Calculation of rotational constants by asymptotic expansion

Cite as: J. Chem. Phys. 70, 3023 (1979); https://doi.org/10.1063/1.437841
Published Online: 28 July 2008
B. P. Chakraborty, H. P. Grieneisen, R. E. Francke, and J. A. C. Gallas

© 1979 American Institute of Physics.

Calculation of rotational constants by asymptotic expansiona)

B. P. Chakraborty
Instituto de Química, Universidade Federal do Rio Grande do Sul 90.000, Porto Alegre, Brasil
H. P. Grieneisen, R. E. Francke, and J. A. C. Gallas ${ }^{\text {b) }}$
Instituto de Física, Universidade Federal do Rio Grande do Sul 90.000, Porto Alegre, Brasil (Received 23 October 1978)

An equation has been derived for the calculation of rotational constants, B_{v}, using an asymptotic expansion for Morse oscillators. B_{v} values calculated by the new equation have been compared with those calculated numerically by other methods, and those obtained experimentally.

An asymptotic expansion method was introduced by Chang and Karplus ${ }^{1}$ for the calculation of Franck-Condon factors (FCFs). They applied the method for the calculation of FCFs for the $N_{2}, B^{3} \Pi_{g}-A^{3} \Sigma_{u}^{+}$band system and the results were in excellent agreement with those of Jarmain and Nicholls ${ }^{2}$ and Biberman and Yakubov. ${ }^{3}$ Later their ${ }^{1}$ method was used by Chakraborty and Pan ${ }^{4}$ for the calculation of FCFs for the transitions $\mathrm{N}_{2}, C^{3} \mathrm{II}_{u}$ $B^{3} \Pi_{s}$ and $C N, B^{2} \Sigma^{+}-X^{2} \Sigma^{+}$and the calculated values were also in good agreement with Fraser and Jarmain ${ }^{5}$ and Jarmain and Nicholls. ${ }^{2}$ In a later publication Chakraborty, Pan, and Chang ${ }^{6}$ extended the asymptotic expansion method to calculate band strength factors ${ }^{7}$ (BSFs) when the electronic dipole moment function, $\operatorname{Re}(\gamma)$, can be expressed as $\operatorname{Re}(r)=A \exp (-B r)$ where A, B are constants and r is real internuclear distance. They also used the Morse-Perkeris oscillator ${ }^{8}$ with a slight modification of Shumaker ${ }^{7}$ and applied their equations to the calculation of FCFs and BSFs for $\mathrm{N}_{2}, B^{3} \Pi_{g}-A^{3} \Sigma_{u}^{*}$ and $\mathrm{OH}, A^{2} \Sigma^{+}-X^{2} \Pi_{i}$ band systems. Results obtained agreed well with those of Learner ${ }^{9}$ though the coefficients A and B were taken from expressions $\operatorname{Re}(\bar{r})$ $=A \exp (-B \bar{r})$, where \bar{r} represents the r-centroid. (The r-centroid is defined as $\left\langle\psi_{v^{\prime}}\right| r\left|\psi_{v^{\circ}}\right\rangle /\left\langle\psi_{v^{\circ}} \mid \psi_{v^{\circ}}\right\rangle$, which in a way is the expectation value of r during an electronic transition.)

Recently Gallas, Grieneisen, and Chakraborty ${ }^{10}$ extended the asymptotic expansion method further to calculate BSFs when the electronic dipole moment function is expressed as $\operatorname{Re}(r)=\sum a_{n} r^{n}$. This is quite useful, since most electronic dipole moment functions for diatomic molecules are expressed as a power series in \bar{r} (i. e. , r-centroids). A list of these $\operatorname{Re}(\bar{r})$ functions for some diatomic molecules are recorded by Kuznetosova, Kuzmenko, Kuzyakov, and Plastinin. ${ }^{11}$ Most of the time $\operatorname{Re}(\bar{r})$ was expressed as $\operatorname{Re}(\bar{r})=a_{0}+a_{1} \bar{r}$; later it was found to fit well with $\operatorname{Re}(\bar{r})=a_{0}+a_{1} \bar{r}+a_{2} \bar{r}^{2}$; and finally Egorov, Tunitskii, and Cherkasov ${ }^{12}$ and Danylewych and Nicholls ${ }^{1{ }^{13}}$ have shown $\operatorname{Re}(\bar{r})$ to fit best for some band systems as $\operatorname{Re}(\bar{r})=a_{0}+a_{1} \bar{r}+a_{2} \bar{r}^{2}+a_{3} \bar{r}^{3}$. Besides exponential and power series forms, several other interesting forms for $\operatorname{Re}(\bar{r})$ exist. For example, see Brown and Landshoff. ${ }^{14}$

