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Abstract

The general SU(N) form factor formula is constructed. Exact form factors for the field, the energy–
momentum and the current operators are derived and compared with the 1/N -expansion of the chiral Gross–
Neveu model and full agreement is found. As an application of the form factor approach the equal time
commutation rules of arbitrary local fields are derived and in general anyonic behavior is found.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Quantum chromodynamics, the theory of the strong interactions, is a non-Abelian gauge the-
ory based on the gauge group SU(3). It was first pointed out by ’t Hooft [1,2] that many features
of QCD can be understood by studying a gauge theory based on the gauge group SU(N) in the
limit N → ∞. One might think that letting N → ∞ would make the analysis more complicated
because of the larger gauge group and consequently increase in the number of dynamical degrees
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of freedom. Also one can think that SU(N) gauge theory has very little to do with QCD because
N → ∞ is not close to N = 3. However it is well known that the 1/N expansion provides good
results which can be compared with experiments [3].

One of the most important trends in theoretical physics in the last decades is the develop-
ment of exact methods which are completely different from perturbation theory. Resolution of
the strong coupling problem would give us a full understanding of the structure of interactions in
non-Abelian gauge theory. One promising possibility of overcoming the limitations of perturba-
tion theory is the application of exact integrability. From this point of view the two-dimensional
integrable quantum field theories are in a sense a laboratory for investigations of those properties
of quantum field theories, which cannot be described via perturbation theory.

The chiral SU(N) Gross–Neveu [4] model given by the Lagrangian

(1)L =
N∑

i=1

ψ̄i iγ ∂ψi + g2

2

((
N∑

i=1

ψ̄iψi

)2

−
(

N∑
i=1

ψ̄iγ
5ψi

)2)

is an interesting (1 + 1)-dimensional field theory that can be studied using the 1/N expansion.
The model is asymptotically free with a spontaneously broken chiral symmetry, and so shares
some dynamical features with QCD. Gross and Neveu [4] investigated the model using an 1/N

expansion. Apparently a chiral U(1)-symmetry is spontaneously broken, the fermions acquire
mass and a Goldstone boson seems to appear. This is of course not possible in two space–time
dimensions and severe infrared divergences appear due the “would-be-Goldstone boson”. How-
ever, it has been argued by Witten [5] that dynamical mass generation can be reconciled with the
absence of spontaneous symmetry breaking. There exist further (different) approaches to over-
come these problems and to formulate a 1/N expansion [6–8] (see also [9]). On shell they all
agree and are consistent with the exact S-matrix (2). We follow here the approach of Swieca et
al. [8] where additional fields are introduced in order to compensate the infrared divergences.
The authors claim that since the physical fermions have lost not only the chiral U(1) but also
the charge U(1) symmetry, they transform accordingly to pure SU(N). They propose an inter-
pretation of the antiparticles as a bound state of N − 1 particles. Furthermore this means that the
particles satisfy neither Fermi nor Bose statistics, but rather carry “spin” s = 1

2 (1 − 1/N). As a
consequence there are unusual crossing relations and Klein factors.

In this article we will focus on the SU(N) Gross–Neveu form factors using the “bootstrap pro-
gram” [10,11]. We provide here some examples, calculate the form factors exactly and compare
the results with field theoretical 1/N expansions. We emphasize that in addition to the operators
in the vacuum sector, such as the energy–momentum tensor and the current, we also consider
anyonic operators as the fundamental fields. We also derive the equal time commutation rules for
local operators which are in particular complicated due to the unusual crossing formulae related
to the Klein factors.

The general form factor of an operator O(x) for n-particles, which is a co-vector valued
function and can be written as [12]

F O
α (θ) = KO

α (θ)
∏

1�i<j�n

F (θij )

where θ = (θ1, . . . , θn) is the set of rapidities of the particles α = (α1, . . . , αn). The scalar func-
tion F(θ) is the minimal form factor function and the K-function KO

α (θ) contains the entire
pole structure and its symmetry is determined by the form factor equations (i) to (v) [13]. To
construct the K-function we must apply the nested off-shell Bethe ansatz to capture the vectorial
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content of the form factors. This solves the missing link of Smirnov’s [14] formula for the SU(N)

form factors, where the vectors were given by an “indirect definition” characterized by necessary
properties but not provided explicitly. We note that SU(N) form factors were also calculated
in [14–16] using other techniques, see also the related papers [17,18]. Our results apply not only
to chargeless operators such as the energy–momentum and the current operators but also to more
general ones with anyonic behavior. We believe that our integral representation, besides of being
appropriate for a comparison with field theoretical 1/N expansions, may also shed some light
for a better understanding on the correlation functions of models with more general (anyonic)
statistics.

The paper is organized as follows: In Section 2 we present the general setting concerning
the SU(N) S-matrix, the nested off-shell Bethe ansatz and the chiral Gross–Neveu Lagrangian
field theory. We review known results and derive some further formulae which we need in the
following. In Section 3 we construct the general form factor formula and present some examples
in detail, such as the form factors of the energy–momentum tensor, the Dirac field and the SU(N)

current. In Section 4 we compare our exact results against 1/N perturbation theory of the SU(N)

Gross–Neveu model. In Section 5 we present the commutation rules of the fields. Our conclusions
are stated in Section 6. In Appendix A we provide the general proof of the bound state form factor
formula and in Appendix B the commutation rule of two fields (in general anyonic) is proved.

2. General setting

The particle spectrum of the chiral SU(N) Gross–Neveu model consists of N −1 multiplets of
particles of mass mr = m1 sin(rπ/N)/ sin(π/N), which correspond to all fundamental SU(N)

representations of rank r = 1, . . . ,N − 1 with representation spaces V (r) of dimension
(

N
r

)
. Let

(α) = (α1, . . . , αr) (1 � α1 < · · · < αr � N) be a particle of rank r . We write

(α) ∈ V =
N−1⊕
r=1

V (r), V (r) � C(N
r )

where the (α) form a basis of V . A particle of rank r is a bound state of r particles of rank 1.
The antiparticle corresponding to (α) is (ᾱ) = (ᾱ1, . . . , ᾱN−r ) (1 � ᾱ1 < · · · < ᾱN−r � N) (of
rank N − r) such that the union of the set of indices satisfies {α1, . . . , αr} ∪ {ᾱ1, . . . , ᾱN−r} =
{1, . . . ,N}.

2.1. The S-matrix

The S-matrix for the scattering of two particles α,β (of rank 1) [6,8,19,20] is

(2)S
δγ
αβ (θ) = δγ

α δδ
βb(θ) + δδ

αδ
γ
β c(θ)

where θ = θ1 − θ2 is the rapidity difference and p
μ
1,2 = m(cosh θ1,2, sinh θ1,2). The amplitudes

satisfy

c(θ) = − iη

θ
b(θ), η = 2π

N
,

a(θ) = b(θ) + c(θ) = −Γ (1 − θ
2πi

)Γ (1 − 1
N

+ θ
2πi

)

Γ (1 + θ
2πi

)Γ (1 − 1
N

− θ
2πi

)
.
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We also need the S-matrix for the scattering of a bound state (ρ) = (ρ1, . . . , ρN−1) (1 � ρ1 <

· · · < ρN−1 � N) (of rank N − 1) and a particle α (of rank 1)

(3)S
β(σ)

(ρ)α (θ) = (−1)N−1(δ(σ)
(ρ) δ

γ
α b(πi − θ) + Cβ(σ )C(ρ)αc(πi − θ)

)
where the charge conjugation matrices are defined by

C(α1...αN−1)αN
= Cα1(α2...αN ) = εα1α2...αN

,

Cα1(α2...αN ) = C(α1...αN−1)αN = (−1)N−1εα1α2...αN

with εα1...αN
and εα1...αN totally anti-symmetric and ε1...N = ε1...N = 1. Formula (3) is obtained

by applying iteratively the bound state fusion method [21] to (2).
For later convenience we extract the factors a(θ) and (−1)N−1b(iπ − θ), respectively

(4)S
δγ
αβ (θ) = a(θ)S̃

δγ
αβ (θ),

(5)S
β(σ)

(ρ)α (θ) = (−1)N−1b(iπ − θ)S̃
β(σ )

(ρ)α (θ)

such that

(6)S̃
δγ
αβ (θ) = δγ

α δδ
β b̃(θ) + δδ

αδ
γ
β c̃(θ),

(7)S̃
β(σ )

(ρ)α (ω) = δ
(σ)
(ρ) δ

β
α + Cβ(σ )C(ρ)αd̃(ω),

b̃(θ) = θ

θ − iη
, c̃(θ) = −iη

θ − iη
, d̃(ω) = c(iπ − ω)

b(iπ − ω)
= −iη

iπ − ω
, η = 2π

N

where δ
(σ)
(ρ) = δ

σ1
ρ1 δ

σ2
ρ2 · · · δσN−1

ρN−1 . Below we will also use for the matrices (6) and (7) the notations

S̃12(θ) and S̃1̄2(θ), respectively.

2.2. Nested “off-shell” Bethe ansatz

The “off-shell” Bethe ansatz is used to construct vector valued functions which have sym-
metry properties according to a representation of the permutation group generated by a fac-
torizing S-matrix. In addition they satisfy matrix differential [22] or difference [23] equa-
tions. For the application to form factors we use the co-vector version K1...n(θ) ∈ V1...n =
(
⊗n

i=1 V )† (θi ∈ C, i = 1, . . . , n)

K...ij ...(. . . , θi, θj , . . .) = K...j i...(. . . , θj , θi, . . .)S̃ij (θij ),

K1...n(θ
′) = K1...n(θ)Q1...n(θ, i)

where θ ′ = (θ1, . . . , θi + 2πi, . . . , θn) (see below and e.g. [13,23]). We write the components
of the co-vector K1...n as Kα where α = ((α11, . . . , α1r1), . . . , (αn1, . . . , αnrn)) is a state of n

particles of rank r1, . . . , rn.
The nested SU(N) “off-shell” Bethe ansatz for particles of rank 1 has been constructed in [13].

