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Introduction 

Throughout this paper R is a ring with an identity element anel p is an 
automorphism of R. The skew Laurent polynomial ring R( X; p) is the ring 
whose elements are of the form L:i=m Xiai, ai E R, where the add ition is 
defined as usually and the multiplication by aX = Xp(a), for every a E R{5] . 
T he skew polynomial ring R[ X; p] is the subring of R( X; p) whose elements 
are the polynomials L:i~o Xiai, ai E R. 

A ring R is said to be a Jacobson ring if every prime ideal of R is an 
intersection of primitive (either left or right) ideais. It is well known that R 
is a Jacobson ring if and only if the polynomial ring R[X] is a Jacobson ring 
[16]. This result has been extended to other classes of prime ideais in [10] 
and· related questions for skew polynomial rings R[X;p) (resp. R(X;D], Da 
derivation of R) have been considered in (11), (13), (14) and (15) (resp. (7), (8)). 
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e Tecnológico (CN Pq), Brazil, and Programa de Matemática de Rosario (Conicet-UN R), 
Argentina. 



In particular, in [10] the authors gave the notion of an A-Jacobson ring, 
where A is a class of prime rings. An A-Jacobson ring is a ring R such that 
every prime ideal is an intersection of A-ideals (i.e. ideais P with R/ P E A). 
It is proved that if Ris an A-Jacobson ring, then R[X] is an A-Jacobson ring, 
for many classes of prime rings A. 

The purpose of this paper is to study when every prime ideal of R(X; p) 
(resp. R[X; p]) is an intersection of prime ideais of some particular type fol­
lowing a similar treatment to that in [10]. First we study s-Jacobson rings, i.e., 
A-Jacobson rings when Ais the class of (right) strongly prime rings. Then we 
show that the results can be easily extended to other classes of prime rings. 
In particular, we recover well known results on classical Jacobson rings. 

Section 1 is an introductory section. In section 2 we study when R(X; p) is 
an s-Jacobson ring. The main result of this section shows that this is the case 
if and only if R is an sp-Jacobson ring, where an sp- Jacobson ring is defined 
in a similarly way as an s-Jacobson ring. 

In section 3 we consider the same question for R[X; p]. We prove that 
R[X; p] is an s-Jacobson ring if and only if Ris s-Jacobson and (R, p) is sP­
Jacobson (where sP-Jacobson will be defined latter and is slightly weaker than 
Sp-Jacobson). 

In section 4 we note that the results of sections 2 and 3 can be easily 
extended to other classes of prime rings. We obtain general theorems which 
include the above results. We apply these results to other classes of prime 
ideais in section 5, where we recover the results on classical Jacobson rings. 

1 Pre requisit e s 

Prime ideais of R(X; p) and R[ X; p] have been studied in severa! papers 
([1], (3], (14]). In particular, a complete description of R-disjoint prime ideais 
has been given in (3]. We will use frequently these results. Now we recall some 
definitions and basic facts. 

An ideal I of R is said to be a p-ideal (p- invariant ideal) if p(I) Ç 
I (p(I) =I). A p-invariant ideal P of Ris said to be p-prime (resp. strongly 
p-prime) if I J Ç P for any p-invariant ideais I and J (p-ideal I and ideal J) 
of R implies either I Ç P or J Ç P. A p-prime (strongly p-prime) ring R 

. is d~fined obviously. The terminology is taken from (1] and (3] anel does not 
agree with that of references (13] and (14]. It is convenient to remark that 
strongly p-prime is not the same as p-strongly prime (see § 2). 

The automorphism p of R can be extended to R(X;p) (and R(X;p]) by 
the natural way. We denote the extension by p again. Every ideal of R(X; p) 
is p-invariant. 

Let I be a non-zero R-disjoint ideal of R[X; p]. We denote by r(!) (resp. 



J.L(l)) the ideal of R consisting o f O and all the leading coefficients ( resp. 
constant terms) of all the polynomials of minimal degree in I, and we put 
1U) = TU) n J.L(I). For f E R[X; p] we denote by óf the degree of f and we 
define the minimality of I by NlinU) = Min {óf : O =f; f E I}. 

