section starts with a review of definitions from join processing as defined

in classic database courses, based in (ELMASRI; NAVATHE, 2010). Later, we provide

some solutions for processing joins in batch and stream.

2.2.1 RDBMS and Batch

In database systems, join (./) is an operation between two relations that produces

tuples containing attributes from both relations. A join operation evaluates a predicate

between attributes of each relation. The most common case of join is an equijoin, where

an equality predicate is used. A theta-join (./θ) between relations R and S produces all

combinations of tuples that satisfy an arbitrary binary predicate θ. The case of joining

tuples without a predicate produces a cartesian product (×).

The sequential solution for theta-join in RDBMS is a naïve nested-loop that tests

all pairs of tuples. Implementations for parallel join use the principle of partitioning

relations to run individual joins in each partition. The general case for a join R./θS takes

r and s partitions and r ∗ s processes to compute the join separately. In case one of the

relations - say S- is small enough, it can be replicated instead of partitioned, using then r

processes.

Joins between multiple relations - named multiway joins (MJs) - require choosing

an order of joining relations to reduce intermediate results. The result size of a join is

a consequence of the join selectivity(Js), a factor expressed in the range [0,1], where 0

means an empty result and 1 is the cartesian product, obtained as in formula 2.1.

Js =
|R ./ S|
|R× S|

(2.1)
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Figure 2.3: Join order for 3 relations
./

./

S1 S2

S3

(a) Left-deep tree

./

S1 S2 S3

(b) Multiway join

Figure 2.4 shows a theta-join example Marteking ./θProduction, where θ =

Marketing.Salary < Production.Salary. In the result (Figure 2.4c), the attributes

(i.e., columns) with M identifies Marketing tuples and P Production . The join selec-

tivity of this example is 0.5.

Figure 2.4: Theta-join example
Name Salary
John Doe 2500
Richard Miles 4000

(a) Marketing relation

Name Salary
Jane Doe 3000
John Smith 3500
(b) Production relation

M.Name M.Salary P.Name P.Salary
John Doe 2500 Jane Doe 3000
John Doe 2500 John Smith 3500

(c) Result

MJs can be executed as a cascade of binary joins, as in the left-deep tree (Figure

2.3a), where relations are joined from left to right. The other is joining all relations at

once (Figure 2.3b)

The MR paradigm does not support directly join application since it receives a

single input file (OKCAN; RIEDEWALD, 2011). However, it is easy for a programmer

to write an equijoin. Algorithm 1 (described in (OKCAN; RIEDEWALD, 2011)) shows

map and reduce tasks for an equijoin R.A = S.A between R and S. The map task append

a new field to the tuple to identify the relation it belongs to and emits the join attribute

as key and the tuple as value. The reduce tasks must produce the cartesian product of all

tuples for a given key.

This solution does not work well for datasets with high skewness, where many

tuples have the same key, leading to a heavy load for some reduce tasks. Also, joining
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more than two relations requires additional jobs. (AFRATI; ULLMAN, 2010) studies the

case of joining multiple relations in a single job instead of binary cascade joins, imple-

menting the solution in MR but not only limiting to the paradigm. The authors explore

the communication cost as an optimization problem solved through "Lagrangean Multi-

pliers"(AFRATI; ULLMAN, 2010) to find the ideal number K of reduce tasks.

Algorithm 1 Equijoin map and reduce tasks
1: procedure MAP(relation, document)
2: for all t ∈ document do
3: t.Origin← relation
4: EMIT(t.A,t)
5: end for
6: end procedure
7: procedure REDUCE(key, tuples[t1, t2, ...])
8: R← tuples.filter(t.Origin = R)
9: S ← tuples.filter(t.Origin = S)

10: for all r ∈ R do
11: for all s ∈ S do
12: EMIT(r,s)
13: end for
14: end for
15: end procedure

2.2.2 Online Join Processing

The Symmetric Hash-Join (SHJ) (WILSCHUT; APERS, 1993) is a classic algo-

rithm for processing equijoins in streaming. The algorithm creates a hash-table for the

relations and each tuple is firstly inserted and later sent to probe in the other table, send-

ing matches to the output (Figure 2.5). The join occurs in a single phase and enables a

non-blocking streaming operator since the processing occurs symmetrically .