Here we need a more general case.
Nested “off-shell” Bethe ansatz for particles of rank 1 and N − 1: We consider a state with n

particles of rank 1 and n̄ particles of rank N − 1 and write the off-shell Bethe ansatz co-vector
valued function as

(8)Kα(ρ)(θ,ω) =
∫

Cθω

dz1 · · ·
∫

Cθω

dzm k(θ,ω, z)Ψ̃α(ρ)(θ,ω, z)
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where α = (α1, . . . , αn), (ρ) = ((ρ1), . . . , (ρn̄)) = ((ρ11, . . . , ρ1N−1), . . . , (ρn̄1, . . . , ρn̄N−1)),
θ = (θ1, . . . , θn),ω = (ω1, . . . ,ωn̄) and z = (z1, . . . , zm). This ansatz transforms the complicated
matrix equations to simple equations for the scalar function k(θ,ω, z) (see [13] and below). The
integration contour Cθω can in general be characterized as follows: there is a finite number of
complex numbers ai(θ), bj (θ) such that the positions of all poles of the integrand are of the form

(1): ai(θ) + 2πik, k ∈ N,

(9)(2): bj (θ) − 2πil, l ∈ N

and Cθω runs from −∞ to +∞ such that all poles (1) are above and all poles (2) are below the
contour. This contour is just the same as the one used for the definition of Meijer’s G-function. It
will turn out that for the examples considered below the form factors can be expressed in terms
of Meijer’s G-functions.

The state Ψ̃α(ρ) in (8) is a linear combination of the basic Bethe ansatz co-vectors

(10)Ψ̃α(ρ)(θ,ω, z) = Lβ(σ)(z,ω)Φ̃
β(σ )

α(ρ) (θ,ω, z), with 1 < βi, σ1j = 1.

As usual in the context of the algebraic Bethe ansatz [24,25] the basic Bethe ansatz co-vectors
are obtained from the monodromy matrix

T̃1...n,1̄...n̄,0(θ,ω, θ0) = S̃10(θ1 − θ0) · · · S̃n0(θn − θ0)S̃1̄0(ω1 − θ0) · · · S̃n̄0(ωn̄ − θ0)

≡
(

Ã1...n,1̄...n̄(θ,ω, z) B̃1...n,1̄...n̄,β(θ,ω, z)

C̃
β

1...n,1̄...n̄
(θ,ω, z) D̃

β ′
1...n,1̄...n̄,β

(θ,ω, z)

)
, 2 � β,β ′ � N

where the S-matrices S̃i0 and S̃ı̄0 are given by (6) and (7). As usual the Yang–Baxter algebra rela-
tion for the S-matrix yields the typical TTS-relation which implies the basic algebraic properties
of the sub-matrices A,B,C,D.

Here not only one reference co-vector exists. The space of reference co-vectors, defined as
usual by

Ω(σ)B̃β = 0,

is (N − 1)n̄-dimensional and is spanned by the co-vectors for all (σ ) = ((σ11, . . . , σ1N−1),

. . . , (σn̄1, . . . , σn̄N−1)) with σi1 = 1 < σi2 < · · · < σiN−1 � N . They are eigenstates of Ã and

D̃
β ′
β

Ω(σ)Ã(θ,ω, z) = Ω(σ),

Ω(σ)D̃
β ′
β (θ,ω, z) = δ

β ′
β

n∏
i=1

b̃(θi − z)Ω(σ)

where the indices 1 . . . n, 1̄ . . . n̄ are suppressed. The basic Bethe ansatz co-vectors in (10) are
defined as

(11)Φ̃
β(σ )

α(ρ) (θ,ω, z) = (
Ω(σ)C̃βm(θ,ω, zm) · · · C̃β1(θ,ω, z1)

)
α(ρ)

where 1 < βi � N .
The technique of the ‘nested Bethe ansatz’ means that for the coefficients Lβ(σ)(z,ω) in (10)

one makes the analogous construction as for Kα(ρ)(θ,ω) where now the indices β, (σ ) take only
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the values 2 � βi � N and σi1 = 1 < σi2 < · · · < σiN−1 � N . This nesting is repeated until the
space of the coefficients becomes one-dimensional. It is well known (see [23]) that the ‘off-shell’
Bethe ansatz states are highest weight states if they satisfy a certain matrix difference equation.
If there are only n particles of rank 1, then the SU(N) weights are

(12)w = (n − n1, n1 − n2, . . . , nN−2 − nN−1, nN−1)

where n1 = m,n2, . . . are the numbers of C operators in the various levels of the nesting. If in
addition there are n̄ particles of rank N − 1 the SU(N) weights are

(13)w = (n − n1, n1 − n2, . . . , nN−2 − nN−1, nN−1 − n̄) + n̄(1, . . . ,1)

because N − 1 particles of rank 1 yield a bound state of rank N − 1 and at the lth level the
number of C operators is reduced by N − l − 1 (see Appendix A).

2.3. Minimal form factors and φ-function

To construct the form factors we need the form factor functions F(θ),G(θ) and the function
φ(θ). The form factor functions F(θ) and G(θ) for two particles of rank 1 and for one particle
of rank 1 and one of rank N − 1, respectively are

(14)F(θ) = c exp

∞∫
0

dt

t sinh2 t
e

t
N sinh t

(
1 − 1

N

)(
1 − cosh t

(
1 − θ

iπ

))
,

(15)G(θ) = c′ exp

∞∫
0

dt

t sinh2 t
e

t
N sinh

t

N

(
1 − cosh t

(
1 − θ

iπ

))
.

They are the minimal solutions of the equations

F(θ) = F(−θ)a(θ), F (iπ − θ) = F(iπ + θ),

G(θ) = −G(−θ)b(πi − θ), G(iπ − θ) = G(iπ + θ)

where a(θ) and b(πi − θ) are the highest weight amplitudes of the corresponding channels of
(2) and (3). The φ-function

(16)φ̃(θ) = 1

F(−θ)G(iπ + θ)
= Γ

( −θ

2πi

)
Γ

(
1 − 1

N
+ θ

2πi

)

is a solution of

(17)
N−2∏
k=0

φ̃(−θ − kiη)

N−1∏
k=0

F(θ + kiη) = 1

which follows from the assumption that the antiparticle of a fundamental particle is a bound state
of N − 1 of them (see below and [13]). The constants c and c′ in (14) and (15) follow from (16)
and (17).
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2.4. Chiral Gross–Neveu model

Swieca et al. [8] wrote the fermion fields ψi(x) in the Lagrangian (1) in bosonic form. In
order to extract the real particle content of the theory, they introduced in addition the “physical”
fields

ψ̂i(x) = Ki

(
m

2π

)1/2

e(π/4)γ 5
exp

{
−i

√
π

(
γ 5φi(x) +

∞∫
x

dy1 φ̇i (y)

)}
,

φi(x) =
(

1 − 1

N

)
ϕi(x) − 1

N

∑
j �=i

ϕj (x)

where ϕi(x) are free canonical zero-mass fields and Ki are Klein factors satisfying

Ki ψ̂j (x) =
{

ψ̂j (x)Ki for i = j,

−ψ̂j (x)Ki for i �= j.

The fields ψ̂ satisfy (with a suitable normal product prescription N )

(18)ψ̂
†
i = K 1

(N − 1)!
∑
j

εij1...jN−1 N ψ̂j1 · · · ψ̂jN−1 , K =
N∏

j=1

Kj

such that

(19)Kψ̂j (x) = (−1)N−1ψ̂j (x)K.

Eq. (18) means that antiparticles should be identified with bound state of N − 1 particles and the
creation operators of the antiparticle b̂†

α and of the bound state â
†
(�) are related by

b̂†
α = Kεα(�)â

†
(�), Kâ†

α K = (−1)N−1â†
α.

The “physical” fields satisfy the anyonic commutation relations

ψ̂i(x)ψ̂i(y) = ψ̂i(y)ψ̂i(x)e2πisε(x1−y1), for (x − y)2 < 0

with “spin” s = 1
2 (1 − 1/N). This implies that the “physical” S-matrix is related to the one of (2)

by [8,26]

S
δγ
αβ (θ12) = e2πisε(θ12)Ŝ

δγ
αβ (θ12).

As a consequence the abnormal crossing relation (3) transforms to a normal one. The bound state
S-matrix satisfies

(20)S
δ(σ )
(ρ)β(θ) = (−1)N−1C(ρ)γ S

γ δ
βα(πi − θ)Cα(σ ).

Therefore the physical crossing relation is

Ŝ
δγ̄
ᾱβ(θ) = Ĉᾱα′ Ŝα′δ

βγ ′(πi − θ)Ĉγ ′γ̄

with Ĉᾱα′ = δαα′ , Ĉγ ′γ̄ = δγ ′γ .
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3. Form factors

For a state of n particles of rank r1, . . . , rn with rapidities θ = (θ1, . . . , θn) and a local operator
O(x) we define the associated form factor functions F O

α (θ) by

〈0|O(x)|θ1, . . . , θn〉in
α = e−ix(p1+···+pn)F O

α (θ), for θ1 > · · · > θn,

where again α = ((α11, . . . , α1r1), . . . , (αn1, . . . , αnrn)). For all other arrangements of the ra-
pidities the functions F O

α (θ) are given by analytic continuation. The co-vector valued function

F O
α (θ) satisfies the form factor equations (i)–(v) (see [12–14,27,28]) and can be written as [12]

(21)F O
α (θ) = KO

α (θ)
∏

1�i<j�n

Frirj (θij )

where Frirj (θ) are the minimal form factor functions. For particles of rank 1 and N − 1 they are
given by F11(θ) = FN−1N−1(θ) = F(θ) and FN−11(θ) = F1N−1(θ) = G(θ) of (14) and (15),
respectively. In [13] the form factors of the fundamental particles of rank 1 have been constructed.
We shortly recall the results. All other form factors can be obtained from these by applying the
bound state fusion procedure which is given by the form factor equation (iv) (see e.g. [13]).

Form factors for particles of rank 1: The K-function in (21) is given by the nested “off-shell”
Bethe ansatz (8) for the special case n̄ = 0 and a special choice of the scalar function k(θ, z) such
that the form factor equations (i)–(v) are satisfied

(22)KO
α (θ) = Nn

m!
∫

Cθ

dz1 · · ·
∫

Cθ

dzm h̃(θ, z)pO(θ, z)Ψ̃α(θ, z)

with

h̃(θ, z) =
n∏

i=1

m∏
j=1

φ̃(θi − zj )
∏

1�i<j�m

τ(zi − zj ),

(23)τ(z) = 1

φ̃(z)φ̃(−z)
.

The integration contour Cθ is defined by (9). The dependence on the operator O enters only
through the p-function pO(θ, z) which has to satisfy simple equations (see [13,29–31]). The K-
function is in general a linear combination of the fundamental building blocks [29–31] given by
(22). Here we consider only these cases where the sum consists only of one term.