[^0]In a recent publication Yeager and McKoy ${ }^{15}$ derived expressions for the transition moment involving transitions between electronic states as a function of r (real internuclear distance) and not \vec{r} (r centroids). Their data given in Tables I and II (Ref. 15) can be fit using a power series form of r. Equations derived in Ref. 10 can be used to calculate band strength factors, which hopefully will give better results. Equations derived by Gallas, Grieneisen, and Chakraborty ${ }^{10}$ are very general and can be conveniently used to calculate FCFs, BSFs and \bar{r}-centroids (if needed) and their J (rotational quantum number) dependence.

The purpose of this article is to show how an asymptotic expansion method can be used to derive an expression for the rotational constants B_{v} which are chatacteristic of a particular electronic state, where v represents the vibrational quantum number. In practice, values of B_{v} are calculated using observed term values and are then called B_{v} (observed) or B_{v} (measured). Equations used to calculate B_{v} (observed) are given in Herzberg ${ }^{16}$ for different types of transitions. Some practical difficulties in obtaining B_{v} (observed) have been given by Lagerqvist, Lind, and Barrow. ${ }^{17}$ These B_{v} (observed) are fit using the following equation:

$$
\begin{equation*}
B_{v}=B_{\theta}-\alpha_{e}\left(v+\frac{1}{2}\right)+\gamma_{\theta}\left(v+\frac{1}{2}\right)^{2}+\cdots . \tag{1}
\end{equation*}
$$

$B_{e}, \alpha_{e}, \gamma_{e}$ are obtained from Eq. (1), generally by a least square fit (see other methods in Refs. 16 and 17). Needless to say the equilibrium internuclear distance r_{e} is obtained from B_{e}, which is obtained from several B_{v} values. α_{e} and γ_{e} obtained by fitting Eq. (1) are α_{e} (fitted) and γ_{e} (fitted).

According to Herzberg ${ }^{18}$ a mean B value for the rotational constant, in the vibrational state considered, is

$$
\begin{equation*}
B_{v}=\frac{h}{8 \Pi^{2} c \mu} \int \psi_{v}^{2} r^{-2} d r \tag{2}
\end{equation*}
$$

where h is Planck's constant, c is the velocity of light, μ is the reduced mass, and ψ_{v} is the vibrational wave function. Therefore B_{v} values can be calculated completely theoretically if ψ_{v} and μ for the diatomic molecule are known. B_{v} values were calculated by Jarmain ${ }^{18}$ using Eq. (2) to test the wave function ψ_{v} for a KleinDunham potential, ${ }^{19}$ set up analytically by Rees, ${ }^{19}$ and modified by Jarmain. ${ }^{18}$ Cashion ${ }^{20}$ and Tawde and Tulasigeri ${ }^{21}$ also calculated B_{v} using Eq. (2). The aforemen-
tioned authors ${ }^{18,20,21}$ used numerical integration. Jarmain ${ }^{18}$ compared the B_{v} values obtained for a KleinDunham potential with those for a Morse potential ${ }^{22}$ whereas Tawde and Tulasigeri ${ }^{21}$ compared the B_{v} values obtained for an RKR potential ${ }^{23,19(a), 19(c)}$ with those obtained for a Morse potential.