XJoin (URHAN; FRANKLIN, 2000) extends SHJ to enable joins between large

relations by storing tuples in secondary storage. Tuples are stored in partitions that have

a share both in memory and disk. If an incoming tuple arrives in a memory overflow sce-

nario, a partition is chosen as a victim and sent to disk. The algorithm runs in three stages:

it starts by joining tuples in main memory similar to SHJ, and it stops after a timeout or

if sources become idle. The second phase takes tuples from disk and probe against data

residing in memory from the other relation. The last phase "clean-up" relations by joining

missing results from tuples that were kept in disk. To avoid duplicate in the second and



19

Figure 2.5: Symmetric Hash Join

the third phase, the algorithm uses a timestamp to check if the time that tuples resided in

memory overlap.

(VIGLAS; NAUGHTON; BURGER, 2003) adapts the XJoin for MJs. The authors

address some of the challenges in joining multiple relations, such as the join order to

reduce intermediate results, which is solved by ordering according to the selectivity of

the predicate.

2.3 Preliminary Remarks

Join is an expensive CPU task, and running in stream environments addresses

challenges such as avoiding duplicate results and state management, which is challeng-

ing since SPS does not support state for stream operators and lend the responsibility for

developers of stream applications (FERNANDEZ et al., 2013).

Both Storm 1 and Spark officially supports only joins between streams with equal-

ity predicate and through the usage of window. Recently, the new Spark API for streaming

(Structured Streaming2) offers a full-history join option by implementing the SHJ.

The lack of support for joins with arbitrary predicates in the frameworks motivates

research to find ways to compute these applications without limiting the constraint of a

window based on time or size. In Chapter 3, we introduce recent work for performing this

stream operation, but also some cases in batch processing.

1https://storm.apache.org/releases/2.0.0/Joins.html
2https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
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3 RELATED WORK

This chapter presents recent works in join processing, addressing both streaming

and batch solutions. Section 3.2 concludes the chapter with an overview of the features

from mentioned work and this research.

3.1 Analisys

Since modern frameworks process data in main memory without using the disk as

in the MapReduce approach, authors have addressed the network as the bottleneck of join

processing, thus focusing in optimizing the shuffle phase of the computation (ZHU et al.,

2017).

Some works (LIN et al., 2015; ELSEIDY et al., 2014) in Streaming Context de-

scribes a solution for Theta-Joins mainly for binary joins. Modern works focus on full-

history join instead of the window-joins, where tuples are only joined if they arrive in the

same period of time. Full-history joins require a stateful streaming operator, as the tuples

must be kept in memory during the whole computation.

Matrix-model (ELSEIDY et al., 2014; FANG et al., 2016) implementations start

with an initial partitioning and monitor the cluster to process new matrix schema and

migrate task-loading. The join-matrix uses a matrix M with I rows and J columns to

compute R ./θ S, dividing relations R and S into I and J partitions, respectively. Each

matrix cell corresponds to a task. To produce a correct result, each partition of R is

replicated J − 1 times (analogously, the partitions of S have I − 1 replicas).

In (ELSEIDY et al., 2014), the authors focus on a non-blocking join operator

with the Matrix model and also proposes an adaptative solution to reduce data replication

by monitoring the storage. The author’s implementation of the Matrix model assumes

a cluster of N machines with N = I ∗ J , where each node holds a pair of partitions.

In the evaluation, a variation of TPC-H (THE. . . , 2019) with skew is used to test the

Figure 3.1: Assignments of partitions in Join-Matrix and Join-Biclique.

R1, S2 R2, S2

R1, S1 R2, S1

R

S

(a) Join-Matrix assignment

R1 R2

S1 S2

R

S

r
s

(b) Join-Biclique assignment



21

adaptive approach with two static partitions, one using optimal partitioning and another

that assumes equal-sized streams to partition their data, in addition to performing joins

with SHJ. The results show that for high skew indices, the equal-size static model and the

SHJ overflow and spit to the disk fast, but the static model still has a shorter execution

time than the hash partitioning algorithm since it assigns the entire join to only a few

machines. The adaptative partitioning has a performance similar to the optimal solution.