The p-function: The co-vector valued function Ψ̃α(θ, z) is expressed as in (10) for n̄ = 0 by
an Lβ(z) for which the nesting procedure is applied. The final form is (up to a constant)

F O
α (θ) =

∏
F(θij )

∫
dz(1) · · ·

∫
dz(N−1) h̃(θ, z)pO(θ, z)Φ̃α(θ, z),

(24)h̃(θ, z) = h̃
(
θ, z(1)

) · · · h̃(
z(N−2), z(N−1)

)
where z = z(1), . . . , z(N−1). The Bethe state Φ̃α(θ, z) is obtained by the nesting procedure (see
(10), (11) and [13])

Φ̃α(θ, z) = Φ̃(N−1)
ς

(
z(N−2), z(N−1)

) · · · Φ̃(2),γ (
z(1), z(2)

)
Φ̃

β
α

(
θ, z(1)

)
.
β
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In general the p-function (see [13]) depends on the rapidities θ and all integration variables z(l).
Let the operator O(x) transform as a highest weight SU(N) representation with highest weight
vector

wO = (
wO

1 , . . . ,wO
N

)
.

Because of SU(N) invariance the weight vector of the co-vector F O
α (θ) is then

w = (
wO

1 , . . . ,wO
N

) + L(1, . . . ,1)

(25)= (n − n1, n1 − n2, . . . , nN−2 − nN−1, nN−1)

where (12) and the fact, that the weight vector (1, . . . ,1) correspond to the vacuum sector, has
been used. In [13] was shown that the p-function has to satisfy a set of equations in order that the
form factor (24) satisfies the form factor equations. In particular to guarantee the transformation
properties of the operator the following periodicity relations have to be valid

pO(
θ, . . . , z(l), . . .

) = σ̃ O
1 pO(

. . . , θi + 2πi, . . . , z(l), . . .
)

(26)= (−1)w
O
l +wO

l+1pO(
θ, . . . , z

(l)
i + 2πi, . . .

)
where

(27)σ̃ O
1 = σ O

1 (−1)(N−1)[∑N
i=1 wO

i /N ]−∑N
i=2 wO

i , σ O
1 = eiπ(1−1/N)QO

.

The charge of the operator O is defined by QO = nmodN and σ O
1 is the statistics factor

of O with respect to the fundamental particle of rank 1. The sign factors σ̃ O
1 /σ O

1 = ±1 and

(−1)w
O
l +wO

l+1 = ±1 in (26) follow [13] from the sign (−1)(N−1) in the unusual crossing relation
(20) (related to the Klein factors of (19)).

3.1. General form factors of particles of rank 1 and N − 1

Using the bound state procedure (see Appendix A) which means taking residues of (21) or
(22) one derives the form factors and K-functions for n particles of rank 1 with rapidities θ and
n̄ particles of rank N − 1 with rapidities ω. As usual we split off the minimal part

(28)F O
α(ρ)(θ,ω) = Kα(ρ)(θ,ω)

∏
1�i<j�n

F (θij )

n∏
i=1

n̄∏
j=1

G(θi − ωj )
∏

1�i<j�n̄

F (ωij ).

The K-function is given by a nested ‘off-shell’ Bethe ansatz (8)

(29)KO
α(ρ)(θ,ω) = Nnn̄

m!
∫

Cθω

dz1 · · ·
∫

Cθω

dzm h̃(θ, z)pO(θ,ω, z)Ψ̃α(ρ)(θ,ω, z)

where h̃(θ, z) is the scalar function (23). Note that this h-function does not depend on ω. For the
SU(N) S-matrix the function φ̃(θ) is given by (16). The integration contour Cθω (see Fig. 1) has
been defined in the context of (8).

Nesting: The state Ψ̃α(ρ) in (29) is a linear combination of the basic Bethe ansatz co-vectors
(11)

Ψ̃α(ρ)(θ,ω, z) = Lβ(σ)(z,ω)Φ̃
β(σ )

(θ,ω, z), with 1 < βi, σ1j = 1
α(ρ)
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Fig. 1. The integration contour Cθ1θ2ω for two particles and one bound state.

where Lβ(σ)(z,ω) satisfies again a representation like (29). This nesting is iterated until all
βi = N and all (σ )i = (1,2, . . . ,N − 1). Only for the highest level Bethe ansatz the h-function
depends on ω. The final result is

KO
α(ρ)(θ,ω) =

∫
dz(1) · · ·

∫
dz(N−1) h̃(θ,ω, z)pO(θ,ω, z)Φ̃α(ρ)(θ,ω, z),

h̃(θ,ω, z) =
N−2∏
l=0

h̃
(
z(l), z(l+1)

) n̄∏
i=1

nN−1∏
j=1

χ̃
(
ωi − z

(N−1)
j

)
,

(30)χ̃ (ω) = Γ

(
1

2
+ ω

2πi

)
Γ

(
1

2
− 1

N
− ω

2πi

)
.

The complete Bethe ansatz state is

Φ̃α(ρ)(θ,ω, z) = Φ̃
(N−2)(η)

ς(λ)

(
z(N−2),ω, z(N−1)

) · · · Φ̃(1)γ (κ)

β(σ )

(
z(1),ω, z(2)

)
Φ̃

β(σ )

α(ρ)

(
θ,ω, z(1)

)
where (η) denotes n̄ highest weight bound states (ηi1, . . . , ηiN−1) = (1,2, . . . ,N − 1). The p-
functions in (29) and (30) are obtained again by the bound state procedure from a solution of (26)
for n̄ = 0. In particular for n̄ = 1 (with the replacements in (26) θ → θ,ϕ and z(l) → z(l), y(l)

where ϕ = (ϕ1, . . . , ϕN−1), y
(l) = (y1, . . . , yN−1−l ), l = 1, . . . ,N − 2)

pO(θ,ω, z) = pO(
θ,ϕ, z(1), y(1), . . . , z(N−1), y(N−1)

)
.

Here y
(l)
i = ϕ

(l)
i , i = 1, . . . ,N − 1 − l, and ϕk = ω + kiη − iπ . The proofs of the statements of

this subsection and more details can be found in Appendix A.

3.2. Examples

To illustrate our general results we present some simple examples. In addition, we also derive
the 1/N expansion of exact form factors for the purpose of later comparison with the 1/N -
perturbation theory of the chiral SU(N) Gross–Neveu model.

The energy–momentum tensor: For the local operator O(x) = T ρσ (x) (where ρ,σ = ± de-
note the light cone components) the p-function for n particles of rank 1 (as for the sine-Gordon
model in [28])

(31)pT ρσ

(θ, z) =
n∑

eρθi

m∑
eσzi
i=1 i=1
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satisfies Eqs. (26) with wT = (0,0, . . . ,0). For the n = N particle form factor the weight vector
is w = (1,1, . . . ,1,1). Due to (12) there are nl = N − l integrations in the l-th level of the
off-shell Bethe ansatz.

We calculate the form factor of the particle α and the bound state (λ) = (λ1, . . . , λN−1) of
N − 1 particles. We apply the bound state formulae (28) and (29) for n = n̄ = 1. Due to (13)
there is just one integration in every level of the nested Bethe ansatz (l = 1, . . . ,N − 1)

FT ρσ

α(λ) (θ,ω) = KT ρσ

α(λ)(θ,ω)G(θ − ω),

KT ρσ

α(λ)(θ,ω) = NT ρσ

2

(
eρθ + eρω

)∫
Cθ

dz φ̃(θ − z)eσzΨ̃α(λ)(θ,ω, z),

(32)Ψ̃α(λ)(θ,ω, z) = L
(1)
β(μ)(z,ω)Φ̃

β(μ)

α(λ) (θ,ω, z)

where G(θ) defined in (15) is the minimal form factor function of two particles of rank 1 and
N − 1. The integration in every level of the nested Bethe ansatz (l = N − 2, . . . ,1) can be solved
iteratively

L
(l)
β(μ)(z,ω) = εβ(μ)L

(l)(ω − z) with β > l, (μ) = (1,2, . . . , l,∗, . . . ,∗),

(33)L(l)(ω − z) = cl Γ

(
1

2
+ ω − z

2πi

)
Γ

(
−1

2
+ l

N
− ω − z

2πi

)
.

The remaining integral in (32) may be performed (see Appendix A) with the result1

(34)〈0|T ρσ (0)|θ,ω〉in
α(λ) = 4m2

1εα(λ)e
1
2 (ρ+σ)(θ+ω+iπ)

sinh 1
2 (θ − ω − iπ)

θ − ω − iπ
G(θ − ω).

Similar as in [28] one can prove the eigenvalue equation(∫
dx T ±0(x) −

n∑
i=1

p±
i

)
|θ1, . . . , θn〉in

α = 0

for arbitrary states.
The fields ψα(x): Because the Bethe ansatz yields highest weight states we obtain the matrix

elements of the spinor field ψ(x) = ψ1(x). The p-function for the local operator ψ(±)(x) for n

particles of rank 1 (see also [27])

pψ(±)

(θ, z) = exp±1

2

(
m∑

i=1

zi −
(

1 − 1

N

) n∑
i=1

θi

)

satisfies Eqs. (26) with wψ = (1,0, . . . ,0). For example the 1-particle form factor is

〈0|ψ(±)(0)|θ〉α = δα1e
∓ 1

2 (1− 1
N

)θ .

The last formula is consistent with the proposal of Swieca et al. [6,8] that the statistics of the
fundamental particles in the chiral SU(N) Gross–Neveu model should be σ = exp(2πis), where
s = 1

2 (1 − 1
N

) is the spin (see also (27)). For the n = N + 1 particle form factor there are again
nl = N − l integrations in the l-th level of the off-shell Bethe ansatz and the SU(N) weights are

1 In [23,32] this result has been obtained using Jackson type integrals.
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w = (2,1, . . . ,1,1). Due to (13) there is again just one integration in every level of the nested
Bethe ansatz. Similar as above one obtains the two-particle and one-bound state form factor

F
ψ(±)

αβ(λ)(θ) = K
ψ(±)

αβ(λ)(θ)F (θ12)G(θ13)G(θ23),

K
ψ(±)

αβ(λ)(θ) = Nψe∓ 1
2 ((1− 1

N
)(θ1+θ2)+ 1

N
θ3)

∫
Cθ

dz φ̃(θ1 − z)φ̃(θ2 − z)e± 1
2 zΨ̃αβ(λ)(θ, z),

(35)Ψ̃αβ(λ)(θ, z) = Lγ(μ)(z, θ3)Φ̃
γ (μ)

αβ(λ)(θ, z), with 1 < γ, λ1 = 1

where the function Lγ(μ)(z, θ3) = εγ (μ)L
(1)(θ3 − z) is the same as in (33) above. We were not

able to perform this integration, however, the result can be expressed in terms of Meijer’s G-
functions

K
ψ

(±)
δ

αβ(λ)
(θ) = εα(λ)δ

δ
βK

ψ(±)

1 (θ) + εβ(λ)δ
δ
αK

ψ(±)

2 (θ),

K
ψ(±)

1 (θ) = N
ψ

1 e∓ 1
2 ((1− 1

N
)(θ1+θ2)+ 1

N
θ3)G33

33

(
e±iπ

∣∣∣∣
θ1

2πi
+ 1, θ2

2πi
+ 1,

θ3
2πi

+ 3
2 − 1

N

θ1
2πi

− 1
N

, θ2
2πi

− 1
N

+ 1,
θ3

2πi
+ 1

2

)

and K
ψ(±)

2 is obtained by the form factor equation (i).
1/N expansion of the exact form factor: We consider the connected part of the matrix element

γ 〈θ3|ψ(±)
δ (x)|θ1, θ2〉in,conn.