An element f E R(X; p) is said to be a proper polynomial if f= L:i=o Xiai, 
where a0 f; O. If I is an R-disjoint ideal of R( X; p) the ideais TU), J.LU) an el 
1U) are clefined as above consiclering elements of minimallength and they are 
p-invariant ideais. 

The following results on prime ideais will be very useful (c. f. [1], sect ion 1 
anel [3], sections 2, 3). 

LEMMA 1.1 Let P be an R-disjoint ideal o f R(X; p). Then P is prime 
if and only if R is p- prime and one of the following conditions is fulfilled 

i) p =o. 
ii) P is maximal with respect to P n R= O. 

LEMMA 1.2 Let P be an R-disjoint ideal of R[X; p]. Then P is prime if 
and only if one of the following conditions is fulfilled 

i) Ris prime and X E P. 

ii) R is strongly p-prime, X rf. P and either P = O or P is maximal with 
respect to P n R = O. 

In the first case P = X R[ X; p) and in the second case X is regular modulo 
P and P is p-invariant. 

2 Skew Laurent polynomial • r1ngs and s-
Jaco bson rings. 

For the notions of ( righ t) strongly prime ( s. prime, for shortness) and p­
s.prime rings and ideais and the s.prime (p-s.prime) radical s(R) (sp(R)) of 
R we refer to [6]. 

The ring R ís said to be s-Jacobson if every prime ideal of R i::; an inLer­
secÚon of s.prime ideais. Similarly, the pair (R,p) (a ring R with an automor­
phism p) is said to be Sp-J acobson i f every p-prime ideal of R is an inLersection 
of p-s.prime ideais. 

The main result of this section is the following 

THEOREM 2.1 Let R be a ring and p an automorphism of R. Then 
R(X; p) is s-J acobson i f and only i f R is s P-J acobson. 



There are t.wo essentially different. part.s in the proof of Theorem 2.1. The 
"only if' partis straightforward and specific for this case. We need the follow­
mg. 

LEMMA 2.2 If P is an s.prime ideal of R( X; p), then PnR is a p-s.prime 
ideal of R. 

PROOF: Since P n R is a p-invariant ideal of R we may factor out this 
ideal and assume that P n R = O. If I is a non-zero p-invariant ideal of R , 
then I (X; p) is an ideal of R( X; p} which is not contained in P. Hence there 
exists a fini te set. F Ç I (X; p} w hich is an insulator modulo P. Th us the set 
of all the coefficients of ali the polynomials in F is an insulator in R which is 
contained in I. 

The " if' part of Theorem 2.1 is more interesting. In fact, this partis non­
trivial and, furthermore, it follows the lines of ((10), Theorem 5). In this way 
we give a proof which can be repeated for several other classes of Jacobson 
rmgs. 

In [10], there are two main point.s: the key Lemma 3 and the condition (A). 
Lemma 3 is general and can be applied to use the going up argument: given a 
non-zero prime ideal Q of R and an R-disjoint ideal P of R[X] with r(P) g; Q, 
to find a prime ideal Q* of R[X] such that Q* n R = Q and Q* 2 P. The 
corresponding lemma in our case is the following. 

LEMMA 2.3 Let P be an R-disjoint· ideal of R(X; p} and le t Q be a 
non-zero p-prime ideal of R. If 1(P) g; Q, then (P + Q(X; p)) n R= Q. 

PROOF: Assume to the contrary that. there exists r E R\ Q such that 
r = h 1 + h2 , for some h1 E P anel h2 E Q(X; p). It follows that there exists 
9 = L:~t Xiai E P such that ai E Q for i =I O and a0 f/ Q. Take such a 9 o[ 
minimal length !(9) = m- t. 