In (FANG et al., 2016), the authors criticize the fixed partitioning of the traditional

matrix model since it is not optimized for processing joins in cloud platforms, where idle

resources can be returned. To have a better performance in the cloud, they propose an

adaptatively to adjust workload and minimize resource such as network to reduce cloud

costs. The architecture monitors the workload and generates a viable migration plan.

Implementing the proposal in Storm, they use a variation in TPC-H with skewness and a

Chinese social dataset to compare their approach against (ELSEIDY et al., 2014) and (LIN

et al., 2015), to measure metrics like execution time, throughput. Results show a stable

performance of both matrix solutions in skew datasets when comparing against bipartite-

graph, as task assignments are random. Indeed, BiStream uses a hash partitioning for

equi-joins.

Another paradigm, named the Join-Biclique (LIN et al., 2015), divides the cluster

in a bipartited graph where each side represents a relation. Incoming tuples are stored in

one of the nodes belonging to the storage of its relation and also probed against all nodes

of the other relation in search of join partners. An advantage of this model in comparison

to the join-matrix is that no replication is needed.

BiStream (LIN et al., 2015) is implemented in Storm and evaluates its perfor-

mance in comparison with (ELSEIDY et al., 2014) by measuring latency, throughput, and

memory consumption. Results prove that BiStream is more memory-efficient since ma-

trix model requires storage. Another consequence of the replication is the difficulty to

scale the amount of processing tuples when adding more resources, while BiStream has

almost a linear scalability.

(HOFFMANN; MICHEL, 2017) proposes an alternative for MJs based in the Join-

Biclique and implementing the solution using Storm. The paper evaluates a single query

in different query-plans, discussing the advantages of storing intermediate results and

reducing the costs with network.

Hypercube (BEAME; KOUTRIS; SUCIU, 2014) (HC) describes an approach with

a single communication round (i.e., shuffle) for processing multi-way equi-joins. After
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the shuffle, each server contains a part of the relations and the join is then processed in a

binary way.

(CHU; BALAZINSKA; SUCIU, 2015) study the advantages of the single com-

munication round by implementing the Hypercube shuffle, but also define a multi-way

join algorithm called Tributary Join (TJ) based in the sort-merge join. The authors eval-

uate the performance of combining the proposed join algorithm ("Tributary Join") with

Hypercube shuffle by comparing with another join (traditional SHJ) and also two shuffle

approaches (broadcast and hash partitioning), measuring wall-clock time, CPU time and

network I/O in a Twitter dataset. The broadcast requires more shuffles and CPU time with

TJ since it is necessary to sort data, but the query runtime is smaller than regular shuffle

since the skewness disturbs the load balance in the regular shuffle. The authors conclude

that queries with large intermediate results and small final results perform better with the

combination HC and TJ.

Considering queries with opposite behavior (i.e., small intermediate results), (ZHU

et al., 2017) studies in which scenarios a multi-round approach can be used, but to choose

between shuffle strategies, it would be necessary to know the intermediate result in ad-

vance. The authors propose a sampling algorithm to estimates the intermediate result size

in the multi-round and also calculates the size in one-round and choosing the join strategy

that implies in less shuffle. For the single communication, the HC is used again with TJ

with optimization and a heuristic to select the join order.

AutoMJ (ZHU et al., 2017) is implemented in Spark, who uses by default a multi-

round solution for joining multiple relations. This implementation is compared with the

proposed one-round solution by measuring execution time, and the number of tuples shuf-

fled for Twitter and Wikipedia datasets.

3.2 Discussion

Table 3.1 presents a comparison of the mentioned works according to the process-

ing model and join characteristics. The proposed join solutions use workload character-

istics to reduce communication cost for MJs, focusing in the impact of skewness in the

shuffle performance for equijoins that partition tuples according to attributes to reduce

CPU time in the join algorithm.

On the other hand, using workload statistics in the streaming scenario would lead

to a high impact in the latency, and it is also not easy to make use of this information
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since most SPS does not support dynamic graph to change applications without restarting

(BORDIN, 2017). The analyzed works in streaming address theta-joins, giving a solu-

tion to this kind of problem that is not addressed by SPS. These methods exploit different

partitioning methods such as matrix and the join-biclique, which shows resilience against

skew workloads. (HOFFMANN; MICHEL, 2017) is the only stream solution to discuss

MJs, introducing the problem of choosing the join order and the possibility to store inter-

mediate results.

