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Introduction

Throughout this paper R is a ring with an identity element and p is an
automorphism of R. The skew Laurent polynomial ring R(X;p) is the ring
whose elements are of the form ¥  X‘a;, a; € R, where the addition is
defined as usually and the multiplication by aX = Xp(a), for every a € R[5].
The skew polynomial ring R[X; p] is the subring of R(X;p) whose elements
are the polynomials "%, X'a;, a; € R.

A ring R is said to be a Jacobson ring if every prime ideal of R is an
intersection of primitive (either left or right) ideals. It is well known that R
is a Jacobson ring if and only if the polynomial ring R[X] is a Jacobson ring
[16]. This result has been extended to other classes of prime ideals in [10]
and related questions for skew polynomial rings R[X; p] (resp. R[X; D], D a
derivation of R) have been considered in [11], [13], [14] and [15] (resp. (7], [8]).

*This paper was partially supported by Conselho Nacional de Desenvolvimento Cientifico
e Tecnolégico (CNPq), Brazil, and Programa de Matemadtica de Rosario (Conicet-UNR),
Argentina.



In particular, in [10] the authors gave the notion of an A-Jacobson ring,
where A is a class of prime rings. An A-Jacobson ring is a ring R such that
every prime ideal is an intersection of A-ideals (i.e. ideals P with R/P € A).
It is proved that if R is an A-Jacobson ring, then R[X] is an A-Jacobson ring,
for many classes of prime rings A.

The purpose of this paper is to study when every prime ideal of R(X;p)
(resp. R[X;p]) is an intersection of prime ideals of some particular type fol-
lowing a similar treatment to that in [10]. First we study s-Jacobson rings, i.e.,
A-Jacobson rings when A is the class of (right) strongly prime rings. Then we
show that the results can be easily extended to other classes of prime rings.
In particular, we recover well known results on classical Jacobson rings.

Section 1 is an introductory section. In section 2 we study when R(X; p) is
an s-Jacobson ring. The main result of this section shows that this is the case
if and only if R is an s,-Jacobson ring, where an s,- Jacobson ring is defined
in a similarly way as an s-Jacobson ring.

In section 3 we consider the same question for R[X;p]. We prove that
R[X; p] is an s-Jacobson ring if and only if R is s-Jacobson and (R, p) is s)-
Jacobson (where s;-Jacobson will be defined latter and is slightly weaker than
s,-Jacobson).

In section 4 we note that the results of sections 2 and 3 can be easily
extended to other classes of prime rings. We obtain general theorems which
include the above results. We apply these results to other classes of prime
ideals in section 5, where we recover the results on classical Jacobson rings.

1 Prerequisites

Prime ideals of R(X;p) and R[X;p] have been studied in several papers
([1], [3], [14]). In particular, a complete description of R-disjoint prime ideals
has been given in [3]. We will use frequently these results. Now we recall some
definitions and basic facts.

An ideal I of R is said to be a p-ideal (p- invariant ideal) if p(I) C
I (p(I)=1I). A p-invariant ideal P of R is said to be p-prime (resp. strongly
p-prime) if IJ C P for any p-invariant ideals I and J (p-ideal I and ideal J)
of R implies either I C P or J C P. A p-prime (strongly p-prime) ring R
is defined obviously. The terminology is taken from [1] and (3] and does not
agree with that of references [13] and [14]. It is convenient to remark that
strongly p-prime is not the same as p-strongly prime (see § 2).

The automorphism p of R can be extended to R({X;p) (and R[X;p]) by
the natural way. We denote the extension by p again. Every ideal of R(X; p)
is p-invariant.

Let I be a non-zero R-disjoint ideal of R[X;p]. We denote by 7(/) (resp.



p(I)) the ideal of R consisting of 0 and all the leading coefficients (resp.
constant terms) of all the polynomials of minimal degree in I, and we put
y(I) = 7(I) N u(I). For f € R[X;p] we denote by éf the degree of f and we
define the minimality of I by Min(I) = Min {6f : 0 # f € I}.

An element f € R(X;p) is said to be a proper polynomial if f = ¥°% , X'a;,
where ag # 0. If I is an R-disjoint ideal of R(X;p) the ideals 7(I), u(I) and
v([7) are defined as above considering elements of minimal length and they are
p-invariant ideals.

The following results on prime ideals will be very useful (c.f. [1], section 1
and [3], sections 2, 3).

