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ABSTRACT

Existing academic literature contains a significant number of publications which address

personnel rostering problems. Providing a variety of combinatorial optimization tech-

niques such as metaheuristics, integer linear programming and hybrid algorithms devel-

oped to approach such problems. Despite this progress in recent decades, a considerable

number of institutions continue to prepare and organize their rosters manually.

There are many advantages in automating the generation of rosters using these techniques.

These include (i) cost-saving: reduction of both the overtime and time needed to prepare

and organize rosters, thereby enabling planners to work on other tasks, (ii) fairness: de-

cisions follow rules based on some predefined parameters, improving employees satis-

faction concerning their working schedule with a better balance of unpopular shifts, (iii)

possibility of rerostering: disruptions are very hard for humans to solve due to time pres-

sure and the constraints incurred by both the initial scheduling and rescheduling problem.

The present thesis addresses four primary shortcomings in academic literature by provid-

ing: (i) an integer programming model based on a real-world scenario and a matheuristic

to generate results in short computation times to replace manual rostering, (ii) an effec-

tive integer programming model for cyclic rostering considering both academic and real-

world scenarios which generates state-of-the-art results, (iii) new rerostering strategies for

repairing disruptions in complex multi-skilled employee scenarios, and (iv) a metric for

quantifying the robustness of rosters.

In addition to these contributions, this thesis also focuses on additional issues which

should be considered by researches in the future development of solving methods to max-

imize the chances of their application in practice.

Keywords: Personnel rostering, physician rostering, cyclic rostering, nurse rerostering,

robust rostering, integer programming, matheuristic.



Escalas de funcionários: modelos e algoritmos para escalonamento,

reescalonamento e garantia de robustez

RESUMO

A literatura acadêmica possui um número significativo de publicações que abordam pro-

blemas de escala de pessoal. Além disso, uma variedade de técnicas de otimização com-

binatória, como metaheurísticas, programação linear inteira e algoritmos híbridos foram

desenvolvidas para abordar tais problemas. Apesar deste progresso nas últimas décadas,

um número considerável de instituições continua preparando e organizando suas escalas

manualmente.

Existem diversas vantagens em automatizar a geração de escalas usando essas técnicas.

Isso inclui (i) redução de custos: diminuição tanto de horas-extras quanto do tempo ne-

cessário para preparar e organizar as escalas, permitindo que os escalonadores trabalhem

em outras tarefas, (ii) justiça: as decisões seguem regras baseadas em alguns parâme-

tros pré-definidos, melhorando a satisfação dos funcionários em relação ao seu horário de

trabalho, com um melhor equilíbrio entre os turnos impopulares, (iii) reescalonamento:

as infactibilidades das escalas são muito difíceis para os humanos resolverem devido à

pressão do tempo e às restrições incorridas tanto pelo problema de escalonamento inicial

quanto pelo de reescalonamento.

Esta tese aborda quatro ausências primárias na literatura acadêmica, fornecendo: (i) um

modelo de programação inteira baseado em um cenário do mundo real e uma matheurís-

tica para gerar resultados em tempos computacionais curtos para substituir o escalona-

mento manual, (ii) um modelo de programação inteira eficaz para escalonamento cíclico,

considerando cenários acadêmicos e do mundo real que geram resultados estado da arte,

(iii) novas estratégias de reescalonamento para reparar infactibilidade em escalas consi-

derando cenários complexos de funcionários multi-qualificados, (iv) uma métrica para

quantificar a robustez das escalas.

Além dessas contribuições, esta tese também foca em questões adicionais que devem

ser consideradas no futuro desenvolvimento de métodos de solução para maximizar as

chances de sua aplicação na prática.

Palavras-chave: Escalonamento de funcionários, escalonamento de médicos, escalona-

mento cíclico, reescalonamento de enfermagem, escalonamento robusto, programação



inteira, matheurística.
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1 INTRODUCTION

According to a study conducted by the United Nations Department of Economic

and Social Affairs, the number of people aged over 60 years will grow by 56% between

2015 and 2030. In absolute numbers, this constitutes an increase from 901 million to 1.4

billion. Twenty years later, by 2050, the elderly population is expected to double its size

compared to 2015 and reach a total of 2.1 billion (UNITED NATIONS, 2015). This aging

population poses governments around the world with significant challenges, particularly

in relation to retirement and investment in healthcare programs.

Despite this demographic shift, the number of healthcare staff – such as nurses,

physicians, dentists, pharmacists and psychologists – who provide care for the aging pop-

ulation, is not projected to grow at the same rate. The increased demand associated with

such professionals can end up severely compromising both patient care and employee job

satisfaction (DONNELLY, 2017; BBC, 2017). Efficient use of these limited resources is

therefore essential for both patients and employees.

Existing academic literature contains a large body of work regarding personnel

rostering (ERNST et al., 2004). Burke et al. (2004) and Erhard et al. (2018) provided

a general analysis of nurse and physician rostering literature, respectively. Advanced

solving techniques were developed including a rotation-based branch-and-price method

(LEGRAIN; OMER; ROSAT, 2019), Variable Neighborhood Search (VNS) to accelerate

the column generation (GOMES; TOFFOLO; SANTOS, 2017) and matheuristics (SAN-

TOS et al., 2014; CROCE; SALASSA, 2014).

Despite these significant publications and the existence of solving methods which

generate excellent results in limited computation time, many institutions continue to or-

ganize their rosters manually. This not only demands considerable effort on the part of

human planners but in many cases the rosters generated are of poor quality. This the-

sis investigates several rostering scenarios considering a range of problems to arrive at a

suite of usable methods in practice. These include rostering (normal and cyclic), reros-

tering and robust rostering. In addition, this thesis aims to answer the following research

question: which elements in terms of constraints, solving technique and type of rosters

are important to consider when aiming to deploy automated decision support systems in

practice? To answer this question this thesis will study four complementary staff roster-

ing problems, namely: physician rostering, cyclic rostering, nurse rerostering and robust

rostering.
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Hospital de Clínicas de Porto Alegre (HCPA) is located in the south of Brazil and

motivated the study regarding physician rostering. The hospital’s managers reported a se-

ries of problems occurring with their manual scheduling organization. These include the

long time required to organize and check the accuracy of the rosters, elevated overtime

as well as an inefficient balance of working hours both in terms of overtime and work-

ing hours during non-business days between physicians. In addition, improper rostering

decisions due to not consulting the data from previous rostering periods were incurred,

examples of which include invalid shift successions and maximum consecutive working

days.

Such a scenario motivates the investigation of existing literature concerning physi-

cian rostering problems as well as the nurse rostering problem, due to its similarities. The

inexistence of a mathematical formulation that covers all the constraints provided by the

hospital managers motivated the development of a new integer programming (IP) formu-

lation such that the roster resulting from solving the IP model is acceptable and can be

used in practice at the hospital. However, can this IP formulation be addressed by stan-

dalone solvers and generate good results within acceptable computational runtimes or is

it necessary to develop heuristic methods? Moreover, paid solvers require additional in-

vestment in licenses, which raises the question of how an open-source solver would fare.

Some healthcare and industrial problems involve a type of roster where the sched-

uled pattern repeats after a certain time period, thereby resulting in cycles. These cycles

means that such rosters are naturally fair between employees. However, while previ-

ously introduced cyclic models could not include complex constraints due to their model

variables or the resulting lengthy computation times, the present research proposes a gen-

eral model which is capable of capturing all the complex constraints required in practice.

Nevertheless, how do solvers perform when addressing such complex multi-skilled cyclic

rostering problems? In terms of solving time, is this general model still competitive with

other methods proposed in existing literature?

Uncertainty concerning employee availability is inherent in every personnel roster-

ing problem. Common causes of employee absenteeism include heavy workloads, child-

care obligations and illness (FORBES, 2013). Such absences may render an existing

roster infeasible and difficult for human planners to remedy with last-minute changes.

The fact that planners are under stress in such situations motivates the need to develop

automated rerostering approaches which not only provide updated rosters very quickly

but which also solve the problem more efficiently than humans are capable to do under
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such stressful conditions. Several novel strategies for rerostering based on relaxations of

different problem parameters including soft constraints and the rescheduling horizon are

investigated. For example, the difference in terms of solving time and solution quality is

evaluated when the full scheduling horizon is considered and when only a limited part is

taken into account. Existing literature has previously only investigated simplified scenar-

ios considering single-skilled employees, mostly focused on metaheuristics approaches.

The question then arises as to whether it would still be possible to address such problems

using standalone solvers for large instances when considering multi-skilled employees?

Despite the proposed rerostering method being capable of repairing disrupted ros-

ters, negative effects are unavoidable when using such a reactive method. This includes

last-minute changes concerning employees’ personal organization and high associated

costs, for example, with paid overtime required to remedy employee shortages. The gen-

eration of robust rosters is therefore crucial to minimize the occurrence of these negative

factors. Academic literature, however, currently lacks a metric for measuring the robust-

ness of both single- and multi-skilled staff rosters. Therefore, would it be possible to

develop a general metric for quantifying and enforcing the robustness level of person-

nel rosters in advance? If so, what are the operational costs variations associated with

enforcing robustness in a roster?

All the approached problems include at least a subset of series constraints: invalid

shift successions, the minimum and maximum number of consecutive working days, days

off or working days at the same shift. These constraints have a significant influence on

the computational complexity of rostering problems (SMET, 2018). Moreover, problems

such as the rerostering feasibility and cyclic staff rostering were proven NP-complete by

Moz and Pato (2007) and Bartholdi (1981), respectively.

The present thesis provides scientific contributions by proposing and combining

a set of methods for optimizing staff allocations. These include: (i) rostering (normal

and cyclic): where general models are proposed and solutions still can be obtained in

acceptable computational time, (ii) reactive procedures: exploring different strategies for

solving disrupted rosters and (iii) proactive procedures: by proposing a metric for quanti-

fying robustness and determining the best robustness levels which should be enforced in

order to arrive at sufficiently robust rosters. In addition to these theoretical contributions,

applying the proposed methods in real-world scenarios demonstrated the benefits of ap-

proaching the essential problem of reduced available resources both in terms of budget

and healthcare staff.



16

1.1 Thesis structure and organization

Figure 1.1 provides a diagrammatic overview of the general thesis structure and the

primary elements addressed in each problem. Note that each problem type, highlighted in

gray, represents an independent chapter.

Figure 1.1: Thesis structure and organization.

Personnel rostering

Introduction

Physician rostering

General model

Constraint analysis

Matheuristic algorithm

Cyclic rostering

General model

New results compared to literature

New industry instances

Rerostering

Disruptions

Reactive procedure

Strategies to restore feasibility

Robust rostering

Metric for measuring robustness

Proactive procedure

Trade-off robustness and costs

Conclusions

The remainder of the thesis is organized as follows. Chapter 2 introduces the stud-

ied physician rostering problem, detailing the similarities and differences between the

constraints found in both physician and nurse rostering. An integer programming model

is proposed and results using real-world instances provided by Hospital de Clínicas de

Porto Alegre (HCPA), Brazil, are presented. Chapter 3 details the cyclic rostering prob-

lem and a general integer programming formulation employed to address both literature
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and industry instances. Chapter 4 presents the nurse rerostering problem, including a

general IP model as well as strategies for solving the rerostering problem using the pro-

posed integer programming formulation and a Variable Neighborhood Descent (VND)

algorithm. Chapter 5 provides a metric for quantifying the robustness of staff rosters in

addition to the costs associated with ensuring certain robustness levels in rosters. Finally,

chapter 6 presents the conclusions and outlines directions for future research.
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2 PHYSICIAN ROSTERING

2.1 Introduction

The Physician Rostering Problem (PRP) which aims to schedule physicians qual-

ified in one or more specialties has obtained increased academic attention. Erhard et al.

(2018) provide a thorough overview of the existing literature. Problems were classified as

staffing problems, focusing on how the required size of the workforce is defined; roster-

ing problems, where the main objective is the generation of the rosters; and re-planning

problems, addressing short-term adjustments to already scheduled physicians.

Similarly to the PRP the Nurse Rostering Problem (NRP) is among the most com-

mon problems found related to personnel scheduling. There is a large number of pub-

lications approaching problems related to specific hospitals such as Burke, Li and Qu

(2010), Petrovic and Vanden Berghe (2012) and Burke et al. (2006). Supplementary to

such publications, two competitions, the First and Second Nurse Rostering Competition

(INRC-I) (HASPESLAGH et al., 2014) and (INRC-II) (CESCHIA et al., 2019), have

been organized. For these competitions, a common set of instances was proposed, mak-

ing it easier to compare solving techniques and stimulating the research on algorithms

for solving the NRP. The INRC-I addressed a single-skilled static problem, where the

entire planning horizon must be solved at once. By contrast, the INRC-II approached a

multi-skilled problem and each week of the planning horizon must be solved separately.

Meaning that the final roster is a combination of separate solutions. Each solving method

was free to decide how to deal with historical data and the uncertainty of future data.

Clearly, the INRC-II has made significant progress compared to the INRC-I, by

trying to specify a problem-solving environment that is closer to real-world conditions

by way of including multi-skilled employees and considering the history of the previous

roster. Nevertheless, these models are still lacking generality. For example, there is no

possibility to specify the balance of working hours between the scheduled employees or

a preferred skill if an employee has more than one. In addition, only a fixed problem was

proposed without the option of turning off certain constraints or changing them from hard

to soft (or vice versa). Such changes would render solving methods more flexible and,

therefore, heighten the chances of them actually being used in real-world scenarios.

This work approaches the PRP based on the data provided by Hospital de Clínicas

de Porto Alegre (HCPA), Brazil. The objective is to answer the following research ques-
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tion: Is recent academic progress relevant such that there is a possibility to generalize an

IP formulation to solve a hospital’s specific problem? The methodology used to answer

this includes a basic integer programming model developed based on initial requirements

provided by the hospital. Afterward, managers provided feedback and report back with

improvements that should be implemented to obtain a better balance of working hours

between the scheduled physicians. The combination of both basic and extended model

resulted in a general model that attended all the hospital requirements. Another con-

tribution lies in the fix-and-optimize (F&O) matheuristic that generates good results in

acceptable computation time limits. The F&O matheuristic was necessary to address the

most challenging instances when standalone solvers were incapable of generating good

results within the imposed time limit.

Computational experiments are conducted using real-world instances provided by

HCPA. Detailed insights are presented regarding the constraints violation that improved

the balance of working hours between the physicians. In addition, to enable an aca-

demic validation, both the IP formulation and the F&O matheuristic were compared to

the heuristic Late Acceptance Hill Climbing (LAHC) developed by Sanchotene and Bu-

riol (2018). Logs of the experiments, instances and results are available on-line1.

The remaining chapter is organized as follows. Section 2.2 presents the literature

review. Section 2.3 details the definition of the studied PRP and compares its constraints

against those in the existing literature. Section 2.4 provides the basic and extended inte-

ger programming formulation for the PRP. Section 2.5 introduces the F&O matheuristic

applied to solve the PRP instances. Section 2.6 details the computational results, while

Section 2.7 discusses the conclusions.

2.2 Literature Review

Due to similarities between the PRP and the NRP, this section details related liter-

ature regarding both problems. Moreover, solving methods that were successfully applied

to solve instances proposed for the INRC-I and INRC-II are also detailed. Since there is

a large body of publications related to the NRP, we limited the scope of the literature to

only those solving methods which address the instances from INRC-I and INRC-II.

Sanchotene and Buriol (2018) proposed a heuristic for the physician rostering

problem. The method is divided into two phases. In the first phase, a constructive heuris-

1<http://www.inf.ufrgs.br/~tiwickert/download/2017/physician>

http://www.inf.ufrgs.br/~tiwickert/download/2017/physician
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tic is employed to generate a feasible solution. Afterward, the LAHC heuristic is exe-

cuted to improve the solution. Computational experiments were conducted utilizing the

same instances used in this research. Results demonstrated that the LAHC heuristic ob-

tained slightly better results for instances with 150 physicians, while the present research

achieved better results for instances with up to 100 physicians.

An Integer Programming (IP) model was developed by Bruni and Detti (2014) to

address a real-world physician rostering problem of an Italian university hospital. The IP

model satisfies all service requirements and contractual agreements (including rest peri-

ods and annual leave) while trying to respect, as much as possible, employee preferences.

Particular attention is paid to workload balancing. Stolletz and Brunner (2012) addressed

a PRP with flexible shifts, which have a minimum duration and can begin at any time

during the day. In addition, fair distribution of working hours is addressed. The prob-

lem was solved using a decomposition heuristic where the entire problem is broken down

into weekly subproblems. Computational experiments demonstrated improved results

when compared to previous research (BRUNNER; BARD; KOLISCH, 2009). Brunner

and Edenharter (2011) developed a column generation method to tackle the PRP of an

anesthesia department in an 1100-bed hospital. This procedure was necessary because a

standalone MIP solver was incapable of solving weekly subproblems to optimality within

several hours. A real-world problem in the surgery department of a large government

hospital in Singapore was approached by Gunawan and Lau (2013) using a heuristic. In-

stead of assigning physicians to shifts, they are assigned to a set of tasks incorporating a

large number of constraints and complex physician preferences. Constraint programming

combined with local search and genetic algorithms was proposed by Rousseau, Pesant

and Gendreau (2002) using data provided by two Canadian hospitals. A genetic algo-

rithm to schedule physicians for emergency rooms was proposed by Puente et al. (2009),

while a combined emergency and surgery scheduling problem was addressed by Huele

and Vanhoucke (2014).

Compared to existing literature, the primary differences of this study are the shift

regime which does not follow the same pattern on weekends. Furthermore, a larger num-

ber of workload balancing constraints are required to equilibrate overtime, worked day

and night shifts as well as worked hours on non-business days.

The following literature addresses relevant solving methods applied to the NRP.

The INRC-I winner method proposed by Valouxis et al. (2012) used a two-stage approach

to decompose the problem in manageable parts which can be solved to optimality using
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a mathematical solver. The second-placed solving method (BURKE; CURTOIS, 2011)

and third-placed (BILGIN et al., 2010) developed methods based on branch-and-price

and hyperheuristics, respectively. After the end of the competition, Santos et al. (2014)

developed a MIP model and employed heuristic techniques to decompose the problem.

These subproblems are generated by fixing a subset of days or shifts and the resulting

subproblem is solved using a MIP solver. Computational results demonstrated that several

best-known solutions were improved.

The INRC-II winner method formulated the problem as a network flow model

(RÖMER; MELLOULI, 2016). The second-placed team modeled the problem utilizing

integer programming. Each column of the IP corresponds to a rotation, that is, a sequence

of consecutive worked days for a nurse and not a complete individual roster. This proce-

dure is called rotation-based branch and price (LEGRAIN; OMER; ROSAT, 2019).

In both competitions, the best-ranked methods include at least one component

based on mathematical models outperforming approaches based only on metaheuristics.

After the end of the competition, many methods were applied to the static version of the

INRC-II instances. This means that the entire planning horizon (4 or 8 weeks depending

on the instance) is solved at once. During the competition it was mandatory to solve each

week separately, that is, the solving method must deal with the uncertainty of future data

solving sequential weeks and having the complete result only after the last week had been

solved. These methods include a Variable Neighborhood Search (VNS) to accelerate the

column generation procedure proposed by Gomes, Toffolo and Santos (2017), and the

same procedure developed by the second-placed (LEGRAIN; OMER; ROSAT, 2019) but

now applied to solve the entire planning horizon at once.

Nurse rostering problems usually include a combination of constraints minimum

and maximum number of consecutive working days, days off and working days on the

same shift. This set of consecutiveness constraints render the problem particularly chal-

lenging to solve (SMET, 2018). This is not the case for the present PRP which only has

consecutiveness constraints maximum number of consecutive working days and working

days on the same shift.

In terms of solving technique, the present fix-and-optimize matheuristic is similar

to the method proposed by Santos et al. (2014) and Croce and Salassa (2014). The main

difference with respect to Santos et al. (2014) is that we decompose the problem into

subsets of physicians, days and shifts similar to Croce and Salassa (2014) which in our

preliminary experiments generated better results compared against using only days and
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shifts decompositions. The reason for choosing this solving technique in contrast to those

proposed by Gomes, Toffolo and Santos (2017) and Legrain, Omer and Rosat (2019) is

due to good results on the instances proposed for the INRC-I. Moreover, as the problem

size will increase in the near-future, heuristic methods are more appropriate for these large

instances.

2.3 Problem definition

The general physician rostering problem aims to assign physicians to shifts for

each day during a scheduling horizon. The objective is to minimize the cost associated

with the violation of the soft constraints such as the maximum number of consecutive

working days, overtime and physician’s preferences. The case-specific PRP addressed

in the present study also includes the concept of locations which means that physicians

may be allowed to work at specific locations and not at others within the hospital unit. In

addition to the minimization of the overall cost and violation of physician preferences, this

study also introduces constraints to generate a fair distribution of working hours between

the physicians.

2.3.1 Basic model

Throughout the model definition, non-business days refer to Saturdays, Sundays

and holidays. Working days on weekdays, meanwhile, refer to weekdays which are not

holidays. Constraints are either hard (H) or soft (S):

H1. A physician can be assigned to at most one shift per day during weekdays;

H2. Minimum number of physicians per day/shift/location;

H3. Maximum number of physicians per day/shift/location;

H4. A physician must be assigned to both Early and Late shifts, or a Night shift, or have

a day off on non-business days;

H5. Invalid shift succession;

H6. A physician can be unavailable for some shifts or days;

H7. When working both Early and Late shifts, they must be worked at the same location;

H8. A physician must be qualified to work at specific locations;
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S1. Maximum number of consecutive assignments to the same shift;

S2. Maximum number of consecutive assignments;

S3. Undesired working day or shift;

S4. Complete weekend, that is, a physician ideally works both Saturday and Sunday;

S5. Minimum number of assignments over the planning horizon (according to the work-

ing contract);

S6. Maximum number of assignments over the planning horizon (according to the

working contract);

S7. Maximum number of working weekends.

Constraints included in the basic model are commonly found in the existing lit-

erature. For example, Constraints (H2), (H5) and (S1)–(S7) are present in the instances

proposed for the INRC-I and INRC-II. Constraint (H8) is present in the INRC-II, but

in a slightly different manner. The difference is that for the INRC-II nurses have specific

skills, for example, a nurse can have skills caretaker and trainee, while here physicians are

qualified to be assigned to particular locations within a working unit. Another difference

is that in the case of the NRP a head nurse can assume the work of less qualified nurses,

while this is not the case in the PRP. Constraint (H1) is commonly found in the literature

for all business and non-business days (BEAULIEU et al., 2000), (HASPESLAGH et al.,

2014) and (CESCHIA et al., 2019). However, the present PRP has an exception because

this constraint is only valid for business days. During weekends and holidays, working

both Early and Late shifts is mandatory. Moreover, these shifts must be worked at the

same location.

In comparison with existing PRP literature, Bruni and Detti (2014) described het-

erogeneous working contracts as well as similar 12-hours working shifts. However, these

12-hours shifts are valid for the entire week and not only for non-business days. Brunner,

Bard and Kolisch (2009) and Brunner and Edenharter (2011) contrasting the presented

constraints where each shift has a fixed start and end time, provided models where shifts

can start at any time during a working day and have an arbitrary duration. Another obser-

vation is the restricted number of consecutiveness constraints of this model compared for

example, to those proposed for the INRC-I and INRC-II. While this model has only two

consecutiveness constraints (maximum number of consecutive working days and worked

days on the same shift), INRC-II problem has six consecutiveness constraints.
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2.3.2 Extended model

The primary objective of adding this set of constraints is to improve the balance

of working hours between physicians. For example, an egalitarian distribution of over-

time and working hours on non-business days is desired. The following constraints were

incorporated into the basic model:

H9. Minimum number of assignments on non-business days;

H10. Maximum number of assignments on non-business days;

H11. Maximum number of monthly assignments on weekdays;

S8. Preferred number of assignments on non-business days;

S9. Preference for a location;

S10. Equal day and night working hours during weekends;

S11. Maximum weekly assignments during day (Early and Late) or Night shifts;

S12. Assign physicians to the minimum possible number of locations.

Compared to the literature, Salassa and Vanden Berghe (2012) proposed a solv-

ing method where the basic idea is to have a long term balance in terms of workload

between employees. Similarly to constraints (H9)–(H11), (S8) and (S10), Stolletz and

Brunner (2012) addressed fairness concerning the distribution of working hours, both in

terms of work less-than-contracted hours and overtime by penalizing deviation from a

pre-established minimum and maximum working times. The same way, the model intro-

duced by Stolletz and Brunner (2012) has the possibility of modeling employee-specific

preferences or restrictions. This is possible in the presented model through constraints

(S9) and (S3) from the basic model. Constraint (S11) concerns a particular case where

some physicians have a small number of contracted hours per month. This constraint

ensures that such physicians do not work all their contracted hours during the two first

weeks of the month.

2.3.3 Shifts organization and example of a roster

Table 2.1 provides a simple roster presented in the physician-day view, where

rows represent the physicians and columns the days. The example has three physicians

(Physician1, Physician2 and Physician3), three shifts (Early [E], Late [L] and Night [N]),
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and three locations (In-patient Units [1], [2] and [3]). Day shifts (Early and Late) are 6

hours, while Night shifts are 12 hours long. The shifts are organized as follows:

• Early (6h): 08-14h;

• Late (6h): 14-20h;

• Night (12h): 20-08h.

When a physician works a Night shift, it is considered as two worked shifts. This

procedure is necessary to calculate the total number of working shifts during the planning

horizon. As an example, Physician1 works on Monday the Late shift at In-patient Unit1,

on Tuesday on Late shift at In-patient Unit2, and on Saturday/Sunday on both day shifts

(Early and Late) at In-patient Unit1. Dashes represent days off. Day shifts (Early and

Late) on non-business days that must be worked together (enforced by H4) and Nights

shifts with 12 working hours, which need to be considered twice in order to calculate the

total number of worked shifts per roster, are highlighted in gray.

Table 2.1: Example of a roster with seven days and three physicians.

Physician Mon Tue Wed Thu Fri Sat Sun

Physician1 L[1] L[2] N[1] – – E/L[1] E/L[1]
Physician2 N[2] N[3] – – – N[3] N[2]
Physician3 – E[1] – L[2] N[1] – –

2.4 Integer Programming Formulation

This section introduces an integer programming formulation considering both hard

and soft constraints for the PRP. Table 2.2 presents the indices (first column) used to

identify the variables associated with their respective constraints. The second column

describes the constraints, the third column (Id) is the identifier, while the last column

presents the weight per unit of violation of each constraint. For example, in the objective

function in Eq. 2.1 the first term c3
ndω3 refers to the variables related to the maximum

number of consecutive assignments to the same shift (identified by index 3 in Table 2.2)

multiplied by its respective weight ω3 (15).

Table 2.3 presents the sets, decision and auxiliary variables employed in the for-

mulation.
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Table 2.2: Indices used to associate each soft or hard constraint with their respective variable or
input data in the formulation.

Weight
Index Constraint description Id (ω i)

Basic model
1 Minimum number of physician per day/shift/location H2 -
2 Maximum number of physician per day/shift/location H3 -
3 Maximum number of consecutive assignments to the same shift S1 15
4 Maximum number of consecutive assignments (worked days) S2 30
5 Physician undesired working day/shift S3 10
6 Complete weekend S4 30
7 Minimum number of assignments over the planning horizon S5 20
8 Maximum number of assignments over the planning horizon S6 20
9 Maximum number of working weekends S7 30
Extended model
10 Minimum number of assignments on non-business days H9 -
11 Maximum number of assignments on non-business days H10 -
12 Maximum number of assignments on working days H11 -
13 Number of assignments below the ideal on non-business days S8 100
14 Number of assignments above the ideal on non-business days S8 100
15 Priority per location (physicians may express priority for one or more location) S9 15
16,17 Equilibrium between day and night working hours during weekends S10 10
18 Maximum weekly working assignments day (Early and Late) or Night shifts S11 10
19 Assign physicians to the minimum possible number of locations S12 50

Table 2.3: Indices, sets and variables used in the mathematical formulation for both the basic and
extended models.

Symbol Definition

Input Data

n ∈ N n is the index of the physician, and N is the set of all physician indices;

d ∈ D d is the index of the day, and D is the set of all day indices;

d ∈ D̃ d is the index of the non-business day, and D̃ is the set of all non-

business day indices;

s ∈ S s is the index of the shift, and S is the set of all shift indices;

k ∈ K k is the index of the location, and K is the set of all location indices;

(n,k) ∈ L set containing the pairs of forbbiden locations of physician n at loca-

tion k;

(n,k) ∈ P set containing the pairs where the physician n has a preference not to

work at location k;

(n,d,s) ∈ R set containing triples with unavailable physician n on day d, and shift s;

(n,d,s) ∈U set containing triples with the undesired working day d, and shift s of

physician n;
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(s′,s′′) ∈ Ŝ set containing the pairs of invalid shift successions;

w ∈W w is a Saturday index and W the set of all Saturday indices not including

the last Saturday if it is the last day of the month;

w ∈ W̃ w is the week index, and W̃ the set of all week indices;

α i
dsk i ∈ {1,2}, that is, the minimum and maximum number of physicians

per day d, shift s, and location k;

β i
n limits of constraints with indices 3,4,7,8,9,10,11,12 and 13 in Ta-

ble 2.2. That is, the maximum number of consecutive assignments to the

same shift (3), maximum number of consecutive working days (4), min-

imum/maximum number of assignments over the planning horizon (7,

8), maximum number of working weekends (9), minimum/maximum

number of assignments on non-business days (10, 11), maximum num-

ber of assignments on working days (12), and ideal number of assign-

ments on non-business days (13);

ω i
n weight for violating the lower and upper bounds of soft constraint i for

physician n;

se Early shift index;

sl Late shift index;

sn Night shift index.

Decision Variables

xndsk ∈ {0,1} 1 if physician n is allocated to shift s, day d, and location k, and 0

otherwise;

ynw ∈ {0,1} 1 if physician n works weekend w, and 0 otherwise;

znd ∈ {0,1} 1 if physician n works both the Early and Late shifts on day d, and 0

otherwise;

ond ∈ {0,1} 1 if physician n is allocated to work on day d, and 0 otherwise;

qnk ∈ {0,1} 1 if physician n works at location k, and 0 otherwise.

Auxiliary Variables

ci
nd ∈ N number of violations of the soft constraint with indices i ∈ {3,4} in

Table 2.2, for physician n on day d;

g5
nds ∈ N number of violations of the soft constraint with index 5 in Table 2.2, for

physician n on day d, shift s;
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h6
nw ∈ N number of violations of the soft constraint with index 6 in Table 2.2, for

physician n on weekend w;

ji
n ∈ N number of violations of the soft constraint with indices i ∈

{7, . . . ,9,13,14,16,17,19} in Table 2.2, for physician n;

m15
nk ∈ N number of violations of the soft constraint with indices 15 in Table 2.2,

for physician n at location k;

l18
nws ∈ N number of violations of the soft constraint with index 18 in Table 2.2,

for physician n on week w;

Although rosters are typically organized with a planning horizon of one month,

data from the previous month is important to avoid infeasible solutions. For example,

if physicians work night shifts on the last day of the previous month, they cannot work

early or late shifts on the first day of the current month. To avoid such situations, before

the solving method starts the border data from the previous month is read, that is, the

total number of assignments, last assigned shift type, number of consecutive assignments

of the last shift type, and number of consecutive worked days. These data is necessary

to ensure or calculate the violation of constraints: invalid shift type succession (H5),

maximum number of consecutive assignments to the same shift (S1), maximum number

of consecutive working days (S2) and complete weekend (S4).

2.4.1 Basic model

In this section we describe the basic model, that is, which includes those con-

straints which are most likely to be found in many applications.

Minimize: ∑
n∈N

∑
d∈D

∑
i∈{3,4}

ci
ndω

i + ∑
n∈N

∑
d∈D

∑
s∈S

g5
ndsω

5+

∑
n∈N

∑
w∈W

h6
nwω

6 + ∑
n∈N

∑
i∈{7,8,9}

ji
nω

i
(2.1)

Subject to:

∑
s∈S

∑
k∈K

xndsk ≤ 1 ∀n ∈ N,d ∈ D\ D̃ (2.2)

∑
k∈K

(xndsek + xndslk) = 2znd ∀n ∈ N,d ∈ D̃ (2.3)
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∑
k∈K

xndsnk + znd ≤ 1 ∀n ∈ N,d ∈ D̃ (2.4)

∑
s∈S

∑
k∈K

xndsk ≤ 2ond ∀n ∈ N,d ∈ D (2.5)

∑
k∈K

(xnds′k + xn(d+1)s′′k)≤ 1 ∀n ∈ N,d ∈ {1, . . . , |D|−1},(s′,s′′) ∈ Ŝ (2.6)

∑
d∈D

∑
s∈S

xndsk = 0 ∀(n,k) ∈ L (2.7)

∑
k∈K

xndsk = 0 ∀(n,d,s) ∈ R (2.8)

xndsek− xndslk = 0 ∀n ∈ N,d ∈ D̃,k ∈ K (2.9)

∑
n∈N

xndsk ≥ α
1
dsk ∀d ∈ D,s ∈ S,k ∈ K (2.10)

∑
n∈N

xndsk ≤ α
2
dsk ∀d ∈ D,s ∈ S,k ∈ K (2.11)

β 3
n +d

∑
d′=d

∑
k∈K

xnd′snk− c3
nd ≤ β

3
n ∀n ∈ N,d ∈ {1, . . . , |D|−β

3
n } (2.12)

β 4
n +d

∑
d′=d

ond′ − c4
nd ≤ β

4
n ∀n ∈ N,d ∈ {1, . . . , |D|−β

4
n } (2.13)

∑
k∈K

xndsk ≤ g5
nds ∀(n,d,s) ∈U (2.14)

onw +on(w+1)+h6
nw = 2ynw ∀n ∈ N,w ∈W (2.15)

∑
d∈D

∑
s∈{se,sl}

∑
k∈K

xndsk+

∑
d∈D

∑
k∈K

2xndsnk + j7
n ≥ β

7
n ∀n ∈ N (2.16)

∑
d∈D

∑
s∈{se,sl}

∑
k∈K

xndsk+

∑
d∈D

∑
k∈K

2xndsnk− j8
n ≤ β

8
n ∀n ∈ N (2.17)

∑
w∈W

ynw− j9
n ≤ β

9
n ∀n ∈ N (2.18)

Constraints (2.2) ensure a physician is assigned to at most one shift per day on business

days. Constraints (2.3) and (2.4) ensure that a physician must be assigned to both day

shifts, or one Night shift, or no shift on non-business days. Constraints (2.5) set auxiliary

variable ond to one if physician n works on day d, and zero otherwise. Constraints (2.6)

ensure a shift type succession must be valid (for example, if physicians work Night shifts

they cannot be followed by Early or Late shifts on the next day). Constraints (2.7) ensure

a physician is assigned to a location only if allowed. Constraints (2.8) ensure a physician

is scheduled only if he/she is available. Constraints (2.9) ensure a physician works both

shifts (Early and Late) at the same location if they are worked on non-business days. This

constraint is to avoid that a physician splits a 12-hour working shift across two different

locations. Constraints (2.10) and (2.11) ensure the minimum and maximum number of
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physicians per day/shift/location, respectively.

Constraints (2.12) calculate the maximum number of consecutive assignments to

Night shifts violations. Constraints (2.13) calculate the maximum number of consecutive

assignments (worked days) violations. Constraints (2.14) calculate the undesired worked

day or shift violations. Constraints (2.15) calculate the complete weekend violations.

Constraints (2.16) and (2.17) calculate the minimum and maximum number of worked

shifts violations over the scheduling period, respectively. Constraints (2.18) calculate the

maximum number of working weekends violations.

2.4.2 Extended model

In this section the extended model is described, that is, constraints that aim a fair

distribution of the working hours between the physicians.