All the mentioned solutions for stream use record-at-a-time model and only (HOFF-

MANN; MICHEL, 2017) exploits MJs. Join applications could benefit from the micro-

batch model, as it offers high throughput and mitigates difficulties such as tuple routing

(BORDIN, 2017). Also, the broadcast shuffle is not mentioned in the streaming scenario,

which could be exploit together with small micro-batches to compute theta-joins without

shuffling a high network impact.

Table 3.1: Related Work

Reference Model Join-Type

(HOFFMANN; MICHEL, 2017)
Stream,

record-at-a-time

Theta-Join,

MJ

(ZHU et al., 2017) Batch
Equi-Join,

MJ

(FANG et al., 2016)
Stream,

record-at-a-time

Theta-Join,

Binary Join

(LIN et al., 2015)
Stream,

record-at-a-time

Theta-Join,

Binary Join

(CHU; BALAZINSKA; SUCIU, 2015) Batch
Equi-Join,

MJ

(ELSEIDY et al., 2014)
Stream,

record-at-a-time

Theta-Join,

Binary Join

(BEAME; KOUTRIS; SUCIU, 2014) Theoretical
Equi-join,

MJ

Proposal
Stream,

micro-batch

Theta-Join,

MJ
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4 SYSTEM DESIGN

In this chapter, we present the model (section 4.1) and the prototype (section 4.2)

developed in Spark Streaming. Section 4.3 defines the methodology used to evaluate the

prototype, with specifications of workload and the metrics used. In 4.4 we present the

results obtained.

4.1 Model

Given stream sources (e.g., a folder in a filesystem or a MQ) S1, S2, ..., Sn−1, Sn

with a MJ (as in equation 4.1) involving all streams, we want to compute all joins in a

distributed environment using main memory. In a stream application with the micro-batch

model, the tuples that would generate a possible result - called “join partners”- may arrive

in different batches and consequently not producing the result.

S1 ./θ S2 ./θ S3, ..., Sn−1 ./θ Sn (4.1)

This problem of tuples in different micro-batches is described in Figure 4.1, where

r1,s1 e t1 are join partners, however, r1 and s1 arrive in the first micro-batch (m1), while

t1 belongs to m2. To ensure that tuples from different micro-batches are evaluated (i.e.,

tested against the join predicates), it is required to maintain them in storage for each

relation that guarantees the availability of tuples throughout micro-batches.. Supporting

state in stream processing is commonly referred as state management, and in join literature

is defined as full-history join (ELSEIDY et al., 2014; LIN et al., 2015; FANG et al., 2016).

Figure 4.1: Tuples arriving in different micro-batches

The stateful operator -referred here as storage - can be provided by any data struc-
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ture that keeps tuples only in main memory and partitioned among nodes, without repli-

cas. It is not in the scope of this project to support persistence in second storage and fault

tolerance for retrieving stored tuples in case of application failure. Consequently, if the

distributed memory is not enough for storage and task computation, errors may happen,

requiring the application to be restarted with more resources.

The micro-batch model requires the definition of time Tm that express the size

expected to perform all the operations. If this time is exceeded, the application blocks

since new tuples will not be ingested until the end of the micro-batch processing. It is

necessary to define a rate in the sources or the stream application to reduce incoming

tuples. The cost for processing stateful theta-joins is not trivial since the storages increase

at each micro-batch and the join algorithm needs to enumerate all pair of tuples. Suppose

a MJ between N streams and all streams have incoming rate R. This way, the worst-case

(i.e., a full cartesian product) in the micro-batch m, the cost would be O(m ∗ nr).

Figure 4.2 presents the overall architecture of system. For a single micro-batch,

the application has two main phases: store (distribute tuples from S1, S2, ...Sn among

nodes) and join (run tasks in each node).