LEMMA 1.1 Let P be an R-disjoint ideal of R(X;p). Then P is prime
if and only if R is p- prime and one of the following conditions is fulfilled

i) P=0,
ii) P is maximal with respect to PN R = 0.

LEMMA 1.2 Let P be an R-disjoint ideal of R[X;p]. Then P is prime if
and only if one of the following conditions is fulfilled

i) Ris prime and X € P.

ii) R is strongly p-prime, X ¢ P and either P = 0 or P is maximal with
respect to PN R = 0.

In the first case P = X R[X; p] and in the second case X is regular modulo
P and P is p-invariant.

2 Skew Laurent polynomial rings and s-
Jacobson rings.

For the notions of (right) strongly prime (s.prime, for shortness) and p-
s.prime rings and ideals and the s.prime (p-s.prime) radical s(R) (s,(R)) of
R we refer to [6].

The ring R is said to be s-Jacobson if every prime ideal of 1 is an inter-
section of s.prime ideals. Similarly, the pair (R, p) (a ring R with an automor-
phism p) is said to be s,-Jacobson if every p-prime ideal of R is an intersection
of p-s.prime ideals.

The main result of this section is the following

THEOREM 2.1 Let R be a ring and p an automorphism of R. Then
R(X; p) is s-Jacobson if and only if R is s,-Jacobson.



There are two essentially different parts in the proof of Theorem 2.1. The
"only if” part is straightforward and specific for this case. We need the follow-

ing.

LEMMA 2.2 If P is an s.prime ideal of R(X;p), then PN R is a p-s.prime
ideal of R.

PROOF: Since PN R is a p-invariant ideal of R we may factor out this
ideal and assume that PN R = 0. If I is a non-zero p-invariant ideal of R,
then 7(X;p) is an ideal of R(X;p) which is not contained in P. Hence there
exists a finite set /' C I(X; p) which is an insulator modulo P. Thus the set
of all the coefficients of all the polynomials in F' is an insulator in R which is
contained in 1.

The "if” part of Theorem 2.1 is more interesting. In fact, this part is non-
trivial and, furthermore, it follows the lines of ([10], Theorem 5). In this way
we give a proof which can be repeated for several other classes of Jacobson
rings.

In [10], there are two main points: the key Lemma 3 and the condition (A).
Lemma 3 is general and can be applied to use the going up argument: given a
non-zero prime ideal @ of R and an R-disjoint ideal P of R[X] with 7(P) € Q,
to find a prime ideal @* of R[X] such that @* N R = @ and @* 2 P. The

corresponding lemma in our case is the following.

LEMMA 2.3 Let P be an R-disjoint ideal of R{X;p) and let @ be a
non-zero p-prime ideal of R. If v(P) € @, then (P + Q(X;p)) N R = Q.

PROOF: Assume to the contrary that there exists r € R\ @ such that
r = hy + hy, for some h; € P and hy € Q(X;p). It follows that there exists
g =iz, X'a; € P such that a¢; € Q for ¢ # 0 and ag & Q. Take such a g of
minimal length I(g) = m — ¢.

Assume m > 0. Since y(P) € @ we have 7(P) € @ and there exists
5= X3b; € P of minimal length in P with b, ¢ Q. We may also
assume n = m because X is invertible. Further, since @ is p-prime there
exists an integer number v and r € R such that p¥(b,)rap ¢ Q. Then h =
pY(bn)rg—p™"t(f)p"(r)an € P has length (k) < n—t = I(g), which contradicts
the minimality of {(g).

The case m = 0 can be handled similarly using u(P) Z Q.

REMARK 2.4 A similar result holds if @ is a maximal p-invariant left
ideal of R instead of a p-prime ideal. The proof is the same as in Lemma 2.3.
This fact will be used in section 5.



The class of strongly prime rings satisfy condition (A) of [10]. In our case
this condition takes the following form:

LEMMA 2.5 If R is a p-s.prime ring and P is an R-disjoint ideal of
R(X;p) which is maximal with respect to PN R = 0, then P is an s.prime
ideal.

PROOF: Let I be an ideal of R(X;p) with I Dyx P. By the maximality
of P we have I N R # 0 and so there exists a finite set /' C I N R such that
Fa=0, a€ R,impliesa=0. We show that F' is an insulator modulo P in
R(X; p). This is clear if P = 0. So we may assume P # 0.

