
Felipe Lopes Castro

On Partial (Co)Actions on Coalgebras:
Globalizations and Some Galois Theory

Porto Alegre

2015



Felipe Lopes Castro

On Partial (Co)Actions on Coalgebras: Globalizations

and Some Galois Theory

PhD thesis presented by Felipe Lopes Castro1

in partial fulfillment of the requirements for the
degree of Doctor in Mathematics at Universidade
Federal do Rio Grande do Sul.

Universidade Federal do Rio Grande de Sul - UFRGS
Instituto de Matemática
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Resumo

Módulo coálgebra parcial e comódulo coálgebra parcial são noções duais de módulo
álgebra parcial, e estas estruturas são bem relacionadas. Módulo álgebra parcial foi defini-
do por Caenepeel e Janssen em [11] e desenvolvido numa certa direção por Alves e Batista
em [1–3]. Estamos interessados em algumas construções de Alves e Batista, especifica-
mente: globalização para módulos álgebra parciais, um contexto de Morita relacionando a
subálgebra dos invariantes e o produto smash parcial, e Teoria de Galois.

Neste trabalho, introduzimos a noção de globalização para módulo coálgebra parcial
e para comódulo coálgebra parcial. Mostramos que todo módulo coálgebra é globalizável
construindo uma globalização, chamada standard. No caso de comódulo coálgebra parcial,
precisamos supor um tipo de racionalidade para obter uma globalização correspondente.

Mais ainda, para um comódulo coálgebra parcial, constrúımos um contexto de Morita-
Takeuchi relacionando a coálgebra dos coinvariantes e o coproduto smash parcial, definimos
uma coextensão de Galois e obtemos algumas propriedades, relacionando coextensões de
Galois para comódulo coálgebras parciais com extensões de Galois para coações parciais
em álgebras, estendendo resultados de Dăscălescu, Raianu e Zhang obtidos em [20].

Palavas-Chave: Álgebras de Hopf, Ação Parcial, Coação Parcial, Globalização, Teoria de

Galois.



Abstract

Partial module coalgebra and partial comodule coalgebra are the dual notions of par-
tial module algebra, and all these structures are close related. Partial module algebra was
defined by Caenepeel and Janssen in [11] and developed in a certain direction by Alves
and Batista in [1–3]. We are interested in some constructions made by Alves and Batista,
namely: globalization for partial module algebras, a Morita context relating the invariant
subalgebra and the partial smash product, and Galois theory.

In this work, we introduce the notion of globalization for partial module coalgebra and
for partial comodule coalgebra. We show that every partial module coalgebra is globalizable
constructing a globalization, named standard. For the case of partial comodule coalgebra
we need assume some kind of rationality condition to obtain a correspondent globalization.

Moreover, for a partial comodule coalgebra, we construct a Morita-Takeuchi context
relating the coinvariant coalgebra and the partial smash coproduct, and we define a Galois
coextension and show some properties, relating the Galois coextension for partial comodule
coalgebra with the Galois extension for partial coaction on algebras, extending results of
Dăscălescu, Raianu, and Zhang obtained in [20].

Key-Words: Hopf Algebras, Partial Action, Partial Coaction, Globalization, Galois Theory.
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Introduction

Partial action of groups was defined for the first time by Exel [23] in the context of
C∗-algebras. After that, Dockuchaev and Exel [21] developed such a theory from a purely
algebraic point of view, generalizing some classical results of group actions to the setting
of partial actions of groups. A great development of this theory has been done since then.
As an example, we can refer the development of a Galois theory for partial actions of groups.

Actions of groups on algebras was extended to actions of Hopf algebras on algebras (cf.
[27, 30]), where a great theory was developed, including Galois theory and some categori-
cal relations. Since the theory of group actions was successfully extended in two different
directions, a natural question arose: Is it possible to extend such a notion to the setting of
partial action of Hopf algebras and recover the classical results in this new context?

In order to answer this question Caenepeel and Janssen [11] introduced the notion of
partial action of Hopf algebras and, after that, Alves and Batista have explored this new
structure (see [1–3]) having constructed a beautiful related theory in which we would like
to highlight some special aspects for our work, namely: 1 - the existence of a globalization
for a given partial module algebra, extending the already done for partial action of groups
(see [21]); 2 - the construction of a Morita context connecting the invariant subalgebra and
the partial smash product, extending the classical Morita context (cf. [27, Theorem 4.5.3]);
and 3 - a Galois theory for partial action of Hopf algebras and its relation with the Morita
context, extending the classical case (see [27, Theorem 8.3.3]).

Partial module coalgebra and partial comodule coalgebra are the dual notions of partial
module algebra and partial comodule algebra respectively. All these four partial structures
are close related. Batista and Vercruysse studied these dual structures, showing some in-
teresting properties between these new objects. Our aim in this work is to study the above
mentioned aspects in the setting of partial module coalgebra and partial comodule coalge-
bra, relating our results with the corresponding results obtained by Alves and Batista.

This work is organized as follows. In the first chapter we recall some preliminary re-
sults which are necessary for a good understanding of this work, that is, some basic facts
on linear algebra, as well as basic Hopf algebra theory. Finally, we recall some important
aspects from the theory of partial module algebra developed by Alves and Batista.



The second chapter is devoted to the study of partial action on coalgebras. We will
see the correspondence between this new structure and the partial module algebra, some
examples and useful properties. Our aim in this chapter is to discuss the existence of a
globalization for partial action on coalgebras, and to do this we introduce the notion of in-
duced partial action on coalgebras. For this purpose we need to construct a comultiplicative
projection satisfying an special condition (see Proposition 2.1.15). After that, we define a
globalization for partial module coalgebras (see Definition 2.2.1) and also we discuss about
the existence of some relations between this our globalization with the well known notion
of globalization for partial module algebra, so obtaining a direct relation between such
globalizations. Finally, we show that every partial module coalgebra has a globalization by
building such a globalization named standard (see Theorem 2.2.5).

In the third chapter, we study partial coaction on coalgebras. We present some examples
and important properties related to this new partial structure. We show a correspondence
among all of these four partial objects studied in this work, sometimes asking for special
conditions like density of the finite dual of a Hopf algebra on its dual; or finite dimen-
sionality of the involved Hopf algebra. Similar to the Chapter 2, we define induced partial
coaction under the existence of a comultiplicative projection satisfying an special condition
(see Proposition 3.2.1). After that, we define globalization for partial comodule coalgebra
(see Definition 3.2.2) and we relate it with the structures already defined in Chapter 2
(see Theorem 3.2.5). We show that, under a kind of rationality hypothesis, every partial
comodule coalgebra is globalizable, constructing the standard globalization for it (see The-
orem 3.2.6).

Given a comodule coalgebra C, we can associate two new coalgebras, namely, the smash
coproduct and the coinvariant coalgebra that is a quotient of C by a coideal. Dăscălescu,
Raianu, and Zhang in [20] constructed a Morita-Takeuchi context related with these two
coalgebras and, after that, they developed the theory of Galois coextensions, obtaining
some interesting properties.

In the last chapter, we extend the above mentioned results to the setting of partial
comodule coalgebras. In the first section, we show that given a partial comodule coalgebra
C we can consider two coalgebras associated with C, namely, the partial smash coproduct
and the coinvariant coalgebra. In this case, the coinvariant coalgebra is a quotient coalge-
bra of C by a suitable coideal. With these two coalgebras we construct a Morita-Takeuchi
context (see Theorem 4.1.14). In the second section, we define the notion of Galois co-
extension for partial (co)action on coalgebras (see Definition 4.2.3) and show that Galois
extension implies Galois coextension (see Theorem 4.2.8). In the third section, we show
that dualizing the Morita-Takeuchi context obtained in the first section, we get the classical
Morita context for partial module algebras (see Theorem 4.3.3).

11



Chapter 1

Preliminaries

With the purpose to make this text as self-contained as possible, we include this first
chapter where we will recall some basic facts from linear algebra and from Hopf algebras,
including its actions on algebras, and also from Morita theory. Some references will be
given in an opportune moment. The reader who has enough familiarity with these subjects
can go directly to the next chapter.

1.1 Basic Linear Algebra

In this section we will remember some definitions and properties from linear algebra
that will be useful in this entire work. We refer [24–26] and [28] for more details, if necessary.

During all this work k is a field, all objects are k-vector spaces (i.e. algebra, coalgebra,
Hopf algebra, etc mean k-algebra, k-coalgebra, k-Hopf algebra, etc, respectively), linear
map means k-linear map and unadorned tensor product means ⊗k.

Given V,W two vector spaces and a linear map τ : V → W , we can consider the dual
(or transpose) map which is defined by

τ ∗ : W ∗ −→ V ∗

f 7−→ τ ∗(f) = f ◦ τ,

and with this notation we have the following properties:

Proposition 1.1.1. Given V,W two vector spaces, τ : V → W a linear map and τ ∗ : W ∗ →
V ∗ its dual map, then we have that the following properties hold:

(1) τ is injective if and only if τ ∗ is surjective;

(2) τ is surjective if and only if τ ∗ is injective;

(3) τ is bijective if and only if τ ∗ is bijective;

If V and W are coalgebras, then we have that the following additional property holds (see
Definitions 1.2.4, 1.2.7 and 1.2.9):



(4) τ is a coalgebra morphism if and only if τ ∗ is an algebra morphism.

Given two vector spaces V and W we have the natural immersion which is defined by

ı
V,W

: V ∗ ⊗W ∗ −→ (V ⊗W )∗

f ⊗ g 7−→ ı(f ⊗ g)

(
n∑
i=1

vi ⊗ wi
)

=
n∑
i=1

f(vi) g(wi),

for all f ∈ V ∗, g ∈ W ∗ and any
n∑
i=1

vi ⊗ wi ∈ V ⊗W .

Proposition 1.1.2. Let V be a vector space, W ⊆ V a subspace and π
W

: V → V/W the
canonical projection. Then W⊥ := {f ∈ V ∗ | f(W ) = 0} ' (V/W)∗ via the dual map π∗W ,
i. e.,

W⊥ = π∗W ((V/W)∗).

1.2 Hopf Algebras

In this section we will remember some classical properties of Hopf algebras that will be
useful in next chapters. As good references for Hopf algebra theory we refer to [19,29] and
[30].

Definition 1.2.1 (Algebra). An algebra is a triple (A,m, u), where A is a vector space,
m : A ⊗ A −→ A and u : k −→ A are a linear maps, so called respectively multiplication
and unity, such that the following diagrams are commutative:

A⊗ A⊗ A I⊗m //

m⊗I

��

�

A⊗ A

m

��
A⊗ A m // A

and

A⊗ A

m

��

k⊗ A

'
%%

u⊗I
99

� � A⊗ k

'
yy

I⊗u
ee

A

For simplicity, we will say that A is an algebra.

Remark 1.2.2. Denoting by m(a ⊗ b) = a b and by u(1k) = 1A, we can translate the
diagrams in Definition 1.2.1 in the following conditions, for all a, b ∈ A:

Associativity: (a b)c = a(b c);

Unity: 1A a = a = a 1A.

Definition 1.2.3 (Subalgebra). A subspace A′ of an algebra A is called a subalgebra of
A if the image of u is contained in A′ and the image of the restriction of m to A′ ⊗ A′ is
contained in A′, i.e.,

u(k)⊆ A′

m(A′ ⊗ A′)⊆ A′.
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Definition 1.2.4. Let A,B be two algebras. Then a map f : A −→ B is an algebra
morphism if it is a linear map that respects the multiplication and the unity maps, that
is, if the following diagrams are commutative:

A⊗ A f⊗f //

mA

��

�

B ⊗B

mB

��
A

f // B

and

A
f //

�

B

k

uB

FF

uA

XX

Remark 1.2.5. Using the notation for multiplication of elements of an algebra by con-
catenation, then the diagrams in definition of algebra morphism can be translated as

f(ab) = f(a)f(b)

and
f(1A) = 1B,

for all a, b ∈ A. If the map satisfy just the first equality, then it is called a multiplicative
map.

Definition 1.2.6 (Module). Given an algebra A, a vector space M and a linear map
. : A ⊗ M → M , we say that (M, .) is a left A-module if the following diagrams are
commutative:

A⊗ A⊗M I⊗ . //

mA⊗I

��

A⊗M

.

��

�

A⊗M . //M

and

A⊗M

.

��

k⊗M

u⊗I
99

'

%%

�

M

Equivalently, one can see the above diagrams in terms of elements, that is, denoting
.(a⊗m) = a . m, the above diagrams can be translated as

a . (b . m) = (ab) . m

1A . m = m.

The notion of coalgebra is the dual notion of algebra and, for a better comprehension
about such a dualization, the definition of algebra by diagrams as given before make it
more clear, as follows.
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Definition 1.2.7. A coalgebra is a triple (C,∆, ε), where C is a vector space, ∆: C →
C ⊗ C and ε : C → k are linear maps, called comultiplication and counity, respectively,
such that the following diagrams are commutative:

C
∆ //

∆

��

�

C ⊗ C

I⊗∆

��
C ⊗ C ∆⊗I // C ⊗ C ⊗ C

and

C ⊗ C
I⊗ε

%%

ε⊗I

yy
k⊗ C �� C ⊗ k

C

∆

OO

'

ee

'

99

For simplicity, we will say that C is a coalgebra.

Remark 1.2.8. The first diagram above means that the coalgebra C is coassociative
and the second one tell us that the coalgebra C is counital. Thus, if we do not assume
the property derived from this last diagram we obtain a non counital coalgebra, and this
notion correspond the dual notion of non unital algebras.

Since the tensor product C ⊗ C is a quotient of the vector space generated by the set
C × C (cf. [26]), it follows that a typical element of C ⊗ C is a equivalence class which is
presented as a finite sum of simple tensor of elements in C, i.e., if x ∈ C ⊗ C then there
exist finite elements in C, denoted by xi and x′i, i = 1, . . . n, such that

x =
n∑
i=1

xi ⊗ x′i.

Therefore, given an element c in a coalgebra C, we have that the comultiplication of c
is an element in C ⊗ C that can be write as

∆(c) =
n∑
i=1

ci ⊗ c′i

and so the diagrams in Definition 1.2.7 can be translated in the following equalities, for all
c ∈ C, ∑

i,j ci ⊗ (c′i)j ⊗ (c′i)
′
j =

∑
i,l(ci)l ⊗ (ci)

′
l ⊗ c′i

and
c =

∑
i ciε(c

′
i)

=
∑

i ε(ci)c
′
i.

As it is clear from above computations, this notation is not so good to be used when
we are working with Hopf algebras. Thus, since all coalgebras are coassociative, we will use
the Sigma notation, also called Heyneman-Sweedler notation (cf. [30]), where the comulti-
plication of an element will be denoted by

∆(c) = c1 ⊗ c2,

15



where the summation is understood.
Therefore, under this new notation, the diagrams in Definition 1.2.7 can be translated

as

c1 ⊗ c2 ⊗ c3 = c1 ⊗ c21 ⊗ c22 = c11 ⊗ c12 ⊗ c2 (1.1)

c = ε(c1)c2 = c1ε(c2). (1.2)

Definition 1.2.9 (Coalgebra map). Let C, D be two coalgebras and f : C → D a linear
map. We say that f is a coalgebra morphism if the following diagrams are commutative:

C
f //

∆C

��

D

∆D

��

�

C ⊗ C f⊗f // D ⊗D

and

C
f //

εC

��

D

εD

��

�

k

One can see that, the above diagrams can be translated, as follow, for any c ∈ C:

f(c)1 ⊗ f(c)2 = f(c1)⊗ f(c2)

ε(f(c)) = ε(c)

If the map f satisfy just the first condition, then it is called a comultiplicative map.

Definition 1.2.10 (Coideals). Let J be a subspace of a coalgebra C. Then we say that:

(1) J is a subcoalgebra of C if ∆(J) ⊆ J ⊗ J ;

(2) J is a left (resp. right) coideal of C if ∆(J) ⊆ C ⊗ J (resp. ∆(J) ⊆ J ⊗ C);

(3) J is a coideal of C if ∆(J) ⊆ J ⊗ C + C ⊗ J and ε(J) = 0.

Remark 1.2.11. Given a coalgebra C, its dual C∗ = Hom(H,k) is an algebra with product
and unity given by, for any α, β ∈ C∗, c ∈ C,

(f ∗ g)(c) := f(c1)g(c2)

1C∗ := εC .

The next result is a classical one from coalgebra theory, and a proof for this can be
found in [30, Propositions 1.4.3, 1.4.5 and 1.4.6].

Proposition 1.2.12. Let C be a coalgebra, J a subspace of C and consider J⊥ = {f ∈
C∗ | f(J) = 0} that is a subspace of C∗. Then the following statements hold:

16



(1) J is a subcoalgebra of C if and only if J⊥ is an ideal of C∗;

(2) J is a left (resp. right) coideal of C if and only if J⊥ is a left (resp. right) ideal of
C∗;

(3) J is a coideal of C if and only if J⊥ is a subalgebra of C∗.

Proposition 1.2.13 (Quotient Coalgebra). Let C be a coalgebra, J ⊆ C a coideal and
πJ : C → C/J the canonical linear projection. Then there exists a unique coalgebra structure
on C/J such that πJ is a coalgebra map.

In this case, denoting by πJ(c) = c, we have that

(c)1 ⊗ (c)2 = (c1)⊗ (c2)

ε(c) = ε
C

(c)

This coalgebra is called the quotient coalgebra of C by J .

Definition 1.2.14 (Comodule). Let C be a coalgebra, M a vector space and ρ : M →
M ⊗ C a linear map. We say that M is a right comodule if the following diagrams are
commutative:

M
ρ //

ρ

��

M ⊗ C

I⊗∆

��

�

M ⊗ C
ρ⊗I

//M ⊗ C ⊗ C

and

M

'

��

ρ //M ⊗ C

I⊗ε

��

�

M ⊗ k

The next result is important to the definition of bialgebra.

Proposition 1.2.15. Let B be a vector space that have, at same time, a structure of
algebra (B,m, u) and a structure of coalgebra (B,∆, ε). Then the following conditions are
equivalent:

(1) ∆ and ε are algebra morphisms;

(2) m and u are coalgebra morphism.

In this situation we say that the algebra and the coalgebra structure of B are compatible.

Definition 1.2.16 (Bialgebra). A bialgebra is a quintuple (B,m, u,∆, ε), where (B,m, u)
is an algebra, (B,∆, ε) is a coalgebra, such that the algebra and the coalgebra structures
are compatible in the sense of Proposition 1.2.15.

Definition 1.2.17. Let B,B′ be two bialgebras and f : B → B′ a linear map. We say that
f is a bialgebra morphism if it is an algebra and a coalgebra morphism.

17



Definition 1.2.18 (Module algebra). LetB be a bialgebra, A an algebra and . : B⊗A→ A
a linear map. We say that (A, .) is a left B-module algebra if the following conditions hold:

(MA1) 1B . a = a;

(MA2) b . (a′a) = (b1 . a
′)(b2 . a);

(MA3) b . (c . a) = (bc) . a;

(MA4) b . 1A = ε(b)1A.

Given a coalgebra C = (C,∆, ε) and an algebra A = (A,m, u), one can consider a new
algebra, so called the convolution algebra of C and A, defined as (Hom(C,A), ∗, u ◦ ε),
where ∗ is called the convolution product and it is given by f ∗ g = m ◦ (f ⊗ g) ◦ ∆, for
every f, g ∈ Hom(C,A). Under our notations, if c ∈ C and f, g ∈ Hom(C,A) then we will
write (f ∗ g)(c) = f(c1)g(c2) to denote the image of the element c in A, under the map
f ∗ g. We observe that when A = k then the convolution algebra of C and k is exactly the
dual algebra of C (see Remark 1.2.11).

Now we are in position to present the notion of Hopf algebra.

Definition 1.2.19 (Hopf algebra). A Hopf algebra is a sextuple (H,m, u,∆, ε, S), where
(H,m, u,∆, ε) is a bialgebra and the linear map S : H → H is a convolutive inverse to
I : H → H in the convolution algebra Hom(H,H), i.e., if S satisfy the following equality:

ε(h)1H = S(h1)h2 = h1S(h2).

The map S in the above definition is called antipode of H. Thus, a Hopf algebra is a
bialgebra that has an antipode. In the next result we summarize some useful properties of
the antipode in a Hopf algebra.

