
● The need of ever-more performant systems led developers into 
parallelizing their applications;

● However, utilizing homogeneous hardware is still the norm, which comes 
with great investment needs;

● Given this reality, considerable effort has been poured into the 
development of middleware capable of effectively distributing the 
workload into more heterogeneous systems.

Computational Experiments on
Task-Based Parallel Applications
Henrique Corrêa Pereira da Silva¹ and Lucas Mello Schnorr² (advisor)

Initial vector

Intermediary vector

Return value

Contextualization

● There are several popular parallel programming models, such as the 
message passing, shared memory or a mix of these, known as a hybrid 
model;

● The implementation of such models in modern software is a known 
difficult, error-prone and time-consuming process;

● Popular implementations of said models try to provide a user-friendly 
interface through better APIs or compiler directives;

● Nonetheless, by the inherent fixed size of the parts in a problem 
decomposition, we still suffer from dynamic imbalance and, thus, loss of 
performance;

● We can utilize said models to implement a higher-level approach, called 
task-based model, to divide our problem into smaller kernels of 
computation.

Motivation

● One of the middleware capable of such heterogeneous computation is called 
StarPU, which approaches the problem with the task-based model in 
hand;

● By defining tasks into what’s called an directed acyclic graph (shown in 
Figure 1), the dependencies get naturally exposed and StarPU can then 
handle the distribution of said tasks onto the underlying hardware;

● Said approach is not only programmer friendly but is also very powerful 
when it comes to declaring and visualizing dependencies;

● This way, we intend to show that said model is a practical in achieving 
parallelism in modern software.

Methodology

1st block 2nd block 3rd block

Parameters:

● Vector size: 8
● Number of blocks: 3
● Decay rate: 3

Directed Acyclic Graph

Executed in parallel

Depend on the previous tasks

● Thus far, we have implemented a block vector reduction using the 
task-based model, which example can be observed in Figure 1.

● Using the initial number of blocks and its decay rate as parameters we 
have achieved a multi-level parallel vector reduction;

● This initial implementation shows that StarPU is a viable and 
programmer-friendly way to apply the task-based model in modern 
software.

Results and conclusion

Figure 1: Example of the reduction of an vector into blocks and their respective tasks.

Acknowledgements:

1. Samuel Thibault. On Runtime Systems for Task-based Programming on Heterogeneous Platforms. 
Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Bordeaux, 2018.

2. Garcia Pinto, V, Mello Schnorr, L, Stanisic, L, Legrand, A, Thibault, S, Danjean, V. A visual performance 
analysis framework for task‐based parallel applications running on hybrid clusters. Concurrency 
Computat Pract Exper. 2018; 30:e4472.

References