Minimize: ∑
n∈N

∑
w∈W̃

∑
s∈S

l18
nwsω

18+ ∑
n∈N

∑
k∈K

m15
nk+ ∑

n∈N
∑

i∈{13,14,16,17,19}
ji
nω

i + (2.1)

(2.19)

Subject to:

β
10
n ≤ ∑

d∈D̃

ond ≤ β
11
n ∀n ∈ N (2.20)

∑
d∈D\D̃

ond ≤ β
12
n ∀n ∈ N (2.21)

∑
d∈D̃

ond + j13
n − j14

n = β
13
n ∀n ∈ N (2.22)

∑
d∈D

∑
s∈S

xndsk−m15
nk = 0 ∀(n,k) ∈ P (2.23)

∑
d∈D̃

∑
k∈K

(
xndsek + xn(d+1)sek

)
−

∑
d∈D̃

∑
k∈K

(
xndsnk + xn(d+1)snk

)
− j16

n + j17
n = 0

∀n ∈ N (2.24)

∑
d∈{1,...,7}

∑
k∈K

xn(d×w)sk− l18
nws ≤ γ

18
nws ∀n ∈ N,w ∈ W̃ ,s ∈ S (2.25)

xndsk ≤ qnk ∀n ∈ N,d ∈ D,s ∈ S,k ∈ K (2.26)
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∑
k∈K

qnk− j19
n ≤ 1 ∀n ∈ N (2.27)

Constraints (2.20) ensure the minimum and maximum number of assignments on

non-business days for each physician. Constraints (2.21) ensure the maximum number

of assignments on business days for each physician. Constraints (2.22) penalize the dif-

ference between the ideal and actual number of assignments on non-business days. Con-

straints (2.23) penalize physicians working out of the preferred location. Constraints (2.24)

penalize the difference between the number of assignments of day and night shifts on non-

business days. Constraints (2.25) penalize weekly allocations in excess of the maximum.

Constraints (2.26) and (2.27) calculate the number of distinct locations that a physician

works and penalize if this value is greater than one.

2.5 Fix-and-optimize matheuristic

This section provides the F&O matheuristic developed to approach the PRP. The

proposed algorithm was adapted from a previous version to address the NRP (WICKERT;

SARTORI; BURIOL, 2016). Figure 2.1 provides an overview of the algorithm execution

flow. The algorithm begins generating a feasible solution using a MIP solver only con-

sidering the hard constraints. Afterward, a subset of variables is iteratively fixed to their

current values, decomposing the problem into subproblems, which are then successively

solved using a MIP solver until the computation time limit is reached. All hard and soft

constraints are considered when the subproblem is solved. The algorithm returns the best

solution found.

Figure 2.1: Algorithm execution flowchart.

Start Initial solution
Subproblem
generation

Solve subproblem

Time limit? Stop
yes

no

Before fully explaining the algorithm, the following general terminology is intro-
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duced. Variables or physicians are denoted as free when the associated decision variable

has the lower bound set to zero and the upper bound to one. This consequently implies

that the solver can decide on setting the value either to zero or to one. On the other hand,

fixing a day, physician or shift indicates that the decision variable is set to the correspond-

ing value in the incumbent solution. In this case, the solver cannot change the variable’s

value. PhysicianFreeCombinationSet is a set of combinations without repetition.

For example, when there are n = 5 physicians and the parameter kPhysician=2,

the combinations without repetitions is 10 unique possibilities, resulting in the set Physi-

cianFreeCombinationSet([1,2], [1,3], [1,4], [1,5], [2,3], [2,4], [2,5], [3,4], [3,5], [4,5]).

If kLimitPhysician=5, only 5 out of 10 items will be randomly added to the set Physician-

FreeCombinationSet. If the kLimitPhysician≥ 10 all possible combinations will be added

to the set PhysicianFreeCombinationSet. During the algorithm’s execution, the decision

variable will have physicians 1 and 2 with lower bound zero and upper bound one, while

physicians 3–10 will have their lower and upper bounds fixed to their current values. As

such, the solver can only change the value of the decision variables of physicians 1 and 2.

Algorithm 1 provides the pseudo-code. Input parameters are passed to the algo-

rithm, where kMaxDay, kMaxPhysician, kMaxWeek and kMaxShift represent the maxi-

mum number of free variables of each type. Meanwhile, kLimitDay, kLimitPhysician,

kLimitWeek and kLimitShift are the limits of combinations generated for each type of

neighborhood. Algorithm 1 begins by generating an initial feasible solution x (line 2)

considering only the hard constraints using a MIP solver. The number of free variables

to optimize is initialized with one (line 3), and the loop (lines 4 to 17) is iterated until the

time limit (TL) is reached.

1 FixAndOptimize(kMaxWeek, kLimitWeek, kMaxShift, kLimitShift, kMaxDay, kLimitDay, kMaxPhysician,
kLimitPhysician, TL, STL)

2 x = generateInitialSolution()
3 kWeek = kShift = kDay = kPhysician = 1
4 do
5 x = FixPerDay(x, kDay, kLimitDay, STL)
6 kDay = kDay+1
7 x = FixPerPhysician(x, kPhysician, kLimitPhysician, STL)
8 kPhysician=kPhysician+1
9 x = FixPerWeek(x, kWeek, kLimitWeek, STL)

10 kWeek=kWeek+1
11 x = FixPerShift(x, kShift, kLimitShift, STL)
12 kShift=kShift+1
13 if (kDay > kMaxDay) kDay = 1
14 if (kPhysician > kMaxPhysician) kPhysician = 1
15 if (kWeek > kMaxWeek) kWeek = 1
16 if (kShift > kMaxShift) kShift = 1
17 while TL not reached
18 return x

Algorithm 1: Fix-and-optimize matheuristic algorithm.
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Inside the loop (lines 5 to 16), the algorithm executes different methods represent-

ing the neighborhoods. Each neighborhood is explored either a local minimum is found or

it reaches the STL (subproblem time limit). For each step, the value of kDay, kPhysician,

kWeek and kShift is incremented. If the limit of each type is exceeded, variables are reset

to 1 (lines 13 to 16).

Algorithm 2 begins generating the combination of physicians that will be free to

be optimized, until the kLimitPhysician is reached (the combination function at line 2).

The loop (lines 4 to 16) is iterated until no improvement of 16.6% is found. The loop

begins by storing the current solution value and the best neighbor value (function OFV

lines 5 and 6). The nested loop (lines 7 to 14) explores the neighborhood by fixing the

entire problem (line 8), and unfixing only the free variables that will be optimized (line 9).

The MIP solver is called and executed until either the optimal solution is found or STL is

reached (line 10). If the Objective Function Value (OFV) of subproblem x is lower than

the OFV of the best neighbor (line 11), then the bestNeighborValue variable is updated

accordingly (line 12).

1 FixPerPhysician(x, kPhysician, kLimitPhysician, STL)
2 physicianFreeCombinationSet = combination(kPhysician, kLimitPhysician)
3 improved = false
4 do
5 currentSolutionValue = OFV(x)
6 bestNeighborValue = OFV(x)
7 foreach Integer free : physicianFreeCombinationSet do
8 fixAll(x)
9 unFix(free, x)

10 solve(x, STL)
11 if OFV(x) < bestNeighborValue then
12 bestNeighborValue = OFV(x)
13 end
14 end
15 improved = bestNeighborValue*1.2 < currentSolutionValue
16 while improved
17 return x

Algorithm 2: Fix per physician.

Figures 2.2 and 2.3 detail an iteration of a fix per physician neighborhood with

kPhysician=1 and kPhysician=2, respectively. Rows with a gray background are available

to be optimized by the solver, meaning that the decision variables have lower bound set

to zero and upper bounds of one. By contrast, rows with a white background have the

associated decision variable bounds fixed to the current incumbent value, meaning that

the solver must not change these values. Observe that, when a decision variable has both

upper and lower bounds set to the same value, they are ignored by the MIP solver. Since

the fix per week, fix per shift and fix per day decompositions follow the same idea, the

pseudo-code of these algorithms has been omitted for textual economy.
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Figure 2.2: Fix per physician (kPhysician=1).

Physician Mon Tue Wed
P1 L[1] L[2] N[2]
P2 N[1] N[1] N[3]
P3 – E[3] –

↓

P1 L[1] N[2] N[2]
P2 N[1] N[1] N[3]
P3 – E[3] –

↓

P1 L[1] N[2] N[2]
P2 N[2] N[1] N[3]
P3 – E[3] –

Figure 2.3: Fix per physician (kPhysician=2).

Physician Mon Tue Wed
P1 L[1] N[2] N[2]
P2 N[2] N[1] N[3]
P3 – E[3] –

↓

P1 L[1] N[1] N[2]
P2 N[2] L[1] N[3]
P3 – E[3] –

↓

P1 L[1] N[1] N[2]
P2 E[2] L[1] N[3]
P3 E[3] E[3] –

2.6 Computational experiments

This section analyzes a series of computational experiments to investigate whether

the proposed IP formulation can be solved using commercial and open-source MIP solvers

for both small and large instances.

2.6.1 Data sets and experimental setup

The source code was written in Java and compiled with OpenJDK 1.8. The ex-

periments were conducted on an Intel Core i5-2410M CPU 2.30GHz (2 cores) with 6GB

of RAM memory running Linux Mint 17.2 64-bits. The solvers employed were CPLEX

version 12.6.2 and Coin-OR CBC version 2.9.9. Both solvers were run with default pa-

rameters. The gap is calculated using the equation gap = 100× OFV−LB
LB , where OFV

is the objective function value and LB is the lower bound. All parameters of the F&O

matheuristic were tuned using irace (LÓPEZ-IBÁÑEZ et al., 2016).

Table 2.4 presents the parameter names, tested ranges and the chosen parameter

values computed by irace, respectively. Irace reported the values STL = 8s, kMaxWeek = 2,

kLimitWeek = 4, kMaxShift = 3, kLimitShift = 3, kMaxPhysician = 20, kLimitPhysi-

cian = 30, kMaxDay = 8, and kLimitDay = 8 as the best parameter values to be used

by the proposed F&O matheuristic. The default irace parameters were used for the exper-

iments, that is, the confidence level is 0.95.

The dataset employed in the experiments was generated based on the information
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Table 2.4: Parameter ranges.

Name Range of Values Irace

STL [5, 8, 12] 8
kMaxWeek [1,. . . ,4] 2
kLimitWeek [1,. . . ,8] 4
kMaxShift [1,. . . ,3] 3
kLimitShift [1,. . . ,7] 3
kMaxPhysician [1,5,10,15,20,25,30] 20
kLimitPhysician [5,10,15,30,35,40,45,50] 30
kMaxDay [1,8,16] 8
kLimitDay [4,8,16,32] 8

provided by HCPA. The algorithm was tested in 30 generated instances. Currently, the

real number of physicians to schedule is 50. However, the number of physicians will

increase in the near future, and so this is the reasoning behind generating larger instances.

The objective is to analyze whether these larger and more demanding instances can still

be solved using the proposed methods. The following instances were generated:

• 10 instances with 50 physicians and four weeks;

• 10 instances with 100 physicians and four weeks;

• 10 instances with 150 physicians and four weeks.

The computation time limit for each experiment was fixed according to the in-

stance size and algorithm. Note that the F&O matheuristic has half of the computational

time limit compared against the MIP solvers. This solving method is used when quick re-

sults are required in reduced computational time. The following experimental setup was

proposed:

• One single execution using CPLEX solver and a computation time limit of 12h;

• One single execution using CPLEX and Coin-OR CBC with computation time lim-

its of 20, 40 and 60 minutes for the instances with 50, 100 and 150 physicians,

respectively;

• 10 executions using the F&O matheuristic with computation time limits of 10, 20

and 30 minutes for the instances with 50, 100 and 150 physicians, respectively.

In addition, two instances using data from April and May of 2019 provided by

HCPA were employed for the computational experiments using the extended model. The

reported results and statistics constitute the real roster used in the hospital.
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2.6.2 MIP solver results

Table 2.5 provides the results when the basic IP formulation is solved using the

standalone MIP solvers CPLEX and Coin-OR CBC. The column labels LB, OFV and Gap

correspond to the lower bound (provided by CPLEX), objective function value and the gap

calculated according to the equation introduced in the previous section. Experiments are

split into three blocks. The first block provides the results when CPLEX was executed

for a long computation time (12h). The objective of this experiment was to generate good

LBs to use them for comparing the other solving methods. In practice, this time limit

is not considered acceptable therefore other experiments have shorter computation time

limits.

Table 2.5: MIP solver results.
CPLEX Coin-OR CBC

Time Limit - 12h Time Limit - 20, 40, 60 min1 Time Limit - 20, 40, 60 min1

Instance LB OFV Gap(%) OFV Gap(%) Time(s) OFV Gap(%) Time(s)

p050_inst_01 30,305 30,305 0.00 30,305 0.00 438 30,305 0.00 754
p050_inst_02 30,460 30,460 0.00 30,460 0.00 352 30,460 0.00 520
p050_inst_03 30,505 30,505 0.00 30,505 0.00 428 30,505 0.00 1,185
p050_inst_04 30,965 30,965 0.00 30,965 0.00 511 30,965 0.00 283
p050_inst_05 30,685 30,685 0.00 30,685 0.00 374 30,685 0.00 435
p050_inst_06 31,705 31,705 0.00 31,705 0.00 415 31,705 0.00 301
p050_inst_07 30,015 30,015 0.00 30,015 0.00 401 30,015 0.00 315
p050_inst_08 30,215 30,215 0.00 30,215 0.00 403 30,225 0.03 1,200
p050_inst_09 31,670 31,670 0.00 31,670 0.00 447 31,670 0.00 484
p050_inst_10 30,765 30,765 0.00 30,765 0.00 408 30,765 0.00 1,182

Average 0.00 0.00 0.00

p100_inst_01 24,429 25,525 4.49 26,320 7.74 2,400 - - 2,400
p100_inst_02 26,720 27,945 4.58 29,940 12.05 2,400 - - 2,400
p100_inst_03 25,082 26,300 4.86 - - 2,400 - - 2,400
p100_inst_04 24,280 25,285 4.14 - - 2,400 - - 2,400
p100_inst_05 24,633 25,775 4.64 28,615 16.17 2,400 - - 2,400
p100_inst_06 25,660 26,920 4.91 29,490 14.93 2,400 - - 2,400
p100_inst_07 23,205 24,505 5.60 26,180 12.82 2,400 - - 2,400
p100_inst_08 25,282 26,445 4.60 - - 2,400 - - 2,400
p100_inst_09 25,946 27,130 4.56 - - 2,400 - - 2,400
p100_inst_10 23,775 25,030 5.28 28,185 18.55 2,400 - - 2,400

Average 4.77 -

p150_inst_01 55,742 60,030 7.69 - - 3,600 - - 3,600
p150_inst_02 54,011 58,320 7.98 - - 3,600 - - 3,600
p150_inst_03 54,135 58,070 7.27 - - 3,600 - - 3,600
p150_inst_04 53,457 57,595 7.74 - - 3,600 - - 3,600
p150_inst_05 54,786 59,740 9.04 - - 3,600 - - 3,600
p150_inst_06 54,170 58,720 8.40 - - 3,600 - - 3,600
p150_inst_07 53,959 57,570 6.69 - - 3,600 - - 3,600
p150_inst_08 53,199 56,750 6.67 - - 3,600 - - 3,600
p150_inst_09 53,396 57,580 7.84 - - 3,600 - - 3,600
p150_inst_10 51,782 55,810 7.78 - - 3,600 - - 3,600

Average 7.71 -
1 Computation time limits for instances with 50, 100 and 150 physicians, respectively.

The second and third blocks present the results when CPLEX and Coin-OR CBC

were employed to solve the IP formulation using computation time limits of 20, 40 and 60
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minutes for instances with 50, 100 and 150 physicians, respectively. Instances containing

50 physicians were solved to optimality employing CPLEX and near-optimality using

Coin-OR CBC. For larger instances, with 100 and 150 physicians, Coin-OR was not

capable to generate feasible solutions within the time limit, while CPLEX generated 6

out of 10 feasible solutions when instances with 100 physicians are tackled. Both solvers

could not find feasible solutions for instances with 150 physicians within 1h.

These results show that MIP solvers are a good option for solving instances up to

50 physicians which is the hospital’s current situation. Both CPLEX and the open-source

solver Coin-OR CBC generated good results. Optimal and near-optimal results were

obtained within acceptable computation time limits. However, for large instances with

100 and 150 physicians, improvements in the IP formulation or other solving methods are

necessary to generate better results.

2.6.3 Fix-and-optimize results

Table 2.6 presents the results using the fix-and-optimize (F&O) matheuristic. The

three last columns provide CPLEX results. However, a direct comparison with heuris-

tics is not possible since MIP solvers address problems improving both upper and lower

bounds aiming to prove optimality. The gap is calculated relative to the LB (first column),

obtained by CPLEX when executed with a time limit of 12h.

As explained in Section 2.5, the F&O matheuristic uses CPLEX to solve the sub-

problems and results are compared to the Late Acceptance Hill Climbing (LAHC) de-

veloped by Sanchotene and Buriol (2018). Computational results demonstrated that for

instances with 50 physicians, results were very close to optimality with an average rela-

tive gap of 0.03%. Instances with 100 and 150 physicians have average relative gaps of

6.00% and 8.75%, respectively.

In general, the F&O matheuristic generated similar results as the LAHC heuristic

developed by Sanchotene and Buriol (2018). These computational experiments show

that both the LAHC heuristic and the F&O matheuristic are good alternatives to address

large problems with 100 and 150 physicians. Both methods generated good results within

short computation times. By contrast, when solving problems with up to 50 physicians

the standalone MIP solvers are the most effective alternative. Note that the proposed

F&O matheuristic is solver-independent and general, being capable of addressing both

the basic and extended models without compromising the quality of the results compared
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Table 2.6: Heuristic LAHC and F&O results.
LAHC-10,20,30 min1 F&O - 10, 20, 30 min1 CPLEX - 20, 40, 60 min1

Instance LB OFV Gap(%) OFV Std. Dev. Gap(%) OFV Gap(%) Time(s)

p050_inst_01 30,305 30,329 0.08 30,318 ± 7 0.04 30,305 0.00 438
p050_inst_02 30,460 30,480 0.07 30,468 ± 8 0.03 30,460 0.00 352
p050_inst_03 30,505 30,517 0.04 30,516 ± 12 0.04 30,505 0.00 428
p050_inst_04 30,965 30,977 0.04 30,975 ± 8 0.03 30,965 0.00 511
p050_inst_05 30,685 30,695 0.03 30,692 ± 11 0.02 30,685 0.00 374
p050_inst_06 31,705 31,737 0.10 31,719 ± 7 0.04 31,705 0.00 415
p050_inst_07 30,015 30,051 0.12 30,022 ± 7 0.02 30,015 0.00 401
p050_inst_08 30,215 30,236 0.07 30,226 ± 10 0.04 30,215 0.00 403
p050_inst_09 31,670 31,714 0.14 31,685 ± 12 0.05 31,670 0.00 447
p050_inst_10 30,765 30,783 0.06 30,772 ± 8 0.02 30,765 0.00 408

Average 0.07 0.03 0.00

p100_inst_01 24,429 25,979 6.34 25,835 ± 66 5.76 26,320 7.74 2,400
p100_inst_02 26,720 28,479 6.58 28,324 ± 55 6.00 29,940 12.05 2,400
p100_inst_03 25,082 26,659 6.29 26,608 ± 95 6.08 - - 2,400
p100_inst_04 24,280 25,764 6.11 25,558 ± 78 5.26 - - 2,400
p100_inst_05 24,633 26,144 6.13 26,034 ± 50 5.69 28,615 16.17 2,400
p100_inst_06 25,660 27,391 6.75 27,253 ± 45 6.21 29,490 14.93 2,400
p100_inst_07 23,205 25,008 7.77 24,801 ± 66 6.88 26,180 12.82 2,400
p100_inst_08 25,282 26,867 6.27 26,754 ± 89 5.82 - - 2,400
p100_inst_09 25,946 27,592 6.34 27,333 ± 58 5.35 - - 2,400
p100_inst_10 23,775 25,534 7.40 25,438 ± 89 6.99 28,185 18.55 2,400

Average 6.60 6.00 -

p150_inst_01 55,742 60,207 8.01 60,517 ± 123 8.57 - - 3,600
p150_inst_02 54,011 58,691 8.66 58,950 ± 154 9.14 - - 3,600
p150_inst_03 54,135 58,539 8.14 58,875 ± 95 8.75 - - 3,600
p150_inst_04 53,457 57,842 8.20 58,133 ± 139 8.75 - - 3,600
p150_inst_05 54,786 59,375 8.38 59,640 ± 122 8.86 - - 3,600
p150_inst_06 54,170 58,973 8.87 59,141 ± 56 9.18 - - 3,600
p150_inst_07 53,959 58,119 7.71 58,443 ± 115 8.31 - - 3,600
p150_inst_08 53,199 57,378 7.86 57,733 ± 199 8.52 - - 3,600
p150_inst_09 53,396 57,673 8.01 58,029 ± 126 8.68 - - 3,600
p150_inst_10 51,782 55,990 8.13 56,311 ± 100 8.75 - - 3,600

Average 8.20 8.75 -

1 Computation time limits for instances with 50, 100 and 150 physicians, respectively.

to the case-specific LAHC heuristic.

Table 2.7: F&O results for 2h of computation running time.
Instance LB CPLEX OFV Std. Dev. Gap (%)

p150_inst_01 55,742 60,028 ± 136 7.69
p150_inst_02 54,011 58,496 ± 78 8.30
p150_inst_03 54,135 58,309 ± 76 7.71
p150_inst_04 53,457 57,606 ± 147 7.76
p150_inst_05 54,786 59,127 ± 94 7.92
p150_inst_06 54,170 58,609 ± 63 8.19
p150_inst_07 53,959 57,847 ± 79 7.21
p150_inst_08 53,199 57,204 ± 122 7.53
p150_inst_09 53,396 57,447 ± 102 7.59
p150_inst_10 51,782 55,790 ± 100 7.74

Average 7.76

Table 2.7 details the results obtained with a computation time limit of two hours

using instances with 150 physicians. On average, the relative gap was reduced from

8.20% when the time limit was 30 minutes to 7.76%. These results are almost the same

as those obtained by CPLEX when the running time was limited to 12h which generated a
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relative gap of 7.71%. Such results indicate that the proposed method is a good alternative

to CPLEX for large instances when limited time is available.

2.6.4 Objective function analysis

Figure 2.4 provides an analysis of the OFV when varying the number of physicians

and removing different subsets of constraints. The objective is to evaluate the influence

of the different sets of constraints upon the OFV. Black bars indicate the results when

all constraints are considered when varying the number of physicians from 50 to 90.

With 60 physicians the OFV reduced approximately one third and eventually reached an

ideal of zero when the number of available physicians is 90. Moreover, results indicate

a notable reduction in the OFV when S1 and S2 are removed considering 50 physicians.

Experiments show that these two constraints represent a minor influence on the OFV

when the number of physicians are 60 or more. Such results indicate that the majority of

the violations concern overtime constraints.

Figure 2.4: OFV impact when varying the number of physicians and removing constraints.
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2.6.5 Extended model results

This section provides the results when using the extended model for the generated

roster of April and May of 2019. Since a CPLEX license is required for commercial

use, only Coin-OR CBC was used for the computational experiments in this section. Ap-

pendices A and B present the complete roster of April and May of 2019, respectively.

Table 2.8 provides the results employing Coin-OR CBC standalone solver (second col-

umn) and using the F&O matheuristic (third column). The objective of this experiment

is not a direct comparison between the exact and heuristic method. Instead, they are
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complementary, being the F&O matheuristic employed mainly when fast results must be

available in reduced time. Results show that the standalone solver was capable of reach-

ing near-optimum results with a relative gap of less than 0.1% within 20 minutes. Another

experiment, using the F&O matheuristic with a 10 minutes time limit, demonstrated that

the algorithm is a good alternative when results are needed quickly. The gaps (last col-

umn), calculated relative to the lower bound provided by the MIP solver, were 1.83% and

2.46% for the months of April and May, respectively.

Table 2.8: Results using Coin-OR CBC standalone solver and the F&O matheuristic.

20 min 10min
Coin-OR CBC F&O

Gap(%) Gap(%)

April 2019 0.05 1.83
May 2019 0.09 2.46

Note that both the F&O matheuristic and the standalone MIP solver are used in

practice at HCPA. The F&O matheuristic method is employed to generate fast solutions

when the roster of a new month is going to be organized. During this process managers

may change the input data including days off requests, vacations, constraints violation

weight, and recompute the roster several times. When this process is more stable, the

exact method is executed for longer runtimes to generate near-optimum final rosters.

Tables 2.9 and 2.10 provide the most relevant constraint violation analysis con-

cerning the rosters generated for April and May of 2019. The first column represents the

physician identification, while the S1 column provides the maximum of two consecutive

night shift violations. Column S4 details the number of incomplete worked weekends,

column S5/S6 provides the contracted hours (in parentheses), where positive and negative

values indicate whether the respective physician worked more or less than their contracted

hours. Observe that Early and Late shifts have six hours and Night shifts twelve hours.

However, the majority of the physicians’ contracts are not a multiple of six, and therefore

it is technically impossible for most physicians to work their precise contractual hours.

Column S7 presents the maximum number of worked weekends in parentheses and the

number effectively worked. Column S8 provides the ideal number of worked hours on

non-business days in parentheses, where positive and negative values indicate if the physi-

cian worked more or less than the ideal. These ideal hours vary from one physician to

another depending on the total number of working hours and the seniority of the contract.

Column S10 presents the difference between worked day and night shifts (day - night) for
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which the result should, ideally, be zero. Finally, column S12 details the number of times

a physician was allocated for each area. For example, Physician1 was scheduled to work

10 times at Area2 and zero times in other areas (in the example there are six areas).

Table 2.9: April 2019 - Roster analysis.
Name S1 S4 S5/S6 S7 S8 S10 S12

P1 0 0 (100) +8 (2) 1 (24) 0 0 [0, 10, 0, 0, 0, 0]
P2 0 1 (100) +2 (2) 2 (36) 0 12 [12, 0, 0, 0, 0, 0]
P3 0 2 (100) +2 (2) 2 (36) 0 0 [15, 0, 0, 0, 0, 0]
P4 0 1 (100) +2 (2) 2 (36) 0 12 [12, 0, 0, 0, 0, 0]
P5 0 2 (100) +2 (2) 2 (36) 0 0 [0, 12, 0, 0, 0, 0]
P6 0 1 (115) +5 (2) 2 (36) 0 -12 [0, 14, 0, 0, 0, 0]
P7 0 0 (72) 0 (2) 1 (24) 0 0 [0, 8, 0, 0, 0, 0]
P8 0 0 (60) 0 (2) 1 (24) 0 0 [0, 0, 0, 0, 6, 0]
P9 0 0 (83) +1 (2) 1 (24) 0 0 [0, 10, 0, 0, 0, 0]
P10 0 2 (100) +8 (2) 2 (36) 0 0 [0, 11, 0, 0, 0, 0]
P11 0 1 (100) +2 (2) 2 (36) 0 -12 [11, 0, 0, 0, 0, 0]
P12 0 1 (100) +2 (2) 2 (36) 0 12 [12, 0, 0, 0, 0, 0]
P13 0 1 (100) +2 (2) 2 (36) 0 12 [0, 12, 0, 0, 0, 0]
P14 0 0 (48) 0 (2) 1 (24) 0 0 [0, 0, 0, 0, 5, 0]
P15 0 2 (100) +2 (2) 2 (36) 0 0 [12, 0, 0, 0, 0, 0]
P16 0 0 (125) +1 (2) 2 (48) 0 0 [0, 0, 14, 0, 0, 0]
P17 1 1 (68) +4 (2) 2 (36) 0 -12 [7, 1, 0, 0, 0, 0]
P18 0 2 (100) +2 (2) 2 (36) 0 0 [11, 0, 0, 0, 0, 0]
P19 0 1 (100) +2 (2) 2 (36) 0 12 [0, 0, 12, 0, 0, 0]
P20 0 2 (100) +8 (2) 2 (36) 0 0 [0, 0, 13, 0, 0, 0]
P21 0 1 (100) +2 (2) 2 (36) 0 12 [0, 0, 0, 13, 0, 0]
P22 0 2 (150) 0 (2) 2 (36) 0 0 [7, 0, 0, 13, 0, 0]
P23 0 1 (100) +2 (2) 2 (36) 0 -12 [0, 0, 0, 12, 0, 0]
P24 0 1 (100) +2 (2) 2 (36) 0 12 [0, 0, 12, 0, 0, 0]
P25 0 0 (125) -11 (2) 2 (48) 0 0 [13, 0, 0, 0, 0, 0]
P26 0 1 (100) +2 (2) 2 (36) 0 12 [0, 0, 0, 0, 12, 0]
P27 0 2 (100) +2 (2) 2 (36) 0 0 [0, 0, 0, 12, 0, 0]
P28 0 2 (100) +2 (2) 2 (36) -12 0 [0, 0, 0, 14, 0, 0]
P29 0 1 (100) +8 (2) 2 (36) 0 -12 [10, 0, 0, 0, 0, 0]
P30 0 2 (100) -4 (2) 2 (36) 0 0 [0, 11, 0, 0, 0, 0]
P31 0 1 (100) +2 (2) 2 (36) 0 -12 [0, 7, 5, 0, 0, 0]
P32 0 2 (100) -4 (2) 2 (36) 0 0 [0, 0, 11, 0, 0, 0]
P33 0 1 (65) +1 (2) 1 (24) 0 12 [0, 0, 1, 0, 7, 0]
P34 0 2 (100) -4 (2) 2 (36) 0 0 [0, 0, 0, 0, 12, 0]
P35 0 2 (125) -5 (2) 2 (36) 0 0 [0, 0, 0, 0, 0, 16]
P36 0 1 (100) +2 (2) 2 (36) 0 12 [0, 0, 0, 12, 0, 0]
P37 0 1 (125) +7 (2) 2 (36) 0 -12 [0, 0, 0, 0, 11, 5]
P38 1 1 (100) -4 (2) 2 (36) 0 -12 [0, 0, 0, 0, 11, 0]
P39 0 2 (125) -11 (3) 2 (36) 0 0 [0, 0, 0, 0, 0, 12]
P40 0 0 (100) +2 (2) 1 (36) -12 0 [0, 0, 0, 14, 0, 0]
P41 0 1 (100) +2 (2) 2 (36) 0 -12 [0, 7, 0, 0, 5, 0]
P42 0 1 (100) +2 (2) 2 (36) 0 12 [3, 10, 0, 0, 0, 0]
P43 0 1 (100) +2 (2) 2 (36) 0 -12 [0, 5, 7, 0, 0, 0]
P44 0 1 (100) +2 (2) 2 (36) 0 12 [0, 0, 0, 0, 0, 13]
P45 0 1 (100) +2 (2) 2 (36) 0 -12 [3, 9, 0, 0, 0, 0]
P46 0 1 (125) -5 (2) 2 (36) 0 -12 [0, 0, 0, 0, 0, 15]
P47 0 1 (125) -5 (2) 2 (36) 0 -12 [0, 0, 0, 0, 0, 15]
P48 0 1 (125) -11 (2) 2 (36) 0 12 [0, 0, 0, 0, 0, 14]

Overtime: 99h; Debt: 64h; Difference: +35h

From Table 2.9 it can be observed that there are a low number of violations con-

cerning constraint maximum number of consecutive worked night shifts (S1). The maxi-

mum number of worked weekends (S7), which for the majority of physicians was limited

to two, had no violations. The same tendency is observed for ideal working hours on

non-business days (S8), which was always equal or below the stipulated value. Although

incomplete worked weekends (S4) presented a few violations they were still within an ac-
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ceptable range. Constraint (S10) only presented multiples of 12 violations because this is

the minimum number of working hours on non-business days. This constraint presented

more violations, but it is acceptable given the reduced number of assigned areas (S12),

which is desirable.

Table 2.9, which represents April of 2019, was a month where almost all physi-

cians were available the entire month contributing to less overtime. Because of that, some

physicians worked fewer hours than their contract stipulates. Before the solver was imple-

mented, manual rosters were deployed to the physicians with an average of 400 overtime

hours.

Table 2.10: May 2019 - Roster analysis.
Name S1 S4 S5/S6 S7 S8 S10 S12

P1 0 1 (104) +4 (2) 2 (36) 0 -12 [0, 10, 0, 0, 0, 0]
P2 0 2 (52) +8 (2) 2 (24) 0 0 [6, 0, 0, 0, 0, 0]
P3 0 2 (104) +4 (2) 2 (36) 0 0 [7, 0, 0, 0, 9, 0]
P4 0 1 (72) 0 (2) 2 (24) +12 -12 [7, 0, 0, 0, 0, 0]
P5 0 1 (52) +2 (2) 1 (24) 0 12 [0, 7, 0, 0, 0, 0]
P6 0 0 (130) +8 (2) 1 (36) 0 24 [0, 13, 0, 6, 0, 0]
P7 0 2 (104) +4 (2) 2 (36) 0 0 [0, 10, 0, 2, 0, 0]
P8 0 0 (60) 0 (2) 1 (24) 0 0 [0, 0, 0, 0, 6, 0]
P9 0 0 (86) +10 (2) 1 (24) 0 0 [0, 10, 0, 0, 0, 0]
P10 0 1 (104) +4 (2) 2 (36) 0 12 [0, 11, 0, 0, 0, 0]
P11 0 0 (52) +2 (2) 1 (24) 0 0 [6, 0, 0, 0, 0, 0]
P12 0 2 (104) +4 (2) 2 (36) 0 0 [9, 0, 4, 0, 0, 0]
P13 0 1 (104) +4 (2) 2 (36) 0 -12 [0, 9, 0, 3, 0, 0]
P14 0 1 (30) +6 (2) 1 (12) 0 12 [0, 0, 0, 0, 4, 0]
P15 0 0 (104) +4 (2) 1 (36) 0 0 [10, 3, 0, 0, 0, 0]
P16 0 0 (130) +2 (2) 2 (48) 0 0 [0, 0, 16, 0, 0, 0]
P17 0 1 (104) +4 (2) 2 (36) 0 -12 [10, 0, 0, 0, 0, 0]
P18 0 1 (104) +10 (2) 2 (36) 0 -12 [9, 0, 0, 0, 3, 0]
P19 0 2 (116) +10 (2) 2 (36) 0 0 [0, 0, 14, 0, 0, 0]
P20 0 0 (104) +4 (2) 2 (36) +12 0 [0, 0, 12, 0, 0, 0]
P21 0 0 (104) +4 (2) 1 (36) 0 0 [0, 0, 0, 12, 0, 0]
P22 0 2 (156) +6 (2) 2 (36) 0 0 [5, 0, 0, 13, 3, 0]
P23 0 2 (88) +2 (2) 2 (24) 0 0 [0, 0, 0, 10, 0, 0]
P24 0 0 (104) +4 (2) 2 (36) +12 0 [0, 0, 12, 0, 0, 0]
P25 0 1 (95) +1 (2) 2 (36) 0 12 [8, 0, 0, 0, 4, 0]
P26 0 2 (104) +4 (2) 2 (36) 0 0 [0, 0, 0, 0, 12, 0]
P27 0 2 (104) +4 (2) 2 (36) 0 0 [0, 0, 0, 14, 0, 0]
P28 0 2 (52) +2 (2) 2 (24) 0 0 [0, 0, 0, 6, 0, 0]
P29 0 0 (104) +4 (2) 2 (36) +12 0 [11, 0, 0, 0, 0, 0]
P30 0 2 (104) +4 (2) 2 (36) 0 0 [0, 11, 0, 0, 0, 0]
P31 0 0 (104) +4 (2) 2 (36) +12 0 [7, 4, 0, 0, 0, 0]
P32 0 2 (104) +10 (2) 2 (36) 0 0 [0, 0, 13, 0, 0, 0]
P33 0 1 (104) +10 (2) 2 (36) 0 -12 [0, 0, 0, 0, 14, 0]
P34 0 2 (52) +2 (2) 2 (24) 0 0 [0, 0, 0, 0, 6, 0]
P35 0 1 (130) +8 (2) 2 (36) 0 -12 [0, 0, 0, 0, 0, 18]
P36 0 0 (104) +4 (2) 2 (36) +12 0 [0, 0, 0, 13, 0, 0]
P37 0 0 (130) +8 (2) 2 (36) +12 0 [0, 0, 0, 0, 11, 6]
P38 0 2 (104) +4 (2) 2 (36) 0 0 [0, 0, 0, 0, 13, 0]
P39 0 2 (130) +2 (3) 3 (36) +12 0 [0, 3, 0, 0, 0, 12]
P40 0 0 (104) +4 (2) 2 (36) +12 0 [0, 0, 0, 14, 0, 0]
P41 0 0 (104) +4 (2) 2 (36) +12 0 [0, 11, 0, 0, 1, 0]
P42 0 0 (104) +10 (2) 2 (36) +12 0 [2, 10, 0, 0, 0, 0]
P43 0 1 (104) +4 (2) 2 (36) +12 12 [0, 0, 0, 0, 0, 13]
P44 0 0 (104) +10 (2) 2 (36) +12 0 [7, 3, 0, 0, 0, 4]
P45 0 2 (52) +8 (2) 2 (24) 0 -24 [0, 0, 0, 0, 0, 6]
P46 0 1 (130) +8 (2) 2 (36) 0 -12 [0, 0, 0, 0, 0, 18]
P47 1 1 (130) +2 (2) 2 (36) +12 36 [0, 0, 0, 0, 0, 16]

Overtime: 231h; Debt: 0h; Difference: +231h
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Table 2.10, which corresponds to May of 2019, had more physicians on vaca-

tion compared to Table 2.9 (April of 2019). Overtime was also more prevalent (+231),

however, still far below the average (+400) when the roster was organized manually. An-

other consequence is the number of working hours on non-business days (S8) and the day

and night shift balance (S10), which presented more violations compared to the previous

month.