Proposition 1.2.20. Let H be a Hopf algebra with antipode S. Then the following pro-
perties hold:

(1) S(hg) = S(g)S(h);

(2) S(1H) = 1H ;

(3) ∆(S(h)) = S(h2)⊗ S(h1);

(4) ε(S(h)) = ε(h);

Remark 1.2.21 ([19, Proposition 6.1.4]). When H is a Hopf algebra instead of a bialgebra,
it follows that the last item in Definition 1.2.18 is a consequence from the others axioms,

18



as it is easy to see. In fact, let ∈ H, so

ε(h)1A
(MA1)

= ε(h)1H . 1A

= h1S(h2) . 1A
(MA3)

= h1 . (S(h2) . 1A)

= h1 . [1A(S(h2) . 1A)]
(MA2)

= (h1 . 1A)[h2 . (S(h3) . 1A)]
(MA3)

= (h1 . 1A)(h2S(h3) . 1A)

= (h1 . 1A)(ε(h2)1H . 1A)
(MA1)

= (h1ε(h2) . 1A)1A

= h . 1A

Definition 1.2.22. Let H be a Hopf algebra and t 6= 0 an element in H. Then t is said
to be a left integral in H if, for all h ∈ H, we have that

h t = ε(h) t.

It is possible to show that if exists a left integral in H, then H is finite dimensional
and, moreover, the set of all left integrals in H is an one dimensional subspace of H which
is a left ideal of H. Denoting this space of left integrals in H by

∫ H
l

, we have the following
classical property:

Proposition 1.2.23. Let H be a finite dimensional Hopf algebra, then H '
∫ H
l
⊗H∗ via

γ :
∫ H
l
⊗H∗ −→H

t⊗ f 7−→ t ⇀ f = f1f2(t).

Remark 1.2.24. Given t a left integral in H, since dim
∫ H
l

= 1 and t h lies in
∫ H
l

, for any
h ∈ H, hence there exists α ∈ H∗ such that

t h = tα(h).

This element is an algebra morphism in H∗, called the distinguished element associated
to t.

Corollary 1.2.25. Fixing an element 0 6= T ∈
∫ H∗
l

, we have the following isomorphism
between H and H∗

γ : H −→H∗

h 7−→ h ⇀ T = T1T2(h).
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1.3 Partial Module Algebra

Partial module algebras arose from a study of Caenepeel and Janssen [11] as a generali-
zation of partial action of groups, and it was developed in a sequence of papers authored by
Alves and Batista (see [1–3]), among others. In this section we will recall some definitions
and properties that will be useful to the development of the next chapters. The proofs for
the results presented here can be found in the above mentioned references.

Definition 1.3.1 ([11, Proposition 4.5]). Given a Hopf algebra H, an algebra A and a
linear map → : H ⊗ A → A. We say that (A,→) is a left partial H-module algebra, if the
following conditions are satisfied:

(PMA1) 1H → a = a;

(PMA2) h→ (ab) = (h1 → a)(h2 → b); and

(PMA3) h→ (k → a) = (h1 → 1A)(h2k → a).

We say that the partial action → is symmetric if, in addition, we have the following
condition:

(PMA4) h→ (k → a) = (h1k → a)(h2 → 1A).

We observe that in the above definition we are assuming that A is a unitary algebra,
but it is not necessary to be assumed, because we can replace the conditions PMA2 and
PMA3 by the following:

h→ (a(g → b)) = (h1 → a)(h2g → b),∀h, g ∈ H; a, b ∈ A.

Proposition 1.3.2 ([2, Proposition 1]). Let H be a Hopf algebra and B a (non necessarily
unital) H-module algebra via . : H ⊗ B → B. Let A be a right ideal of B such that A is
also a unital algebra. Then, the linear map → : H ⊗ A→ A given by

h→ a = 1A(h . a)

is a partial action of H on A, called induced partial action.

Definition 1.3.3. Let H be a Hopf algebra and A a partial H-module algebra. We say
that a pair (B, θ) is a globalization of A, where B is a (non necessarily unital) H-module
algebra via . : H⊗B → B, θ : A→ B is an algebra morphism, and the following conditions
hold:

(GMA1) θ(A) is a right ideal of B;

(GMA2) the partial action on A is equivalent to the partial action induced by . on θ(A),
that is, θ(h→ a) = h→ θ(a) = θ(1A)(h . θ(a)); and

(GMA3) B is the H-module algebra generated by θ(A), that is, B = H . θ(A).
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Theorem 1.3.4 ([2, Theorem 1]). Any partial H-module algebra has a globalization

Alves and Batista shown the above theorem constructing the standard globalization as
a subalgebra of Hom(H,A).

Now we recall the notion of Morita context between two algebras A and B. This is a
useful tool from ring theory which allows us to decide when the category of modules over
A and over B are equivalent or, at least, to find a connection between them. In this work
we will be interested in an special Morita context.

Definition 1.3.5 (Morita Context). A Morita context is a sextuple (A,B,M,N, τ, µ),
where A and B are algebras, M is an (A,B)-bimodule, N is an (B,A)-bimodule, τ : M ⊗B
N → A is an A-bimodule map and µ : N ⊗AM → B is an B-bimodule map, such that the
following diagrams are commutative:

M ⊗B N ⊗A M
I⊗µ //

τ⊗I

��

M ⊗B B

/

��

�

A⊗A M
. //M

and

N ⊗A M ⊗B N

µ⊗I

��

I⊗τ // N ⊗A

/

��

�

B ⊗B N
. // N

We say that this context is strict (or A is Morita equivalent to B) if τ and µ are
bijective. In this case we denote by A 'M B.

Proposition 1.3.6. Let (A,B,M,N, τ, µ) be a Morita context between A and B (both
unitary algebras), and suppose that τ and µ are surjective. Then we have that τ and µ are
bijective and, therefore, A 'M B.

Moreover, in the above case, we have that the category of right A-modules is equivalent
to the category of right B-modules via

F : MA →MB given by F = ⊗AM
G : MB →MA given by G = ⊗B N

Given a partial H-module algebra A, let AH = {a ∈ A | h → a = a(h → 1A) = (h →
1A)a, ∀h ∈ H} be the invariant subalgebra of A. Also, we can consider the smash product
A#H that is the vector space A⊗H with structure of associative algebra given by

(a⊗ h)(b⊗ k) = a(h1 → b)⊗ h2k

and left unity 1A ⊗ 1H . Since A#H is an associative algebra with left unity 1A#1H ,
it follows that we can consider the partial smash product, A#H, as the following unital
subalgebra

A#H = (A#H)(1A#1H).

Therefore, given a partial H-module algebra we have two associated algebras, namely,
the invariant subalgebra AH and the partial smash product A#H. In [1], Alves and Batista

constructed a Morita context between AH and A#H, whenever H is a finite dimensional
Hopf algebra, and now we will presented the Morita context developed by those authors.
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Lemma 1.3.7. Let H be a finite dimensional Hopf algebra and A a symmetric partial
H-module algebra. Then we have the following:

1. A is an (A#H,AH)-bimodule via

(a#h) . b = a(h→ b)

a / c = ac.

2. A is an (AH , A#H)-bimodule via

a / (b#h) = α(h2)S−1(h1)→ ab

c . a = ca,

where α is the distinguished element associated to a fixed left integral t ∈ H (see Re-
mark 1.2.24).

Lemma 1.3.8. With the above notation, we have

[ , ] : A⊗AH A −→ A#H

a⊗ b 7−→ [a, b] = (a#1H)(1#t)(b#1H)

that is an A#H-bilinear map, and

( , ) : A⊗A#H A −→ AH

a⊗ b 7−→ (a, b) = t→ (ab)

that is an AH-bilinear map.

With the above notations we have the desired Morita context as follows.

Theorem 1.3.9 ([1, Theorem 1]). Let H be a finite dimensional Hopf algebra and A a
symmetric partial H-module algebra. Then, with the above definitions, we have that

(AH, A#H,A,A, [, ], (, ))

is a Morita context.
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Chapter 2

Partial Actions on Coalgebras

2.1 Partial Modules Coalgebras

In the setting of partial action of group on algebras, Dokuchaev and Exel [21] have
considered the problem of existence of the globalization of partial actions of groups on
algebras, having found necessary and sufficient conditions for such a partial action to
have a globalization (see [21, Theorem 4.5]). Inspired in this work, Alves and Batista [2]
studied this subject of globalization for partial actions of Hopf algebras. It was proved in
[2] that every partial H-module algebra has a globalization, where H is a Hopf algebra
(see [2, Theorem 1]).

In this section we discuss about the existence of a globalization for partial module
coalgebras. In particular, we prove that it always exists and we also construct the standard
one. Moreover, we will present a close relationship between the globalizations for partial
H-module algebras and for partial H-module coalgebras.

We will start presenting the concept of (partial) H-module coalgebras. Also, we will give
some examples of this structures and discuss about the relations between the correspondent
global and partial structures.

2.1.1 Definitions and Correspondences

Our aims in this subsection is to define the (partial) module coalgebra, to see some
interesting examples and properties, and to relate the partial module coalgebra with the
global one.

Definition 2.1.1 ((Global) Module Coalgebra). Let H be a Hopf algebra. A coalgebra D
is a right H-module coalgebra via J : D ⊗H → D if the following properties hold:

(MC1) d J 1H = d;

(MC2) ∆(d J h) = d1 J h1 ⊗ d2 J h2;

(MC3) (d J h) J g = d J hg.



In this case we say that the Hopf algebra H act on D via J, or that J is a global action
of H on D.

Since H is an Hopf algebra, it follows that the category of right H-modules (MH ,⊗k,k)
is a monoidal category. Thus, the above definition can be seen in a categorical sense, as
follows(cf. [29, Definition 11.2.8]): a k-vector space D is said a right H-module coalgebra if
it is a coalgebra object in the category of right H-modules.

Note that from this categorical approach, we need to require a fourth property on D for
it becomes an H-module coalgebra. More precisely, we need to require that the following
equality be true:

εC(c J h) = εC(c)εH(h),∀h ∈ H, d ∈ D.
In the case when H is simply a bialgebra, in fact this fourth condition needs to be

required. But under a more strong hypothesis that H is a Hopf algebra (and so it has
an antipode), this additional condition is a consequence from the others axioms of Defini-
tion 2.1.1, as the next result shows.

Proposition 2.1.2. Let H be a Hopf algebra and D a right H-module coalgebra. Then
εD(d J h) = εD(d)εH(h), for every d ∈ D, h ∈ H.

Proof. Let d ∈ D and h ∈ H, so

εD(d)εH(h)
(MC1)

= εD(d J 1H)εH(h)

= εD(d J 1HεH(h))

= εD(d J h1S(h2))
(MC3)

= εD((d J h1) J S(h2))

= εD(εD(d J h1)1(d J h1)2 J S(h2))
(MC2)

= εD(εD(d1 J h1)(d2 J h2) J S(h3))

= εD(d1 J h1)εD((d2 J h2) J S(h3))

= εD(d1 J h1)εD(d2 J h2S(h3))

= εD(d1 J h1)εD(d2 J 1HεH(h2))

= εD(d1 J h1)εD(d2 J 1H)εH(h2)
(MC1)

= εD(d1 J h1)εD(d2)εH(h2)

= εD(d J h).

Remark 2.1.3. From Definition 2.1.1 and Proposition 2.1.2 it follows that we can de-
fine, without loss of generality, module coalgebra for non-counital coalgebras, and both
definitions coincide when the coalgebra is counital.

Now we will present some examples of module coalgebras. The first one is the canonical
example that any Hopf algebra is a module coalgebra over itself. Also, we present a standard
method to construct new module coalgebras from any given module coalgebra.
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Example 2.1.4. Any Hopf algebra H is a right H-module coalgebra via right multiplica-
tion.

Example 2.1.5. If C is a coalgebra and D is a right H-module coalgebra, then C ⊗D is
a right H-module coalgebra with action given by (c⊗ d) J h = c⊗ (d J h).

From the definition of partial actions of group, Caenepeel and Janssen developed the
notion of partial module algebras generalizing the global ones. Since a module coalgebra
can be seen as a dualization of a module algebra, then we can ask if there exists some
partial structure that is the dual of a partial module algebra extending the concept of
module coalgebra. In fact, it already there exists and it was introduced in the literature
by Batista and Vercruysse in [4]. In this same paper, beyond the authors define partial
module coalgebras, they also exhibit some examples and present certain relations of these
new structures with the others partial structures.

Definition 2.1.6 (Partial Module Coalgebra[4, Definition 5.1]). A coalgebra C is a right
partial H-module coalgebra, via the linear map ↼ : C ⊗H → C, if the following properties
hold:

(PMC1) c ↼ 1H = c;

(PMC2) ∆(c ↼ h) = c1 ↼ h1 ⊗ c2 ↼ h2;

(PMC3) (c ↼ h) ↼ g = ε(c1 ↼ h1)(c2 ↼ h2g).

A partial module coalgebra is said to be symmetric if the following additional condition
holds:

(PMC4) (c ↼ h) ↼ g = (c1 ↼ h1g)ε(c2 ↼ h2).

One can define left partial module coalgebra in analogous way.

Proposition 2.1.7. Let C be a right partial H-module coalgebra. Then the action of H
on C is global if and only if the following equality holds:

εC(c ↼ h) = εC(c)εH(h).

Proof. Supposing that εC(c ↼ h) = εC(c)εH(h), since C is a right partial H-module
coalgebra, we just need to show the property MC3.

(c ↼ h) ↼ k
(PMC3)

= ε(c1 ↼ h1)(c2 ↼ h2k)

= ε(c1)ε(h1)(c2 ↼ h2k)

= c ↼ hk.

The converse follows from Proposition 2.1.2.
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The definition of right partial H-module coalgebra can be extended for non-counital
coalgebras as follows:

Definition 2.1.8. Let C be a (non necessarily counital) coalgebra and H a Hopf algebra.
We say that (C,↼) is a right partial H-module coalgebra if:

(NCPMC1) c ↼ 1H = c;

(NCPMC2) (c ↼ h)1 ⊗ ((c ↼ h)2 ↼ k) = (c1 ↼ h1)⊗ (c2 ↼ h2k).

Moreover, it is called symmetric if:

(NCPMC3) ((c ↼ h)1 ↼ k)⊗ (c ↼ h)2 = (c1 ↼ h1k)⊗ (c2 ↼ h2).

The next result shows that these last two definitions coincide when the considered
coalgebra is counital.

Proposition 2.1.9. If C is a counital coalgebra, then Definition 2.1.8 is equivalent to
Definition 2.1.6.

Proof. First note that conditions PMC1 and NCPMC1 are the same in both definitions.
Now suppose that C is a right partial H-module coalgebra in the sense of Defini-

tion 2.1.8. Then:

(PMC2): Let c ∈ C and h ∈ H, so

∆(c ↼ h) = (c ↼ h)1 ⊗ (c ↼ h)2

(NCPMC1)
= (c ↼ h)1 ⊗ ((c ↼ h)2 ↼ 1H)

(NCPMC2)
= c1 ↼ h1 ⊗ c2 ↼ h2

(PMC3): Let c ∈ C and h, k ∈ H. Applying (ε ⊗ I) in both sides of (NCPMC2), we have
the desired result.

Analogously we can obtain (PMC4) from (NCPMC3).
Conversely, suppose that C is a right partial H-module coalgebra in the sense of Defi-

nition 2.1.6. Then:

(NCPMC2): Let c ∈ C and h, k ∈ H, so

(c ↼ h)1 ⊗ ((c ↼ h)2 ↼ k)
(PMC2)

= (c1 ↼ h1)⊗ ((c2 ↼ h2) ↼ k)
(PMC3)

= (c1 ↼ h1)⊗ (ε(c2 ↼ h2)c3 ↼ h3k)

= (c1 ↼ h1ε(c2 ↼ h2))⊗ (c3 ↼ h3k)
(PMC2)

= ((c1 ↼ h1)1ε((c1 ↼ h1)2))⊗ (c2 ↼ h2k)

= (c1 ↼ h1)⊗ (c2 ↼ h2k).

Analogously as made before, we can obtain NCPMC3 from PMC4.
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Now we present some examples of partial module coalgebras.

Example 2.1.10. Every global right H-module coalgebra is a partial one.

Example 2.1.11. Let H be a Hopf algebra and α ∈ H∗. Then k is a right partial H-module
coalgebra via α if and only if the following conditions hold:

(i) α(1H) = 1k;

(ii) α(h)α(k) = α(h1)α(h2k).

Note that in this case we have 1k ↼ h = α(h).
This example give us a way to produce structures of partial module coalgebra on the

groundfield k. Now we will consider a especial case of this last example.
Let G be a group and H = kG. Consider α ∈ kG∗ and let N = {g ∈ G| α(g) 6= 0}.

Then k is a partial kG-module coalgebra if and only if N is a subgroup of G. In this case,
we have that

α(g) =

{
1, if g lies in N

0, otherwise.

In [4], Batista and Vercruysse introduced the notion of partial action of groups on
coalgebras, in the following way.

Definition 2.1.12. A partial action of a group G on a coalgebra C is a family {Cg, θg}g∈G,
where Cg are subcoalgebras of C and θg : Cg−1 → Cg are coalgebra isomorphisms such that

(1) For each g ∈ G, there exist a comultiplicative map Pg : C � Cg such that

Pg(c) = c1ε(Pg(c2)) = ε(Pg(c1))c2;

(2) Ce = C and θe = Pe = I;

(3) For all g, h ∈ G, we have that

Pg ◦ Ph = Ph ◦ Pg;
θh−1 ◦ Ph ◦ Pg−1 = P(gh)−1 ◦ θh−1 ◦ Pg−1 ;

θg ◦ θh ◦ P(gh)−1 ◦ Ph−1 = θgh ◦ P(gh)−1 ◦ Ph−1 .

With the above definition, Batista and Vercruysse shown that a group G acts partially
on a coalgebra C if and only if C is a symmetric partial left kG-module coalgebra [4,
Theorem 5.7]. In this case, g · c = θg(Pg−1(c)) and Pg(c) = ε(g−1 · c1)c2 = c1ε(g

−1 · c2).
Now we would like to discuss about the existence of certain relation between right partial

module coalgebras and left partial module algebras which will be useful in the construction
of a globalization of partial module coalgebras in the next section. Batista and Vercruysse
considered this same relation between these partial actions in [4], using non-degenerated
dual pairing between an algebra A and a coalgebra C. Here we will consider an special
case, when the considered algebra is the dual of a given coalgebra.
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Proposition 2.1.13 ([4, Theorem 5.14]). Let H be a Hopf algebra. Then every right partial
H-module coalgebra induces a left partial H-module algebra.

Proof. Let C be a right partial H-module coalgebra and consider the following linear map

→ : H ⊗ C∗ −→ C∗

h⊗ ϕ 7−→ (h→ ϕ)(c) = ϕ(c ↼ h)

It is clear that → is well-defined and, moreover, we have:
(PMA1): Let ϕ ∈ C∗. Then (1H → ϕ)(c) = ϕ(c ↼ 1H) = ϕ(c), ∀ c ∈ C.
(PMA2): Let h ∈ H and ϕ, ψ ∈ C∗. Then

[h→ (ϕ ∗ ψ)](c) = (ϕ ∗ ψ)(c ↼ h)

= ϕ((c ↼ h)1)ψ((c ↼ h)2)
(PMC2)

= ϕ(c1 ↼ h1)ψ(c2 ↼ h2)

= [(h1 → ϕ)(c1)][(h2 → ψ)(c2)]

= [(h1 → ϕ) ∗ (h2 → ψ)](c).

(PMA3): Let h, k ∈ H and ϕ ∈ C∗. Then

[h→ (k → ϕ)](c) = (k → ϕ)(c ↼ h)

= ϕ((c ↼ h) ↼ k)
(PMC3)

= ε(c1 ↼ h1)ϕ(c2 ↼ h2k)

= [(h1 → ε)(c1)][(h2k → ϕ)(c2)]

= [(h1 → ε) ∗ (h2k → ϕ)](c).

Therefore C∗ is a left partial H-module algebra.

Proposition 2.1.14. Assume that H is a finite dimensional Hopf algebra. Then the con-
verse of Proposition 2.1.13 is true.

Proof. It is straightforward.

Now, our main interest is to build a globalization for partial action on coalgebras. For
this, first we need to be able to induce a partial action from a global one. Thus, we consider
the following situation.

Let D be a right H-module coalgebra and C ⊆ D a subcoalgebra. Since D is a right
H-module, we can try to induce the desired partial action simply by restriction of the
action of D to C. But we observe that the image of this restriction does not need to be
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contained in C and, therefore, we need to project it on C. By this way, let π : D � C be
a projection of D over C, as a vector space, and then consider the following map

ı↼ : C ⊗H J // D π // C,

where J denote the global action of H on D on the right. To work with this composite
map, we need to find necessary conditions for this map be a partial action of H on C. This
is exactly what we will do in the sequel.

(PMC1): Let c ∈ C, so c ı↼ 1H = π(c J 1H) = π(c) = c, where the last equality holds
because π is a projection.

Supposing that π is a comultiplicative map (i.e., ∆ ◦ π = (π ⊗ π) ◦ ∆), then we have
that

(PMC2): Let c ∈ C and h ∈ H, so

∆(c ı↼ h) = ∆(π(c J h))

= (π ⊗ π)(∆(c J h))
(MC2)

= (π ⊗ π)(c1 J h1 ⊗ c2 J h2)

= π(c1 J h1)⊗ π(c2 J h2)

= c1 ı↼ h1 ⊗ c2 ı↼ h2.