Assume m > O. Since 1(P) g; Q we have r(P) g; Q and there exists 
f = L:'J=u Xibi E P of minimal length in P with bn f/. Q. We may a lso 
assume n = m because X is invertible. Further, since Q is p-prime there 
exists an integer number v and r E R such that pv(bn)m0 f/ Q. Then h = 
pv(bn)r9-pn+v(J)pn(1·)an E P has length l(h) < n-t = l(9), which contradicts 
the minimali ty of L(9 ). 

The case m = O can be handled similarly using J.L(P) g; Q. 

REMARK 2.4 A similar result holcls if Q is a maximal p-invariant left 
ideal of R instead of a p-prime ideal. The proof is the same as in Lemma 2.3. 
This fact will be used in section 5. 



The class of strongly prime rings satisfy condition (A) of [10]. In our case 
this condition takes the following form: 

LEMMA 2.5 If R is a p-s.prime ring and P is an R-disjoint ideal of 
R( X; p} whích is maximal with respect to P n R = O, then P is an s.prime 
ideal. 

PRO O F: Let I be an ideal of R( X; p} with I -:J~: P. By the maximality 
of P we have I n R i= O and so there exists a finite set F Ç In R such that 
Fa = O, a E R, implies a= O. We show that F is an insulator modulo P in 
R(X;p}. This is clear if P =O. So we may assume P =/=O. 

By ([3], Theorem 1.8), there exists a monic irreducible proper polynomial 
!o E Q(X; p} such that P = f 0Q(X; p} n R( X; p}, where Q is here the right 
(Martindale) p-quotient ring of R. Let h be an element of R(X; p} with F h Ç 
P . Take an integer number t such that X' h E R[X; p). Since fo is monic there 
exist g, r E Q[X; p] with X' h = j0g +r, where ór < óf0 = !vfin(P). Hence 
h = x-t f 0g + x-'r and so F x-t,. Ç f 0Q(X; p}. Take a p-invariant ideal H of 
R such that 1·H Ç R[X; p] . It follows that F x-tr H Ç P, hence F x-',·H = O 
and we easi ly obtain r = O. Consequently h = x-t f 0g E P. The proof is 
complete. 

REMARK 2.6 It is not difficult to show that if R is a p-s.prime ring, 
then every prime ideal P of R(X; p} with P n R= O is s.prime . But for our 
purposes all what we need is Lemma 2.5 because of the following. 

LEMMA 2. 7 Let R be a p-prime ring. Then the intersection of all 
the R-disjoint prime ideals P of R(X; p) which are maximal with respect to 
P n R = O is zero. 

PROOF: If there is no non-zero R-disjoint ideal of R( X; p} the result is 
ele ar . The other case follows from ( [3], Corollary 2.11 ). 

As an immediate consequence of Lemmas 2.5 and 2. 7 we have. 

COROLLARY 2.8 If Ris a p-s.prime ring, then s(R(X; p)) = O. 

Now we are in position to prove the theorem. 

PROOF OF THEOREM 2.1 Assume R(X;p) is an s- Jacobson ring and 
Pisa p-prime ideal of R. Then P(X;p) is a prime ideal of R(X;p} and we 
have P(X; p) = nienQi, where ( Qi)ien is a family of s.prime ideais of R( X; p). 
Thus, P = nien(Qi n R) and (Qi n R)ien is a family of p-s.prime ideais of R 



by Lemma 2.2. Therefore Ris an Sp-Jacobson ring. 
Conversely, assume that R is an Sp-Jacobson ring and let P be a prime 

ideal of R( X; p}. Then P n R is a· p-prime ideal of R and by factoring out 
this ideal we may assume P n R = O and R is p-prime. By the assump­
tion we have O= nienQi, where (Qi)ien is a family of p-s.prime ideais of R. 
Hence nienQi(X; p} =O, where Qi(X; p} is an intersection of s.prime ideais of 
R(X; p} by Corollary 2.8. This takes care of the case P = O. Thus we may 
assume P =f; O and so P is maximal with respect to P n R= O. 