Managers considered the presented results much better than those generated man-

ually. The primary reasons being the reduction of overtime, better distribution of overtime

and working hours on non-business days between physicians. Another important remark

is the reduction of mistakes in the roster. For example, scheduling a physician for a Night

shift on the last day of the previous month and an Early or Late shift the first day of the

next month, was a common error when the rosters were organized manually. Moreover,

the development of the overview tables improved transparency of how the rosters are

prepared and organized.

2.7 Conclusions

The present chapter proposed an integer programming formulation and a fix-and-

optimize matheuristic for the PRP. Moreover, a comparison between constraints present

in the NRP and the studied PRP demonstrate similarities and differences between these

problems. A basic model was developed addressing the most common constraints to

generate a physician roster. The extended model aims to improve the balance of overtime,

working hours during non-business days and working hours during day and night shifts.

Such constraints are important to be considered when real-world solving methods are

developed because the resulting roster is fair between the scheduled physicians.

Computational experiments indicate that both MIP solvers, CPLEX and Coin-OR

CBC, were capable to generate optimal and near-optimal results, respectively, when solv-

ing small instances with up to 50 physicians. For these small instances, the computation

times of Coin-OR CBC were similar to CPLEX. Open-source solver such as Coin-OR

CBC, therefore, is a suitable alternative to commercial solvers when the number of physi-

cians to schedule is limited. For larger instances, with 100 and 150 physicians, both

solvers were unable to find feasible solutions in most of the instances within an accept-

able computation time limit.

A fix-and-optimize matheuristic was proposed to improve these results employing
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the standalone solvers. Results near-optimum were generated for instances with 50 physi-

cians in 10 minutes. Moreover, utilizing instances with 100 and 150 physicians, even with

short computation time limits (20 and 30 minutes), the F&O matheuristic generated good

results. For the larger instances (150 physicians) the LAHC proposed by Sanchotene and

Buriol (2018) obtained slightly better results when compared to the F&O matheuristic.

Manual rosters had an average of 400 hours of overtime, this number was reduced

to 35 and 231 using the proposed IP formulation in April and May of 2019. The primary

reason for the significant reduction is due to the capability of physician reallocation in

different locations. It was not possible with manual scheduling because the number of

possibilities for a human to organize the roster rendered the problem very difficult to solve

manually. Optimality for instances with 100 and 150 physicians was not proved. Methods

such as branch-and-price or network flow models are perspectives for future research.



45

3 CYCLIC ROSTERING

3.1 Introduction

Cyclic workforce rostering, also referred to as rotating workforce rostering in the

academic literature, generates, for each team, a fixed roster that repeats after a certain

period (MUSLIU, 2006). Table 3.1 presents an example of a roster with nine teams and

a planning horizon of one week. Shifts are categorized as Early (E), Late (L) or Night

(N), while dashes represent days off. The same roster might be considered cyclic if in the

second week Team1 works the schedule of Team2, Team2 works the schedule of Team3

and so on. In effect the work schedule shifts by one position each week, with the pat-

tern repeating every nine weeks. The primary advantage associated with cyclic rostering

is fairness since all employees are subject to the same composition of shifts over each

nine-week period. Another advantage is that employees know their roster long before-

hand. However, a major disadvantage lies in the fact that individual roster preferences are

difficult to accommodate.

Table 3.1: Example of a roster with nine teams over a seven day period.

Team Mon Tue Wed Thu Fri Sat Sun

Team1 - E E E E E N
Team2 N - - E E E E
Team3 E N N - - L L
Team4 L L L N N - -
Team5 - L L E E N N
Team6 N - - L L E E
Team7 - - - L L L L
Team8 L N N - - - -
Team9 E E E N N N -

Cyclic schedules have a property which defines their type of cyclicality as being

either symmetric or asymmetric (BECKER; STEENWEG; WERNERS, 2018). When the

cyclic problem is symmetric all teams work the same schedule lagged in time, whereas in

the asymmetric version teams work different schedules. Figure 3.1 presents an example

of this terminology. Table 3.1 presented an example of a symmetric cyclic roster because

teams work the same schedule lagged in time. However, if at least one team has its

own unique pattern which is cycled through every nine weeks, then this roster would be

asymmetric.

Integer programming models have been successfully employed for general work-

force rostering problems and generate excellent results in reduced computational time.
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Figure 3.1: Asymmetric and symmetric rosters with four teams (BECKER; STEENWEG;
WERNERS, 2018)

The present study therefore investigates the following gaps in the existing literature,

namely: (i) can existing models for general workforce rostering be adapted to cyclic ros-

tering? (ii) what is the impact upon the performance? and (iii) considering multi-skilled

teams in the cyclic rostering model would it be possible to minimize understaffing? (iv)

How do multi-skilled employees in cyclic rostering models affect the performance?

In comparison to general workforce rostering problems, cyclic rostering has re-

ceived far less attention throughout the academic literature. Musliu, Gärtner and Slany

(2002) developed an algorithm focused on interaction with decision-makers during the

generation of partial solutions such as choosing the length of working blocks and setting

particular sequences of working and days off while respecting the minimum staff require-

ments. The algorithm was included in a commercial software package called First Class

Scheduler (FCS). Musliu (2006) introduced 20 real-life cyclic workforce instances, col-

lected from various areas of the industry and made them publicly available. In a follow-up

study, Musliu (2006) proposed three methods for cyclic workforce rostering: tabu search,

a min-conflict heuristic and a hybrid of both. Computational experiments demonstrated

that the proposed heuristics generated good results in reduced computational time.

Rocha, Oliveira and Carravilla (2013) formulated cyclic rostering as an integer

programming model for a case study focusing on glass manufacturing. Some predefined

shift patterns must be respected. A rest shift (B) is mandatory between each working

shift change (M - Morning, N - Night, A - Afternoon) resulting in a pattern M-B-N-B-A-

B. Results demonstrate that the integer programming model was capable of solving the

particular cyclic workforce problem for this glass manufacturing context. However, when

applied to the benchmark instances of Musliu (2006), the solving method was unable to

find feasible solutions on 8 out of 20 instances.

Triska and Musliu (2011) used constraint programming and intended to improve
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the FCS method (MUSLIU, 2006). The advantages of their new method concern its

easy maintenance, portability across programming languages and its declarative approach

which makes extensions easier. Computational experiments demonstrate that the pro-

posed method generates competitive results compared against FCS.

Erkinger and Musliu (2017) proposed a new approach by formulating the cyclic

rostering problem as a Satisfiability Modulo Theories (SMT) problem. This enables the

use of SMT-solvers to generate cyclic rostering solutions. In comparison to previous

literature using exact methods, the proposed approach resulted in an increased number of

feasible solutions when the benchmark instances were employed.

Musliu, Schutt and Stuckey (2018) implemented two solver-independent models

for the cyclic rostering problem using constraint programming and mixed integer pro-

gramming. Using these models, different solvers could be used to optimize different

objectives such as speed to solution and robustness of solving. Computational results

indicate that the solver-independent was capable of solving all the benchmark instances

(MUSLIU, 2006).

Becker, Steenweg and Werners (2018) proposed an integer programming model

for cyclic medical emergency service rostering considering unexpected employee ab-

sences. To minimize these disruptions caused by unforeseen events, a limited number

of employees are assigned to on-call shifts where employees are expected to be available

at all times. This methodology is integrated into an integer programming model and, in

the same way as regular shifts, on-call shifts rotate after each cycle to ensure fairness.

Computational experiments, based on data provided by a German medical emergency

service demonstrated that large instances were solved to optimality.

Table 3.2 presents a classification of existing literature according to the type of

cyclic rostering problem addressed and the solving technique proposed. Teams are com-

posed of one or more employees. The majority of these publications applied exact meth-

ods such as IP, CP or SAT solvers. Only Musliu (2006) introduced heuristic methods. The

industrial instances used are case-specific problem variants approached in each cited pub-

lication. The benchmark instances proposed by Musliu (2006) were used for experimenta-

tion by all the approaches except Becker, Steenweg and Werners (2018), who applied the

solving method in a German medical emergency service. Moreover, except for the present

research, all other studies addressed problems with single-skilled teams. Note that all the

constraints present in the benchmark instances can be derived and adapted from the gen-

eral workforce rostering such as nurse and physician rostering. The objective function
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was only present in industrial problems. Rocha, Oliveira and Carravilla (2013) minimize

the maximum number of days that a team works in each shift, while Becker, Steenweg

and Werners (2018) employ a weighted sum to maximize the number of free weekends

and minimize the number of night-to-day rotations.

Table 3.2: Cyclic rostering literature classification.
References Single-skill Multi-skills Number of teams Scheduling horizon Solving method

(days)
Musliu (2006)

Benchmark instances X 7-163 63-1141 Heuristic
Triska and Musliu (2011)

Benchmark instances X 7-163 63-1141 CP
Rocha, Oliveira and Carravilla (2013)

Benchmark instances X 7-163 63-1141 IP
Industry instances* X 5-49 25-30 IP

Erkinger and Musliu (2017)
Benchmark instances X 7-163 63-1141 SAT

Musliu, Schutt and Stuckey (2018)
Benchmark instances X 7-163 63-1141 CP/IP

Becker, Steenweg and Werners (2018)
Industry instances X 80 28-35 IP

This research
Benchmark instances X 7-163 63-1141 IP
Industry instances X 4 28 IP

IP = Integer programming, CP = Constraint programming, SAT = Satisfiability solver, (*) Not publically available.

In contrast to existing approaches which primarily focus on finding feasible solu-

tions, the present research addresses the problem by proposing an objective function to

minimize understaffing. Another difference is a complex multi-skill team structure which

is required to perform the tasks. The data was provided by a research institute based in

Leuven, Belgium. Since this problem is new and there is no basis for comparison with

existing literature, the proposed model was generalized to also solve the 20 benchmark

instances proposed by Musliu (2006). The objective of this experiment is to prove the

effectiveness of the proposed IP model compared against existing solving methods.

The remainder of this chapter is organized as follows. Section 3.2 introduces

the cyclic rostering problem. Section 3.3 details the solution representation used in the

IP formulation. Section 3.4 presents the integer programming formulation. Section 3.5

describes the computational experiments, while Section 3.6 presents conclusions and out-

lines future research directions.

3.2 Cyclic rostering definition

General cyclic rostering problems can be defined by a set of teams N = {1, . . . , |N|}

(a team is composed by one or more employees), a set of days D = {0, . . . , |D|}, a set of

shifts S = {1, . . . , |S|}, and a set of skills K = {1, . . . , |K|}. The goal is to either find a
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feasible solution for the problem or to minimize an objective function which aggregates

the soft constraints violations. The present problem considers multi-skilled teams and re-

quires an objective function to minimize understaffing and overstaffing per day and shift

in relation to specific skills.

The benchmark instances used to compare the IP model with results available in

the literature, conform to a particular variant of the general definition because only single-

skilled employees are scheduled. Observe that for this variant a team can be viewed as

an employee because it is composed by a single employee. The goal is to find a feasible

solution by assigning shifts to employees subject to a set of hard constraints.

It is important to highlight that when the single-skilled version of the problem is

addressed, the scheduling horizon can be reduced to only a single week. This is possible

because all employees work the same schedule with one week offset and there are no

constraints which require evaluation over longer scheduling horizons such as the maxi-

mum number of worked days over the entire period or the maximum number of worked

weekends per month.

3.3 Solution representation

3.3.1 Single-skilled cyclic rostering

Table 3.3 provides an example of a roster for the single-skilled variant of cyclic

rostering. It is represented by a single row where teams work with seven days of offset.

The roster presented in Table 3.3 reproduces from a different perspective, the same first

two rows of Table 3.1. Instead of only showing the first week per line, it has a consecutive

view without breaks. Using this notation, weeks are naturally connected and the numer-

ical row represents the days. Moreover, the last week (Team n) is connected to the first

week (Team 1). This notation was introduced by Felici and Gentile (2004) to simplify the

formulation of cyclic problems.

Table 3.3: Single-skilled cyclic rostering problem.
Team 1 Team 2 Team n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
M T W T F S S M T W T F S S . . .

- E E E E E N N - - E E E E . . .
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3.3.2 Multi-skilled cyclic rostering

Multi-skilled cyclic rostering is motivated by a problem provided by a semicon-

ductor institute. The problem consists of teams with multiple skills and there must be at

least one employee working per skill at all times. Note that existing literature does not

address such a problem and therefore the present research proposes a new IP formulation.

Teams must perform tasks which require specific skills during their working shifts.

Table 3.4 provides an example of the multi-skilled variant of the cyclic rostering

problem. The solution representation is not a single row anymore but multiple rows rep-

resenting teams. Such a structure is necessary due to the heterogeneous skill structure.

Teams T1 and T2 both work the same schedule, but with seven days offset. The set of

teams |N| and days |D|, now have the same representation as a classic rostering problem,

the only difference are the constraints at the end of the schedule which must be connected

to those at the beginning.

Table 3.4: Multi-skilled cyclic rostering problem.
Week 1 Week 2 Week n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
M T W T F S S M T W T F S S . . .

T1 E E E E E - - N N N - - E E . . .
T2 N N N - - E E E E E E E - - . . .

3.4 Integer programming formulation

Table 3.5 details the sets, decision and auxiliary variables utilized throughout the

proposed IP formulation for the multi-skilled cyclic rostering problem. This formulation

includes the constraints provided by the semiconductor research institute, which gener-

alizes the cyclic rostering problem proposed by Musliu (2006). Note that to have the

notation which respects the cyclicality of the problem, variable d is always considered

cyclical when receiving values from the set of days D. In other words, d = (d mod |D|)

throughout the formulation. Such a notation is necessary, for example, to check invalid

shift successions between the last and first days of the scheduling horizon.



51

Table 3.5: Indices, sets and variables used in the formulation.

Symbol Definition

Input Data

n ∈ N n is the team index, and N is the set of team indices;

d ∈ D d is the day index, and D is the set of day indices (representing the

scheduling horizon), note that d is always considered as d mod |D|

throughout the formulation;

d̂ ∈ D̂ d̂ is the day index, and D̂ = {0, . . . ,6} is the set of day indices of a

week;

d̃ ∈ D̃ d̃ is the day index, and D̃ = {x1,x2,x3, . . . ,xn} is the set of

day indices with an offset of seven, 0 ≤ xn ≤ |N|, that is, D̃ =

{0,7,14, . . . ,xn};

s ∈ S s is the shift index, and S is the set of shift indices;

k ∈ K k is the skill index, and K is the set of skill indices;

lnk ∈ {0,1} a binary parameter equal to one if team n has skill k, and zero oth-

erwise;

rds ∈ N≥0 number of required teams on day d and shift s;

(s1,s2) ∈ Ŝ Ŝ contains the pairs of invalid shift sequences;

(s1,s2) ∈ S̃ S̃ contains the pairs of invalid shift sequences with a day off be-

tween them;

T w set of patterns T w = {T w
t : t ∈ {1,2, . . . , pw}}, where pw is the min-

imum number of consecutive working days minus one. T w
t is a bi-

nary vector of dimension t +2, with a zero at both the first and the

last position, with t being the number of ones that appear in it. For

example, considering four as the minimum number of consecutive

working days, the patterns to search are T w = {T w
1 = (0,1,0),T w

2 =

(0,1,1,0),T w
3 = (0,1,1,1,0)}. None of these patterns are allowed

because they represent fewer than four consecutive working days;

T r follows the same idea as T w, and represents a set of patterns

T r = {T r
t : t ∈ {1,2, . . . , pr}}, where pr is the minimum number

of consecutive days off minus one;

T s follows the same idea as T w, and represents a set of patterns

T s = {T s
ts : ts ∈ {1,2, . . . , ps}}, where ps is the minimum number

of consecutive working days minus one for shift s;
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Don,Don the minimum and maximum number of consecutive working days,

respectively;

Do f f ,Do f f the minimum and maximum number of consecutive days off, re-

spectively;

Ss,Ss the minimum and maximum number of consecutive assignments to

shift s, respectively;

W maximum number of worked weekends over the scheduling hori-

zon;

w ∈W w is a Saturday index and W the set of all Saturday indices;

w̃ ∈ W̃ w̃ is a Saturday or Sunday index and W̃ is the set of all Saturday

and Sunday indices;

ρ penalty for a shift with understaffing during a weekend.

Decision Variables

xnds ∈ {0,1} 1 if team n is allocated to shift s on day d, 0 otherwise;

ynw ∈ {0,1} 1 if team n works on weekend w, 0 otherwise.

Auxiliary Variables

udsk ∈ N≥0 number of violations of the minimum number of teams per day,

shift and skill.

odsk ∈ N≥0 number of violations of the maximum number of teams per day,

shift and skill.

Minimize: ∑
d∈D\W̃

∑
s∈S

∑
k∈K

(udsk +odsk)+ρ ∑
w̃∈W̃

∑
s∈S

∑
k∈K

(uw̃sk +ow̃sk) (3.1)

Subject to

∑
s∈S

xnds ≤ 1 ∀n ∈ N,d ∈ D (3.2)

xnds1 + xn(d+1)s2 ≤ 1 ∀n ∈ N,d ∈ D,(s1,s2) ∈ Ŝ (3.3)

xnds1−∑
s∈S

xn(d+1)s + xn(d+2)s2 ≤ 1 ∀n ∈ N,d ∈ D,(s1,s2) ∈ S̃ (3.4)

t+d+1

∑
d′=d

∑
s∈S

xnd′s + ∑
d′∈{d, t+d+1}

∑
s∈S

xnd′sD
on +

t+d

∑
d′=d+1

(1−∑
s∈S

xnd′s)D
on ≥ Don

∀n ∈ N, t ∈ {1, . . . pw},d ∈ {0, . . . , |D|−1} (3.5)
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Don
+d

∑
d′=d

∑
s∈S

xnd′s ≤ Don ∀n ∈ N,d ∈ {0, . . . , |D|−1} (3.6)

t+d+1

∑
d′=d

(1−∑
s∈S

xnd′s)+ ∑
d′∈{d, t+d+1}

(1−∑
s∈S

xnd′s)D
o f f +

t+d

∑
d′=d+1

∑
s∈S

xnd′sD
o f f ≥ Do f f

∀n ∈ N, t ∈ {1, . . . pr},d ∈ {0, . . . , |D|−1} (3.7)

Do f f
+d

∑
d′=d

(1−∑
s∈S

xnd′s)≤ Do f f ∀n ∈ N,d ∈ {0, . . . , |D|−1} (3.8)

ts+d+1

∑
d′=d

xnd′s + ∑
d′∈{d, ts+d+1}

xnd′sSs +
ts+d

∑
d′=d+1

(1− xnd′s)Ss ≥ Ss

∀n ∈ N,s ∈ S, ts ∈ {1, . . . ps},d ∈ {0, . . . , |D|−1} (3.9)

Ss+d

∑
d′=d

xnd′s ≤ Ss ∀n ∈ N,s ∈ S,d ∈ {0, . . . , |D|−1} (3.10)

∑
n∈N

∑
d̃∈D̃

xn(d̃+d̂)s = rd̂s ∀d̂ ∈ D̂,s ∈ S (3.11)

∑
n∈N

lnkxnds +udsk−odsk = 1 ∀d ∈ D,s ∈ S,k ∈ K (3.12)

xnds = x(n+1)(d+7)s ∀n ∈ {1, . . . , |N|−1},d ∈ D,s ∈ S (3.13)

∑
s∈S

(xnws + xn(w+1)s) = 2ynw ∀n ∈ N,w ∈W (3.14)

∑
w∈W

ynw ≤W ∀n ∈ N (3.15)

∑
w∈W

∑
s∈S

(xn(w−1)s + xn(w+2)s + ynw)≤ 2 ∀n ∈ N (3.16)

Constraints (3.2) ensure a single worked shift per day. Constraints (3.3) ensure

that a shift succession is valid. Constraints (3.4) ensure that a sequence of working shift,

day off, working shift is a valid succession. However, this restriction is not included

in the model if the minimum number of consecutive days off is greater than one. Con-

straints (3.5) ensure the minimum number of consecutive working days, calculated as

the (sum of the working days) + (two border bits × Don) + (complement of middle bits

× Don). Constraints (3.6) ensure the maximum number of consecutive working days.

Constraints (3.7) ensure the minimum number of consecutive days off. These constraints

are evaluated similarly to Equation (3.5), the only difference lies in the fact that bits are

inverted and the sum is relative to days off rather than working days. Constraints (3.8)

ensure the maximum number of consecutive days off. Constraints (3.9) ensure the mini-

mum number of consecutive working days with the same shift. These constraints are also

evaluated similarly to Equation (3.5). Constraints (3.10) ensure the maximum number

of consecutive working days with the same shift. Constraints (3.11) ensure the required

number of teams per day and shift.

Constraints (3.12) calculate the minimum and maximum demand violations. Con-
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straints (3.13) ensure that teams work the same schedules with seven days offset. Con-

straints (3.14) ensure that teams work complete weekends, which means that they either

work both Saturday and Sunday or they have both days off. Constraints (3.15) ensure

that teams do not work more than the maximum number of weekends over the planning

horizon. Constraints (3.16) ensure that a team working a weekend must have either the

Friday preceding or Monday succeeding off.

Neither a objective function nor constraints (3.12)–(3.16) are necessary for the

cyclic rostering problem proposed by Musliu (2006). A feasible solution to the problem

is sufficient.

3.5 Computational experiments

Computational experiments are conducted using instances from both industry as

well as benchmarks available in the literature. The objective is to evaluate the applica-

tion of the IP formulation to real-world problems and check the performance compared to

other solving methods. All models were implemented in Java and compiled with Open-

JDK 1.8. The experiments were conducted on an Intel Core i5-2410M CPU 2.30GHz

(2 cores) with 6GB of RAM memory running Linux Mint 17.2 64-bits. CPLEX version

12.7.1 with default parameters was used to solve the integer programming formulation.

3.5.1 Research institute instances

This section details a real-world problem provided by a semiconductor research

institute. In contrast to published approaches concerning cyclic rostering problems, this

one includes teams with multiple skills. An objective function is necessary to minimize

the demand deviation, which in effect means that the complete set of required skills should

be available at any moment during each 24-hour schedule. This institute groups employ-

ees into teams which are composed to cover various skills. These teams are given as input

data. During weekdays teams are assigned to 8-hours shifts that are Early, Late, Night

or they have the day off. Weekends have a special shift regime with only two 12-hour

shifts classified as Day and Night, with a team either working both weekend days or nei-

ther. Each team is allowed to work a maximum two weekends out of four. Moreover, the

minimum and maximum number of consecutive working days are two and five, respec-
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tively. The minimum and maximum number of consecutive days off are two and three,

respectively.

3.5.1.1 Experimental setup and data analysis

Table 3.6 details the original skill structure provided by the research institute.

Each instance (Instance01 and Instance02) corresponds to a different production hall.

Instance01 has 183 unique skills while Instance02 has 181. The proportion of skills that

are covered is represented by the percentage columns. These skills are required to operate

the machinery and to perform various production-related tasks. Currently, not all employ-

ees are trained to use all the machines. The objective of this experiment is to investigate

the most appropriate skill structure for the teams. Note that this experiment helps direct

managerial decision-making since it will be possible to determine whether investing in

training will actually result in a reduction of understaffing.

Table 3.6: Original skill structure of the four teams.

Instance01 Instance02

#Skills Percentage #Skills Percentage

Team1 137 74.86 167 92.27
Team2 177 96.72 160 88.40
Team3 166 90.71 174 96.13
Team4 150 81.97 158 87.29

Average - 86.07 - 91.02

After analyzing the data provided by the research institute it was observed that if

a team has a sequence of working days, then they must all be worked on the same shift.

Such shift successions are very restrictive and raised the following question: what would

be the effect of relaxing this constraint by allowing more shift successions? Another

question is: what would be the result if all employees were qualified to perform any task?

The left-hand side of Table 3.7 corresponds to the original shift succession, while the

right-hand side is when these constraints are relaxed.

Table 3.7: Original and relaxed shift succession.

Original Shift Succession Relaxed Shift Succession

Shift Invalid Succession Shift Invalid Succession

Early Late Night Day Early - - -
Late Early Night Day Late Early Day -
Night Early Late Day Night Early Late Day
Day Early Late Night Day - - -
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3.5.1.2 Computational results

Tables 3.8 and 3.9 provide the results using the institute’s current skill structure

and the relaxed shift succession to estimate the impact of when all teams have been trained

to handle all machines, respectively. The first and fifth columns provide the instance

identification, while OFV represents the Objective Function Value, Gap (%) is the relative

gap to the optimum solution and the Time column represents the time in seconds required

to achieve the optimum solution.

Table 3.8: Computational results employing research institute instances with original skill struc-
ture.

Original skill structure and shift succession Original skill structure and relaxed shift succession

OFV Gap(%) Time(s) OFV Gap(%) Time(s)

Instance01 1836 0.00 0.23 Instance01 1836 0.00 0.23
Instance02 1170 0.00 0.19 Instance02 1170 0.00 0.13

Computational results indicate that relaxing invalid shift succession did not reduce

understaffing. Such a result can be explained by the fact that the number of assignments

could not be increased by only relaxing the shift succession constraints. In addition,

the OFV of Instance02 is lower than Instance01. Note that this is due to Instance01’s

teams cover 86.07% of the possible skills, while Instance02’s teams cover 91.02% of the

skills. This clearly indicates a gain, in terms of coverage demand, when teams have more

qualified employees.

Table 3.9 provides the results supposing the teams are trained to cover all skills

required in the research institute. This experiment could also be interpreted as a skill-less

environment since every team is qualified to perform all tasks. Computational experi-

ments demonstrate that in both cases, using the original shift succession and the relaxed

shift succession generated zero as OFV. These results prove the entirely intuitive assump-

tion that investing in training would provide a significant reduction in the amount of skills

not covered during shifts.

Table 3.9: Computational results employing research institute instances with full-skill structure.

Full-skill structure and original shift succession Full-skill structure and relaxed shift succession

OFV Gap(%) Time(s) OFV Gap(%) Time(s)

Instance01 0 0.00 0.11 Instance01 0 0.00 0.12
Instance02 0 0.00 0.11 Instance02 0 0.00 0.13

It can thus be concluded that investment in training is the best choice for the re-

search institute to avoid skilled employee shortage. Moreover, a reduction concerning
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on-call employees, currently used to cover this understaffing, could be reduced which

would also provide a reduction in the overall cost, although there is the initial investment

in employees’ training which requires consideration. Computational execution times re-

main very low when changing the problem characteristics concerning teams skills and

shift successions.

3.5.2 Benchmark instances

In addition to the computational experiments on research institute instances, ex-

periments were also conducted using benchmark instances1. The primary objective is to

validate the proposed IP formulation in an academic context. Table 3.10 provides the

characteristics of the instances. The first column presents the instance Id, while others

provide the number of days, employees and shifts, respectively. Employees are all single-

skilled.

Table 3.10: Benchmark instances characteristics.

Instance Id #Days #Employees #Shifts

1 63 9 3
2 63 9 3
3 119 17 3
4 91 13 3
5 77 11 3
6 49 7 3
7 203 29 3
8 112 16 3
9 329 47 3

10 189 27 3
11 210 30 3
12 140 20 2
13 49 7 3
14 91 13 3
15 448 64 3
16 203 29 3
17 231 33 2
18 371 53 3
19 840 120 3
20 1141 163 3

Table 3.11 presents the computational results employing the benchmark instances.

20 instances were evaluated and compared to published results (columns 2-6 in Table

3.11). MC-T1 and FCS1 are the results obtained by Musliu (2006), where MC-T is a

min-conflicts heuristic with tabu list and FCS is a commercial software package called

1Available at <http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/>

http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/
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First Class Scheduler. Columns 4-6 provide the results of CP-Rota2 (TRISKA; MUSLIU,

2011), MIP3 (ROCHA; OLIVEIRA; CARRAVILLA, 2013) and MathSAT54 (ERKINGER;

MUSLIU, 2017), which are solving methods based on constraint programming, mixed in-

teger programming and a SAT solver, respectively.

Since the previously published methods were executed on different computers,

the values were standardized using a benchmark website2. The last column presents the

results obtained by the MIP model proposed in this work. Results are presented in seconds

with the symbol greater meaning that no feasible solution was found within the given time

limit.

As can be observed in the last column, all instances except one were solved in less

than seven seconds. When compared to MC-T the computation time was similar in the

majority of the instances. The proposed approach always found feasible solutions in less

than seven seconds, with exception of Instance7, while FCS was unable to find feasible

solutions for instances 9, 12, 13, 15, 17, 19 and 20.

Table 3.11: Computation time in seconds for benchmark instances.

Instance MC-T1 FCS1 CP-Rota2 MIP3 MathSAT54 MIP5

1 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00
2 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00
3 <1.00 <1.00 <1.00 79.00 <1.00 <1.00
4 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00
5 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00
6 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00
7 2.68 <1.00 <1.00 >1741.32 >1000 187.19
8 <1.00 6.30 48.96 <1.00 <1.00 <1.00
9 <1.00 >50.79 <1.00 >1741.32 1.01 <1.00

10 <1.00 <1.00 >50.79 >1741.32 <1.00 <1.00
11 <1.00 18.64 >50.79 >1741.32 3.37 6.89
12 <1.00 >50.79 >50.79 26.99 1.56 2.98
13 <1.00 >50.79 5.79 22.28 <1.00 <1.00
14 <1.00 <1.00 47.74 6.37 <1.00 <1.00
15 8.08 >50.79 >50.79 >1741.32 >1000 6.46
16 <1.00 <1.00 10.97 167.43 <1.00 <1.00
17 <1.00 >50.79 <1.00 2.58 <1.00 <1.00
18 <1.00 <1.00 >50.79 >1741.32 6.23 <1.00
19 3.85 >50.79 >50.79 >1741.32 489.32 <1.00
20 3.63 >50.79 >50.79 >1741.32 355.21 <1.00

1Musliu (2006), 2Triska and Musliu (2011), 3Rocha, Oliveira and Carravilla (2013), 4Erkinger and Musliu
(2017), 5this work.

Rocha, Oliveira and Carravilla (2013)’s method was incapable of finding feasible

solutions within 1741.32 seconds for instances 7, 9, 10, 11, 15, 18, 19 and 20 whereas

the proposed MIP formulation solved these instances in less than seven seconds, except

2https://www.cpubenchmark.net/
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Instance7 where the solver required 187.19 seconds to find a feasible solution. Although

there is a significant improvement in terms of computation time and feasibility when

compared against the MIP model proposed by Rocha, Oliveira and Carravilla (2013), this

conclusion must be considered with caution since the CPLEX version is not the same. To

find a feasible solution for Instance7, it was necessary to add a slack variable relaxing the

maximum demand. Results demonstrate a clear advantage of using an efficient IP formu-

lation combined with a MIP solver over other methods based on constraint programming

and SAT solvers.

3.6 Conclusions

The present research contributes addressing industrial requirements concerning

cyclic personnel rostering in a multi-skilled environment. It provides recommendations

for improving understaffing during the scheduling horizon. To achieve these results three

primary issues were investigated: (i) designing an objective function to minimize under-

staffing, (ii) examining the impact of shift succession relaxations, and (iii) training the

employees enabling them to assume more tasks.

The effectiveness was demonstrated throughout the computational experiments

employing real-world data provided by a semiconductor research institute based in Leu-

ven, Belgium. Computational results demonstrated a reduction of understaffing indicating

that cross-training employees is a worthwhile investment. Relaxing the shift succession

constraints, however, showed that they did not contribute to a reduction of understaffing.

This was primarily due to the fact that the number of assignments could not be increased.

Therefore, results demonstrated that shift succession constraints may be maintained as the

current definition.

Experiments were also conducted employing benchmark instances. Computa-

tional results demonstrated that previously unsolved instances using mathematical for-

mulations were solved to optimality in a few seconds. Moreover, the proposed approach

significantly outperformed other methods such as constraint programming and methods

based on SAT solvers. Future research should consider the possibility of generalizing

workforce MIP models to also address cyclic workforce rostering problems. Finding a

trade-off training cost and improved coverage is another possibility to be explored in fu-

ture research.
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4 NURSE REROSTERING

4.1 Introduction

Work absences occur due to a variety of reasons. Depending on the working area,

unscheduled absence rates typically range from 5% to 10%. Emergency services and

healthcare in hospitals have the highest absenteeism rates (10.7%) when compared against

other sectors such as, for example, utilities (8.7%), transportation (8.5%), customer ser-

vices (7.7%) or manufacturing (6.4%) (AGUIRRE; KERIN, 2014). Forbes (2013) esti-

mates the annual cost of lost productivity in the United States to be $3.6 billion for nurses

and $0.25 billion for physicians.

Effectively managing disruptions caused by high absenteeism rates is thus clearly

of vital importance but at the same time presents a difficult task to manual planners. A

solving method based on optimization techniques facilitates the decision-maker whenever

a quick solution for handling disruptions is required. The Nurse Rerostering Problem

(NRRP), as defined by Moz and Pato (2003), occurs when one or more nurses cannot

work in the shifts previously assigned to. If no pool of reserve nurses exists to replace

those absent, the current roster must be rebuilt using a rerostering method.

This work revisits the NRRP by exploring several strategies based on relaxations

of specific problem parameters which may be applied when addressing the disruptions.

First, a general integer programming formulation is developed which includes both the

constraints from the Nurse Rostering Problem (NRP) and the additional NRRP restric-

tions. Second, two types of relaxation strategies are proposed and evaluated. The first

strategy determines which part of the scheduling horizon to consider when rerostering:

either the complete period or only a restricted part. The second strategy concerns which

constraints are included when solving the NRRP. An approach which relaxes some of the

NRP constraints and only includes the NRRP constraints is evaluated. Finally, a Vari-

able Neighborhood Descent (VND) heuristic is developed to address the problem without

the use of a Mixed Integer Programming (MIP) solver. The primary objective of the

VND heuristic is to provide hospitals with a solver free from third-party dependencies

and which can be implemented without any additional cost. Computational experiments

are conducted on adapted instances from the Second International Nurse Rostering Com-

petition (INRC-II) and real-world instances from a Lisbon hospital.

The present research addresses four primary research questions, namely:
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• Is it necessary to include all original hard and soft constraints from the NRP when

attempting to generate good quality solutions for the NRRP?

• What is the difference, in terms of computation time and solution quality, between

solving the full NRRP model and a surrogate model which only considers disruption

minimization objectives?

• What is the impact of the considered scheduling horizon when rerostering? Should

only those days where nurses are absent be considered? The complete scheduling

horizon? From the first absent day until the last absent day? Should this restricted

period be extended with some days before and after?

• Is it possible to generate competitive results using a simple heuristic, compared

against an integer programming formulation using a state-of-the-art commercial

solver?

The remainder of the chapter is organized as follows. Section 4.2 reviews the rel-

evant literature related to NRP and NRRP. Section 4.3 specifies the NRRP and discusses

how it differs from the NRP. Section 4.4 presents the general integer programming for-

mulation, including the NRRP and NRP constraints. Following this, Section 4.5 details

the Variable Neighborhood Descent (VND) algorithm. Section 4.6 describes the compu-

tational experiments, while Section 4.7 concludes the chapter and indicates directions for

future research.

4.2 Literature review

Despite the NRRP representing a common problem in hospitals, Clark et al. (2015)

identified only eight relevant papers in the academic literature. The solution approaches

proposed in these studies are typically based on heuristic search and integer programming.

