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Abstract

A general form factor formula for the scalingZ(N)-Ising model is constructed. Exact expressions
all matrix elements are obtained for several local operators. In addition, the commutation rules fo
disorder parameters and para-Fermi fields are derived. Because of the unusual statistics of the fi
quantum field theory seems not to be related to any classical Lagrangian or field equation.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The ‘form factor program’ is part of the so-called ‘bootstrap program’ for integrable qua
field theories in 1+ 1 dimensions. This programclassifiesintegrable quantum field theoret
models and in addition it provides their explicit exact solutions in terms of all Wightman f
tions. This means, in particular, that we do notquantizea classical field theory. In fact th
quantum field theory considered in this paper is not related (at least to our knowledge)
classical Lagrangian or field equations of massive particles. The reason for this seems to
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unusual anyonic statistics of the fields, turning this form factor investigation even more
nating. The bootstrap program consists of three main steps: First the S-matrix is calcula
means of general properties as unitarity and crossing, the Yang–Baxter equations and t
tional assumption of ‘maximal analyticity’. Second, matrix elements of local operators

out〈p′
m, . . . ,p′

1|O(x)|p1, . . . , pn〉in

are calculated using the 2-particle S-matrix as an input. As a third step the Wightman fun
can be obtained by inserting a complete set of intermediate states.

The generalized form factors[1] are defined by the vacuum—n-particle matrix elements

〈0|O(x)|p1, . . . , pn〉in
α1...αn

= e−ix(p1+···+pn)FO
α1...αn

(θ1, . . . , θn),

where theαi denote the type (charge) and theθi are the rapidities of the particles(pi =
Mi(coshθi,sinhθi)). This definition is meant forθ1 > · · · > θn, in the other sectors of the var
ables the functionFO

α (θ) = FO
α1...αn

(θ1, . . . , θn) is given by analytic continuation with respect

theθi . General matrix elements are obtained fromFO
α (θ) by crossing which means in particul

the analytic continuationθi → θi ± iπ . Using general LSZ assumptions and maximal analyti
in [2] the following properties of form factors have been derived1:

(o) The form factor functionFO
α (θ) is meromorphic with respect to all variablesθ1, . . . , θn.

(i) It satisfies Watson’s equations

FO
...αiαj ...(. . . , θi, θj , . . .) = FO

...αj αi ...
(. . . , θj , θi , . . .)Sαiαj

(θij ).

(ii) The crossing relation means for the connected part (see e.g.[4]) of the matrix element

ᾱ1〈p1|O(0)|p2, . . . , pn〉in,conn.
α2...αn

= σO(α1)F
O
α1α2...αn

(θ1 + iπ, θ2, . . . , θn)

= FO
α2...αnα1

(θ2, . . . , θn, θ1 − iπ),

whereσO(α) is the statistics factor of the operatorO with respect to the particleα.
(iii) The function FO

α (θ) has poles determined by one-particle states in each sub-chann
particular, ifα1 is the anti-particle ofα2, it has the so-called annihilation pole atθ12 = iπ

which implies the recursion formula

Res
θ12=iπ

FO
α (θ1, . . . , θn) = 2iCα1α2F

O
α3...

(θ3, . . . , θn)

× (
1 − σO(α2)Sα1αn(θ2n) . . . Sα2α3(θ23)

)
.

(iv) Bound state form factors yield another recursion formula

Res
θ12=iη

FO
αβ...(θ1, θ2, θ3, . . .) = √

2FO
γ ...(θ(12), θ3, . . .)Γ

γ
αβ

if iη is the position of the bound state pole. The bound state intertwinerΓ
γ
αβ (see e.g.[4,5])

is defined by

i Res
θ=iη

Sαβ(θ) = Γ βα
γ Γ

γ
αβ.

1 The formulae have been proposed in[3] as a generalization of formulae in[1]. The formulae are written here for th
case of no backward scattering, for the general case see[4].
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(v) Since we are dealing with relativistic quantum field theories Lorentz covariance in the

FO
α (θ1, . . . , θn) = esµFO

α (θ1 + µ, . . . , θn + µ)

holds if the local operator transforms asO → esµO wheres is the “spin” ofO.

Note that consistency of (ii), (iii) and (v) imply a relation of spin and statisticsσO(α) = e−2πis

and alsoσO(α) = 1/σO(ᾱ) whereᾱ is the anti-particle ofα, which has the same charge asO.
All solutions of the form factor equations (i)–(v) should provide the matrix elements of all fi
in an integrable quantum filed theory with a given S-matrix.

Generalized form factors are of the form[1]

(1)FO
α (θ) = KO

α (θ)
∏

1�i<j�n

F (θij ) (θij = θi − θj ),

whereF(θ) is the ‘minimal’ form factor function. It is the solution of Watson’s equation[6] and
the crossing relation forn = 2

(2)F(θ) = F(−θ)S(θ), F (iπ − θ) = F(iπ + θ)

with no poles and zeros in the physical strip 0< Im θ � π (and a simple zero atθ = 0). In [4] a
general integral representation for theK-functionKO

α (θ) in terms of theoff-shell Bethe Ansat
[7,8] has been presented, which transforms the complicated equations (i)–(v) for the form
to simple ones for thep-functions(see[4] and(41)below)

(3)KO
α (θ) =

∑
m

cnm

∫
Cθ

dz1 · · ·
∫
Cθ

dzm h(θ, z)pO(θ, z)Ψα(θ, z).

The symbolsCθ denote specific contours in the complexzi -planes. The functionh(θ, z) is scalar
and encodes only data from the scattering matrix. The functionpO(θ, z) on the other hand de
pends on the explicit nature of the local operatorO. We discuss these objects in more de
below. For the case of a diagonal S-matrix, as in this paper, the off-shell Bethe Ansatz
Ψα(θ, z) is trivial. The K-function KO

α (θ) is an meromorphic function and has the ‘physi
poles’ in 0< Im θij � π corresponding to the form factor properties (iii) and (iv). It turns
that for the examples we consider in this paper there is only one term in the sum of(3).

In this paper we will focus on the determination of the form factors of the scalingZ(N)-Ising
quantum field theory in 1+ 1 dimensions. An Euclidean field theory is obtained as the sca
limit of a classical statistical lattice model in 2-dimensions given by the partition function

Z =
∑
{σ }

exp

(
− 1

kT

∑
〈ij〉

E(σi, σj )

)
, σi ∈ {

1,ω, . . . ,ωN−1}, ω = e2πi/N

as a generalization of the Ising model. It was conjectured by Köberle and Swieca[9] that there
exists aZ(N)-invariant interactionE(σi, σj ) such that the resulting massive quantum field the
is integrable. In particular forN = 2 the scalingZ(2)-Ising model is the well investigated mod
[10–13] which is equivalent to a massive free Dirac field theory. In this paper we inves
the generalZ(N)-model. It has also been discussed as a deformation[14,15] of a conformal
Z(N) para-Fermi field theory[16]. TheZ(N)-Ising model in the scaling limit possessesN − 1
types of particles:α = 1, . . . ,N − 1 of chargeα, massMα = M sinπ α

N
and ᾱ = N − α is the

antiparticle ofα. Then-particle S-matrix factorizes in terms of two-particle ones since the m
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is integrable. The two-particle S-matrix for theZ(N)-Ising model has been proposed by Köbe
and Swieca[9]. The scattering of two particles of type 1 is

(4)S(θ) = sinh1
2(θ + 2πi

N
)

sinh1
2(θ − 2πi

N
)
.

This S-matrix is consistent with the picture that the bound state ofN − 1 particles of type 1 is
the anti-particle of 1. This will be essential also for the construction of form factors below
construct generalized form factors of an operatorO(x) andn particles of type 1 and for simplicit
we writeFO

n (θ) = FO
1...1(θ). Note that all further matrix elements with different particle sta

of the field operatorO(x) are obtained by the crossing formula (ii) and the bound state for
(iv). As an application of this form factor approach we compute the commutation relatio
fields. In particular, we consider the fieldsψ

QQ̃
(x), (Q,Q̃ = 0, . . . ,N − 1) with chargeQ and

‘dual charge’Q̃. There are in particular the order parametersσQ(x) = ψQ0(x), the disorder
parametersµ

Q̃
(x) = ψ0Q̃

(x) and the para-Fermi fieldsψQ(x) = ψQQ(x). We show that they
satisfy the space like commutation rules:

σQ(x)σQ′(y) = σQ′(y)σQ(x),

µ
Q̃

(x)µ
Q̃′(y) = µ

Q̃′(y)µ
Q̃

(x),

µ
Q̃

(x)σQ(y) = σQ(y)µ
Q̃

(x)eθ(x1−y1)2πiQQ̃/N ,

(5)ψQ(x)ψQ(y) = ψQ(y)ψQ(x)eε(x1−y1)2πiQ2/N .

It turns out that the nontrivial statistics factorsσO(α) in the form factor equations (ii) and (ii
lead to the nontrivial order–disorder and the anyonic statistics of the fields.

The form factor bootstrap program has been applied in[13] to theZ(2)-model. Form factors
for the Z(3)-model were investigated by one of the present authors in[17]. There the form
factors of the order parameterσ1 were proposed for up to four particles. Kirilov and Smirn
[18] proposed all form factors of theZ(3)-model in terms of determinants. Some related w
can be found in[19]. For generalN form factors for charge-less states (n particles of type 1 and
n particles of typeN − 1) were calculated in[20]. In the present paper we present for the sca
Z(N)-Ising model integral representations for all matrix elements of several field operator

Recently, there has been a renewed interest in the form factors program in connec
condensed matter physics[21–23] and atomic physics[24]. In particular, applications to Mo
insulators and carbon nanotubes as well as in the field of Bose–Einstein condensates
cold atomic gases have been discussed and in some instances correlation functions h
computed.