Since Ris p-prime we have 1(P) =f; O. Thus there exists a subfamily (Qi)ieO 
of (Qi)ien such that njeoQj = O and 1(P) ~ Qi for every j E fJ. By Lemma 
2.3, (P+Qi(X;p})nR= Qi and so thereexists an ideal Qj of R(X;p} which 
is maximal with respect to Qj 2 P and Qj n R = Qil j E fJ. Lemma 2.5 
tells us that Q] is an s.prime ideal of R(X; p) and since (njeoQj) n R= O and 
nieoQj 2 P we obtain nieoQj = P. The proof is complete. 

Now we give some additional remarks. First we show that R( X; p) need 
not be an s-J acobson ring when Ris an s-Jacobson ring. 

EXAMPLE 2.9 (c. f. [2], Example 2.4). Let J( be a field, X = (Xi)ieZ a 
set of indeterminates and A = K[X] the polynomial ring over ](. Let p be the 
f(- automorphism of A defined by p(Xi) = Xi+l for ali i E Z. For an integer 
n 2: 2 we put R= A/ P, where P is the ideal of A generated by {Xt :i E Z} 
and we denote by p again the automorphism induced by p. T hen Ris a local 
ring wi th the maximal ideal J\11 generated by {X i + P : i E Z}. Further, the 
ring R is p-prime ([2], Lemma 2.5). Thus, Ris s-J acobson and R(X; p) is not 
an s-Jacobson ring. 

In fact, clearly R is an s-Jacobson ring. If there exists a p-invariant ideal 
Q of R such that R/Q is p-s.prime we easily obtain Q = M, because M/Q 
does not contain an insulator ([12], Corollary 2.2). It follows that R is not a.n 
sp-J acobson ring and so R(X; p} is not s-Jacobson, by Theorem 2.1. 

The former example shows that it is natural to ask for additional conditions 
under which R( X; p) is an s -Jacobson ring when Ris an s-Jacobson ring. To 
give these conditions we introduce a notation. Let I be an ideal (left ideal) of 
R. We denote by f (J) the largest subideal of I which is p-invarian t. We easi ly 
see f(J) = niezpi(J) ={a E R: pi(a) E I, Vj E Z}. 

Assume that R( X; p} is an s-Jacobson ring. Then Ris an Sp-Jacobson ring 
and so if Q is a p-prime ideal of R we ha~e Q = nienPi, where (Pi)ien is a 
family of p-s.prime ideais. Further, for every i E 51 there exists an s.pri me 
ideal Li of R such that r( Li) = Pi ([6], Lemma 1.2(ii)). Thus Q = ni,iPi (Li) is 
semiprime. Also, if P is an s-prime ideal of R it is clear that sp(R/f(P)) = O 
since f(P) is p-prime. Consequently the fol\owing conditions are necessary for 



R(X; p) to be an s-Jacobson ring. 

( C1 ) For every p-prime ideal Q of R, R/ Q is semi prime. 

(C2 ) For every s.prime ideal P of R, sp(Rjf(P)) = O. 

COROLLARY 2.10 Let R be an s-Jacobson ring. Then R(X; p) 1s s­

Jacobson if and only if (CI) anel (C2) holcl. 

PROOF: Assume that (C1) and (C2 ) hold. If Q is a p-prime ideal of R, 
then Q is an intersection of prime ideais and so an intersection of s.prime 
ideais. Then Q = nienf(Pi), where (Pi)ien is a family of s.prime ideais. Thus, 
condition (C2 ) tells us that sp(RJQ) =O and it follows that Ris sp-Jacobson. 
Theorem 2.1 completes the proof. 

R EMARK 2.11 Note that condition (C1) holds if the p-prime radical 
of R/Q equals the prime radical, for every p-prime ideal Q of R. Similarly, 
condition (C2 ) holds if the sP-prime radical of Rjf(P) equals the s.prime 
radical, for every s.prime ideal P of R. Assumptions on R and p can be given 
in order to have the validity of these facts. Some results in this direction have 
been obtained in severa! papers ([2], [4], [6] and [14]). We mention here just 
one more example. 