By ([3], Theorem 1.8), there exists a monic irreducible proper polynomial
fo € Q(X;p) such that P = foQ(X;p) N R(X;p), where Q is here the right
(Martindale) p-quotient ring of R. Let k be an element of R{X; p) with Fh C
P. Take an integer number ¢ such that X*h € R[X; p]. Since fo is monic there
exist g,r € Q[X;p] with X*h = fog + r, where ér < §fy = Min(P). Hence
h=X""tfog+ X"'r and so FX~'r C foQ(X;p). Take a p-invariant ideal H of
R such that rH C R[X;p]. It follows that FX~*rH C P, hence FX~'rH =0
and we ecasily obtain r = 0. Consequently h = X~fog € P. The proof is
complete.

REMARK 2.6 It is not difficult to show that if R is a p-s.prime ring,
then every prime ideal P of R(X;p) with PN R = 0 is s.prime . But for our
purposes all what we need is Lemma 2.5 because of the following.

LEMMA 2.7 Let R be a p-prime ring. Then the intersection of all
the R-disjoint prime ideals P of R{X};p) which are maximal with respect to
PN R =0 is zero.

PROOF: If there is no non-zero R-disjoint ideal of R(X;p) the result is
clear . The other case follows from ([3], Corollary 2.11).

As an immediate consequence of Lemmas 2.5 and 2.7 we have.
COROLLARY 2.8 If Ris a p-s.prime ring, then s(R(X;p)) = 0.
Now we are in position to prove the theorem.

PROOF OF THEOREM 2.1 Assume R(X;p) is an s- Jacobson ring and
P is a p-prime ideal of R. Then P(X;p) is a prime ideal of R(X;p) and we
have P(X; p) = Niea@i, where (Q;)ieqn is a family of s.prime ideals of R{X;p).
Thus, P = Nieq(Q: N R) and (Q; N R);eq is a family of p-s.prime ideals of R



by Lemma 2.2. Therefore R is an s,-Jacobson ring.

Conversely, assume that R is an s,-Jacobson ring and let P be a prime
ideal of R(X;p). Then PN R is a:p-prime ideal of R and by factoring out
this ideal we may assume PN R = 0 and R is p-prime. By the assump-
tion we have 0 = N;eq@;, where (Q;)ieq is a family of p-s.prime ideals of K.
Hence Nieq@Q:(X; p) = 0, where Q;(X; p) is an intersection of s.prime ideals of
R(X; p) by Corollary 2.8. This takes care of the case P = 0. Thus we may
assume P # 0 and so P is maximal with respect to PN R = 0.

Since R is p-prime we have v(P) # 0. Thus there exists a subfamily (Q;);es
of (Q:)iea such that N;ep@Q; = 0 and v(P) € Q; for every j € 6. By Lemma
2.3, (P4 Q;(X; p)) N R = Q; and so there exists an ideal @} of R(X;p) which
is maximal with respect to Q7 2 P and QN R = Q;, j € 0. Lemma 2.5
tells us that @7 is an s.prime ideal of R{X;p) and since (N;es@;) N K2 = 0 and
Njes@; 2 P we obtain N;eeQ; = P. The proof is complete.

Now we give some additional remarks. First we show that R(X;p) need
not be an s-Jacobson ring when R is an s-Jacobson ring,.

EXAMPLE 2.9 (c.f. [2], Example 2.4). Let K be a field, X = (Xi)icz a
set of indeterminates and A = K[X] the polynomial ring over K. Let p be the
K- automorphism of A defined by p(X;) = Xy, for all ¢ € Z. For an integer
n > 2 we put R = A/P, where P is the ideal of A generated by {X! :: € Z}
and we denote by p again the automorphism induced by p. Then R is a local
ring with the maximal ideal M generated by {X; + P :¢ € Z}. Further, the
ring R is p-prime ([2], Lemma 2.5). Thus, R is s-Jacobson and R(X;p) is not
an s-Jacobson ring.

In fact, clearly R is an s-Jacobson ring. If there exists a p-invariant ideal
@ of R such that R/Q is p-s.prime we easily obtain Q = M, because M/Q
does not contain an insulator ([12], Corollary 2.2). It follows that R is not an
sp-Jacobson ring and so R(X;p) is not s-Jacobson, by Theorem 2.1.