The paper is organized as follows: In Section2 we construct the general form factor formu
for the simplestN = 2 case, which corresponds to the well-known scalingZ(2)-Ising model,
and show that the known results can be reproduced by our new general approach. In S3
we construct the general form factor formula for theZ(3) case, which is more complex du
to the presence of bound states, and discuss several explicit examples. We extend thes
in Section4, where the general form factors forZ(N) are constructed and discussed in det
Section5 contains the derivation of the commutation rules of the fields and some applicati
this formalism are presented. Some results of the present article have been published pr
[25] without proofs.
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2. Z(2)-form factors

To make our method more transparent and with the hope that our construction will help
culate form factors for all primary and descendant fields, we start with the simplest caseN = 2,
which corresponds to the well-known Ising model in the scaling limit. This model, already i
tigated in[10,11,13,20], is equivalent to a massive free Dirac field theory. The model poss
one particle with massM and the 2-particle S-matrix isS = −1. In [13] the form factor approac
has been applied to this case with the result for the order parameter fieldσ(x)

(6)Fσ
n (θ) = (2i)(n−1)/2

∏
1�i<j�n

tanh
1

2
θij

for n odd. It is easy to see that this expression satisfies the form factor equations (i)–(iii
statistics factorσσ = 1. For theZ(2) case in this section we skip the proof that the functi
obtained by our general formula satisfy the form factor equations (i)–(v), the reader may
reduce the proofs for theZ(3) and the generalZ(N) case of the following sections to this simp
one. Rather, we present the results for several fields, in particular, we will show that our g
formula reproduces the known results.

2.1. The general formula for n-particle form factors

We propose then-particle form factors of an operatorO(x) as given by(1) with the minimal
form factor function

(7)F(θ) = sinh
1

2
θ

which is the minimal solution of Watson’s equations and crossing(2) for S = −1. The K-
function is given by our general formula(3) where the Bethe Ansatz vector is trivial (becau
there is no backward scattering) and the sum consists only of one term

(8)KO
n (θ) = NnInm

(
θ,pO)

.

Thefundamental building blocksof form factors are

(9)Inm(θ,pO) = 1

m!
∫
Cθ

dz1

R
· · ·

∫
Cθ

dzm

R
h(θ, z)pO(θ, z),

(10)h(θ, z) =
n∏

i=1

m∏
j=1

φ(zj − θi)
∏

1�i<j�m

τ(zi − zj ).

Theh-function does not depend on the operator but only on the S-matrix of the model, wh
thep-function depends on the operator. Both are analytic functions ofθi (i = 1, . . . , n) andzj

(j = 1, . . . ,m) and are symmetric underθi ↔ θj andzi ↔ zj . For all integration variableszj

the integration contoursCθ = ∑
Cθi

enclose clock wise oriented the pointszj = θi (i = 1, . . . , n).
This means we assume thatφ(z) has a pole atz = 0 such thatR = ∫

Cθ
dzφ(z−θ). The functions

φ(z) andτ(z) are given in terms of the minimal form factor function as

(11)φ(z) = 1 = −2i
,

F(θ)F (θ + iπ) sinhz
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(12)τ(z) = 1

φ(z)φ(−z)
= 1

4
sinh2 z.

The following properties of thep-functions guarantee that the form factors satisfy (i)–(iii)

(i′2) pO
nm(θ, z) is symmetric underθi ↔ θj

(ii ′2) σOpO
nm(θ1 + 2πi, θ2, . . . , z) = pO

nm(θ1, θ2, . . . , z)

(iii ′
2) if θ12 = iπ

pO
nm(θ, z)

∣∣
z1=θ1

= σOpO
nm(θ, z)

∣∣
z1=θ2

= σOpO
n−2m−1(θ3, . . . , θn, z2, . . . , zm) + p̃,

whereσO is the statistics factor of the operatorO with respect to the particle. The functioñp
must not contribute after integration, which means in particular that is does not depend onzi

(in most cases̃p = 0). For convenience we have introduced the indicesnm to denote the numbe
of variables. For the recursion relation (iii) in addition the normalization coefficients ha
satisfy

(13)Nn = iNn−2.

One may convince oneself that the form factor satisfies (i) and (ii). Not so trivial is the re
relation (iii), however, it follows from a simplified version of the proofs for theZ(3) and the
generalZ(N) case below.

2.2. Examples of fields and theirp-functions

We present the following correspondence of operators andp-functions which are solutions o
(i′2)–(iii ′2). For the order parameterσ(x), the disorder parameterµ(x), the Fermi fieldψ(x), and
the higher conserved currentsJ

µ
L (x) (L ∈ Z) we propose the followingp-functions and statistic

parameters

σ(x) ↔ pσ
nm(θ, z) = 1 for n = 2m + 1 with σσ = 1,

µ(x) ↔ pµ
nm(θ, z) = ime(

∑
zi− 1

2

∑
θi ) for n = 2m with σµ = −1,

ψ±(x) ↔ pψ±
nm (θ, z) = e±(

∑
zi− 1

2

∑
θi ) for n = 2m + 1 with σψ = −1,

(14)J±
L (x) ↔ p

J±
L

nm(θ, z) =
∑

e±θi
∑

eLzi for n = 2m with σµ = 1.

Note thatp̃ 	= 0 in (iii ′2) only for J±
L . The motivation of these choices will be more obvious wh

we investigate the commutation rules of fields in Section5 and will follow from the properties
of the form factors which we now discuss in more detail.

Explicit expressions of the form factorsNow we have to check that the proposedp-functions
really provide the well-known form factors for the order, disorder and Fermi fields. In ord
get simple expressions for these form factors, we have to calculate the integral(9) with (10) for
eachp-function separately.

For the order parameter Only for odd numbers of particles the form factors are non-zero
calculate

(15)Inm(θ,1) = 2m
∏ 1

cosh1
2θij

for n = 2m + 1.
1�i<j�n
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The proof of this formula can be found inAppendix B. The general formulae(1), (3), (7), and
(13)with Nn = i(n−1)/2 then imply forn odd

(16)Fσ
n (θ) = 2m

∏
1�i<j�n

F (θij )

cosh1
2θij

= (2i)(n−1)/2
∏

1�i<j�n

tanh
1

2
θij ,

which agrees with the known result(6). The proof that the integralInm(θ,1) vanishes for evenn
andm > 0 is simple: Ifm(m−1) < n we may decompose for realθi the contoursCθ = C0−C0−iπ

where ReC0 goes from−∞ to ∞ and Im(θi + iπ) < ImC0 < Im(θi). The shiftzi → zi − iπ

impliesh(θ, z) → (−1)nh(θ, z) such that the integrals alongC0 andC0−iπ cancel for evenn.

For the disorder parameter Only for even numbers of particles the form factors are non-z
We calculate withpµ as given in(14)

Inm

(
θ,pµ

) = 2m
∏

1�i<j�n

1

cosh1
2θij

for n = 2m.

The proof of this formula is analog to that inAppendix B, therefore withNn = in/2 the form
factors are forn even

(17)Fµ
n (θ) = (2i)n/2

∏
1�i<j�n

tanh
1

2
θij .

Similar as above for the order parameter one can show that the integralInm(θ,pµ) vanishes for
oddn andm > 0. It is also interesting to investigate the asymptotic behavior of the form fa
when one of the rapidities goes to infinity. From the integral representation it is easy to
that

Fσ
n (θ)

θ1→∞→ F
µ
n−1(θ

′) θ2→∞→ 2iF σ
n−2(θ

′′).

Of course, this result follows easily from the explicit expressions(16) and (17). This asymptotic
behavior is another motivation for our choice(14)of thep-function forσ(x) andµ(x).

For the Fermi field Only for n = 1 the form factors are non-zero. We calculate withpψ±
as

given in(14)

Inm

(
θ,pψ±) = δn1e

∓ 1
2θ for n = 2m + 1.

The proof thatInm(θ,pψ±
) = 0 for n = 2m + 1 odd andm > 0 is the same as for the disord

parameter. Therefore with the normalizationN1 = √
M we obtain

(18)F
ψ

1 (θ) = 〈0|ψ(0)|θ〉 = u(θ) = √
M

(
e− 1

2θ

e
1
2θ

)
.

The property that all form factors of the Fermi field vanish except the vacuum one-particle m
element reflects the fact thatψ(x) is a free field, in particular for the Wightman functions o
easily obtains

〈0|ψ(x1) · · ·ψ(xn)|0〉 = 〈0|ψ(x1) · · ·ψ(xn)|0〉free.
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For the infinite set of conserved higher currentsOnly for n = 2 the form factors are non-zer
We calculate withpJ±

L as given in(14)

Inm

(
θ,pJ±

L
) = δn2

(
e±θ1 + e±θ2

)
2i

(
eLθ1

sinhθ12
+ eLθ2

sinhθ21

)
for n = 2m.

The proof thatInm(θ,pJ±
L ) = 0 for n = 2m > 2 is again similar as above. With the normalizat

c21 = ±iM the form factors are

〈0|J±
L (0)|θ1, . . . , θn〉in = ∓δn22M

(
e±θ1 + e±θ2

)(
eLθ1 − eLθ2

) 1

sinhθ12

such that as in[26] the chargesQL = ∫
dx J 0

L(x) satisfy the eigenvalue equation(
QL −

n∑
i=1

eLθi

)
|θ1, . . . , θn〉in = 0 for L = ±1,±3, . . . .

Obviously we get the energy–momentum tensor fromJ±
±1(x).

The propertyFψ
n = 0 for oddn > 1 andFJ

n = 0 for evenn > 2 is related to the fact that i
the recursion relation (iii) the factor(1− σO ∏

S) is zero in both cases.

3. Z(3)-form factors

Let us now considerN = 3, which corresponds to the scalingZ(3)-Ising model. In this cas
we have two particles, 1 and 2, and the bound state of two particles of type 1 is the par
which in turn is the anti-particle of particle 1. Conversely, the bound state of two particles o
2 is the particle of type 1, which in turn is again the anti-particle of 2. So, our construction s
take into account this structure of the bound states. We construct the form factors for part
type 1, the others can then be obtained by the form factor bound state formula (iv).

3.1. The general formula forn-particle form factors

In order to obtain a recursion relation where only form factors for particles of type
involved, we have to apply the bound state relation (iv) to get the anti-particle and the
creation annihilation equation (iii) to obtain

Res
θ23=iη

Res
θ12=iη

FO
1111...1(θ1, . . .) = Res

θ(12)3=iπ
FO

211...1(θ(12), θ3, . . .)
√

2Γ

(19)= 2iFO
1...1(θ4, . . .)