αβ = C(λ)γ F
ψ(±)

αβ(λ)
(θ1, θ2, θ3 − iπ).

Instead of the field ψ we consider the operator Oδ = (−i(iγ ∂ − m)ψ)δ

F
Oδ,γ
αβ = F O

(1)δ
γ
α δδ

β − F O
(2)δ

γ
β δδ

α, F O
(2)(θ1, θ2, θ3) = F O

(1)(θ2, θ1, θ3).

For N → ∞ we expand the minimal form factors

F(θ) = −i

π
sinh

1

2
θ + O(1/N), G(θ) = 1 + O(1/N),

perform the integration in (35) and obtain (after a lengthy calculation)

(36)F O
(1) = −2miπ

N

sinh θ13

θ13

(
1

cosh 1
2θ13

− γ 5 1

sinh 1
2θ13

)
u(θ2) + O

(
N−2).

We use the following conventions for the γ -matrices

γ 0 =
(

0 1
1 0

)
, γ 1 =

(
0 1

−1 0

)
, γ 5 = γ 0γ 1 =

(−1 0
0 1

)
and for the spinors

(37)u(p) = √
m

(
e−θ/2

eθ/2

)
, v(p) = √

mi

(
e−θ/2

−eθ/2

)
.

In Section 4 below we compare this result with the 1/N -expansion of the chiral SU(N) Gross–
Neveu model in terms of Feynman graphs.

The current J
μ
αβ(x): The SU(N) current J

μ

α(ρ)
(x) transforms as the adjoint representation with

the weight vector wJ = (2,1, . . . ,1,0). Again, because the Bethe ansatz yields highest weight
states we obtain the matrix elements of the highest weight component

J
μ = δα1ε(ρ)Nεμν∂νϕ
α(ρ)
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where we have introduced the pseudo-potential ϕ(x). We start from

Fϕ
α (θ) = Kϕ

α (θ)
∏

F(θij ),

Kϕ
α (θ) =

∫
dz(1) · · ·

∫
dz(N−1) h(θ, z)pϕ(θ, z)Ψα(θ, z)

with z = z(1), . . . , z(N−1). The proposal for the p-function for n particles of rank 1 (see also [27])

pϕ(θ, z) = Nϕ

(
n∑

i=1

exp θi

)−1

exp
1

2

(
n∑

i=1

θi −
n1∑
i=1

z
(1)
i −

nN−1∑
i=1

z
(N−1)
i

)

satisfies Eqs. (26) with wϕ = wJ .
We calculate the form factor of the particle α and the bound state (λ) = (λ1, . . . , λN−1) of

N − 1 particles with weight vector w = (2,1, . . . ,1,0). We apply the bound state formulae (28)
and (29) for n = n̄ = 1. Due to (13) there is no integration in each level of the nested Bethe ansatz
(l = 1, . . . ,N − 1) and

F
ϕ

α(λ)
(θ,ω) = K

ϕ

α(λ)
(θ,ω)G(θ − ω), K

ϕ

α(λ)
(θ,ω) = N

ϕ
2 δα1ε(λ)N

e
1
2 (θ+ω)

eθ + eω
.

The form factor for the SU(N) current is therefore

F
J±
β(ρ)

α(λ) (θ,ω) = 〈0|J±
β(ρ)(0)|θ,ω〉in

α(λ) = ±N2δ
β
α δ

(ρ)

(λ)

(
e±θ + e±ω

)e
1
2 (θ+ω)

eθ + eω
G(θ − ω)

(38)= δβ
α δ

(ρ)

(λ) v̄(ω)γ ±u(θ)G(θ − ω)/G(iπ).

Also here we calculate the 1/N -expansion of the exact form factor for later comparison with
the 1/N -perturbation theory of the chiral SU(N) Gross–Neveu model. Using the expansion of
the minimal form factor function

G(θ) = c′
(

1 − 1

N

(
1 − 1

2

iπ − θ

tanh 1
2θ

))
+ O

(
N−2)

we obtain the 1/N expansion of the exact the SU(N) current form factor as

F
J±
β(ρ)

α(λ) (θ,ω) = 〈0|J±
β(ρ)(0)|θ,ω〉in

α(λ) = δβ
α δ

(ρ)

(λ) v̄(ω)γ ±u(θ)G(θ − ω)/G(iπ)

= δβ
α δ

(ρ)

(λ)
v̄(ω)γ ±u(θ)

(
1 − 1

N

(
1 − 1

2

iπ − (θ − ω)

tanh 1
2 (iπ − (θ − ω))

))
+ O

(
N−2).

4. The chiral SU(N) Gross–Neveu model

Let the Fermi fields ψα(x) (α = 1, . . . ,N) form an SU(N)-multiplet. The field theory is
defined by the Lagrangian [4]

L(ψ, ψ̄) = ψ̄iγ ∂ψ + 1

2
g2((ψ̄ψ)2 − (

ψ̄γ 5ψ
)2)

or equivalently

L(ψ, ψ̄, σ,π) = ψ̄
(
iγ ∂ − σ − iγ 5π

)
ψ − 1

g−2(σ 2 + π2)

2
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where σ(x) is scalar and π(x) a pseudoscalar field. The field equations for these fields are

σ = −g2ψ̄ψ,π = −ig2ψ̄γ 5ψ.

4.1. The 1/N perturbation theory

Using the bootstrap program and the results of [19], the S-matrix, i.e. the on-shell solution of
the model has been proposed in [7,8]. It is well known [4,5,7,8] that the naive 1/N -expansion
of the chiral Gross–Neveu model suffers on severe infrared problems. In [7,8] two different
approaches to overcome these problems were proposed and it was shown that the exact S-matrix
was consistent with both. We will show that an off-shell quantity as our solution for the three
particle form factor of the field ψ(x) is also consistent with the 1/N -expansion of [8]. Without
presenting details we note that we do not obtain consistency with the approach of [7]. Since in the
literature (see e.g. [8,9,33]) there are some errors and misprints we present a detailed derivation
of the approach of Swieca et al.

The generation functional of Greens’s functions for the chiral Gross–Neveu model is

(39)Z(ξ, ξ̄ ) =
∫

dψ dψ̄ dσ dπ exp i
(

A(ψ, ψ̄, σ,π) + ξ̄ψ + ψ̄ξ
)

with the action A(ψ, ψ̄, σ,π) = ∫
d2x L(ψ, ψ̄, σ,π). In Eq. (39) and in the following we use a

short notation of the x-integrations e.g. ξ̄ψ = ∫
d2x ξ̄(x)ψ(x).

When quantizing the model, severe infrared divergences appear due to the “would-be Gold-
stone boson” π . Following Kurak, Köberle and Swieca [8] we introduce two additional bosonic
fields A(x) and B(x) quantized with negative norm. The A-field compensates the infrared diver-
gences. In fact as we will see below that together with the infrared divergences of π it decouples
from the rest of the model. We replace the Fermi fields by

ψ(x) → ψ ′(x) = exp i
(
γ 5A(x) + B(x)

)
ψ(x).

The B-field is introduced, in order not to change the statistics of the ψ -fields. Finally we have
the Lagrangian

L = ψ̄ ′(iγ ∂ − μ)ψ ′ − 1

2
g−2(σ 2 + π2) + 1

2
N

(
α−2A�A + β−2B�B

)
with μ = σ + iγ 5π − γ 5γ ∂A + γ ∂B.

The couplings α and β are unrenormalized, their renormalized values are
√

π . Performing the
ψ ′-integrations in the generation functional we obtain

Z(ξ, ξ̄ ) =
∫

dσ dπ dAdB exp
(
iAeff(σ,π,A,B) − ξ̄Sξ

)
with the Fermi propagator S = i(iγ ∂ − μ)−1 and the effective action

Aeff(σ,π,A,B) = −iN Tr ln(iγ ∂ − μ) − 1

2

∫
d2x

(
g−2(σ 2 + π2)

− N
(
α−2A�A + β−2B�B

))
.
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Fig. 2. The bubble graph.

The symbol Tr means the trace with respect to x-space and spinor space. The trace with respect
to SU(N)-isospin has been taken and gives the factor N . We define the vertex functions Γ by

Aeff(ϕ) =
∞∑

n=0

1

n!
∫

d2x1 · · ·d2xn Γ (n)
ϕ (x1, . . . , xn)ϕ1(x1) · · ·ϕn(xn),

where ϕi ∈ {σ − σ0,π − π0,A − A0,B − B0}. The values σ0, etc., are defined by the condition
that Aeff(ϕ) is stationary at this point. This means that the one-point vertex functions Γ

(1)
σ (x) =

δAeff/δσ = 0, etc., vanish

Γ (1)
σ (x) = N trS(x, x) − g−2σ0 = 0,

Γ (1)
π (x) = N tr

(
iγ 5S(x, x)

) − g−2π0 = 0,

Γ
(1)
A (x) = N tr

(−γ 5γ ∂S(x, x)
) + Nα−2�A0 = 0,

Γ
(1)
B (x) = N tr

(
γ ∂S(x, x)

) + Nβ−2�B0 = 0.

The three last equations mean π0 = A0 = B0 = 0 and the first one implies σ0 = m with

N

∫
d2p

(2π)2
tr

i

γp − m
− g−2σ0 = 0 ⇒ σ0 = m = Me

− π

Ng2 ,

where M is an UV-cutoff. There is the effect of mass generation and dimensional transmutation:
the dimensionless coupling g is replaced by the mass m. The 1/N -expansion is obtained by
expanding the effective action at this stationary point. The resulting Feynman rules are given by
the simple vertices

(40)Vσ (k) = (−i), Vπ (k) = γ 5, VA(k) = γ 5γ k, VB(k) = −γ k

and the propagators in momentum space

�̃σσ (k) = − iπ

N

1

cosh2 1
2φ

sinhφ

φ
, �̃ππ (k) = − iπ

N

1

sinh2 1
2φ

(
sinhφ

φ
− 1

)
,

(41)�̃AA(k) = − iπ

Nk2
, �̃BB(k) = − iπ

Nk2
, �̃πA(k) = �̃Aπ(k) = −2m

iπ

Nk2

where k2 = −4m2 sinh2 1
2φ. To obtain the propagators one calculates the two point vertex func-

tions Γ
(2)
ij from the bubble graph of Fig. 2 with the various vertices and uses � = iΓ (2)−1

.
In [8] it was argued that the unrenormalized values of α and β are to be replaced by α → ∞
and β → √

π . In that limit the propagators are those of (41). One observes that the A- and
B-propagators remain free and the infrared singularity in the π -propagator disappears.