The former example shows that it is natural to ask for additional conditions
under which R(X;p) is an s-Jacobson ring when R is an s-Jacobson ring. To
give these conditions we introduce a notation. Let I be an ideal (left ideal) of
R. We denote by I'([) the largest subideal of I which is p-invariant. We easily
see I'(I) = Njezp’(I) = {a € R: pi(a) € I,Vj € Z}.

Assume that R{X;p) is an s-Jacobson ring. Then R is an s,-Jacobson ring
and so if Q is a p-prime ideal of R we have Q = NieqF;, where (P;)icq is a
family of p-s.prime ideals. Further, for every ¢ € § there exists an s.prime
ideal L; of R such that I'(L;) = P; ([6], Lemma 1.2(ii)). Thus Q = N;;p’(L;) is
semiprime. Also, if P is an s-prime ideal of R it is clear that s,(R/I'(P)) =0
since I'(P) is p-prime. Consequently the following conditions are necessary for



R(X; p) to be an s-Jacobson ring.
(Cy) For every p-prime ideal @ of R, R/Q) is semiprime.
(C,) For every s.prime ideal P of R, s,(R/T(P)) = 0.

COROLLARY 2.10 Let R be an s-Jacobson ring. Then R(X;p) is s-
Jacobson if and only if (C;) and (C;) hold.

PROOF: Assume that (C;) and (C;3) hold. If @ is a p-prime ideal of R,
then @ is an intersection of prime ideals and so an intersection of s.prime
ideals. Then Q = N;eal'(P;), where (P;);eq is a family of s.prime ideals. Thus,
condition (C;) tells us that s,(R/Q) = 0 and it follows that R is s,-Jacobson.
Theorem 2.1 completes the proof.

REMARK 2.11 Note that condition (C;) holds if the p-prime radical
of R/Q equals the prime radical, for every p-prime ideal Q of R. Similarly,
condition (C;) holds if the s,-prime radical of R/I'(P) equals the s.prime
radical, for every s.prime ideal P of R. Assumptions on R and p can be given
in order to have the validity of these facts. Some results in this direction have
been obtained in several papers ([2], [4], [6] and [14]). We mention here just
one more example.

The automorphism p is said to be left locally integral on R if for every
a € R the p-invariant left ideal [a] of R generated by « is finitely generated [9].
In this case there exists an integer number n > 0 such that [a] is generated
by {p~"(a),...,a,...,p™(a)}. It is not difficult to show that if p is left locally
integral, then for every p-prime ideal @ of R there exists a prime ideal L
with I'(L) = Q. Also, if P is an s.prime ideal of R, then I'(P) is p-s.prime.
Therefore the conditions (C,) and (C;) hold when the automorphism p is left
locally integral on R.

3 Skew polynomial rings.

The purpose of this section is to show that the method of the former
section can be adapted to study the skew polynomial ring R[X; p].

The definition of an s,-Jacobson ring has to be slightly weaker than the one
used in section 2. We say that (R, p) is an s;-Jacobson ring if every strongly
p-prime ideal of R is an intersection of p-s.prime ideals. Clearly, if R is an
sp,-Jacobson ring, then R is an s,-Jacobson ring.

We will prove the following.

THEOREM 3.1 Let R be a ring and p an automorphism of R. Then
R[X; p] is an s-Jacobson ring if and only if R is an s-Jacobson ring and an



s,-Jacobson ring.
As in the former section first we prove some lemmas.

LEMMA 3.2 If P is an s.prime ideal of R[X; p] with X ¢ P, then PN R
is a p-s.prime ideal of R.

PROOF: It is similar to the proof of Lemma 2.2.
The next lemma is the corresponding to Lemma 2.3.

LEMMA 3.3 Let P be an R-disjoint p-invariant ideal of R[X;p] and let
@ be a non-zero strongly p-prime ideal of R. If 7(P) € @, then (P+Q[X; p])N

R=Q.

PROOF: By the assumption there exists a polinomial g = ag+ Xa; + ... +
X™a, € P which is of minimal degree with respect to ap &€ Q,ay,...,a, € Q.
Since 7(P) € @ there exists f = by+ Xby +...4+ X™b, € P of minimal degree in
P with b, & Q). Also, since @ is strongly p-prime there exists j > 0 and r € R
such that pi(b,)rag & Q. Therefore h = p?(b,)rg — X™ " p?*™(f)p™(r)a,, € P
which is a contradiction to the minimality of ég.

REMARK 3.4 The same result holds if ¢) is a maximal left ideal of R
instead of a strongly p-prime ideal.