Then, just remains to show that PMC3 also holds, but for this we will need to assume
an special technical condition on π. Suppose that π satisfy the following condition

π[π(d) J h] = π[ε(π(d1))d2 J h],

for all d ∈ D. If it is the case, then we can deduce what we need, as it is showed below.
(PMC3): Let h, k ∈ H and c ∈ C, so

ε(c1 ı↼ h1)(c2 ı↼ h2k) = ε[π(c1 J h1)]π(c2 J h2k)
(MC3)

= ε[π(c1 J h1)]π[(c2 J h2) J k]
(MC2)

= ε[π((c J h)1)]π[((c J h)2) J k]

= π[ε[π((c J h)1)](c J h)2 J k]

= π[π(c J h) J k]

= (c ı↼ h) ı↼ k.

Therefore, under the hypotheses assumed above, we have that C is a partial module
coalgebra, which will be called the induced right partial H-module coalgebra. Thus, our
above argumentation shows the following result.
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Proposition 2.1.15 (Induced Partial Module Coalgebra). Let H be a Hopf algebra and
D a right H-module coalgebra. Suppose that C ⊆ D is a subcoalgebra and let π : D → C be
a comultiplicative projection satisfying

π[π(d) J h] = π[ε(π(d1))d2 J h],∀d ∈ D. (2.1)

If ı↼ : C ⊗H → C is the linear map given by

c ı↼ h = π(c J h), (2.2)

then C becomes a right partial H-module coalgebra via ı↼ .

With the above construction we have the necessary tools to define a globalization for a
partial module coalgebra. It will be the subject of the next section.

2.2 Globalization for Partial Modules Coalgebras

Inspired in Alves and Batista [2], who first defined what would be a globalization for
partial H-module algebras, we present now the concept of globalization for partial H-
module coalgebras as follows.

Definition 2.2.1. Let H be a Hopf algebra. Given a right partial H-module coalgebra
(C,↼), a globalization of C is a triple (D, θ, π), where D is a right H-module coalgebra via
J, θ : C → D is a coalgebra monomorphism and π is a comultiplicative projection from D
onto θ(C), such that:

(GMC1) π[π(d) J h] = π[ε(π(d1))d2 J h], ∀d ∈ D, h ∈ H;

(GMC2) θ(c ↼ h) = θ(c) ı↼ h, ∀c ∈ C, h ∈ H;

(GMC3) D is the H-module generated by θ(C), that is, D = θ(C) J H.

where ı↼ is defined as in Proposition 2.1.15.

Before to continue, we would like to observe some facts that can be derived from these
conditions given in the above definition.

Remark 2.2.2. The first condition of Definition 2.2.1 says that we can induce an structure
of partial module coalgebra on θ(C). The second one says that this induced partial action
on θ(C) is equivalent to the partial action on C. The last one says that do not exists any
submodule coalgebra of D containing θ(C).

The next remark show us the motivation to the projection π be a comultiplicative maps
instead of a coalgebra map.
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Remark 2.2.3. If the projection π from the Definition 1.3.3 is a coalgebra map, then the
partial action on C is global. In fact, applying I ⊗ ε in the equality GMA2, we have

εC(c ↼ h) = εD(θ(c ↼ h))
(GMA2)

= εD(θ(c) ↼ h)

= εD(π(θ(c) J h))

= εD(θ(c) J h)
(2.1.2)

= εD(θ(c))ε(h)

= εC(c)ε(h),

therefore follow from Proposition 2.1.7 that the partial action on C is global.

The concept of globalization above defined was thought as a dual notion of the globali-
zation defined by Alves and Batista in [2]. Thus, it would be interesting to explore a little
more their relationships, if any. This is the subject of the next subsection.

2.2.1 Correspondence Between Globalizations

Our aim in this subsection is to establish relations between the globalization for partial
module coalgebras, as defined in Definition 2.2.1, and for partial module algebras, as defined
in [2] (see Definition 1.3.3). For this we will use the fact that a partial module coalgebra
C naturally induces an structure of partial module algebra on C∗.

First of all, we recall from basic linear algebra that given a linear map T : V → W we
have the dual linear map T ∗ : W ∗ → V ∗, given by T ∗(f) = f ◦T . Moreover, remember that
T is injective (resp. surjective) if and only if T ∗ is surjective (resp. injective). Also, if V
and W are coalgebras, then T is a coalgebra map if and only if T ∗ is an algebra map (see
Proposition 1.1.1).

Given a right partial H-module coalgebra C, it follows from Proposition 2.1.13 that the
dual C∗ is a left partial H-module algebra in such a way that the involved partial actions
respect the following rule

α(c ↼ h) = (h→ α)(c),∀α ∈ C∗, c ∈ C, h ∈ H,

where ↼ denotes the partial action of H on C and → denotes the correspondent partial
action of H on C∗. The same is true for (global) module coalgebras (cf. [29, Theorem
11.2.10(b)]).

With the above considerations, take C a right partial H-module coalgebra, D a right
H-module coalgebra, θ : C → D a coalgebra monomorphism and π : D → θ(C) a comul-
tiplicative projection. Consider the linear map ϕ : C∗ → D∗, given by the dual map of
θ−1 ◦ π, i.e.,

ϕ : C∗ −→D∗

α 7−→ ϕ(α) = (θ−1 ◦ π)∗(α) = α ◦ θ−1 ◦ π,
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that is a injective map since θ−1 ◦π is a surjective map (c = (θ−1 ◦π)(θ(c)), for any c ∈ C).
Then, by Proposition 2.1.13 and Proposition 1.1.1, we have the following properties:

(1) C∗ is a left partial H-module algebra;

(2) D∗ is a left H-module algebra;

(3) ϕ is a multiplicative monomorphism.

As a consequence, we obtain the next result.

Theorem 2.2.4. With the above notations, we have that (θ(C) J H, θ, π) is a globalization
for C if and only if (H . ϕ(C∗), ϕ) is a globalization for C∗.

Proof. Suppose that (θ(C) J H, θ, π) is a globalization for C. Since ϕ is a multiplicative
monomorphism, it follows that

[ϕ(εC) ∗ (h . ϕ(α))](d) = (ϕ(εC)(d1))((h . ϕ(α))(d2))

= εC(θ−1π(d1))ϕ(α)(d2 J h)

= εθ(C)(π(d1))α(θ−1π(d2 J h))

= α(θ−1π(εθ(C)(π(d1))d2 J h))
(GMC1)

= α(θ−1π(π(d) J h))
(2.2)
= α(θ−1(π(d) ↼ h))

(GMC2)
= α[(θ−1π(d)) ↼ h]

(2.1.13)
= (h→ α)(θ−1π(d))

= ϕ(h→ α)(d),

for every h ∈ H,α ∈ C∗ and d ∈ D. Thus, it means that ϕ(C∗) is a right ideal of H.ϕ(C∗)
and, moreover, h→ ϕ(α) = ϕ(h→ α). Therefore (H . ϕ(C∗), ϕ) is a globalization for C∗,
as desired.

Conversely, if (H . ϕ(C∗), ϕ) is a globalization for C∗, then for any α ∈ C∗, h ∈ H and
d ∈ D, we have
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(GMC1):

α(θ−1π(π(d) J h)) = α(θ−1π(π(d) ↼ h))

= ϕ(α)[π(d) ↼ h]
(2.1.13)

= [h→ ϕ(α)]π(d)
(GMA2)

= ϕ(h→ α)π(d)

= (h→ α)[θ−1π(π(d))]

= (h→ α)[θ−1(π(d))]

= ϕ(h→ α)(d)

= [ϕ(εC) ∗ (h . ϕ(α))](d)

= ϕ(εC)(d1)(h . ϕ(α))(d2)

= ϕ(εC)(d1)ϕ(α)(d2 J h)

= ϕ(εC)(d1)α(θ−1π(d2 J h))

= εC(θ−1π(d1))α(θ−1π(d2 J h))

= εθ(C)(π(d1))α(θ−1π(d2 J h))

= α(θ−1π[ε(π(d1))d2 J h])

Since the above equality holds for any α ∈ C∗, we conclude that

θ−1π(π(d) J h) = θ−1π[ε(π(d1))d2 J h].

Moreover, since Im(π) = Im(θ) = dom(θ−1), where dom(θ−1) means the domain of θ−1, it
follows that

θ ◦ θ−1 = I|dom(θ−1) = I|Im(π)

and, therefore, we have that

π(π(d) J h) = π[ε(π(d1))d2 J h].
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(GMC2): Let α ∈ C∗, h ∈ H and c ∈ C. Then

(α ◦ θ−1)[θ(c) ↼ h] = α θ−1π[θ(c) J h]

= ϕ(α)[θ(c) J h]

= [h . ϕ(α)]θ(c)

= [h . ϕ(α)]θ(εC(c1) c2)

= εC(c1) [h . ϕ(α)]θ(c2)

= εCθ
−1θ(c1) [h . ϕ(α)]θ(c2)

= εCθ
−1πθ(c1) [h . ϕ(α)]θ(c2)

= ϕ(εC)θ(c1) [h . ϕ(α)]θ(c2)

= ϕ(εC)θ(c)1 [h . ϕ(α)]θ(c)2

= {ϕ(εC) ∗ [h . ϕ(α)]} θ(c)
= [h→ ϕ(α)] θ(c)

= ϕ(h→ α) θ(c)

= (h→ α) θ−1πθ(c)

= (h→ α) θ−1θ(c)

= (h→ α)(c)

= α (c ↼ h)

= α θ−1θ(c ↼ h)

= (α ◦ θ−1)θ(c ↼ h).

Since α ∈ C∗ is arbitrary, we obtain that θ(c) ↼ h = θ(c ↼ h). Therefore, (θ(C) J
H, θ, π) is a globalization to C, and the proof is complete.

2.2.2 The Standard Globalization

Now we will show that every partial module coalgebra has a globalization and we will
also construct the standard globalization for a given partial module coalgebra.

Let C be a right partial H-module coalgebra and consider the coalgebra C ⊗ H with
the natural structure of a tensor coalgebra. Consider the coalgebra monomorphism from
C into C ⊗H as the natural embedding

ϕ : C −→ C ⊗H
c 7−→ c⊗ 1H .

Clearly, ϕ is a well-defined linear map and, moreover, it is injective. Then consider the
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comultiplicative projection from C ⊗H onto ϕ(C) given as follows

π : C ⊗H −→ ϕ(C)

c⊗ h 7−→ (c ↼ h)⊗ 1H .

Clearly π is a well-defined linear map. From the property PMC1 and since π(c⊗ 1H) =
ϕ(c), for all c ∈ C, one conclude that π is in fact a projection.

We claim that π is comultiplicative. In fact, let c ∈ C and h ∈ H. Then we have

∆(π(c⊗ h)) = ∆((c ↼ h)⊗ 1H)

= (c ↼ h)1 ⊗ 1H ⊗ (c ↼ h)2 ⊗ 1H
(PMC2)

= c1 ↼ h1 ⊗ 1H ⊗ c2 ↼ h2 ⊗ 1H

= π(c1 ⊗ h1)⊗ π(c2 ⊗ h2)

= (π ⊗ π)∆(c⊗ h),

therefore π is comultiplicative, as claimed.
With the above noticed we are able to construct a globalization for every partial H-

module coalgebra.

Theorem 2.2.5. Let H be a Hopf algebra. Every right partial H-module coalgebra has a
globalization.

Proof. From Examples 2.1.4 and 2.1.5, we know that C ⊗ H is an H-module coalgebra,
with action given by right multiplication in H. By the above noticed, we already have the
applications ϕ : C → C ⊗H and π : C ⊗H → ϕ(C), as required in Definition 2.2.1. Then
we only need to show that the conditions GMC1 and GMC2 hold.

(GMC1): For every h, k ∈ H and c ∈ C, we have

π[ε(π((c⊗ h)1))(c⊗ h)2 J k]
(PMC2)

= π[ε(π(c1 ⊗ h1))(c2 ⊗ h2) J k]

= ε(c1 ↼ h1)π[(c2 ⊗ h2) J k]
(MC2)

= ε(c1 ↼ h1)π[(c2 ⊗ h2k)]

= ε(c1 ↼ h1)(c2 ↼ h2k)
(PMC3)

= (c ↼ h) ↼ k ⊗ 1H

= π[(c ↼ h)⊗ k]

= π[((c ↼ h)⊗ 1H) J k]

= π[π(c⊗ h) J k]
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(GMC2): Let h ∈ H and c ∈ C, then

ϕ(c) ↼ h = π[ϕ(c) J h]

= π[(c⊗ 1H) J h]

= π[c⊗ h]

= c ↼ h⊗ 1H

= ϕ(c ↼ h).

Moreover, by the definition of π, ϕ and J it follows that ϕ(C) J H = C⊗H. Therefore
C ⊗H is a globalization for C.

The globalization above constructed is called the standard globalization and it is close
related with the standard globalization for partial module algebras defined by Alves and
Batista in [2], as we will see below.

Given a right partial H-module coalgebra C one can construct the standard globaliza-
tion (C ⊗H,ϕ, π), as above. Now consider the multiplicative map

φ : C∗ −→ (C ⊗H)∗

α 7−→ α ◦ ϕ−1 ◦ π.

Thus, by the Theorem 2.2.4, we have that (H . φ(C∗), φ) is a globalization for C∗, where
the action on (C⊗H)∗ is given by (h. ξ)(c⊗k) = ξ(c⊗k h), for every ξ ∈ (C⊗H)∗. Now,
consider the following algebra isomorphism given by the adjoint isomorphism

Ψ: (C ⊗H)∗ −→ Hom(H, C∗)

ξ 7−→ [Ψ(ξ)(h)](c) = ξ(c⊗ h)

which is an H-module morphism. In fact, let h, k ∈ H, c ∈ C and ξ ∈ (C ⊗H)∗. Then

{[Ψ(h . ξ)](k)}(c) = [(h . ξ)](c⊗ k)

= ξ(c⊗ k h)

= {[Ψ(ξ)](k h)}(c)
= {[h .Ψ(ξ)](k)}(c)

which shows that Ψ is in fact an H-module map. Moreover, composing Ψ with φ we obtain

{[Ψφ(α)](h)}(c) = φ(α)(c⊗ h)

= α(ϕ−1(π(c⊗ h)))

= α(ϕ−1(c ↼ h⊗ 1H))

= α(c ↼ h)

= (h→ α)(c)

= [Φ(α)(h)](c),
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where Φ: C∗ → Hom(H, C∗) given by Φ(α)(h) = h → α, for all h ∈ H and α ∈ C∗,
is the multiplicative map that appear in the construction of the standard globalization of
C∗ (see [2, Theorem 1]). We finish this subsection by presenting a result that summarizes
what was discussed above.

Theorem 2.2.6. Let H be a Hopf algebra and C a right partial H-module coalgebra.
The standard globalization for C is dual to the standard globalization for the left partial
H-module algebra C∗.
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Chapter 3

Partial Coactions on Coalgebras

3.1 Partial Comodules Coalgebras

Comodule coalgebra is a dual notion of module algebra, as well as comodule is a dual
notion of module and coalgebra is a dual notion of algebra.

Our aim in this chapter is to develop the theory of partial comodule coalgebras intro-
duced by Batista and Vercruysse in [4]. In particular, we will discuss about possible relations
between the partial and the correspondent global structures. Also, some examples will be
constructed and, moreover, interesting properties of comodule coalgebras will be pointed
out. After that, we will relate the four partial structures: partial module algebras, partial
comodule algebras, partial module coalgebras and partial comodule coalgebras.

As the main aim, we will develop the notion of globalization for partial comodule
coalgebras, defining the notion of induced partial coaction. We will also show the relations
among this new globalization and the others already defined before, as well as we will
construct a globalization for partial comodule coalgebras under a condition of rationality.

Given two vector spaces V and W , we will write τV,W to denote the standard isomor-
phism between V ⊗ W and W ⊗ V . We start this section with the following well know
concept.

Definition 3.1.1 ((Global) Comodule Coalgebra). Let H be a Hopf algebra, D a coalgebra
and λ : D → H ⊗D a linear map. We say that D is a left H-comodule coalgebra via λ if
the following conditions hold:

(CC1) (εH ⊗ I)λ(d) = d;

(CC2) (I ⊗∆D)λ(d) = (mH ⊗ I ⊗ I)(I ⊗ τD,H ⊗ I)(λ⊗ λ)∆D(d);

(CC3) (I ⊗ λ)λ(d) = (∆H ⊗ I)λ(d).

Since H is a k-algebra, it follows that the category of left H-comodules (HM,⊗k,k)
is a monoidal category. Thus, we can see the above definition in a categorical approach,
in the following sense(cf. [29, Definition 11.3.7]): a k-vector space D is a left H-comodule
coalgebra if it is a coalgebra object in the category of left H-comodules.



By this categorical point of view, we need to require an additional condition in Defini-
tion 3.1.1, that is

(I ⊗ εD)λ(d) = εD(d)1H . (3.1)

Also in this context of coactions, exactly as it happens in the case of actions, when H
is simply a bialgebra, then the above condition need to be assumed as an axiom in the
definition of comodule coalgebra over H. But, in the case when H is a Hopf algebra (and
then it has an antipode), this extra condition is, in fact, a consequence from the others
axioms of Definition 3.1.1, as it is showed in the next result.

Proposition 3.1.2. Let D be a left H-comodule coalgebra in the sense of Definition 3.1.1,
where H is a Hopf algebra. Then (I ⊗ εD)λ(d) = εD(d)1H , for any d ∈ D.

Proof. Let d ∈ D. Thus we have

εD(d)1H
(CC1)

= 1HεH(d−1)εD(d−0)

= d−1
1S(d−1

2)εD(d−0)
(CC3)

= d−1S(d−0−1)εD(d−0−0)

= d−1S([ε(d−0
1)d−0

2]−1)εD([ε(d−0
1)d−0

2]−0)

= d−1εD(d−0
1)S(d−0

2
−1)εD(d−0

2
−0)

(CC2)
= d1

−1d2
−1εD(d1

−0)S(d2
−0−1)εD(d2

−0−0)

= d1
−1εD(d1

−0)d2
−1S(d2

−0−1)εD(d2
−0−0)

(CC3)
= d1

−1εD(d1
−0)d2

−1
1S(d2

−1
2)εD(d2

−0)

= d1
−1εD(d1

−0)εH(d2
−1)εD(d2

−0)

= d1
−1εD(d1

−0)εD(d2
−0εH(d2

−1))
(CC1)

= d1
−1εD(d1

−0)εD(d2)

= d−1εD(d−0).

Therefore, (I ⊗ εD)λ(d) = εD(d)1H , for any d ∈ D, as desired.

Remark 3.1.3. From the above proposition it follows that one can define comodule coal-
gebra for non-counital coalgebras D in such a way that if the considered coalgebra D is
counital, then both definitions coincide.

Now we will exhibit some classical examples of comodule coalgebras, for more examples
see [29].

Example 3.1.4. Let H be a Hopf algebra. Then H becomes an H-comodule coalgebra
with λ : H → H ⊗H defined by λ(h) = h1S(h3)⊗ h2.
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Example 3.1.5. Given a coalgebra D and a Hopf algebra H, then it follows that D is an
H-comodule coalgebra, via λ : D → H ⊗D defined by λ(d) = 1H ⊗ d, for every d ∈ D.

Example 3.1.6. Let H be a finite dimensional Hopf algebra. Then H∗ is an H-comodule

coalgebra with structure given by λ : H∗ → H⊗H∗ defined as λ(f) =
n∑
i=1

hi⊗f ∗h∗i , where

{hi}ni=1 and {h∗i }ni=1 are dual basis for H and H∗, respectively.

Example 3.1.7. Let H be a Hopf algebra and consider a left H-comodule coalgebra C
with structure given by a linear map λ. Given any coalgebra D, it follows that C ⊗D is a
left H-comodule coalgebra via λ⊗ ID.

3.1.1 Definitions and Correspondences

In this subsection we will construct some important examples and we will discuss about
some properties of partial comodule coalgebras. We will describe some relations among
the four partial structures. In particular, these relations discussed here will be useful to
construct a globalization of partial comodule coalgebras in the next section. We start this
subsection with the following definition.

Definition 3.1.8 (Partial Comodule Coalgebra [4, Definition 6.1]). Let H be a Hopf
algebra, C a coalgebra and λ′ : C → H ⊗ C a linear map. We say that C is a left partial
H-comodule coalgebra via λ′, if the following conditions hold:

(PCC1) (εH ⊗ I)λ′(c) = c;

(PCC2) (I ⊗∆C)λ′(c) = (mH ⊗ I ⊗ I)(I ⊗ τC,H ⊗ I)(λ′ ⊗ λ′)∆C(c);

(PCC3) (I ⊗ λ′)λ′(c) = (mH ⊗ I ⊗ I){∇ ⊗ [(∆H ⊗ I)λ′]}∆C(c),

where ∇ : C → H is defined by ∇(c) = (I ⊗ εC)λ′(c).
We say that C is a symmetric left partial H-comodule coalgebra if the following addi-

tional condition holds:

(PCC4) (I ⊗ λ′)λ′(c) = (mH ⊗ I ⊗ I)(I ⊗ τH⊗C,H){[(∆H ⊗ I)λ′]⊗∇}∆C(c).