As an example we consider the four point vertex function

Γ̃
(4)DCδγ

ABαβ ( − p3,−p4,p1,p2) = δδ
αδ

γ
β Γ DC

AB (p2 − p3) − δγ
α δδ

βΓ CD
AB (p3 − p1)
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Fig. 3. The four point vertex.

where A,B,C,D are spinor indices, α,β, γ, δ are isospin indices and Γ is given by the Feyn-
man graph of Fig. 3. Taking into account the contributions from all vertices (40) and all the
propagators (41) we obtain

Γ (k) =
∑
i,j

Vi(k)�̃ij (k)Vj (−k)

= −1 ⊗ 1�̃σσ (k) + γ 5 ⊗ γ 5�̃ππ (k) − γ 5γ k ⊗ γ 5γ k�̃AA(k)

(42)− γ 5 ⊗ γ 5γ k�̃πA(k) + γ 5γ k ⊗ γ 5�̃Aπ(k) − γ k ⊗ γ k�̃BB(k).

Inserting the expressions for the propagators we finally obtain

Γ (k) = iπ

N

{
1 ⊗ 1

1

cosh2(φ/2)

sinhφ

φ
− γ 5 ⊗ γ 5 1

sinh2(φ/2)

(
sinhφ

φ
− 1

)

(43)+ 1

k2

(
γ 5γ k ⊗ γ 5γ k + 2mγ 5 ⊗ γ 5γ k − 2mγ 5γ k ⊗ γ 5 + γ k ⊗ γ k

)}

where the tensor product structure of the spinor matrices is obvious from Fig. 3. We now apply
these results to the examples of Section 3 and investigate the three particle form factor of the
fundamental Fermi field and the two particle form factor of the SU(N) current in 1/N -expansion
in lowest nontrivial order.

The three particle form factor of the fundamental Fermi field: For convenience we multiply
the field with the Dirac operator, take

ODδ(x) = (−i(iγ ∂ − m)ψ(x)
)
Dδ

and define

γ
out〈p3|ODδ(0)|p1,p2〉in

αβ = F ODδ γ
αβ(θ12, θ13, θ23).

By means of LSZ-techniques one can express the connected part in terms of the 4-point vertex
function

F
ODδγ
conn.αβ(θ12, θ13, θ23) = ūC(p3)Γ

DC
AB

δγ
αβ(−p3,p3 − p1 − p2,p1,p2)uA(p1)uB(p2).

The lowest order contributions are given by the Feynman graphs of Fig. 4

F
ODδγ
conn.αβ = ūC(p3)

{
δαδδβγ Γ DC

AB (p2 − p3) − δαγ δβδΓ
CD
AB (p3 − p1)

}
uA(p1)uB(p2)

where Γ is given by Fig. 3 and Eq. (43) and the spinor u(p) by Eq. (37). It turns out that for
p1,p2 and p3 on-shell several terms vanish or cancel and we obtain up to order 1/N2
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Fig. 4. The connected part of the three particle form factor of the fundamental Fermi field in 1/N -expansion.

Fig. 5. Diagrams contributing to the form factor of the SU(N) current in the Gross–Neveu models up to order N−2.

F
ODδγ
conn.αβ = 2miπ

N

{
δαδδβγ

sinh θ23

θ23

(
1

cosh 1
2θ23

− γ 5 1

sinh 1
2θ23

)
uD(p1)

(44)− δαγ δβδ

sinh θ13

θ13

(
1

cosh 1
2θ13

− γ 5 1

sinh 1
2θ13

)
uD(p2)

}

which agrees with the result for the exact form factor (36). In [8] was shown that if the momentum
p4 = p1 + p2 − p3 is also on-shell then the expression (44) is consistent with the exact S-
matrix (2).

The 1/N expansion of the SU(N) current form factor: We check the proposed exact form

factor (38) in 1/N expansion. Fig. 5 shows the diagrams contributing to F
J±
β(ρ)

α(λ) in order N0 and

N−1 which give

F
J±
β(ρ)

α(λ) = δβ
α δ

(ρ)

(λ) v̄(q)γ μu(p)FJ (θ)

(45)= δβ
α δ

(ρ)

(λ) v̄(q)γ ±u(p) + δβ
α δ

(ρ)

(λ)

∑
i,j

∫
d2k

(2π)2
�ij (k)

×
{
v̄(q)Vi(k)

i

γ q + γ k − m
γ ± i

γp − γ k − m
Vj (−k)u(p) − substr.

}
(46)+ O

(
N−2).

The k integration can be performed using the propagators (41) and the vertices (40). For conve-
nience we write the total 4-point vertex function (42) which is a part of (46) as

Γ =
∑
i,j

�ij (k)Vi(k) ⊗ Vj (−k) = Γσ + Γπ + ΓV + Γrest

with

Γσ = iπ
1 ⊗ 1

1
2

sinhφ
, Γπ = − iπ

γ 5 ⊗ γ 5 1
2

(
sinhφ − 1

)
,

N cosh (φ/2) φ N sinh (φ/2) φ
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ΓV = iπ

N
γ μ ⊗ γμ, Γrest = iπ

N

1

k2

(
γ 5γ k ⊗ γ 5(γ k − 2m) + γ 5(γ k + 2m) ⊗ γ 5γ k

)
where γ k ⊗ γ k = γ 5γ k ⊗ γ 5γ k + k2γ μ ⊗ γμ has been used. Correspondingly we decompose
the form factor function FJ (θ) in (45) (in order to avoid infra-red problems in the calculation) as

FJ (θ) = 1 + (
Fσ (θ) + Fπ(θ) + FV (θ) + Frest(θ)

) + O
(
N−2).

The first contribution Fσ (θ) is given by the O(2N)-Gross–Neveu form factor F GN− (θ) which has
been calculated in [12]

Fσ (θ) = F GN− (θ) − 1

= 1

2N

( ∞∫
0

sinh2 1
2φ

φ2 + π2

(
φ coth 1

2φ − θ̂ coth 1
2 θ̂

cosh2 1
2φ − cosh2 1

2 θ̂
− (θ̂ → 0)

)
dφ

)
+ 1

N

(
θ̂

sinh θ̂
− 1

)

= 1

2N

(
1 − 1

2
θ̂

(
coth

1

2
θ̂ − tanh

1

2
θ̂

)
− 1

2
ψ

(
1

2
+ θ̂

2πi

)
− 1

2
ψ

(
1

2
− θ̂

2πi

)

+ ψ

(
1

2

))
+ 1

N

(
θ̂

sinh θ̂
− 1

)

where θ̂ = iπ − θ and ψ(z) = (lnΓ (z))′. Similarly we obtain

Fπ(θ) = − 1

2N

( ∞∫
0

sinh2 1
2φ

φ2 + π2

(
φ coth 1

2φ − θ̂ coth 1
2 θ̂

cosh2 1
2φ − cosh2 1

2 θ̂
− (θ̂ → 0)

)
dφ

)

= − 1

2N

(
1 − 1

2
θ̂

(
coth

1

2
θ̂ − tanh

1

2
θ̂

)
− 1

2
ψ

(
1

2
+ θ̂

2πi

)

− 1

2
ψ

(
1

2
− θ̂

2πi

)
+ ψ

(
1

2

))
,

and

FV (θ) = 1

2N

θ̂

sinh θ̂
(cosh θ̂ − 1), Frest(θ) = 0

and therefore

FJ (θ) = 1 − 1

N

(
1 − 1

2

θ̂

tanh 1
2 θ̂

)
+ O

(
N−2)

which agrees with the 1/N -expansion of the exact result for form factor of the current derived in
Section 3.

5. Commutation rules

In [31] commutation rules were derived for the Z(N) scaling Ising models. The results for the
SU(N) Gross–Neveu model are similar, however, the proof is much more complicated because
of the unusual crossing relations (20) and (related to this) the Klein factors (19).

Let |θ〉in
α with α = ((α11, . . . , α1r1), . . . , (αα1, . . . , ααrα )) be a state of α particles of rank

r1, . . . , rα (1 � rj � N − 1) (or bound states of rj particles of rank 1). We define the charge
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of a state to be the sum of all ranks of the particles in the state

Qα =
α∑

j=1

rj .

The weight wi(α) (1 � i � N) of the state α is equal to the number of αjk = i. Therefore the
total charge of the state α is

Qα =
N∑

i=1

wi(α)

(see Appendix B). If α is a state for which the form factor F
ψ
α (θ) does not vanish we use (25)

and define the charge of the operator ψ by

Qψ = Qα modN =
N∑

i=1

w
ψ
i modN

with 0 � Qψ < N .
Examples: For the energy–momentum tensor T μν(x) (which is an SU(N) scalar) the funda-

mental field ψα(x) (which is an SU(N) vector) and the SU(N) current J
μ
αβ(x) (which transforms

as the adjoint representation) the weights and the charges are

wT = (0,0, . . . ,0,0), QT = 0,

wψ = (1,0, . . . ,0,0), Qψ = 1,

wJ = (2,1, . . . ,1,0), QJ = 0.

Theorem 1. The equal time commutation rule of two fields φ(x) and ψ(y) with charge Qφ and
Qψ , respectively, is (in general anyonic)

(47)φ(x)ψ(y) = ψ(y)φ(x) exp

(
2πiε

(
x1 − y1)1

2
(1 − 1/N)QφQψ

)
.

The proof of this theorem can be found in Appendix B.

6. Conclusions

In this paper the general SU(N) form factor formula is constructed. As an application of
this result exact SU(N) form factors for the field, the energy–momentum tensor and the current
operators are derived in detail. In the large N limit these form factors are compared with the
1/N -expansion of the Gross–Neveu model and full agreement is found. The commutation rules
of arbitrary fields are derived and in general anyonic behavior is found. We believe that our
results may be relevant for the computation of correlation functions in fermionic ladders [34].
In addition the series of the 1/N -expansion of our exact form factors could hopefully help to
understand the same series in QCD.