Jarmain ${ }^{18(b)}$ noted calculation of B_{v} using Eq. (2) is an important test (suggested by Dr. P. A. Fraser) for a wave function, ψ_{v}. However, orthogonality tests, sum rule tests (while calculating FCFs), and calculations of term values $G(v)$ are also used. B_{v} values have also been calculated with the help of Eq. (1) by Wentink and Spindler ${ }^{24}$ and Balfour ${ }^{25}$ using Dunham coefficients for B_{e}, α_{e} and γ_{e}. Cashion ${ }^{20}$ gave a very clear picture of the testing of a diatomic potential energy function and he justly called B_{v} calculated by Eq. (2) "unambiguous."

Following other authors ${ }^{1,22}$ and Rundgren, ${ }^{26}$ we can give the radial wave function ψ_{v} for a Morse oscillator of reduced mass μ :

$$
\begin{equation*}
\psi_{v}(z)=N_{v} \exp (-z / 2) z^{b / 2} L_{v * b}^{b}(z), \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& N_{v}^{2}=\frac{a b}{\Gamma(v-1) \Gamma(k-v)}, \\
& a=0.243559\left(\mu \omega_{\theta} x_{e}\right)^{1 / 2}, \\
& b=k-2 v-1, \\
& k=\omega_{e} / \omega_{e} x_{e}, \\
& z=k \exp \left[-a\left(r-r_{e}\right)\right], \\
& L_{v * b}^{b}(z)=(-1)^{v} \Gamma(k-v) \sum_{n=0}^{v}(-1)^{n}\binom{v}{n} \frac{z^{v-n}}{\Gamma(k-v-n)}
\end{aligned}
$$

In the above expressions, $\omega_{a}, \omega_{e} x_{e}$ are usual spectroscopic constants expressed in $\mathrm{cm}^{-1}, r_{\theta}$ is the equilibrium internuclear distance in \AA units, symbol Γ signifies the gamma function, and ($\left.\begin{array}{l}v \\ n\end{array}\right)$ represents a binomial coefficient. Following the approach of Chang and Karplus ${ }^{1}$ and $\mathrm{Wu},{ }^{27}$ when Eq. (3) is substituted in Eq. (2) we have, replacing $d r$ by $-d z / a z$,

$$
\begin{align*}
B_{v}= & \left(\frac{16.8575}{\mu}\right)\left(\frac{N_{v}^{2}}{a}\right) \Gamma^{2}(k-v) \sum_{\lambda=0}^{v} \sum_{\sigma=0}^{v}(-1)^{\lambda+\sigma}\binom{v}{\lambda}\binom{v}{\sigma} / \\
& \Gamma(k-v-\lambda) \Gamma(k-v-\sigma) \\
& \times \int \exp \left(-\frac{z}{2}\right) z^{p}\left[r_{e}+a^{-1} \ln \left(\frac{k}{z}\right)\right]^{-2} d z \tag{4}
\end{align*}
$$

where $p=k-\lambda-\sigma-2$ and $h / 8 \Pi^{2} c$ has been replaced by

TABLE I. Spectroscopic constants for $\mathrm{AlO}, \mathrm{BaO}$, and O_{2} used in this study.

Molecule	Electronic state	$\omega_{8}\left(\mathrm{~cm}^{-1}\right)$	$\begin{aligned} & \omega_{e^{x_{\theta}}} \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	$r_{8}(\AA)$	μ
AlO	${ }^{2} \Sigma^{*}$	819.60	5.80	1.7224	10.0452
	$X^{2} \Sigma^{+}$	979.23	6.97	1.6176	
BaO	$A^{1} \Sigma$	500.00	1.60	2.133	14.3311
	$X^{1} \Sigma$	669.81	2.054	1.940	
O_{2}	$B^{3} \Sigma_{u}^{-}$	700.36	8.0023	1.604	8.000000

TABLE II. B_{v} values (in cm^{-1}) for AlO.