(
1− σO

1

n∏
i=4

S(θ3i )

)√
2Γ,

whereθ(12) = 1
2(θ1 + θ2) is the bound state rapidity,η = 2

3π is the bound state fusion angle a
Γ = i|Resθ=iη S11(θ)|1/2 is the bound state intertwiner (see[4,5]). In the following we use agai
the short notationFO

1...1(θ1, . . . , θn) = FO
n (θ) and also write the statistics factor asσO(1) = σO

1 .
We write the form factors again in the form(1) where minimal form factor function

(20)F(θ) = c3 exp

∞∫
dt

t

2 cosh1
3t sinh2

3t

sinh2 t

(
1− cosht

(
1− θ

iπ

))

0
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or

t-
is the solution of Watson’s equations(2) with the S-matrix(4) for N = 3. The constantc3 is
given by(A.1) in Appendix A. Similar as above we make the Ansatz for theK-functions

(21)KO
n (θ) = NnInmk

(
θ,pO)

with the fundamental building blocks of form factors

(22)Inmk(θ,p) = 1

m!k!
∫
Cθ

dz1

R
· · ·

∫
Cθ

dzm

R

∫
Cθ

du1

R
· · ·

∫
Cθ

duk

R
h(θ, z,u)p(θ, z,u),

h(θ, z,u) =
n∏

i=1

(
m∏

j=1

φ(zj − θi)

k∏
j=1

φ(uj − θi)

)

(23)×
∏

1�i<j�m

τ(zij )
∏

1�i<j�k

τ (uij )
∏

1�i�m

∏
1�j�k

�(zi − uj ).

Again the integration contoursCθ = ∑
Cθi

enclose the pointsθi such thatR = ∫
Cθ

dzφ(z − θ).
Equations (iii) and (iv), in particular(19) lead to the relations

(24)
1∏

k=0

φ(θ + kiη)

2∏
k=0

F(θ + kiη) = 1,

(25)τ(z)φ(z)φ(−z) = 1, �(z)φ(z) = 1,

as an extension of(11) and (12)for theZ(2) case. The solution forφ is

(26)φ(z) = 1

sinh1
2zsinh1

2(z + iη)

if the constantc3 is fixed as in(A.1). The phi-function satisfies the ‘Jost function’ property

(27)
φ(−θ)

φ(θ)
= S(θ).

We will now show again that by the Ansatz(21)–(23)we have transformed the form fact
equations (i)–(v), in particular equation(19) to simple equations for thep-functions.

Assumptions for thep-functions The functionpO
nmk(θ, z, u) is analytic in all variables and sa

isfies:

(i′3) pO
nmk(θ, z, u) is symmetric underθi ↔ θj ,

(ii ′3) σO
1 pO

nmk(θ1 + 2πi, θ2, . . . , z, u) = pO
nmk(θ1, θ2, . . . , z, u),

(iii ′
3) if θ12 = θ23 = iη

(28)pO
nmk(θ, z, u)

∣∣
z1=θ1
u1=θ2

= σO
1 pO

nmk(θ, z, u)
∣∣

z1=θ2
u1=θ3

= σO
1 pO

n−3m−1k−1(θ
′, z′, u′) + p̃,

(iv′
3) pO

nmk(θ + µ,z + µ,u + µ) = esµpO
nmk(θ, z, u),

whereθ ′ = (θ4, . . . , θn), z
′ = (z2, . . . , zm) and u′ = (u2, . . . , uk). In (ii ′3) and (iii′3) σO

1 is the
statistics factor of the operatorO with respect to the particle of type 1 and in (v′ ) s is the spin
3
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of the operatorO. Again p̃ must not contribute after integration (in most casesp̃ = 0). Again
one may convince oneself that the form factor satisfies (i) and (ii) ifh(θ, z) is symmetric unde
θi ↔ θj and periodic with respect toθi → θi + 2πi. Not so trivial is the residue relation (ii
which is proved in the following lemma.

Lemma 1. The form factorsFO
n (θ) defined by(1) and (20)–(23)satisfies(i)–(v), in particular

(19), if thep-functions satisfy(i′3)–(v′
5) of (28), the functionsφ, τ and� the relations(24), (25)

and the normalization constants in(21) the recursion relation

(29)Nn

(
Res
θ=iη

φ(−θ)
)2

φ(iη) F 2(iη)F (2iη) = Nn−32i
√

2Γ.

Proof. The form factor equations (i), (ii), and (v) follow obviously from the equations for
p-functions (i′3), (ii ′3), and (v′3), respectively. As already stated, we will prove properties (iii)
(iv) together in the form of(19). Taking the residues Resθ23=iη Resθ12=iη there will bemk equal
terms originating from pinchings forzi andui . We pick them fromz1 andu1 and rewrite the
products that appear in the expression forInmk in a convenient form, such that the location of t
poles turns out to be separated from the general expression. Then, the essential calculat
performed is

Res
θ23=iη

Res
θ12=iη

Inmk

(
θ,pO) = mk

m!k!
∫
Cθ ′

dz2

R
· · ·

∫
Cθ ′

dzm

R

∫
Cθ ′

du2

R
· · ·

∫
Cθ ′

duk

R

×
n∏

i=4

(
m∏

j=2

φ(zj − θi)

k∏
j=2

φ(uj − θi)

)

×
∏

2�i<j�m

τ(zij )
∏

2�i<j�k

τ (uij )

m∏
i=2

k∏
j=2

�(zi − uj )

×
3∏

i=1

(
m∏

j=2

φ(zj − θi)

k∏
j=2

φ(uj − θi)

)
r

with

r = Res
θ23=iη

Res
θ12=iη

∫
Cθ

dz1

R

∫
Cθ

du1

R

n∏
i=1

(
φ(z1 − θi)φ(u1 − θi)

)

×
m∏

j=2

τ(z1j )

k∏
j=2

τ(u1j )�(z1 − u1)

k∏
j=2

�(z1 − uj )

m∏
j=2

�(zj − u1)p
O
n (θ, z, u).

ReplacingCθ by Cθ ′ whereθ ′ = (θ4, . . . , θn) we have usedτ(0) = τ(±iη) = �(0) = �(−iη) = 0
and the fact that thez1-, u1-integrations give non-vanishing results only for(z1, u1) at (θ1, θ2)

and(θ2, θ3). This is because forθ12, θ23 → iη pinching appears atz1 = θ2, u1 = θ3 andz1 = θ1,
u1 = θ2. Defining the function

f (z1, u1) =
m∏

τ(z1j )

k∏
τ(u1j )�(z1 − u1)

k∏
�(z1 − uj )

m∏
�(zj − u1)p

O
n (θ, z, u)
j=2 j=2 j=2 j=2
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and using the property thatf (z, z) = f (z, z − iη) = 0, we calculate

r = Res
θ23=iη

Res
θ12=iη

∫
Cθ

dz1

R

∫
Cθ

du1

R
f (z1, u1)

n∏
i=1

(
φ(z1 − θi)φ(u1 − θi)

)

= (
Res
θ=iη

φ(−θ)
)2

φ2(iη)

n∏
i=4

(
φ(θ2i )φ(θ3i )

)(
f (θ2, θ3) − f (θ1, θ2)

n∏
i=4

S(θ3i )

)
.

We have used the symmetries of the phi-functionφ(θ) = φ(θ + 2πi) = φ(−θ − iη) the Jost
property(27)andθ12, θ23 = iη = 2

3iπ which imply that

Res
θ12=iη

φ(θ21) Res
θ23=iη

φ(θ32) = Res
θ12=iη

φ(θ13) Res
θ23=iη

φ(θ21) = (
Res
θ=iη

φ(−θ)
)2

,

φ(θ23)φ(θ31) = φ(θ12)φ(θ23) = φ2(iη),

φ(θ1i )

φ(θ3i )
= φ(θ3i − iη)

φ(θ3i )
= φ(−θ3i )

φ(θ3i )
= S(θ3i ).

With the help of the defining equations(25) for τ and� which imply(
3∏

i=1

φ(z − θi)

)−1

= τ(θ1 − z)�(z − θ2) = τ(θ2 − z)�(θ1 − z)

= τ(θ2 − z)�(z − θ3) = τ(θ3 − z)�(θ1 − z),

we obtain the relations forf (θ2, θ3) andf (θ1, θ2)

3∏
i=1

(
m∏

j=2

φ(zj − θi)

k∏
j=2

φ(uj − θi)

)
f (θ1, θ2) = �(θ12)p

O
n (θ, θ1, z

′, θ2, u
′),

3∏
i=1

(
m∏

j=2

φ(zj − θi)

k∏
j=2

φ(uj − θi)

)
f (θ2, θ3) = �(θ23)p

O
n (θ, θ2, z

′, θ3, u
′).

Finally we obtain using the defining relation(24) for the phi-function

Res
θ23=iη

Res
θ12=iη

Inmk

(
θ,pO) = (

Res
θ=iη

φ(−θ)
)2

φ2(iη)�(iη)

3∏
i=1

n∏
j=4

(
F(θij )

)−1

× In−3m−1k−1
(
θ ′,pO)(

1− σO
1

n∏
i=4

S(θ3i )

)

if the p-function satisfies (iii′3). Therefore the form factor given by(1) and (20)–(23)satisfies
(14)and (iii) if the normalization constants satisfy(29). �
3.2. Examples of fields andp-functions

We present solutions of the equations for thep-functions (i′3)–(v′
3) of (28) and some explici

examples of the resulting form factors. We identify the fields by the properties of their mat
ements. In Section5 we show that the field satisfy the desired commutation rules. This moti
to propose a correspondence of fieldsφ(x) andp-functionspφ

(θ, z,u).
nmk
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The order parameterσQ(x) We look for a solution of (i′3)–(v′
3) with


chargeQ = 1,2,

spins = 0,

statisticsσ
σQ

1 = 1.

Since the fields carry the chargeQ the only non-vanishing form factors withn particles of type 1
are the ones withn = Q mod3. We propose the correspondence of the field and thep-function:

σQ ↔ p
σQ

nmk = 1 with n = 3l + Q,

{
m = l + 1, k = l for Q = 1,

m = l + 1, k = l + 1 for Q = 2.

The normalization constantsNn follow from (29).