Figure 4.2: System Architecture

In the first part, each stream sends tuples to its storage according to a partitioning

scheme. For equip-joins, we provide a hash-partitioning, using the attributes from the

join predicate as the hash key. This way, in a join R ./ S with predicate R.A = S.B the

tuples fromR will be partitioned according to the value ofA (analogously, S according to

B). This solution reduces network communication in the shuffle phase since join partners
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are in the same node.. Theta-joins use a random shuffle, which gives load balance and

resilience against skewness at the cost of high network usage for shuffling tuples.

In the join phase, one task is created for each partition in the storage. The tasks

run a join algorithm that enumerates the cartesian product and filters tuples that do not fill

the requisites from predicates. In the case of equijoins, the join partners (i.e., tuples with

the same key) are already in the same task, so the join algorithm used is the same as the

reduce task defined in 1. For theta-joins, the Broadcast Join (Algorithm 2) is used.

The join algorithms take advantage of small stream ingested in a single micro-

batch, and thus broadcasting it for all nodes storing the relation that must be joined.

In MJs, this approach can broadcast streams and join with one of the storages, or use a

left-deep tree to consume less memory with broadcast and joining individually.

Figure 4.3: A Join without intermediate result

For joins of 3 or more relations, we use additional storage for intermediate results.

Storing the intermediate data increases memory usage, but reduces data sent through the

network when the join selectivity is low. Consider the example in Figure 4.3, where no

intermediate result is stored. Tuples from T are first stored (dashed black line) and then

must be probed twice (dotted black lines): first, against S store and later to R. Figure

4.4 describes the same join but with the intermediate result between R and S stored in

RS-Store (this is similar to a left-deep tree). Here tuples from T are probed only against

RS-Store. Notice that the particular case of joining two relations is similar to the BiStream

model.
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Figure 4.4: Intermediate result storage

To guarantee the correct result the join runs in the storage of both relations, as

shown in the pictures above where R ./ S runs in both R − Store and S − Store.

However, this also introduces duplicate results since the tuple might be generated in both

storages. This problem is solved by using a timestamp that is appended to tuples when

they are stored. The timestamp is used as an additional condition in the filter together

with the join predicates. For a pair to be produced, it is required that the timestamp from

the storage tuple is smaller than the probed tuple. Consider Figure 4.5, where tuples r1

and s1 must join. After being stored and sent to probe against the other relation (e.g.,

s1 ./ R in R − Store), the tuple (r1, s1) would be emitted twice in the output. With

the timestamp, the result is generated only in R − Store since the stored tuple (r1) has a

smaller timestamp than the probed one (s1).

Figure 4.5: Timestamp example
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4.2 Prototype

Algorithm 2 Broadcast Join Algorithm
1: function BROADCASTJOIN(storageRDD,broadcastRDD)

2: storageRDD.mapPartitions{ storageTuple =>

3: broadcastRDD.map{ broadcastTuple =>

4: (storageTuple, broadcastTuple)

5: }

6: }.filter{outputRow => joinCondition(outputRow)}

7: end function

We implement our model in the Spark Streaming API, using Kafka’s MQ func-

tionality as the stream sources, where each topic is a relation. The integration between

Kafka and Spark helps to define the degree of parallelism since the partitions in a topic

translate to the partitions for the RDD. Consequently, the number of join tasks can be eas-

ily defined when creating a topic. Also, the partitioning scheme used by Kafka is random,

which is kept in Spark application to avoid an additional shuffle. Applications that use

other stream sources (e.g., a folder in a filesystem) can be used but requires a shuffle oper-

ation in Spark (which requires the number of partitions as an input) in order to guarantee

the desired level of parallelism

The storages are RDDs that updates in each micro-batch through a union trans-

formation followed by a cache, which tells Spark to keep the RDD for the next micro-

batches. After storing, the DStream containing only the new tuples are probed against

the other storage (i.e., another RDD) and joined. We use the Broadcast Join (BLANAS

et al., 2010), which enumerates the cartesian product of the joining relations, but it does

not keep this data in memory. Algorithm 2 describes the used join. Suppose a cluster

with N nodes; the storageRDD Storage (an RDD containing all tuples from a relation,

such as R−Store and S −Store from Figure 4.4) has a number P of partitions (defined

initially in the Kafka topic), where each node stores one partition (it may contain more if