State	v	B_{v} (observed) ${ }^{2}$	B_{v} (derived) ${ }^{2}$		B_{ν} (calculated) (this study)
			RKR	Morse	
${ }^{2} \Sigma^{*}$	0	0.5633	0.5625	0.5630	0.5631
	1	0.5582	0.5583	0.5578	0.5579
	2	0.5533	0.5533	0.5526	0.5527
	3		0.5513	0.5474	0.5475
	4				0.5422
	5				0.5370
	6				0.5317
	7				0.5264
	8				0.5210
$X^{2} \Sigma^{+}$	0	0.6384	0.6384	0.6385	0.6384
	1	0.6328	0.6327	0.6327	0.6326
	2	0.6268	0.6267	0.6269	0.6268
	3	0.6210	0.6205	0.6218	0.6209
	4	0.6153	0.6158	0.6311	0.6150
	5	0.6095	0.6107	0.6385	0.6091
	6		0.6021	0.6033	0.6032
	7				0.5972
	8				0.5913

${ }^{2} B_{v}$ (observed) and B_{v} (derived) were reproduced from Ref. (21).
16.8575 so that μ can be expressed in Aston's scale, r_{e} can be expressed in \AA units, and $\omega_{g}, \omega_{e} x_{e}$ can be expressed in cm^{-1}. Since p is a large number, using an asymptotic expansion, the integral in Eq. (4) can be reduced to

$$
\begin{align*}
& \int \exp \left(-\frac{z}{2}\right) z^{p}\left[r_{e}+a^{-1} \ln \left(\frac{k}{z}\right)\right]^{-2} d z \\
& \quad=p^{p+1} \exp (-p)\left(\frac{2 \Pi}{p}\right)^{1 / 2}\left[\frac{1}{\rho_{0}^{2}}+\left(\frac{a \rho_{0} / 12+\left(1+3 / a \rho_{0}\right)}{a \rho_{0}^{3}}\right) p^{-1}\right] \tag{5}
\end{align*}
$$

where $\rho_{0}=r_{e}+a^{-1} \ln (k / p)$. Therefore, the expression for B_{v} becomes

$$
\begin{align*}
B_{v}= & \frac{16.8575}{\mu}\left(N_{v}^{2} / a\right) \Gamma^{2}(k-v) \sum_{\lambda=0}^{\nu} \sum_{\sigma=0}^{\nu}\binom{v}{\lambda}\binom{v}{\sigma}(-1)^{\lambda+\sigma} / \\
& \Gamma(k-v-\lambda) \Gamma(k-v-\sigma) p^{p+1} \exp (-p)\left(\frac{2 \Pi}{p}\right)^{1 / 2} \\
& \times\left[\frac{1}{\rho_{0}^{2}}+\left(\frac{a \rho_{0} / 12+\left(1+3 / a \rho_{0}\right)}{a \rho_{0}^{3}}\right) p^{-1}\right] . \tag{6}
\end{align*}
$$

Using Eq. (6) a computer program was written in Algol for the Burroughs B6700 Computer. The inputs in the program are $\mu, \omega_{e}, \omega_{e} x_{e}$, and r_{e}. We calculated B_{v} (for v up to 8) using Eq. (6) for some states of $\mathrm{AlO}, \mathrm{BaO}$ and O_{2} molecule. The spectroscopic constants used in this study are given in Table I. In Table II we have compared our values with those of Tawde and Tulasigeri ${ }^{21}$ for the AlO, ${ }^{2} \Sigma^{+}$and $X^{2} \Sigma^{+}$states. For the upper, ${ }^{2} \Sigma^{+}$, state the values given by them for the Morse potential obtained by numerical integration agree very well with ours calculated by Eq. (6). There is also good agreement with the observed B_{v}. For, the $X^{2} \Sigma^{+}$state, our values agree very well with the B_{v} (observed) and with that obtained by numerical integration for the RKR potential. It seems their values for B_{4} and B_{5} for the Morse potential obtained by numerical integration for the AIO, $X^{2} \Sigma^{+}$state are wrong.

TABLE III. B_{v} values $\left(\mathrm{cm}^{-1}\right)$ for BaO .