Examples forQ = 1 The form factors of the order parameterσ1(x) for one and four particle
of type 1 are

F
σ1
1 = 〈0|σ1(0)|p〉1 = N1I110= 1,

F
σ1
1111(θ) = 〈0|σ1(0)|p1,p2,p3,p4〉in

1111= N4I421(θ,1)
∏

1�i<j�4

F(θij ),

where we calculate from our integral representation(22)

I421(θ,1) = const×
(∑

e−θi
∑

eθi − 1
)∏

i<j

1

sinh1
2(θij − iη)sinh1

2(θij + iη)
.

This result has already been obtained in[17] where also the form factor equation (iv) has be
discussed, in particular (up to normalizations)

Res
θ34=2πi/3

〈0|σ1(0)|p1,p2,p3,p4〉in
1111= const× 〈0|σ1(0)|p1,p2,p3 + p4〉in

112

with

〈0|σ1(0)|p1,p2,p3〉in
112= const× F(θ12)

sinh1
2(θ12 − iη)sinh1

2(θ12 + iη)

2∏
i=1

F min
12 (θi3)

cosh1
2θi3

,

whereF min
12 is the minimal form factor function for the S-matrixS12. Further it has been foun

in [17] that

Res
θ12=2πi/3

〈0|σ1(0)|p1,p2,p3〉in
112= const× 〈0|σ1(0)|p1 + p2,p3〉in

22

with

(30)〈0|σ1(0)|p1,p2〉in
22 = const× F(θ12)

sinh1
2(θ12 − iη)sinh1

2(θ12 + iη)

and the form factor equation (iii) has been checked

Res
θ23=iπ

〈0|σ1(0)|p1,p2,p3〉in
112= const× (

S(θ12) − 1
)
.
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Example forQ = 2 The form factor of the order parameterσ2(x) for two particles of type 1 is

F
σ2
11(θ) = 〈0|σ2(0)|p1,p2〉in

11 = N2I211(θ,1)F (θ12),

where we calculate

I211(θ,1) = const× 1

sinh1
2(θ12 − iη)sinh1

2(θ12 + iη)
,

which agrees with the result (30) of[17]. This is to be expected because of charge conjugati

The disorder parameterµ
Q̃

(x) We look for a solution of (i′3)–(v′
3) with


chargeQ = 0,

spins = 0,

statisticsσ
µ

Q̃

1 = ωQ̃,

whereω = eiη, η = 2/3. We call the number̃Q = 1,2 the ‘dual charge’ of the fieldµ
Q̃

(x). Since
the fields carry the chargeQ = 0 the only non-vanishing form factors withn particles of type 1
are the ones withn = 0 mod3. We propose the correspondence of the field and thep-functionQ̃

µ
Q̃

↔
{

p
µ1
nmk = ρ exp

(∑m
i=1 zi − 1

3

∑n
i=1 θi

)
p

µ2
nmk = ρ exp

(∑m
i=1 zi + ∑k

i=1 ui − 2
3

∑n
i=1 θi

) with

{
n = 3m,

k = m,

whereρ = √
ω

Q̃(Q̃−N+2)m. Again the normalization constantsNn follow from (29).

Examples forQ̃ = 1,2 The form factors of the disorder parameterµ
Q̃

(x) for 0 and 3 particles
of type 1 are

F
µ

Q̃ = 〈0|µ
Q̃

(0)|0〉 = 1,

F
µ

Q̃

111(θ) = 〈0|µ
Q̃

(0)|p1,p2,p3〉in
111= N3I311

(
θ,p

µ
Q̃
) ∏

1�i<j�3

F11(θij ).

We calculate from our integral representation(22)

I311
(
θ,p

µ
Q̃
) = const× e

∓ 1
3

n∑
i=1

θi
3∑

i=1

e±θi
∏
i<j

1

sinh1
2(θij − iη)sinh1

2((θij + iη)
,

where the upper sign is for̃Q = 1 and the lower one for̃Q = 2. Using the form factor boun
state formula (iv) we obtain (up to a constant)

F
µ

Q̃

12 (θ) = e∓ 1
6θ12

1

cosh1
2θ12

F min
12 (θ12).

It is interesting to note that for Reθ1 → ∞ we have the relation of order and disorder param
form factors (up to constants)

lim
Reθ1→∞〈0|σ1(0)|p1,p2,p3,p4〉in

1111= 〈0|µ2(0)|p2,p3,p4〉in
111,
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which follows from the asymptotic behavior

F(θ1i ) → e
2
3θ1i ,

I421(θ,1) → eθ1

(
4∑

i=2

e−θi

)
4∏

j=2

e−θ1j
∏

1<i<j

1

sinh1
2(θij − a)sinh1

2(θij + a)
.

The para-Fermi fieldψQ(x) We look for a solution of (i′3)–(v′
3) with


chargeQ = Q,

spins = Q(3− Q)/3,

statisticsσ
ψQ

1 = ωQ.

These fields have chargeQ = 1,2 and dual chargẽQ = Q. The only non-vanishing form factor
with n particles of type 1 are the ones withn = Q mod3. We propose the correspondence of
field and thep-function:

ψQ ↔
{

p
ψ1
nmk = ρ exp

(∑m
i=1 zi − 1

3

∑n
i=1 θi

)
p

ψ2
nmk = ρ exp

(∑m
i=1 zi + ∑k

i=1 ui − 2
3

∑n
i=1 θi

) with

{
n = 3l + Q,

m = l + 1,

k = l + Q − 1,

whereρ = √
ω

Q̃(Q̃−1)l . Again the normalization constantsNn follow from (29).

Examples forQ = 1,2 The form factors of the para-Fermi fieldψ1(x) for 1 and 4 particles o
type 1 are

F
ψ1
1 (θ) = 〈0|ψ1(0)|p〉1 = N1I110

(
θ,pψ1

) = e
2
3θ ,

F
ψ1
1111(θ) = 〈0|ψ1(0)|p1,p2,p3,p4〉in

1111= N4I421
(
θ,pψ1

) ∏
1�i<j�4

F(θij )

= const× e
− 2

3

4∑
i=1

θi ∑
i<j

eθi+θj
∏

1�i<j�4

F(θij )

sinh1
2(θij − iη)sinh1

2(θij + iη)

and the one of the para-Fermi fieldψ2(x) for 2 particles of type 1 is

F
ψ2
11 (θ) = 〈0|ψ2(0)|p1,p2〉11 = N2I211

(
θ,pψ2

)
F(θ12)

= const× e
1
3 (θ1+θ2)

F (θ12)

sinh1
2(θ12 − iη)sinh1

2(θ12 + iη)
.

All these examples agree with the results of[18].

The higher currentsJ±
L (x) We look for a solution of (i′3)–(v′

3) with


chargeQ = 0,

spins = L ± 1,

statisticsσ
J±
L

1 = 1.

Since the currents areZ(3)-charge-less the only non-vanishing form factors withn particles of
type 1 are the ones withn = 0 mod3. We propose the correspondence of the currents an
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p-functions forL ∈ Z

J±
L ↔ p

J±
L

nmk = ±
(

n∑
i=1

e±θi

)(
m∑

i=1

eLzi +
m∑

i=1

eLui

)
for

{
n = 3m,

k = m.

Note that for this case the functioñp in (28) is non-vanishing, however, it does not contribute
causeInmm(θ,1) = 0 for n = 3m. The proof of this fact is similar to the one given inAppendix B.
The higher chargesQL = ∫

dx J 0
L(x) satisfy the eigenvalue equations(

QL −
n∑

i=1

eLθi

)
|p1, . . . , pn〉in = 0.

Obviously, fromJ±
±1(x) we obtain the energy–momentum tensor.

Examples The form factors of the energy momentum tensor that isJ±
L (x) for L = ±1 for 0 and

3 particles of type 1 are

FJ±
L = 〈0|J±

L (0)|0〉 = 0,

F
J±
L

111(θ) = 〈0|J±
L (0)|p1,p2,p3〉in

111= c311I311
(
θ,pJ±

L
) ∏

1�i<j�3

F(θij )

= ±const× (
e±θ1 + e±θ2 + e±θ3

)(
eLθ1 + eLθ2 + eLθ3

)
×

∏
1�i<j�3

F(θij )

sinh1
2(θij − iη)sinh1

2(θij + iη)
.

By (iv) we obtain the bound state form factor (up to a normalization) forL = ±1

F
J±
L

12 (θ) = ±const× e
1
2 (L±1)(θ1+θ2)F min

12 (θ12).

Notice that this last expression agrees with the results of[20] whenN = 3.

4. Z(N)-form factors

The scalingZ(N)-Ising model possesses particles of typeα = 1, . . . ,N −1 withZ(N)-charge
Qα = α such that the anti-particle ofα is ᾱ = N − α. The bound state fusion rules are(αβ) =
α + β modN , in particular the bound state ofN − 1 particles of type 1 is the anti-particlē1.
Therefore applyingN − 2 times formula (iv) and once (iii) we obtain the recursion relations
form factors where only particles of type 1 are involved

Res
θN−1N=iη

. . . Res
θ12=iη

Fn(θ1, . . . , θn)

(31)= 2iFn−N(θN+1, . . . , θn)

(
1− σO

1

n∏
i=N+1

S(θNi)

)
N−2∏
α=1

√
2Γ 1+α

1α ,

whereη = 2πi
N

and theΓ 1+α
1α = i|Resθ=iηα S1α(θ)|1/2 are the bound state intertwiners of t

fusion (1α) = 1+ α. We will construct the form factors of particles of type 1, all the others
then obtained by the bound state formula (iv).
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4.1. The general Z(N)-form factor formula

Following [1] we write the form factors again in the form(1)

(32)FO
α (θ) = KO

α (θ)
∏

1�i<j�n

F (θij ),

where minimal form factor function[17]

(33)F(θ) = cN exp

∞∫
0

dt

t

2 cosh1
N

t sinhN−1
N

t

sinh2 t

(
1− cosht

(
1− θ

iπ

))

is the solution of Watson’s equations(2) with the S-matrix(4). The constantcN is given by(A.1)
in Appendix A. The K-function KO

n (θ1, . . . , θn) is totally symmetric in the rapiditiesθi , 2πi

periodic, containing the entire pole structure and determines the asymptotic behavior fo
values of the rapidities. Similar as above we make the Ansatz for theK-functions