The automorphism p is said to be left locally integral on R if for every 
a E R the p-invariant left ideal [a] of R generated by ais finitely generated [9). 
In this case there exists an integer number n > O such that [a] is generated 
by {p-n(a), ... ,a, ... ,p11 (a)}. It is not difficult to show that if p is left locally 
integral, then for every p-prime ideal Q of R there exists a prime ideal L 
with f(L) = Q. Also, if P is an s.prime ideal of R, then f(P) is p-s.prime. 
Therefore the conditions (C1 ) and (C2 ) hold when the automorphism p is left 
locally integral on R. 

3 Skew polynomial rings. 

The purpose of this section is to show that the method of the former 
section can be adapted to study the skew polynomial ring R( X; p}. 

';['he definition of an Sp-Jacobson ring has to be slightly weaker than Lhe onc 
used in section 2. We say that (R, p) is an s;, -J acobson ring i f every strongly 
p-prime ideal of R is an intersection of p-s.prime ideais. Clearly, if R is an 
Sp-Jacobson ring, then R is an s;,-Jacobson ring. 

We will prove the following. 

THE OREM 3.1 Let R be a ring and p an automorphism of R. Then 
R[X; p] is an s-Jacobson ring if anel only if R is an s-Jacobson ring and an 



sÍ>-Jacobson ring. 

As in the former section first we prove some lemmas. 

LEMMA 3.2 If P is an s.prime ideal of R[X; p) with X <f. P, then P n R 
is a p-s.prime ideal of R. 

PROOF: It is similar to the proof of Lemma 2.2. 

The next lemma is the corresponding to Lemma 2.3. 

LEMMA 3.3 Let P be an R-disjoint p-invariant ideal of R[X ~ p] and let 
Q be a non-zero strongly p-primeideal of R. Ifr(P) ~ Q, then (P+Q[X;p])n 
R=Q. 

PROOF: By the assumption there exists a polinomial 9 =ao+ X a1 + ... + 
Xmam E P which is of mínima! degree with respect to ao <f. Q, a1, ... , an E Q. 
Since r(P) ~ Q there exists f= b0 +Xb1 + ... +Xnbn E P of minimal degree in 
P wi th bn <f. Q. Also, since Q is strongly p-prime there exists j ~ O and 7' E R 
such that pi(bn)ra0 <f. Q. Therefore h= pi(bn)1'9- xm-npi+m(J)pm(r)am E P 
which is a contradiction to the minimality of 8g. 

REMARK 3.4 The same result holds if Q is a maximal left ideal of R 
instead of a strongly p-prime ideal. 

The corresponding to Condition (A) of [10] is not as simple as Lemma 2.5, 
in this case. The reason is that the analogous of Lemma 2. 7 is no more true, 
in general. We state this as follows. 

LEMMA 3.5 Let R be a p-s.prime ring ancllet P be an R-disjoint prime 
ideal of R[X;p]. Then s(R[X;p]/P) =O. 

PROOF: Assume that X </. P anel P f. O. Then L = Li>o x-i P is an 
R-disjoint ideal of R( X; p} which is maximal with respect to [ n R = O ([3], 
Corollary 3.3). Hence L is s.prime by Lemma 2.5 anel we easily show that P 
is s:prime. 

Since sp(R) = O we have s(R) = O ([6), Lemma 1.2(iii)). Then the case 
P = O is covered by ([6], Theorem 3.8). In the remaining case P = X R[ X; p) 
and the result follows from R[X; p)j P ~R. 

Now we prove the Theorem 



PROOF OF THEOREM 3.1 Assume that R[X; p] is an s-Jacobson ring. 
Then R:::::::: R[X;p]jXR[X;p] is also an s- Jacobson ring. Let P be an strongly 
p-prime ideal of R. By factoring out the ideal P we may assume P =O and R 
is a strongly p-prime ring. Hence R[ X; p] is prime and so O = nienLi, where 
(Li)ieO is a family of s.prime ideais of R[X; p]. Let (L;);eo be the subfamily 
consisting of ali the members of (Li)ien with X rt L;,j E O. We easily obtain 
n;eoLJ = O and hence nJeo(LJ n R) = O, where (Li n R);eo is a family of 
p-s.prime ideais of R, by Lemma 3.2. Consequently, Ris an sP-Jacobson ring. 