State	v	B_{v} (measured) ${ }^{\text {a }}$		B_{v} (calculated $^{\text {b }}$		B_{v} (calculated) (this study)
$A^{1} \Sigma$	0	0.2578		0.2578		0.2579
	1	0.2564		0.2567		0.2567
	2	0.2556		0.2556		0.2556
	3	0.2541		0.2545		0.2544
	4	0.2532		0.2534		0.2532
	5	0.2523		0.2523		0.2519
	6		0	0.2512		0.2507
	7			0.2501		0.2490
	8			0.2490		
	v	$B_{v}(c)$	$B_{v}(b)$	$B_{v}(\mathrm{~d})$	$B_{v}(e)$	
$X^{1} \Sigma$	0	0.31184	0.311917	0.31184	0.31183	0.31186
	1	0.31048	0.310515	0.31050	0.31045	0.31049
	2	0.30912	0.309106	0.30912	0.30899	0.30912
	3	0.30767	0.307688	0.30770	0.30745	0.30774
	4	0.30624	0.306263	0.30624	0.30583	0.30636
	5		0.304829	0.30474	0.30413	0.30499
	6		0.303388	0.30320	0.30235	0.30361
	7		0.301938	0.30162	0.30049	0.30232
	8		0.300481	0.30000	0.29855	

${ }^{2}$ Measured, Reproduced from Ref. 17.
${ }^{6}$ Calculated by Wentink and Spindler, Ref. 24.
${ }^{\text {c }}$ Deduced from optical spectra, reproduced from Ref. 17.
${ }^{d}$ Calculated by Eq. (1) of the text, when B_{e}, α_{e}, and γ_{e} are, respectively, $0.32419,1.30$
$\times 10^{-3}$, and -0.2×10^{-4} taken from Ref. 17 .
${ }^{9}$ Calculated by Eq. (1) of the text, B_{e} and α_{e} are that of Ref. 17 and refined $\gamma_{e}=-4.0$
$\times 10^{-5}$ given in Ref. 28.

In Table III we have compared B_{v}, obtained by our Eq. (6) for BaO, $A^{1} \Sigma$ and $X^{1} \Sigma$ states, with that calculated by Wentink and Spindler ${ }^{24}$ using Dunham Coefficients for B_{g}, α_{e}, and γ_{e}. Agreement between their values and B_{v} (observed) is excellent. They have reviewed the spectroscopy and potential well constants for the $A^{1} \Sigma-X^{1} \Sigma$, band system of BaO and recalculated the $\omega_{e}, \omega_{e} x_{e}, \omega_{e} y_{e}$ for both the A and X state. However we did not use their constants ($\omega_{e} x_{e}$ and ω_{e}). We used the constants given in Table XI of Ref. 17 (please see Table I). It is interesting to note that if the values reported in Table III are rounded up to four decimal places for the $X^{1} \Sigma$ state, our results agree quite well with theirs and with B_{v} (observed). Other important points to note that B_{v} calculated using $B_{v}=B_{e}-\alpha_{\theta}\left(v+\frac{1}{2}\right)+\gamma_{\theta}\left(v+\frac{1}{2}\right)^{2}$ with refined γ_{g} of Sakurai, Johnson, and Broida ${ }^{28}$ differs from all others for v greater than 4.

TABLE IV. B_{v} values $\left(\mathrm{cm}^{-1}\right)$ for O_{2} for the upper state of Schumann-Runge band.

State	v	B_{v} (observed) ${ }^{2}$	B_{v} (derived) Klein-Dunham	Morse	B_{v} (calculated) (this study)
$B^{3} \Sigma_{u}^{-}$	0	0.813	0.813	0.813	0.8129
	1	0.798	0.799	0.801	0.8006
	2	0.785	0.784	0.788	0.7882
	3	0.770	0.770	0.776	0.7758
	4	0.754	0.754	0.763	0.7632
	5	0.735	0.737	0.751	0.7506
	6	0.719	0.718	0.738	0.7378
	7	0.702	0.699	0.725	0.7250
	8	0.671	0.676	0.712	0.7121

${ }^{*}$ Reproduced from Ref. 18(b).