P > N ), and all nodes have a copy of broadcastRDD (i.e., the tuples sent to probe against

the other storage). This broadcastRDD contains only tuples from the current micro-batch

instead of the whole relation. Line 4 of algorithm 2 enumerates tha pairs of tuples and the

filter operation in line 6 takes a function (joinCondition) with the join predicates and the

timestamp verification in the result of the mapPartitions operation.
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Broadcast is generated through an operation offered by Spark with the same name

that only shares data contained in the Driver (recall from ection 2.1.3 that the Driver is

the Master node in the context of a Spark application). Thus, the stream needs to be first

collected to the driver to be able to broadcast it later. To reduce network usage, only the

DStream (i.e., the new tuples in a micro-batch) is used as broadcast instead of the whole

relation.

Figure 4.6: Join execution

(a) Driver triggers a collect (b) Tuples arrive at driver

(c) Broadcast is sent to executors (d) Broadcast is performed

Figure 4.6 illustrates a broadcast join example, R./θS. Recall from section 2.1.3

that in a Spark application the Driver serves as the master and Executors are the workers.

In this example, the colored boxes are partitions, where the orange ones belong to relation

R and the yellow from S. In 4.6a R partitions are collect to the driver, and once they

arrive 4.6b Spark creates a broadcast variable (the gray box in Figure 4.6c) that is sent to

all nodes. At last, in Figure 4.6d the broadcast join executes, sending join partners to the

output. After the join finishes, the broadcast variable is removed from all workers, and

the next micro-batch repeats the process.
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4.3 Methodology

The evaluation of this work focus on the scalability of the proposed join by check-

ing execution time, memory usage, and network (as defined in 4.3.1). To achieve this, we

use TPC-H (THE. . . , 2019) benchmark with queries Q2, Q3, and Q5 (specified in 4.3.2).

We measure the execution time of Q3 and Q5 to check the performance gain when

we double the resources. Therefore we run both queries with 1, 2, 4, and 8 nodes and

a fixed workload with SF 0.1 (100 MB). In the second set of experiments, query Q2 is

executed with two different values of SF: 0.1 (100 MB) and 0.2 (200 MB). We vary the

number of workers with as 2, 4, 6, and 8. In all cases, the queries run in a left-deep tree,

using intermediate results for each pair of joins.

For all experiments, the topics in Kafka are already filled with tuples before Spark

starts. Therefore Spark reads all tuples and joins in a single micro-batch. In this case,

we fix the micro-batch size (i.e., the time) with 12 seconds, as this has no impact on the

performance. The queries run in a left-dep tree, using intermediate results for each pair

of join. Also, the numbers obtained are an average of six runs.

4.3.1 Metrics

The execution time (∆T ) is measured as ∆T = Tf − T0, where T0 and Tf are

the timestamp for the first and the last pair of joined tuples, respectively. To obtain an

approximation of the join time, we ingest the whole dataset in a single burst into Kafka,

allowing Spark to process data without having to wait for incoming tuples.

The overlall memory cost (Mc) for storage in a join between relations S1, S2, ..., Sn

with joins S1 ./θ S2, S2 ./θ S3, ...Sn−1 ./θ Sn can be estimated by the size of rela-

tions and intermediate results. In 4.2 formula below, |Si| denotates the size of a relation,

|Si ./θ Si+1| is the size of the intermediate result of a join between two relations and BtSi

is relation Si in the broadcast variable at a given microbach t. B can be equal to a fraction

of Si or the whole relation (i.e., |BtSi| = |Si). We use the default fractions of memory

defined by Spark1: 40% reserved by Spark and the other 60% is split in half between

1https://spark.apache.org/docs/latest/tuning.htmlmemory-management-overview



31

storage and execution (i.e., memory used to compute tasks).