Remark 3.1.9. One can see the above definition in terms of commutative diagrams, as it
is showed below.

C
I //

λ′ ##

PCC1

C

H ⊗ C
ε⊗I

;;

(3.2)
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C ∆ //

λ′

��
PCC2

C ⊗ C
λ′⊗λ′
��

H ⊗ C
I⊗∆

��

H ⊗ C ⊗H ⊗ C
I⊗τC,H⊗I
��

H ⊗ C ⊗ C H ⊗H ⊗ C ⊗ C
mH⊗I⊗I
oo

(3.3)

C
∆ //

λ′

��
PCC3

C ⊗ C

λ′⊗λ′
��

H ⊗ C

I⊗λ′
��

H ⊗ C ⊗H ⊗ C

I⊗ε⊗∆⊗I
��

H ⊗H ⊗ C H ⊗H ⊗H ⊗ C
mH⊗I⊗I
oo

(3.4)

Remark 3.1.10. Denoting the partial coaction of an element by λ′(c) = c−1⊗ c−0, we can
write the axioms of Definition 3.1.8 in terms of its elements, as follow:

(PCC1) c = ε(c−1)c−0;

(PCC2) c−1 ⊗ c−0
1 ⊗ c−0

2 = c1
−1c2

−1 ⊗ c1
−0 ⊗ c2

−0;

(PCC3) c−1 ⊗ c−0−1 ⊗ c−0−0 = c1
−1ε(c1

−0) c2
−1

1 ⊗ c2
−1

2 ⊗ c2
−0;

(PCC4) c−1 ⊗ c−0−1 ⊗ c−0−0 = c1
−1

1 c2
−1ε(c2

−0)⊗ c1
−1

2 ⊗ c1
−0.

Proposition 3.1.11. Given a left partial H-comodule coalgebra C via λ′, the following
equalities hold

c−1 ⊗ c−0 =∇(c1)c2
−1 ⊗ c2

−0 = c1
−1∇(c2)⊗ c1

−0 (3.5)

∇(c1)∇(c2) =∇(c) (3.6)

Proof. It follows directly from the definition of ∇ and PCC2.

From the Definitions 3.1.1 and 3.1.8, it follows that every comodule coalgebra is a
partial comodule coalgebra, so that this last concept is a generalization of the first one.
We will register this fact as an example.

Example 3.1.12. Let H be a Hopf algebra. Every left H-comodule coalgebra is a left
partial H-comodule coalgebra.
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The next result give us a simple method to construct new examples of comodule coal-
gebras. The proof is straightforward and it will be omitted.

Proposition 3.1.13. Let λ′ : k→ H ⊗ k be a linear map, where λ′(1k) = h⊗ 1k, for some
h ∈ H. Then k is a left partial H-comodule coalgebra if and only if the following conditions
hold:

1. εH(h) = 1k;

2. h⊗ h = (h⊗ 1H)∆(h).

One can see as an immediate consequence of this definition that h2 = h.
As an application of the above result, we present the next example.

Example 3.1.14. Let G be a group and denote by x =
∑
g∈G

αgg an arbitrary element of kG.

With this notation, consider N = {g ∈ G | αg 6= 0}. Then k is a left partial kG-comodule
coalgebra if and only if N is a finite subgroup of G. In this case we have

αg =

{
1
|N | , if g ∈ N
0, otherwise.

The next result show us that the equality (3.1) is a necessary and sufficient condition
to a partial comodule coalgebra be global.

Proposition 3.1.15. Let H be a Hopf algebra and consider a left partial H-comodule
coalgebra C via λ′. Then C is a (global) H-comodule coalgebra if and only if ∇(c) =
εC(c)1H , ∀c ∈ C, where ∇ is as defined in Definition 3.1.8.

Proof. By Proposition 3.1.2, it is clear that if C is an H-comodule coalgebra then ∇(c) =
εC(c)1H , ∀c ∈ C.

Conversely, note that

(I ⊗ λ′)λ′(c) = (mH ⊗ I ⊗ I){∇ ⊗ [(∆H ⊗ I)λ′]}∆C(c)

= (mH ⊗ I ⊗ I){∇(c1)⊗ [(∆H ⊗ I)λ′(c2)]}
(3.1)
= (mH ⊗ I ⊗ I){1HεC(c1)⊗ [(∆H ⊗ I)λ′(c2)]}
= (mH ⊗ I ⊗ I){1H ⊗ [(∆H ⊗ I)λ′(εC(c1)c2)]}
= (mH ⊗ I ⊗ I){1H ⊗ [(∆H ⊗ I)λ′(c)]}
= (∆H ⊗ I)λ′(c)

which turns C into a left H-comodule coalgebra.
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Now we will relate these four partial structures, but first we need to define the finite
dual of a Hopf algebra (or dual Hopf algebra). Let A be an algebra, and consider the finite
dual of A, defined by

A0 = {f ∈ A∗ | f(I) = 0, for some I ideal of A of finite codimension}
= {f ∈ A∗ | ∃

∑n
i=0 fi ⊗ f ′i ∈ A∗ ⊗ A∗ with f(ab) =

∑
i fi(a)f ′i(b),∀a, b ∈ A},

that is a coalgebra with structure given by ∆: f 7→ f1 ⊗ f2 such that f(ab) = f1(a)f2(b),
for all a, b ∈ A and ε : f 7→ ε(f) = f(1A) (cf. [29, Section 2.5]). Moreover, when A is finite
dimensional, it follows that A0 = A∗. Let H be a Hopf algebra, then its finite dual H0 is
a Hopf algebra too (cf. [29, Section 7.4]). We say that H0 separate points if

f(h) = 0, for every f ∈ H0 =⇒ h = 0.

Initially, we will see that from a given coaction we can consider two induced actions,
without any kind of restriction. Under the additional hypothesis thatH0 separate points, we
will show that partial comodule coalgebras, partial module coalgebras and partial module
algebras are close related. Moreover, when H is finite dimensional, then all these partial
structures are equivalent. Batista and Vercruysse have obtained these same relations, but
in a different way, using dual pairings between algebras and coalgebras (see [4]). The
arguments presented here are more direct.

Given a coalgebra C and any linear map λ′ : C → H⊗C, denoted by λ′(c) = c−1⊗ c−0.
We have two induced linear maps λ′↼ : C ⊗ H∗ → C and →λ′ : H∗ ⊗ C∗ → C∗, given
respectively by

c λ′↼ f = f(c−1)c−0,∀c ∈ C, f ∈ H∗ (3.7)

(f →λ′ α)(c) = f(c−1)α(c−0),∀f ∈ H∗, α ∈ C∗, c ∈ C. (3.8)

In this context, if C is a left partial H-comodule coalgebra by λ′, then we can restrict

λ′↼ and→λ′ to the subspaces C ⊗H0 and H0⊗C∗, respectively, obtaining the following
results.

Theorem 3.1.16. With the above notations, if H is a Hopf algebra and C is a left partial
H-comodule coalgebra via λ′, then we have that:

(1) C is a right partial H0-module coalgebra via λ′↼;

(2) C∗ is a left partial H0-module algebra via →λ′ .

Proof. To prove (1), we need to verify the conditions given in Definition 2.1.6. Thus,
(PMC1): Let c ∈ C, then

c λ′↼ 1H0 = c λ′↼ εH

= c−0εH(c−1)
(PCC1)

= c
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(PMC2): Let c ∈ C and f ∈ H0, then

∆(c λ′↼ f) = ∆(f(c−1)c−0)

= f(c−1)c−0
1 ⊗ c−0

2

(PCC2)
= f(c1

−1c2
−1)c1

−0 ⊗ c2
−0

= f1(c1
−1)c1

−0 ⊗ f2(c2
−1)c2

−0

= c1 λ′↼ f1 ⊗ c2 λ′↼ f2

(PMC3): Let c ∈ C and f, g ∈ H0, then

(c λ′↼ f) λ′↼ g = f(c−1)c−0
λ′↼ g

= f(c−1)g(c−0−1)c−0−0

(PCC3)
= f(c1

−1εC(c1
−0)c2

−1
1)g(c2

−1
2)c2

−0

= f1(c1
−1εC(c1

−0))f2 ∗ g(c2
−1)c2

−0

= εC(f1(c1
−1)c1

−0)f2 ∗ g(c2
−1)c2

−0

= εC(c1 λ′↼ f1)[c2 λ′↼ f2 ∗ g]

Therefore, C is a right partial H0-module coalgebra with structure given by λ′↼.
To prove (2) we need to show that the linear map →λ′ satisfy the conditions given in

Definition 1.3.1. Thus,
(PMA1): Let α ∈ C∗, then

(1H0 →λ′ α)(c) = (εH →λ′ α)(c)

= εH(c−1)α(c−0)

= α(εH(c−1)c−0)
(PCC1)

= α(c)

(PMA2): Let α, β ∈ C∗ and f ∈ H0, then

(f →λ′ (α ∗ β))(c) = f(c−1)(α ∗ β)(c−0)

= f(c−1)α(c−0
1)β(c−0

2)
(PCC2)

= f(c1
−1c2

−1)α(c1
−0)β(c2

−0)

= f1(c1
−1)f2(c2

−1)α(c1
−0)β(c2

−0)

= f1(c1
−1)α(c1

−0)f2(c2
−1)β(c2

−0)

= (f1 →λ′ α)(c1)(f2 →λ′ β)(c2)

= (f1 →λ′ α) ∗ (f2 →λ′ β)(c)
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(PMA3): Let α ∈ C∗ and f, g ∈ H0, then

(f →λ′ (g →λ′ α))(c) = f(c−1)(g →λ′ α)(c−0)

= f(c−1)g(c−0−1)α(c−0−0)
(PCC3)

= f(c1
−1εC(c1

−0)c2
−1

1)g(c2
−1

2)α(c2
−0)

= f1(c1
−1εC(c1

−0))[f2 ∗ g](c2
−1)α(c2

−0)

= f1(c1
−1)εC(c1

−0)[f2 ∗ g](c2
−1)α(c2

−0)

= (f1 →λ′ εC)(c1)(f2 ∗ g →λ′ α)(c2)

= [(f1 →λ′ εC) ∗ (f2 ∗ g →λ′ α)](c)

Therefore, C is a left partial H0-module algebra with structure given by →λ′ .

In general, we do not know if the converse of the above theorem is true. However, if H0

separate points then the converse holds, as the next result shows.

Theorem 3.1.17. With the above notations, if H0 separate points, then the following
conditions are equivalent:

(1) C is a right partial H0-module coalgebra via λ′↼;

(2) C is a left partial H0-module algebra via →λ′ ;

(3) C is a left partial H-comodule coalgebra via λ′.

Proof. Note that for every f ∈ H0, c ∈ C and α ∈ C∗, we have

(f →λ′ α)(c) = f(c−1)α(c−0) = α(f(c−1)c−0) = α(c λ′↼ f).

Then, by Propositions 2.1.13 and 2.1.14, it is clear that the conditions (1) and (2) are
equivalent.

Thus, by Theorem 3.1.16 it is enough to show that (1) or (2) implies (3).
In fact, supposing that the condition (1) holds, we obtain
(PCC1): For c ∈ C,

(εH ⊗ I)λ̄(c) = εH(c−1)c−0

= c λ′↼ εH

= c λ′↼ 1H0

(PMC1)
= c
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(PCC2): For any f ∈ H0 and any c ∈ C, we have

(f ⊗ I ⊗ I)(mH ⊗ I ⊗ I)(I ⊗ τC,H ⊗ I)(λ′ ⊗ λ′)∆C(c)

= f(c1
−1c2

−1)c1
−0 ⊗ c2

−0

= f1(c1
−1)f2(c2

−1)c1
−0 ⊗ c2

−0

= f1(c1
−1)c1

−0 ⊗ f2(c2
−1)c2

−0

= c1 λ′↼ f1 ⊗ c2 λ′↼ f2

(PMC2)
= ∆(c λ′↼ f)

= ∆(f(c−1)c−0)

= f(c−1)∆(c−0)

= (f ⊗ I ⊗ I)(c−1 ⊗ c−0
1 ⊗ c−0

2)

= (f ⊗ I ⊗ I)(I ⊗∆C)λ′(c)

(PCC3): Take f, g ∈ H0 and c ∈ C, so we have

(f ⊗ g ⊗ I)(mH ⊗ I ⊗ I){∇ ⊗ [(∆H ⊗ I)λ′]}∆C(c)

= f1(∇(c1)c2
−1

1)g(c2
−1

2)c2
−0

= f(c1
−1εc(c1

−0)c2
−1

1)g(c2
−1

2)c2
−0

= f(c1
−1c2

−1
1)εc(c1

−0)g(c2
−1

2)c2
−0

= f1(c1
−1)εc(c1

−0)f2(c2
−1

1)g(c2
−1

2)c2
−0

= f1(c1
−1)εc(c1

−0)[f2 ∗ g](c2
−1)c2

−0

= εC(c1 λ′↼ f1)(c2 λ′↼ f2 ∗ g)
(PMC3)

= c λ′↼ f λ′↼ g

and
(f ⊗ g ⊗ I)(I ⊗ λ′)λ′(c) = (f ⊗ g ⊗ I)(c−1 ⊗ c−0−1 ⊗ c−0−0)

= f(c−1)g(c−0−1)c−0−0

= f(c−1)(c−0
λ′↼ g)

= (f(c−1)c−0
λ′↼ g)

= (c λ′↼ f) λ′↼ g

Therefore, C is a partial H-comodule coalgebra with structure given by λ′, as desired.

The above theorem can be translated in the following commutative diagram:
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(C, λ′, H) //
oo H0 sep points

��

OO

H0 sep points

(C∗,→λ′ , H
0)

(C, λ′↼,H0)
uu

55

(3.9)

The Theorems 3.1.16 and 3.1.17 above show relations between partial comodule coalge-
bra, partial module coalgebra and partial module algebra, whenever we start from a partial
coaction λ′. In general, we can not start from an action and induce a coaction. To do this
we will require a more strong hypothesis on H. More precisely, we will assume that H is
finite dimensional.

Note that, if H is finite dimensional, then H0 = H∗ (and so H0 separate points).
Moreover, given a linear map ↼ : C ⊗H∗ → C and assuming that {hi, h∗i } is dual basis of
H and H∗, then we can induce a linear map λ′↼ : C → H ⊗ C, by

λ′↼(c) =
∑
i

hi ⊗ c ↼ h∗i

and it is clear that
f(c−1)c−0 = c ↼ f

for all c ∈ C and f ∈ H∗.
Thus, under the hypothesis that H is finite dimensional, we can induce a coaction of H

on a coalgebra C from a given action of H∗ on C. Also, as we have seen before, we know
how to induce actions from coactions too. Therefore, we can start from a right action ↼
of H∗ on C, and then to induce a left coaction λ′↼ of H on C and, again, to induce a
right action (λ′↼) ↼ of H∗ on C. After this process we will reobtain the original action ↼,
i.e., (λ′↼)↼=↼. Analogously, we can repeat these constructions but now starting from a
coaction λ′ and we will have that λ′( λ′↼) = λ′.

In [1], there is a similar construction for (right) partial H-comodule algebras and (left)
partial H∗-module algebras. Thus, in the finite dimensional case, we have that these four
partial structures are close related, in the following sense:

Theorem 3.1.18. Let C be a coalgebra and H a finite dimensional Hopf algebra. Then
the following statements are equivalent:

(1) C is a left partial H-comodule coalgebra;

(2) C∗ is a right partial H-comodule algebra;

(3) C is a right partial H∗-module coalgebra;

(4) C∗ is a left partial H∗-module algebra.
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where the relations between the correspondent actions and coactions are given in the fol-
lowing way: for any c ∈ C, α ∈ C∗ and f ∈ H∗, we have

α(c−1)c−0 = α+0(c)α+1 (3.10)

(f → α)(c) = α(c ↼ f) (3.11)

c ↼ f = f(c−1)c−0 (3.12)

f → α = α+0f(α+1), (3.13)

where λ′ : c 7→ c−1 ⊗ c−0 and ρ′ : α 7→ α+0 ⊗ α+1 are the partial coactions on C and C∗,
respectively.

After the Theorem 3.1.18, we can extend the Diagram 3.9 to the following commutative
diagram, under the hypothesis that H is a finite dimensional Hopf algebra:

(C, λ′, H) oo //
OO

��

(C∗,→λ′ , H
0)

(C, λ′↼,H0) (C∗, ρ′, H)
��

OO

//oo

(3.14)

Now, we would like to discuss about the existence of a globalization for a partial co-
module coalgebra like it was done in Chapter 2 for partial module coalgebras. This will be
the subject of the next section.

3.2 Globalization for Partial Comodules Coalgebras

Our main goal in this section is to introduce the concept of globalization for partial
comodules coalgebras. Following the same steps made in the case of partial module coal-
gebras in the last chapter, we will need previously introduce the notion of induced partial
coaction. Thus, we start this section discussing about conditions for the existence of an
induced partial coaction.

Let H be a Hopf algebra and consider a left H-comodule coalgebra D via λ : d 7→
d−1 ⊗ d−0 ∈ H ⊗ D. Let C be a subcoalgebra of D. In order to induce a coaction of
H on C we can restrict the coaction of D to C, but, in general, we do not have that
λ(C) ⊆ H ⊗ C. Thus, our strategy consist in take a linear map π : D → C and then to
consider the following composite map

λ′: C −→H ⊗ C
c 7−→ c−1 ⊗ π(c−0)

not
= c−1 ⊗ c−0. (3.15)

Now we need to find sufficient conditions that we must require on π for that λ′ defines
a left partial H-comodule coalgebra structure on C. We will do this exactly studying the
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conditions given in Definition 3.1.8 which λ′ must satisfy to provide a left partial H-
comodule coalgebra structure on C.

First of all, observe that if π is a linear projection from D onto C, then λ′ satisfies the
condition PCC1 of Definition 3.1.8. In fact, given c ∈ C, we have

(ε⊗ I)λ′(c) = ε(c−1)π(c−0)

= π(ε(c−1)c−0)
(CC1)

= π(c)

= c,

where the last equality holds since π is a projection (and so π(c) = c, for all c ∈ C).
Supposing now that π is a comultiplicative map then it follows that λ′ satisfies the

condition PCC2 of Definition 3.1.8. In fact, let c ∈ C, so

(I ⊗∆C)λ′(c) = c−1 ⊗∆(π(c−0))

= c−1 ⊗ (π ⊗ π)(∆(c−0))

= c−1 ⊗ π(c−0
1)⊗ π(c−0

2)
(CC2)

= c1
−1c2

−1 ⊗ π(c1
−0)⊗ π(c2

−0)

= (mH ⊗ I ⊗ I)(I ⊗ τC,H ⊗ I)(λ′ ⊗ λ′)∆C(c).

We recall that to define the induced partial module coalgebra in the last chapter, we
needed to suppose that the comultiplicative projection used there should satisfy an special
condition, namely, the equation (2.1). The same occurs in the setting of partial comodule
coalgebras, as we will see below. In order to ensure that the condition PCC3 is satisfied by
λ′, we will assume the following condition on π:

π(d)−1 ⊗ π(π(d)−0) = d2
−1 ⊗ ε(π(d1))π(d2

−0). (3.16)

Thus, we suppose additionally that π satisfies (3.16). Let c ∈ C, so

(I ⊗ λ′)λ′(c) = c−1 ⊗ c−0−1 ⊗ c−0−0

= c−1 ⊗ π(c−0)−1 ⊗ π(π(c−0)−0)
(3.16)
= c−1 ⊗ c−0

2
−1 ⊗ ε(π(c−0

1))π(c−0
2
−0)

(CC2)
= c1

−1c2
−1 ⊗ c2

−0−1 ⊗ ε(π(c1
−0))π(c2

−0−0)
(CC3)

= c1
−1ε(π(c1

−0))c2
−1

1 ⊗ c2
−1

2 ⊗ π(c2
−0)

= c1
−1ε(c1

−0)c2
−1

1 ⊗ c2
−1

2 ⊗ c2
−0

= (mH ⊗ I ⊗ I){∇ ⊗ [(∆H ⊗ I)λ′]}∆C(c).
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Therefore, given D a left H-comodule coalgebra, C a subcoalgebra of D and π : D → C
a comultiplicative projection satisfying the equation (3.16), we have that C is a partial
H-comodule coalgebra, called the induced partial comodule coalgebra, with partial coaction
given by the equation (3.15).

We will summarize our above discussion in the next result.