Finally in Table IV we have presented B_{v} calculated by us for the $B^{3} \Sigma_{u}^{-}$state of O_{2} with B_{v} (observed) and B_{v} (calculated) by Jarmin ${ }^{18(b)}$ for the both Klein-Dunham and Morse potential by numerical integration. B_{v} calculated by Eq. (6) agree extremely well with Jarmain's calculations for the Morse potential but is really inadequate for $v>3$ when compared with observed and calculated from Klein-Dunham potential. We agree that Klein-Dunham wave function is a satisfactory representation for the aforementioned state of O_{2}.

Finally in the Appendix we would like to show that Eq. (6) for the calculation of B_{v} reduces to a very simple form for $v=0$, when Stirling's approximation is assumed.

ACKNOWLEDGMENTS

We are indebted to Dr. G. Bandyopadhyay for sending needed references. We wish to thank José Schifino and F. R. Volcato for helpful discussions.

APPENDIX

For $v=0$, Eq. (6) for B_{v} is reduced to

$$
\begin{align*}
B_{0}= & \frac{16.8575}{\mu} \frac{N_{0}^{2}}{a} \Gamma^{2}(k)\left[\binom{0}{0} / \Gamma(k)\right]^{2} \\
& \times(k-2)^{k-1} \exp [-(k-2)]\left(\frac{2 \Pi}{k-2}\right)^{1 / 2} \\
& \times\left[\frac{1}{\rho_{0}^{2}}+\left(\frac{a \rho_{0} / 12+\left(1+3 / a \rho_{0}\right)}{a \rho_{0}^{3}}\right)\right](k-2)^{-1}, \tag{A1}
\end{align*}
$$

where $\rho_{0}=r_{8}+a^{-1} \ln [k /(k-2)]$ and N_{0}^{2} / a in Eq. (A1) becomes $1 /(k-2)!$. Therefore Eq. (A1) is simplified to

$$
\begin{align*}
B_{0}= & \frac{16.8575}{\mu} \frac{1}{(k-2)!}(k-2)^{k-1} \exp \{-(k-2)]\left(\frac{2 \Pi}{k-2}\right)^{1 / 2} \\
& \times\left[\frac{1}{\rho_{0}^{2}}+\left(\frac{a \rho_{0} / 12+\left(1+3 / a \rho_{\Omega}\right)}{a \rho_{0}^{3}}\right)\right](k-2)^{-1} . \tag{A2}
\end{align*}
$$

Using Stirling's approximation, ($k-2$)! of Eq. (A2) can be written as

$$
\begin{equation*}
(k-2)!=[2 \Pi(k-2)]^{1 / 2}(k-2)^{(k-2)} \exp [-(k-2)], \tag{A3}
\end{equation*}
$$

since $k-2$ is a large number. Then Eq. (A2) reduces to

$$
\begin{equation*}
B_{0}=\frac{16.8575}{\mu}\left[\frac{1}{\rho_{0}^{2}}+\left(\frac{a \rho_{0} / 12+\left(1+3 / a \rho_{0}\right)}{a \rho_{0}^{3}}\right)\right](k-2)^{-1} . \tag{A4}
\end{equation*}
$$

Now Eq. (A4) can be used readily to calculate B_{0}. For example, for $\mathrm{BaO}, X^{1} \Sigma$ state, using Stirling's approximation, $B_{0}=0.31194 \mathrm{~cm}^{-1}$, whereas $B_{0}=0.31186$ cm^{-1} using Eq. (6). Similarly, for B_{1}, there are four terms to calculate using Eq. (6) and B_{1} becomes $0.310568 \mathrm{~cm}^{-1}$, whereas $B_{1}=0.310488 \mathrm{~cm}^{-1}$ without Stirling's approximation.
${ }^{1}$ T. Y. Chang and M. Karplus, J. Chem. Phys. 52, 783 (1970). ${ }^{2}$ W. R. Jarmain and R. W. Nicholls, Can. J. Phys. 32, 301 (1954).
${ }^{3}$ L. M. Biberman and I. T. Yakubov, Opt. Spectrosc. 8, 155 (1960).
${ }^{4}$ B. P. Chakraborty and Y. K. Pan, Theoret. Chim. Acta. 18, 162 (1970).
${ }^{5}$ P. Fraser and W. R. Jarmain, Proc. Phys. Soc. (London) A66, 1145 (1953); A66, 1153 (1953).
${ }^{6}$ B. P. Chakraborty, Y. K. Pan, and T. Y. Chang, J. Chem. Phys. 55, 5147 (1971).
${ }^{7}$ J. B, Shumaker, Jr, J. Quant. Spectrosc. Radiat. Transfer.