Conversely, assume that R is an s-Jacobson and an sP-Jacobson ring and 
let P be a prime ideal of R[X; p]. 

If X E P , then PnR is a prime ideal of R and we obtain s(R[X; p]j P) =O, 
since R[X;p]/P:::::::: Rj(P n R) and Ris s-Jacobson. So we may assume that 
X rt P and, by factoring out PnR, Ris strongly p-prime and PnR = O. Then 
there exists a family (Qi)ien of p-s.prime ideais of R such that nienQi =O. It 
is easy to see that every p- s.prime ideal of Ris strongly p-prime. This implies 
that Qi[X; p] is prime. By Lemma 3.5 we have s(R[X;p]) Ç nienQi[X; p] =O, 
w hich covers the case P = O. 

It remains to consider the case P ::j: O. Then P is maximal with respect to 
PnR =O. Since 1(P) ::j: O there exists a subfamily (QJ);eo of (Qi)ien such that 
1(P) ~ Qj (for j E B) and njeoQj = O. Lemma 3.3 can be applied because 
P is p-invariant and Q; is strongly p-prime. Thus, there exists an ideal Qj o[ 

R[X; p] such that Qj 2 P and it is maximal with respect to Qj n R = Qi. 
If X E QJ for some j E O, we easily obtain J.L(P) Ç Q;, a contradiction. 
Therefore X r/ QJ for ali j E O and it follows that Qj is prime. By Lemma 3.5, 
s(R[X; p]/Qj) = O and by the maximality of P we have n}eoQj = P. Thus 
s(R[X;p]/P) =O and the proof is complete. 

The following corollary is an easy consequence of Corollary 2.10. 

COROLLARY 3.6 Assume that Ris an s-Jacobson ring anel (C1 ) anel 
(C2) hold. Then R[X;p] is an s- Jacobson ring. 

4 Generalization 

.As we have pointed out in section 2 we can repeat the proof of Theorem 2.1 
for other classes of prime ideais. In this way, every time we choose convenient 
classes of prime and p-prime rings such that some condition like condition (A) 
in [10] is satisfied, we obtain a theorem giving sufficient conditions for every 
prime ideal of R(X; p) to be an intersection of prime ideais of some spccia.l 
type. The treatment is similar to the one given in [8) for differential rings anel 
can be summarized as follows. 



Let A be a class of prime rings and let B be a class of p-prime rings (with 
automorphism). We say that an ideal (resp. p-invariant ideal) P of R is an 
A-ideal (resp. B-ideal) if R/ P E A (resp. R/ P E B). We denote by A( R) 
(resp. B(R)) the intersection of ali the A-ideais (resp. B-ideals) of R. The ring 
Ris said to be an A-Jacobson ring if every prime ideal of Ris an intersection 
of A-ideais. A B-Jacobson ring is defined similarly ([10}, (8]). Examples of this 
classes of rings a re J acobson, s-Jacobson, p-Jacobson and Sp- Jacobson rings. 

Now suppose that a class of prime rings A and a class of p-prime rings B 
are given. We say that (A, B) satisfies the condition (A) if the following holds 

(A) If (R,p) E B, then R(X;p)JP E A for every ideal P o[ R(X;p) which is 
maximal with respect to P n R= O . . 

By Lemma 2.5 the condition (A) is sat isfied if A is the class of s.prime 
rings and B is the class of p- s.prime rings. 

As an easy consequence of Lemma 2. 7 we have 

LEMMA 4.1 Assume that A and B are given and the condition (A) is 
satisfied. If (R,p) E B, then A(R(X;p)) =O. 

Thus, using the same arguments as in Theorem 2.1 we easily obtain 

THE OREM 4.2 Suppose that classes of prime and p-prime rings A and 
B are given and the condition (A) is satisfied. If (R, p) is a B-Jacobson ring, 
then R( X; p) is an A-Jacobson ring. 