H.M. Babujian et al. / Nuclear Physics B 825 [FS] (2010) 396–425 415
Acknowledgements

We thank R. Schrader, B. Schroer, and A. Zapletal for useful discussions. In particular we
thank A. Fring who participated actively in the beginning of the SU(N)-project many years
ago. H.B. and M.K. were supported by the Humboldt Foundation and H.B. also by ISTC1602.
A.F. acknowledges support from CNPq (Conselho Nacional de Desenvolvimento Científico e
Tecnológico). This work was also supported by the EU network EUCLID, ‘Integrable models
and applications: from strings to condensed matter’, HPRN-CT-2002-00325.

Appendix A. Bound state form factors

Proof of formulae (29)–(30): Here we present a sketch of the proof for the bound state form
factors formula. For simplicity several formulae will be written only up to constants, the normal-
ization can be fixed at the end by the physical properties of the operator. The form factor formula
for particles of rank 1 was proved in [13]. Applying the bound state procedure to this result we
derive the formula for n̄ = 1 bound state of rank N − 1, the general case n̄ > 1 follows easily.

The bound state intertwiner [28] is defined by

i Res
ϕN−1N−2=iη

· · · i Res
ϕ21=iη

S
λ
μ(ϕ̄) = Γ

λ

(ρ)Γ
(ρ)
μ

where the S-matrix S
λ
μ(ϕ̄) exchanges all particles with rapidities ϕ̄ = ϕN−1, . . . , ϕ1 → ϕ =

ϕ1, . . . , ϕN−1. It satisfies the bound state fusion equation

(48)Γ (σ)
μ S

βμ

λα (θ, θ) = S
β(σ)

(ρ)α (ω, θ)Γ
(ρ)
λ .

Lemma 2. The form factor for n particles α = α1, . . . , αn of rank 1 and one bound state (ρ) =
(ρ, . . . , ρN−1) (with ρ1 < · · · < ρN−1) of rank N − 1 may be written as

Fα(ρ)(θ,ω) = (
√

2i)2−NFαλ(θϕ)Γ
λ

(ρ), with ω = 1

N − 1
(ϕ1 + · · · + ϕN−1)

for ϕN−1N−2 = · · · = ϕ21 = iη, i.e. ϕj = ω + jiη − iπ .

Proof. We start with a form factor Fαμ(θϕ̄) for n + N − 1 particles of rank 1 with rapidities
θ = θ1, . . . , θn, ϕ̄ = ϕN−1, . . . , ϕ1 and quantum numbers α = α1, . . . , αn, μ = μ1, . . . ,μN−1
(for convenience we use for ϕ̄ an inverse numbering). Applying iteratively the bound state fusion
procedure (see e.g. [13,28]) we obtain the bound state form factor

Fα(ρ)(θ,ω)(
√

2i)N−2Γ (ρ)
μ = i Res

ϕN−1N−2=iη
· · · i Res

ϕ21=iη
Fαμ(θϕ̄)

= Fαλ(θϕ)i Res
ϕN−1N−2=iη

· · · i Res
ϕ21=iη

S
λ
μ(ϕ̄)

(49)= Fαλ(θϕ)Γ
λ

(ρ)Γ
(ρ)
μ

where the form factor equation (i) Fαμ(θϕ̄) = Fαλ(θϕ)S
λ
μ(ϕ̄) (see e.g. [13]) has been used. �

We start from the K-function KO
αλ(θϕ) for particles of rank 1 given by the general formula

(22) where we replace θ → θϕ, (ϕ = ϕ1, . . . , ϕN−1) and integration variables z → zy (y =
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y1, . . . , yN−2)

KO
αλ(θϕ) =

∫
dz

∫
dy h̃(θϕ, zy)p(θϕ, zy)Ψ̃α(θϕ, zy).

The state Ψ̃α is a linear combination of the basic Bethe ansatz co-vectors (11) (for n̄ = 0)

Ψ̃α(θϕ, zy) = L
(1)
β (zy)Φ̃

β
α (θϕ, zy), with 1 < βi

where the L
(1)
β (zy) again satisfy a representation like the KO

αλ(θϕ). Iterating this nesting proce-

dure we arrive at

KO
αλ(θϕ) =

∫
dz(1)

∫
dy(1) · · ·

∫
dz(N−1)

∫
y(N−1)h̃pOΦ̃αλ

where the functions h̃, pO and Φ̃αλ depend on the variables θϕ, zy (z = z(1), . . . , z(N−1), y =
y(1), . . . , y(N−2), y(l) = y

(l)
1 , . . . , y

(l)
N−1−l (l = 1, . . . ,N − 2)). If we take the residues in (49) at

ϕi+1,i = iη the pinching phenomenon (see [13] and Fig. 1) appears at y
(1)
1 = ϕ1, . . . , y

(1)
N−2 =

ϕN−2. This propagates to the higher level integrations such that we may replace y(l) → ϕ(l) =
ϕ1, . . . , ϕN−1−l which are related to ω by ϕj = ω + jiη − iπ . The h-function (23) for the lowest
level Bethe ansatz then takes the form (up to a constant)

h̃
(
θ,ϕ, z(1), ϕ(1)

) = φ̃(θ − z)φ̃
(
θ − ϕ(1)

)
φ̃(ϕ − z)τ (z)τ

(
z − ϕ(1)

)
= h̃(θ, z)φ̃

(
θ − ϕ(1)

)
φ̃(ϕ − z)τ

(
z − ϕ(1)

)
.

Here and in the following we use the short notation

φ̃
(
θ − ϕ(1)

) =
n∏

i=1

N−2∏
j=1

φ̃
(
θi − ϕ

(1)
j

)
, τ (z) =

n∏
1�i<j�n1

τ(zi − zj ),

et cetera, where the product is taken over all indices. The Bethe ansatz states defined by (11) are
related by

Φ̃
βμ

αλ

(
θ,ϕ, z,ϕ(1)

)
Γ

λ

(ρ)
= b̃

(
θ − ϕ(1)

)b(iπ − ω + z)

a(ϕ − z)
Γ

μ1
(σ )Φ̃

β(σ )

α(ρ)
(θ,ω, z)

where the bound state relation (48) together with (5) and (4) has been used. These equations
together imply

h̃
(
θ,ϕ, z,ϕ(1)

)
Φ̃

βμ

αλ

(
θ,ϕ, z,ϕ(1)

)
Γ

λ

(ρ) = φ̃(ϕ(1) + iη − θ)

φ̃(ϕ(2) + iη − z)
h̃(θ, z)Γ

μ1
(σ )Φ̃

β(σ )

α(ρ) (θ,ω, z).

The equations for bound state rapidity ω = ϕ1 − iη + iπ = ϕN−1 + iη − iπ and the relations
b̃(z − ϕj )φ̃(z − ϕj ) = −φ̃(ϕj+1 − z) and φ̃(ϕ1 − z)/φ̃(z − ϕN−1) = −b(iπ − ω + z) have been
used. Therefore we obtain the integral representation

Kα(ρ)(θ,ω) =
∫

dz h̃(θ, z)p(θ,ω, z)Ψ̃α(ρ)(θ,ω, z),

Ψ̃α(ρ)(θ,ω, z) = L
(1)
β(σ )

(z,ω)Φ̃
β(σ )

α(ρ)
(θ,ω, z), with 1 < βi, σ1 = 1 < σ2 < · · · < σN−1
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with the new K-, L- and p-functions given in terms of the old ones

Kα(ρ)(θ,ω) = 1

φ̃(ϕ(1) + iη − θ)
Kαλ(θ,ϕ)Γ

λ

(ρ),

L
(1)
β(σ )(z,ω) = 1

φ̃(ϕ(2) + iη − z)
L

(1)
βμ

(
zϕ(1)

)
Γ

μ1
(σ ),

p(θ,ω, z) = p
(
θϕ, zϕ(1)

)
(ϕj = ω + jiη − iπ).

Correspondingly we obtain for a higher level Bethe ansatz l = 1, . . . ,N − 3

h̃
(
z(l), ϕ(l), z(l+1), ϕ(l+1)

)
= h̃

(
z(l), z(l+1)

)
φ̃
(
z(l) − ϕ(l+1)

)
φ̃
(
ϕ(l) − z(l+1)

)
τ
(
z(l+1) − ϕ(l+1)

)
and

Φ̃(l)γ ν

βμ

(
z(l), ϕ(l), z(l+1), ϕ(l+1)

)
Γ

μl...1
(σ )

=
N−1∏

i=N−l

1

b(ϕi − z(l+1))

b̃(z(l) − ϕ(l+1))b(iπ − ω + z(l+1))

a(ϕ(l) − z(l+1))

× Γ
νl+1...1
(ς) Φ(l)γ (ς)

β(σ )

(
z(l),ω, z(l+1)

)
such that

h̃
(
z(l), ϕ(l), z(l+1), ϕ(l+1)

)
Φ̃(l)γ ν

βμ

(
z(l), ϕ(l), z(l+1), ϕ(l+1)

)
Γ

μl...1
(σ )

= φ̃(ϕ(l+1) + iη − z(l))

φ̃(ϕ(l+2) + iη − z(l+1))
h̃
(
z(l), z(l+1)

)
Γ

νl+1...1
(ς) Φ(l)γ (ς)

β(σ )

(
z(l),ω, z(l+1)

)
and

L
(l)
β(σ )

(
z(l),ω

) =
∫

dz(l+1) h̃
(
z(l), z(l+1)

)
p
(
z(l), z(l+1)

)
Ψ̃

(l)
β(σ )

(
z(l),ω, z(l+1)

)
,

Ψ̃
(l)
β(σ )

(
z(l),ω, z(l+1)

) = L
(l+1)
γ (ς)

(
z(l+1),ω

)
Φ̃(l)γ (ς)

β(σ )

(
z(l),ω, z(l+1)

)
with l < γi, ς1 = 1, . . . , ςl = l < ςl+1 < · · · < ςN−1.