The corresponding to Condition (A) of [10] is not as simple as Lemma 2.5,
in this case. The reason is that the analogous of Lemma 2.7 is no more true,
in general. We state this as follows.

LEMMA 3.5 Let R be a p-s.prime ring and let P be an R-disjoint prime
ideal of R[X;p]. Then s(R[X;p]/P) = 0.

PROOF: Assume that X ¢ P and P # 0. Then L = ¥;50 X P is an
R-disjoint ideal of R(X;p) which is maximal with respect to LN R = 0 ([3],
Corollary 3.3). Hence L is s.prime by Lemma 2.5 and we easily show that P
1s s:prime.

Since s,(R) = 0 we have s(R) = 0 ([6], Lemma 1.2(iii)). Then the case
P =0 is covered by ([6], Theorem 3.8). In the remaining case P = X R[X; p]
and the result follows from R[X;p|/P ~ R.

Now we prove the Theorem



PROOF OF THEOREM 3.1 Assume that R[X;p] is an s-Jacobson ring.
Then R ~ R[X;p]/X R[X;p] is also an s- Jacobson ring. Let P be an strongly
p-prime ideal of R. By factoring out the ideal P we may assume P =0 and R
is a strongly p-prime ring. Hence R[X; p] is prime and so 0 = N;eqL;, where
(Li)ieq is a family of s.prime ideals of R[X;p]. Let (L;);jes be the subfamily
consisting of all the members of (L;)icq with X & L;,; € 0. We easily obtain
NjeoL; = 0 and hence Njeo(L; N R) = 0, where (L; N R)jep is a family of
p-s.prime ideals of R, by Lemma 3.2. Consequently, R is an s}-Jacobson ring.

Conversely, assume that R is an s-Jacobson and an s),-Jacobson ring and
let P be a prime ideal of R[X; p].

If X € P, then PNR is a prime ideal of R and we obtain s(R[X; p]/P) = 0,
since R[X;p]/P ~ R/(P N R) and R is s-Jacobson. So we may assume that
X & P and, by factoring out PN R, R is strongly p-prime and PNR = 0. Then
there exists a family (Q;):ieq of p-s.prime ideals of R such that N;en@: = 0. It
is easy to see that every p- s.prime ideal of R is strongly p-prime. This implies
that @;[X; p] is prime. By Lemma 3.5 we have s(R[X; p]) C Niea@:[X; p] = 0,
which covers the case P = 0.

It remains to consider the case P # 0. Then P is maximal with respect to
PNR = 0. Since v(P) # 0 there exists a subfamily (Q;);co of (Qi)ien such that
¥(P) € Q; (for j € 0) and N;gQ; = 0. Lemma 3.3 can be applied because
P is p-invariant and @; is strongly p-prime. Thus, there exists an ideal @} of
R[X; p] such that Q7 2 P and it is maximal with respect to @} N R = Q;.
If X € Q; for some j € 0, we easily obtain u(P) C @;, a contradiction.
Therefore X ¢ Q; for all j € 0 and it follows that @ is prime. By Lemma 3.5,
s(R[X;p]/@Q%) = 0 and by the maximality of P we have N;e@; = P. Thus
s(R[X;p]/P) = 0 and the proof is complete.

The following corollary is an easy consequence of Corollary 2.10.

COROLLARY 3.6 Assume that R is an s-Jacobson ring and (C;) and
(Cz) hold. Then R[Xj;p] is an s- Jacobson ring.

4 Generalization

As we have pointed out in section 2 we can repeat the proof of Theorem 2.1
for other classes of prime ideals. In this way, every time we choose convenient
classes of prime and p-prime rings such that some condition like condition (A)
in [10] is satisfied, we obtain a theorem giving sufficient conditions for every
prime ideal of R{X;p) to be an intersection of prime ideals of some special
type. The treatment is similar to the one given in [8] for differential rings and
can be summarized as follows.



Let A be a class of prime rings and let B be a class of p-prime rings (with
automorphism). We say that an ideal (resp. p-invariant ideal) P of R is an
A-ideal (resp. B-ideal) if R/P € A (resp. R/P € B). We denote by A(R)
(resp. B(R)) the intersection of all the A-ideals (resp. B-ideals) of R. The ring
R is said to be an A-Jacobson ring if every prime ideal of R is an intersection
of A-ideals. A B-Jacobson ring is defined similarly ([10], [8]). Examples of this
classes of rings are Jacobson, s-Jacobson, p-Jacobson and s,- Jacobson rings.