The results of section 3 can also be generalized. Assume that B is a class 
of strongly p-prime rings. We say that a ring R (with the automorphism p) 
is a weakly B- Jacobson (w.B-Jacobson for shortness) ring if every strongly 
p-prime ideal of R is an intersection of 8-ideals. 

We say that the pair (A, B) satisfies the condition (B) if the following holds 

(B) If (R,p) E B, then A(R(X;p)JP) =O for every R-disjoint prime ideal P 
of R(X;p). 

By Lemma 3.5 the condition (B) is satisfied in the s.prime case. 
Repeating the proof of Theorem 3.1 we have 

THE OREM 4.3 Assume that classes of prime and strongly p-prime rings 
A and B are given and the condition (B) is satisfied. If (R, p) is an A- J acobson 
anda w.B-J acobson ring, then R[X ; p) is an A-Jacobson ring. 

It is also possible to give a generalization of Corollaries 2.10 and 3.6. For 
example, suppose that the pair (A , B) satisfies (A). We say that (R, p) satisfies 
(C) if the following conditions hold. 



(CJ) For every p-prime ideal Q of R, R/Q is semiprime. 

(C2) For every A-ideal P of R, B(Rjr(P)) =O. 

As in Corollary 2.10 we easily obtain 

COROLLARY 4.5 Assume that classes of prime and p-prime rings A and 
B are given and the condition (A) is satisfied. If Ris an A-Jacobson ring and 
p is an automorphism of R such that the condition (C) holds, then R(X; p) is 
an A-J acobson ring. 

5 Applications. 

The results of the former section can be applied to severa} particular cases. 
First we recover the classical and well known case of Jacobson rings. 

Recall that an ideal P of Ris said to be (left) p- primitive if there exists a 
maximal p-invariant left ideal L of R such that (L: R) = {a E R: aR Ç L} = 
P [14]. The ideal (L : R) is the largest ideal of R contained in L. Further, 
(L : R) is p-invariant. The ring R is said to be a p-Jacobson ring if every 
p-prime ideal of R is an intersection of p-primitive ideais and is said to be a 
w .p-Jacobson ring i f every strongly p- prime ideal of R is an intersection of 
p-primitive ideais. 

Note that the definition of a p-Jacobson ring given in [14] coincides with 
the above definition of a w.p-Jacobson ring (a strongly p-prime ideal is called 
simple a p-prime ideal in [14]). 

First we prove condition (A) . 

LEMMA 5.1 Assume that R is a p-primitive ring and P is an ideal of 
R( X; p) which is maximal with respect to P n R= O. Then P is a primitive 
ideal. 

PROOF: Let L be a maximal p-invariant left ideal of R wi th (L :R) = O. 
If R(X; p) has no non-zero R-disjoint ideal, then P = O and L(X; p) is a 

left ideal of R(X; p) with L(X; p) n R = L. In the other case P f O and so 
1(P) f O. It follows that 1(P) ~ L and so (L(X; p) + P) n R= L, by Remark 
2.4.· 

Thus, in both cases there exists a left ideal L* of R(X;p) which is maximal 
wi th respect to L • 2 P and L· n R = L. Hence L • is a maximal left ideal of 
R(X; p) and we easily see that (L• : R(X; p)) = P. The proof is complete. 

As a consequence of Lemma 5.1 and Theorem 4.2 we have 



COROLLARY 5.2 If Ris a p-Jacobson ring, then R(X; p) is a Jacobson 
ring. 

REMARK 5.3 The above corollary can also be obtained using the argu­
ments in [14]. Because of this it is well known. 

Now we consider the skew polynomial ring case. 

LEMMA 5.4 Let R be a p-primitive ring. Then the Jacobson radical 
J(R[X;p]/P) =O for every R-disjoint prime ideal P of R[X;p]. 

PROOF: Let L be a maximal p-invariant left ideal of R with (L : R) = O. 
First note that R is semiprirnitive. In fact, let H be a m aximal left ideal of 
R such that f(H) = L. Then P = (H : R) is primitive and so O = f(P) = 
niez/(P) is semiprirnitive. Thus, if X E P we have J(R[X; p]j P) = J(R) =O. 