(34)KO
n (θ) = NnInm

(
θ,pO)

with the fundamental building blocks of form factors

(35)Inm(θ,pO) =
(

N−1∏
k=1

1

mk!
mk∏
j=1

∫
Cθ

dzkj

R

)
h(θ, z)pO(θ, z),

(36)

h(θ, z) =
N−1∏
k=1

(
mk∏
j=1

n∏
i=1

φ(zkj − θi)
∏

1�i<j�mk

τ(zki − zkj )

)

×
∏

1�k<l�N−1

mk∏
i=1

ml∏
j=1

�(zki − zlj ),

wherem = (m1, . . . ,mN−1) andz = (zki), k = 1, . . . ,N − 1, i = 1, . . . ,mk . Again the integra-
tion contoursCθ = ∑

Cθi
enclose the pointsθi such thatR = ∫

Cθ
dzφ(z− θ). Equations (iii) and

(iv), in particular(31) lead to the relations

(37)
N−2∏
k=0

φ(z + kiη)

N−1∏
k=0

F(z + kiη) = 1,

(38)τ(−z)φ(z + iπ)φ(z) = 1, �(z)φ(z) = 1,

(39)Nn

(
Res
θ=iη

φ(−θ)
)N−1

N−2∏
k=1

φk(kiη)

N−1∏
k=1

FN−k(kiη) = Nn−N2i

N−2∏
k=1

N−2∏
α=1

√
2Γ 1+α

1α ,

wherem − 1= (m1 − 1, . . . ,mN−1 − 1). The solution of(37) for φ is again

(40)φ(z) = 1

sinh1
2zsinh1

2(z + iη)
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if the constantcN is fixed as in(A.1). The phi-function satisfies again the ‘Jost function’ prope
φ(−θ)/φ(θ) = S(θ). Thep-functionpO

nm(θ, z) is analytic in all variables and satisfies:

(i ′) pO
nm(θ, z) is symmetric underθi ↔ θj ,

(ii ′) σO
1 pO

nm(θ1 + 2πi, θ2, . . . , z) = pO
nm(θ1, θ2, . . . , z),

(iii ′) if θkk+1 = iη = 2πi/N for k = 1, . . . ,N − 1

(41)pO
nm(θ, z)|zk1=θk

= σO
1 pO

nm(θ, z)|zk1=θk+1 = σO
1 pO

n−Nm−1(θ
′, z′) + p̃,

(v′) pO
nmk(θ + µ,z + µ) = esµpO

nmk(θ, z),

whereθ ′ = (θN+1, . . . , θn), z′ = (zki), k = 1, . . . ,N − 1, i = 2, . . . ,mk . In (ii ′) and (iii′) σO
1 is

the statistics factor of the operatorO with respect to the particle of type 1 and in (v′) s is the spin
of the operatorO. Again p̃ must not contribute after integration (in most casesp̃ = 0).

By means of the off-shell Bethe Ansatz(3) and (35)we have transformed the complicat
form factor equations (i)–(v) to simple equations for thep-functions (i′)–(v′). Again one may
convince oneself that the form factor satisfies (i) and (ii) ifh(θ, z) is symmetric underθi ↔ θj

and periodic with respect toθi → θi + 2πi. Not so trivial is again the residue relation (iii) whic
is proved in the following lemma.

Lemma 2. The form factors given by equations(32)–(36)satisfy the form factor equations(i)–
(v) if the functionsφ, τ , � satisfy(37)and (38), the normalization constants satisfy(39)and the
p-functions satisfy(i ′)–(v′) of (41).

The proof of this lemma follows the same strategy of the previousZ(3) case. Here, howeve
the essential calculation is much more involved, due to the existence more types of pa
Details of this proof can be found inAppendix C.

4.2. Examples of fields andp-functions

We present solutions of the equations for thep-functions (i′)–(v′) of (41) and some explici
examples of the resulting form factors. We identify the fields by the properties of their matri
ments. In Section5 we show that the fields satisfy the desired commutation rules. This moti
to propose a correspondence of fieldsφ(x) andp-functionspφ(θ, z).

The fieldsψ
Q,Q̃

(x) These fields have the chargeQ = 0, . . . ,N − 1 and the dual chargẽQ =
0, . . . ,N − 1. We look for a solution of (i′)–(v′) with

(42)




chargeQ modN,

spinsψ = min(Q, Q̃) − QQ̃/N,

statisticsσψ

1 = ωQ̃

with ω = eiη = e2πi/N . The phase factorσψ

1 is the statistics factor of the fieldψ
Q,Q̃

(x) with
respect to the particle of type 1. Since the fields carry the chargeQ the only non-vanishing form
factors withn particles of type 1 are the ones withn = Q modN . We propose the corresponden
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ψ
Q,Q̃

↔ pQQ̃
nm = ρ exp

(
Q̃∑

k=1

mk∑
j=1

zkj − Q̃

N

n∑
i=1

θi

)

(43)with n = 3l + Q, l = 0,1,2, . . . and

{
mk = l + 1 for k � Q,

mk = l for Q < k,

whereρ = √
ω

Q̃(Q̃−N+2)n/N . One easily checks that thisp-function satisfies the equations (i′)–
(v′) and the requirements(42). The normalization constantsNn follow from (39). In particular
we have for

Q̃ = 0 the order parametersσQ(x) = ψQ0(x),

Q = 0 the disorder parameterµ
Q̃

(x) = ψ0Q̃
(x),

Q = Q̃ the para-Fermi fieldsψQ(x) = ψQQ(x).

They satisfy space like commutation rules(5), derived in the next section. The para-Fermi fie
ψQ(x) are the massive analogs of the para-Fermi fields in the conformal quantum field
of [14,15]. One obtains a second set of fieldsψ̃

Q,Q̃
(x) by changing the sign in the exponent

(43).

The higher currentsJ±
L (x) These fields are charge-less, have bosonic statistics and spinL± 1.

The only non-vanishing form factors withn particles of type 1 are the ones withn = 0 modN .
We propose the correspondence of the currents and thep-functions forL ∈ Z

J±
L ↔ p

J±
L

nm = ±
n∑

i=1

e±θi

N−1∑
k=1

m∑
j=1

eLzkj for n = 3m.

The higher chargesQL = ∫
dx J 0

L(x) satisfy again the eigenvalue equations(
QL −

n∑
i=1

eLθi

)
|p1, . . . , pn〉in = 0.

Obviously, fromJ±
±1(x) we obtain the energy–momentum tensor.

Examples Up to normalization constants we calculate for the order parametersσ1(x) andσ2(x)

〈0|σ1(0)|θ〉1 = 1,

〈0|σ2(0)|θ1, θ2〉in
11 = F(θ12)

sinh1
2(θ12 − 2πi/N)sinh1

2(θ12 + 2πi/N)

and for the para-Fermi fieldsψQ(x) andψ2(x)

〈0|ψQ(0)|θ〉Q = e
Q(N−Q)

N
θ ,

(44)〈0|ψ2(0)|θ1, θ2〉in
11 = e(1− 2

N
)(θ1+θ2)F (θ12)

sinh1
2(θ12 − 2πi/N)sinh1

2(θ12 + 2πi/N)
,

where|θ〉Q denotes a one-particle state of chargeQ and |θ1, θ2〉in
11 a state of two particles o

charge 1.
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5. Commutation rules

5.1. The general formula

Techniques similar to the ones used in this section have been applied for the simpler
no bound states and bosonic statistics in[3,27]. A generalization for the case of bound sta
has been discussed in[28]. Here we generalize these techniques for the case of more ge
statistics and also discuss the contribution of poles related to the double poles of boun
S-matrices.2 In order to discuss commutation rules of two fieldsφ(x) and ψ(y) we have to
use a general crossing formula for form factors which was derived in[4] (see also[3]). For
quantum field theories with general statistics we introduce assumptions on the statistics fa
a fieldψ(x) and a particleα. It is easy to see that for consistency of (ii) and (iii) the condit
σψ(α)σψ(ᾱ) = 1 has to hold ifᾱ is the anti-particle ofα. We assume that

(45)σψ(α) = σψ(Qα)

depends on the charge of the particle such thatσψ(Q + Q′) = σψ(Q)σψ(Q′). A stronger as-
sumption (which holds for theZ(N)-model) is the existence of a ‘dual charge’Q̃ψ of the fields
such that

(46)σψ(α) = ωQ̃ψQα ,

where|ω| = 1.
In order to write the following long formulae we introduce a short notation: For a fieldO(x)

and for ordered sets of rapiditiesθ1 > · · · > θn andθ ′
1 < · · · < θ ′

m we write the general matri
element ofO(0) as

(47)Oβ
α (θ ′

β, θα) := out〈βm(θ ′
m), . . . , β1(θp

′
1)

∣∣O∣∣α1(θ1), . . . , αn(θn)
〉in

,

whereθα = (θ1, . . . , θn) andθ ′
β = (θ ′

1, . . . , θ
′
m). The array of indicesα = (α1, . . . , αn) denote a

set of particles (αi ∈ {types of particles}) and correspondingly forβ (we also write|α| = n, etc.).
Similar as for form factors this matrix element is given for general order of the rapidities b
symmetry property (i) for both the in- and out-states which takes the general form:

Oβ
α (θ ′

β, θα) = S
β

δ (θ ′
δ)O

δ
γ (θ ′

δ, θγ )S
γ

α (θα)

if θγ is a permutation ofθα andθ ′
δ a permutation ofθ ′

β . The matrixS
γ

α (θα) is defined as the rep

resentation of the permutationπ(θα) = θγ generated by the two-particle S-matricesS
γ2γ1
α1α2(θ12),

for exampleSγ3γ1γ2
α1α2α3(θ1, θ2, θ3) = S

γ3γ1
α1λ3

(θ13)S
λ3γ2
α2α3(θ23) (cf. [4]).