Proposition 3.2.1 (Induced Partial Comodule Coalgebra). Let H be a Hopf algebra, D a
left H-comodule coalgebra via λ and C ⊆ D a subcoalgebra. Then, with the above notations,
the linear map λ′ : C → H ⊗C, defined as in (3.15), induces a structure of left partial H-
comodule coalgebra on C.

After we have introduced the notion of induced partial comodule coalgebra, we are able
to propose a definition of what would be a globalization for a partial comodule coalgebra.
The next definition contemplates this.

Definition 3.2.2. Let H be a Hopf algebra and C a partial H-comodule coalgebra. Then
a triple (D, θ, π) is a globalization for C, where D is an H-comodule coalgebra, θ is a
coalgebra monomorphism from C into D and π is a comultiplicative projection from D
onto θ(C), if the following conditions hold:

(GCC1) π(d)−1 ⊗ π(π(d)−0) = d2
−1 ⊗ ε(π(d1))π(d2

−0);

(GCC2) θ is an equivalence of partial H-comodule coalgebras;

(GCC3) D is the H-comodule coalgebra generated by θ(C).

We will explain the meaning of these conditions in the above definition.

Remark 3.2.3. The first item in Definition 3.2.2 tell us that it is possible to define the
induced partial comodule coalgebra on θ(C). The second one tell us that this induced par-
tial coaction coincide with the original, and this fact can be translated in the commutative
diagram bellow:

C
λ′ //

θ

��

H ⊗ C

I⊗θ

��
θ(C) λ′ // H ⊗ θ(C),

� (3.17)

moreover, the second condition could be seen as

θ(c)−1 ⊗ π(θ(c)−0) = c−1 ⊗ θ(c−0). (3.18)

Finally, the last condition of Definition 3.2.2 tell us that there is no subcomodules of
D containing θ(C).

Remark 3.2.4. Analogously to the noticed for partial module coalgebras, if the map π in
Definition 3.2.2 is a coalgebra map, then the partial coaction on C is global. To show it,
one just need to calculate I ⊗ ε in the condition GCC2.
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3.2.1 Correspondence Between Globalizations

Let H be a Hopf algebra and suppose that C is a left partial H-comodule coalgebra.
From Theorem 3.1.16, item 1, we can induce an structure of right partial H0-module
coalgebra on C. The same is true for a (global) comodule coalgebra, of course inducing a
(global) H0-module coalgebra. Therefore, given a globalization (D, θ, π) for a partial H-
comodule coalgebra C, one can ask: Is there some relation between D and C when viewed
as H0-module coalgebras (global and partial, respectively)? Now we will study a little bit
more these structures and answer the above question. The notations used previously will
be kept.

Let H be a Hopf algebra and C a left partial H-comodule coalgebra with structure
given by λ′. Suppose that ((D,λ), θ, π) is a globalization for (C, λ′). From Theorem 3.1.16,
we have that C is a right partial H0-module coalgebra with partial action given by

c ↼ f = f(c−1)c−0

and the same is true for D, i.e., we have an structure of H0-module coalgebra on D given
by

d J f = f(d−1)d−0.

Since θ is a coalgebra monomorphism from C into D and π is a comultiplicative pro-
jection from D onto θ(C), in order to induce an structure of partial H0-module coalgebra
on θ(C) we just need to check the equation (2.1). For this, let d ∈ D and f ∈ H0, so

π(π(d) J f) = f(π(d)−1)π(π(d)−0)
(3.16)
= f(d2

−1)π(ε(π(d1))d2
−0)

= π(ε(π(d1))d2
−0f(d2

−1))

= π(ε(π(d1))d2 J f)

therefore, we can induce an structure of left partial H0-module coalgebra on θ(C).
Now we will show that θ is in fact a morphism of partial action. For this, let c ∈ C, so

θ(c) ↼ f = π(θ(c) J f)

= f(θ(c)−1)π(θ(c)−0)
(3.18)
= f(c−1)θ(c−0)

= θ(f(c−1)c−0)

= θ(c ↼ f).

The next result gives conditions to the existence of a globalization for C viewed as
partial module coalgebra.
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Theorem 3.2.5. Let H be a Hopf algebra, C a left partial H-comodule coalgebra and
(D, θ, π) a globalization for C. Supposing that H0 separate points, then (D, θ, π) is also a
globalization for C as right partial H0-module coalgebra.

Proof. From our discussion above, we just need to show the condition GMC3 in Defini-
tion 2.2.1.

Let M be any H0-submodule coalgebra of D containing θ(C). We need to show that
M = D and for this, we will show that M is an H-subcomodule coalgebra of D. Thus,
since M contain θ(C) and D is a globalization for C viewed as left partial H-comodule
coalgebra, it follows that M = D, as desired.

In fact, take f ∈ H0, m ∈ M , and consider {hk} a basis of H. Let {h∗k} be the set
whose elements are the dual applications of the hk’s. Then write λ(m) ∈ H ⊗D is terms
of the basis of H, i.e.,

λ(m) =
n∑
i=0

hi ⊗mi,

where the mi’s are nonzero elements, at least, in D.
Since D is an H-comodule, so it is an H∗-module via the same action of H0. Moreover,

the action of H0 on D is a restriction of the action of H∗. Since H0 separate points, it
follows, by Jacobson density theorem, that give m ∈ M there exists {h0

(m)i ∈ H0} such

that m J h0
(m)i = m J h∗i , for each i. Then

m J h0
(m)j = m J h∗j =

n∑
i=0

h∗j(hi)mi = mj

and so the mi’s lies in M . Therefore M is an H-subcomodule of D and, consequently,
M is an H-subcomodule coalgebra of D containing θ(C). Since D is a globalization for
C as partial comodule coalgebra, it follows that M = D and, therefore, (D, θ, π) is a
globalization for C as partial H0-module coalgebra. The proof is complete now.

3.2.2 Constructing a Globalization

Now we will construct a globalization for a left partial comodule coalgebra C, in an
special situation. First of all, remember that if M is a right H0-module and H0 separate
points, then we have a linear map α : M → Hom(H0,M) given by α(m)(f) = m · f and
an injective linear map β : H ⊗M → Hom(H0,M) given by β(h⊗m)(f) = f(h)m.

In the above situation, we say that M is a rational H0-module if α(M) ⊆ β(H ⊗M).
Notice that, given a rational H0-module then we have an structure of H-comodule via
λ : M → H ⊗M satisfying

λ(m) =
∑

hi ⊗mi ⇐⇒ m · f =
∑

f(hi)mi, ∀f ∈ H0. (3.19)
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This definition can be seen pictorially in the following commutative diagram:

Hom(H0,M)

M

α

??

λ // H ⊗M
0 P

β

aa

(3.20)

From Theorem 3.2.5, it follows that exists a natural way to try to find a globalization for
a partial coaction of H on C, which is to consider the structure in the standard globalization
for the related partial action of H0 on C, under the hypothesis that H0 separate points.
Thus, given a left partial H-comodule coalgebra (C, λ′) we have, from Theorem 2.2.5, that
(C ⊗H0, θ, π) is a globalization for the partial action of H0 on C.

In this point we would like to obtain that C ⊗H0 is an H-comodule coalgebra, but, in
general, this can not be true. In order to overcome this problem we will assume one more
condition, namely, we will suppose that C⊗H0 is a rational H0-module. In this particular
case, we have that C ⊗H0 is an H-comodule with coaction satisfying the equation (3.19),
i.e., in our situation, we have the following rule, for any c⊗ f ∈ C ⊗H0 and g ∈ H0,

λ(c⊗ f) =
∑

hi ⊗ ci ⊗ fi ⇐⇒ c⊗ (f ∗ g) =
∑

g(hi)ci ⊗ fi. (3.21)

Therefore, in a similar way to Theorem 3.1.17, we have that C ⊗H0 is an H-comodule
coalgebra.

Thus, keeping our notations used before, we already know that θ : C → C ⊗ H0 is a
coalgebra map and π : C ⊗H0 � θ(C) is a comultiplicative projection. Therefore, we are
in the position to obtain a globalization for a left partial H-comodule coalgebra, as follows.

Theorem 3.2.6. Let H be a Hopf algebra and C a left partial H-comodule coalgebra.
With the above notations, if C ⊗H0 is a rational H0-module and H0 separate points, then
(C ⊗H0, θ, π) is a globalization for C.

Proof. By the above discussion, we can show directly that the conditions GCC1-GCC3
hold. Let c⊗ f ∈ C ⊗H0, and any g ∈ H0, so

(g ⊗ I)[π(c⊗ f)−1 ⊗ π(π(c⊗ f)−0)] = g(π(c⊗ f)−1)π[π(c⊗ f)−0]

= π[g(π(c⊗ f)−1)π(c⊗ f)−0]

= π[π(c⊗ f) J g]

= π[ε(π((c⊗ f)1))(c⊗ f)2 J g]

= ε(π(c⊗ f)1)π[g((c⊗ f)2
−1)(c⊗ f)2

−0]

= g[(c⊗ f)2
−1π(ε(π((c⊗ f)1))(c⊗ f)2

−0)]

= (g ⊗ I)[(c⊗ f)2
−1π(ε(π((c⊗ f)1))(c⊗ f)2

−0)].
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Since H0 separate points, therefore the condition GCC1 is satisfied.
To proof the condition GCC2 we take c ∈ C and observe that

(g ⊗ I)[θ(c)−1 ⊗ π(θ(c)−0)] = g(θ(c)−1)π(θ(c)−0)

= π(g(θ(c)−1)θ(c)−0)

= π(θ(c) J g)

= θ(c ↼ g)

= g(c−1)θ(c−0)

= (g ⊗ I)[c−1 ⊗ θ(c−0)]

since H0 separate points, then θ is an equivalence of partial coactions, i.e., GCC2 holds.
Finally, to show that C ⊗ H0 is generated by θ(C), we consider M a subcomodule

coalgebra of C⊗H0 containing θ(C). By Theorem 3.1.16, M is an H0-submodule coalgebra
of C ⊗H0 containing θ(C). Thus, it follows from condition GMC3 that M = C ⊗H0.

Therefore C ⊗H0 is a globalization for C as partial H-comodule coalgebra.

The globalization above constructed is called the standard globalization for a partial
comodule coalgebra.

Remark 3.2.7. When the Hopf algebra is finite dimensional, so H0 = H∗ and it separate
points and, moreover, C ⊗H∗ is an H∗-rational module with coaction given by

λ : c⊗ f 7−→
n∑
i=0

hi ⊗ c⊗ f ∗ h∗i ,

where {hi, h∗i } is a dual basis for H and H∗.
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Chapter 4

Galois Theory and Morita-Takeuchi
Correspondence

4.1 Morita-Takeuchi Context for Partial Comodules

Coalgebras

Takeuchi developed the notion of Morita context for coalgebras, called Morita-Takeuchi
context. This tool allow us to compare the category of comodules over two given coalgebras.
Moreover, as shown by Takeuchi in [31], if we have an strict Morita-Takeuchi context be-
tween two coalgebras, then the category of comodules over these coalgebras are equivalent.

Our aim in this section is to construct a Morita-Takeuchi context connecting two coal-
gebras that are obtained from a given left partial H-comodule coalgebra. First of all we
need to remember the definition of Morita-Takeuchi context, or pre-equivalence data as
defined by Takeuchi in [31]. For this we start recalling the notion of cotensor product.

Definition 4.1.1. Let X be a coalgebra, M a right X-comodule via ρM and N a left X-
comodule via λN . Then we define the tensor coproduct M2XN as the subspace of M ⊗N
spanned by {∑

mi ⊗ ni |
∑

ρM(mi)⊗ ni =
∑

mi ⊗ λN(ni)
}
.

Notice that M ' M2XX via ρM and λX = ∆, and analogously N ' X2XN via λN
and ρX = ∆.

Definition 4.1.2. A Morita-Takeuchi context between two coalgebras X and Y is a sex-
tuple (X, Y, M, N, µ, τ), where M is a (Y, X)-bicomodule, N is a (X, Y )-bicomodule,
µ : Y → M 2XN is a map of Y -bicomodules and τ : X → N 2 YM is a map of X-
bicomodules, such that the following diagrams commute:

M 2XN 2 YM

�

M 2XX
IM⊗τoo

Y 2 YM

µ⊗IM

OO

M

ρM

OO

λM
oo

(4.1)



N 2 YM 2XN

�

N 2 Y Y
IN⊗µoo

X 2XN

τ⊗IN

OO

N

ρN

OO

λN
oo

(4.2)

A Morita-Takeuchi context is said strict if µ and τ are bijections.

As noticed by Takeuchi, if the maps µ and τ are injections, then they are bijections
(cf. [31, 2.5 Theorem]).

Given an H-comodule coalgebra C, Dăscălescu, Raianu, and Zhang constructed in [20]
a Morita-Takeuchi context between the smash coproduct C o H and the quotient C/J ,
where J is defined by J = C J Ker(εH∗), being J the action of H∗ on C induced by the
structure of comodule coalgebra on C.

If we take C as a left partial H-comodule coalgebra, a natural question arises from the
construction given in [20]: Is it possible to construct a Morita-Takeuchi context related to a
partial comodule coalgebra? Our aim in this section in to answer this question affirmatively,
but for this we will need to make some constructions.

For simplicity, since all comodule coalgebra will be partial in this chapter, we will
use the global notation. First of all, we need to discuss the existence of a partial smash
coproduct and a coideal for then construct the quotient coalgebra.

Batista and Vercruysse constructed in [4] the partial smash coproduct associated to a
partial comodule coalgebra in the following way.

Given a left partial H-comodule coalgebra (C, λ̄) we define the smash coproduct CoH
as the vector space C ⊗H with the following linear maps

∆: C oH −→ C oH ⊗ C oH

co h 7−→ c1 o c2
−1h1 ⊗ c2

−0 o h2

and
ε : C oH −→ k

co h 7−→ ε
C

(c)ε
H

(h)

With the above maps, C oH becomes a coassociative coalgebra with left counity.
In fact, let co h ∈ C oH, so

(I ⊗∆)∆(co h) = c1 o c2
−1h1 ⊗∆(c2

−0 o h2)

= c1 o c2
−1h1 ⊗ c2

−0
1 o c2

−0
2
−1h2 ⊗ c2

−0
2
−0 o h3

(PCC2)
= c1 o c2

−1c3
−1h1 ⊗ c2

−0 o c3
−0−1h2 ⊗ c3

−0−0 o h3

(PCC3)
= c1 o c2

−1∇(c3)c4
−1

1h1 ⊗ c2
−0 o c4

−1
2h2 ⊗ c4

−0 o h3

(3.5)
= c1 o c2

−1c3
−1

1h1 ⊗ c2
−0 o c3

−1
2h2 ⊗ c3

−0 o h3

= ∆(c1 o c2
−1h1)⊗ c2

−0 o h2

= (∆⊗ I)∆(co h)
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and, moreover,

(ε⊗ I)∆(co h) = ε(c1)ε(c2
−1h1)c2

−0 o h2

= ε(c1)ε(c2
−1)c2

−0 o ε(h1)h2

= ε(c1)c2 o h

= co h.

Note that in our case we do not have a right counity. Moreover, ε is a right counity for
C oH if and only if the partial comodule coalgebra C is global.

In fact, supposing C a comodule coalgebra it follows clearly that ε is a right counity.
Conversely, supposing that ε is a right counity for C oH so (I ⊗ ε)∆(c o 1H) = c o 1H .
Then co 1H = c1 o c2

−1ε(c2
−0). Therefore, applying ε⊗ I in the above equality, we obtain

that ε(c)1H = c−1ε(c−0) and by Proposition 3.1.15 the coaction is global.
In the case of partial module algebra, the smash product is an associative algebra with

left unity, so we can consider the subalgebra generate by this left unity. In our case, given
a coassociative coalgebra with left counit we can consider the subcoalgebra generated by
this left counity, in the following way:

Proposition 4.1.3. Let X be a vector space with a coassociative comultiplication ∆: X →
X ⊗ X and considerate a linear map ε : X → k. If ε is a left counity for X, then it is a
right counity for the subcoalgebra X = (I ⊗ ε)∆(X).

Moreover, denoting x̄ = (I ⊗ ε)∆(x), we have that ∆(x̄) = x1 ⊗ x2.

Proof. First of all, we need to check that X is a subcoalgebra of X.
Let x̄ = x1ε(x2) ∈ X, so

∆(x̄) = ∆(x1)ε(x2)

= x1 ⊗ x2ε(x3)

= x1 ⊗ ε(x2)x3ε(x3) since ε is a left counity

= x1ε(x2)⊗ x3ε(x3)

= x1 ⊗ x2

Then X is a subcoalgebra of X. Now just remains to show that ε is a right counity for
X. In fact,

(I ⊗ ε)∆(x̄) = x1ε(x2)

= x1ε(x2)ε(x3ε(x4))

= x1ε(x2)ε(x3)ε(x4)

= x1ε(ε(ε(x2)x3)x4)

= x1ε(x2)

= x̄

Where in the last equalities we use the fact that ε is a left counity in X.
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Since, for a partial comodule coalgebra, we have a coassociative coproduct and a left
counity in C oH, hence we can consider the subcoalgebra generated by the left counity,
in the same way as done in Proposition 4.1.3.

Corollary 4.1.4. Given a partial H-comodule coalgebra C, the partial smash coproduct
C ōH = (I ⊗ ε)∆(C oH) is a coalgebra, with structure given by

∆: C ōH −→ C ōH ⊗ C ōH

c ōh 7−→ c1 ō c2
−1h1 ⊗ c2

−0 ōh2 (4.3)

ε : C ōH −→ k
c ōh 7−→ ε

C
(c)ε

H
(h) (4.4)

Proof. Denote a simple element in C ōH by c ōh = (I ⊗ ε)∆(c o h) = c1 o ∇(c2)h.
Therefore the result follows directly from Proposition 4.1.3.

In [20] the authors shown that C J ker(ε
H∗ ) is a coideal, and so the correspondent

quotient coalgebra was taken to construct the Morita-Takeuchi context. In the case of
partial comodule coalgebra, this is not true. Moreover, if C ↼ ker(ε

H∗ ) is a coideal of C
then C is a (global) module coalgebra.

In fact, since H∗ = kεH⊕ker εH∗ , then any element f ∈ H∗ can be write in the following
way f = f(1H)εH +fker, where fker lies in ker(εH∗). Supposing that C ↼ ker(ε) is a coideal
of C, so εC(C ↼ ker(εH∗)) = 0. Then, for any f ∈ H∗ and c ∈ C we have that

εC(c ↼ f) = εC(c ↼ f(1H)εH) + εC(c ↼ fker)

= εC(c ↼ f(1H)εH)
(PMC1)

= εC(c εH∗(f))

= εC(c)εH∗(f).

Therefore, by Proposition 2.1.7, C is a global H∗-module coalgebra.
Now we will construct a coideal J of C which will play the role of the coideal considered

in [20] in the construction of the Morita-Takeuchi context. From now on, we will suppose
that H is finite dimensional. Remember from Theorem 3.1.16 that, if C is a left partial
H-comodule coalgebra, then C∗ is a left partial H∗-module algebra via

(f → α)(c) = f(c−1)α(c−0),

hence we can consider the subalgebra of invariants, i.e.,

C∗
H∗

= {ψ ∈ C∗ | f → ψ = (f → εC) ∗ ψ = ψ ∗ (f → εC), ∀f ∈ H∗}

Moreover, remember, from classical coalgebra theory (see [30]), the relation between a
subspace and its orthogonal.
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Proposition 4.1.5. Let C be a coalgebra and V ≤ C a subspace, so V is a coideal of C
iff V ⊥ is a subalgebra of C∗.

As a consequence of the above proposition, we have that

J :=
(
C∗

H∗
)⊥

(4.5)

is a coideal of C. Therefore, we can consider the quotient coalgebra C/J with induced
structure (see Proposition 1.2.13).

Remark 4.1.6. In the case when C be a (global) H-comodule coalgebra, one can note
that

C J ker(εH∗) = {c(c−1)c−0 − f(1H)c | f ∈ H∗, c ∈ C}.

Moreover, it is easy to see that C J ker(εH∗) = (C∗H
∗
)⊥. Then, the coideal defined by

Equation 4.5 is exactly the same of C J ker(εH∗). Therefore the coalgebra quotient above
considered is the same of C/CH+, whenever the coaction is global.

In the sequel, we have an important property of C/J that will be very useful to construct
the Morita-Takeuchi context.

Theorem 4.1.7. Let C be a left symmetric partial H-comodule coalgebra, then we have
for all c ∈ C,

c−1 ⊗ c−0 = ∇(c2)⊗ c1 = ∇(c1)⊗ c2, (4.6)

where c̄ denotes the class of c ∈ C in C/J .

Proof. Let c ∈ C, so for all ψ ∈ C∗H
∗

and f ∈ H∗ we have

ψ(f(c−1)c−0) = f(c−1)ψ(c−0)

= (f → ψ)(c)

= [ψ ∗ (f → ε)](c)

= ψ(c1)f(c2
−1)ε(c2

−0)

= ψ(c1f(∇(c2))).