Moz and Pato (2003) were the first authors to formally define the NRRP. In addition to

a multi-commodity network flow formulation, they also introduced an aggregated integer

programming model which decreased the model size enabling the problem to be solved

faster (MOZ; PATO, 2004). To evaluate their formulations, 16 real instances from a Lis-

bon hospital were utilized. Using CPLEX, 15 out of these 16 instances were solved to

optimality within a time limit of two hours. More recently, Moz and Pato (2007) de-

veloped a Genetic Algorithm (GA) and performed tests on the same set of real-world

instances. The GA outperformed the constructive heuristic of Moz and Pato (2003) in
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terms of solution quality within an acceptable time limit.

Maenhout and Vanhoucke (2011) investigated whether it is necessary to re-optimize

the complete scheduling horizon or if restricting rerostering possibilities represents a fea-

sible strategy. The best results were obtained when only a very limited fraction of the ros-

ter, typically between 10% and 30%, was re-optimized. In a follow-up study, Maenhout

and Vanhoucke (2013) further explored which parts of a disrupted roster to re-optimize

when rerostering. An empirical study confirmed previous results insofar as they deter-

mined that it is unnecessary to consider the complete scheduling horizon to obtain good

solutions. Instead, only a period before and after the disruptions should be considered,

including the period of disruptions themselves. The total number of absent nurses had lit-

tle impact on the length of the rerostering period that should be considered. However, the

more clustered the disruptions, the more important the days before and after the disrup-

tions become. Regarding which resources to consider when rerostering, they concluded

that it is unnecessary to consider all nurses but instead only those whose roster is disrupted

along with an additional subset of nurses, specially selected for any particular reason or

at random. The fewer absent nurses, the smaller are the additional number of required

nurses.

Bäumelt et al. (2016) developed two parallel algorithms executed on a Graphics

Processing Unit (GPU) to solve the NRRP, using the instances of Moz and Pato (2007).

Two models of parallelization were compared: a homogeneous model in which the entire

algorithm runs on a GPU, and a heterogeneous model where the algorithm is partially

solved on a CPU and partially on a GPU. The homogeneous model resulted in solutions

being generated between 12.6 and 17.7 times faster for instances with 19 and 32 nurses,

respectively. By contrast, the heterogeneous model provided average speedups of 2.3 and

2.4 for the same datasets. The results demonstrated that the parallel algorithm achieves

the same quality of results in significantly shorter computation time compared against the

sequential algorithm.

Table 4.1 details the scope of this work compared to the existing literature. The

second column classifies each variant of the NRRP according to the α|β |γ notation. Cat-

egory α refers to the description of the personnel environment with information about

the number of staff, their skills and their availabilities. Category β refers to work char-

acteristics describing the actual services to be delivered and the time structure. Category

γ refers to optimization objectives and allows the distinction between various modes of

decision support (DE CAUSMAECKER; VANDEN BERGHE, 2011). In general, the
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problem considered in the present research generalizes previously published models by

including more constraints from practice such as multi-skilled nurses. The third, fourth

and fifth columns compare which rerostering strategies have been applied with respect

to existing rerostering models. The comparison shows that most previous studies have

not considered any specific strategy when rerostering. Only Maenhout and Vanhoucke

(2011), Maenhout and Vanhoucke (2013) have investigated different relaxations of the

available nurses and the scheduling horizon, the latter of which is also explored in the

present research. Finally, the last two columns detail which techniques have been em-

ployed to solve the NRRP. This comparison reveals that in the last decade the focus has

shifted towards heuristic methods.

Table 4.1: Existing approaches to the NRRP.
Strategies Solving technique

Problem Constraint Scheduling horizon Staffing Exact Heuristic
Reference classification relaxation relaxation size method approach
This research ASN/VN/PLR X X X X
Moz and Pato (2003) AS/RN/PR X X
Moz and Pato (2004) AS/RN/PR X
Moz and Pato (2007) AS/RN/PR* X
Pato and Moz (2008) AS/RN/PRM* X
Maenhout and Vanhoucke (2011) ASB/RN/PLRM* X X X
Maenhout and Vanhoucke (2013) ASB/V3/PLR* X X X
Bäumelt et al. (2016) AS/RN/PR* X

(*) Papers without a mathematical model, but, the problems considered in their studies are classified as described.

4.3 The nurse rerostering problem

The NRP assigns nurses to shifts during a scheduling horizon. These assignments

are subject to a set of hard and soft constraints. Hard constraints must be respected, while

violations of the soft constraints are penalized in the objective function. Table 4.2 shows

an example of a feasible NRP solution with five nurses and a scheduling horizon of seven

days. The shifts are Early (E), Late (L) and Night (N), while dashes indicate a day off. At

least one nurse is required to work during each shift on each day.

Table 4.2: Example of a roster with seven days and five nurses.

Nurse Mon Tue Wed Thu Fri Sat Sun

N1 N – E E E – –
N2 L L – – L L L
N3 N N N N – – –
N4 – – – – N N N
N5 E E L L – E E

The NRRP occurs when a nurse who is scheduled to work, cannot be present due

to unforeseen events. This disruption may make the solution infeasible, thereby requiring
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Table 4.3: Roster with two absent nurses in gray (left table) and a reroster solution (right table).

Nurse M T W T F S S

N1 N – E E E – –
N2 L L – – L L L
N3 N �N N N – – –
N4 – – – – �N N N
N5 E E L L – E E

Nurse M T W T F S S

N1 N – E E E – –
N2 L L – – L L L
N3 N �N N N N – –
N4 – N – – �N N N
N5 E E L L – E E

another nurse to be reallocated to cover the absence. However, this new solution must still

comply with labor rules and institutional constraints as per the original rostering problem.

Moreover, it should be as similar as possible to the original roster given that unpredictable

schedule changes can negatively impact workers’ child-care arrangements, school classes

and other personal responsibilities (WILLIAMS; LAMBERT; KESAVAN, 2017).

Table 4.3 on the left side shows a disruption in which two absent nurses are high-

lighted in gray. Considering the minimum of one nurse per day/shift, these two absences

render the solution infeasible, as now nobody is working the Night shifts on Tuesday and

Friday. Table 4.3 on the right side presents one possible new solution after rerostering,

wherein Nurse 4, who before had a free day on Tuesday, is now working a Night shift.

Nurse 3, who had a free day on Friday, is now also working the Night shift.

In this trivial example, the solution’s feasibility may be restored by simply swap-

ping two nurses. This operation has minimal impact on the existing solutions and main-

tains the same number of working shifts as in the original roster. Generally, however, the

situation is more complex as various time-related constraints impose additional restric-

tions on the solution, such as minimum/maximum number of consecutive days worked or

minimum rest time between two consecutive working days. Moreover, if they are mod-

eled as soft constraints, their violations should be minimized.

4.4 General integer programming formulation for the NRRP

This section presents a general integer programming formulation for the NRRP.

Moz and Pato (2003), Moz and Pato (2004) were, so far, the only authors to address the

nurse rerostering problem using integer programming. Moz and Pato (2003) formulated

the problem as an integer multi-commodity flow problem with side constraints in a multi-

level acyclical network. This formulation was further improved in Moz and Pato (2004)

by including node aggregation in the network. In contrast to these flow models, the for-

mulation proposed in the present research is based on an assignment problem, thereby
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enabling more general problem characteristics to be included such as multi-skilled nurses

and various hard and soft constraints typically found in hospitals (CESCHIA et al., 2019).

Appendix C details the full integer programming formulation containing all original NRP

constraints. In what follows, the presentation of the integer programming formulation

is restricted to constraints and objectives relevant to the rerostering problem. Table 4.4

presents the problem’s parameters in addition to the main and auxiliary decision variables

employed in the NRRP formulation.

Table 4.4: Sets and variables employed in the formulation.
Symbol Definition

Parameters
n ∈ N n is the index of the nurse, where N is the set of all nurse indices;
N̂ ⊆ N set of absent nurses indices;
d ∈ D d is the index of the day, where D is the set of all day indices;
s ∈ S s is the index of the shift, where S is the set of all shift indices;
k ∈ K k is the index of the skill, where K is the set of all skill indices;
ω i weight for violating the lower and upper limits of soft constraint i;
δn original number of assignments associated with nurse n;
cndsk ∈ {0,1} 1 if nurse n is allocated to shift s and day d with skill k in the original roster, and 0

otherwise;
ĉnd ∈ {0,1} parameter modeling the disruptions which is 1 if nurse n is absent on day d, and 0

otherwise;

Decision Variables
xndsk ∈ {0,1} 1 if nurse n is allocated to shift s and day d with skill k, and 0 otherwise;

Auxiliary Variables
y′nds ∈ {0,1} 1 if nurse n works in the original schedule or in the new roster on day d and shift s, and

0 otherwise;
y′′nds ∈ {0,1} auxiliary variable to calculate the number of changes compared to the original roster;
v13

nd ∈ N0 auxiliary variable to calculate the violations of the number of changes compared to the
original roster;

v̂14
n ∈ N0 auxiliary variable to calculate the violations of the number of working days less than the

original roster;
v̂15

n ∈ N0 auxiliary variable to calculate the violations of the number of working days more than
the original roster

Minimize: ∑
n∈N

∑
d∈D

v13
ndω

13+ ∑
n∈N

∑
i∈{14,15}

v̂i
nω

i +C.1 (4.1)

Subject to:

ĉnd +∑
s∈S

∑
k∈K

xndsk ≤ 1 ∀n ∈ N,d ∈ D (4.2)

∑
k∈K

(cndsk + xndsk)≤ 2y′nds ∀n ∈ N \ N̂,d ∈ D,s ∈ S (4.3)
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∑
k∈K

(cndsk + xndsk)+ y′′nds ≥ 2y′nds ∀n ∈ N \ N̂,d ∈ D,s ∈ S (4.4)

∑
s∈S

y′′nds−2v13
nd ≤ 0 ∀n ∈ N \ N̂,d ∈ D (4.5)

∑
d∈D

∑
s∈S

∑
k∈K

xndsk + v̂14
n ≥ δn ∀n ∈ N (4.6)

∑
d∈D

∑
s∈S

∑
k∈K

xndsk− v̂15
n ≤ δn ∀n ∈ N (4.7)

Objective function (4.1) minimizes a weighted sum of different terms related to

the NRRP and NRP. The first term penalizes changes made in the rerostering solution

with respect to the original roster. The second term minimizes the difference in number

of working days in the roster before and after rerostering. The last part of the objective

function consists of the soft constraint violations of the NRP as defined in Equation (C.1)

(Appendix C). Constraints (4.2) ensure that an absent nurse is not scheduled to work.

Constraints (4.3), (4.4) and (4.5) determine the number of changes in the new roster com-

pared to the original roster. Constraints (4.6) and (4.7) calculate the change in number of

working days.

An example of how Constraints (4.3), (4.4) and (4.5) count the number of changes

for a single nurse is provided in Tables 4.5 and 4.6. The formulation penalizes whenever

a working day is changed to a day off (or vice versa) and whenever a shift which was

assigned is modified. Changes regarding assigned skills are not penalized, as these cases

are not considered to have a significant impact on the nurses. The example in Table 4.5

considers three days and three shifts: Early (E), Late (L) and Night (N). The first row of

integer values represents the current solution. In this case, the nurse works a Late shift on

the first day, the second day is free, and a Night shift on the third day. The second row

represents the solution after rerostering. The nurse now works a Night shift on the first

day, an Early shift on the second day and another Night shift on the third day. The third

row is the sum of the current solution and the newly rerostered solution. Finally, the fourth

row shows the values variables y′nds assume. In this example there are two changes, one

is a shift change from Late to Night on the first day, and the second change concerns the

second day where the nurse previously had a day off, but for which she is now scheduled

to work an Early shift. There are no changes on the third day as the nurse continues

working on the already-scheduled Night shift. Table 4.6 presents the penalization results

stored in variable v13
nd (last column of the right table). On the first and second day, the

variable assumes a value of 1, meaning that there is one change (one violation), and on
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the third day the variable assumes a value of 0, denoting zero violations.

Table 4.5: Example of a reroster solution with two changes.

Day 1 Day 2 Day 3
E L N E L N E L N Description

0 1 0 0 0 0 0 0 1 ∑k∈K cndsk (current solution)
0 0 1 1 0 0 0 0 1 ∑k∈K xndsk (newly rerostered solution)
0 1 1 1 0 0 0 0 2 ∑k∈K(cndsk + xndsk)
0 1 1 1 0 0 0 0 1 ∑k∈K(cndsk + xndsk)≤ 2y′nds (y′nds values)

Table 4.6: Example of how Constraints (4.4) and (4.5) are evaluated.

∑k∈K(cndsk + xndsk)+ y′′nds ≥ 2y′nds

D
ay

1 E 0 + 0 + y′′nds ≥ 0 y′′nds = 0
L 1 + 0 + y′′nds ≥ 2 y′′nds = 1
N 0 + 1 + y′′nds ≥ 2 y′′nds = 1

D
ay

2 E 0 + 1 + y′′nds ≥ 2 y′′nds = 1
L 0 + 0 + y′′nds ≥ 0 y′′nds = 0
N 0 + 0 + y′′nds ≥ 0 y′′nds = 0

D
ay

3 E 0 + 0 + y′′nds ≥ 0 y′′nds = 0
L 0 + 0 + y′′nds ≥ 0 y′′nds = 0
N 1 + 1 + y′′nds ≥ 2 y′′nds = 0

∑s∈S y′′nds−2v13
nd ≤ 0

2 - 2v13
nd ≤ 0 v13

nd = 1

1 - 2v13
nd ≤ 0 v13

nd = 1

0 - 2v13
nd ≤ 0 v13

nd = 0

4.5 Variable neighborhood descent

This section presents a Variable Neighborhood Descent (VND) heuristic specif-

ically designed to address the NRRP based on the general concepts first introduced by

Mladenović and Hansen (1997). The VND heuristic is selected primarily due to its sim-

plicity, its ability to integrate several neighborhood structures, and the successful applica-

tion of this algorithm and its variants for the NRP (BURKE et al., 2008; ZHENG; LIU;

GONG, 2017; GOMES; TOFFOLO; SANTOS, 2017). The proposed method seeks to

generate results quickly and without the dependence on third-party software packages.

4.5.1 Main method - VND

Algorithm 3 outlines the main method which takes as input parameters the current

solution, the maximum number of top-level loop iterations and the number of iterations

after which an intensification/diversification procedure is called. Function OFV(cs) re-
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turns the objective function value (OFV) of the solution cs. Note that it is only when

the objective value is calculated for the first time that all nurses, days, shifts and skills

are considered. When neighboring solutions are evaluated, a relative recalculation of the

objective value is executed in order to reduce the computation time.

In each iteration of the top-level loop (lines 5-17), a sequence of procedures which

explore different neighborhoods is executed until either no improvement is found or a fea-

sible solution is reached. All neighborhoods, except for changeShift, assignMissingShift-

DeleteNext, intensDiverLS , consider only the days on which absences occur. However, it

is not always possible to remedy infeasibilities by exploring only these restricted neigh-

borhoods. For this reason, changeShift, assignMissingShiftDeleteNext and intensDiverLS

are also included in the VND heuristic as they explore a larger proportion of the search

space, thereby increasing the likelihood that infeasibilities will be solved should the de-

terministic neighborhoods fail in doing so, albeit at the expense of longer computational

runtimes. The algorithm terminates by returning the best solution found. Input parame-

ters are passed to each subroutine, however, in the main pseudo-code they are omitted for

presentation reasons.

Input : cs current solution, maxTrials maximum number of iterations, maxTrialsIntDiv number of iterations
after which the intensification/diversification procedure is called

Output : solution
1 cs← assignMissingShift
2 cs← changeAssignMissingShift
3 bestOFV← ∞

4 iterations← 0
5 while bestOFV > OFV(cs) or (hasHardViolation(cs) and iterations < maxTrials) do
6 bestOFV← OFV(cs) // returns the OFV from the current solution cs
7 cs← assignDeleteShift
8 cs← changeShift
9 cs← swapShift

10 cs← assignMissingShift
11 cs← changeAssignMissingShift
12 cs← assignMissingShiftDeleteNext
13 if hasHardViolation(cs) and iterations > maxTrialsIntDiv then
14 cs← intensDiverLS
15 end
16 iterations← iterations + 1
17 end
18 return cs // returns the best solution found

Algorithm 3: Variable Neighborhood Descent (VND).

4.5.2 Assign and delete shift neighborhood

Algorithm 4 moves an assigned shift from one nurse to another. Lines 4-18 iterate

over each day with insufficient coverage. Line 7 iterates over each working nurse w and

each idle nurse f on day d. Line 8 generates a neighboring solution in which the shift
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and skill assignments of nurse w are reassigned to nurse f . If the neighboring solution

does not violate any hard constraints and is the best neighbor found (line 9), the variables

are updated (lines 10-11). The neighborhood’s size is O(|Dv||Wd||Fd|). The procedure

terminates by returning the best solution found.

Input : Dv set of days with insufficient coverage, Wd set nurses working on day d, Fd set of idle nurses on day
d, cs current solution

Output : Solution
1 improved← true
2 while improved do
3 improved← false
4 foreach d ∈ Dv do
5 bestNeighbor← null
6 bestNeighborOFV← OFV(cs)
7 foreach w ∈Wd , f ∈ Fd do
8 cs′ ← assignDelete(cs, d, w, f) // returns null if infeasible
9 if cs′ 6= null and OFV(cs′) < bestNeighborOFV then

10 bestNeighbor← cs′

11 bestNeighborOFV← OFV(cs′)
12 end
13 end
14 if bestNeighbor 6= null then // if an improved neighbor is found
15 cs← bestNeighbor
16 improved← true
17 end
18 end
19 end
20 return cs

Algorithm 4: Assign and delete shift.

4.5.3 Change shift neighborhood

Algorithm 5 changes nurses’ assignments on consecutive days. The method as-

signShift (line 8) generates a neighboring solution in which shift s is assigned to nurse n

on day d + d′. If there is a feasible solution and the objective value of the neighboring

solution is lower than that of the current solution, the variables are updated accordingly

(lines 9-12). If shift s is a working shift (line 14), the nurses’ skills are iterated over (loop

15-22). Method assignSkill (line 16) changes the assigned skill of nurse n on day d +d′

in shift s to k. If there is a feasible solution and the new objective value is lower than the

current objective value (line 17), the current solution and variables are updated (lines 18-

20). The neighborhood’s size is O(|D||S||w||Kn|). The goal of the variable d′ is to change

the assignments in a sequence of days, thereby aiming to reduce the number of violations

of constraints concerning the minimum/maximum number of consecutive working days

and similar constraints. Preliminary experiments demonstrate that the most suitable value

of the parameter w is four. The procedure terminates by returning the best solution found.
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Input : D set of all days, N set of nurses, S set of shifts, S′ set of working shifts,
Kn set of skills of nurse n, cs current solution, w maximum consecutive days window size

Output : Solution
1 improvedLS← true
2 while improvedLS do
3 improvedLS← false
4 foreach d ∈ D,n ∈ N,s ∈ S,d′← 1 to w do
5 improved← false
6 csBackup← cs
7 if ((d +d′) < |D|) then
8 cs′ ← assignShift(cs, n, (d +d′), s) // returns null if infeasible
9 if cs′ 6= null and OFV(cs′) < OFV(cs) then

10 improved← true
11 improvedLS← true
12 end
13 cs← cs′

14 if s ∈ S′ then
15 foreach k ∈ Kn do
16 cs′ ← assignSkill(cs, n, (d +d′), s, k)
17 if cs′ 6= null and OFV(cs′) < OFV(cs) then
18 cs← cs′

19 improved← true
20 improvedLS← true
21 end
22 end
23 end
24 end
25 if not improved then
26 cs← csBackup
27 end
28 end
29 end
30 return cs

Algorithm 5: Change shift.

4.5.4 Swap shift neighborhood

Algorithm 6 swaps the shift and skill assignments of two nurses. The loops (lines

7-8) iterate over each pair of nurses n1 and n2. Line 9 generates a neighboring solution

by swapping nurse n1’s shift and skill with nurse n2’s, and vice versa. If the new solution

does not violate any hard constraints and is the best neighbor found (line 10), the variables

are updated accordingly (lines 11-12). The neighborhood’s size is O(|Dv||N|2). The

procedure terminates by returning the best solution found.

4.5.5 Assign missing shift neighborhood

Algorithm 7 assigns the shifts and skills associated with absences which have

occurred to idle nurses in a greedy manner such that the largest decrease in objective

value is obtained. Line 4 iterates over the days and shifts for which the number of nurses

is below the minimum. For each idle nurse n (lines 7-13), a neighboring solution is

generated by assigning the missing shift s and skill k on day d (line 8). If the neighboring
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Input : Dv set of days with insufficient coverage, N set of nurses, cs current solution
Output : Solution

1 improved← true
2 while improved do
3 improved← false
4 foreach d ∈ Dv do
5 bestNeighbor← null
6 bestNeighborOFV← OFV(cs)
7 foreach n1← 1 to |N|-1 do
8 foreach n2← n1+1 to |N| do
9 cs′ ← swapAssignments(cs, d, n1, n2) // returns null if infeasible

10 if cs′ 6= null and OFV(cs′) < bestNeighborOFV then
11 bestNeighbor← cs′

12 bestNeighborOFV← OFV(cs′)
13 end
14 end
15 end
16 if bestNeighbor 6= null then
17 cs← bestNeighbor
18 improved← true
19 end
20 end
21 end
22 return cs

Algorithm 6: Swap shift.

solution does not violate any hard constraint and is the best neighbor found (line 9), the

variables are updated (lines 10-11). The neighborhood’s size is O(|Dv||Sd||Kd||Fd|). The

procedure terminates by returning the best solution found.

Input : Dv set of days with insufficient coverage ordered by most violated days,
Sd set of shifts with insufficient coverage on day d, Kd set of skills with insufficient coverage on day d,

Fd set of idle nurses on day d, cs current solution
Output : Solution

1 improved← true
2 while improved do
3 improved← false
4 foreach d ∈ Dv,s ∈ Sd ,k ∈ Kd do
5 bestNeighbor← null
6 bestNeighborOFV← OFV(cs)
7 foreach n ∈ Fd do
8 cs′ ← assignShiftSkill(cs, n, d, s, k) // returns null if infeasible
9 if cs′ 6= null and OFV(cs′) < bestNeighborOFV then

10 bestNeighbor← cs′

11 bestNeighborOFV← OFV(cs′)
12 end
13 end
14 if bestNeighbor 6= null then // if an improved neighbor is found
15 cs← bestNeighbor
16 improved← true
17 end
18 end
19 end
20 return cs

Algorithm 7: Assign missing shift.
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4.5.6 Change and assign missing shift neighborhood

Algorithm 8 first moves a working shift to an idle nurse and then assigns the miss-

ing shift and skill. Line 4 iterates over the days where the number of nurses is below the

minimum. For each working nurse w and each idle nurse f (lines 7-18), the currently

assigned shift and skill are saved (lines 8-9) and the missing shift and skill are assigned

to nurse w (line 10). If the resulting solution does not violate any hard constraints, the

algorithm assigns an idle nurse f the shift and skill previously assigned to nurse w (line

12). If the resulting solution does not violate any hard constraints and is the best neigh-

bor found (line 14), the variables are updated (lines 15-16). The neighborhood’s size is

O(|Dv||Sd||Kd||Wd||Fd|). The procedure terminates by returning the best solution found.

Input : Dv set of days with insufficient coverage ordered by most violated days,
Sd set of shifts with insufficient coverage on day d, Kd set of skills with insufficient coverage on day d,

Fd set of idle nurses on day d, Wd set of working nurses on day d, cs current solution
Output : Solution

1 improved← true
2 while improved do
3 improved← false
4 foreach d ∈ Dv,s ∈ Sd ,k ∈ Kd do
5 bestNeighbor← null
6 bestNeighborOFV← OFV(cs)
7 foreach w ∈Wd , f ∈ Fd do
8 backupShift← getShift(cs, w, d) // backup current shift
9 backupSkill← getSkill(cs, w, d, s) // backup current skill

10 cs′ ← assignShiftSkill(cs, w, d, s, k) // returns null if infeasible
11 if cs′ 6= null then
12 cs′′ ← assignShiftSkill(cs′, f, d, backupShift, backupSkill)
13 end
14 if cs′′ 6= null and OFV(cs′′) < bestNeighborOFV then
15 bestNeighbor← cs′′

16 bestNeighborOFV← OFV(cs′′)
17 end
18 end
19 if bestNeighbor 6= null then // if an improved neighbor is found
20 cs← bestNeighbor
21 improved← true
22 end
23 end
24 end
25 return cs

Algorithm 8: Change and assign missing shift.

4.5.7 Assign missing shift and delete next shift neighborhood

Algorithm 9 attempts to fix disruptions by inserting shifts on the days with an

insufficient number of nurses. However, when inserting shifts results in an infeasible

solution, the assignment on the following day is deleted. The function U (LB, . . . ,UB)

returns a value between LB and UB sampled from a uniform distribution. Line 1 iterates
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over the days with insufficient coverage. Lines 2 and 3 randomly select an idle nurse on

day d and assign the missing shift and skill. If the resulting solution cs′ is infeasible and d

is not the last day of the scheduling horizon (line 4), the algorithm removes the assignment

on the next day. If the resulting solution is feasible, it replaces the current solution (lines

7-9). The neighborhood’s size is O(|Dv||Sd||Kd|). The procedure terminates by returning

the best solution found.

Input : Dv set of days with insufficient coverage ordered by most violated days,
Da set of all days, Sd set of shifts with insufficient coverage on day d, Kd set of skills with insufficient

coverage on day d, Fd set of idle nurses on day d
Output : Solution

1 foreach d ∈ Dv,s ∈ Sd ,k ∈ Kd do
2 n← U (1, . . . , |Fd |) // returns a random nurse not working on day d
3 cs′ ← assignShiftSkill(cs, n, d, s, k) // returns null if infeasible
4 if cs′ is null and d+1 ≤ |Da| then
5 cs′ ← assignDayOff(cs′, n, (d+1))
6 end
7 if cs′ 6= null then // if an improved neighbor is found
8 cs← cs′

9 end
10 end
11 return cs

Algorithm 9: Assign missing shift delete next.

4.5.8 Intensification and diversification neighborhood

Algorithm 10 details an intensification and diversification procedure for the NRRP.

The objective here is to explore larger neighborhoods, thereby increasing the probability

of finding a feasible solution when the other neighborhoods fail. Preliminary experiments

on a subset of the instances revealed that the most suitable values for the input parameters

maxNoImprov, maxChanges, maxNoImprovDiv, maxChangesDiv are 100, 3, 50 and 2, re-

spectively. The algorithm is terminated after the maximum number of iterations without

improvement is reached or if a feasible solution is found (line 3). The loop spanning lines

6-22 determines how many neighbors are generated in each iteration of the procedure’s

intensification phase. In this case, this value equals the number of nurses |N|. If the

number of iterations without improvement is greater than a specific threshold, the diversi-

fication phase begins (line 30). In this phase, for each day, two random modifications are

generated in the current solution (lines 32-38). After this diversification procedure, the

local search operators assignMissingShift, changeAssignMissingShift, assignDeleteShift,

changeShift, swapShift are called to further improve the solution (lines 39-40). The pro-

cedure terminates by returning the best solution found.
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Input : Dv set of days with absent nurses, N set of nurses, S set of shifts, bestSolution current solution,

maxNoImprov maximum number of iterations without improvement, maxChanges maximum number

of changes, maxNoImprovDiv maximum number of iterations to start the diversification phase,

maxChangesDiv maximum number of changes in the diversification phase

Output : Solution

1 countNoImprov← 0

2 cs← bestSolution

3 while countNoImprov < maxNoImprov and hasHardViolation(cs) do
4 bestNeighbor← ∞

5 cs′′ ← null

6 for x← 1 to |N| do
7 randNumChange← U (1, . . . ,maxChanges) // returns a random number of changes

8 for z← 1 to randNumChanges do
9 randNurse← U (1, . . . , |N|) // returns a random nurse

10 randDay← U (1, . . . , |D|) // returns a random day

11 randShift← U (1, . . . , |S|) // returns a random shift

12 cs′ ← assignShift(cs, randNurse, randDay, randShift) // returns null if infeasible

13 if cs′ 6= null and isNotTabu(randNurse, randDay, randShift) then
14 addTabu(randNurse, randDay, randShift) // add nurse,day,shift to tabu

list

15 if OFV(cs′) < bestNeighbor then
16 bestNeighbor← OFV(cs′)

17 cs′′ ← cs′

18 break

19 end

20 end

21 end

22 end
23 if cs′′ 6= null and OFV(cs′′) < OFV(cs) then
24 countNoImprov← 0

25 cs← cs′′

26 bestSolution← cs

27 end
28 else
29 countNoImprov← countNoImprov + 1

30 if countNoImprov > maxNoImprovDiv then
31 cs← bestSolution

32 foreach d ∈ D do
33 foreach y← 1 to maxChangesDiv do
34 randNurse← U (1, . . . , |N|) // returns a random nurse

35 randShift← U (1, . . . , |S|) // returns a random day

36 cs← assignShift(cs, randNurse, d, randShift)

37 end

38 end
39 cs← assignMissingShift(cs); cs← changeAssignMissingShift(cs)

40 cs← assignDeleteShift(cs); cs← changeShift(cs); cs← swapShift(cs)

41 end

42 end

43 end
44 return bestSolution

Algorithm 10: Intensification and diversification procedure.
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4.6 Computational results

This section analyzes a series of computational experiments to investigate whether

the proposed IP formulation can be solved using a MIP solver for both small and large

instances with multi-skilled nurses. The impact of relaxing soft constraints with respect

to the original NRP in terms of solution quality and computation time is analyzed. More-

over, whether the degradation of solution quality is significant when rerostering a limited

scheduling horizon and whether or not the proposed VND heuristic can generate compet-

itive results compared to a MIP solver is also investigated.

4.6.1 Data sets and experimental setup

This section presents two sets of instances employed for the experiments. They

cover both academic and realistic scenarios. This research contributes a rerostering ver-

sion of the INRC-II instances. The Lisbon instances were, until this work, the only public

set of instances available in the literature related to the NRRP. They were developed by

Moz and Pato (2007) and based on real data provided by a Lisbon hospital. The INRC-

II instances incorporate a large number of soft constraints related to the NRP and are

therefore less restrictive in terms of hard constraints compared to the Lisbon instances.

4.6.1.1 INRC-II instances

Table 4.7 describes the constraints of the INRC-II for which there are two main

sets. The first concerns those related to the NRP that have less weight in the objective

function when rerostering and, consequently, less importance associated with avoiding

their violations. The second set of constraints concerns the specific objectives related to

the NRRP. The number of changes, which is considered the most important objective to

minimize by the objective function is assigned a weight of 100. Meanwhile, the change

in number of assigned shifts is regarded as less important and receives a weight of 50. An

in-depth discussion of each constraint is provided by Ceschia et al. (2019).

Ingels and Maenhout (2015) simulate employee availability using a Bernoulli dis-

tribution. They performed simulations for short-term sick leave with a probability of

2.44% based on a study conducted by SD Worx (2013) in Belgium. Moreover, they

reported that simulations using an absenteeism probability of 5% and 10% resulted in
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Table 4.7: Hard and soft constraints in the INRC-II instances.

Index Constraint description Weight Eq.

Nurse Rostering Constraints

- A nurse can be assigned to at most one shift per day HC C.2
- Minimum number of nurses per day/shift/skill HC C.3
- A shift type succession must belong to a valid succession (for example,

a Night shift cannot be followed by an Early shift)
HC C.4

- A shift requiring nurses with a given skill must necessarily be fulfilled
by a nurse having that skill

HC C.5

1 Preferred coverage 30 C.7
2 Minimum consecutive assignments (working days) 30 C.8, C.9
3 Maximum consecutive assignments (working days) 30 C.15
4 Minimum number of consecutive days off 30 C.11, C.12
5 Maximum number of consecutive days off 30 C.13
6 Minimum consecutive assignments to the same shift 15 C.14, C.15
7 Maximum consecutive assignments to the same shift 15 C.16
8 Individual nurse’s undesired working day/shift 10 C.17
9 Complete weekend 30 C.18, C.19
10 Minimum number of assignments over the scheduling period 20 C.20
11 Maximum number of assignments over the scheduling period 20 C.21
12 Total working weekends 30 C.18, C.22
Nurse Rerostering Constraints

- Absent nurses cannot be assigned to any shift HC 4.2
13 Each change in the new roster is penalized 100 4.3, 4.4, 4.5
14, 15 The original number of assigned shifts should be maintained 50 4.6, 4.7

similar results, regarding sick leave probabilities.

In this study, absences were randomly generated based on statistics observed by

Aguirre and Kerin (2014) in the U.S. They report absenteeism rates ranging from 5% to

10% among all employees, meaning that at any given time 5% to 10% of the workforce is

missing from work. While this rate varies by sector, the emergency services and health-

care, both known for their stressful working conditions, high rates of overtime, and are

therefore unsurprisingly associated with the highest rates of absenteeism.

The first group of NRRP instances is named Single-day Nurse Absence, where

absences are generated for randomly selected nurses and days based on an absenteeism

rate of 5%. The instances have 35, 70 or 110 nurses and a scheduling horizon of either

four or eight weeks.

The second group of instances is named Consecutive-days Nurse Absence and

represents situations which simulate nurse illness. In these instances, a randomly selected

nurse is absent for a sequence of days beginning from a first random day i until a later

random day j which are chosen based on a uniform distribution. Instances with 35, 70

or 110 nurses and scheduling horizons of four or eight weeks have 5% of their associated
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nurses absent for a random number of consecutive days.

4.6.1.2 Lisbon instances

The Lisbon instances differ from the INRC-II in terms of constraints, shifts and

nurses’ skills. Rather than four shifts as per the INRC-II instances, the Lisbon instances

have three shifts, namely: Early (08:00-16:00), Late (16:00-24:00) and Night (00:00-

08:00). The nurses are single-skilled, while in the INRC-II instances they are multi-

skilled. All constraints are hard and the objective simply concerns minimizing the number

of changes compared to the original roster. The general model proposed in Section 4.4

and Appendix C details this subset of constraints. Table 4.8 presents the set of constraints

and the related equations.

Table 4.8: Hard and soft constraints considered for the Lisbon instances.

Index Constraint Description Weight Eq.

Nurse Rostering Constraints

- A nurse can be assigned to at most one shift per day HC C.2
- Minimum number of nurses per day/shift/skill HC C.3
- A shift type succession must belong to a valid succession HC C.4
- Every seven days sequence, nurses must have 1 day off when the con-

tract is 42 hours per week, and 2 days off when the contract is 35 hours
per week

HC C.6

Nurse Rerostering Constraints

- Absent nurses cannot be assigned any shift HC 4.2
13 Each change in the new roster is penalized 1 4.3, 4.4, 4.5

Inconsistencies regarding these Lisbon instances required adaptations as the cur-

rent roster, provided by the hospital’s head nurse, violated several hard constraints. The

following changes were made to render the instances feasible:

• Nurses with 30-hour contracts are now considered as having 35-hour contracts. In

doing so, these nurses must have two days off per working week;

• The current solution for 32 nurses is infeasible due to some violations where the

nurses’ contracts permit them to work a maximum of 5 days every 7 days. However,

some nurses work 6 days in the provided rosters. In this case, the nurses’ contracts

were adjusted to 42 hours, thereby permitting them to work 6 days every 7 days;

• The pattern file, provided in PDF format, was ignored during the conversion process

since the patterns were not always respected in the roster provided by the hospital’s

head nurse.
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4.6.1.3 Computational environment

All models and algorithms were implemented in Java and compiled with OpenJDK

1.8. The experiments were conducted on an AMD FX 8150 eight-core processor with

32 GB of RAM memory running Linux Ubuntu 16.04.3 64-bit. The commercial MIP

solver employed was CPLEX version 12.7.1 with default parameters and configured to

use eight threads. For the experiments with an open-source solver, Coin-OR CBC 2.9.9

was employed with eight threads. Relative gaps in solution quality were calculated as

gap = 100× UB−OPT
OPT , where UB (upper bound) corresponds to the objective function

value of the VND heuristic, and OPT corresponds to the optimum solution value obtained

by CPLEX. For each experiment, the VND heuristic was executed ten times with different

seed values for the random number generator.