Note that for l = N − 3 the relation φ̃(ϕ(l+2) + iη − z(l+1)) = 1 holds because ϕ(N−1) = ∅. For
the highest level l = N − 2 we have

h̃
(
z(N−2), ϕ1, z

(N−1)
) = h̃

(
z(N−2), z(N−1)

)
φ̃
(
ϕ1 − z(N−1)

)
,

Φ̃(N−2)
βμ(z,ϕ1, u)Γ

μN−2...1
(σ )

= Γ N−1...1
(ς)

Φ̃(N−2)(ς)

β(σ )

(
z(N−2),ω, z(N−1)

)
such that

h̃
(
z(N−2), ϕ1, z

(N−1)
)
Φ̃(N−2)

βμ(z,ϕ1, u)Γ
μN−2...1
(σ )

= h̃
(
z(N−2), z(N−1)

)
χ̃

(
ω − z(N−1)

)
Γ N−1...1

(η) Φ̃(N−2)(η)

β(σ )

(
z(N−2),ω, z(N−1)

)
and
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L
(N−2)
β(σ )

(
z(l),ω

)
=

∫
dz(N−1) h̃

(
z(N−2), z(N−1)

)
p
(
z(N−2), z(N−1)

)
Ψ̃

(N−2)
β(σ )

(
z(N−2),ω, z(N−1)

)
,

Ψ̃
(N−2)
β(σ )

(
z(N−2),ω, z(N−1)

) = L(N−1)
(
ω − z(N−1)

)
Φ̃(N−2)γ (η)

β(σ )

(
z(l),ω, z(l+1)

)
with γi = N, σ1 = 1, . . . , σN−1 = N − 1.

Here

L(N−1)(ω) = χ̃ (ω) = φ̃(ϕ1) = Γ

(
1

2
+ ω

2πi

)
Γ

(
1

2
− 1

N
− ω

2πi

)
.

Finally we combine the minimal form factors in formula (24) for ϕN−1N−2 = · · · = ϕ21 = iη

Fα(ρ)(θ,ω) = Fαλ(θϕ)Γ
λ

(ρ) = F(θ)G(θ − ω)
1

φ̃(ϕ + iη − θ)
Kαλ(θϕ)Γ

λ

(ρ)

= F(θ)G(θ − ω)Kα(ρ)(θ,ω).

The relations (16) for the minimal form factor function G for one particle of rank 1 and one of
rank N − 1 and (17) have been used. Therefore the final result is

KO
α(ρ)(θ,ω) =

∫
dz(1) · · ·

∫
dz(N−1) h̃(θ,ω, z)pO(θ,ω, z)Φ̃α(ρ)(θ,ω, z),

h̃(θ,ω, z) =
N−2∏
l=0

h̃
(
z(l), z(l+1)

) nN−1∏
i=1

χ̃
(
ω − z

(N−1)
i

)
,

pO(θ,ω, z) = pO(θϕ, zy) with y(l) = ϕ(l)

where pO(θϕ, zy) is the p-function for particles of rank 1 only. The complete Bethe ansatz state

is

Φ̃α(ρ)(θ,ω, z) = Φ̃
(N−2)(η)

ς(λ)

(
z(N−2),ω, z(N−1)

) · · · Φ̃(1)γ (κ)

β(σ )

(
z(1),ω, z(2)

)
Φ̃

β(σ )

α(ρ)

(
θ,ω, z(1)

)
where (η) is the highest weight bound state (η) = (1,2, . . . ,N − 1).

The energy–momentum tensor: We apply the results above to the example of the energy–
momentum tensor and prove (34). In this case n = n̄ = 1, and the p-function is that of (31)

pT ρσ

(θ,ω, z) = (
eρθ + eρω

)
eσz.

Lemma 3. The functions L
(l)
β(μ)(z,ω) (for all l = 1, . . . ,N − 3) are explicitly given as

L
(l)
β(μ)(z,ω) = εβ(μ)L

(l)(ω − z) with β > l, (μ) = (1,2, . . . , l,∗, . . . ,∗),

(50)L(l)(ω − z) = cl Γ

(
1

2
+ ω − z

2πi

)
Γ

(
−1

2
+ l

N
− ω − z

2πi

)
.

Proof. Again some equations are given up to unessential constants. We use induction, start with

L(N−1)(z,ω) = εN(1...N−1)χ̃ (ω − z) = (−1)N−1Γ

(
1

2
+ ω − z

2πi

)
Γ

(
1

2
− 1

N
− ω − z

2πi

)
,
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and then calculate iteratively for l = N − 1, . . . ,2 the integrals

L
(l−1)
β(μ) (z,ω) =

∫
Czω

du φ̃(z − u)L(l)(ω − u)εγ (ν)Φ̃
(l−1)γ (ν)

β(μ) (z,ω,u),

εγ (ν)Φ̃
(l−1)γ (ν)

β(μ)
(z,ω,u) = εγ (ν)S̃

γ l
βδ(z − u)S̃

δ(ν)
(μ)l (ω − u)

= εβ(μ)

(
(N − l)δl

β b̃(z − u)d̃(ω − u) + δ>l
β c̃(z − u)

)
where δ>l

β = 1 for β > l and 0 else. Both integrals

I1 =
∫

Czω

du φ̃(z − u)L(l)(ω − u)(N − l)b̃(z − u)d̃(ω − u),

I2 =
∫

Czω

du φ̃(z − u)L(l)(ω − u)c̃(z − u)

can be calculated by means of the formula
∞∫

−∞
dzΓ

(
a + z

2πi

)
Γ

(
b + z

2πi

)
Γ

(
c − z

2πi

)
Γ

(
d − z

2πi

)

= (2π)2 Γ (a + c)Γ (a + d)Γ (b + c)Γ (b + d)

Γ (a + b + c + d)

and yield the result (50). �
Finally we have to calculate

Kα(λ)(θ,ω) = (
eρθ + eρω

) ∫
Cθω

dz φ̃(θ − z)L(1)(ω − z)eσzεδ(μ)Φ̃
δ(μ)

α(λ) (θ,ω, z),

εδ(μ)Φ̃
δ(μ)

α(λ)
(θ,ω, z) = εα(λ)

(
(N − 1)δ1

αb̃(θ − z)d̃(ω − z) + δ>1
α c̃(θ − z)

)
which yields the result (34) using the formula∫

C

(
Γ

(
a + z

2πi

)
Γ

(
b + z

2πi

)
Γ

(
c − z

2πi

)
Γ

(
d − z

2πi

))
eσz dz

= σ(2πi)3

ab − cd
exp

(
σ iπ(c + d)

)
for a + b + c + d = 0.

Appendix B. Commutation rules

In this appendix we use the short notation for form factors, i.e. matrix elements of the field
ψ(x) at x = 0

(51)ψ
β
α (θ ′

β, θα) = Fψβ

α(θ ′
β, θα) = β,out〈θ ′

β |ψ(0)|θα〉in
α .

To proof the general commutation rules of fields (47) we have to consider SU(N) sum rules and
general crossing relations.
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B.1. SU(N) sum rules

Particles and antiparticles: Let (α) = (α1, . . . , αr) (1 � α1 < · · · < αr � N) a particle of
rank (and charge) r . The corresponding antiparticle is (ᾱ) = (ᾱ1, . . . , ᾱN−r ) (1 � ᾱ1 < · · · <

ᾱN−r � N) (of rank N − r) such that the union of the set of indices satisfies {α1, . . . , αr} ∪
{ᾱ1, . . . , ᾱN−r} = {1, . . . ,N}. Therefore

(52)
r∑

k=1

αk +
N−r∑
k=1

ᾱk =
N∑

k=1

k = 1

2
N(N + 1).

Charges: Let α = ((α11, . . . , α1r1), . . . , (αα1, . . . , ααrα )) be a state of α particles of rank
r1, . . . , rα (1 � rj � N − 1) (or bound states of rj particles of rank 1). We define the charge
of a state as the sum of all ranks of the particles in the state α

Qα =
α∑

j=1

rj .

The charge of antiparticles (bound states) we define as

Qᾱ =
α∑

j=1

rj (N − 1) = (N − 1)Qα, Qα + Qᾱ = NQα.

Weights: Let α = ((α11, . . . , α1r1), . . . , (αα1, . . . , ααrα )) be a state of α particles. The weight
wi(α) of the state α is equal to the number of αjk = i (1 � i � N)

wi(α) =
α∑

j=1

rj∑
k=1

δiαjk
(1 � i � N).

Therefore the total charge of the state α is

Qα =
α∑

j=1

rj =
α∑

j=1

rj∑
k=1

1 =
α∑

j=1

rj∑
k=1

N∑
i=1

δiαjk
=

N∑
i=1

wi(α).

Similarly, we consider γ = ((γ11, . . . , γ1s1), . . . , (γγ 1, . . . , γγ sγ )).
Sum rules: Because of SU(N) invariance

ψ
γ

α (θ ′
γ , θα) = γ ,out 〈θ ′

γ |ψ(0)|θα〉in
α �= 0

(or ψαγ̄ �= 0) implies for the weights

w(α) = w(γ ) + wψ + L(1, . . . ,1), L ∈ Z

where wψ is the weight vector of the operator ψ and (1, . . . ,1) are weights of a state in the
vacuum sector. Therefore

Qα =
N∑

i=1

wi(α) = Qγ +
N∑

i=1

w
ψ
i + NL.

The charge of the operator ψ is defined by
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Qψ = (Qα − Qγ )modN, 0 � Qψ < N

(53)=
N∑

i=1

w
ψ
i modN.

For a particle (αj1, . . . , αjrj ) of rank rj we use the short notation (αj ) = (αj1, . . . , αjrj ) and

αj = ∑rj
k=1 αjk and correspondingly, γj = ∑sj

k=1 γjk . Then SU(N) invariance implies

α∑
j=1

αj −
γ∑

j=1

γj = 1

2
(N + 1)(Qα − Qγ − Qψ) + Rψ

(54)with Rψ =
N∑

i=1

iw
ψ
i − 1

2
(N + 1)

(
N∑

i=1

w
ψ
i − Qψ

)

which can be straightforwardly proved using the above definitions.
Examples:

T μν : wT = (0,0, . . . ,0), QT = 0, RT = 0,

ψα: wψ = (1,0, . . . ,0), Qψ = 1, Rψ = 1,

jμν : wJ = (2,1, . . . ,1,0), Qj = 0, Rj = 1 − N.

B.2. Crossing

B.2.1. A partial S-matrix

Definition 4. Let θβ = (θπ(1), . . . , θπ(α)) be a permutation of θα = (θ1, . . . , θα). Then S
β
α (θβ; θα)

is the matrix representation of the permutation group Sα generated by the simple transpositions
σij : i ↔ j for any pair of nearest neighbor indices 1 � i, j = i + 1 � α as2

σij → S(θij ).

Because of the Yang–Baxter relation and unitarity of the S-matrix the representation is well
defined. We will also use the notation

S
μλ
α (θμθλ; θα)

if π is that permutation which reorders the array θα such that it coincides with the combined
arrays of θμ and θλ.