Mc =
n∑
i=1

|Si|+
n−2∑
i=1

|Si ./θ Si+1|+BTs (4.2)

The network usage (Nc) is measured as the number of shuffled tuples. Remember

from the example in figure 4.6 that for each micro-batch, a broadcast operation needs to

send tuples first to the driver and later to all the executors. Consider a join running in N

workers, broadcasting T tuples at each micro-batch and requiring M micro-batch to be

complete(the limit is theoretically infinite since a streaming job is endless. However, we

suppose an end for the computation). Thus, the total network usage (i.e., shuffled tuples)

can be expressed as in 4.3

Nc =
M∑
i=1

T ∗ (N + 1) (4.3)

4.3.2 Workload

TPC-H is a decision support benchmark, consisting of ad-hoc queries in a database

populated by synthetic data generated through the dbgen tool, that comes shipped with

the benchmark. We use queries Q2, Q3, and Q5 from the specification 2.18 of the TPC-H

benchmark . According to the document, the queries have the following description:

• Minimum Cost Supplier Query (Q2): This query finds which supplier should be

selected to place an order for a given part in a given region;

• Shipping Priority Query (Q3):This query retrieves the 10 unshipped orders with the

highest value;

• Local Supplier Volume Query (Q5): This query lists the revenue volume done

through local suppliers;

Although the original queries contemplate other operation (e.g., filters and aggregations),

we omit these operators from the computations since we are only interested in the perfor-

mance of the join. Listings 4.1, 4.2, and 4.3 shows the executed queries for Q2, Q3 and

Q5, respectively, without the other operations.

Listing 4.1: TPC-H Q2

SELECT C . cus tomer Id , L . orderKey
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FROM p a r t P , p a r t S u p p PS , s u p p l i e r S , n a t i o n N, r e g i o n R

WHERE P . p a r t k e y = PS . p a r t k e y

AND PS . suppKey = S . suppKey

AND S . na t ionKey = N. na t ionKey

AND N. na t ionKey = R . r e t i o n K e y

Listing 4.2: TPC-H Q3

SELECT C . cus tomer Id , L . orderKey

FROM c u s t o m e r C , order O, l i n e i t e m L

WHERE C . cus tKey = O. cus tKey

AND O. OrderKey = L . OrderKey

Listing 4.3: TPC-H Q5

SELECT C . cus tomer Id , L . orderKey

FROM c u s t o m e r C , order O, l i n e i t e m L , s u p p l i e r S

WHERE C . cus tKey = O. cus tKey

AND O. OrderKey = L . OrderKey

AND L . suppKey = S . suppKey

The benchmark uses the concept of scale-factor (SF) to define the size of input

relations. For instance, an SF of 1 stands for 1GB and 10 for 10 GB. Table 4.1 resumes

the size of each relation. The "Factor" column multiplied by SF determines the size.

The two missing values in the table (nation and region) have a static size that does not

change with SF. The executions times shown in the results were obtained by running each

experiment 6 times and taking the mean value.

Table 4.1: Relation size

Relation Factor

Customer 150 000

Order 1 500 000

LineItem 6 000 000

Supplier 10000

PartSupp 800 000

Part 200 000
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4.3.3 Execution Environment

This sections describes the hardware running the VMs in Microsoft Azure and

software stack within the VMs.

4.3.3.1 Hardware

Table 4.2 shows the hardware resource available for each VM in the cluster, wich

are instances of the A4 v2 from the Microsoft Azure catalogue 2. In total, 11 VMs were

allocated with the same specification.

Table 4.2: Node description

Component Specification

Processor Intel R© Xeon R© E5-2673 v3 (Haswell) 4 Core (2.4-3.1 GHz)

Memory 8 GiB RAM

Storage 40 GiB

4.3.3.2 Software

The cluster uses Ubuntu 18.04.2 LTS as the operating system and Kubernetes

1.13.4 to orchestrate nodes, facilitating the communication and deployment of the soft-

ware stack through the usage of containers. Since Kubernetes runs its services on the

nodes, it was necessary to reduce resources for containers. Therefore, each VM can offer

the 4 cores but only 7 GB of RAM for containers.

The application uses Spark 2.3.3, Kafka 2.2.2, and Hadoop 2.7.7 to store data

in HDFS. All software runs through Docker images, using as a base image the official

OpenJDK 3 8 image.

From the 11 VMs instances, one runs only the Kubernetes master service, creating

and deploying containers. Kafka and the HDFS share a single VM also, and the Spark

Driver also uses all resources from a single machine, leaving the other 8 VMs for workers

process.