4.6.1.4 VND neighborhoods and parameter tunning

The primary objective of the experiments in this section is to analyze to which

degree each VND neighborhood impacts upon the heuristic’s performance. Table 4.9

compares the results obtained by the MIP solver and different configurations of the VND

heuristic. The complete scheduling horizon and all NRP and NRRP constraints were

considered for these experiments. The following five VND heuristic configurations were

investigated:

• VND 1: employs only the assignMissingShift neighborhood;

• VND 2: employs the assignMissingShift and assignDeleteShift neighborhoods;

• VND 3: employs the assignMissingShift, assignDeleteShift and changeShift neigh-

borhoods;

• VND 4: employs all neighborhoods, except intensDiverLS;

• VND: employs all neighborhoods.

The second through fourth columns in Table 4.9 provide the objective values ob-

tained by the MIP solver, the respective time to the optimum solution, and the time to

prove optimality. The fifth through fourteenth columns show, for each configuration of

the VND heuristic, the gap to the optimum objective value and the required computation

time.

The average relative optimality gaps for VND1, VND2, VND3, VND4 and VND

are 1.10%, 1.07%, 0.62%, 0.61% and 0.61%, respectively. The VND heuristic generated
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Table 4.9: VND neighborhoods evaluation - Complete scheduling horizon, NRP and NRRP con-
straints

Single-day absences

MIP solver VND 1 VND 2 VND 3 VND 4 VND

Opt Opt Prove
Instance Id OFV Time(s) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)
n035w4 3206.0 3.7 5.7 0.8 0.7 0.8 0.9 0.7 1.0 0.6 1.0 0.6 1.0
n035w8 6490.5 8.5 14.0 1.1 0.9 1.1 1.3 1.0 1.8 1.0 1.8 1.0 1.8
n070w4 5850.0 5.8 16.6 0.7 1.0 0.7 1.4 0.0 2.4 0.0 2.8 0.0 2.8
n070w8 12379.0 51.5 186.3 1.5 1.2 1.4 2.2 0.4 4.4 0.4 6.6 0.4 6.6
n110w4 7495.0 12.1 42.1 0.9 1.1 0.8 2.1 0.7 3.0 0.7 3.9 0.7 3.9
n110w8 14366.0 78.7 237.5 1.5 1.5 1.5 2.9 1.0 5.8 1.0 10.2 1.0 10.2
average 1.10 1.07 0.62 0.61 0.61

Consecutive-days absences

MIP solver VND 1 VND 2 VND 3 VND 4 VND

Opt Opt Prove
Instance Id OFV Time(s) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)
n035w4 3167.0 5.3 9.6 2.4 0.8 1.7 1.0 1.4 1.1 1.3 1.2 1.3 1.2
n035w8 6383.5 7.5 28.6 2.7 0.9 2.2 1.3 2.1 1.8 1.9 1.9 1.9 1.9
n070w4 5564.5 13.8 41.9 0.8 1.0 0.7 1.5 0.4 2.4 0.3 2.5 0.3 2.5
n070w8 11595.0 109.2 208.0 1.3 1.2 1.3 2.0 1.0 4.3 0.9 6.2 0.9 6.2
n110w4 7039.0 28.3 84.5 1.2 1.2 1.2 2.1 0.5 4.1 0.5 5.0 0.5 5.0
n110w8 13670.5 229.6 598.9 2.5 1.6 2.5 2.9 1.8 6.7 1.9 9.7 1.9 9.7
average 1.82 1.60 1.20 1.11 1.11

near-optimum solutions within only a few seconds. It is worth noting that due to the nu-

merous dynamic situations which may occur in the real world, fast management decisions

and therefore short computation times are critical to ensure the best decision is made as

quickly as possible, considering both the institution and employee preferences.

The second part of Table 4.9 reports the results for the instances with consecutive-

days absences. The average relative optimality gaps are 1.82%, 1.60%, 1.20%, 1.11%

and 1.11%, respectively for the five VND heuristic variants. Again, the computation

times were much lower compared to those required by the MIP solver for reaching its

near-optimum solutions. For example, on the largest instances, the MIP solver spent

229.6 seconds to reach the optimum value, while the VND heuristic required only 9.7

seconds to reach a solution within 1.11% of the optimum solution. Experiments with dif-

ferent versions of the VND heuristic demonstrate that all the implemented components

are important in contributing to obtaining near-optimum solutions or to solve infeasibili-

ties. Moreover, when all neighborhoods are used, the algorithm generated the best results.

In all remaining experiments, the VND heuristic is the one employed with all neighbor-

hoods.

The VND heuristic has two main parameters. The first parameter determines after

how many iterations the intensification and diversification procedure is called and was set

to 30 in order to limit the algorithm’s runtime while still providing sufficient possibilities

to solve infeasibilities in the Lisbon instances. For the INRC-II instances, the intensifi-
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cation and diversification procedure was not required to solve infeasibilities. However,

for the Lisbon instances this neighborhood was essential and solved infeasibilities in 10

out of 64 instances. The second main parameter is the maximum number of top-level

loop iterations which was set to 100 to avoid infinite loops in the algorithm whenever an

instance did not have a feasible solution. Table D.1 (in Appendix D) details the number of

top-level loop iterations for different instances and strategies. Considering the complete

scheduling horizon and all constraints, the average number of trials was less than two for

the INRC-II instances, 12.9 for the Lisbon instances with 19 nurses and 4.8 for the Lisbon

instances with 32 nurses.

Figure 4.1 presents the evolution of the objective function value throughout the

VND heuristic’s execution on an INRC-II instance with 110 nurses and a scheduling hori-

zon of eight weeks. The algorithm begins with an initial objective value of 161755 and

after 4.98 seconds ends with an objective function value of 12425. After some initial small

improvements, the algorithm quickly finds several significant improvements. The algo-

rithm then ends like it began: with a series of minimal improvements. This experiment

demonstrates how the algorithm fulfills its two primary objectives: to find high-quality

solutions within short computational runtimes.

Figure 4.1: OFV evaluation throughout VND execution.

16
17

55

16
17

25

16
17

10

16
16

55

15
16

90

14
17

30

13
17

95

12
19

10

11
20

50

10
21

65

92
16

0

82
24

0

72
35

0

62
35

0

52
42

0

42
42

0

32
42

0

22
42

0

12
53

5

12
52

5

12
51

0

12
50

5

12
50

0

12
48

0

12
47

0

12
45

0

12
42

5

0

50000

100000

150000

0.
00

0.
06

0.
08

0.
09

0.
11

0.
12

0.
14

0.
14

0.
15

0.
15

0.
16

0.
17

0.
19

0.
20

0.
22

0.
23

0.
24

0.
25

0.
25

0.
95

2.
74

3.
99

3.
99

4.
48

4.
49

4.
85

4.
98

Time(s)

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue



81

4.6.2 Computational results for the INRC-II instances

This section presents the experiments employing the INRC-II instances. All tables

present average results for each group of instances. The first column details the Instance

Id, where n035, n070, n110 represent the number of nurses and where w4 and w8 corre-

spond to the number of weeks. Each group contains 10 instances for a total of 60. The

column std. dev. provides the standard deviation on the average value which is reported

in the previous column. Detailed computational results are publicly available online1.

4.6.2.1 Complete scheduling horizon, complete set of NRP and NRRP constraints

In these experiments, the complete scheduling horizon and all the NRP and NRRP

constraints are considered when rerostering. Table 4.10 presents the average results for

both single-day absences and the consecutive-days absences instances. The first block

(second and third columns) provides data concerning the initial infeasible solution, the

second provides the NRP objective value, while the third provides the NRP+NRRP objec-

tive value. Note that to estimate the initial objective value, each unit below the minimum

coverage violation was penalized with a weight of 10000.

The second block (fourth to ninth columns) shows the results obtained by the MIP

solver. The fourth and fifth columns detail the NRP and the NRP+NRRP objective values,

respectively. The sixth and eighth columns provide the time to reach the optimum solu-

tion and the time to prove it, while the seventh and ninth columns provide the respective

standard deviations. The last block (tenth to twelfth columns) details the results regarding

the VND heuristic. The tenth column provides the relative gap to the optimum value,

while the eleventh and twelfth columns provide the time in seconds to reach the value and

its respective standard deviation.

An interesting finding concerns instance n035w4_2_9-9-2-1 that has one viola-

tion of nurses below the minimum coverage. This infeasibility was solved without any

changes concerning working days, days off or shift changes. This was only possible since

the number of scheduled nurses is higher than the required minimum and the nurses are

multi-skilled. The formulation is designed in such a way that the solver was capable of

finding a solution by only changing skills of nurses who were already assigned to shifts.

Other noteworthy observations concern instances n070w4_0_3-6-5-1 and n110w4_2_5-

1-3-0, which were feasible even with the randomly generated disruptions. This occurs
1<http://www.inf.ufrgs.br/~tiwickert/download/2017/reroster>

http://www.inf.ufrgs.br/~tiwickert/download/2017/reroster


82

Table 4.10: Complete scheduling horizon NRP+NRRP constraints.
Single-day absences

Initial infeasible solution MIP VND

NRP NRP+NRRP NRP NRP+NRRP Opt Std. Opt Prove Std. Std.
Instance Id OFV OFV OFV OFV Time(s) Dev. Time(s) Dev. Gap(%) Time(s) Dev.
n035w4 2370.0 39770.0 2546.0 3206.0 3.7 1.1 5.7 1.1 0.6 1.0 0.2
n035w8 4912.5 84712.5 5165.5 6490.5 8.5 5.5 14.0 4.5 1.0 1.8 0.5
n070w4 4704.5 42504.5 4665.0 5850.0 5.8 3.7 16.6 7.5 0.0 2.8 0.6
n070w8 10308.0 72908.0 9834.0 12379.0 51.5 37.7 186.3 104.2 0.4 6.6 1.1
n110w4 6183.5 34383.5 6065.0 7495.0 12.1 7.2 42.1 42.9 0.7 3.9 1.0
n110w8 11467.5 113867.5 11211.0 14366.0 78.7 42.8 237.5 130.9 0.9 10.2 1.9
average 0.6

Consecutive-days absences

Initial infeasible solution MIP VND

NRP NRP+NRRP NRP NRP+NRRP Opt Std. Opt Prove Std. Std.
Instance Id OFV OFV OFV OFV Time(s) Dev. Time(s) Dev. Gap(%) Time(s) Dev.
n035w4 2175.5 43745.5 2292.0 3167.0 5.3 2.0 9.6 8.0 1.4 1.2 0.3
n035w8 4075.0 117090.0 4548.5 6383.5 7.5 7.8 28.6 48.3 1.9 1.9 0.5
n070w4 4042.5 50032.5 4029.5 5564.5 13.8 23.0 41.9 34.4 0.4 2.5 0.6
n070w8 8856.0 85831.0 8880.0 11595.0 109.2 81.0 208.0 86.1 0.9 6.3 0.9
n110w4 5397.5 52967.5 5059.0 7039.0 28.3 24.1 84.5 57.3 0.5 4.9 0.6
n110w8 9927.0 175977.0 9740.5 13670.5 229.6 267.5 598.9 495.7 1.8 9.7 2.0
average 1.1

because the absent nurses were generated on days where the number of nurses exceeded

the minimum coverage, referred to as the preferred number of nurses. The solving times

for instances with single-day absences were considerably quicker than for instances with

consecutive-days absences, with the time required to reach the optimum solution for in-

stances n110w8 being 78.7 for single-day absences compared to 229.6 seconds for when

consecutive-day absences were generated. Using the VND heuristic, the time required

to reach relative gaps of 0.6% and 1.1% were considerably shorter compared to the MIP

solver, as can be observed in the eleventh column. Despite the MIP solver generating op-

timum results in tractable time limits, the VND heuristic still provides a good alternative

whenever a MIP solver is not affordable or if an urgent change regarding the current roster

must be performed online.

4.6.2.2 Complete scheduling horizon and ignoring the NRP’s soft constraints

These experiments consider the complete scheduling horizon, NRRP hard/soft

constraints, and NRP hard constraints. In contrast to Section 4.6.2.1, these experiments

ignore the NRP’s soft constraints when rerostering. The first block of Table 4.11 presents

the Instance Id, while the second block provides the results obtained considering all NRP

and NRRP constraints. The last block presents the results ignoring the NRP’s soft con-

straints.

Table 4.11’s eighth column shows how on average, the NRRP objective value was

lower (highlighted in bold) when the NRP soft constraints were dropped. This occurred
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for 51 of the 60 instances with single-day absences and in 54 instances with consecutive-

days absences. The advantage associated with ignoring the NRP soft constraints is the

required computation time. Considering the single-day absence instances, Table 4.11 de-

tails the average computation time required to reach the optimum value when considering

all constraints for the larger instances (n110w8), which was 78.8 seconds, while without

the NRP soft constraints the average computation time decreases significantly to just 6.3

seconds. A similar observation occurs for the consecutive-days absences instances where

the average times were 229.6 and 7.5 seconds with and without the NRP soft constraints

for the n110w8 instances, respectively.

Table 4.12 presents the same experiment employing the VND heuristic. The re-

sults detail a decrease regarding NRRP constraint violations (eighth column) when the

NRP constraints are ignored compared to when all constraints are considered (third col-

umn). Moreover, when the results of the VND heuristic’s relaxed constraints are com-

pared against the MIP results, a smaller increase of the NRRP+NRP objective value (ninth

column) is observed when compared against the ninth column of Table 4.11. These results

are due to the VND heuristic being unable to reach optimum results in all the instances

when the NRP constraints are ignored, benefiting in these cases, the NRP constraints.

It may, therefore, be concluded that the original NRP soft constraints (presented

in Table 4.7) are important to consider for generating good quality solutions. However,

in some situations it may be useful to ignore them, such as when, for example, an urgent

surgery is scheduled and there are also nurse shortages. The surgery should be prioritized

over nurse preferences or consecutive working and resting day restrictions/entitlements.

Table 4.11: MIP - Complete scheduling horizon, NRP soft constraints relaxation.
Single-day absences

All constraints NRP constraints relaxation

NRP NRRP NRP+NRRP Opt Opt Prove NRP NRRP NRP+NRRP Opt Std. Opt Prove Std.
Instance Id OFV OFV OFV Time(s) Time(s) OFV OFV OFV Time(s) Dev. Time(s) Dev.
n035w4 2546.0 660.0 3206.0 3.7 5.7 4332.0 620.0 4952.0 0.8 0.2 0.9 0.2
n035w8 5165.5 1325.0 6490.5 8.5 14.0 7583.5 1165.0 8748.5 2.7 0.7 3.7 2.3
n070w4 4665.0 1185.0 5850.0 5.8 16.6 8766.0 970.0 9736.0 1.7 1.0 2.0 0.9
n070w8 9829.0 2550.0 12379.0 51.5 186.3 16902.0 1865.0 18767.0 5.4 1.8 6.5 2.3
n110w4 6065.0 1430.0 7495.0 12.1 42.1 9643.0 1240.0 10883.0 1.5 0.8 2.7 2.6
n110w8 11211.0 3155.0 14366.0 78.7 237.5 16538.5 2665.0 19203.5 6.3 6.2 39.6 23.2

Consecutive-days absences

All constraints NRP constraints relaxation

NRP NRRP NRP+NRRP Opt Opt Prove NRP NRRP NRP+NRRP Opt Std. Opt Prove Std.
Instance Id OFV OFV OFV Time(s) Time(s) OFV OFV OFV Time(s) Dev. Time(s) Dev.
n035w4 2292.0 875.0 3167.0 5.3 9.6 4077.0 795.0 4872.0 0.8 0.2 0.8 0.2
n035w8 4553.5 1830.0 6383.5 7.5 28.6 7122.0 1720.0 8842.0 2.5 0.3 2.6 0.4
n070w4 4039.5 1525.0 5564.5 13.8 41.9 7926.5 1340.0 9266.5 2.0 0.8 2.2 0.8
n070w8 8880.0 2715.0 11595.0 109.2 208.0 14879.5 2425.0 17304.5 5.0 2.0 6.3 2.1
n110w4 5059.0 1980.0 7039.0 28.3 84.5 8848.5 1690.0 10538.5 2.4 1.7 2.8 1.7
n110w8 9735.5 3935.0 13670.5 229.6 598.9 15089.5 3470.0 18559.5 7.5 4.5 16.4 14.0
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Table 4.12: VND - Complete scheduling horizon, NRP soft constraints relaxation.
Single-day absences

All constraints NRP constraints relaxation

NRP NRRP NRP+NRRP Std. NRP NRRP NRP+NRRP Std.
Instance Id OFV OFV OFV Time(s) Dev. OFV OFV OFV Time(s) Dev.
n035w4 2565.0 660.0 3225.0 1.0 0.2 2633.0 625.0 3258.0 0.6 0.0
n035w8 5208.0 1350.0 6558.0 1.8 0.5 5683.0 1185.0 6868.0 0.9 0.2
n070w4 4670.5 1180.0 5850.5 2.8 0.6 5099.5 970.0 6069.5 1.3 0.1
n070w8 9962.5 2467.9 12430.4 6.6 1.1 10983.0 1875.0 12858.0 1.9 0.1
n110w4 6124.0 1420.0 7544.0 3.9 1.0 6369.0 1265.0 7634.0 1.8 0.1
n110w8 11303.0 3194.7 14497.7 10.2 1.9 12172.0 2725.0 14897.0 2.7 0.2

Consecutive-days absences

All constraints NRP constraints relaxation

NRP NRRP NRP+NRRP Std. NRP NRRP NRP+NRRP Std.
Instance Id OFV OFV OFV Time(s) Dev. OFV OFV OFV Time(s) Dev.
n035w4 2330.5 880.0 3210.5 1.2 0.3 2492.0 805.0 3297.0 0.6 0.0
n035w8 4624.6 1878.1 6502.7 1.9 0.5 5048.0 1800.0 6848.0 0.9 0.2
n070w4 4130.6 1454.9 5585.5 2.5 0.6 4402.0 1340.0 5742.0 1.3 0.1
n070w8 9009.3 2688.8 11698.1 6.3 0.9 9488.0 2465.0 11953.0 2.0 0.1
n110w4 5103.1 1969.9 7073.0 4.9 0.6 5559.0 1695.0 7254.0 1.9 0.2
n110w8 9912.8 4002.9 13915.7 9.7 2.0 10939.5 3565.0 14504.5 2.7 0.2

4.6.2.3 Scheduling horizon relaxation

These experiments evaluate the impact of rerostering when considering different

scheduling horizons. The complete scheduling horizon, the most straightforward ap-

proach, is analyzed in addition to restricted horizons which only reroster those days where

nurses are absent, from the first absent day until the last absent day, or from the first ab-

sent day until the end of the scheduling horizon. All NRP and NRRP constraints were

considered throughout these experiments.

Tables 4.13 and 4.14’s fifth columns document the results when only rerostering

on absent days employing the MIP solver and the VND heuristic, respectively. Whereas

this restricted rerostering considers a problem which is more constrained, the computa-

tional results indicate only a slight deterioration concerning solution quality compared

against the complete scheduling horizon. Values in bold indicate improvements obtained

by restricting the rerostering horizon. This rerostering strategy, therefore, provides a good

alternative when obtaining a solution is urgent and must be acquired within a very short

period of time.

Tables 4.13 and 4.14 also present the results when the scheduling horizon is limited

from the first absence to the last absence (third block), and until the end of the scheduling

horizon (fourth block). The results are very similar to when the complete scheduling hori-

zon is considered. The gaps reported in Table 4.14 demonstrate consistent performance

of the VND heuristic under different strategies regarding scheduling horizon relaxations.

For the consecutive-day absences the relative gaps are 1.1%, 1.0%, 1.7% and 1.1% for



85

the complete scheduling horizon, only absent days, first absence to last absence, and first

absence to the end of the scheduling horizon, respectively.

It can therefore be concluded that the VND heuristic generates near-optimum re-

sults (with gaps less than 2%), providing a good alternative to the MIP solver. When

the new schedule has already been communicated to all employees and the new month

has not yet begun, then rerostering the complete scheduling horizon provides the best

alternative. Nevertheless, it is worthwhile to consider other strategies which restrict the

scheduling horizon, given that the NRRP depends on when an employee communicates

their absence. For example, if the new month has already begun and some employees

communicate unavailabilities, the revised roster should not reconsider assignments from

the past and consequently the beginning of the new scheduling horizon should instead be

the first absent day.

Table 4.13: MIP - Comparison of scheduling horizons.
Single-day absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Opt Opt Prove Opt Opt Prove Opt Opt Prove Opt Opt Prove
Instance Id OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s)
n035w4 3206.0 3.7 5.7 3217.0 0.5 0.6 3206.0 2.3 3.7 3206.0 3.0 4.7
n035w8 6490.5 8.5 14.0 6504.0 1.1 1.1 6490.5 6.7 10.9 6490.5 7.3 15.4
n070w4 5850.0 5.8 16.6 5867.0 2.4 2.5 5857.0 7.4 10.2 5852.5 5.6 16.3
n070w8 12379.0 51.5 186.3 12452.0 5.0 6.8 12382.5 41.0 160.6 12379.0 36.9 148.5
n110w4 7495.0 12.1 42.1 7501.5 3.9 5.3 7496.5 6.2 20.2 7495.0 9.0 25.1
n110w8 14366.0 78.7 237.5 14433.5 5.7 10.5 14375.0 67.0 199.3 14366.0 61.8 164.3

Consecutive-days absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Opt Opt Prove Opt Opt Prove Opt Opt Prove Opt Opt Prove
Instance Id OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s)
n035w4 3167.0 5.3 9.6 3177.5 1.1 1.2 3167.0 4.4 5.5 3167.0 4.1 5.4
n035w8 6383.5 7.5 28.6 6392.0 2.2 2.6 6383.5 7.1 29.8 6383.5 6.9 40.9
n070w4 5564.5 13.8 41.9 5581.0 3.8 7.8 5564.5 7.0 27.1 5564.5 7.4 31.0
n070w8 11595.0 109.2 208.0 11623.5 6.0 11.5 11595.0 85.3 180.0 11595.0 73.3 190.3
n110w4 7039.0 28.3 84.5 7055.5 7.1 21.8 7039.0 27.7 65.9 7039.0 29.7 60.8
n110w8 13670.5 229.6 598.9 13692.5 54.0 84.4 13674.0 188.5 597.2 13674.0 178.9 466.9

4.6.3 Computational results for the Lisbon instances

Since there are no soft constraints in the Lisbon instances, only those strategies

concerning the scheduling horizon are analyzed for this dataset. Tables 4.15 and 4.16

present the results for the Lisbon instances using the MIP solver and VND heuristic, re-

spectively. In both tables, rerostering the complete scheduling horizon and only a limited

part is evaluated. In Table 4.15 the columns labeled OFV report the optimum objective

values obtained by the MIP solver for each scheduling horizon, while columns opt time(s)

and opt prove time(s) are the times (in seconds) to reach the optimum value and to prove
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Table 4.14: VND - Comparison of scheduling horizons.
Single-day absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Instance Id OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s)
n035w4 3225.0 0.6 1.0 3233.5 0.5 0.4 3332.9 3.8 1.0 3225.0 0.6 0.9
n035w8 6558.0 1.0 1.8 6570.0 1.0 0.6 6614.0 1.9 1.7 6558.0 1.0 1.7
n070w4 5850.5 0.0 2.8 5867.5 0.0 1.5 5893.1 0.6 2.3 5853.0 0.0 2.6
n070w8 12430.4 0.4 6.6 12494.9 0.3 3.5 12456.4 0.6 6.0 12430.4 0.4 6.3
n110w4 7544.0 0.6 3.9 7550.5 0.6 2.7 7565.0 0.9 3.2 7544.0 0.6 3.6
n110w8 14497.7 0.9 10.2 14566.0 0.9 6.2 14554.2 1.2 9.1 14497.7 0.9 9.8

0.6 0.6 1.5 0.6
Consecutive-days absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Instance Id OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s)
n035w4 3210.5 1.4 1.2 3219.0 1.3 0.6 3223.5 1.8 1.0 3210.5 1.4 1.1
n035w8 6502.7 1.8 1.9 6506.4 1.8 0.9 6560.6 2.7 2.0 6502.7 1.8 1.7
n070w4 5585.5 0.4 2.5 5596.4 0.3 1.7 5610.4 0.8 2.2 5585.5 0.4 2.3
n070w8 11698.1 0.9 6.2 11716.6 0.8 3.5 11711.8 1.0 5.7 11698.1 0.9 5.9
n110w4 7073.0 0.5 5.0 7083.5 0.4 3.9 7171.6 1.8 4.7 7073.0 0.5 4.6
n110w8 13915.7 1.8 9.7 13931.2 1.7 7.6 13965.3 2.1 9.0 13919.2 1.8 9.3

1.1 1.0 1.7 1.1

optimality, respectively. In Table 4.16 the gap is relative to the optimum value obtained

by the MIP solver for each scheduling horizon.

Table 4.15 details the results when employing the MIP solver. All instances were

quickly solved to optimality. In the worst case, the MIP solver proved the optimum solu-

tion within 2.4 seconds. Both rerostering the complete scheduling horizon and rerostering

from first absence until the end of the scheduling horizon generated the best results, while

rerostering only the absent days resulted in infeasibility for 8 of the 68 instances. Finally,

rerostering from the first absence until the last absent day resulted in 7 instances being

infeasible. Note that instance II7_19 is infeasible for all the scheduling horizons.

Table 4.16 details the results obtained by the VND heuristic. The best results

for the instances with 19 nurses were obtained by restricting the scheduling horizon to

only the absent days while the worst solutions were obtained when considering the full

scheduling horizon. This indicates that the algorithm’s overall performance improves

when restricting the available possibilities for rerostering. Increasing the allowed compu-

tation time of the VND heuristic to ten minutes did not considerably improve the average

relative gaps. For instances with 32 nurses, the chosen strategy does not affect the average

gaps significantly. Compared to the MIP solver, solutions within 1% of the optimum so-

lutions are obtained in comparable computation time. Independent of which strategy was

applied, the VND heuristic performed significantly better when more nurses are available

for rerostering as this allowed for more possibilities to repair the infeasibilities.
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Table 4.15: MIP - Experiments employing the Lisbon instances
Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Opt Opt Prove Opt Opt Prove Opt Opt Prove Opt Opt Prove
Instance Id OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s)
I1_19 3 0.3 0.3 3 0.0 0.1 3 0.0 0.1 3 0.0 0.1
I2_19 2 0.2 0.3 2 0.0 0.1 2 0.1 0.1 2 0.0 0.1
I3_19 9 0.5 0.8 9 0.1 0.1 9 0.1 0.1 9 0.1 0.1
I4_19 2 0.2 0.3 2 0.0 0.1 2 0.0 0.1 2 0.1 0.2
I5_19 15 0.3 0.6 17 0.1 0.1 17 0.2 0.2 17 0.1 0.1
I6_19 8 0.3 0.5 8 0.2 0.2 8 0.2 0.2 8 0.2 0.2
I7_19 19 0.3 0.7 20 0.3 0.4 20 0.3 0.3 20 0.3 0.3
I8_19 2 0.2 0.2 2 0.0 0.0 2 0.0 0.0 2 0.1 0.2
II1_19 1 0.2 0.2 1 0.0 0.0 1 0.0 0.0 1 0.1 0.1
II2_19 0 0.0 0.1 0 0.0 0.0 0 0.0 0.0 0 0.0 0.1
II3_19 5 0.2 0.3 5 0.1 0.1 5 0.0 0.2 5 0.1 0.2
II4_19 10 0.3 0.7 ∞ 0.1 0.2 12 0.1 0.3 12 0.1 0.3
II5_19 6 0.2 0.4 6 0.1 0.1 6 0.1 0.1 6 0.1 0.2
II6_19 16 0.3 0.5 16 0.1 0.3 16 0.1 0.3 16 0.1 0.3
II7_19 ∞ - - ∞ - - ∞ - - ∞ - -
II8_19 3 0.2 0.3 6 0.1 0.2 6 0.1 0.2 5 0.1 0.3
III1_19 7 0.3 0.3 7 0.0 0.1 7 0.0 0.1 7 0.2 0.2
III2_19 9 0.3 0.6 ∞ 0.0 0.1 ∞ 0.0 0.1 12 0.5 0.5
III3_19 10 0.2 0.5 ∞ 0.0 0.1 ∞ 0.0 0.1 13 0.5 0.5
III4_19 7 0.2 0.4 7 0.1 0.2 7 0.1 0.2 7 0.2 0.3
III5_19 27 1.1 1.1 27 0.6 0.6 27 0.5 0.5 27 0.7 0.8
III6_19 26 0.8 0.8 28 0.3 0.5 26 0.6 0.6 26 0.6 0.6
III7_19 18 0.7 0.9 23 0.3 0.4 19 0.3 0.8 19 0.3 0.7
III8_19 10 0.3 0.7 10 0.1 0.3 10 0.1 0.3 10 0.2 0.3
IV1_19 8 0.2 0.7 ∞ 0.0 0.1 ∞ 0.0 0.1 9 0.3 0.4
IV2_19 11 0.3 0.8 ∞ 0.0 0.1 ∞ 0.0 0.2 12 0.4 0.4
IV3_19 10 0.2 0.6 ∞ 0.0 0.1 ∞ 0.0 0.1 10 0.3 0.3
IV4_19 26 0.3 0.5 ∞ 0.1 0.1 ∞ 0.1 0.2 26 0.2 0.5
IV5_19 17 0.3 0.9 19 0.2 0.6 19 0.7 1.0 17 0.3 0.6
IV6_19 21 0.9 1.1 25 0.1 0.3 23 0.3 0.4 23 0.6 0.6
IV7_19 9 0.3 0.6 9 0.1 0.2 9 0.3 0.6 9 0.3 0.6
IV8_19 9 0.2 0.5 9 0.1 0.3 9 0.2 0.4 9 0.2 0.5
I1_32 3 0.3 0.5 3 0.1 0.3 3 0.1 0.4 3 0.1 0.3
I2_32 3 0.3 0.4 3 0.1 0.2 3 0.1 0.2 3 0.1 0.1
I3_32 6 0.3 0.5 6 0.1 0.4 6 0.1 0.4 6 0.1 0.4
I4_32 1 0.3 0.3 1 0.1 0.1 1 0.1 0.1 1 0.1 0.1
I5_32 8 0.4 0.9 8 0.1 0.3 8 0.1 0.3 8 0.1 0.3
I6_32 12 0.3 0.5 12 0.1 0.2 12 0.1 0.2 12 0.1 0.2
I7_32 7 0.3 0.6 7 0.1 0.2 7 0.1 0.2 7 0.1 0.1
I8_32 8 0.3 0.6 8 0.1 0.2 8 0.1 0.1 8 0.1 0.2
II1_32 1 0.3 0.4 1 0.1 0.1 1 0.1 0.1 1 0.1 0.1
II2_32 1 0.3 0.3 1 0.1 0.1 1 0.1 0.1 1 0.1 0.1
II3_32 3 0.4 0.4 3 0.1 0.2 3 0.1 0.2 3 0.1 0.2
II4_32 7 0.4 0.7 7 0.1 0.3 7 0.1 0.4 7 0.2 0.6
II5_32 16 0.3 0.6 16 0.2 0.4 16 0.2 0.3 16 0.2 0.3
II6_32 20 0.3 0.7 20 0.1 0.4 20 0.1 0.4 20 0.1 0.4
II7_32 6 0.3 0.5 6 0.1 0.2 6 0.2 0.2 6 0.2 0.2
II8_32 5 0.3 0.5 5 0.1 0.2 5 0.2 0.3 5 0.2 0.3
III1_32 7 0.4 0.6 7 0.1 0.2 7 0.1 0.2 7 0.2 0.4
III2_32 5 0.3 0.4 5 0.1 0.1 5 0.1 0.1 5 0.2 0.3
III3_32 7 0.4 0.5 7 0.1 0.2 7 0.1 0.2 7 0.2 0.4
III4_32 6 0.3 0.5 6 0.1 0.2 6 0.1 0.2 6 0.3 0.4
III5_32 19 0.4 1.2 19 0.2 0.6 19 0.3 0.8 19 0.3 0.8
III6_32 36 0.4 1.4 36 0.3 1.2 36 0.3 1.3 36 0.3 1.5
III7_32 22 0.4 1.0 22 0.3 1.2 22 0.4 1.1 22 0.3 1.1
III8_32 25 0.4 1.0 25 0.3 1.0 25 0.3 1.1 25 0.3 1.1
IV1_32 4 0.3 0.6 4 0.1 0.2 4 0.1 0.3 4 0.3 0.4
IV2_32 5 0.3 0.6 5 0.1 0.3 5 0.1 0.2 5 0.3 0.5
IV3_32 4 0.3 0.5 4 0.1 0.1 4 0.1 0.2 4 0.3 0.5
IV4_32 12 0.3 0.5 12 0.1 0.2 12 0.1 0.2 12 0.3 0.5
IV5_32 11 0.4 0.9 11 0.2 1.1 11 0.2 1.0 11 0.3 0.9
IV6_32 1 0.3 0.3 1 0.1 0.1 1 0.1 0.1 1 0.3 0.3
IV7_32 10 0.4 1.1 10 0.2 0.8 10 0.2 0.7 10 0.3 0.9
IV8_32 22 0.4 1.8 22 0.4 1.3 22 0.3 1.3 22 0.3 1.4
V1_32 7 0.3 0.5 7 0.3 0.5 7 0.4 0.5 7 0.3 0.5
V2_32 19 0.4 1.7 19 0.4 1.8 19 0.4 1.7 19 0.4 1.7
V3_32 19 0.3 1.0 19 0.3 1.0 19 0.4 1.1 19 0.3 0.9
V4_32 87 1.4 2.4 87 1.4 2.4 87 1.4 2.4 87 1.4 2.4