Now suppose that a class of prime rings A and a class of p-prime rings B
are given. We say that (A, B) satisfies the condition (A) if the following holds

(A) If (R,p) € B, then R(X;p)/P € A for every ideal P of R(X;p) which is
maximal with respect to PN R =0.

By Lemma 2.5 the condition (A) is satisfied if A is the class of s.prime
rings and B is the class of p- s.prime rings.
As an easy consequence of Lemma 2.7 we have

LEMMA 4.1 Assume that A and B are given and the condition (A) is
satisfied. If (R, p) € B, then A(R(X;p)) = 0.

Thus, using the same arguments as in Theorem 2.1 we easily obtain

THEOREM 4.2 Suppose that classes of prime and p-prime rings A and
B are given and the condition (A) is satisfied. If (R, p) is a B-Jacobson ring,
then R(X;p) is an A-Jacobson ring.

The results of section 3 can also be generalized. Assume that B is a class
of strongly p-prime rings. We say that a ring R (with the automorphism p)
is a weakly B- Jacobson (w.B-Jacobson for shortness) ring if every strongly
p-prime ideal of R is an intersection of B-ideals.

We say that the pair (A, B) satisfies the condition (B) if the following holds

(B) If (R, p) € B, then A(R[X;p]/P) = 0 for every R-disjoint prime ideal P
of R[X; p].

By Lemma 3.5 the condition (B) is satisfied in the s.prime case.
Repeating the proof of Theorem 3.1 we have

THEOREM 4.3 Assume that classes of prime and strongly p-prime rings
A and B are given and the condition (B) is satisfied. If (R, p) is an A- Jacobson
and a w.B-Jacobson ring, then R[X;p] is an A-Jacobson ring.

It is also possible to give a generalization of Corollaries 2.10 and 3.6. For
example, suppose that the pair (A, B) satisfies (A). We say that (R, p) satisfies
(C) if the following conditions hold.



(Cy) For every p-prime ideal @ of R, R/Q is semiprime.
(Cy) For every A-ideal P of R, B(R/T(P)) = 0.
As in Corollary 2.10 we easily obtain

COROLLARY 4.5 Assume that classes of prime and p-prime rings A and
B are given and the condition (A) is satisfied. If R is an A-Jacobson ring and
p is an automorphism of R such that the condition (C) holds, then R(X;p) is
an A-Jacobson ring.

5 Applications.

The results of the former section can be applied to several particular cases.
First we recover the classical and well known case of Jacobson rings.

Recall that an ideal P of R is said to be (left) p- primitive if there exists a
maximal p-invariant left ideal L of R such that (L: R)={ea € R:aRC L} =
P [14]. The ideal (L : R) is the largest ideal of R contained in L. Further,
(L : R) is p-invariant. The ring R is said to be a p-Jacobson ring if every
p-prime ideal of R is an intersection of p-primitive ideals and is said to be a
w.p-Jacobson ring if every strongly p- prime ideal of R is an intersection of
p-primitive ideals.

Note that the definition of a p-Jacobson ring given in [14] coincides with
the above definition of a w.p-Jacobson ring (a strongly p-prime ideal is called
simple a p-prime ideal in [14]).

First we prove condition (A).

LEMMA 5.1 Assume that R is a p-primitive ring and P is an ideal of
R(X; p) which is maximal with respect to PN R = 0. Then P is a primitive
ideal.

PROOF: Let L be a maximal p-invariant left ideal of R with (L : R) = 0.

If R(X;p) has no non-zero R-disjoint ideal, then P = 0 and L(X;p) is a
left ideal of R(X;p) with L(X;p) N R = L. In the other case P # 0 and so
7(P) # 0. It follows that v(P) € L and so (L(X;p) + P)NR = L, by Remark
24.

Thus, in both cases there exists a left ideal L* of R(X; p) which is maximal
with respect to L* D P and L* N R = L. Hence L* is a maximal left ideal of
R(X; p) and we easily see that (L* : R(X;p)) = P. The proof is complete.

As a consequence of Lemma 5.1 and Theorem 4.2 we have



COROLLARY 5.2 If R is a p-Jacobson ring, then R(X; p) is a Jacobson
ring.

REMARK 5.3 The above corollary can also be obtained using the argu-
ments in [14]. Because of this it is well known.