So we may assume X tj P. We consider two cases. 
CASE I: There exists a non-zero R-disjoint ideal which does not contain 

X. 
Suppose that P =/; O. Then P is p-invariant and maximal with respect to 

P n R = O. Also 1(P) ÇS H and by Remark 3.4 there exists a left ideal H* 
of R[X; p] containing P which is maximal with respect to H* n R = H. So 
H· is a maximal left ideal and the ideal Q = (H• : R[ X; p]) is primitive and 
contains P. If X E Q we easily obtain that J.l-(P) Ç Q n R Ç H. Therefore 
X tj Q and it follows that Q is p-invariant. Then Q n R = O anel we obtain 
Q = P. So P is primitive. 

Since the intersection of ali the non-zero prime ideais P with X tj P is zero 
in th is case ([3], Corollary 3.4(ii)), we also have J(R[X; p]) =O. 

CASE li: There is no a non-zero R-disjoint ideal which does not contain 
X. 

Since X tj P we have P =O. Also, J(R[X; pJ)nR = O since Ris semiprimi­
t ive. So we have either J(R[X;p]) =O or X E J(R[X;p]). The last possibility 
implies that there exists f E R[X; p] with X+ f+ X f= O, which is clearly a 
contracliction. The proof is complete. 

I t is easy to see that every p-primitive ideal is strongly p-prime. Since 
condition (B) holds we have the following corollary which is already contained 
in ([14], Proposition 4.15). 

COROLLARY 5.5 If Ris a Jacobson ring anda w.p- Jacobson ring, then 
R[X; p] is a Jacobson ring. 

REMARK 5.6 Corollary 5.5 can also be obtained using ((14], Theorem 



4.4). In fact, if Ris a Jacobson anda w.p- Jacobson ring, then it is not difficult 
to show that conditions [4.1] and [4.3] of [14] hold. 

Finally, we discuss some other examples. 

EXAMPLE 5.7 If Ris a p-simple ring and P is an ideal of R(X; p) which 
is maximal with respect to P n R= O, then Pisa maximal ideal of R(X;p). 
So applying the results of section 4 to the classes of simple and p-simple rings 
we obtain that if Ris a p-Brown-McCoy ring, then R(X; p) is a Brown-McCoy 
ring. 

Now, the Brown-McCoy radical G(R[X; p]) of R( X; p] is not necessarily 
zero when R is p-simple. For example, if l is not an inner automorphism 
of the right p- quotient ring Q of R for all k 2:: 1, then the unique non- zero 
R-disjoint ideal of R[X; p] is X R(X; p] = G(R[X; p]) ((3), Lemma 1.3 and 
Corollary 3.4). Therefore R(X; p) is not necessarily a Brown-McCoy ring when 
R is a Brown-McCoy ring and a p-Brown-McCoy ring. This is the case, for 
example, if R is simple and no power of p is inner on R. Perhaps these remarks 
add some new light on why isso important the condition on p being a "power 
inner" automorphism of R in (15). 

EXAMPLE 5.8 We say that R is Z-Jacobson (Zp-Jacobson) if every 
prime (p-prime) ideal of R is an intersection of non-singular prime (p-prime) 
ideais. If R is a non-singular p-prime ring and P is an ideal of R( X; p) which 
is maximal with respect to P n R = O, then P is a prime non-singular ideal 
([3], Lemma 4.4). Consequently, if Ris a Zp-Jacobson ring, then R( X; p} is a 
Z-Jacobson ring. The converse is also true in this case. 

Similarly, R is a Z-Jacobson ring and a w.Zp-Jacobson ring if and only if 
R[ X; p] is a Z-Jacobson ring, where a w .Zp-Jacobson ring is defined by the 
obvious way. 

REMARK 5.9 The results of section 4'can also be applied to other classes 
of prime rings as prime nil (locally nilpotent) semisimple rings, prime G-rings 
and prime Noetherian rings. We leave the statements of these results to the 
reader. 
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