4.6.4 Limits of the solution approaches

The previous results demonstrated that CPLEX was able to find optimum solutions

for all feasible instances while requiring very little computation time. This section further
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Table 4.16: VND - Experiments employing the Lisbon instances
Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Instance Id OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s)
I1_19 3.0 0.0 0.2 3.0 0.0 0.1 3.0 0.0 0.1 3.0 0.0 0.1
I2_19 2.0 0.0 0.2 2.0 0.0 0.1 2.0 0.0 0.1 2.0 0.0 0.1
I3_19 9.8 8.9 0.5 9.6 6.7 0.1 9.6 6.7 0.2 9.6 6.7 0.2
I4_19 2.0 0.0 0.2 2.0 0.0 0.1 2.0 0.0 0.0 2.0 0.0 0.2
I5_19 19.5 30.0 0.5 19.5 14.7 0.2 19.0 11.8 0.2 19.5 14.7 0.2
I6_19 9.5 18.8 0.6 9.5 18.8 0.2 9.5 18.8 0.3 9.5 18.8 0.1
I7_19 27.9 46.8 10.9 27.0 35.0 10.5 27.0 35.0 2.1 27.0 35.0 0.1
I8_19 2.0 0.0 0.2 2.0 0.0 0.1 2.0 0.0 0.1 2.0 0.0 0.1
II1_19 1.0 0.0 0.2 1.0 0.0 0.1 1.0 0.0 0.0 1.0 0.0 0.2
II2_19 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2
II3_19 6.5 30.0 0.5 5.5 10.0 0.9 ∞ - - 6.5 30.0 0.2
II4_19 16.5 65.0 0.8 ∞ - - 17.0 41.7 0.6 16.5 37.5 0.3
II5_19 12.0 100.0 0.8 9.0 50.0 2.6 11.0 83.3 1.6 12.0 100.0 0.3
II6_19 25.6 60.0 0.9 25.6 60.0 0.4 25.7 60.6 0.6 25.6 60.0 0.2
II7_19 ∞ - - ∞ - - ∞ - - ∞ - -
II8_19 7.1 136.7 0.7 7.1 18.3 0.2 ∞ - - 7.1 42.0 0.3
III1_19 7.0 0.0 0.2 7.0 0.0 0.1 ∞ - - 7.0 0.0 0.3
III2_19 12.2 35.6 23.7 ∞ - - ∞ - - 14.0 16.7 0.4
III3_19 14.3 43.0 24.3 ∞ - - ∞ - - 14.8 13.8 0.3
III4_19 9.8 40.0 0.6 9.8 40.0 0.1 7.9 12.9 0.2 9.8 40.0 0.4
III5_19 34.9 29.3 35.3 33.7 24.8 11.2 ∞ - - 33.0 22.2 0.4
III6_19 33.2 27.7 34.5 32.4 15.7 66.2 32.3 24.2 5.7 33.5 28.8 0.3
III7_19 25.0 38.9 1.6 24.7 7.2 329.6 25.7 35.3 1.4 25.2 32.6 10.1
III8_19 15.3 53.0 0.7 12.1 21.0 7.0 13.6 36.0 1.8 15.3 53.0 0.3
IV1_19 11.9 48.8 0.7 ∞ - - ∞ - - 11.9 32.2 0.6
IV2_19 14.7 33.6 0.8 ∞ - - ∞ - - 15.6 30.0 0.4
IV3_19 13.9 39.0 0.8 ∞ - - ∞ - - 14.1 41.0 0.4
IV4_19 39.2 50.8 6.9 ∞ - - ∞ - - 39.2 50.8 0.4
IV5_19 30.6 80.0 0.8 23.8 25.3 9.5 21.8 14.7 4.9 30.6 80.0 0.5
IV6_19 34.9 66.2 8.1 27.9 11.6 75.7 35.6 54.8 2.0 34.9 51.7 0.4
IV7_19 10.2 13.3 0.6 10.2 13.3 0.3 10.2 13.3 0.8 10.2 13.3 0.4
IV8_19 10.2 13.3 0.6 10.2 13.3 0.3 10.0 11.1 0.7 10.2 13.3 0.4
average 35.8 16.1 21.9 27.9
I1_32 3.0 0.0 0.5 3.0 0.0 0.1 3.0 0.0 0.1 3.0 0.0 0.1
I2_32 3.0 0.0 0.5 3.0 0.0 0.1 3.0 0.0 0.1 3.0 0.0 0.1
I3_32 6.0 0.0 0.6 6.0 0.0 0.2 6.0 0.0 0.2 6.0 0.0 0.2
I4_32 1.0 0.0 0.5 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.2
I5_32 8.0 0.0 0.5 8.0 0.0 0.2 8.0 0.0 0.2 8.0 0.0 0.2
I6_32 12.0 0.0 0.5 12.0 0.0 0.1 12.0 0.0 0.3 12.0 0.0 0.1
I7_32 7.0 0.0 0.5 7.0 0.0 0.1 7.0 0.0 0.2 7.0 0.0 0.1
I8_32 8.0 0.0 0.5 8.0 0.0 0.1 8.0 0.0 0.1 8.0 0.0 0.1
II1_32 1.0 0.0 0.5 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.2
II2_32 1.0 0.0 0.5 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.2
II3_32 3.0 0.0 0.5 3.0 0.0 0.1 3.0 0.0 0.1 3.0 0.0 0.2
II4_32 7.0 0.0 0.5 7.0 0.0 0.2 7.0 0.0 0.3 7.0 0.0 0.3
II5_32 16.0 0.0 0.5 16.0 0.0 0.3 16.0 0.0 0.5 16.0 0.0 0.3
II6_32 20.0 0.0 0.5 20.0 0.0 0.2 20.0 0.0 0.3 20.0 0.0 0.2
II7_32 6.0 0.0 0.5 6.0 0.0 0.2 6.0 0.0 0.2 6.0 0.0 0.3
II8_32 5.0 0.0 0.5 5.0 0.0 0.2 5.0 0.0 0.3 5.0 0.0 0.3
III1_32 7.0 0.0 0.5 7.0 0.0 0.1 7.0 0.0 0.2 7.0 0.0 0.4
III2_32 5.0 0.0 0.5 5.0 0.0 0.1 5.0 0.0 557.1 5.0 0.0 0.3
III3_32 7.0 0.0 0.5 7.0 0.0 0.1 7.0 0.0 0.2 7.0 0.0 0.4
III4_32 6.0 0.0 0.5 6.0 0.0 0.1 6.0 0.0 0.2 6.0 0.0 0.4
III5_32 19.0 0.0 0.5 19.0 0.0 0.3 19.0 0.0 0.4 19.0 0.0 0.3
III6_32 36.9 2.5 14.4 37.5 4.2 10.1 36.6 1.7 9.3 37.5 4.2 10.1
III7_32 22.0 0.0 0.5 22.0 0.0 0.4 22.0 0.0 0.3 22.0 0.0 0.3
III8_32 27.0 8.0 0.9 27.0 8.0 0.6 27.0 8.0 0.5 27.0 8.0 0.6
IV1_32 4.0 0.0 0.5 4.0 0.0 0.1 4.0 0.0 0.1 4.0 0.0 0.4
IV2_32 5.0 0.0 0.5 5.0 0.0 0.1 5.0 0.0 0.1 5.0 0.0 0.4
IV3_32 4.0 0.0 0.5 4.0 0.0 0.1 4.0 0.0 0.1 4.0 0.0 0.4
IV4_32 12.0 0.0 0.5 12.0 0.0 0.1 12.0 0.0 0.2 12.0 0.0 0.5
IV5_32 11.0 0.0 0.5 11.0 0.0 0.3 11.0 0.0 0.4 11.0 0.0 0.4
IV6_32 1.0 0.0 0.5 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.4
IV7_32 10.0 0.0 0.5 10.0 0.0 0.3 10.0 0.0 0.4 10.0 0.0 0.4
IV8_32 22.0 0.0 0.5 22.0 0.0 0.4 22.0 0.0 0.4 22.0 0.0 0.4
V1_32 7.0 0.0 0.4 7.0 0.0 0.4 7.0 0.0 0.4 7.0 0.0 0.4
V2_32 20.0 5.3 12.5 20.0 5.3 12.1 21.0 10.5 11.0 20.0 5.3 11.6
V3_32 19.7 3.7 9.3 19.7 3.7 9.6 19.9 4.7 8.7 19.7 3.7 9.1
V4_32 102.0 17.2 126.3 102.0 17.2 119.7 102.0 17.2 67.4 102.0 17.2 120.5
average 1.0 1.1 1.2 1.1

challenges the proposed integer programming model by investigating the performance of

an alternative MIP solver and analyzing the performance of the solution approaches on

large-scale problem instances.

Table 4.17 compares the performance of CPLEX against that of Coin-OR CBC,

one of the leading open-source MIP solver projects (LOUGEE-HEIMER, 2003). The

third and seventh columns provide the number of feasible solutions found for each group
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of ten INRC-II instances. The fourth and fifth columns detail the time required by CPLEX

to reach the reported objective value and the time required to prove optimality, while the

eighth and tenth columns show these times for Coin-OR CBC. The reported standard

deviations are always relative to the times in the preceding column. A dash (-) indicates

that no feasible solution was found within the imposed time limit of one hour.

Table 4.17: Open-source solver - complete scheduling horizon NRP+NRRP constraints.
CPLEX Coin-OR CBC

Opt Opt Prove Std. Opt Prove Std.
Instance Id OFV #Feasible Time(s) Time(s) OFV #Feasible Time(s) Dev. Time(s) Dev.
n035w4 3167.0 10 5.3 9.6 3167.0 10 183.1 113.9 200.5 135.2
n035w8 6383.5 10 7.5 28.6 6420.5 10 1742.6 724.8 - -
n070w4 5564.5 10 13.8 41.9 5565.0 10 1299.4 472.0 - -
n070w8 11595.0 10 109.2 208.0 - 0 - - - -
n110w4 7039.0 10 28.3 84.5 7062.0 10 2406.4 599.1 - -
n110w8 13670.5 10 229.6 598.9 - 0 - - - -

In general, the computation times of Coin-OR CBC were much longer than those

of CPLEX. Consequently, Coin-OR CBC could prove optimality only for the smallest

instances with 35 nurses and a scheduling horizon of four weeks and was unable to find

feasible solutions for the larger instances containing 70 and 110 nurses and a schedul-

ing horizon of eight weeks. However, on instances for which feasible solutions were

obtained, Coin-OR CBC performed only slightly worse than CPLEX, indicating that the

open-source solver is a suitable alternative when the number of nurses is limited and when

short computation times are not crucial.

To investigate the performance of the proposed solution approaches on large prob-

lem instances, ten additional larger instances containing 150, 200, 300, 400 and 500

nurses were generated based on the INRC-II constraints and problem characteristics. Ta-

ble 4.18 presents the results using CPLEX and the VND heuristic for these much larger

instances. For each instance, the complete scheduling horizon and all NRP and NRRP

constraints were considered. Note that Coin-OR CBC is not included in this comparison

as Table 4.17 already demonstrated that instances with 110 nurses are beyond its capabil-

ities.

The first column in Table 4.18 describes the instance size ranging from 150 to 500

nurses and scheduling horizon of four and eight weeks. The second and seventh columns

show the percentage of instances for which a feasible solution was found. The third and

eight columns provide the objective function values, while the fourth and ninth columns

detail the gap relative to the lower bound obtained by CPLEX. The fifth and tenth columns

provide the required computation time in seconds. The sixth and eleventh columns present

the standard deviation of the computation time. Infeasible solutions were not taken into
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account for these calculations.

Table 4.18: Large instances - complete scheduling horizon NRP+NRRP constraints.
CPLEX VND

Std. Std.
Instance Id Feasible(%) OFV Gap(%) Time(s) Dev. Feasible(%) OFV Gap(%) Time(s) Dev.
n150w4 100 126550.5 0.0 318.1 146.2 100 126889.3 0.3 39.1 10.3
n150w8 100 317429.5 0.0 2317.2 897.5 100 318278.3 0.3 107.7 32.1
n200w4 100 177228.0 0.0 557.9 165.4 100 177844.5 0.4 79.6 22.6
n200w8 100 442882.5 0.6 3421.7 234.3 100 444443.5 1.0 275.8 94.3
n300w4 100 270278.0 0.0 1925.7 991.6 100 270989.6 0.3 176.0 51.9
n300w8 100 689322.0 1.3 3241.5 444.0 100 690517.9 1.5 722.6 237.3
n400w4 100 358380.0 0.0 2233.5 678.7 100 359583.0 0.3 489.3 63.7
n400w8 70 903917.1 1.8 2385.3 1069.8 100 904319.2 1.9 1877.2 253.3
n500w4 100 453763.6 0.1 3394.9 283.3 100 454904.0 0.3 527.4 53.6
n500w8 0 - - 3600.0 - 100 1375360.4 - 3790.7 589.2

CPLEX manages to consistently find feasible solutions for problems with up to

400 nurses and a scheduling horizon of four weeks. Even for the instances with 400

nurses and scheduling horizon of eight weeks, a feasible solution was found for the ma-

jority of instances (7 out of 10). An interesting observation was that when CPLEX can

solve the initial infeasibility, it quickly found (near-)optimum solutions in very limited

computation time. For the instances with 500 nurses and scheduling horizon of eight

weeks, CPLEX was unable to find any feasible solutions within the time limit. By con-

trast, the VND heuristic generated feasible solutions for all these instances in considerably

shorter running time, with exception of the instances with 500 nurses and eighth weeks

where the running time was on average 3791 seconds. The solutions obtained by the

VND heuristic were near-optimum with an average gap of only 0.7%, demonstrating how

it provides the best solution approach for large-scale problems with hundreds of nurses if

low computation times are required.

4.7 Conclusions

The primary contribution of this work is the evaluation of novel rerostering strate-

gies such as the relaxation of the NRP soft constraints and various rerostering scheduling

horizons. Additionally, a general integer programming formulation considering multi-

skilled nurses and a large set of constraints from both the NRP and the NRRP was in-

troduced. A third contribution is a VND heuristic, which provides an alternative to com-

mercial solvers and significantly reduces the required computation time at the expense

of very small reductions in solution quality. Furthermore, a new set of instances derived

from those proposed by Moz and Pato (2007) and Ceschia et al. (2019), which are used
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throughout the computational experiments, have been made publicly available online2.

Besides the NRRP constraints, the computational study has revealed that main-

taining the original NRP’s constraints is important for obtaining high-quality NRRP so-

lutions. However, ignoring the NRP’s soft constraints provides a good alternative when

urgent demands require online changes to the current roster, such as when, for exam-

ple, it is necessary to cover a shortage of professionals for a surgery. If only the days

on which absenteeism occurs are evaluated, less time is required to reach solutions and

this, therefore, represents a good alternative strategy when very little time is available for

rerostering. Only considering the period from the first absent day until the last absent day

or until the end of the scheduling horizon generated similar results, but both scheduling

horizons are important to consider when an absence is communicated during the current

month.

Results also demonstrated that some solutions remain valid despite nurse absen-

teeism, with this type of roster robustness being a desirable solution property given how

it minimizes the impact when personnel shortages occur. The next chapter addresses this

issue by proposing a metric for quantifying and generating robust rosters.

2<http://www.inf.ufrgs.br/~tiwickert/download/2017/reroster>

http://www.inf.ufrgs.br/~tiwickert/download/2017/reroster
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5 ROBUST ROSTERING

5.1 Introduction

A recent study reports that Belgian organizations suffer from a short-term (less

than one month) absenteeism rate of 2.44% (SD WORX, 2013). On average, an em-

ployee was absent for 9.4 days in 2008, while this increased to 12.1 days by 2017. Other

studies report absence rates between 3% and 6% in Europe and 2.8% in the United States

(EDWARDS; GREASLEY, 2010; BUREAU OF LABOR STATISTICS, 2017). The di-

rect and indirect effects of employee absenteeism are significant (KOCAKULAH et al.,

2016). The Society for Human Resource Management (2016) reports that 67% of the

questioned organizations perceived absences to have a moderate to significant impact on

productivity, while 62% said absences disrupted the work of others, and 51% reported

them to increase stress. Moreover, employees with supervisory responsibility spent on

average 3.3 hours per week responding to absences by searching for replacements, ad-

justing workflow and providing additional training.

Unforeseen absences typically have a significant impact on staff rosters, quickly

rendering them sub-optimal or even infeasible (DRAKE, 2014). To address this issue,

the academic literature has introduced the concept of robustness which enforces solutions

less sensitive to disruptions (BERTSIMAS; SIM, 2004). Algorithms which generate such

robust solutions are referred to as proactive methods. By contrast, algorithms used to

repair infeasible solutions are referred to as reactive methods and are typically employed

in more dynamic problem settings.

In the context of project scheduling, there is a large body of research concern-

ing methods for creating robust schedules (HERROELEN; LEUS, 2004; HERROELEN;

LEUS, 2005). Such strategies include adding idle time between activities (LAMBRECHTS;

DEMEULEMEESTER; HERROELEN, 2008) or allocating additional resources (LAM-

BRECHTS; DEMEULEMEESTER; HERROELEN, 2011). Robustness is also a desir-

able property in timetabled services such as airlines or public transport (SAFAK; GÜREL;

AKTÜRK, 2017; BURGGRAEVE et al., 2017). Crew scheduling for airlines has re-

ceived particular attention given that it is considered a crucial component with respect to

achieving high-quality service levels. Dück et al. (2012) and Ionescu and Kliewer (2011)

propose methodologies based on column generation for improving the robustness of crew

schedules.
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For staff rostering, common proactive strategies include maximizing employee

substitutability, designing effective hiring and overtime policies, using reserve shifts (IN-

GELS; MAENHOUT, 2017b), and efficiently employing available staff (GUO et al.,

2014). Reactive procedures, used to repair disruptions which have occurred after the

baseline roster was generated, have been proposed by Moz and Pato (2003), Maenhout

and Vanhoucke (2011), Bäumelt et al. (2016) and Wickert, Smet and Vanden Berghe

(2019). Although these procedures have been demonstrated to be effective, they always

negatively impact employees’ personal lives due to inevitable last-minute changes to the

roster (WILLIAMS; LAMBERT; KESAVAN, 2017). Flexible baseline rosters, that is,

robust solutions, are essential in mitigating such negative effects.

Since currently does not exist a standardized means of quantifying staff roster ro-

bustness, this research proposes a metric which enables one to calculate the degree to

which a given real-world roster is immune to unforeseen absences, taking into account

organizational and personal constraints as well as complex skill structures. By including

the proposed robustness metric in an integer programming model, a methodology is es-

tablished for generating rosters with a predefined minimum level of robustness by way

of assigning employees to reserve shifts in addition to their regular working shifts. Since

the focus is on addressing employee absenteeism, demand is considered deterministic.

The integer programming formulation is designed such that the robust rosters generated

remain feasible for every possible realization of the assigned reserve shifts, meaning that

reserve shifts may be either removed from the roster or converted into a working shift

without violating any employee’s contractual constraints.

The proposed approach is validated using a three-stage procedure which simulates

employee absences based on a given probability distribution, and which repairs disrup-

tions using a reactive re-rostering procedure. A computational study involving nurses in

a hospital ward demonstrates the trade-off between roster robustness and the operational

costs incurred by repairing disruptions. Results demonstrate how significant cost reduc-

tions may be achieved by increasing the robustness of rosters.

The remainder of the chapter is organized as follows. Section 5.2 reviews literature

related to robust staff rostering. Section 5.3 introduces the staff rostering problem, while

Section 5.4 introduces how robustness is quantified for both single- and multi-skilled em-

ployees. The methodology employed to generate robust rosters and validate the proposed

measures is detailed throughout Section 5.5. Section 5.6 describes the computational

experiments, while Section 5.7 presents conclusions and future research possibilities.
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5.2 Related work

Van den Bergh et al. (2013) identified three main categories of uncertainty in staff

rostering: i) uncertainty of demand in which the expected workload is not deterministic,

ii) uncertainty of capacity in which actual available manpower may not be the same as

the planned manpower, and iii) uncertainty of arrival which refers to a non-deterministic

arrival pattern of the workload. Uncertainty of demand is common in hospitals since the

workload depends on patient admissions, however, most hospitals operate under the as-

sumption of fixed demand. Uncertainty of capacity occurs in every organization working

with human resources given the unavoidable occurrence of employee absenteeism. Un-

certainty of arrival is strongly related to uncertainty of demand and has an impact only if

individual tasks require scheduling.

There are two general approaches which currently exist for introducing robust-

ness in staff rosters: those focusing on horizontal robustness and those focusing on ver-

tical robustness. Horizontal robustness may be obtained by extending shift durations or

by permitting overtime to compensate for employee shortages (INGELS; MAENHOUT,

2018). Meanwhile, vertical robustness is introduced through different types of buffers

which manage uncertainty of demand and capacity through the use of surplus resources.

Capacity buffers involve assigning more resources than originally required by the nominal

problem by, for example, rostering up to a preferred staffing level rather than a minimum

level (INGELS; MAENHOUT, 2017b). A similar strategy is the use of reserve shifts,

where employees are assigned to special reserve shifts which, if necessary, are converted

into working shifts to cover disruptions (INGELS; MAENHOUT, 2015). Alternative

strategies include introducing replaceability among employees such that absences may

be covered without affecting roster feasibility (INGELS; MAENHOUT, 2017a) or by

enabling overlap between working shifts (LUSBY et al., 2012).

The different approaches introduced in the academic literature typically have one

or more parameters responsible for indirectly controlling the robustness which is enforced

in a roster. For example, the number of reserve shifts required in a solution determines

how robust a roster will be against uncertainty of capacity and demand (INGELS; MAEN-

HOUT, 2015). The best value of this parameter is set based on an extensive empirical

study of different strategies specific for the considered experimental setting. Similarly,

Lusby et al. (2012) control the level of robustness by increasing the expected workload

and by adding delays to the start time of tasks. However, there is no direct quantifiable
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relation between these parameters and the degree to which solutions are immune to un-

foreseen events.

Although there is a history of strategies for enforcing robustness in existing lit-

erature, these approaches lack a formal metric for quantifying the robustness of a roster.

In contrast, the present research introduces a metric for measuring the robustness of staff

rosters in advance using an analytical function rather than relying on the outcome of sim-

ulations to evaluate the robustness. Given a roster, the proposed metric quantifies the

degree to which a solution is immune to uncertainty of capacity based on the robustness

introduced by capacity and reserve shifts considering both single- and multi-skilled em-

ployees. An estimation of the robustness level has significant importance for institutions

because they can estimate of how immune the current roster is when unexpected employee

shortages do occur.

5.3 The staff rostering problem

The studied staff rostering problem is defined by a set of employees N = {1, . . . , |N|},

a set of days D = {1, . . . , |D|}, a set of shifts S = {1, . . . , |S|}, and a set of skills K =

{1, . . . , |K|}. The goal is to find an assignment of shifts to employees subject to a va-

riety of contractual constraints. An employee may be assigned to at most one shift per

day. Moreover, there are forbidden shift successions which prevent a pair of shifts from

being assigned on two consecutive days. For example, an early shift may never be as-

signed on day d if a Late shift was assigned on day d− 1. Other constraints which are

taken into account are related to employee skills, personal requests, the minimum num-

ber of days worked in the planning horizon and the maximum number of consecutive

assignments. Employees are allowed to work overtime by working more days than the

maximum contracted. To correctly evaluate these constraints, data from the preceding

scheduling periods are taken into account to avoid constraint violations at the beginning

of each planning period (SMET; SALASSA; VANDEN BERGHE, 2017). To avoid is-

sues regarding infeasibility, the demand requirements are relaxed to soft constraints with a

very high penalty incurred when not meeting the minimum required levels. The objective

is to minimize the (weighted) sum of the soft constraint violations along with employee

wage costs incurred by overtime. A detailed description of all problem parameters and

constraints, as well as an integer programming formulation of this rostering problem, are

presented in Appendix E.
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5.4 Measuring robustness

In contrast to other problem domains, a metric for measuring robustness has hith-

erto received minimal attention in the academic literature. The primary objective of mea-

suring robustness is to estimate how efficiently a given roster can accommodate disrup-

tions before becoming infeasible. For a general overview of robustness in the context of

machine scheduling and project scheduling, interested readers are referred to Goren and

Sabuncuoglu (2008) and Hazır, Haouari and Erel (2010). This section begins by defin-

ing robustness as it is considered in the present research before subsequently introducing

how robustness is quantified for staff rostering problems with single- and multi-skilled

employees.

5.4.1 Definition of robustness

A roster is considered robust whenever a low cost is associated with repairing

disruptions caused by uncertainty of capacity. Two strategies to obtain this type of robust-

ness are considered: i) assigning more employees than the minimum required (capacity

buffers), and ii) assigning employees to reserve shifts. The first strategy does not require

absent employees to be replaced because more than the minimum are available on the

same shift. The second strategy is more flexible as employees in reserve shifts may be

deployed to replace any shift. Note that this assumes that a reserve shift may be converted

into any of the working shifts without violating the employee’s contractual constraints.

This is not a trivial assumption and requires a dedicated solution approach to generate

such rosters, as will be discussed throughout Section 5.5.

5.4.2 Single-skilled employees

Rosters are usually constructed respecting a constraint which enforces a minimum

number of employees required for each day and shift. The proposed metric is expressed

relative to this minimum requirement: 0 indicates that none of the employees assigned

to working shifts can be replaced and 1 indicates that all employees assigned to working

shifts can be substituted. Values higher than 1 may be obtained when a disruption is

covered by multiple employees. Table 5.1 details the notation used in the definition of the
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robustness measures for problems with single-skilled employees.

Table 5.1: Symbols and definitions for problems with single-skilled employees

Symbol Definition

Parameters
s′ reserve shift index
x̂nds ∈ {0,1} equals 1 if employee n is assigned to shift s on day d, 0 otherwise
x̂nds′ ∈ {0,1} equals 1 if employee n is assigned to reserve shift s′ on day d, 0 otherwise
mds minimum number of employees required on day d, shift s
Variables
r̂d ∈ R≥0 robustness on day d using reserve shifts
r̂ ∈ R≥0 reserve shift-robustness for the complete roster
ôds ∈ N≥0 number of assigned shifts above the minimum on day d, shift s
ôd ∈ R≥0 robustness on day d considering number of shifts above the minimum
ô ∈ R≥0 capacity buffer-robustness for the complete roster
robd ∈ R≥0 robustness on day d
rob ∈ R≥0 robustness of the complete roster

Robustness induced by reserve shifts is calculated as shown in Equation (5.1). The

numerator equals the number of employees assigned to reserve shifts on day d, while the

denominator equals the total minimum demand summed over all shifts. As the minimum

demand is, de facto, a hard constraint, r̂d expresses how many employees are assigned to

reserve shifts relative to the number of employees assigned to regular working shifts.

r̂d =
∑n∈N x̂nds′

∑s∈S mds
(5.1)

Daily robustness calculated by Equation (5.1) may be generalized by averaging r̂d

over all days, as shown in Equation (5.2). Note that by averaging, precision may be lost

due to a compensation effect such that the robustness on each day d is not guaranteed to

be r̂.

r̂ =
∑d∈D r̂d

|D|
(5.2)

Robustness obtained by capacity buffers may be quantified per day d and per

shift s. Equation (5.3) calculates, for each day and shift, the number of employees as-

signed over the minimum required, again expressed relative to the minimum demand.

From a robustness point-of-view, the higher this number is, the more unexpected absences

on this day and shift may be covered using the surplus employees.

ôds =
∑n∈N x̂nds−mds

mds
(5.3)

This capacity buffer-robustness may be averaged over all shifts for each day to

obtain a more general calculation of this type of robustness. Equation (5.4) calculates this
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averaged robustness for day d ∈ D.

ôd =
∑s∈S ôds

|S|
(5.4)

Similar to the generalization step applied between Equations (5.1) and (5.2), ôd

may be averaged over all days, resulting in Equation (5.5).

ô =
∑d∈D ôd

|D|
(5.5)

The complete roster robustness rob considering both capacity buffers and reserve

shifts, averaged over all days in the planning horizon, is calculated by summing ô and r̂,

as shown in Equation (5.6).

rob = r̂+ ô (5.6)

The advantage of averaging over all days is that the robustness is represented by

a single value. However, the disadvantage is that the robustness might be concentrated in

some days, with others exhibiting far lower rates. In such cases, a more refined robustness

quantification is required which is specified for day d ∈ D as shown in Equation (5.7).

robd = r̂d + ôd (5.7)

5.4.3 Multi-skilled employees

Skills represent an additional challenge when rostering an organization’s staff

since in most cases not all employees are qualified for all tasks (DE BRUECKER et al.,

2015). In hospitals, for example, a regular nurse may be qualified for medical tasks for

which a caregiver may not have had the necessary training. In such situations, caregivers

cannot assume the work of a regular nurse. However, more complex situations may occur

such as when there exists a hierarchy of qualifications or an arbitrary skill structure in

which each employee has an individual subset of skills. The robustness quantifications

introduced in Section 5.4.2 will now be extended for multi-skilled employees where each

individual employee may have one or more skills. Table 5.2 introduces the additional

notation that is required.

We first consider robustness obtained by using reserve shifts. Note that employees

with more than one skill are counted only once when they are assigned to reserve shifts.
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Table 5.2: Additional symbols and definitions for problems with multi-skilled employees

Symbol Definition

Parameters
x̂ndsk ∈ {0,1} 1 if employee n is assigned to shift s on day d with skill k, 0 otherwise
x̂nds′k ∈ {0,1} 1 if employee n is assigned to reserve shift s′ on day d with skill k, 0 otherwise
mdsk minimum number of employees required in shift s on day d with skill k
Variables
r̂dk ∈ R≥0 robustness on day d, skill k, using reserve shifts
r̂d ∈ R≥0 robustness on day d, using reserve shifts
ôdsk ∈ N≥0 number of assigned shifts above the minimum on day d, shift s with skill k
ôds ∈ R≥0 robustness on day d and shift s, considering shifts above the minimum
ôd ∈ R≥0 robustness on day d, considering shifts above the minimum
robdk ∈ R≥0 robustness on day d for skill k
robd ∈ R≥0 robustness on day d
rob ∈ R≥0 robustness for the complete roster

The re-rostering procedure, however, is not limited to use these employees only for the

skill they were counted for, allowing them to be assigned to any shift for which they are

qualified. Equation (5.8) calculates the robustness for each day d ∈ D and skill k ∈ K.

Note that this is almost identical to the single-skilled case except for the skill index.

r̂dk =
∑n∈N x̂nds′k

∑s∈S mdsk
(5.8)

Equation (5.9) calculates the average robustness for each day d ∈ D by averaging

r̂dk over all skills. As with previous generalizations, this step makes the quantification

less accurate as compensation may occur among different skills.

r̂d =
∑k∈K r̂dk

|K|
(5.9)

Results may be averaged over all days as shown in Equation (5.10). The resulting

robustness quantification again becomes less accurate.

r̂ =
∑d∈D r̂d

|D|
(5.10)

The robustness on day d ∈ D, shift s ∈ S and skill k ∈ K induced by capacity

buffers may be calculated by Equation (5.11).

odsk =
∑n∈N x̂ndsk−mdsk

mdsk
(5.11)

As with the previous equations, ôdsk may be averaged over all shifts, skills and

finally days resulting in aggregated, less accurate, robustness quantification, as shown in
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Equations (5.12) - (5.14).

ôdk =
∑s∈S odsk

|S|
(5.12)

ôd =
∑k∈K ôdk

|K|
(5.13)

ô =
∑d∈D ôd

|D|
(5.14)

Finally, the complete roster robustness for problems with multi-skilled employees

is calculated using Equation (5.15) by summing r̂ and ô.

rob = r̂+ ô (5.15)

Despite the advantage of a single value quantifying a roster robustness as calcu-

lated by Equation (5.15), it may not be sufficiently accurate as it presents an average over

all days and skills. More detailed quantifications of robustness may be obtained using

Equations (5.16) and (5.17) which calculate robustness per day, and per day/skill, respec-

tively.

robd = r̂d + ôd (5.16)

robdk = r̂dk + ôdk (5.17)

5.4.4 Numerical example

Table 5.3 presents an example which considers a hospital setting with ten multi-

skilled nurses and a planning horizon of seven days. The shifts are early (E), late (L) and

night (N). Meanwhile, there are two skills: head nurse (H) and nurse (N). On each shift

and day, at least one head nurse and one nurse are required. Nurses 1-5 are qualified for

both head nurse and nurse skills, while Nurses 6-10 only have the nurse skill. This means

that, for example, Nurses 6-10 may be replaced with Nurses 1-5, while the opposite is not

true as Nurses 6-10 do not have the skill head nurse.

On the first day, r̂d = 0.33 since only Nurse5 and Nurse9 are assigned to a reserve

shift. Although Nurse5 has both head nurse and nurse skills, she is only counted towards

the highest qualification (in this case head nurse) and therefore rdH = 1 and rdN = 1. The

last day has both types of robustness: capacity buffers and reserve shifts. Nurse8 and
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Nurse10 are assigned to reserve shifts, resulting in r̂d = 0.33. Nurse9 is scheduled in

excess of the minimum required for the Night shift and skill nurse resulting in a capacity

buffer. Variable ôd subsequently assumes a value of 0.17. For the last day, the total

robustness is robd = 0.33+0.17 = 0.50, contributing towards a general roster robustness

of rob = 0.3571.

Table 5.3: Proposed robustness measure applied to multi-skilled employee roster.

Mon Tue Wed Thu Fri Sat Sun

N01 [H, N] E[H] E[H] E[H] N[H] N[H] N[H] -
N02 [H, N] L[H] L[H] L[H] - R - E[H]
N03 [H, N] N[H] N[H] N[H] - R - L[N]
N04 [H, N] - R N[H] L[H] L[H] L[H] L[H]
N05 [H, N] R - E[H] E[H] E[H] E[H] N[H]
N06 [N] E[N] E[N] E[N] - R - N[N]
N07 [N] L[N] L[N] L[N] L[N] L[N] L[N] E[N]
N08 [N] N[N] N[N] N[N] - R - R
N09 [N] R - E[N] E[N] E[N] E[N] N[N]
N10 [N] - R N[N] N[N] N[N] N[N] R

rdH 1 1 0 0 2 0 0
rdN 1 1 0 0 2 0 2
r̂d 0.33 0.33 0.00 0.00 0.67 0.00 0.33

odEH 0 0 1 0 0 0 0
odLN 0 0 0 0 0 0 0
odNH 0 0 1 0 0 0 0
odEN 0 0 1 0 0 0 0
odLH 0 0 0 0 0 0 0
odNN 0 0 1 0 0 0 1
ôd 0.00 0.00 0.67 0.00 0.00 0.00 0.17

rob 0.3571

5.5 Generating and validating robust rosters

Once having a standardized means by which to calculate the robustness of a given

roster, it is possible to formulate additional constraints which enforce a minimum robust-

ness level when generating initial rosters. Constraints based on the proposed robustness

quantification are added to the integer programming formulation presented in Appendix E.

For example, if a minimum robustness level ρd is required on each day d ∈ D

in a multi-skilled setting, Constraints (5.18) are added to model (E.1)-(E.10). Note that

this additional constraint is almost identical to Equation (5.13) but substitutes the given



102

assignments x̂ndsk with decision variables xndsk.

∑s∈S ∑k∈K(
∑n∈N xndsk−mdsk

mdsk
)

|S||K|
≥ ρd (5.18)

To validate a roster’s ability to cope with uncertainty concerning capacity, a three-

phase procedure similar to the approaches of Abdelghany, Abdelghany and Ekollu (2008)

and Ingels and Maenhout (2015) is employed. First, a baseline roster is generated us-

ing the aforementioned proactive approach. Note that, in addition to minimizing soft

constraint violations, the objective function also includes employee wages. Introducing

robustness in this phase thus increases the objective value as we assume that employ-

ees assigned to a reserve shift receive 10% of their salary, regardless of whether they

are called on duty or not. The generated rosters ensure that every reserve shift can be

converted into any working shift by carefully modeling the employee’s contractual and

personal constraints.

The second step involves simulating employee absences which lead to roster dis-

ruptions. These disruptions are manifested as employees who become unavailable on one

(or more) days in the scheduling period, thereby possibly introducing infeasibilities by

violating their contractual constraints, and leading to violations of the demand require-

ments.

The third step applies a reactive re-rostering method which attempts to restore the

solution’s feasibility in terms of demand. The integer programming model introduced

in Appendix F is employed for this re-rostering phase. Solving this optimization prob-

lem converts reserve shifts into working shifts in addition to other modifications such as

changes in shift assignments or converting a day off into a working day. The main ob-

jective is now to minimize the overall cost regarding the number of changes, that is, the

feasibility of the roster must be restored with as few changes as possible. Moreover, it is

more preferable for a reserve shift to be converted into a working shift rather than convert-

ing a day off into a working shift or changing a shift of an already scheduled nurse. The

reason behind this assumption is that unexpected last-minute calls to nurses with days

off or changes to an existing work schedule negatively impact their personal lives to a

significant degree.
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5.6 Computational study

This section conducts a computational study on the methodology proposed through-

out Section 5.5 and the robustness quantification introduced in Section 5.4. The primary

purpose of this empirical study is to investigate both the effectiveness of the proposed ro-

bustness quantification and the impact of capacity and reserve shifts on operational costs.

Moreover, insights are provided concerning various strategies for introducing robustness

to a roster: i) specifying a general minimum robustness level leaving it to the solver to dis-

tribute it among the days and employees, or ii) specifying a minimum robustness level per

day while the solver chooses over which skills it should be distributed, or iii) specifying

a minimum robustness level per day and skill.

5.6.1 Experimental setup and data

All models were implemented in Java and compiled with OpenJDK 1.8. The ex-

periments were conducted on an AMD FX 8150 eight-core processor at 1400 MHz with

32 GB of RAM memory running Linux Ubuntu 16.04.3 64-bit. CPLEX version 12.7.1

was employed to solve the integer programming formulation using default parameters.

Computational experiments were conducted using the instances from the Second

International Nurse Rostering Competition (CESCHIA et al., 2019) as they realistically

represent general practice in staff rostering. Since the primary objective of this research is

to evaluate the cost associated with disruptions and the influence of enforcing robustness,

all soft constraints were treated as hard constraints. The minimum number of nurses per

day, shift and skill were adjusted until a feasible solution was generated. By doing so, the

objective function models only operational costs and thus avoids compensation by soft

constraint violation penalties. For the same reason, constraints related to the minimum

number of consecutive working days, days off and days working the same shift were also

removed. In addition to regular rostering, robust rostering minimizes the costs associated

with nurse wages, overtime and reserve shifts. In the re-rostering step, the objective

function is to minimize both the original rostering objective and the number of changes

with respect to the baseline solution, that is, feasibility is restored by modifying as few

assignments as possible in the roster.