8, 153 (1969)
${ }^{8}$ C. L. Pekeris, Phys. Rev. 45, 98 (1934).
${ }^{9}$ R. C. M. Learner, Proc. R. Soc. (London) A280, 311 (1962); J. Anketell and R. C. M. Learner, Proc. R. Soc. (London) A301, 355 (1967).
${ }^{10}$ J. A. C. Gallas, H. P. Grieneisen, and B. P. Chakraborty, J. Chem. Phys. 89, 612 (1978)
${ }^{11}$ L. A. Kuznetsova, N. E. Kuzmenko, Yu. Ya. Kuzyakov, and Yu. A. Plastinin, Sov. Phys-Usp. 17, 405 (1974).
${ }^{12}$ V. N. Egorov, L. N. Tunitskii, and E. M. Cherkasov, Zh. Prikl. Spectrosk. 8, 479 (1968).
${ }^{13}$ L. L. Danylewych and R. W. Nicholls, Proc. R. Soc. (London) A360, 557 (1978).
${ }^{14}$ W. A. Brown and R. K. Landshoff, J. Quant. Spectrosc. Radiat. Transfer. 11, 1143 (1971).
${ }^{15}$ D. L. Yeager and V. McKoy, J. Chem. Phys. 67, 2473 (1977), and see references therein.
${ }^{16}$ G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950), 2nd ed.
${ }^{17}$ A. Lagerqvist, E. Lind, and R. F. Barrow, Proc. Phys. Soc. (London) A63, 1132 (1950).
${ }^{18}$ (a) W. R. Jarmain, J. Quant. Spectrosc. Radiat. Transfer. 11, 421 (1971); 12, 603 (1972); Can. J. Phys. 38, 217 (1960); (b) Can. J. Phys. 41, 414 (1963).
${ }^{19}$ (a) O. Klein, Z. Phys. 76, 226 (1932); (b) J. L. Dunham, Phys. Rev. 41, 713 (1932); 41, 721 (1932); (c) A. L. G. Rees, Proc. Phys. Soc. (London) A59, 998 (1947).
${ }^{20}$ J. K. Cashion, J. Chem. Phys. 38, 1872 (1963).
${ }^{21}$ N. R. Tawde and V. G. Tulasigeri, J. Phys. B At. Molec. Phys. 5, 1681 (1972).
${ }^{22}$ P. M. Morse, Phys. Rev. 34, 57 (1929); D. terHaar, Phys. Rev. 70, 222 (1946).
${ }^{23}$ R. Rydberg, Z. Phys. 73, 376 (1931).
${ }^{24}$ T. Wentink and R. J. Spindler, Jr., J. Quant. Spectrosc. Radiat. Transfer. 12, 129 (1972).
${ }^{25}$ W. J. Balfour, Can. J. Phys. 50, 1082 (1972).
${ }^{26}$ J. Rundgren, Ark. Fys. 30, 61 (1965).
${ }^{27}$ T. Y. Wu, Proc. Phys. Soc. (London) A8E, 965 (1952).
${ }^{28}$ K. Sakurai, S. E. Johnson, and H. P. Broida, J. Chem. Phys. 52, 1625 (1970).

[^0]: ${ }^{2}$ Work supported in part by CNPq and FINEP.
 ${ }^{\text {b) }}$ Predoctoral Fellow.