As an example consider the case θα = (θ1, θ2, θ3, θ4), θμ = (θ2, θ3) and θλ = (θ1, θ4)

S
μλ
α (θ2θ3θ1θ4; θ1θ2θ3θ4) = S

μ2λ1
α′

1α3
(θ13)S

μ1α
′
1

α1α2 (θ12)δ
λ2
α4

,

2 Note that this definition is quite analogous to that of representations of the braid group by means of spectral parameter
independent R-matrices.
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S

α1

θ1
α2

θ2
α3

θ3
α4

θ4

θ2 θ3 θ1 θ4

μ1 μ2 λ1 λ1

= ����
�

�
�

�

α1 α2 α3 α4

μ1 μ2 λ1 λ2

If the permutation inverts the rapidities completely S
β
α (θβ; θα) = S

β
α (θα) is the full S-matrix.

B.2.2. Crossing for SU(N)
As was argued by Swieca et al. [8] the particles of the chiral SU(N) Gross–Neveu model

posses anyonic statistics and due to the unusual crossing property of the S-matrix, Klein factors
are needed. The crossing relations of the form factors for normal fields and particles were derived
in [28] by means of LSZ-assumptions and maximal analyticity. They have to be modified for the
chiral SU(N) Gross–Neveu model.

We propose crossing relations

ψ
γ

α (θ ′
γ ; θα)

(55)= σ
ψ

(γ )

∑
θη∪θν=θγ

θλ∪θμ=θα

ζ
ψ

(γ,α,η)S
γ

νη(θγ ; θνθη)1
ν
μCηη̄ψη̄λ(θ

′̄
η + iπ−, θλ)S

μλ
α (θμθλ; θα)

(56)=
∑

θη∪θν=θγ

θλ∪θμ=θα

ξ
ψ

(γ,α,η)S
γ

ην(θγ ; θηθν)C
η̄ηψλη̄1ν

μS
λμ
α (θλθμ; θα)

which, compared to the formulae in [28], are modified by the factors ζ
ψ

(γ,α,η) and ξ
ψ

(γ,α,η)

ζ
ψ

(γ,α,η)
= ρ

ψ

(γ,α)
eiπ(N−1) 1

2 Qη(Qη+N)e
2πi
N

(RψQα−Qψ

∑
γ̄j ),

ξ
ψ

(γ,α,η) = eiπ(N−1)( 1
2 Qη(Qη+N)+QνQψ)e

2πi
N

(RψQα−Qψ

∑
γ̄j ),

ρ
ψ

(γ,α) = (−1)(N−1+(1−1/N)(Qα+Qγ̄ −Qψ))Qγ̄ ,

σ
ψ

(γ ) = eiπ(1−1/N)QψQγ̄ ,

with γ̄j = 1
2N(N + 1) − γj , due to (52). The sign factor ρ

ψ

(γ,α) and the statistics factor σ
ψ

(γ ) were
introduced in [13]. The charge Qψ of the operator ψ and the number Rψ are defined in (53)
and (54).

B.3. Commutation rules

In [31] commutation rules were derived for the Z(N) scaling Ising models. The results for the
SU(N) Gross–Neveu model are very similar, however the proof is more complicated because of
the unusual crossing relations and the presence of the Klein factors.

Theorem 5. The equal time commutation rule of two fields φ(x) and ψ(y) with charge Qφ and
Qψ , respectively, is (in general anyonic)

φ(x)ψ(y) = ψ(y)φ(x) exp

(
2πiε

(
x1 − y1)1

(1 − 1/N)QφQψ

)
.

2
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Proof. We consider an arbitrary matrix element of products of fields

(
φ(x)ψ(y)

)β

α
(θ ′

β, θα) = β,out〈θ ′
β |φ(x)ψ(y)|θα〉in

α .

Inserting a complete set of intermediate states |θ̃ γ 〉in
γ we obtain

(57)
(
φ(x)ψ(y)

)β

α
(θ ′

β, θα) = e
iP ′

βx−iPαy 1

γ !
∫
θ̃ γ

φ
β
γ (θ ′

β, θ̃γ )ψ
γ

α (θ̃γ , θα)e−iP̃γ (x−y)

where Pα = the total momentum of the state |θα〉in
α , etc., and

∫
θ̃ γ

= ∏γ

k=1

∫
dθ̃k

4π
. Einstein sum-

mation convention over all sets γ is assumed. We also define γ ! = ∏N
r=1 nr ! where nr is the

number of particles of rank r in γ . We apply the general crossing formulae (55), (56). Strictly
speaking, we apply the second version (56) of the crossing formula to the matrix element of φ

φ
β
γ (θ ′

β, θ̃γ ) =
∑

θ ′
ρ∪θ ′

τ =θ ′
β

θ̃ς∪θ̃ σ =θ̃ γ

ξ
φ

(β,γ,ρ)S
β
ρτφςρ̄(θ̃ς , θ ′

ρ̄ − iπ−)Cρρ̄1τ
σ S

ςσ
γ

where ρ̄ = (ρ̄ρ, . . . , ρ̄1) with ρ̄ = antiparticle of ρ and θ ′
ρ̄ − iπ− means that all rapidities taken

the values θ ′ − i(π − ε). The matrix 1τ
σ (θ ′

τ , θ̃�) is defined by (51) with O = 1 the unit operator.
Summation is over all decompositions of the sets of rapidities θ ′

β and θ̃ γ . To the matrix element
of ψ we apply the first version of the crossing formula (55)

ψ
γ

α (θ̃γ , θα) = σ
ψ

(γ,α)

∑
θν∪θη=θγ

θμ∪θλ=θα

ζ
ψ

(γ,α,η)S
γ

νη1ν
μCηη̄ψη̄λ(θ

′̄
η + iπ−, θλ)S

μλ
α .

We insert (55) and (56) in (57) and use the product formula S
ςσ
γ (θ̃ς θ̃σ ; θ̃ γ )S

γ

νη(θ̃γ ; θ̃ ν θ̃ η) =
S

ςσ
νη (θ̃ς θ̃σ ; θ̃ ν θ̃ η). Let us first assume that the sets rapidities in the initial state θα and the ones

of the final state θ ′
β have no common elements. This also implies θ̃ ν ∩ θ̃ σ = ∅. Then we may

use (ii) to get S
ςσ
νη (θ̃ς θ̃σ ; θ̃ ν θ̃ η) = δ

ςσ
νπ and then we can perform the θ̃ ν - and θ̃ σ -integrations. The

remaining θ̃ -integration variables are θ̃ω = θ̃ ς ∩ θ̃ η. Then we may write for the sets of particles
ς = μω,η = ωτ and γ = μωτ and similar for rapidities and momenta. Eq. (57) simplifies to

(
φ(x)ψ(y)

)β

α
(θ ′

β, θα) =
∑

θ ′
ρ∪θ ′

τ =θ ′
β

θμ∪θλ=θα

μ!τ !
μωτ !S

β
ρτ (θ

′
ρ, θ ′

τ )

∫
θ̃ω

X
ρτ

μλ

(58)× S
μλ
α (θα)ei(P ′

ρ−Pμ)x−i(Pλ−P ′
τ )y

where

X
ρτ

μλ = σ
ψ

(γ,α)ζ
ψ

(γ,α,η)ξ
φ

(β,γ,ρ)φμωρ̄(θμ, θ̃ω, θ ′
ρ̄ − iπ−)

(59)× Cρ̄ρCτ τ̄ Cωω̄ψτ̄ ω̄λ(θ
′̄
τ + iπ−, θ̃ ω̄ + iπ−, θλ)e

−iP̃ω(x−y).



424 H.M. Babujian et al. / Nuclear Physics B 825 [FS] (2010) 396–425
Similarly, if we apply for the operator product ψ(y)φ(x) and

(
ψ(y)φ(x)

)β

α
(θ ′

β, θα) = e
iP ′

βx−iPαy 1

δ!
∫
θ̃ δ

ψ
β

δ (θ ′
β, θ̃ δ)φ

δ
α(θ̃ δ, θα)e−iP̃δ(y−x),

use the second crossing formula to the matrix element of φ

φ
δ
α(θ̃ δ, θα) =

∑
θ̃ ϕ∪θ̃ κ=θ̃ δ

θμ∪θλ=θα

ξ
φ

(δ,α,ϕ)S
δ
ϕκφμϕ̄(θμ, θ̃ ϕ̄ − iπ−)Cϕϕ̄1κ

λS
μλ
α

and the first one to the matrix element of ψ

ψ
β

δ (θ ′
β, θ̃ δ) = σ̇

ψ

(β,δ)

∑
θ ′

ρ∪θ ′
τ =θ ′

β

θ̃ξ ∪θ̃χ=θ̃ δ

ζ
ψ

(β,δ,τ )S
β
ρτ 1

ρ

ξ Cτ τ̄ψτ̄χ (θ ′̄
τ + iπ−, θ̃χ )S

ξχ

δ .

Similarly we obtain (with χ = ω̄λ,ϕ = ω̄ρ, δ = μω̄τ ) Eq. (58) where X
ρτ

μλ replaced by

Y
ρτ

μλ = σ
ψ

(β,δ)ζ
ψ

(β,δ,τ )ξ
φ

(δ,α,ϕ)φμωρ̄(θμ, θ̃ω − iπ−, θ ′
ρ̄ − iπ−)

(60)× Cρ̄ρCτ τ̄ Cωω̄ψτ̄ω̄λ(θ
′̄
τ + iπ−, θ̃ ω̄, θλ)e

iP̃ω(x−y)

which means that only σ
ψ

(γ,α)ζ
ψ

(γ,α,η)ξ
φ

(β,γ,ρ) is replaced by σ
ψ

(β,δ)ζ
ψ

(β,δ,τ )ξ
φ

(δ,α,ϕ) and the integration

variables θ̃ω by θ̃ ω̄ − iπ−, i.e. P̃ω by −P̃ω.
If there were no bound states, there would be no singularities in the physical strip and we

could shift in the matrix element of ψ(y)φ(x) (58) with (60) for equal times and x1 < y1 the
integration variables by θ̃i → θ̃i + iπ−. Note that the factor eiP̃ω(x−y) decreases for 0 < Re θ̃i < π

if x1 < y1. Because P̃ω → −P̃ω (if θ̃ω → θ̃ ω̄ − iπ−) we get the matrix element of φ(x)ψ(y)

(58) with (59) up to the factor

σ
ψ

(γ,α)
ζ

ψ

(γ,α,η)
ξ

φ

(β,γ,ρ)

σ
ψ

(β,δ)
ζ

ψ

(β,δ,τ )
ξ

φ

(δ,α,ϕ)

= e−2πi 1
2 (1− 1

N
)QφQψ .

This equality follows after a long and cumbersome but straightforward calculation. In [31] was
shown that we obtain the same result if there are bound states. �
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