There are numerous re-rostering costs which are additional to those in the original

rostering phase: calling a nurse from a reserve shift to a working shift (10% of the nurse’s
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wage, in addition to the regular wage), calling a nurse from a day off or cancelling a work-

ing shift (150% of the nurse’s wage) and modifying the nurse’s assigned shift (100% of

the the nurse’s wage). In the simulation step, disruptions are generated using a Bernoulli

distribution with an absenteeism rate of 2.44%. This percentage is based on a study re-

garding absenteeism in Belgian organizations (SD WORX, 2013).

Instances employed for computational experiments have 35 nurses and a planning

horizon of four weeks. There are four regular shifts early (E), late (L), day (D) and night

(N) in addition to the reserve shift (R). In the multi-skill setting, the considered skills are

K = {H,N,C,T} which correspond to head nurse, nurse, caretaker and trainee, respec-

tively. Nurses have one of four possible subsets of these skills: {H,N,C}, {N,C,T},

{C,T} or {T}.

5.6.2 Robustness measure evaluation

First, the effectiveness of the proposed robustness metric to approximate the actual

robustness of solutions is evaluated. All reported results are averages obtained by repeat-

ing the simulation of disruptions and re-rostering 100 times, as detailed in Section 5.5.

5.6.2.1 Single-skilled nurses

The first set of experiments involves single-skilled employees and considers four

different minimum robustness levels R = {4.17%, 8.33%, 12.50%, 16.67%}. Based on the

experimental setup, these values correspond to assigning one to four employees per day

to reserve shift or capacity buffers. Note that higher robustness levels are not attainable

due to the limited number of employees, compared to the coverage requirements.

Figure 5.1 details the results of the first robustness strategy which enforces a min-

imum robustness level by adding a general constraint based on Equation (5.6) to model

(E.1)-(E.10). Dark-gray bars represent the proportion rate of disruptions solved by con-

verting days off into working shifts, while light-gray bars indicate the proportion rate of

disruptions which were solved by converting reserve shifts into working shifts.
Without proactively adding robustness to the roster, disruptions can only be solved

by converting days off into working shifts. However, by increasing the required robust-

ness, a reduction concerning the number of unexpected employee calls is observed and

disruptions are primarily solved by converting the reserve shifts to working shifts. For

the highest robustness level of 16.67%, 96.45% of the disruptions were repaired by using
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Figure 5.1: Effect of enforcing robustness with a general constraint upon reserve and non-reserve
shift call rates.
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reserve shifts.

Figure 5.2 plots the results of the second strategy by enforcing robustness on each

day in the planning horizon using constraints based on Equation (5.7). In contrast to

Equation (5.6), which enforces robustness as a general constraint, now the robustness is

ensured per day.

Figure 5.2: Effect of enforcing robustness per day upon reserve and non-reserve shift call rates.
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Results show that with a robustness level of 16.67%, 99.76% of the disruptions
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could be repaired using reserve shifts enforced per day, against 99.45% when reserve

shifts were ensured with a general constraint. For the single-skilled setting, therefore,

it can be concluded that adding robustness constraints on each day reduces the number

of unexpected employees calls the most, as reserve shifts are more uniformly distributed

over the planning horizon. Moreover, a correlation between the proposed metric and the

roster’s actual robustness can be clearly observed: higher robustness levels significantly

reduce the number of unexpected calls necessary to repair roster infeasibility.

Computation times for generating both the initial and the re-rostering solutions

considering these different robustness levels are reported in Table G.1. There is a ten-

dency that higher robustness levels require more computation time. For example, when

robustness is ignored (0.00%) the required time for the initial solution is 1.5 seconds,

while when a robustness level of 16.67% is enforced the generation of the initial solution

demanded 5.5 seconds. In the re-rostering phase, similar computation times between 1.3

and 1.6 seconds were observed, independent of the required level of robustness. Note that

all initial and re-rostering solutions were executed until the optimality was proved by the

MIP solver.

5.6.2.2 Multi-skilled nurses

The second series of experiments analyze the impact of robustness in a multi-

skill setting. All graphs presented in this section are divided into four groups, corre-

sponding to the four (sub)sets of skills: K1 = {H}, K2 = {H,N}, K3 = {H,N,C} and

K4 = {H,N,C,T}. In the first group, only employees with the skills in K1 can be assigned

to reserve shifts. For the second group, the employees are restricted to those with skills

in K2, and so on. Again, four minimum robustness levels are considered R = {3.53%,

7.64%, 12.34%, 14.26%}. Preliminary experiments showed that higher robustness levels

are impossible due to the limited number of employees available. Moreover, when only a

subset of skills is considered, such as in K1, K2 and K3, high robustness levels could not

be attained since the number of employees per skill is limited.

Figure 5.3 details the results obtained by requiring a minimum level of robustness

using a constraint based on Equation (5.15). For each of the skill groups, the parameter K

in Equations (5.8) and (5.9) is set appropriately.

Figure 5.3 demonstrates a reduction of unexpected employee calls (dark-gray bars)

when the robustness is increased. Analyzing the effect of increasing robustness over skill

groups confirms the intuition that it is more beneficial to assign head nurses to reserve
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Figure 5.3: Effect of enforcing robustness with a general constraint upon reserve and non-reserve
shift call rates.

H H,N H,N,C H,N,C,T

03.53% 07.64% 12.34% 14.26% 03.53% 07.64% 12.34% 14.26% 03.53% 07.64% 12.34% 14.26% 03.53% 07.64% 12.34% 14.26%

0

25

50

75

100

Imposed robustness level

R
es

er
ve

 a
nd

 n
on

−
re

se
rv

e 
sh

ift
 c

al
l r

at
es

Reserve shift call Non−reserve shift call

shifts rather than caretakers or trainees. For example, for a robustness level of 3.53%,

the best result was obtained when only employees with skill subset K1 were assigned to

reserve shifts, while a decrease of reserve shifts calls was observed when employees of

all skills were included.

Figure 5.4 details the results when robustness is proactively enforced on each day

separately using constraints based on Equation (5.16). The results exhibit the same ten-

dency as when robustness is enforced as an average over all days of the planning horizon.

However, one distinction lies in the proportion of disruptions solved using reserve shifts.

For example, considering a robustness level of 14.26%, when the robustness was induced

using a general constraint, 52.96% of the disruptions were solved by using reserve shifts

(Figure 5.3). In contrast, when robustness is enforced each day, this percentage improved

the use of reserve shifts to 64.16% (Figure 5.4).

Figure 5.4: Effect of enforcing robustness per day upon reserve and non-reserve shift call rates.
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The impact of specifying the required robustness in the most detailed fashion,
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that is, on each day and each skill separately, is demonstrated in Figure 5.5. Here, con-

straints were added to the rostering formulation based on Equation (5.17). Note that the

possible robustness values which could be realized per day and per skill are even more

restricted due to the limited number of employees. Robustness is obtained by includ-

ing one employee of each subset of skills K1 = {H}, K2 = {H,N}, K3 = {H,N,C} and

K4 = {H,N,C,T}, which translates into robustness levels of 3.53%, 7.64%, 12.34% and

14.26%.

Figure 5.5: Effect of enforcing robustness per day and skill upon reserve and non-reserve shift
call rates.
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Figure 5.5 shows a drop of unexpected employee calls when the required robust-

ness is increased. The percentage of disruptions solved using reserve shifts was 41.09%,

59.79%, 61.91% and 77.72% for robustness levels of 3.53%, 7.64%, 12.34% and 14.26%,

respectively.

The results for problems with multi-skilled employees all follow a similar trend:

increasing the robustness reduces the number of unexpected calls which necessitated

changing a day off into a working shift. These results also confirm the validity of how

robustness is quantified, as introduced in Section 5.4 since there is a clear correlation to

the robustness defined as a constraint for each experiment. Overall, defining robustness

constraints in a more detailed manner, per day and skill, generated better results compared

against when they were only defined per day or as a general constraint. Moreover, assign-

ing high-skilled employees to reserve shifts is better than low-skilled employees. This is

simply due to the higher probability of high-skilled employees being able to assume the

work of an absent employee.

Detailed computation times for the multi-skilled scenarios are reported in Table

G.2. A trend similar to the single-skilled problem is observed: increasing the robustness
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level requires more computation time to generate the initial solutions. Compared to the

single-skilled problems, more computation time was required for finding initial solutions

for the multi-skilled problems. The results for the re-rostering phase demonstrate similar

trends, however, the computation times are in general lower when higher robustness levels

are considered.

5.6.3 Impact on operational costs

The previous analysis ignored a crucial element of the objective function concern-

ing the operational costs induced by the employees’ wages associated with a roster. This

section investigates the trade-off between managing the operational costs and robustness

of a roster. As in Section 5.6.2, the impact on problems with both single- and multi-skilled

employees is evaluated.

5.6.3.1 Single-skilled nurses

Figure 5.6 shows the initial cost of the baseline roster and the final cost after dis-

ruptions were solved, for different robustness levels specified as a general constraint. The

difference between the initial and final costs is due to the additional wage costs incurred

by calling employees to cover the absences.

Figure 5.6: Comparison of general robustness levels and respective initial cost and final cost after
repair.
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Note that the higher the robustness level, the higher the initial cost. While the
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roster without enforced robustness has the lowest initial cost, it is ultimately associated

with the highest final cost. The best result was obtained with a robustness level of 8.33%.

Increasing the robustness level to 12.50% and 16.67% generated higher initial costs, while

final costs were also higher than those obtained with a robustness level of 8.33%. The

explanation is that more robustness was introduced than necessary.

Figure 5.7 presents the same robustness level evaluation as the experiment shown

in Figure 5.6, however, instead of adding a general robustness constraint, the daily ro-

bustness constraint enforces the solver to evenly distribute the buffers over all days in the

planning horizon.

Figure 5.7: Comparison of robustness levels per day and respective initial cost and final cost after
repair.
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As in the previous experiment, a robustness level of 8.33% generated the best

results. However, the total cost reduction was higher compared to defining robustness as

a general constraint (2.48% vs 2.19%). This observation confirms the results from Section

5.6.2.1 which showed fewer unexpected calls when a robustness constraint was added per

day, rather than on a general level.

5.6.3.2 Multi-skilled nurses

Figure 5.8 compares the final costs for different robustness levels using the subsets

of skills detailed in Section 5.6.2.2. The leftmost set of bars represents the final cost

without any robustness in the roster and is used as a baseline for the comparison. Bars

are not shown for a skill subset if the robustness level could not be attained. This is likely

due to the limited number of available employees with those specific skills.
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With a robustness level of 3.53%, the best results were obtained when only head

nurses are assigned to a buffer. When the robustness level was increased to 7.64%, results

were better when allowing head nurses and nurses to be assigned to reserve shifts. Such

results are expected due to the greater number of disruptions that can be covered by high-

skilled nurses.

Figure 5.8: Comparison of general robustness levels and respective costs.
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Figure 5.9 compares the final costs when robustness is enforced as a constraint per

day. Similar to previous experiments when a general robustness level was defined, only

allowing high-skilled employees to buffers resulted in lower final costs. For example,

when enforcing a robustness level of 3.53% only with head nurses and nurses signifi-

cantly better results can be observed compared to when caretakers and trainees were also

assigned to reserve shifts.

Figure 5.10 compares final costs when the required robustness level constraints

are specified per day and skill. Better results were obtained with robustness levels higher

than or equal to 7.64%. The lowest final cost was achieved using employees with skills

head nurse, nurse and caretaker and a robustness level of 12.34%. Despite an increase of

the robustness level to 14.26% when employees with skill trainee are assigned to reserve

shifts, this does not translate into a reduction of the final cost as trainees only can cover

absences of other trainees. Since disruptions often require higher qualified employees,

trainees have a low contribution as regards covering disruptions.
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Figure 5.9: Comparison of robustness levels per day and respective costs.
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Figure 5.10: Comparison of robustness levels per day and skill, and respective costs.
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5.6.3.3 Comparison of robustness strategies

Figure 5.11 summarizes the performance of the different strategies used to increase

robustness. The best results were obtained when constraints were specified per day and

skill, while a general robustness constraint (averaged over all days and skills) resulted in

the highest final costs. The primary reason for these results is that constraints enforcing

robustness per day, or per day and skill generate a uniform distribution of the reserve

shifts over the scheduling horizon, which best matches the distribution of disruptions.

Employing a general constraint, on the other hand, may concentrate the reserve shifts

on some days, leaving others without coverage. Note that for this study, statistics were
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only available regarding employee absenteeism in general, without details concerning the

distribution of these disruptions. To improve the effectiveness of a proactive approach,

organizations should observe historical data to determine which days or months have

higher probabilities of absenteeism. Based on this data, a statistical distribution that better

fits the real absenteeism rate could be utilized to predict the most critical days and thus

increase the buffers on these days.

Moreover, specifying constraints considering employees’ skills generated better

results compared to incorporating daily robustness constraints since the solver tends to

assign less qualified employees to reserve shifts who have comparably lower costs as-

sociated with them. When employees’ skills are considered, higher qualified employees

are assigned to reserve shifts. Since they also have a higher probability of being able to

replace absent employees, this strategy performs better.

Figure 5.11: Comparison of robustness strategies for multi-skilled employees
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5.7 Conclusions

The present study sought to remedy a shortcoming in the literature by introducing

a general robustness metric for both single- and multi-skilled staff rostering problems.

This metric provides a means of quantifying the robustness of a roster and thus an a priori

estimate of how well it will accommodate unexpected employee shortages. In addition,

an integer programming formulation was presented with the option of incorporating these
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alternative robustness strategies. The target robustness can be enforced as a general con-

straint, per day, or per day and skill when the problem concerns multi-skilled employees.

Enforcing relatively low robustness levels appeared sufficient to result in the low-

est final cost for both single- and multi-skilled employees. Higher robustness levels,

meanwhile, resulted in higher initial and final costs since too many employees were un-

necessarily assigned to reserve shifts. Similar results were observed for multi-skilled

employees, however, since employees have skills and can only substitute for others when

they share the same skills, a higher robustness level is required compared to single-skilled

problems.

Another important factor to consider when increasing the robustness of a roster is

the distribution of the capacity buffers and reserve shifts. Ideally, these buffers should be

concentrated on days with a higher probability of absenteeism. In this study, a Bernoulli

distribution was employed to generate disruptions. The best results were obtained when

robustness was enforced as constraints per day for single-skilled employees. Meanwhile,

the best results for multi-skilled employees were obtained when the minimum robustness

level was enforced per day and skill. Moreover, assigning higher qualified employees to

reserve shifts generated better results than assigning, for example, trainee nurses. These

results were to be expected. Despite the fact that higher qualified employees are associated

with higher costs, they are also capable of replacing a far greater percentage of personnel

shortages which occur. Our experiments demonstrated a strong correlation between the

robustness metric and the computational results. Future research regarding staff roster-

ing will benefit from utilizing the proposed metric in order to standardize the robustness

quantification of a roster.
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6 CONCLUSIONS

Bridging the gap between theory and practice is crucial for academic research to

translate into meaningful results. This thesis investigated challenging real-world rostering

scenarios and proposed solving methods such that they become acceptable in practice and

can replace manual planners. A wide range of research questions regarding constraint

analysis and various types of rosters such as non-cyclic, cyclic, rerostering and robust

rostering were addressed. In addition to the academic domain, the present thesis also

contributes a licensed rostering solver, used at HCPA, which positively impacts roster-

ing organization, employee satisfaction and patient care. To render the developed solver

acceptable in practice, there are four basic elements which must be considered: (i) the re-

turn on investment, (ii) generality, (iii) future maintenance of the solver and (iv) fairness

between the scheduled employees.

The return on investment is achieved through the reduction of overtime and time

effort required by planners to organize the rosters. Other elements that are more difficult to

be quantified were not measured, such as better roster organization, reduction of mistakes

and improvements of patient care. Another important feature is the generality of the

solving method. Ideally, the solver should be general enough such that it can be deployed

within various hospital units, contributing to the cost reduction. Furthermore, another

important element of the solver is the possibility of accepting manual changes after the

roster is generated. Such a feature enables a physician, for example, to swap the schedule

of specific shifts with another due to last-minute unavailability. Despite the fact that these

changes usually render worse solutions in terms of costs to the hospital compared against

the original roster, they are commonly accepted by the managers because they improve

employee satisfaction rates.

Information technology professionals working at HCPA typically hold a basic un-

derstanding of computer science and technology engineering. The solving method must

therefore be as simple as possible without compromising the generation of good results

in short computation time, enabling these professionals to provide future maintenance.

The proposed method achieved this objective by using general-purpose solvers to solve

IP models, thus facilitating the application of them in practice.

The majority of employees work on business days which implies that they do not

work nights or weekends. However, healthcare professionals often have to work during

these unpopular shifts because hospitals operate on a 24/7 basis. Such a situation directly
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impacts upon the social interaction between healthcare professionals and those that work

during business days. Common problems concern childcare, interaction with the family

and social life. Reducing such negative effects is therefore of fundamental importance.

Note that to address this issue, the proposed solving method balances the working hours

during non-business days by assigning employees an ideal number of hours specified

according to their working contract and seniority.

Although multi-skilled employees frequently occur in the industry, existing aca-

demic literature has thus far only approached single-skilled rerostering problems. More-

over, in contrast to recent literature which is mainly based on heuristic methods, this

research showed that large instances with up to 500 multi-skilled nurses can be solved to

optimality using an exact method such as the one presented in Chapter 4. These results

indicate that effective IP formulations using standalone solvers provide good alternatives

for addressing rerostering problems and restoring feasibility after disruptions occur.

A metric for quantifying robustness concerning machine scheduling was proposed

more than ten years ago. Despite the importance of knowing in advance the robustness of

a roster, this subject has since been ignored in academic literature. This research repre-

sents a breakthrough on this front by proposing a metric for quantifying the robustness of

a roster a priori, enabling an estimation of how well it will accommodate unexpected em-

ployee shortages. Appendices H, I and J provide three physician rosters, generated using

the proposed metric with robustness levels of 0.00%, 2.64% and 7.78%. These robustness

levels are obtained by assigning physicians to capacity buffers during business days. The

first roster (Appendix H), without robustness, results in a total of 298 hours of overtime.

The second roster (Appendix I), when physicians were assigned to capacity buffers during

Early shifts, has 394 hours of overtime. The third roster (Appendix J) where physicians

were assigned to capacity buffer for both Early and Late shifts, resulted in 496 hours of

overtime. All three rosters were presented to the hospital managers. They decided to use

the second option which provides a lower robustness level, but which also has a lower

cost associated concerning paid overtime for the physicians.

These findings reinforce the applicability of the proposed metric in real-world

scenarios. Moreover, it was interesting to see that the option selected by the hospital

managers has a strong correlation with the conclusions of the robust rostering research

(Chapter 5). That is, high robustness levels increase operational costs too much and,

therefore, lower robustness levels are more likely to be implemented in practice.

Despite the simplicity of adapting existing non-cyclic IP models such that they
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can be used in cyclic rostering problems, this enabled constraints from practice to be in-

cluded in challenging multi-skilled scenarios. It was shown that instances based on data

provided by a research institute considering multi-skilled employees can still be solved

to optimality employing the proposed model in reduced computation time. Moreover,

state-of-the-art results were generated when considering instances from the literature. A

series of previously proposed methods including heuristics, constraint programming and

methods based on SAT solvers were all outperformed. Compared to the previous IP for-

mulation which was incapable of finding feasible solutions in hours of computation time,

the proposed method solved these instances in only a few seconds.

Results presented by this thesis also raised new research questions that should be

approached in future work. A general model including constraints from both the nurse and

physician rostering problems might be possible and enable the design of a more generic

solving method which is capable of addressing multiple problems. Note that this proposal

differs from several existing methods which are not only focused on single problem do-

mains but are also restricted to one type of problem instance. Such case-specific methods

are very restrictive and, therefore, difficult to implement in real-world scenarios. When

we look to other problem domains such as vehicle routing, in the twelfth edition of the

vehicle routing competition the solving methods will be evaluated employing different

variants of the problem. Similarly, a solving method capable to address more variants of

personnel rostering problems would be interesting for both the research community and

the industry. Referring back to the general research question, therefore, can be concluded

that future literature focusing on more general solving methods concerning personnel ros-

tering would heighten the chances that academic progress actually translates into practical

implementation.
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APPENDIX A — PHYSICIAN ROSTER - APRIL 2019
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P41 L[5] N[2] E[2]L[2] L[5] L[5] N[2] N[2] L[5] N[2] N[2] L[5]
P42 L[2] N[1] L[2] N[1] N[2] L[2] L[2] N[1] E[2]L[2] E[2]L[2] L[2]
P43 N[3] N[2] L[3] L[3] L[3] N[2] L[3] L[3] E[2]L[2] N[3] N[2]
P44 L[6] N[6] E[6]L[6] E[6]L[6] L[6] N[6] N[6] L[6] N[6] L[6] L[6]
P45 N[1] N[1] L[2] N[2] N[2] L[2] L[2] L[2] L[2] N[1] E[2]L[2]
P46 E[6]L[6] N[6] N[6] E[6]L[6] E[6]L[6] E[6]L[6] N[6] N[6] E[6]L[6] N[6]
P47 E[6] E[6] E[6] N[6] E[6] N[6] E[6] N[6] E[6] N[6] E[6] E[6]L[6] N[6] E[6]
P48 E[6] N[6] N[6] E[6] E[6]L[6] E[6]L[6] E[6] N[6] E[6] N[6] N[6] E[6]

E=Early, L=Late, N=Night; 1=Area 1, 2=Area 2, 3=Area 3, 4=Area 4, 5=Area 5, 6=Area 6
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Name Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri
P1 N[2] N[2] E[2]L[2] N[2] N[2] N[2] N[2] N[2] N[2]
P2 N[1] E[1]L[1] N[1] N[1] N[1]
P3 N[1] E[1] E[1] E[1] E[5] E[5] E[5] E[1]L[1] E[5] E[5] E[5] N[1] E[5] E[5] E[5]
P4 N[1] N[1] N[1] E[1]L[1] N[1] N[1]
P5 E[2]L[2] E[2]L[2] N[2] N[2] L[2]
P6 E[2]L[2] E[4] E[2]L[2] E[2]L[2] E[4] N[2] E[4] E[4] N[2] E[2] E[2] N[2] E[2] E[4] N[2] E[4]
P7 N[2] N[2] N[2] E[4] E[2]L[2] N[2] E[2] N[2] E[2] N[2] E[4]
P8 N[5] E[5]L[5] N[5] N[5] N[5]
P9 N[2] L[2] N[2] E[2]L[2] N[2] L[2] N[2] N[2] N[2]
P10 N[2] N[2] N[2] N[2] E[2]L[2] N[2] N[2] E[2]L[2] N[2]
P11 L[1] N[1] E[1]L[1] N[1] N[1]
P12 E[1]L[1] L[3] N[1] E[1]L[1] L[3] N[1] N[1] L[3] N[1] L[3] N[1]
P13 E[2]L[2] N[2] E[4] N[2] E[4] N[2] E[2] N[2] N[2] E[4] N[2]
P14 N[5] E[5]L[5] N[5]
P15 E[1]L[1] L[1] L[2] N[1] L[2] L[2] N[1] E[1]L[1] N[1] N[1] N[1]
P16 L[3] E[3]L[3] E[3]L[3] N[3] L[3] N[3] N[3] N[3] L[3] N[3] L[3] L[3] N[3] L[3]
P17 N[1] N[1] N[1] N[1] N[1] N[1] N[1] E[1]L[1] N[1]
P18 N[1] N[1] N[1] N[1] E[5] N[1] E[5] N[1] E[1]L[1] E[5] N[1]
P19 N[3] N[3] L[3] N[3] L[3] N[3] E[3]L[3] L[3] L[3] N[3] N[3] L[3] N[3]
P20 N[3] N[3] N[3] E[3]L[3] E[3]L[3] N[3] L[3] N[3] N[3] L[3]
P21 N[4] N[4] N[4] L[4] E[4]L[4] N[4] N[4] E[4] E[4] E[4] N[4]
P22 N[1] L[4] N[1] E[1]L[4] N[4] L[4] E[1]L[1] E[5]L[4] N[4] E[5]L[4] L[4] N[4] L[4] E[5]L[4] N[4] L[4]
P23 N[4] E[4]L[4] N[4] E[4] N[4] N[4] E[4] E[4] N[4]
P24 L[3] N[3] L[3] N[3] E[3]L[3] N[3] N[3] E[3]L[3] N[3] N[3]
P25 L[5] N[1] L[5] E[1]L[1] E[1]L[1] N[1] L[5] N[1] N[1] L[5]
P26 N[5] N[5] N[5] L[5] E[5]L[5] L[5] N[5] L[5] N[5] L[5] N[5]
P27 E[4]L[4] L[4] N[4] L[4] E[4]L[4] L[4] L[4] N[4] N[4] L[4] N[4] L[4]
P28 E[4] E[4]L[4] N[4] N[4] N[4]
P29 E[1]L[1] N[1] N[1] N[1] N[1] N[1] E[1]L[1] N[1] N[1]
P30 N[2] N[2] N[2] E[2] N[2] N[2] E[2] N[2] E[2]L[2] N[2]
P31 N[1] N[1] E[2]L[2] E[1]L[1] N[2] N[2] N[1] N[1] N[1]
P32 E[3]L[3] N[3] L[3] N[3] L[3] N[3] N[3] N[3] E[3]L[3] L[3] N[3]
P33 N[5] L[5] N[5] L[5] L[5] L[5] E[5]L[5] L[5] N[5] N[5] N[5] L[5] L[5]
P34 E[5]L[5] N[5] L[5] N[5] N[5]
P35 E[6]L[6] L[6] N[6] N[6] E[6]L[6] N[6] E[6] E[6]L[6] N[6] E[6]L[6] E[6] E[6]L[6] N[6]
P36 N[4] N[4] E[4] E[4] N[4] E[4] E[4]L[4] E[4]L[4] E[4] N[4] N[4]
P37 L[5] E[5]L[5] N[5] L[6] N[5] E[5]L[5] N[5] L[6] L[6] N[5] L[6] L[6] N[5] L[6] N[5]
P38 E[5]L[5] L[5] L[5] N[5] N[5] N[5] N[5] L[5] E[5]L[5] L[5] N[5]
P39 L[6] E[2]L[2] N[6] N[6] N[6] L[6] N[6] N[6] L[6] E[6]L[6] N[2] N[6] L[6]
P40 L[4] L[4] L[4] N[4] E[4]L[4] E[4]L[4] L[4] N[4] N[4] N[4] L[4] L[4]
P41 N[2] L[2] N[2] N[2] N[2] E[2]L[2] E[2]L[2] L[5] N[2] N[2]
P42 N[2] N[2] N[2] N[2] L[2] N[1] N[1] E[2]L[2] E[2]L[2] N[2]
P43 N[6] N[6] L[6] L[6] N[6] E[6]L[6] E[6]L[6] L[6] N[6] L[6] N[6]
P44 E[6] E[1]L[1] E[1]L[1] N[1] E[6] L[2] N[2] N[1] E[6] N[1] N[2] E[6]
P45 N[6] N[6] E[6] N[6] N[6] L[6]
P46 L[6] E[6] E[6]L[6] N[6] E[6] L[6] E[6] E[6] N[6] E[6] E[6] N[6] E[6] N[6] E[6] N[6] E[6]
P47 E[6]L[6] N[6] N[6] E[6]L[6] E[6] N[6] N[6] N[6] E[6]L[6] E[6]L[6] E[6] N[6]

E=Early, L=Late, N=Night; 1=Area 1, 2=Area 2, 3=Area 3, 4=Area 4, 5=Area 5, 6=Area 6
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APPENDIX C — NURSE REROSTERING - GENERAL INTEGER

PROGRAMMING FORMULATION FOR THE NURSE ROSTERING

PROBLEM

Table C.1 provides the sets, decision and auxiliary variables employed in the for-

mulation. The objective function minimizes the cost associated with the violation of the

soft constraints.

Table C.1: Indices, sets, decision and auxiliary variables employed in the problem formulation.

Symbol Definition

Input Data
n ∈ N n is the index of the nurse, and N is the set of nurses;

d ∈ D d is the index of the day, and D is the set of days;

s ∈ S s is the index of the shift, and S = {1,2,3,4} is the set of shifts,

where 1 corresponds to Early, 2 to Day, 3 to Late and 4 to Night;

k ∈ K k is the index of the skill, and K = {1,2,3,4} is the set of skills,

where 1 corresponds to HeadNurse, 2 to Nurse, 3 to Caretaker and

4 to Trainee;

(n,k) ∈ K̃ set containing the pairs of forbbiden skill k of nurse n;

rdsk ∈ N0 number of required nurses on day d, shift s, having skill k;

(s1,s2) ∈ Ŝ contains the pairs of invalid shift sequences, for example, (4,1)∈ Ŝ

means that a Night shift cannot be followed by an Early shift;

T w set of patterns T w = {T w
t : t ∈ {1,2, . . . , pw}}, where pw is the

minimum number of consecutive working days minus one. T w
t

is a binary vector of dimension t + 2, with one zero in the first

position and one zero in the last position, being t the number of

ones that appear in vector T w
t . For example, considering 4 as

the minimum number of working days, the patterns to search are

T w = {T w
1 = (0,1,0),T w

2 = (0,1,1,0),T w
3 = (0,1,1,1,0)}. If the

first pattern is found in the schedule, it represents three violations,

the second pattern two violations, and the third pattern a single vi-

olation.

T r follows the same idea of T w, and represents a set of patterns

T r = {T r
t : t ∈ {1,2, . . . , pr}}, where pr is the minimum number

of consecutive days off minus one.
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T s follows the same idea of T w, and represents a set of patterns

T s = {T s
ts : ts ∈ {1,2, . . . , ps}}, where ps is the minimum number

of consecutive working days minus one at shift s.

w ∈W w is a Saturday index and W the set of all Saturdays indexes;

Mh ∈ {5,6} set of maximum working days every 7 days. M1 = 5 and M2 = 6

depending of the nurses’ contract;

α1
dsk preferred number of nurses for day d, shift s, skill k;

β i
n limit of soft constraint 2, ...,5 and 10, ...,12 for nurse n, that is, min-

imum/maximum consecutive working days, minimum/maximum

consecutive days off, minimum/maximum number of assignments

over the scheduling period and total working weekends;

γ i
s limit of soft constraint 6 and 7 for shift s, that is, mini-

mum/maximum consecutive assignments to the same shift;

ω i weight for violating the lower and/or upper limits of soft constraint

i.

Decision Variables

xndsk ∈ {0,1} 1 if nurse n is allocated on day d, shift s with skill k, 0 otherwise;

ynw ∈ {0,1} 1 if nurse n works at weekend w, 0 otherwise.

Auxiliary Variables

a1
dsk ∈ N0 preferred number of nurses violations for day d, shift s, skill k;

bi
ndt ∈ N0 minimum number of consecutive working days and days off viola-

tions, i ∈ 2,4 for nurse n on day d, pattern t;

ci
nd ∈ N0 maximum number of consecutive working days and days off viola-

tions, i ∈ 3,5 for nurse n on day d;

e6
ndst ∈ N0 minimum number of consecutive assignments to the same shift vi-

olations, for nurse n on day d, shift s, pattern t;

f 7
nds ∈ N0 maximum number of consecutive assignments to the same shift vi-

olations, for nurse n on day d, shift s;

g8
nds ∈ N0 number of nurse’s undesired working day/shift violations, for nurse

n on day d, shift s;

h9
nw ∈ N0 number of complete weekends violations, for nurse n on week-

end w;
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ji
n ∈ N0 minimum/maximum number of assignments over the scheduling

period violations, maximum number of worked weekends viola-

tions, i ∈ {10,11,12} for nurse n.

Constant

C constant with value 10.

Minimize: ∑
d∈D

∑
s∈S

∑
k∈K

a1
dskω

1+ ∑
n∈N

∑
d∈D

∑
t∈Tt

∑
i∈{2,4}

bi
ndtω

i+ ∑
n∈N

∑
d∈D

∑
i∈{3,5}

ci
ndω

i+

∑
n∈N

∑
d∈D

∑
s∈S

∑
t∈Tt

e6
ndstω

6+ ∑
n∈N

∑
d∈D

∑
s∈S

f 7
ndsω

7+ ∑
n∈N

∑
d∈D

∑
s∈S

g8
ndsω

8+

∑
n∈N

∑
w∈W

h9
nwω

9+ ∑
n∈N

∑
i∈{10,11,12}

ji
nω

i

(C.1)

Subject to:

∑
s∈S

∑
k∈K

xndsk ≤ 1 ∀n ∈ N,d ∈ D (C.2)

∑
n∈N

xndsk ≥ rdsk ∀d ∈ D,s ∈ S,k ∈ K (C.3)

∑
k∈K

(xnds1k + xn(d+1)s2k)≤ 1 ∀n ∈ N,d ∈ D\{|D|},(s1,s2) ∈ Ŝ (C.4)

∑
d∈D

∑
s∈S

xndsk = 0 ∀(n,k) ∈ K̃ (C.5)

6+d

∑
d′=d

∑
s∈S

∑
k∈K

xnd′sk ≤Mh ∀n ∈ N,d ∈ D (C.6)

∑
n∈N

xndsk +a1
dsk ≥ α

1
dsk ∀d ∈ D,s ∈ S,k ∈ K (C.7)

S1ndt +b2
ndt ≥ β

2
n ∀n ∈ N, t ∈ {1,2, . . . pw},d ∈ {1,2, . . . , |D|− (t +2)} (C.8)

S1ndt =
t+d+1

∑
d′=d

∑
s∈S

∑
k∈K

xnd′sk+

∑
d′∈{d, t+d+1}

∑
s∈S

∑
k∈K

xnd′skC+

t+d

∑
d′=d+1

(1−∑
s∈S

∑
k∈K

xnd′sk)C (C.9)

β 3
n +d

∑
d′=d

∑
s∈S

∑
k∈K

xnd′sk− c3
nd ≤ β

3
n ∀n ∈ N,d ∈ {1, . . . , |D|−β

3
n } (C.10)

S2ndt +b4
ndt ≥ β

4
n ∀n ∈ N, t ∈ {1,2, . . . pr},d ∈ {1,2, . . . , |D|− (t +2)} (C.11)
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S2ndt =
t+d+1

∑
d′=d

(1−∑
s∈S

∑
k∈K

xnd′sk)+

∑
d′∈{d,t+d+1}

(1−∑
s∈S

∑
k∈K

xnd′sk)C+

t+d

∑
d′=d+1

∑
s∈S

∑
k∈K

xnd′skC (C.12)

β 5
n +d

∑
d′=d

(1−∑
s∈S

∑
k∈K

xnd′sk)− c5
nd ≤ β

5
n ∀n ∈ N,d ∈ {1, . . . , |D|−β

5
n } (C.13)

S3ndst + e6
ndst ≥ γ

6
s ∀n ∈ N,s ∈ S, ts ∈ {1,2, . . . ps},d ∈ {1,2, . . . , |D|− (ts +2)}

(C.14)

S3ndst =
ts+d+1

∑
d′=d

∑
k∈K

xnd′sk+

∑
d′∈{d, ts+d+1}

∑
k∈K

xnd′skC+

ts+d

∑
d′=d+1

(1− ∑
k∈K

xnd′sk)C (C.15)

|γ7
s |+d

∑
d′=d

∑
k∈K

xnd′sk− f 7
nds ≤ γ

7
s ∀n ∈ N,s ∈ S,d ∈ {1, . . . , |D|− γ

7
s } (C.16)

g8
nds− ∑

k∈K
xndsk = 0 ∀(n,d,s) ∈U (C.17)

∑
s∈S

∑
k∈K

(xnwsk + xn(w+1)sk)≤ 2ynw ∀n ∈ N,w ∈W (C.18)

∑
s∈S

∑
k∈K

(xnwsk + xn(w+1)sk)+h9
nw ≥ 2ynw ∀n ∈ N,w ∈W (C.19)

∑
d∈D

∑
s∈S

∑
k∈K

xndsk + j10
n ≥ β

10
n ∀n ∈ N (C.20)

∑
d∈D

∑
s∈S

∑
k∈K

xndsk− j11
n ≤ β

11
n ∀n ∈ N (C.21)

∑
w∈W

ynw− j12
n ≤ β

12
n ∀n ∈ N (C.22)

Constraints (C.2) ensure a single shift per day. Constraints (C.3) ensure the mini-

mum number of nurses per days, shift, and skill. Constraints (C.4) ensure that a shift suc-

cession must be valid. Constraints (C.5) ensure a nurse can only be scheduled on a shift

if they have the required skill. Constraints (C.6) ensure maximum Mh worked days, every

7 days. Constraints (C.7) calculate the preferred coverage violations. Constraints (C.8)

and (C.9) calculate the minimum consecutive assignments (working days) violations. In

the equations, S1 is calculated as the (sum of the working days) + (two border bits ×

C) + (complement of middle bits × C). Constraints (C.10) calculate the maximum num-

ber of consecutive assignments (working days) violations. Constraints (C.11) and (C.12)

calculate the minimum number of consecutive days off violations. S2 is evaluated simi-

larly to Equations (C.8) and (C.9), however, the bits are inverted and the sum is related
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to free days instead of working days. Constraints (C.13) calculate the maximum number

of consecutive days off violations. Constraints (C.14) and (C.15) calculate the minimum

number of consecutive assignments to the same shift violations. S3 is evaluated similarly

to Equations (C.8) and (C.9), however, the violations are stored by nurse/day/shift/pattern.