We consider an arbitrary matrix element of products of fieldsO = φ(x)ψ(y) and O =
ψ(y)φ(x). Inserting a complete set of intermediate states|θ̃ γ 〉in

γ we obtain

(48)
(
φ(x)ψ(y)

)β

α
(θ ′

β, θα) = e
iP ′

βx−iPαy 1

γ !
∫
θ̃ γ

φ
β
γ (θ ′

β, θ̃γ )ψ
γ

α (θ̃γ , θα)e−iP̃γ (x−y),

2 For bound state form factors there are also higher order ‘physical poles’ (see e.g.[29–32]).
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where φ = φ(0), ψ = ψ(0), Pα = the total momentum of the state|θα〉in
α etc. and

∫
θ̃ γ

=∏|γ |
k=1

∫
dθ̃k

4π
. Einstein summation convention over all setsγ is assumed. We also defineγ ! =∏

α nα! wherenα is the number of particles of typeα in γ . We apply the general crossing fo
mula (31) of[4] which is obtained by taking into account the disconnected terms in (ii)
iterating that formula. Strictly speaking, we apply the second version of the crossing form
the matrix element ofφ

(49)φ
β
γ (θ ′

β, θ̃γ ) =
∑

θ ′
ρ∪θ ′

τ =θ ′
β

θ̃ς∪θ̃ �=θ̃ γ

S
β
ρτ (θ

′
ρ, θ ′

τ )φςρ̄(θ̃ς , θ ′̄
ρ − iπ−)Cρρ̄1τ

σ (θ ′
τ , θ̃�)S

ςσ
γ (θ̃γ ),

whereρ̄ = (ρ̄|ρ|, . . . , ρ̄1) with ρ̄ = antiparticle ofρ andθ ′̄
ρ − iπ− means that all rapidities ar

taken asθ ′ − i(π −ε). The matrix1τ
σ (θ ′

τ , θ̃�) is defined by(47)with O = 1 the unit operator. The
summation is over all decompositions of the sets of rapiditiesθ ′

β andθ̃ γ . To the matrix elemen
of ψ we apply the first version of the crossing formula

(50)

ψ
γ

α (θ̃γ , θα) = σ
ψ

(γ̄ )

∑
θ̃ ν∪θ̃π=θ̃ γ

θµ∪θλ=θα

S
γ

νπ (θ̃ ν, θ̃π )1ν
µ(θ̃ ν, θµ)Cππ̄ψπ̄λ(θ̃ π̄ + iπ−, θλ)S

µλ
γ (θγ ),

where we assume that the statistics factorσ
ψ

(γ̄ ) of the fieldψ with respect to all particles inγ

is the same for allγ which contribute to(48) (see below). Inserting(49) and (50)in (48) we

use the product formulaS
ςσ
γ (θ̃γ )S

γ

νπ (θ̃ ν, θ̃π ) = S
ςσ
νπ (θ̃ν, θ̃π ). Let us first assume that the sets

rapidities in the initial stateθα and the ones of the final stateθ ′
β have no common elements whi

implies that alsõθν ∩ θ̃ σ = ∅. Then we may use (ii) to getS
ςσ
νπ (θ̃ ν, θ̃π ) = 1 and we can perform

the θ̃ ν - and θ̃ � -integrations. The remaining̃θ -integration variables arẽθω = θ̃ ς ∩ θ̃π , then we
may write for the sets of particlesς = µω,π = ωτ andγ = µωτ and similar for the rapiditie
and momenta. Eq.(48)simplifies as(

φ(x)ψ(y)
)β

α
(θ ′

β, θα)

(51)=
∑

θ ′
ρ∪θ ′

τ =θ ′
β

θµ∪θλ=θα

µ!τ !
µωτ !S

β
ρτ (θ

′
ρ, θ ′

τ )

∫
θ̃ω

X
ρτ

µλS
µλ
α (θα)ei(P ′

ρ−Pµ)x−i(Pλ−P ′
τ )y,

where

X
ρτ

µλ = σ
ψ

(γ̄ )φµωρ̄(θµ, θ̃ω, θ ′̄
ρ − iπ−)Cρ̄ρCτ τ̄ Cωω̄

(52)× ψτ̄ω̄λ(θ
′̄
τ + iπ−, θ̃ ω̄ + iπ−, θλ)e

−iP̃ω(x−y).

The integrandX
ρτ

µλ may be depicted as
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Similarly, if we apply for the operator productψ(y)φ(x) again the second crossing formula
the matrix element ofφ and the first one the matrix element ofψ we obtain Eq.(51)whereX

ρτ

µλ

is replaced by

Y
ρτ

µλ = σ
ψ

(β̄)
φµωρ̄(θµ, θ̃ω − iπ−, θ ′̄

ρ − iπ−)Cρ̄ρCτ τ̄ Cωω̄

(53)× ψτ̄ω̄λ(θ
′̄
τ + iπ−, θ̃ ω̄, θλ)e

iP̃ω(x−y),

which means that onlyσψ

(γ̄ ) is replaced byσψ

(β̄)
, P̃ω by −P̃ω and the integration variables̃θω by

θ̃ ω̄ − iπ−.

No bound states In this case there are no singularities in the physical strip and we may
in the matrix element ofψ(y)φ(x) (51) with (53) for equal times andx1 < y1 the integration
variables byθ̃i → θ̃i + iπ−. Note that the factoreiP̃ω(x−y) decreases for 0< Reθ̃i < π if x1 < y1.
BecauseP̃ω → −P̃ω we get the matrix element ofφ(x)ψ(y) (51) with (52) up to the statistics
factors. Therefore we conclude

(54)φ(x)ψ(y) = ψ(y)φ(x)σψφ for x1 < y1,

whereσψφ = σ
ψ

(γ̄ )
/σ

ψ

(β̄)
. Using the assumption(45)we have withQγ̄ = ∑

γ∈γ Qγ̄

σ
ψ

(γ̄ ) =
∏
γ∈γ

σψ(γ̄ ) = σψ(Qγ̄ ) = σψ(Qβ̄ − Qφ),

which is the same for allγ , as assumed above. The last equation follows fromQγ̄ = −Qγ

and charge conservation which means that the matrix elementsφ
β
γ in (48) are non-vanishing i

Qβ + Qφ = Qγ . Therefore the statistics factor of the fieldsψ with respect toφ is

(55)σψφ = σψ(Qγ̄ )

σψ(Qβ̄)
= σψ(−Qφ) = 1/σψ(Qφ),

which is in general not symmetric under the exchange ofψ andφ. Finally, we obtain the spac
like commutation rules

(56)φ(x)ψ(y) = ψ(y)φ(x)

{
1/σψ(Qφ) for x1 < y1,

σ φ(Qψ) for x1 > y1,

where the second relation is obtained from(54) by exchangingφ ↔ ψ andx ↔ y. The same
result appears when there are bound states. This is proved inAppendix Dwhere also the existenc
of double poles in bound state S-matrices is taken into account.

5.2. Application to theZ(N)-model

The statistics factors in this model are of the form(46) σψ(α) = ωQ̃ψQα whereQ̃ψ is the

dual charge of the fieldψ andQα is the charge of the particleα, thereforeσψφ = ω−Q̃ψQφ . The
general equal time commutation rule(56) for fieldsψ

QQ̃
(x) defined by(43) in Section4 reads

as

(57)ψ
QQ̃

(x)ψ
RR̃

(y) = ψ
RR̃

(y)ψ
QQ̃

(x)

{
ω−R̃Q = e−2πiR̃Q/N for x1 < y1,

Q̃R 2πiQ̃R/N 1 1
ω = e for x > y .
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Notice that in this model we have a more general anyonic statistics.

Examples

(1) The order parameters have bosonic commutation rules with respect to each other

σQ(x)σQ′(y) = σQ′(y)σQ(x).

(2) The disorder parameters have again bosonic commutation rules with respect to each
(3) For the order-disorder parameters we obtain the typical commutation rule

µ
Q̃

(x)σQ(y) = σQ(y)µ
Q̃

(x)

{
1 for x1 < y1,

ωQ̃Q = e2πiQ̃Q/N for x1 > y1.

(4) The para-Fermi fields have anyonic commutation rules

(58)ψQ(x)ψR(y) = ψR(y)ψQ(x)eε(x1−y1)2πiQR/N .

These results prove the commutation rules(5) in the introduction.

The 2-point Wightman functionIn order to compare these commutation rules with the exp
results of the previous section we calculate the 2-point Wightman function for the para-
fieldsψQ andψN−Q (with spin s = Q(N − Q)/N ) in 1-particle (chargeQ) intermediate stat
approximation. Using the result(44)we obtain

〈0|ψQ(x)ψN−Q(0)|0〉 =
∫

dθ

4π
〈0|ψQ(x)|θ〉QQ〈θ |ψN−Q(0)|0〉 + · · ·

= 1

2π

(
x− − iε

x+ − iε

)ν/2

Kν

(
M

√
i(x+ − iε)

√
i(x− − iε)

) + · · · ,

whereν = 2Q(N − Q)/N andx± = t ∓ x. This agrees with the commutation rule(58), because
for t = 0 andx > 0 using the symmetryQ ↔ N − Q, x → −x and translation invariance w
obtain

〈0|ψQ(x)ψN−Q(0)|0〉 = 〈0|ψN−Q(x)ψQ(0)|0〉
= eiπν〈0|ψN−Q(−x)ψQ(0)|0〉
= eiπν〈0|ψN−Q(0)ψQ(x)|0〉,

where((x − iε)/(−x − iε))ν/2 = eiπνε(x)/2 has bee used. The asymptotic behavior is obta
from

2Kν(z) →
{

�(ν)
(

z
2

)−ν + �(−ν)
(

z
2

)ν for z → 0,√
2π
z

e−z for z → ∞,

for ν 	= 0. Therefore the leading short distance behavior is up to constants

〈0|ψQ(x)ψN−Q(0)|0〉 ∼
(
x+ − iε

)−ν
,

〈0|ψ̃Q(x)ψ̃N−Q(0)|0〉 ∼
(
x− − iε

)−ν
,

where the fields̃ψQ(x) are obtained by changing the sign in the exponent of(43).
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Appendix A. Some useful formulae

In this appendix we provide some explicit formulae for the scattering matrices and the m
form factors which we frequently employ in the explicit computations. The S-matrix of
‘fundamental’ particles (i.e. of type 1) is[9]

S(θ) = sinh1
2(θ + 2πi

N
)

sinh1
2(θ − 2πi

N
)

= −exp

∞∫
0

dt

t
2

sinht (1− 2/N)

sinht
sinhtx,

whereθ is the rapidity difference defined by

p1p2 = M2 coshθ.