Now we consider the skew polynomial ring case.

LEMMA 5.4 Let R be a p-primitive ring. Then the Jacobson radical
J(R[X; p]/P) = 0 for every R-disjoint prime ideal P of R[X; p].

PROOF: Let L be a maximal p-invariant left ideal of R with (L : R) = 0.
First note that R is semiprimitive. In fact, let H be a maximal left ideal of
R such that I'(H) = L. Then P = (H : R) is primitive and so 0 = I'(P) =
Niezp' (P) is semiprimitive. Thus, if X € P we have J(R[X;p]/P) = J(R) = 0.

So we may assume X & P. We consider two cases.

CASE I: There exists a non-zero R-disjoint ideal which does not contain
X

Suppose that P # 0. Then P is p-invariant and maximal with respect to
PN R=0. Also y(P) € H and by Remark 3.4 there exists a left ideal H*
of R[X;p] containing P which is maximal with respect to H*N R = H. So
H* is a maximal left ideal and the ideal @ = (H* : R[X;p]) is primitive and
contains P. If X € @ we easily obtain that u(P) C QN R C H. Therefore
X & @ and it follows that @ is p-invariant. Then @ N R = 0 and we obtain
@ = P. So P is primitive.

Since the intersection of all the non-zero prime ideals P with X ¢ P is zero
in this case ([3], Corollary 3.4(ii)), we also have J(R[X; p]) = 0.

CASE II: There is no a non-zero R-disjoint ideal which does not contain
X,

Since X ¢ P wehave P = 0. Also, J(R[X; p])N R = 0 since 1 is semiprimi-
tive. So we have either J(R[X;p]) = 0 or X € J(R[X;p]). The last possibility
implies that there exists f € R[X;p] with X + f+ X f = 0, which is clearly a
contradiction. The proof is complete.

It is easy to see that every p-primitive ideal is strongly p-prime. Since
condition (B) holds we have the following corollary which is already contained
in ([14], Proposition 4.15).

COROLLARY 5.5 If R is a Jacobson ring and a w.p- Jacobson ring, then
R[X; p] is a Jacobson ring.

REMARK 5.6 Corollary 5.5 can also be obtained using ([14], Theorem



4.4). In fact, if Ris a Jacobson and a w.p- Jacobson ring, then it is not difficult
to show that conditions [4.1] and [4.3] of [14] hold.

Finally, we discuss some other examples.

EXAMPLE 5.7 If R is a p-simple ring and P is an ideal of R(X; p) which
is maximal with respect to PN R = 0, then P is a maximal ideal of R(X; p).
So applying the results of section 4 to the classes of simple and p-simple rings
we obtain that if R is a p-Brown-McCoy ring, then R(X; p) is a Brown-McCoy
ring.

Now, the Brown-McCoy radical G(R[X;p]) of R[X;p] is not necessarily
zero when R is p-simple. For example, if p* is not an inner automorphism
of the right p- quotient ring @ of R for all k¥ > 1, then the unique non- zero
R-disjoint ideal of R[X;p] is XR[X;p] = G(R[X;p]) ([3], Lemma 1.3 and
Corollary 3.4). Therefore R[X; p] is not necessarily a Brown-McCoy ring when
R is a Brown-McCoy ring and a p-Brown-McCoy ring. This is the case, for
example, if R is simple and no power of p is inner on R. Perhaps these remarks
add some new light on why is so important the condition on p being a "power
inner” automorphism of R in [15].

EXAMPLE 5.8 We say that R is Z-Jacobson (Z,-Jacobson) if every
prime (p-prime) ideal of R is an intersection of non-singular prime (p-prime)
ideals. If R is a non-singular p-prime ring and P is an ideal of R({X}p) which
is maximal with respect to P N R = 0, then P is a prime non-singular ideal
([3], Lemma 4.4). Consequently, if R is a Z,-Jacobson ring, then R(X;p) is a
Z-Jacobson ring. The converse is also true in this case.

Similarly, R is a Z-Jacobson ring and a w.Z,-Jacobson ring if and only if
R[X;p] is a Z-Jacobson ring, where a w.Z,-Jacobson ring is defined by the
obvious way.

REMARK 5.9 The results of section 4 can also be applied to other classes
of prime rings as prime nil (locally nilpotent) semisimple rings, prime G-rings
and prime Noetherian rings. We leave the statements of these results to the
reader.
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