Constraints (C.16) calculate the maximum of consecutive assignments to the same shift

violations. Constraints (C.17) calculate the undesired day/shift assignments violations.

Constraints (C.18) calculate if nurse n works on weekend w. Constraints (C.19) calculate

the complete weekend violation. Constraints (C.20) calculate the minimum number of

total working days violations over the whole scheduling period. Constraints (C.21) cal-

culate the maximum number of total working days violations over the whole scheduling

period. Constraints (C.22) calculate the total number of working weekends violations.
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APPENDIX D — NURSE REROSTERING - VND ITERATIONS

Table D.1: VND - Average number of iterations
VND iterations - single-day absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

n035w4 1.1 1.0 1.1 1.1
n035w8 1.4 1.0 1.4 1.4
n070w4 1.7 1.5 1.7 1.7
n070w8 1.9 1.8 1.9 1.9
n110w4 1.4 1.4 1.4 1.4
n110w8 1.9 1.8 1.9 1.9

VND iterations - consecutive-days absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

n035w4 1.4 1.2 1.4 1.4
n035w8 1.5 1.5 1.5 1.5
n070w4 1.5 1.4 1.5 1.5
n070w8 1.9 1.4 1.9 1.9
n110w4 2.0 1.9 2.0 2.0
n110w8 1.8 1.8 1.8 1.8

VND iterations - Lisbon instances

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

19 nurses 12.9 38.1 32.8 15.3
32 nurses 4.8 4.8 4.8 4.8
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APPENDIX E — ROBUST ROSTERING - INTEGER PROGRAMMING

FORMULATION FOR THE STAFF ROSTERING PHASE

Table E.1 details the constraints and costs employed in the mathematical formu-

lation. The objective function cost is calculated per shift and is not only related to the

nurses’ wages but also guarantees service quality. The latter is modeled as a penalty for

not meeting the minimum number of nurses per day/shift/skill. Table E.2 provides the

input sets and variables employed in the rostering formulation.

Table E.1: Hard and soft constraints - rostering phase

Constraint description Weight

Hard constraints

A nurse can be assigned to at most one shift per day HC

A shift type succession must belong to a valid succession HC

A shift requiring nurses with a given skill must always be fulfilled by a

nurse having that skill

HC

Maximum consecutive assignments (working days) HC

Maximum consecutive assignments to the same shift HC

Shift or day off request HC

Minimum number of assignments over the scheduling period HC

Soft constraints - rostering costs

Minimum number of nurses per day/shift/skill 5000

Overtime cost per worked shift if a nurse works more shifts than con-

tracted (150% of the wage)

[150,105,75,45]

Head nurse wage per worked shift 100

Nurse wage per worked shift 70

Caretaker wage per worked shift 50

Trainee wage per worked shift 30

Assign a nurse to a reserve shift (10% of the wage) [10,7,5,3]

Table E.2: Indices, sets and variables used in the rostering formulation.

Symbol Definition

Input Data
n ∈ N n is the index of the nurse, and N is the set of nurses;

d ∈ D d is the index of the day, and D is the set of days;

s ∈ S s is the index of the shift, and S is the set of all shifts;

s′ reserve shift index;



134

k ∈ K k is the index of the skill, and K is the set of skills;

(n,k) ∈ K̃ set containing the pairs of forbbiden skill k of nurse n;

mdsk minimum number of required nurses on day d for shift s with skill k;

(s1,s2) ∈ S̃ set containing the pairs of invalid shift successions;

(n,d,s) ∈U triple with the undesired working day d, shift s for nurse n;

β 1
n maximum number of consecutive working days;

β 2
n maximum number of consecutive working days on Night shifts;

β 3
n minimum number of working days over the planning horizon;

β 5
n maximum number of working days over the planning horizon;

cndsk ∈ {0,1} Constant values representing the current feasible solution, 1 if nurse n is allo-

cated to shift s, day d with skill k, and 0 otherwise;

Constraint Weights

ω1
ns ∈ N≥0 cost of nurse n to work on shift s;

ω5
n ∈ N≥0 cost of nurse n per worked shift exceeding the contracted number of shifts;

ω6 ∈ N≥0 cost of understaffing;

Decision Variables

xndsk ∈ {0,1} 1 if nurse n is allocated to shift s on day d with skill k, 0 otherwise;

Auxiliary Variables

v5
n ∈ N≥0 number of worked shifts above the maximum contracted for nurse n;

v6
dsk ∈ N≥0 number of nurses below the minimum for day d, shift s, and skill k;

Minimize: ∑
n∈N

∑
d∈D

∑
s∈S

∑
k∈K

xndskω
1
ns+ ∑

n∈N
v5

nω
5
n+ ∑

d∈D
∑
s∈S

∑
k∈K

v6
dskω

6
n (E.1)

Subject to:

∑
s∈S

∑
k∈K

xndsk ≤ 1 ∀n ∈ N,d ∈ D (E.2)

∑
n∈N

xndsk + v6
dsk ≥ mdsk ∀d ∈ D,s ∈ S,k ∈ K (E.3)

∑
k∈K

(xnds1k + xn(d+1)s2k)≤ 1 ∀n ∈ N,d ∈ D\{|D|},(s1,s2) ∈ S̃ (E.4)

∑
d∈D

∑
s∈S

xndsk = 0 ∀(n,k) ∈ K̃ (E.5)

β 1
n +d

∑
d′=d

∑
s∈S

∑
k∈K

xnd′sk ≤ β
1
n ∀n ∈ N,d ∈ {1, . . . , |D|−β

1
n } (E.6)
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β 2
n +d

∑
d′=d

∑
k∈K

xnd′s′k ≤ β
2
n ∀n ∈ N,d ∈ {1, . . . , |D|−β

2
n } (E.7)

∑
k∈K

xndsk = 0 ∀(n,d,s) ∈U (E.8)

∑
d∈D

∑
s∈S\{s′}

∑
k∈K

xndsk ≥ β
3
n ∀n ∈ N (E.9)

∑
d∈D

∑
s∈S\{s′}

∑
k∈K

xndsk− v5
n ≤ β

5
n ∀n ∈ N (E.10)

Objective function (E.1) minimizes the overall cost, including wages, overtime and

the costs related to understaffing. Constraints (E.2) ensure a nurse works a single shift per

day. Constraints (E.3) ensure the minimum number of nurses per day, shift and skill. Con-

straints (E.4) ensure that a shift succession must be valid. Constraints (E.5) ensure a nurse

can only be assigned to a shift if they have the required skill. Constraints (E.6) ensure the

maximum number of consecutive assignments (working days) is respected. Constraints

(E.7) ensure the maximum number of consecutive assignments to Night shifts is not ex-

ceeded. Constraints (E.8) ensure undesired shifts or days are not assigned. Constraints

(E.9) and (E.10) enforce the minimum and maximum number of assignments over the

planning horizon, respectively.
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APPENDIX F — ROBUST ROSTERING - INTEGER PROGRAMMING

FORMULATION FOR THE STAFF RE-ROSTERING PHASE

Table F.1 details the soft constraint weights for the re-rostering phase. Table F.2

provides the input sets and variables employed in the re-rostering formulation. An ad-

ditional penalty is induced for undesired roster modifications that may affect individual

nurses’ rosters.

Table F.1: Soft constraints - re-rostering costs

Constraint description Weight

Call a nurse from a reserve shift (10% of the wage) [10,7,5,3]

Call a nurse from a day off or cancel a working shift (150% of the wage) [150,105,75,45]

Change the nurse’s assigned shift (100% of the wage) [100,70,50,30]

Change the nurse’s assigned skill 0

Table F.2: Additional indices, sets and variables used in the re-rostering formulation.

Symbol Definition

Input Data
N̂ set of absent nurses;

ĉnd ∈ {0,1} 1 if nurse n is absent on day d, and 0 otherwise;

Constraint Weights

ω2
n ∈ N≥0 cost of nurse n to change a shift (excluding the reserve shifts);

ω3
n ∈ N≥0 cost of nurse n to change a reserve shift to a working shift;

ω4
n ∈ N≥0 cost of nurse n to change from a day off to a working shift or vice versa;

Auxiliary Variables

y′nds ∈ {0,1} 1 if nurse n works on the original schedule or on the new roster, 0 otherwise;

y′′nds ∈ {0,1} auxiliary variable to calculate the number of changes compared to the original

roster;

y′′′nds ∈ {0,1} auxiliary variable representing the number of changes compared to the original

roster;

v2
nd ∈ N≥0 number of shift changes compared to the original roster excluding the reserve

shifts for nurse n on day d;

v3
nd ∈ N≥0 number of changes from the reserve shift to any working shift for nurse n on

day d;

v4
nd ∈ N≥0 number of times a day off is replaced with a working shift and vice versa;
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Minimize: (E.1)+ ∑
n∈N

∑
d∈D

∑
i∈{2,..,4}

vi
ndω

i
n (F.1)

Subject to:

ĉnd +∑
s∈S

∑
k∈K

xndsk ≤ 1 ∀n ∈ N,d ∈ D (F.2)

∑
k∈K

(cndsk + xndsk)≤ 2y′nds ∀n ∈ N \ N̂,d ∈ D,s ∈ S (F.3)

∑
k∈K

(cndsk + xndsk)+ y′′nds ≥ 2y′nds ∀n ∈ N \ N̂,d ∈ D,s ∈ S (F.4)

∑
s∈S

y′′nds−2y′′′nd ≤ 0 ∀n ∈ N \ N̂,d ∈ D (F.5)

∑
s∈S\{s′}

∑
k∈K

(cndsk + xndsk)−1− v2
nd ≤ 1− y′′′nd ∀n ∈ N \ N̂,d ∈ D (F.6)

∑
s∈S

∑
k∈K

xndsk + ∑
k∈K

cnds′k−1− v3
nd ≤ 1− y′′′nd ∀n ∈ N \ N̂,d ∈ D (F.7)

∑s∈S ∑k∈K cndsk +∑s′′∈S\{s′}∑k∈K xnds′′k + v4
nd ≥ 2(y′′′nd−∑k∈K cnds′k)

∀n ∈ N \ N̂,d ∈ D (F.8)

∑
s∈S

∑
k∈K

xndsk ≥ ∑
k∈K

cnds′k ∀n ∈ N \ N̂,d ∈ D (F.9)

The objective function (F.1) minimizes the overall cost regarding the original ob-

jective function (E.1) and costs associated with the re-rostering. Constraints (F.2) ensure

that an absent nurse is not scheduled to work. Constraints (F.3), (F.4) and (F.5) calcu-

late the number of changes compared to the original roster and store them in auxiliary

variables. Constraints (F.6) calculate the shift changes excluding the reserve shifts. Con-

straints (F.7) calculate the shift changes concerning only reserve shifts. Constraints (F.8)

calculate the working day to day off changes and vice versa. Constraints (F.9) ensure a

reserve shift is not replaced with a day off.
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APPENDIX G — ROBUST ROSTERING - EXPERIMENTS COMPUTATION

TIMES

Tables G.1 and G.2 provide the computation times for the single- and multi-skilled

instances, respectively.

Table G.1: Computation time (seconds) using single-skilled instances.
Initial solution Re-rostering solution

Robustness General Robustness General Robustness
level constraint constraint per day constraint constraint per day

0.00% 1.5 1.4 1.4 1.3
4.17% 1.8 2.0 1.4 1.3
8.33% 2.1 2.2 1.5 1.4
12.50% 5.4 5.3 1.5 1.5
16.67% 5.5 5.5 1.6 1.5

Table G.2: Computation time (seconds) using multi-skilled instances.
Initial solution

General Robustness Robustness constraint
Robustness constraint constraint per day per day and skill

level H H,N H,N,C H,N,C,T H H,N H,N,C H,N,C,T H H,N H,N,C H,N,C,T

3.53% 3.6 6.1 2.7 3.6 407.5 11.4 3.1 3.0 290.9 - - -
7.64% - 5.3 27.8 3.4 - 10.4 613.8 5.2 - 284.5 - -
12.34% - - 61.2 84.8 - - 1073.0 141.5 - - 416.4 -
14.26% - - - 102.4 - - - 60002.3 - - - 620.3

Re-rostering solution

General Robustness Robustness constraint
Robustness constraint constraint per day per day and skill

level H H,N H,N,C H,N,C,T H H,N H,N,C H,N,C,T H H,N H,N,C H,N,C,T

3.53% 4.3 4.6 5.4 5.5 4.3 5.1 6.3 4.5 3.7 - - -
7.64% - 6.4 4.7 3.9 - 2.8 4.4 3.2 - 4.2 - -
12.34% - - 4.5 6.8 - - 2.6 3.2 - - 2.6 -
14.26% - - - 5.3 - - - 2.6 - - - 13.6
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APPENDIX H — 0.00% ROBUST ROSTER - JUNE 2019

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Name Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Mon Tue Wed Thu Fri
P1 N[2] N[2] N[2] N[2] N[2] N[2] N[2] E[2]L[2] E[2]L[2]
P2 N[1] N[1] L[3] N[1] L[1] N[1] E[1]L[1] E[1]L[1] L[3] N[1]
P3 E[4] E[4] E[1] E[1] N[1] N[1] E[4] E[4] E[1]L[1] E[1]L[1] E[4] E[4]
P4 N[1] N[1] E[1]L[1] N[1] N[1] N[1] E[1]L[1] N[1]
P5 N[2] E[2]L[2] E[2]L[2] N[2] L[2] E[2]L[2] E[2]L[2] N[2]
P6 E[4] N[2] E[2]L[2] E[2]L[2] E[4] N[2] E[4] E[2]L[2] E[2]L[2] E[4] N[2] E[4] N[2]
P7 N[2] N[2] E[1] N[2] E[2]L[2] E[2]L[2] N[2] N[2] N[2]
P8 N[5] N[5] N[5] E[5]L[5] N[5]
P9 L[5] N[2] L[5] N[2] N[2] L[5] E[2]L[2] L[5] N[2] N[2]
P10 N[2] N[2] N[2] N[2] N[2] N[2] E[2]L[2] E[2]L[2] N[2]
P11 N[1] N[1] E[1]L[1] E[1]L[1] N[1] N[1] N[1] N[1]
P12 E[1]L[1] E[1]L[1] N[1] N[1] N[1] N[1] N[1] N[1]
P13 E[2]L[2] E[2]L[2] N[2] N[2] N[2] N[2] N[2] N[2]
P14 N[5] N[5] N[5] E[5]L[5]
P15 N[1] N[1] N[1] N[1] N[1] N[1] E[1]L[1] E[1]L[1]
P16 L[3] N[3] E[3]L[3] E[3]L[3] N[3] L[1] L[1] N[3] N[3] N[3] L[3] N[3] L[3]
P17 E[4] E[4] N[1] N[1] E[1]L[1] N[1] N[1] E[4] E[1] N[1]
P18 E[4] N[1] E[1]L[1] E[1]L[1] E[4] E[4] N[1] N[1] E[4] N[1]
P19 L[3] N[3] N[3] N[3] L[3] L[3] L[3] N[3] E[3]L[3] E[3]L[3]
P20 E[3]L[3] N[3] N[3] N[3] N[3]
P21 N[4] N[4] N[4] L[4] E[4]L[4] E[4]L[4] N[4] L[4] N[4] L[4]
P22 L[4] N[4] L[4] L[4] N[4] N[2] L[4] N[4] N[2] E[4]L[4] E[2]L[2] L[4] N[4]
P23 N[4] N[4] N[4] E[4]L[4] N[4] N[4]
P24 N[3] N[3] L[3] E[3]L[3] E[3]L[3] N[3] N[3] N[3] N[3]
P25 N[1] L[3] N[1] L[1] N[1] N[1] N[1] L[3] E[1]L[1] E[1]L[1] N[1] L[3]
P26 L[5] N[5] N[5] L[5] N[5] L[5] N[5] L[5] N[5] E[5]L[5] E[5]L[5]
P27 N[4] L[4] E[4]L[4] E[4]L[4] L[4] N[4] N[4] N[4] N[4] L[4]
P28 E[4]L[4] E[4]L[4] L[4] N[4] N[4] N[4] N[4] E[4] L[4] L[4]
P29 E[1]L[1] E[1]L[1] N[1] N[1] N[1] N[1] N[1] N[1] N[1]
P30 E[2]L[2] E[2]L[2] E[6] N[2] N[2] E[6] N[2] N[2] E[6] N[2]
P31 N[2] N[2] N[1] N[2] N[2] E[1]L[1] E[1]L[1]
P32 E[3]L[3] N[3] L[3] N[3] L[3] N[3] N[3] E[3]L[3] L[3] N[3]
P33 N[5] L[5] L[5] N[2] E[5]L[5] E[5]L[5] N[5] N[2] L[5] N[5]
P34 E[5]L[5] N[5] L[5] N[5] N[5] N[5] L[5] E[5]L[5] N[5] L[5]
P35 N[6] N[6] L[6] N[6] N[6] E[6]L[6] L[6] N[6] E[6] L[6] L[6] E[6]L[6] E[6]L[6]
P36 E[4]L[4] N[4] N[4] N[4]
P37 E[5]L[5] N[5] L[6] L[5] N[5] L[6] L[3] L[5] L[6] E[3]L[3] N[5] L[6] N[5] N[5]
P38 E[5]L[5] E[5]L[5] L[5] N[5] N[5] L[5] N[5] N[5] N[5] L[5]
P39 N[6] L[6] L[6] E[6]L[6] E[6]L[6] N[6] N[6] L[6] N[6] N[6] N[6] N[6]
P40 N[4] L[4] N[4] L[4] L[4] N[4] N[4] L[4] L[4] E[4]L[4] E[4]L[4]
P41 L[3] E[3]L[3] N[2] N[2] N[2] N[2]
P42 N[3] N[1] E[1]L[1] N[3] N[3] N[3]
P43 L[6] N[6] E[6]L[6] L[6] N[6] N[6] L[6] N[6] N[6]
P44 N[2] N[2] N[3] N[2] L[3] N[2] E[2]L[2] E[2]L[2]
P45 N[6] E[6]L[6] N[6] E[6]L[6] N[6] N[6] N[6] E[6]L[6] E[6]L[6] N[6] E[6]L[6]
P46 E[6] N[6] E[6] E[6]L[6] N[6] E[6] N[6] E[6] E[6] E[6]L[6] E[6] L[6] E[6] N[6] E[6] N[6]
P47 E[6]L[6] E[6]L[6] E[6] N[6] E[6] N[1] N[1] E[6] N[1] N[1] N[6] N[1]
P48 N[2]
R[1] E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=1 L=1 E=1 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2
R[2] E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=1 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2
R[3] E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1
R[5] E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1
ôd 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

E=Early, L=Late, N=Night; 1=Area 1, 2=Area 2, 3=Area 3, 4=Area 4, 5=Area 5, 6=Area 6
Overtime: 298
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Name Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Mon Tue Wed Thu Fri
P1 N[2] N[2] N[2] N[2] N[2] N[2] N[2] E[2]L[2] E[2]L[2]
P2 L[4] N[1] L[1] N[1] N[1] N[1] L[4] N[1] E[1]L[1] E[1]L[1]
P3 E[4] E[4] E[4] E[1] E[1] E[1]L[1] E[1]L[1] E[4] E[4] N[1] N[1] E[4] E[4]
P4 E[1]L[1] E[1]L[1] N[1] N[1] N[1] N[1] N[1] N[1]
P5 N[2] E[2]L[2] E[2]L[2] N[2] L[2] E[2]L[2] E[2]L[2] N[2]
P6 E[2] N[2] E[2] E[2] N[2] E[2]L[2] E[2]L[2] E[2] N[2] N[2] E[2] E[2]L[2] E[2]L[2]
P7 N[2] E[2]L[2] N[2] N[2] E[1] N[2] E[2]L[2] N[2] N[2]
P8 N[5] N[5] N[5] N[5] E[5]L[5] N[5]
P9 L[5] N[2] L[5] N[2] N[2] N[2] L[5] E[2]L[2] L[5] N[2]
P10 N[2] N[2] N[2] E[2]L[2] N[2] N[2] E[2]L[2] N[2] N[2]
P11 N[1] E[1]L[1] E[1]L[1] N[1] N[1] N[1] N[1] N[1]
P12 E[1]L[1] E[1]L[1] L[3] N[1] N[1] L[3] N[1] L[3] N[1] N[1] N[1]
P13 E[2] N[2] E[2] N[2] N[2] N[2] E[2] N[2] E[2]L[2] E[2]L[2] N[2]
P14 N[5] N[5] N[5] E[5]L[5]
P15 N[1] N[1] N[1] N[1] N[1] N[1] E[1]L[1] E[1]L[1]
P16 N[3] L[3] L[3] N[3] L[1] L[1] N[3] N[3] N[3] E[3]L[3] E[3]L[3] N[3] L[3]
P17 E[1] N[1] N[1] E[1] E[1] E[1]L[1] N[1] E[1]L[1] E[1] E[1] N[1]
P18 N[1] N[1] E[4] N[1] E[4] E[4] E[1]L[1] E[1]L[1] E[1] N[1]
P19 L[3] N[3] N[3] N[3] L[3] L[3] L[3] N[3] E[3]L[3] E[3]L[3]
P20 E[3]L[3] N[3] N[3] N[3] N[3]
P21 N[4] N[4] L[4] E[4]L[4] E[4]L[4] N[4] L[4] N[4] L[4] N[4] L[4]
P22 E[4]L[4] N[4] E[4]L[4] N[4] L[4] E[4]L[4] E[2]L[2] E[2]L[4] N[4] N[2] N[2]
P23 N[4] N[4] N[4] E[4]L[4] E[4] N[4] N[4]
P24 N[3] N[3] L[3] E[3]L[3] E[3]L[3] N[3] N[3] N[3] N[3]
P25 N[1] L[3] N[1] N[1] N[1] L[1] E[1]L[1] E[1]L[1] N[1] L[3] N[1] L[3]
P26 L[5] N[5] E[5]L[5] E[5]L[5] L[5] N[5] L[5] L[5] N[5] N[5] N[5]
P27 E[4]L[4] E[4]L[4] N[4] L[4] N[4] L[4] N[4] N[4] N[4] L[4]
P28 E[4] N[4] N[4] E[4] E[4] N[4] N[4] E[4] E[4] E[4]L[4] E[4]L[4]
P29 N[1] E[1]L[1] E[1]L[1] N[1] N[1] N[1] N[1] N[1]
P30 E[2]L[2] E[2]L[2] E[2] N[2] N[2] N[2] N[2] N[2] N[2]
P31 E[2]L[2] E[2]L[2] N[3] N[2] E[2] N[2] N[2] N[2]
P32 E[3]L[3] N[3] L[3] N[3] E[3]L[3] L[3] N[3] N[3] L[3] N[3]
P33 E[5]L[5] E[5]L[5] N[5] N[2] N[5] N[5] L[5] N[2] L[5] L[5]
P34 N[5] L[5] N[5] N[5] N[5] N[5] L[5] E[5]L[5] E[5]L[5] L[5]
P35 E[6]L[6] N[6] N[6] E[6]L[6] L[6] E[6]L[6] E[6]L[6] E[6]L[6] N[6] N[6] E[6]L[6] N[6]
P36 E[4]L[4] N[4] N[4] N[4]
P37 N[3] N[5] L[6] L[5] L[5] L[6] L[3] N[5] L[6] E[3]L[3] N[5] L[6] N[5] E[5]L[5]
P38 N[5] L[5] L[5] E[5]L[5] E[5]L[5] N[5] L[5] N[5] N[5] N[5]
P39 E[6]L[6] N[6] N[6] L[6] E[6]L[6] N[6] N[6] N[6] L[6] N[6] N[6] L[6]
P40 N[4] N[4] L[4] L[4] E[4] E[4]L[4] E[4]L[4] L[4] L[4] N[4] N[4] L[4]
P41 L[3] N[2] N[2] N[2] N[2] N[2]
P42 N[2] N[2] E[3]L[3] N[3] N[3] N[3]
P43 N[6] L[6] N[6] E[6]L[6] L[6] N[6] L[6] N[6] N[6]
P44 N[1] N[1] L[4] N[4] N[1] E[1]L[1] E[1]L[1] N[1]
P45 E[6]L[6] N[6] E[6]L[6] N[6] E[6]L[6] N[6] N[6] N[6] E[6]L[6] N[6] E[6]L[6]
P46 E[6] N[6] E[6] E[6] N[6] E[6] E[6] N[6] E[6] E[6]L[6] E[6]L[6] L[6] E[6] E[6] N[6] N[6]
P47 E[6] N[1] N[6] E[6] N[1] N[1] E[6] N[1] N[1] E[6] N[6] E[6]L[6] E[6]L[6]
P48 N[2]
R[1] E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=1 L=1 E=1 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2
R[2] E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=1 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2
R[3] E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1
R[5] E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1
ôd 0.00% 0.00% 4.17% 4.17% 4.17% 4.17% 4.17% 0.00% 0.00% 4.17% 4.17% 4.17% 8.33% 4.17% 0.00% 0.00% 4.17% 4.17% 4.17% 0.00% 4.17% 0.00% 0.00% 0.00% 4.17% 4.17% 4.17% 4.17% 0.00% 0.00%

E=Early, L=Late, N=Night; 1=Area 1, 2=Area 2, 3=Area 3, 4=Area 4, 5=Area 5, 6=Area 6
Overtime: 394
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APPENDIX J — 7.78% ROBUST ROSTER - JUNE 2019

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Name Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Mon Tue Wed Thu Fri
P1 N[2] N[2] N[2] N[2] N[2] N[2] N[2] E[2]L[2] E[2]L[2]
P2 N[1] N[1] L[1] N[1] L[1] N[1] E[1]L[1] E[1]L[1] L[1] L[1] N[1]
P3 E[1]L[1] E[1]L[1] E[4] E[4] E[4] E[1] E[1] N[1] N[1] E[4] E[4] E[4] E[4]
P4 N[1] L[1] E[1]L[1] N[1] N[1] N[1] N[1] E[1]L[1] N[1]
P5 N[2] E[2]L[2] E[2]L[2] N[2] L[2] E[2]L[2] E[2]L[2] N[2] L[2]
P6 E[2] N[2] E[2] E[2] N[2] E[2]L[2] E[2]L[2] N[2] E[2] E[2]L[2] E[2]L[2] N[2] E[2]
P7 N[2] N[2] E[1] N[2] E[2]L[2] E[2]L[2] N[2] N[2] N[2]
P8 N[5] N[5] N[5] E[5]L[5] N[5] N[5]
P9 L[2] N[2] N[2] N[2] N[2] L[2] E[2]L[2] N[2]
P10 E[2]L[2] E[2]L[2] N[2] N[2] N[2] N[2] N[2] N[2]
P11 N[1] N[1] L[1] N[1] E[1]L[1] E[1]L[1] N[1] N[1] L[1] N[1]
P12 L[1] N[1] N[1] N[1] N[1] L[1] N[1] E[1]L[1] E[1]L[1] L[1] N[1]
P13 E[4] N[2] E[2]L[2] E[2]L[2] E[4] N[2] N[2] N[2] E[4] N[2] N[2]
P14 N[5] N[5] N[5] E[5]L[5]
P15 N[1] L[1] N[1] N[1] N[1] N[1] N[1] E[1]L[1] E[1]L[1]
P16 L[3] N[3] L[3] E[3]L[3] L[3] N[3] L[3] L[1] N[3] N[3] N[3] E[3]L[3] L[3] N[3] L[3]
P17 E[1] E[1] N[1] N[1] E[1] E[1] E[1]L[1] N[1] E[1] N[1] N[1]
P18 E[1] N[1] E[1]L[1] E[1]L[1] E[1] E[1] N[1] N[1] E[1] N[1]
P19 L[3] N[3] N[3] N[3] L[3] L[3] L[3] L[3] N[3] E[3]L[3] E[3]L[3]
P20 E[3]L[3] N[3] N[3] N[3] N[3]
P21 N[4] N[4] L[4] E[4]L[4] E[4]L[4] N[4] L[4] N[4] L[4] N[4] L[4]
P22 E[4]L[4] L[4] N[4] E[4]L[4] N[4] E[2]L[4] E[2]L[2] E[4]L[4] E[2]L[4] N[4] N[2] N[2]
P23 N[4] N[4] N[4] E[4]L[4] N[4] E[4] N[4]
P24 N[3] L[3] N[3] L[3] E[3]L[3] E[3]L[3] N[3] N[3] L[3] N[3] N[3]
P25 E[1]L[1] E[1]L[1] N[1] L[1] N[1] L[1] N[1] N[1] N[1] L[1] N[1] L[1]
P26 E[5]L[5] E[5]L[5] L[5] N[5] L[5] N[5] L[5] L[5] N[5] N[5] N[5]
P27 N[4] L[4] L[4] E[4]L[4] E[4]L[4] N[4] N[4] L[4] N[4] N[4]
P28 E[4]L[4] E[4]L[4] N[4] E[4] N[4] N[4] E[4] E[4] N[4] E[4] E[4]
P29 N[1] N[1] N[1] N[1] E[1]L[1] E[1]L[1] N[1] N[1] N[1]
P30 E[2]L[2] E[2]L[2] N[2] N[2] N[2] N[2] N[2] E[2] N[2]
P31 N[2] N[2] N[3] L[3] E[3]L[3] E[3]L[3] N[2] N[2]
P32 E[3]L[3] N[3] L[3] N[3] E[3]L[3] L[3] L[3] N[3] N[3] L[3] N[3]
P33 L[5] L[5] N[2] L[5] N[5] N[2] L[5] N[2] N[5] L[5] E[5]L[5] E[5]L[5]
P34 N[5] N[5] E[5]L[5] E[5]L[5] L[5] N[5] N[5] L[5] N[5] L[5]
P35 N[6] N[6] E[6]L[6] N[6] E[6]L[6] E[6]L[6] E[6]L[6] E[6]L[6] N[6] N[6] E[6]L[6] L[6]
P36 E[4]L[4] N[4] N[4] N[4]
P37 N[5] N[5] L[6] L[5] N[5] L[6] L[1] N[5] L[6] E[1]L[1] L[5] E[5]L[5] L[6] L[5] N[5]
P38 L[5] N[5] N[5] L[5] L[5] E[5]L[5] E[5]L[5] N[5] N[5] N[5] L[5]
P39 N[6] L[6] E[6]L[6] N[6] N[6] L[6] N[6] E[6]L[6] L[6] N[6] N[6] N[6]
P40 L[4] N[4] N[4] L[4] L[4] E[4] N[4] N[4] L[4] L[4] L[4] E[4]L[4] E[4]L[4]
P41 L[2] N[2] N[2] N[2] N[1] E[1]L[1]
P42 N[3] N[1] E[1]L[1] N[3] N[3] N[3]
P43 L[6] N[6] E[6]L[6] L[6] N[6] N[6] L[6] N[6] N[6]
P44 N[2] N[2] N[2] N[4] N[2] L[4] E[2]L[2] E[2]L[2]
P45 N[6] E[6]L[6] N[6] E[6]L[6] N[6] E[6]L[6] E[6]L[6] N[6] E[6]L[6] N[6] N[6]
P46 E[6] N[6] E[6] E[6] N[6] E[6] N[6] N[6] E[6] N[6] E[6] L[6] E[6] E[6] E[6]L[6] E[6]L[6]
P47 E[6]L[6] E[6]L[6] E[6] N[1] N[6] E[6] N[1] N[1] E[6] N[1] N[1] E[6] N[6]
P48 N[2]
R[1] E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=1 L=1 E=1 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2
R[2] E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=1 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2 E=2 L=2
R[3] E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1
R[5] E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1 E=1
ôd 0.00% 0.00% 12.50% 12.50% 12.50% 12.50% 12.50% 0.00% 0.00% 12.50% 12.50% 12.50% 12.50% 16.67% 0.00% 0.00% 8.33% 12.50% 12.50% 0.00% 12.50% 0.00% 0.00% 8.33% 12.50% 12.50% 12.50% 12.50% 0.00% 0.00%

E=Early, L=Late, N=Night; 1=Area 1, 2=Area 2, 3=Area 3, 4=Area 4, 5=Area 5, 6=Area 6
Overtime: 496
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APPENDIX K — PUBLICATIONS, CONFERENCES AND SEMINARS

International peer-reviewed journals or conferences:

• Wickert, Toni I.; Smet, Pieter; Vanden Berghe, Greet: The nurse rerostering prob-

lem: strategies for reconstructing disrupted schedules, Computers and Operations

Research, volume 104, pages 319-337, 2019. DOI: <http://dx.doi.org/10.1016/j.

cor.2018.12.014>;

• Wickert, Toni I.; Kummer Neto, Alberto F.; Buriol, Luciana S.: An integer pro-

gramming approach for the physician rostering problem, In Proceedings of the

12th International Conference of the Practice and Theory of Automated Timetabling

(PATAT 2018), pages 53-67, Vienna – Austria, 28/08/2018 – 31/08/2018;

• Portella, Victória; Buriol, Luciana S.; Wickert, Toni I.: Metaheurística Late Ac-

ceptance Hill Climbing Aplicada ao Problema de Escalonamento de Enfermagem,

In Proceedings of the Brazilian Symposium on Operations Research (SBPO 2018),

Rio de Janeiro, RJ, Brazil, 06/08/2018 – 09/08/2018;

• Wickert, Toni I.; Sartori, Carlo; Buriol, Luciana S.: A Fix-and-Optimize VNS Al-

gorithm Applied to the Nurse Rostering Problem, In proceedings of Sixth Interna-

tional Workshop on Model-based Metaheuristics (Matheuristic 2016), pages 1-12,

Brussels – Belgium, 04/09/2016 – 07/09/2016.

Abstract or extended abstract presented in international conferences:

• Wickert, Toni I.; Mosquera Nuñez, Federico; Smet, Pieter; Thanos, Emmanouil:

Optimizing city-wide vehicle allocation for car sharing, 32nd Annual Conference

of the Belgian Operation Research Society (ORBEL 32), Liege, Belgium, 1/2/2018

- 2/2/2018;

• Wickert, Toni I.; Smet, Pieter; Vanden Berghe, Greet: A mathematical modeling

approach for robust nurse rostering, 29th European Conference On Operational

Research (EURO 2018), Valencia, Spain, 8/7/2018 – 11/7/2018;

• Wickert, Toni I.; Smet, Pieter; Vanden Berghe, Greet: Reconstructing Disrupted

Nurse Rosters, Operational Research Applied to Health Services (ORAHS2017),

Bath, United Kingdom, 30/7/2017 - 4/8/2017;

• Wickert, Toni I.; Sartori, Carlo; Buriol, Luciana S.: A fix-and-optimize heuristic

applied to the Nurse Rostering Problem,Workshop on Applied Combinatorial Opti-

mization Methods (WACOM 2016), Ouro Preto – Brazil, 21/03/2016 – 23/03/2016.

http://dx.doi.org/10.1016/j.cor.2018.12.014
http://dx.doi.org/10.1016/j.cor.2018.12.014
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Seminars:

• Wickert, Toni I.: Strategies for reconstructing disrupted schedules. 2nd workshop

on personnel planning and management. Place: Vrije Universiteit Brussel (VUB) -

Room C2.07a (building C, 2nd floor) Date: 15/09/2017;

• Wickert, Toni I.: Reconstructing Disrupted Nurse Rosters. Place: KU Leuven -

Technologiecampus, Gebr. De Smetstraat 1, 9000 Gent. Date: 13/07/2017 11:00.
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