Thus, ψ[f(c−1)c−0−c1f(∇(c2))] = 0, for all ψ ∈ C∗H
∗
, and then f(c−1)c−0−c1f(∇(c2))

lies in
(
C∗

H∗
)⊥

= J , for all f ∈ H∗.
By the above observations, f(c−1)c−0 = f(∇(c2))c1 in C/J , for all f ∈ H∗. Therefore,

for all c ∈ C, we have
c−1 ⊗ c−0 = ∇(c2)⊗ c1.

The other equality holds from a similar computation.
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To construct the bicomodules we will need to suppose the symmetry, therefore, from
now on, C will be a left symmetric partial H-comodule coalgebra.

Now we will construct the bicomodules which will be necessary in our context. Take
M = C and consider the following maps

λM : M −→ C ōH ⊗M
c 7−→ c1 ō c2

−1 ⊗ c2
−0 (4.7)

and

ρM : M −→M ⊗ C/J

c 7−→ c1 ⊗ c2. (4.8)

For the next result we write C ōHMC/J to denote the category of all (C ōH, C/J )-
bicomodules.

Proposition 4.1.8. With the above structure maps, M ∈ C ōHMC/J .

Proof. First we will show that M is a left C ōH-comodule, so let c ∈M

(ε⊗ I)λM(c) = ε(c1)ε(c2
−1)c2

−0

(PCC1)
= ε(c1)c2

= c

and
(I ⊗ λM)λM(c) = c1 ō c2

−1 ⊗ λ(c2
−0)

= c1 ō c2
−1 ⊗ c2

−0
1 ō c2

−0
2
−1 ⊗ c2

−0
2
−0

= c1 ō c2
−1c3

−1 ⊗ c2
−0 ō c3

−0−1 ⊗ c3
−0−0

= c1 ō c2
−1∇(c3)c4

−1
1 ⊗ c2

−0 ō c4
−1

2 ⊗ c4
−0

(3.5)
= c1 ō c2

−1c3
−1

1 ⊗ c2
−0 ō c3

−1
2 ⊗ c3

−0

= ∆(c1 ō c2
−1)⊗ c2

−0

= (∆⊗ I)λ(c).

Now to check that M is a right C/J -comodule, we take c ∈M and observe that

(I ⊗ ε̄)ρM(c) = c1ε̄(c2) = c1ε(c2) = c

and
(ρM ⊗ I)ρM(c) = ρM(c1)⊗ c2

= c1 ⊗ c2 ⊗ c3

= c1 ⊗ ∆̄(c2)

= (I ⊗ ∆̄)ρM(c).
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Now just remains to show the compatibility relation between λM and ρM . So let c ∈M ,

(λM ⊗ I)ρM(c) = λ(c1)⊗ c2

= c1 ō c2
−1 ⊗ c2

−0 ⊗ c3

(3.5)
= c1 ō c2

−1∇(c3)⊗ c2
−0 ⊗ c4

(4.6)
= c1 ō c2

−1c3
−1 ⊗ c2

−0 ⊗ c3
−0

(PCC2)
= c1 ō c2

−1 ⊗ c2
−0

1 ⊗ c2
−0

2

(PCC2)
= c1 ō c2

−1 ⊗ ρ(c2
−0)

= (I ⊗ ρM)λM(c)

and therefore M is a (C ōH, C/J )-bicomodule.

To construct the (C/J , C ōH)-bicomodule we will recall once more the definitions of
integral and distinguished group-like elements (see Section 1.2).

An element 0 6= T ∈ H∗ is said an left integral in H∗, if for all f ∈ H∗ hold that
f ∗ T = ε

H∗ (f)T or equivalently if

h1T (h2) = T (h)1H , (4.9)

for all h ∈ H. In this case, we denote that T ∈
∫ H∗
l

.

Then, by the classical theory, given 0 6= T a left integral in H∗ there exists λ̂ ∈ G(H∗∗),
called the distinguished grouplike associated associated to T , satisfying T ∗f = λ̂(f)T , that
is

T (h1)h2 = λT (h) (4.10)

associating H with H∗∗ by the natural isomorphism.
Another interesting classical property between T and λ is the following

T (h) = T (S−1(h)λ), (4.11)

that will be useful in this section.
Then, taking N = C, we define the following maps

λN : N −→ C/J ⊗N
c 7−→ c1 ⊗ c2 (4.12)

and

ρN : N −→N ⊗ C ōH

c 7−→ c1
−0 ⊗ c2

−0 ōS−1(c1
−1c2

−1)λ. (4.13)

Analogously as before, in the nest result we will write C/JMC ōH to denote the category
of all (C/J , C ōH)-bicomodules.
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Proposition 4.1.9. With the above structure maps, N ∈ C/JMC ōH .

Proof. Let c ∈ C. Then we have

(I ⊗∆)ρN(c) = c1
−0⊗∆(c2

−0 ōS−1(c1
−1c2

−1)λ)

= c1
−0⊗c2

−0
1 ō c2

−0
2
−1S−1(c1

−1
2c2
−1

2)λ

⊗c2
−0

2
−0 ōS−1(c1

−1
1c2
−1

1)λ
(PCC2)

= c1
−0⊗c2

−0 ō c3
−0−1S−1(c1

−1
2c2
−1

2c3
−1

2)λ

⊗c3
−0−0 ōS−1(c1

−1
1c2
−1

1c3
−1

1)λ

= c1
−0⊗c2

−0 ō c3
−0−1S−1(c1

−1
2(c2

−1c3
−1)2)λ

⊗c3
−0−0 ōS−1(c1

−1
1(c2

−1c3
−1)1)λ

(PCC3)
= c1

−0⊗c2
−0 ō c4

−1
2S
−1(c1

−1
2(c2

−1∇(c3)c4
−1

1)2)λ

⊗c4
−0 ōS−1(c1

−1
1(c2

−1∇(c3)c4
−1

1)1)λ
(3.5)
= c1

−0⊗c2
−0 ō c3

−1
3S
−1(c1

−1
2c2
−1

2c3
−1

2)λ

⊗c3
−0 ōS−1(c1

−1
1c2
−1

1c3
−1

1)λ

= c1
−0⊗c2

−0 ō c3
−1

3S
−1(c3

−1
2)S−1(c1

−1
2c2
−1

2)λ

⊗c3
−0 ōS−1(c1

−1
1c2
−1

1c3
−1

1)λ

= c1
−0⊗c2

−0 ōS−1(c1
−1

2c2
−1

2)λ

⊗c3
−0 ōS−1(c1

−1
1c2
−1

1c3
−1)λ

and, on the other side,

(ρN ⊗ I)ρN(c) = ρN(c1
−0)⊗ c2

−0 ōS−1(c1
−1c2

−1)λ

= c1
−0

1
−0 ⊗ c1

−0
2
−0 ōS−1(c1

−0
1
−1c1

−0
2
−1)λ⊗ c2

−0 ōS−1(c1
−1c2

−1)λ

= c1
−0−0 ⊗ c2

−0−0 ōS−1(c1
−0−1c2

−0−1)λ⊗ c3
−0 ōS−1(c1

−1c2
−1c3

−1)λ

= c1
−0−0 ⊗ c2

−0−0 ōS−1(c1
−0−1c2

−0−1)λ⊗ c3
−0 ōS−1(c1

−1c2
−1c3

−1)λ
(PCC4)

= c1
−0 ⊗ c3

−0−0 ōS−1(c1
−1

2c3
−0−1)λ⊗ c4

−0 ōS−1(c1
−1

1∇(c2)c3
−1c4

−1)λ
(3.5)
= c1

−0 ⊗ c2
−0−0 ōS−1(c1

−1
2c2
−0−1)λ⊗ c3

−0 ōS−1(c1
−1

1c2
−1c3

−1)λ
(PCC4)

= c1
−0 ⊗ c2

−0 ōS−1(c1
−1

2c2
−1

2)λ⊗ c4
−0 ōS−1(c1

−1
1c2
−1

1∇(c3)c4
−1)λ

(3.5)
= c1

−0 ⊗ c2
−0 ōS−1(c1

−1
2c2
−1

2)λ⊗ c3
−0 ōS−1(c1

−1
1c2
−1

1c3
−1)λ

Then ρ2 = (I ⊗∆)ρ. Moreover, for any c ∈ C, we have

(I ⊗ ε)ρN(c) = c1
−0ε(c2

−0)ε(S−1(c1
−1c2

−1))ε(λ)

= c1
−0ε(c2

−0)ε(c1
−1)ε(c2

−1)
(PCC1)

= c1ε(c2)

= c
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Therefore, N is a right C ōH-comodule.
Clearly N is a left C/J -comodule, so just remains to show the compatibility relation

between λN and ρN .

(λN ⊗ I)ρN(c) = λN(c1
−0)⊗ c2

−0 ōS−1(c1
−1c2

−1)λ

= c1
−0

1 ⊗ c1
−0

2 ⊗ c2
−0 ōS−1(c1

−1c2
−1)λ

(PCC2)
= c1

−0 ⊗ c2
−0 ⊗ c3

−0 ōS−1(c1
−1c2

−1c3
−1)λ

(4.6)
= c1 ⊗ c3

−0 ⊗ c4
−0 ōS−1(∇(c2)c3

−1c4
−1)λ

(3.5)
= c1 ⊗ c2

−0 ⊗ c3
−0 ōS−1(c2

−1c3
−1)λ

= c1 ⊗ ρN(c2)

= (I ⊗ ρN)λN(c)

Therefore N is a (C/J , C ōH)-bicomodule.

Now we are able to define the following linear map

µ : C oH −→M 2 C/JN

co h 7−→ c1 2 c2
−0T (c2

−1h). (4.14)

Note that µ(c ōh) = µ(co h). In fact,

µ(c ōh) = µ(c1 ō∇(c2)h)

= c1 2 c2
−0T (c2

−1∇(c3)h)
(3.5)
= c1 2 c2

−0T (c2
−1h)

= µ(co h).

Proposition 4.1.10. With the above notation, we have µ : C o H −→ M 2 C/JN is a
well-defined map in C ōHMC ōH .

Proof. First of all, to show that µ is well-defined we need to proof that Im(µ) ⊆M 2 C/JN .
In fact,

(ρM ⊗ I)µ(c ōh) = ρM(c1)⊗ c2
−0T (c2

−1h)

= c1 ⊗ c2 ⊗ c3
−0T (c3

−1h)
(3.5)
= c1 ⊗ c2 ⊗ c4

−0T (∇(c3)c4
−1h)

(4.6)
= c1 ⊗ c2

−0 ⊗ c3
−0T (c2

−1c3
−1h)

(PCC2)
= c1 ⊗ c2

−0
1 ⊗ c2

−0
2T (c2

−1h)

= c1 ⊗ λN(c2
−0T (c2

−1h))

= (I ⊗ λN)µ(c ōh).
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Therefore Im(µ) ⊆ M 2 C/JN and µ is well-defined. Now, we will proof that µ is
C ōH-bicolinear. Let c ōh ∈ C ōH, so

(I ⊗ ρN)µ(c ōh) = c1 2 ρN(c2
−0)T (c2

−1h)

= c1 2 c2
−0

1
−0 ⊗ c2

−0
2
−0 ōS−1(c2

−0
1
−1c2

−0
2
−1)λT (c2

−1h)
(PCC2)

= c1 2 c2
−0−0 ⊗ c3

−0−0 ōS−1(c2
−0−1c3

−0−1)λT (c2
−1c3

−1h)
(PCC4)

= c1 2 c2
−0 ⊗ c4

−0−0 ōS−1(c2
−1

2c4
−0−1)λT (c2

−1
1∇(c3)c4

−1h)
(3.5)
= c1 2 c2

−0 ⊗ c3
−0−0 ōS−1(c2

−1
2c3
−0−1)λT (c2

−1
1c3
−1h)

(PCC4)
= c1 2 c2

−0 ⊗ c3
−0 ōS−1(c2

−1
2c3
−1

2)λT (c2
−1

1c3
−1

1∇(c4)h)

= c1 2 c2
−0 ⊗ c3

−0 ōS−1(c2
−1

2c3
−1

2)λT (c2
−1

1c3
−1

1c4
−1h)ε(c4

−0)
(4.10)
= c1 2 c2

−0 ⊗ c3
−0 ōS−1(c2

−1
3c3
−1

3)c2
−1

2c3
−1

2c4
−1

2h2T (c2
−1

1c3
−1

1c4
−1

1h1)ε(c4
−0)

= c1 2 c2
−0⊗

⊗ c3
−0 ōS−1((c2

−1
2c3
−1

2)2)(c2
−1

2c3
−1

2)1c4
−1

2h2T (c2
−1

1c3
−1

1c4
−1

1h1)ε(c4
−0)

= c1 2 c2
−0 ⊗ c3

−0 ō c4
−1

2h2T (c2
−1c3

−1c4
−1

1h1)ε(c4
−0)

= c1 2 c2
−0 ⊗ c3

−0
1 ō∇(c3

−0
2)c4

−1
2h2T (c2

−1c3
−1c4

−1
1h1)ε(c4

−0)
(PCC2)

= c1 2 c2
−0 ⊗ c3

−0 ō∇(c4
−0)c5

−1
2h2T (c2

−1c3
−1c4

−1c5
−1

1h1)ε(c5
−0)

= c1 2 c2
−0 ⊗ c3

−0 ō c4
−0−1c5

−1
2h2T (c2

−1c3
−1c4

−1c5
−1

1h1)ε(c5
−0)ε(c4

−0−0)
(PCC3)

= c1 2 c2
−0 ⊗ c3

−0 ō c5
−1

2c6
−1

2h2T (c2
−1c3

−1∇(c4)c5
−1

1c6
−1

1h1)ε(c6
−0)ε(c5

−0)

= c1 2 c2
−0 ⊗ c3

−0 ō (c5
−1c6

−1)2h2T (c2
−1c3

−1∇(c4)(c5
−1c6

−1)1h1)ε(c6
−0)ε(c5

−0)
(PCC2)

= c1 2 c2
−0 ⊗ c3

−0 ō c5
−1

2h2T (c2
−1c3

−1∇(c4)c5
−1

1h1)ε(c5
−0

2)ε(c5
−0

1)

= c1 2 c2
−0 ⊗ c3

−0 ō c5
−1

2h2T (c2
−1c3

−1∇(c4)c5
−1

1h1)ε(c5
−0)

(PCC3)
= c1 2 c2

−0 ⊗ c3
−0 ō c4

−0−1h2T (c2
−1c3

−1c4
−1h1)ε(c4

−0−0)

= c1 2 c2
−0 ⊗ c3

−0 ō∇(c4
−0)h2T (c2

−1c3
−1c4

−1h1)
(PCC2)

= c1 2 c2
−0 ⊗ c3

−0
1 ō∇(c3

−0
2)h2T (c2

−1c3
−1h1)

= c1 2 c2
−0T (c2

−1c3
−1h1)⊗ c3

−0 ōh2

= µ(c1 ō c2
−1h1)⊗ c2

−0 ōh2

= (µ⊗ I)∆(c ōh)

Therefore µ is right C ōH-colinear. Moreover, to show that µ is left C ōH-colinear we
need to show that (I ⊗ µ)∆(c ōh) = (λM ⊗ I)µ(c ōh) for all c ōh ∈ C PxpH.

In fact,

(I ⊗ µ)∆(c ōh) = c1 ō c2
−1h1 ⊗ µ(c2

−0 ōh2)

= c1 ō c2
−1h1 ⊗ c2

−0
1 2 c2

−0
2
−0T (c2

−0
2
−1h2)
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and
(λM ⊗ I)µ(c ōh) = λN(c1) 2 c2

−0T (c2
−1h)

= c1 ō c2
−1 ⊗ c2

−0 2 c3
−0T (c3

−1h)
(4.9)
= c1 ō c2

−1(c3
−1h)1T ((c3

−1h)2)⊗ c2
−0 2 c3

−0

= c1 ō c2
−1c3

−1
1h1 ⊗ c2

−0 2 c3
−0T (c3

−1
2h2)

(3.5)
= c1 ō c2

−1∇(c3)c4
−1

1h1 ⊗ c2
−0 2 c4

−0T (c4
−1

2h2)
(PCC3)

= c1 ō c2
−1c3

−1h1 ⊗ c2
−0 2 c3

−0−0T (c3
−0−1h2)

(PCC2)
= c1 ō c2

−1h1 ⊗ c2
−0

1 2 c2
−0

2
−0T (c2

−0
2
−1h2).

Then µ is left C ōH-colinear and consequently a C ōH-bicolinear map.

In [20], Dăscălescu, Raianu, and Zhang have considered the quotient of a (global) H-
comodule coalgebra C by the coideal C J Ker(εH∗). In the partial case, as already said
before, the set C ↼ Ker(εH∗) is not a coideal of C, hence we can not considerate the
correspondent quotient coalgebra. Also, to construct a map from that quotient coalgebra,
those authors used the fact that the coideal C J Ker(εH∗) can be seen as the following set

{f(c−1)c−0 − f(1H)c | f ∈ H∗ and c ∈ C}.

In our case, we take the coideal J =
(
C∗

H∗
)⊥

and we need to define a map from C/J .

Inspired in the paper [20] we would like to describe J by its elements. For do this, we
observe that it follows from Theorem 4.1.7 that the vector space

X = {f(c−1)c−0 − f(∇(c2))c1| c ∈ C and f ∈ H∗}

is contained in J . In fact, also the reverse inclusion holds, as it is shown in the next result.

Proposition 4.1.11. With the above notations, we have that X = J .

Proof. From the proof of Theorem 4.1.7 it follows that X ⊆ J , so that we have J ⊥ ⊆ X⊥.
Now, let ψ ∈ X⊥. Thus, 0 = ψ(f(c−1)c−0 − f(∇(c2))c1), for all c ∈ C and f ∈ H∗.

Then
(f → ψ)(c) = f(c−1)ψ(c−0)

= ψ(f(c−1)c−0)

= ψ(f(∇(c2))c1)

= f(∇(c2))ψ(c1)

= ψ(c1)f(c2
−1)ε(c2

−0)

= [ψ ∗ (f → ε)](c).

Hence, ψ lies in C∗H
∗
. Therefore, J =

(
C∗H

∗)⊥ ⊆ X⊥⊥ = X.
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Now, with this representation of the coideal J , we are in position to define a map
from the quotient coalgebra C/J to the cotensor product N 2 C ōHM . We start defining
the following linear map

τ̃ : C −→N ⊗M
c 7−→ c1

−0 ⊗ c2
−0T (c1

−1c2
−1).

Remark 4.1.12. Note that J ⊆ ker τ̃ .

In fact, let c ∈ C and f ∈ H∗, so

τ̃(f(c−1)c−0) = c−0
1
−0 ⊗ c−0

2
−0T (c−0

1
−1c−0

2
−1)f(c−1)

(PCC2)
= c1

−0−0 ⊗ c2
−0−0T (c1

−0−1c2
−0−1)f(c1

−1c2
−1)

(PCC4)
= c1

−0 ⊗ c3
−0−0T (c1

−1
2c3
−0−1)f(c1

−1
1∇(c2)c3

−1)
(3.5)
= c1

−0 ⊗ c2
−0−0T (c1

−1
2c2
−0−1)f(c1

−1
1c2
−1)

(PCC4)
= c1

−0 ⊗ c2
−0T (c1

−1
2c2
−1

2)f(c1
−1

1c2
−1

1∇(c3))

= c1
−0 ⊗ c2

−0f((c1
−1c2

−1)1T ((c1
−1c2

−1)2)∇(c3))

= c1
−0 ⊗ c2

−0f(T (c1
−1c2

−1)∇(c3))

= τ̃ [c1f(∇(c2))].

Then τ̃(J ) = 0.
Therefore, we have the well-defined map from the quotient C/J to N ⊗M as follow

τ : C/J −→N 2 C ōHM

c̄ 7−→ c1
−0 2 c2

−0T (c1
−1c2

−1) = c−0
1 2 c−0

2T (c−1). (4.15)

Proposition 4.1.13. With the above notation, τ is well-defined C/J -bicolinear map.

Proof. First of all, we need to see that τ is well-defined. By the already shown we just need
to show that Im(τ) ⊆ N 2 C ōHM .