A particle of typeα (0 < α < N ) is a bound stateα = (α1 · · ·αl) of particles of typeαi where
α = α1 + · · · + αl , in particularα = (1 · · ·1︸ ︷︷ ︸

α

) for all αi = 1. For the scattering of the bound sta

α andβ we have[17]

Sαβ(θ) = exp2

∞∫
0

dx

x

coshx(1− |β−α|
N

) − coshx(1− β+α
N

)

sinhx tanh(x/N)
sinhx

θ

iπ
.

The minimal form factor functions, which satisfies Watson’s equations, are obtained fro
S-matrix formulae[1] and are given as (β > α)

F min
αβ (θ) = exp

∞∫
0

dt

t
2

sinht (1− β
N

)sinht ( α
N

)

sinh2 t tanht/N

(
1− cosht

(
1− θ

iπ

))

in particular[17]

F min
11 (θ) = exp

∞∫
0

dt

t
2

sinht (1− 1
N

)cosht 1
N

sinh2 t

(
1− cosht

(
1− θ

iπ

))

= −i sinh
1

2
θ exp

∞∫
dt

t

sinht (1− 2
N

)

sinh2 t

(
1− cosht

(
1− θ

iπ

))

0
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in our

.

= −i sinh
1

2
θ

∞∏
k=0

�(k + 1− 1
N

+ x
2)

�(k + 1
N

+ x
2)

�(k + 2− 1
N

− x
2)

�(k + 1+ 1
N

− x
2)

(
�(k + 1

2 + 1
N

)

�(k + 3
2 − 1

N
)

)2

and with1̄= (N − 1)

F min
11̄

(θ) = exp

∞∫
0

dt

t

sinht 2
N

sinh2 t

(
1− cosht

(
1− θ

iπ

))

=
∞∏

k=0

�(k + 1
2 + 1

N
+ θ

2πi
)

�(k + 1
2 − 1

N
+ θ

2πi
)

�(k + 3
2 + 1

N
− θ

2πi
)

�(k + 3
2 − 1

N
− θ

2πi
)

(
�(k + 1− 1

N
)

�(k + 1+ 1
N

)

)2

.

There are simple relations between the minimal form factors which we essentially use
construction which are up to constants

F min
11

(
θ + iπ

N

)
F min

11

(
θ − iπ

N

)
∝ sinh

1

2

(
θ + iπ

N

)
sinh

1

2

(
θ − iπ

N

)
F min

12 (θ)

N−1∏
k=0

F min
11

(
θ + k

N
2πi

)
∝

N−2∏
k=0

sinh
1

2

(
θ + k

N
2πi

)
sinh

1

2

(
θ + k + 1

N
2πi

)

F min
11 (θ)F min

11̄
(θ + iπ) ∝ sinh

1

2
θ sinh

1

2
(θ + 2iπ/N).

In Eqs.(20) and (33)we used the functionF(θ) = cNF min
11 (θ) with

(A.1)cN = eiπ N−1
N exp

( ∞∫
0

dt

t sinht

((
1− 2

N

)
− sinht (1− 2

N
)

sinht

))
,

such that the normalizations in(37) and (40)hold.

Appendix B. Integrals for the Z(2)-model

The claim(15) follows from the following lemma

Lemma 3. For n = 2m + 1 odd andxi = eθi

fn(x) := Inm(θ,1) − (2i)(n−1)/2
∏

1�i<j�n

tanh1
2θij

F (θij )
= 0.

Proof. Again as in the proof of Lemma 2 in[33] we apply induction and Liouville’s theorem
One easily verifiesf1(x) = f3(x) = 0. As induction assumptions we takefn−2 = 0. The func-
tionsfn(x) are a meromorphic functions in terms of thexi with at most simple poles atxi = −xj

since pinchings appear forzk = θi = θj ± iπ . The residues of the poles are proportional tofn−2

as follows from the recursion relations (iii) for both terms. Furthermorefn(x) → 0 for xi → ∞.
Thereforefn(x) vanishes identically by Liouville’s theorem.�
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t

Note that the integrations in the definition(9) of Inm can easily be performed and withN =
{1, . . . , n} and|K| = m

Inm(θ,1) =
∑
K⊂N

∏
k∈K

∏
i∈N \K

2i

sinhθki

.

Appendix C. Proof of the main lemma

In this appendix we prove the mainLemma 2which provides the generalZ(N)-form factor
formula.

Proof. Similar as in the proof ofLemma 1we calculate

Res
θN−1N=iη

. . . Res
θ12=iη

Inm(θ,pO
nm)

= m1 · · ·mN−1

m1! · · ·mN−1!

(
N−1∏
k=1

mk∏
j=2

∫
Cθ ′

dzkj

R

)

×
N−1∏
k=1

(
n∏

i=N+1

mk∏
j=2

φ(zkj − θi)
∏

2�i<j�mk

τ(zki − zkj )

)

×
∏

1�k<l�N−1

mk∏
i=2

ml∏
j=2

�(zki − zlj )

(
N−1∏
k=1

N∏
i=1

m∏
j=2

φ(zkj − θi)

)
r

with

r = Res
θN−1N=iη

. . . Res
θ12=iη

(
N−1∏
k=1

∫
Cθ

dzk1

)
N−1∏
k=1

(
n∏

i=1

φ(zk1 − θi)
∏

2�j�m

τ(zk1 − zkj )

)

×
∏

1�k<l�N−1

(
�(zk1 − zl1)

mk∏
i=2

�(zki − zl1)

ml∏
j=2

�(zk1 − zlj )

)
pO

nm(θ, z).

ReplacingCθ by Cθ ′ where θ ′ = (θN+1, . . . , θn) we have usedτ(0) = τ(±iη) = �(0) =
�(−iη) = 0 and the fact that thezk1-integrations give non-vanishing results only forzk1 = θk

and θk+1, k = 1, . . . ,N − 1. This is because forθ12, . . . , θN−1N → iη pinching appears a
(z11, . . . , zN−11) = (θ2, . . . , θN) and(θ1, . . . , θN−1). Defining the function

f (z11, . . . , zN−11) =
N−1∏
k=1

∏
2�j�mk

τ(zk1 − zkj )
∏

1�k<l�N−1

�(zk1 − zl1)

×
∏

1�k<l�N−1

(
ml∏

j=2

�(zk1 − zli)

mk∏
i=2

�(zki − zl1)

)
pO

nm(θ, z)

one obtains by means of(38)after some lengthy but straightforward calculation
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discussed
r = Res
θN−1N=iη

. . . Res
θ12=iη

(
N−1∏
k=1

∫
Cθ

dzk1

R

)
N−1∏
k=1

(
n∏

i=1

φ(zk1 − θi)

)
f (z11, . . . , zN−11)

=
(

Res
θ=iη

φ(−θ)

N−2∏
k=1

φ(kiη)

)N−1(N−1∏
k=1

n∏
i=N+1

φ(θk+1i )

)

×
(

f (θ2, . . . , θN) −
(

n∏
i=N+1

φ(θ1i )

φ(θNi)

)
f (θ1, . . . , θN−1)

)
.

It has been used thatf (. . . , z, . . . , z . . .) = f (. . . , z, . . . , z − iη . . .) = 0 because of�(0) =
�(−iη) = 0. Using further the defining relation ofφ in terms ofF (37), the Jost property(27)of
theφ-function and the properties (iii′) of (41) for thep-function we get

Res
θN−1N=iη

. . . Res
θ12=iη

Inm

(
θ,pO

nm

)

= (
Res
θ=iη

φ(−θ)
)N−1

N−2∏
k=1

φk(kiη)

× In−Nm−1
(
θ ′,pO

n−Nm−1

)( N∏
k=1

n∏
i=N+1

F(θki)

)−1(
1− σO

1

n∏
i=N+1

S(θNi)

)
,

which together with the relation for the normalization constants(39)proves the claim. �
Appendix D. Proof of the commutation rules

In this appendix we prove that we find the same commutation rules for two fieldsφ(x) and
ψ(y) when there are bound states poles or even when the S-matrix has double poles.3

Bound states We now show that the same result(54) appears when there are bound stat4

which means that there are poles in the physical strip. Letγ = (αβ) be a bound state ofα and
β with fusion angleηγ

αβ which means that atθαβ = iη
γ
αβ the S-matrixSαβ(θ) has a pole. The

momentum and the rapidity of the bound state are

pγ = pα + pβ,

θγ = θα − i
(
π − η

β̄
γ̄ α

) = θβ + i
(
π − ηᾱ

βγ̄

)
,

whereη
β̄
γ̄ α andηᾱ

βγ̄ are the fusion angles of the bound statesβ̄ = (γ̄ α) and ᾱ = (βγ̄ ), respec-
tively.

We start matrix element ofψ(y)φ(x) (given by(51) with (53)). First we consider the contr
bution in the sum over the intermediate states whereα ∈ ω̄ andβ ∈ λ. All the particles which are
not essential for this discussion will be suppressed. Then the functionψαβ(θ̃α, θβ) has a pole a
θ̃α − θβ = iη

γ
αβ such that by shifting the integratioñθα → θ̃α + iπ− there will be the additiona

3 These poles appear typically for bound state–bound state scattering. The case of higher order poles may be
similarly and will be published elsewhere.

4 Here we follow the arguments of Quella[28].



H. Babujian et al. / Nuclear Physics B 736 [FS] (2006) 169–198 195

n

rgument

, they
er the
h

t

t

contribution

i

2
Res

θ̃α=θα

φᾱ(θ̃α − iπ−)Cᾱαψαβ(θ̃α, θβ)eiP̃α(x−y)e−iyPβ

= i

2
φᾱ(θα − iπ−)Cᾱαψγ (θγ )

√
2Γ

γ
αβeixPα−iyPγ

with θα = θβ + iη
γ
αβ , θγ = θβ + i(π − ηᾱ

βγ ) and the fusion intertwinerΓ γ
αβ (see e.g.[33]). Next

we consider the contribution to the sum over the intermediate states whereγ ∈ ω̄ andβ = µ.

