
Evento Salão UFRGS 2019: SIC - XXXI SALÃO DE INICIAÇÃO

CIENTÍFICA DA UFRGS

Ano 2019

Local Campus do Vale - UFRGS

Título Computational Experiments on Task-Based Parallel

Applications

Autor HENRIQUE CORRÊA PEREIRA DA SILVA

Orientador LUCAS MELLO SCHNORR



Computational Experiments on

Task-Based Parallel Applications
Salão de Iniciação Científica UFRGS 2019

Henrique Corrêa Pereira da Silva and Lucas Mello Schnorr (advisor)

Informatics Institute
Universidade Federal do Rio Grande do Sul

{hcpsilva, schnorr}@inf.ufrgs.br

June 20, 2019

The incessant pursuit of ever-more performance
in all kinds of computing systems led software de-
velopers inevitably into the development of par-
allel applications. These applications make use
of, traditionally, multiple homogeneous hardware,
be it multiple CPU cores or GPU boards. How-
ever, these implementations often lack the ability
to conform to less homogeneous realities, such as
systems comprising of different GPUs and CPUs
joined in a computer cluster. Given this demand,
there has been considerable effort into the devel-
opment of middleware capable of effectively dis-
tributing the workload into these hybrid architec-
tures, taking advantage of the whole system and
providing better performance without the need of
huge investments into massive quantities of ho-
mogeneous hardware.

There are several popular parallel program-
ming models used currently, be it on the HPC
(High-Performance Computing) environment or
not. Some of the more popular ones are mes-
sage passing, shared memory and, even more
common, any combination of other models, which
then is called a hybrid model. Furthermore, the
implementation of any combination of the pre-
viously cited models has been, characteristically,
a very manual process, and, consequently, very
error-prone, complex, and time-consuming. In or-
der to mitigate that, most popular implementa-
tions of those models, such as OpenMPI, OpenMP
and the combination of the previous, sought out to
provide a friendly programming interface to the
developer through better APIs (Application Pro-
gramming Interfaces) or compiler directives. Still,
a problem with those APIs is that the domain de-
composition is fixed to the number of resources.
So, despite the fact that these APIs can be adapted
to more heterogeneous resources, by having those
unequal pieces of work it becomes harder to obtain
desirable performance due to dynamic load imbal-
ances.

One of the efforts into making a middleware ca-
pable of such heterogeneous computation is called
StarPU, which approaches the problem with the
task-based model in mind, defining tasks into a
directed acyclic graph. While the instantiation
of this graph is made in a common sequential
way, StarPU takes care of the execution and dis-
tribution of tasks in the hardware, freeing the de-
veloper from most low-level issues. Besides its
programmer-friendly way of defining the tasks
that will carry out the intended computation, a
graph is also a powerful way to declare data de-
pendencies between said tasks, as the data de-
clared to the API data can also be thought as a
node in said graph.

Following the intent behind the efforts of
StarPU, we aim to investigate the task-based
model of designing and implementing parallel ap-
plications using StarPU and how StarPU can be
employed to code typical applications such as lin-
ear algebra. Once these applications are coded, we
intend to run them in HPC platforms to evaluate
the performance through common HPC metrics,
such as makespan (execution time), load imbalance,
occupation, and others.

Thus far, we have implemented a block vector
reduction utilizing the task-based model. This im-
plementation uses StarPU’s C API to achieve a
multi-level reduction determined by a block size
parameter, which defines the size of each block
that will be reduced to a single element. That
is, the program splits the initial vectors in sub-
vectors of size determined by parameter and sums
the elements in these sub-vectors into single ele-
ments, which are then the new vector in which
this split will be reapplied until we have a sin-
gle element representing the sum of all elements.
Thus, through the implementation of this applica-
tion, it was shown that the StarPU runtime is a vi-
able way to apply the task-based parallel comput-
ing method.