(I ⊗ λM)τ(c̄) = c1
−0 ⊗ λM(c2

−0)T (c1
−1c2

−1)

= c1
−0 ⊗ c2

−0
1 ō c2

−0
2
−1 ⊗ c2

−0
2
−0T (c1

−1c2
−1)

(PCC2)
= c1

−0 ⊗ c2
−0 ō c3

−0−1 ⊗ c3
−0−0T (c1

−1c2
−1c3

−1)
(PCC3)

= c1
−0 ⊗ c2

−0 ō c4
−1

2 ⊗ c4
−0T (c1

−1c2
−1∇(c3)c4

−1
1)

(3.5)
= c1

−0 ⊗ c2
−0 ō c3

−1
2 ⊗ c3

−0T (c1
−1c2

−1c3
−1

1)
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and

(ρN ⊗ I)τ(c̄) =

= ρN(c1
−0)⊗ c2

−0T (c1
−1c2

−1)

= c1
−0

1
−0 ⊗ c1

−0
2
−0 ōS−1(c1

−0
1
−1c1

−0
2
−1)λ⊗ c2

−0T (c1
−1c2

−1)
(PCC2)

= c1
−0−0 ⊗ c2

−0−0 ōS−1(c1
−0−1c2

−0−1)λ⊗ c3
−0T (c1

−1c2
−1c3

−1)
(PCC4)

= c1
−0 ⊗ c3

−0−0 ōS−1(c1
−1

2c3
−0−1)λ⊗ c4

−0T (c1
−1

1∇(c2)c3
−1c4

−1)
(3.5)
= c1

−0 ⊗ c2
−0−0 ōS−1(c1

−1
2c2
−0−1)λ⊗ c3

−0T (c1
−1

1c2
−1c3

−1)
(PCC4)

= c1
−0 ⊗ c2

−0 ōS−1(c1
−1

2c2
−1

2)λ⊗ c4
−0T (c1

−1
1c2
−1

1∇(c3)c4
−1)

(3.5)
= c1

−0 ⊗ c2
−0 ōS−1(c1

−1
2c2
−1

2)λT (c1
−1

1c2
−1

1c3
−1)⊗ c3

−0

(4.10)
= c1

−0 ⊗ c2
−0 ōS−1(c1

−1
2c2
−1

2)(c1
−1

1c2
−1

1c3
−1)2T ((c1

−1
1c2
−1

1c3
−1)1)⊗ c3

−0

= c1
−0 ⊗ c2

−0 ōS−1(c1
−1

3c2
−1

3)c1
−1

2c2
−1

2c3
−1

2T (c1
−1

1c2
−1

1c3
−1

1)⊗ c3
−0

= c1
−0 ⊗ c2

−0 ō c3
−1

2T (c1
−1c2

−1c3
−1

1)⊗ c3
−0

Now we have a well-defined map, then just remains to proof the bicollinearity.

(I ⊗ ρM)τ(c̄) = c1
−0 2 ρM(c2

−0)T (c1
−1c2

−1)

= c1
−0 2 c2

−0
1 ⊗ c2

−0
2T (c1

−1c2
−1)

(PCC2)
= c1

−0 2 c2
−0 ⊗ c3

−0T (c1
−1c2

−1c3
−1)

(4.6)
= c1

−0 2 c2
−0 ⊗ c4T (c1

−1c2
−1∇(c3))

(3.5)
= c1

−0 2 c2
−0 ⊗ c3T (c1

−1c2
−1)

(PCC2)
= c1

−0
1 2 c1

−0
2 ⊗ c2T (c1

−1)

= τ(c1)⊗ c2

= (τ ⊗ I)∆(c̄)

and
(λN ⊗ I)τ(c̄) = λN(c1

−0) 2 c2
−0T (c1

−1c2
−1)

= c1
−0

1 ⊗ c1
−0

2 2 c2
−0T (c1

−1c2
−1)

(PCC2)
= c1

−0 ⊗ c2
−0 2 c3

−0T (c1
−1c2

−1c3
−1)

(4.6)
= c1 ⊗ c3

−0 2 c4
−0T (∇(c2)c3

−1c4
−1)

(3.5)
= c1 ⊗ c2

−0 2 c3
−0T (c2

−1c3
−1)

(PCC2)
= c1 ⊗ c2

−0
1 2 c2

−0
2T (c2

−1)

= c1 ⊗ τ(c2)

= (I ⊗ τ)∆(c̄)

Therefore τ is C/J -bicolinear.
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Now we have all elements necessary to construct our Morita-Takeuchi context between
C/J and C ōH. Then consider the following Theorem.

Theorem 4.1.14. Let H be a finite dimensional Hopf algebra and C a left symmetric
partial H-comodule coalgebra. Then, with the above notations, (C/J , C ōH,M,N, µ, τ) is
a Morita-Takeuchi context.

Proof. By the construction already done, just remains to show that the following diagrams
are commutative:

M 2 C/JN 2C ōHM

�

M 2 C/JC/J
IM⊗τoo

C ōH 2C ōHM

µ⊗IM

OO

M

ρM

OO

λM

oo

N 2 C ōHM 2 C/JN

�

N 2 C ōHC ōH
IN⊗µoo

C/J 2 C/JN

τ⊗IN

OO

N

ρN

OO

λN
oo

In fact,

(I ⊗ τ)ρM(c) = c1 ⊗ τ(c2)

= c1 ⊗ c2
−0 2 c3

−0T (c2
−1c3

−1)

= c1 ⊗ c2
−0T (c2

−1c3
−1) 2 c3

−0

= µ(c1 ō c2
−1) 2 c2

−0

= (µ⊗ I)λM(c)

and

(I ⊗ µ)ρN(c) = c1
−0 ⊗ µ(c2

−0 ōS−1(c1
−1c2

−1)λ)

= c1
−0 ⊗ c2

−0
1 2 c2

−0
2
−0T [c2

−0
2
−1S−1(c1

−1c2
−1)λ]

(PCC2)
= c1

−0 ⊗ c2
−0 2 c3

−0−0T [c3
−0−1S−1(c1

−1c2
−1c3

−1)λ]
(PCC3)

= c1
−0 ⊗ c2

−0 2 c4
−0T [c4

−1
2S
−1(c1

−1c2
−1∇(c3)c4

−1
1)λ]

(3.5)
= c1

−0 ⊗ c2
−0 2 c3

−0T [c3
−1

2S
−1(c1

−1c2
−1c3

−1
1)λ]

= c1
−0 ⊗ c2

−0 2 c3
−0T [c3

−1
2S
−1(c3

−1
1)S−1(c1

−1c2
−1)λ]

(PCC1)
= c1

−0 ⊗ c2
−0 2 c3T [S−1(c1

−1c2
−1)λ]

(4.11)
= c1

−0 ⊗ c2
−0 2 c3T (c1

−1c2
−1)

= τ(c1) 2 c2

= (τ ⊗ I)λM(c).

Then (C/J , C ōH,M,N, µ, τ) is a Morita-Takeuchi context between C/J and C ōH.
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4.2 CoGalois Coextensions

4.2.1 Galois Coextension for Partial Modules Coalgebras

By Proposition 2.1.13, given a right partial H-module coalgebra C we have that C∗ is
a left partial H-module algebra, so we can considerate the subalgebra of invariants

C∗H = {α ∈ C∗ | h→ α = (h→ εC) ∗ α, ∀h ∈ H},

therefore we have that J =
(
C∗H

)⊥
is a coideal of C. Then we define the invariant

coalgebra as the quotient of C by this coideal, i.e.,

CH = C/J .

In this case we say that C/CH is an H-coextension. The following result follows directly
from Proposition 1.1.2.

Proposition 4.2.1. Let C be a partial H-module coalgebra. Then C/CH is an H-coexten-
sion if and only if C∗H ⊆ C∗ is an H-extension

We will now construct the definition of Hopf-Galois coextension for partial H-module
coalgebras, which will be simply called of coGalois.

Let C be a right partial H-module coalgebra, and define the following linear map

β̃ : C ⊗H −→ C ⊗ C
c⊗ h 7−→ c1 ⊗ (c2 ↼ h).

One can show, in a similar way as it was proved in Propositions 4.1.8 and 4.1.9, that
C is a C/J -bicomodule via λ(c) = c1 ⊗ c2 and ρ(c) = c1 ⊗ c2. Thus, we have the following.

Proposition 4.2.2. With the above notations, the image of β̃ is contained in C 2 C/JC.

Proof. In fact, note that for all ψ ∈ C∗H , α ∈ C∗, c ∈ C and h ∈ H, we have

ψ(c1 ↼ h1α(c2 ↼ h2)) = ψ(c1 ↼ h1)α(c2 ↼ h2)

= [(h1 → ψ) ∗ (h2 → α)](c)

= [ψ ∗ (h1 → εC) ∗ (h2 → α)](c) since ψ ∈ C∗H

= [ψ ∗ (h→ α)](c)

= ψ(c1)α(c2 ↼ h)

= ψ(c1α(c2 ↼ h)).

Since ψ is any element in C∗H , then c1 ↼ h1α(c2 ↼ h2)− c1α(c2 ↼ h) lies in
(
C∗H

)⊥
.
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It means that c1 ↼ h1 α(c2 ↼ h2) = c1 α(c2 ↼ h) in C/J . Since it holds for any α ∈ c∗,
then

c1 ↼ h1 ⊗ (c2 ↼ h2) = c1 ⊗ (c2 ↼ h) (4.16)

in C/J ⊗ C. Then,

(I ⊗ λ)β̃(c) = c1 ⊗ λ(c2 ↼ h)

= c1 ⊗ c2 ↼ h1 ⊗ (c3 ↼ h2)
(4.16)
= c1 ⊗ c2 ⊗ (c3 ↼ h)

= ρ(c1)⊗ (c2 ↼ h)

= (ρ⊗ I)β̃(c)

and it means that the image of β̃ is contained in C 2 C/JC.

Now consider the subspace C ⊗̄H of C ⊗ H spanned by the elements of the form
{c1 ⊗ h1εC(c2 ↼ h2) | c ∈ C and h ∈ H}. Denoting an element of C ⊗̄H by c ⊗̄h =
c1 ⊗ h1εC(c2 ↼ h2), consider β as the restriction of β̃ to C ⊗̄H. Then

β(c ⊗̄h) = β̃(c1 ⊗ h1)εC(c2 ↼ h2)

= c1 ⊗ (c2 ↼ h1)εC(c3 ↼ h2)
(PMC2)

= c1 ⊗ (c2 ↼ h),

i.e., we have a well-defined linear map

β : C ⊗̄H −→ C 2 C/JC

c ⊗̄h 7−→ c1 2 (c2 ↼ h).

Definition 4.2.3. Let C be a right partial H-module coalgebra. Then the coextension
C/CH is said an H-Galois coextension (or H-coGalois) if β is bijective.

Remark 4.2.4. If C is a (global) module coalgebra, then C ⊗̄H = C ⊗ H and J =(
C∗H

)⊥
= C J ker ε. Hence, the Definition 4.2.3 recover the classical definition of H-

coextension (cf. [20, p. 403]).

4.2.2 Galois Coextension for Partial Comodules Coalgebras

Given a left partial H-comodule coalgebra C we have a coideal J defined as in the
equation (4.5), and then we define the coalgebra of coinvariants as the coalgebra quotient,
i.e.,

CcoH = C/J .
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In the above situation, we have that C/CcoH is an H∗-coextension. Since C is a left partial
H-comodule coalgebra, hence C is a right partial H∗-module coalgebra, then we have that

CcoH = CH∗ .

Proposition 4.2.5. In the above situation, the following are equivalents:

1. C/CcoH is an H∗-coextension;

2. C∗
H∗ ⊆ C∗ is an H-extension.

Proof. It follows directly from Proposition 4.2.1.

Let C be a left partialH-comodule coalgebra, then we recall that C ⊗̄H∗ is the subspace
of C ⊗H∗ spanned by the set

{c1 ⊗ f1εC(c2 ↼ f2) | c ∈ C and f ∈ H∗}.

Notice that, c1 ⊗ f1εC(c2 ↼ f2) = c1 ⊗ f1f2(c2
−1)εC(c2

−0) = c1 ⊗ f1f2(∇(c2)). Thus, a
typical element of C ⊗̄H∗ can be writen in the following way

c ⊗̄ f = c1 ⊗∇(c2) ⇀ f.

Hence, we have the canonical map

β : C ⊗̄H∗ −→ C 2 C/JC

c ⊗̄ f 7−→ c1 2 c2 ↼ (∇(c3) ⇀ f) = c1 2 f(c2
−1)c2

−0,

where the equality is true because

c1 2 c2 ↼ (∇(c3) ⇀ f) = c1 2 c2 ↼ (f1 f2(∇(c3)))

= c1 2 f1(c2
−1)f2(∇(c3))c2

−0

= c1 2 f(c2
−1∇(c3))c2

−0

(3.5)
= c1 2 f(c2

−1)c2
−0.

Therefore, we have that the H∗-coextension C/CH∗ is Galois (or H∗-coGalois) if the
above defined map β is bijective.

Now we will relate the Morita-Takeuchi context provide by Theorem 4.1.14 and the
H∗-coextension C/CcoH be Galois. But, for this, we need to make some remarks.

Remember from [30] that for any finite dimensional Hopf algebra H and for a left
integral T 6= 0 in H∗, we have the isomorphism

γ : H −→H∗

h 7−→ h ⇀ T = T1T2(h).
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Since C is a left partial H-comodule coalgebra then we have the partial smash coproduct
C ōH. Thus, restricting I ⊗ γ to C ōH, we have

(I ⊗ γ)(c ōh) = (I ⊗ γ)(c1 ⊗∇(c2)h)

= c1 ⊗ γ(∇(c2)h)

= c1 ⊗∇(c2)h ⇀ T

= c1 ⊗∇(c2) ⇀ (h ⇀ T )

= c1 ⊗∇(c2) ⇀ γ(h)

= c ⊗̄ γ(h).

Proposition 4.2.6. With the above notations, we have that C ōH ' C ⊗̄H∗ as vector
spaces.

Proof. Define Γ as the restriction of I ⊗ γ to C ōH, i.e.

Γ : C ōH −→ C ⊗̄H∗

c ōh 7−→ c ⊗̄ γ(h).

Since Γ is the restriction of I ⊗ γ and γ is injective, hence Γ is injective too. Moreover,
by the definition of Γ and by the surjectivity of γ, it follows that Γ is surjective. Therefore
Γ is bijective, as desired.

Theorem 4.2.7. Let C be a left symmetric partial H-comodule coalgebra. The following
statements are equivalent:

(1) C is H∗-coGalois;

(2) β is injective;

(3) µ is injective;

(4) µ is bijective.

Proof. The implication (1) =⇒ (2) is a tautology.
In [31], Takeuchi has shown that µ injective implies µ bijective. Then it is clear that

(3) ⇐⇒ (4).
Now consider the following commutative diagram

C 2 C/JC

�

C ōH

µ

??

Γ // C ⊗̄H∗

β

__
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In fact, let c ōh ∈ C ōH. Then we have

β[Γ(c ōh)] = β[c ⊗̄ γ(h)]

= β[c ⊗̄ (h ⇀ T )]

= c1 2 (h ⇀ T )(c2
−1)c2

−0

= c1 2T1(c2
−1)T2(h)c2

−0

= c1 2T (c2
−1h)c2

−0

= µ(c ōh).

Since Γ is an isomorphism, it follows that (2) ⇐⇒ (3) and (4) =⇒ (1).

Now we will present some relations between this notion of Galois coextension, for partial
coaction on coalgebras, and Galois extension, for partial coaction on algebras.

First, we need to remember the definition of Galois extension for partial coaction on
algebras (cf. [1, 11]). Given K an Hopf algebra and A a right partial K-comodule algebra
via ρ : a 7→ a+0⊗ a+1, consider the subspace of A⊗K given by the right multiplication for
ρ(1A), i.e.

A⊗K = (A⊗K)ρ(1A),

where a typical element is of form a⊗ k = a1+0⊗k1+1. Thus, we can consider the canonical
map

can: A⊗AcoK A −→ A⊗K
a⊗ b 7−→ a b+0⊗ b+1

and AcoK ⊆ A is said a K-Galois extension when the canonical maps is a bijection.
Since H is a finite dimensional Hopf algebra and C is a left partial H-comodule coalge-

bra, then, by Theorem 3.1.18, C∗ is a right partial H-comodule algebra and the coactions
satisfy the equation (3.10), that is,

α+0(c)α+1 = α(c−0)c−1

for c ∈ C and α ∈ C∗. In this context, we have the subalgebra of coinvariant, that is,

C∗coH = {ψ ∈ C∗ | ρ(ψ) = (ψ ⊗ 1H)ρ(εC) = ψ ∗ ε+0 ⊗ ε+1}.

We will show that H∗-Galois implies H∗-coGalois, but first we will need to build some
morphisms connecting C∗⊗C∗H∗C∗ and (C 2 C/JC)∗ and connecting C∗⊗H and (C ⊗̄H∗)∗.

First we define the map

Φ̃ : C∗ × C∗ −→ (C 2 C/JC)∗

(ϕ, α) 7−→ Φ̃(ϕ, α)(c2 d) = ϕ(c)α(d).
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and notice that we have, by Theorem 1.1.2, that given ψ ∈ C∗H∗ there exists ψ̄ ∈ (C/J )∗

such that ψ = ψ̄ ◦ πJ . Then, by the above noted, we have

Φ̃(ϕ, ψ ∗ α)(c2 d) = ϕ(c)ψ(d1)α(d2)

= ϕ(c)ψ̄[πJ (d1)]α(d2)

= ϕ(c)ψ̄(d1)α(d2)

= ϕ(c1)ψ̄(c2)α(d) since 2 C/J

= ϕ(c1)ψ(c2)α(d)

= Φ̃(ϕ ∗ ψ, α)(c2 d)

and, consequently, Φ̃ is C∗H
∗
-balanced. Therefore, we have the following well-defined linear

map

Φ: C∗ ⊗C∗H∗ C∗ −→ (C 2 C/JC)∗

ϕ⊗ α 7−→ Φ(ϕ⊗ α)(c2 d) = ϕ(c)α(d).

Moreover, we also define

Ψ̃ : C∗ ⊗H −→ (C ⊗̄H∗)∗

α⊗ h 7−→ Ψ(α⊗ h)(c ⊗̄ f) = α(c1)f(h∇(c2))

which is clearly well-defined.
Now observe that, taking α⊗h ∈ C∗⊗H, we have

Ψ̃(α⊗h)(c ⊗̄ f) = Ψ̃(α ∗ εC+0 ⊗ h εC+1)(c ⊗̄ f)

= [α ∗ εC+0](c1)f(h εC
+1∇(c2))

= α(c1)εC
+0(c2)f(h εC

+1∇(c3))

= α(c1)f(h εC
+0(c2)εC

+1∇(c3))
(3.10)
= α(c1)f(h εC(c2

−0)c2
−1∇(c3))

= α(c1)f(h∇(c2)∇(c3))
(3.6)
= α(c1)f(h∇(c2))

= Ψ̃(α⊗ h)(c ⊗̄ f).

Then we can consider the following well-defined linear map

Ψ: C∗⊗H −→ (C ⊗̄H∗)∗

α⊗h 7−→ Ψ(α⊗h)(c ⊗̄ f) = α(c1)f(h∇(c2)).
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To proof Theorem 4.2.8 below, we need to show that Ψ is surjective. Given ξ ∈
(C ⊗̄H∗)∗ and {hi}ni=1 a basis for H, we define for each i

ξi : C −→ k
c 7−→ ξ(c ⊗̄h∗i )

and so

Ψ(
n∑
i=1

ξi⊗hi)(c ⊗̄ f) =
n∑
i=1

ξi(c1)f(hi∇(c2))

=
n∑
i=1

ξ(c1 ⊗̄h∗i )f1(hi)f2(∇(c2))

= ξ(c1 ⊗̄
n∑
i=1

h∗i f1(hi))f2(∇(c2))

= ξ(c1 ⊗̄ f1)f2(∇(c2))

= ξ(c1 ⊗̄ f1f2(∇(c2)))

= ξ(c1 ⊗̄∇(c2) ⇀ f)

= ξ(c ⊗̄ f),

and, therefore, Ψ is surjective, as desired. Moreover, one can show that Ψ is injective.
With the above considerations, we have the following theorem.

Theorem 4.2.8. Let H be a finite dimensional Hopf algebra and C a left partial H-
comodule coalgebra. If C∗ is H∗-Galois, then C is H∗-coGalois.

Proof. We have the canonical map

can: C∗ ⊗C∗H∗ C∗ −→ C∗⊗H
ϕ⊗ α 7−→ ϕ ∗ α+0 ⊗ α+1

that is bijective by hypothesis. And, by the already discussed, we have the following
diagram

C∗ ⊗C∗H∗ C∗
can //

Φ

��

C∗⊗H

Ψ

��
(C 2 C/JC)∗

β∗ // (C ⊗̄H∗)∗

(4.17)

75



which is commutative. In fact,

[β∗Φ(ϕ⊗ α)](c ⊗̄ f) = Φ(ϕ⊗ α)(β(c ⊗̄ f))

= Φ(ϕ⊗ α)(c1 2 f(c2
−1)c2

−0))

= ϕ(c1)α(f(c2
−1)c2

−0)

= ϕ(c1)f(c2
−1α(c2

−0))
(3.5)
= ϕ(c1)f(c2

−1∇(c3)α(c2
−0))

= ϕ(c1)f(c2
−1α(c2

−0)∇(c3))
(3.10)
= ϕ(c1)f(α+1α+0(c2)∇(c3))

= ϕ(c1)α+0(c2)f(α+1∇(c3))

= [ϕ ∗ α+0](c1)f(α+1∇(c2))

= Ψ(ϕ ∗ α+0⊗α+1)(c ⊗̄ f)

= [Ψ(can(ϕ⊗ α))](c ⊗̄ f).