Then the functionφβγ̄ (θβ, θ̃γ − iπ) has a pole atθβ − θ̃γ + iπ = iηᾱ
βγ̄ such that by shifting the

integrationθ̃γ → θ̃γ + iπ− there will be the additional contribution

i

2
Res

θ̃γ =θγ

φβγ̄ (θβ, θ̃γ − iπ−)Cγ̄ γ ψγ (θ̃γ )eiP̃γ (x−y)e−ixPβ

= − i

2
φᾱ(θα − iπ−)

√
2Γ ᾱ

βγ̄ Cγ̄ γ ψγ (θγ )eixPα−iyPγ

with θα, θγ as above and the fusion intertwinerΓ ᾱ
βγ . From the crossing relation of the fusio

intertwiners

CᾱαΓ
γ
αβ = Γ ᾱ

βγ̄ Cγ̄ γ

we conclude that these residue terms form bound state poles cancel. The steps of the a
may be depicted as

Double poles5 Form factors have additional poles which are not related to bound states
belong to higher poles of the S-matrix. First we consider the contribution to the sum ov
intermediate states where the particles1̄,1 ∈ ω̄, 2 ∈ µ. Again we suppress all particles whic

are not essential for our discussion. Then the functionφ21̄1(θ, θ̃ − iπ, θ̃ ′ − iπ) has a pole a
θ̃ = θ1 = θ + iπ/N which correspond to the bound state(21̄) = 1 with the fusion angleη1

21̄
=

π(1− 1/N). We shift the integrations̃θ → θ̃ + iπ− andθ̃ ′ → θ̃ ′ + iπ− such that during the shif
0< Im(θ̃ − θ̃ ′) < ε. From theθ̃ -integration there will be the additional contribution

i

2
Res
θ̃=θ1

φ21̄1(θ, θ̃ − iπ, θ̃ ′ − iπ)C1̄11̄1ψ11̄(θ̃
′, θ̃ )eiP̃ (x−y)e−ixP

= − i

2
φ11(θ − iπ/N, θ̃ ′ − iπ)

√
2Γ 11

2 C1̄11̄1ψ11̄(θ̃
′, θ1)e

iP̃ (x−y)e−ixP .

Further the functionφ11(θ − iπ/N, θ̃ ′ − iπ) has a pole at̃θ ′ = θ2 = θ + iπ(1−3/N) which cor-
respond to the bound state(11) = 2 with the fusion angleη2

11 = π2/N . From theθ̃ ′-integration

5 This discussion is new.
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ediate

factor
is
there will be the additional contribution(
− i

2

)2√
2 Res

θ̃ ′=θ2

φ11(θ − iπ/N, θ̃ ′ − iπ)
√

2Γ 11
2 C1̄11̄1ψ11̄(θ̃

′, θ1)e
iP̃ (x−y)e−ixP

= −1

2
φ2(θ − iπ2/N)Γ 2

11Γ
11
2 C1̄11̄1ψ11̄(θ2, θ1)e

i(P1+P2)(x−y)e−ixP .

This procedure may be depicted as

We show this the additional term is cancelled by a contribution to the sum over the interm
states wherē2 ∈ ω, 2∈ λ. Then the functionψ2̄2(θ̃ , θ) has a pole at̃θ = θ3 = θ + iπ(1− 2/N)

which correspond to the double pole of the S-matrix

S2̄2(θ) =
(

sin π
2 ( θ

iπ
+ N−2

N
)

sin π
2 ( θ

iπ
− N−2

N
)

)2 sin π
2 ( θ

iπ
+ N−4

N
)

sin π
2 ( θ

iπ
− N−4

N
)

at θ = iπ(1− 2/N). From theθ̃ -integration there will be the additional contribution

i

2
Res
θ̃=θ3

φ2(θ̃ − iπ)C22̄ψ2̄2(θ̃ , θ)eiP̃ (x−y)e−iyP

= i

2
iφ2(θ − iπ2/N)C22̄(−i)

(
ψ1̄1(θ2, θ1)Γ

1̄1̄
2̄

C1̄1Γ
11
2

)
eiP3(x−y)e−iyP .

This procedure may be depicted as

The crossing relation of the fusion intertwiners

Γ 2
11Γ

11
2 C11̄ = C22̄Γ 1̄1̄

2̄
C1̄1Γ

11
2

implies that this contribution again cancelled the one above. It has been used that the form
of bound states̄22 has a simple pole where the S-matrixS2̄2 has a double pole and the residue

Res
θ̃=θ3

ψ2̄2(θ̃ , θ) = −i
(
ψ1̄1(θ2, θ3)Γ

1̄1̄
2̄

C1̄1Γ
11
2

)
.

This may be calculated as follows. By the form factor equation (iv) we have

Res
θ12=iη2

11

Res
θ34=iη2

11

ψ1̄1̄11(θ1, θ2, θ3, θ4) = 2ψ2̄2(θ(12), θ(34))Γ
2̄
1̄1̄

Γ 2
11.
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(ii) and

ics index
Therefore using the form factor equation (iii) and the definition of the fusion intertwi
ResiS = Γ Γ we obtain

Res
θ(12)(34)=iπ(1−2/N)

ψ2̄2(θ(12), θ(34))Γ
2̄
1̄1̄

Γ 2
11

= 1

2
Res

θ14=iπ
Res

θ12=iη2
11

Res
θ34=iη2

11

ψ1̄1̄11(θ2, θ1, θ4, θ3)S1̄1̄(θ12)S11(θ34)

= 1

2
Res

θ14=iπ
Res

θ12=iη2
11

2iC1̄1

(
ψ1̄1(θ2, θ3)S1̄1̄(θ12)S11(θ34) − ψ1̄1(θ2, θ3)

)
= iC1̄1

(
ψ1̄1(θ2, θ3)(−i)Γ 1̄1̄

2̄
Γ 2̄

1̄1̄
(−i)Γ 11

2 Γ 2
11

)
,

which implies the residue formula used above. This procedure may be depicted as

Note that the last graph, as an on-shell graph, resembles (half of) the ‘box’ Feynman d
which was used to investigate the double poles of bound state S-matrices (see e.g.[29,30]).

The general caseFinally we consider the general case that the sets of rapidities in the i
stateθα and the ones of the final stateθ ′

β have also common elements. Then after inser

(49) and (50)in (48) there will be S-matricesS
ςσ
νπ (θ̃ ν, θ̃π ) which produce additional poles in th

physical strip which would produce additional residue contributions while shifting the integr
contours. However, we can remove these S-matrices by using again the crossing relation
move all the lines of common rapidities to the left or right as depicted as follows

Then we can apply the procedure as above.

References

[1] M. Karowski, P. Weisz, Nucl. Phys. B 139 (1978) 455.
[2] H.M. Babujian, A. Fring, M. Karowski, A. Zapletal, Nucl. Phys. B 538 (1999) 535.
[3] F. Smirnov, Advanced Series in Mathematical Physics, vol. 14, World Scientific, 1992.
[4] H. Babujian, M. Karowski, Nucl. Phys. B 620 (2002) 407.
[5] M. Karowski, Nucl. Phys. B 153 (1979) 244.
[6] K.M. Watson, Phys. Rev. 95 (1954) 228.
[7] H.M. Babujian, in: Gosen 1990, Proceedings, Theory of elementary particles, 12–23 (see high energy phys

29 (1991) No. 12257).
[8] H. Babujian, J. Phys. A 26 (1993) 6981.
[9] R. Köberle, J.A. Swieca, Phys. Lett. B 86 (1979) 209.



198 H. Babujian et al. / Nuclear Physics B 736 [FS] (2006) 169–198

995, p.

Press,
[10] R.Z. Bariev, Phys. Lett. A 55 (1976) 456.
[11] B.M. McCoy, C.A. Tracy, T.T. Wu, Phys. Rev. Lett. 38 (1977) 793.
[12] M. Sato, T. Miwa, M. Jimbo, Proc. Jpn. Acad. 53 (1977) 6.
[13] B. Berg, M. Karowski, P. Weisz, Phys. Rev. D 19 (1979) 2477.
[14] A.B. Zamolodchikov, Int. J. Mod. Phys. A 3 (1988) 743.
[15] V.A. Fateev, Int. J. Mod. Phys. A 6 (1991) 2109.
[16] V.A. Fateev, A.B. Zamolodchikov, Sov. Phys. JETP 62 (1985) 215.
[17] M. Karowski, in: Lecture Notes in Physics, vol. 126, Springer, 1979, p. 344.
[18] A.N. Kirillov, F.A. Smirnov, ITF preprint 88-73P, Kiev, 1988.
[19] G. Delfino, J.L. Cardy, Nucl. Phys. B 519 (1998) 551.
[20] M. Jimbo, H. Konno, S. Odake, Y. Pugai, J. Shiraishi, J. Stat. Phys. 102 (2001) 883.
[21] F.H.L. Essler, R.M. Konik, in: M. Shifman, et al. (Eds.), From Fields to Strings, vol. 1, 2004, pp. 684–830.
[22] A.M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cambridge Univ. Press, Cambridge, 1

332.
[23] A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization in Strongly Correlated Systems, Cambridge Univ.

Cambridge, 1999.
[24] J. Links, H. Zhou, R. McKenzie, M. Gould, J. Phys. A 36 (2003) R63.
[25] H. Babujian, M. Karowski, Phys. Lett. B 575 (2003) 144.
[26] H. Babujian, M. Karowski, J. Phys. A 35 (2002) 9081.
[27] M.Y. Lashkevich, LANDAU-94-TMP-4, 1994, unpublished.
[28] T. Quella, Diploma thesis FU-Berlin, 1999, unpublished.
[29] S.R. Coleman, H.J. Thun, Commun. Math. Phys. 61 (1978) 31.
[30] H.W. Braden, E. Corrigan, P.E. Dorey, R. Sasaki, Nucl. Phys. B 338 (1990) 689.
[31] G. Delfino, G. Mussardo, Nucl. Phys. B 455 (1995) 724.
[32] C. Acerbi, G. Mussardo, A. Valleriani, J. Phys. A 30 (1997) 2895.
[33] H. Babujian, M. Karowski, Phys. Lett. B 471 (1999) 53.


	Exact form factors in integrable quantum field theories: the scaling Z(N)-Ising model
	Introduction
	Z(2)-form factors
	The general formula for n-particle form factors
	Examples of fields and their p-functions

	Z(3)-form factors
	The general formula for n-particle form factors
	Examples of fields and p-functions

	Z(N)-form factors
	The general Z(N)-form factor formula
	Examples of fields and p-functions

	Commutation rules
	The general formula
	Application to the Z(N)-model

	Acknowledgements
	Some useful formulae 
	Integrals for the Z(2)-model
	Proof of the main lemma
	Proof of the commutation rules
	References