2https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
3https://hub.docker.com//openjdk



34

4.4 Experimental Evaluation

In Figure 4.7 we see the performance speed up for queries Q3 and Q5. As the

number of workers doubles, the execution time reduces in an average of 44% for Q3 and

40% for Q5. The additional Supplier relation in Q5 implies in an increase of 23% of time

in comparison with Q3. The difference is noticeable when running standalone since the

enumeration of the Cartesian product by each task is higher. The increase in partitioning

with 8 nodes turns the relation Suppliers (originally, 1000 tuples under SF 0.1) small for

32 tasks (on average, 32 tuples per task). However, there is still a difference in the order of

seconds between the two queries, which is a consequence of the shuffle in Q5, as observed

in figure 4.8.

Figure 4.7: Execution Time - Q3 and Q5

Based in Equation 4.3, figure 4.8 shows the number of shuffled tuples for Q3 and

Q5. In a left-deep tree query, the performance is a consequence of the join selectivity,

since the intermediate results will be shuffled. Both queries have a low join selectivity,

but the LineItem relation size is big and still generates a significant intermediate result.

The impact of this difference is observable in the difference between Q3 and Q5.
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Figure 4.8: Network results - Q3 and Q5

Table 4.3 presents the total number of tuples stored for relations and intermediate

results. Besides these values, the total memory used for storage (equation 4.2) is com-

posed by the broadcast variable, that variates during the micro-batch according to the join

being computed. For Q3, the variable does not present a high cost, since it stores only the

first relation Customer (the smallest relation from Q3 and Q5) and then the intermediate

result. In Q5, the size of the storage is similar to Q3, but the intermediate results here

are almost equal to the number of tuples from relations. The broadcast variable in Q5 has

a considerable impact since the last intermediate result has almost the same size as the

LineItem relations.

Table 4.3: Memory usage

Application Relations Intermediate Results

Q3 765 572 150 000

Q5 766 572 750 572

The numbers obtained in the memory and networks results do not impact the com-

putation for the small scale used in Q3 and Q5, besides the join selectivity for this query

is also low. However, it is important to notice that using a left-deep tree when increasing

the workload and also computing a join with selectivity close to the cartesian product the

intermediate result would impact the network I/O and in the worst case may not even fit
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in memory. Such a scenario may be computed by using a MJ tree (as shown in Figure

2.3b)

Figure 4.9 shows the performance with different workloads in the query Q2. The

execution time is shorter than Q3 and Q5 even with the SF 0.2 since this query addresses

the smallest relations from the benchmark. In the worst case, the difference in execution

time is 70% for running with two machines. The smallest difference is with 8 machines,

with 23%. For both workloads, the average speedup is 25%. However, the execution with

SF 0.1 gains almost no speedup after 6 machines, since the improvement when adding 2

nodes is only 8%. This shows that for this workload, no more performance is gained with

an increase of parallelism.

Figure 4.9: Execution Time - Q2

4.5 Observations

This chapter presented the model and the prototype in Spark Streaming, and also a

methodology with strategies to validate the scalability of the proposed solutions by using

queries in the left-deep tree model. The next chapter concludes this research with future

works that were not addressed in this thesis.
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5 CONCLUSION

This research presents a model for computing theta-joins in streaming with sup-

port for stateful operators in main memory. The proposed solution is implemented in

Spark Streaming, using a broadcast join to produce results. We use a synthetic bench-

mark to evaluate the system performance in left-deep trees, storing intermediate results.

The evaluation focuses on the scalability of the application and uses metrics based on

cost models for resources (memory and network) and execution time. Results show an

average performance gain of 40% when the resources are doubled. Although other join

orders were not executed to compare with the left-deep tree, the discussion with obtained

results show empirically that a left-deep tree is not always the best solution when the join

produces significant intermediate results.

We leave a few suggestions for future work. A critical evaluation not addressed

in this research is the comparison with state-of-the-art solutions in the record-at-a-time

model. This evaluation requires a complex methodology as it implies the usage of dif-

ferent frameworks, thus requiring a methodical definition of how to obtain metrics and

making a comparison. Another aspect necessary to test is the resilience against skewed

workloads in queries with equality predicate. This research can be carried by comparing

with Spark implementation of SHJ in the Structured Streaming API.
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