Since can and Ψ are surjective, it follows that β∗ is surjective, and so, by Proposi-
tion 1.1.1, β is injective. Therefore, from Theorem 4.2.7, C is H∗-coGalois.

Remark 4.2.9. In general, we do not know if the converse of the Theorem 4.2.8 is true.
In the global case, Dăscălescu, Raianu, and Zhang find several sufficient conditions for the
converse be true (cf. [20, Proposition 1.5]).

4.3 Revisiting the Classical Morita Context

The aim in this section is to relate the Morita-Takeuchi context presented in Theo-
rem 4.1.14 with the Morita context for partial module algebras presented in [1] by Alves
and Batista. To develop this relation we need first to show that the dual of the partial
smash coproduct is isomorphic, as algebras, to the partial smash product, i.e.,

(C ōH)∗ ' C∗#H∗,

where C is a left partial H-comodule coalgebra.

Proposition 4.3.1. Let H be a finite dimensional Hopf algebra and C a partial H-
comodule coalgebra. Then C∗#H∗ ' (C ōH)∗ as algebras.

Proof. Consider the linear map

θ̃ : C∗ ⊗H∗ −→ (C ōH)∗

ϕ⊗ f 7−→ θ(ϕ⊗ f)(c ōh) = ϕ(c1)f(∇(c2)h),
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and, since

θ̃(ϕ#f)(c ōh) = θ̃(ϕ ∗ (f1 → εC)⊗ f2)(c ōh)

= [ϕ ∗ (f1 → εC)](c1)f2(∇(c2)h)

= ϕ(c1)εC(c2
−0)f1(c2

−1)f2(∇(c3)h)

= ϕ(c1)εC(c2
−0)f(c2

−1∇(c3)h)
(3.5)
= ϕ(c1)εC(c2

−0)f(c2
−1h)

= ϕ(c1)f(c2
−1εC(c2

−0)h)

= ϕ(c1)f(∇(c2)h)

= θ̃(ϕ#f)(c ōh),

then we can restrict θ̃ and obtain the well-defined linear map

θ : C∗#H∗ −→ (C ōH)∗

ϕ#f 7−→ θ(ϕ#f)(c ōh) = ϕ(c1)f(∇(c2)h).

We can also consider
σ : (C ōH)∗ −→ C∗#H∗

ξ 7−→
n∑
i=1

ξi#h
∗
i ,

where {hi}ni=1 is a basis for H and, for each i, we have ξi : C → k defined by ξi(c) =
ξ(c ōhi). Now we have two well-defined linear maps that are inverses one each other.

In fact, if ξ ∈ (C ōH)∗, then we have that

θ(σ(ξ))(c ōh) = θ(
n∑
i=1

ξi#h
∗
i )(c ōh)

=
n∑
i=1

ξi(c1)h∗i (∇(c2)h)

=
n∑
i=1

ξ(c1 ōhi)h
∗
i (∇(c2)h)

= ξ(c1 ō
n∑
i=1

hih
∗
i (∇(c2)h))

= ξ(c1 ō∇(c2)h)

= ξ(c ōh)

and, also

σ(θ(ϕ#f)) =
n∑
i=1

[θ(ϕ#f)]i#h
∗
i

=
n∑
i=1

[θ(ϕ#f)]i ∗ (h∗i 1 → εC)⊗ h∗i 2.

Considering ı : C∗⊗H∗ → (C⊗H)∗ the canonical embedding, then we have the following
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ι[σ(θ(ϕ#f))](c⊗ k) = ι

(
n∑
i=1

[θ(ϕ#f)]i ∗ (h∗i 1 → εC)⊗ h∗i 2

)
(c⊗ k)

=
n∑
i=1

[[θ(ϕ#f)]i ∗ (h∗i 1 → εC)](c)h∗i 2(k)

=
n∑
i=1

[θ(ϕ#f)]i(c1)(h∗i 1 → εC)(c2)h∗i 2(k)

=
n∑
i=1

θ(ϕ#f)(c1 ōhi)h
∗
i 1(c2

−1)εC(c2
−0)h∗i 2(k)

=
n∑
i=1

θ(ϕ#f)(c1 ōhi)εC(c2
−0)h∗i (c2

−1k)

= θ(ϕ#f)(c1 ō
n∑
i=1

hih
∗
i (c2

−1k))εC(c2
−0)

= θ(ϕ#f)(c1 ō c2
−1k)εC(c2

−0)

= θ(ϕ#f)(c1 ō εC(c2
−0)c2

−1k)

= θ(ϕ#f)(c1 ō∇(c2)k)

= ϕ(c1)f(∇(c2)∇(c3)k)
(3.6)
= ϕ(c1)f(∇(c2)k)

= ϕ(c1)f1(∇(c2))f2(k)

= ϕ(c1)εC(c2
−0)f1(c2

−1)f2(k)

= ϕ(c1)(f1 → εC)(c2)f2(k)

= [ϕ ∗ (f1 → εC)](c)f2(k)

= ι(ϕ#f)(c⊗ k),

and, therefore, σ(θ(ϕ#f)) = ϕ#f . So just remains to show that θ is an algebra morphism.
Let ϕ#f and α#g be elements in C∗#H∗ and c ōh ∈ C ōH, respectively. Thus,

θ((ϕ#f)(α#g))(c ōh) = θ(ϕ ∗ (f1 → α)#f2 ∗ g)(c ōh)

= [ϕ ∗ (f1 → α)](c1)(f2 ∗ g)(∇(c2)h)

= ϕ(c1)(f1 → α)(c2)(f2 ∗ g)(∇(c3)h)

= ϕ(c1)(f1 → α)(c2)(f2 ∗ g)(c3
−1h)εC(c3

−0)

= ϕ(c1)α(c2
−0)f1(c2

−1)f2(c3
−1

1h1)g(c3
−1

2h2)εC(c3
−0)

= ϕ(c1)α(c2
−0)f(c2

−1c3
−1

1h1)g(c3
−1

2h2)εC(c3
−0)

(3.5)
= ϕ(c1)α(c2

−0)f(c2
−1∇(c3)c4

−1
1h1)g(c4

−1
2h2)εC(c4

−0)
(PCC3)

= ϕ(c1)α(c2
−0)f(c2

−1c3
−1h1)g(c3

−0−1h2)εC(c3
−0−0)

= ϕ(c1)α(c2
−0)f(c2

−1c3
−1h1)g(∇(c3

−0)h2)
(PCC2)

= ϕ(c1)α(c2
−0

1)f(c2
−1h1)g(∇(c2

−0
2)h2)

(3.5)
= ϕ(c1)α(c3

−0
1)f(∇(c2)c3

−1h1)g(∇(c3
−0

2)h2)
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by the other side, we have

[θ(ϕ#f) ∗ θ(α#g)](c ōh) = θ(ϕ#f)(c1 ō c2
−1h1)θ(α#g)(c2

−0 ōh2)

= [ϕ(c1)f(∇(c2)c3
−1h1)][α(c3

−0
1)g(∇(c3

−0
2)h2)]

= ϕ(c1)α(c3
−0

1)f(∇(c2)c3
−1h1)g(∇(c3

−0
2)h2)

and
θ(εC#εH)(c ōh) = εC(c1)εH(∇(c2)h)

= εC(c1)εH(c2
−1εC(c2

−0)h)

= εC(c1)εH(c2
−1)εC(c2

−0)εH(h)

= εC(c)εH(h)

= εC ōH(c ōh)

so that θ is an algebra isomorphism, as desired.

Let C be a left partial H-comodule coalgebra and remember some considerations that
we had made before. We have the algebra isomorphism

θ : C∗#H∗ −→ (C ōH)∗

ϕ#f 7−→ θ(ϕ#f)(c ōh) = ϕ(c1)f(∇(c2)h)

and we have the Morita-Takeuchi context (cf. Theorem 4.1.14)

(C/J , C ōH,C,C, µ, τ)

with structure maps given by

ρ(c) = c1 ⊗ c2

λ(c) = c1 ⊗ c2

ρ ō (c) = c1
−0 ⊗ c2

−0 ōS−1(c1
−1c2

−1)λ

λ ō (c) = c1 ō c2
−1 ⊗ c2

−0

µ(c ōh) = c1 2 c2
−0T (c2

−1h)

τ(c̄) = c1
−0 2 c2

−0T (c1
−1c2

−1).

From linear algebra theory, given two vector spaces V,W , we have the natural embed-
ding

ı
V,W

: V ∗ ⊗W ∗ −→ (V ⊗W )∗,

and, given any subspace X ≤ V , we have the natural projection

πX : V −→ V/X

v 7−→ v
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such that X⊥ ' (V/X)∗, via π∗X .
Now we will construct the Morita context between C∗H

∗
and C∗#H∗ induced by the

Morita-Takeuchi context constructed before.
We know that

I = C∗H
∗

= π∗J ((C/J )∗)

so that we can define the following linear maps .I : I ⊗ C∗ −→ C∗, /I : C∗ ⊗ I −→ C∗,
.

#
: C∗#H∗ ⊗ C∗ −→ C∗ and /

#
: C∗ ⊗ C∗#H∗ −→ C∗, respectively by

.I = λ∗ ◦ ı ◦ (π∗−1
J ⊗ I)

/I = ρ∗ ◦ ı ◦ (I ⊗ π∗−1
J )

.
#

= λ∗ō ◦ ı ◦ (θ ⊗ I)

/
#

= ρ∗ō ◦ ı ◦ (I ⊗ θ).

Proposition 4.3.2. With the above notations, the maps above defined are the (left and
right) actions of C∗H

∗
and C∗#H∗ on C∗.

Proof. Let ψ ∈ I, ϕ ∈ C∗, f ∈ H∗ and c ∈ C. Thus, we have

(ϕ /I ψ)(c) = λ∗{ı[(π∗−1
J ⊗ I)(ϕ⊗ ψ)]}(c)

= {ı[(π∗−1
J ⊗ I)(ϕ⊗ ψ)]}λ(c)

= {ı[(π∗−1
J ⊗ I)(ϕ⊗ ψ)]}(c1 ⊗ c2)

= π∗−1
J (ϕ)(c1)ψ(c2)

= π∗−1
J (ϕ)(πJ (c1))ψ(c2)

= ϕ[π∗Jπ
∗−1
J (c1)]ψ(c2)

= ϕ(c1)ψ(c2)

= [ϕ ∗ ψ](c)

and
(ψ .I ϕ)(c) = ρ∗{ı[(I ⊗ π∗−1

J )(ψ ⊗ ϕ)]}(c)
= {ı[(I ⊗ π∗−1

J )(ψ ⊗ ϕ)]}ρ(c)

= {ı[(I ⊗ π∗−1
J )(ψ ⊗ ϕ)]}(c1 ⊗ c2)

= ψ(c1)π∗−1
J (ϕ)(πJ (c2))

= ψ(c1)ϕ[π∗Jπ
∗−1
J (c2)]

= ψ(c1)ϕ(c2)

= (ψ ∗ ϕ)(c)

and
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[(ϕ#f).
#
α](c) = λ∗ō {ı[(θ ⊗ I)(ϕ#f ⊗ α)]}(c)

= ı(θ(ϕ#f)⊗ α)λ ō (c)

= ı(θ(ϕ#f)⊗ α)(c1 ō c2
−1 ⊗ c2

−0)

= θ(ϕ#f)(c1 ō c2
−1)α(c2

−0)

= ϕ(c1)f(∇(c2)c3
−1)α(c3

−0)
(3.5)
= ϕ(c1)f(c2

−1)α(c2
−0)

(3.5)
= [ϕ ∗ (f → α)](c)

and

[α/
#

(ϕ#f)](c) = ρ∗ō {ı[(I ⊗ θ)(α⊗ ϕ#f)]}(c)
= ı[(α⊗ θ)(ϕ#f)]ρ ō (c)

= ı[α⊗ θ(ϕ#f)](c1
−0 ⊗ c2

−0 ōS−1(c1
−1c2

−1)λ)

= α(c1
−0)θ(ϕ#f)(c2

−0 ōS−1(c1
−1c2

−1)λ)

= α(c1
−0)ϕ(c2

−0
1)f [∇(c2

−0
2)S−1(c1

−1c2
−1)λ]

(PCC2)
= α(c1

−0)ϕ(c2
−0)f(∇(c3

−0)S−1(c1
−1c2

−1c3
−1)λ)

= α(c1
−0)ϕ(c2

−0)f(c3
−0−1S−1(c1

−1c2
−1c3

−1)λ)ε(c3
−0−0)

(PCC3)
= α(c1

−0)ϕ(c2
−0)f(c4

−1
2S
−1(c1

−1c2
−1∇(c3)c4

−1
1)λ)ε(c4

−0)
(3.5)
= α(c1

−0)ϕ(c2
−0)f(c3

−1
2S
−1(c1

−1c2
−1c3

−1
1)λ)ε(c3

−0)

= α(c1
−0)ϕ(c2

−0)f(c3
−1

2S
−1(c3

−1
1)S−1(c1

−1c2
−1)λ)ε(c3

−0)

= α(c1
−0)ϕ(c2

−0)f(S−1(c1
−1c2

−1)λ)ε(c3)

= α(c1
−0)ϕ(c2

−0)f(S−1(c1
−1c2

−1)λ)
(PCC2)

= α(c−0
1)ϕ(c−0

2)f(S−1(c−1)λ)

= α(c−0
1)ϕ(c−0

2)f1(S−1(c−1))f2(λ)

= α(c−0
1)ϕ(c−0

2)S−1∗(f1)(c−1)f2(λ)

= (α ∗ ϕ)(c−0)S−1
H∗

(f1)(c−1)f2(λ)

= [λ̂(f2) S−1
H∗

(f1)→ (α ∗ ϕ)](c).

Thus, we recover the standard actions (cf. [1, Lemma 2]).

To construct the bimodule structures necessaries to construct the desired Morita con-
text, we need first to define some maps, as follow.

We start defining the following map

Φ̃ō : C∗ × C∗ −→ (C 2 C ōHC)∗

(ϕ, α) 7−→ Φ ō (ϕ, α)(c2 d) = ϕ(c)α(d)
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that is C∗#H∗-balanced.
In fact, let ϕ, α ∈ C∗, ϕ′#f ∈ C∗#H∗ and c2 d ∈ C 2C. Thus,

Φ̃ ō (ϕ, (ϕ′#f).
#
α)(c2 d) = ϕ(c)((ϕ′#f).

#
α)(d)

= ϕ(c)([λ∗ō ◦ ı ◦ (θ ⊗ I)]((ϕ′#f)⊗ α))(c)

= ϕ(c)[ı ◦ (θ ⊗ I)]((ϕ′#f)⊗ α)](d1 ō d2
−1 ⊗ d2

−0)

= ϕ(c)ı(θ(ϕ′#f)⊗ α)(d1 ō d2
−1 ⊗ d2

−0)

and

Φ̃ ō (ϕ/
#

(ϕ′#f), α)(c2 d) = (ϕ/
#

(ϕ′#f))(c)α(d)

= [ρ ō ◦ ı ◦ (I ⊗ θ)(ϕ⊗ ϕ′#f)](c)α(d)

= [ı(ϕ⊗ θ(ϕ′#f))](ρ ō (c))α(d)

= [ı(ϕ⊗ θ(ϕ′#f))](c1
−0 ⊗ c2

−0 ōS−1(c1
−1c2

−1)λ)α(d)

= ϕ(c1
−0)θ(ϕ′#f)(c2

−0 ōS−1(c1
−1c2

−1)λ)α(d)

= ϕ(c1
−0)ı(θ(ϕ′#f)⊗ α)(c2

−0 ōS−1(c1
−1c2

−1)λ⊗ d)

= ϕ(c)ı(θ(ϕ′#f)⊗ α)(d1 ō d2
−1 ⊗ d2

−0),

where the last equality holds since c2 d lies in C 2 C ōHC. Hence,

c⊗ (d1 ō d2
−1)⊗ d2

−0 = c1
−0 ⊗ (c2

−0 ōS−1(c1
−1c2

−1)λ)⊗ d.

Therefore, we have the following well-defined linear map

Φ ō : C∗ ⊗C∗#H∗ C∗ −→ (C 2 C ōHC)∗

ϕ⊗ α 7−→ Φ ō (ϕ⊗ α)(c2 d) = ϕ(c)α(d).

Now we define the following map

Φ̃ : C∗ × C∗ −→ (C 2 C/JC)∗

(ϕ, α) 7−→ Φ̃(ϕ, α)(c2 d) = ϕ(c)α(d).

that is I-balanced. In fact, let ϕ, α ∈ C∗, ψ ∈ I and c2 d. Thus,

Φ̃(ϕ, ψ .I α)(c2 d) = ϕ(c)(ψ .I α)(d)

= ϕ(c) λ∗[ı(π∗−1
J ⊗ I)](ψ ⊗ α)(d)

= ϕ(c) λ∗[ı(π∗−1
J (ψ)⊗ α)](d)

= ϕ(c)[ı(π∗−1
J (ψ)⊗ α)](λ(d))

= ϕ(c)π∗−1
J (ψ)(d1)α(d2)
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and
Φ̃(ϕ /I ψ, α)(c2 d) = (ϕ /I ψ)(c)α(d)

= ρ∗[ı(ϕ⊗ π∗−1
J (ψ))](c)α(d)

= [ı(ϕ⊗ π∗−1
J (ψ))](ρ(c))α(d)

= ϕ(c1)π∗−1
J (ψ)(c2)α(d)

= ϕ(c)π∗−1
J (ψ)(d1)α(d2),

where the last equation since the cotensor product is over C/J . Therefore, we have the
following well-defined linear map

Φ: C∗ ⊗I C∗ −→ (C 2 C/JC)∗

ϕ⊗ α 7−→ Φ(ϕ⊗ α)(c2 d) = ϕ(c)α(d).

Finally, we consider the maps [, ] : C∗⊗I C∗ −→ C∗#H∗ and (, ) : C∗⊗
C∗#H∗ C

∗ −→ I,

respectively given by

[, ] = θ−1 ◦ µ∗ ◦ Φ

(, ) = π∗J ◦ τ ∗ ◦ Φ ō .

With this constructions above made, we are in position to present the following inte-
resting result.

Theorem 4.3.3. Let H be a finite dimensional Hopf algebra and C a left partial H-
comodule coalgebra. Then the Morita-Takeuchi context in Theorem 4.1.14 recovers the
classical Morita context between C∗H

∗
and C∗#H∗ (cf. [1, Theorem 1]).

Proof. By our previous discussion, we just need to show that [, ] and (, ) are the same maps
that appear in [1].

In fact, let ϕ, α ∈ C∗ and c ō k ∈ C ōH. Then we have

θ([, ](ϕ⊗ α))(c ō k) = θ(θ−1 ◦ µ∗ ◦ Φ(ϕ⊗ α))(c ō k)

= µ∗ ◦ Φ(ϕ⊗ α)(c ō k)

= Φ(ϕ⊗ α)(µ(c ō k))

= Φ(ϕ⊗ α)(c1 2 c2
−0T (c2

−1k))

= ϕ(c1)α(c2
−0)T (c2

−1k)
(3.5)
= ϕ(c1)α(c2

−0)T (c2
−1∇(c3)k)

= ϕ(c1)α(c2
−0)T1(c2

−1)T2(∇(c3)k)

= ϕ(c1)(T1 → α)(c2)T2(∇(c3)k)

= [ϕ ∗ (T1 → α)](c1)T2(∇(c2)k)

= θ(ϕ ∗ (T1 → α)#T2)(c ō k)

= θ((ϕ#1H∗)(1C∗#T )(α#1H∗))(c ō k)
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and, since θ is isomorphism, we have that [, ](ϕ ⊗ α) = (ϕ#1H∗)(1C∗#T )(α#1H∗), as
desired.

Moreover, let ϕ, α ∈ C∗ and c ∈ C. Thus,

(, )(ϕ⊗ α)(c) = π∗J (τ ∗(Φ ō (ϕ⊗ α)))(c)

= (τ ∗(Φ ō (ϕ⊗ α)))(c̄)

= (Φ ō (ϕ⊗ α))τ(c̄)

= Φ ō (ϕ⊗ α)(c1
−0 2 c2

−0T (c1
−1c2

−1))

= ϕ(c1
−0)α(c2

−0T (c1
−1c2

−1))
(PCC2)

= ϕ(c−0
1)α(c−0

2)T (c−1)

= (ϕ ∗ α)(c−0)T (c−1)

= [T → (ϕ ∗ α)](c).

Therefore, we recover the classical Morita context, as desired.
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