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ABSTRACT 
Composite materials have been used extensively in the aeronautical and automotive industries. Despite the 
improved knowledge about the mechanical and dynamic behavior and modes of failure, it is still not well 
explained some variability from experimental data obtained for, a priory, and nominally identical specimens. 
Epistemic and aleatory uncertainties are alleged as the main causes for these discrepancies besides the 
uncertainties from modeling. Regarding the structural damping of such structures, the phenomena involved are 
not completely revealed nor modeled. This paper presents an interval-based algorithm for uncertainty 
quantification in composite structures. The α-cut procedures are used to account for the several levels of 
uncertainty present in material properties, geometrical imperfections and external loading. Due to the lack of 
reliable statistical information about such uncertainties, the interval-based approach is used in this study and 
compared with the robust solution by Monte Carlo simulations. 
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I. INTRODUCTION 
Uncertainty in composite materials 

properties is a key problem when dealing with the 
manufacturing processes used to build stacks of 
layers that compose the final structure. Sensitivity to 
temperature, hygroscopic phenomena, and the own 
manufacturing process can deviate the overall 
behavior of the composite from the expected ones. 
Even the procedures and standardized tests used to 
characterize such elastic properties present some 
degree of uncertainty as explained by He et al. 
(2018). An extensive bibliography exists in 
quantifying these uncertainties like those discussed 
in Dey et al. (2018). In this paper, the developed 
algorithm is based on the α-cut concept and convex 
hull from the quick hull algorithm (Barber et al., 
1996) as explained in Faes et al. (2017).  

In a simplified way, the robustness of 
interval analysis relies on the no assumption for 
probability distribution types, partially justified in 
the scarcity of data. Uncertainties on the limit values 
can be estimated based on this scarce data, but no 
detailed statistics of such distribution nor correlation 
between variables. For some uncertain parameters of 
the system, this propagates originating uncertainties 
in the measured and unmeasured output parameters 
that represent the behavior of the system. On the 
framework of Interval Approach, the measure of 
confidence on the uncertainty level of such variables 
can be associated to an �-cut level (Figure 1(b)), a 

single value that varies from 0 (maximum 
uncertainty in the interval limits) to 1 (complete 
confidence and thus, no uncertainty at all). Several 
simplified methods can be used to evaluate the 
propagation of such interval values (gradient-based 
methods, interval arithmetic, etc.) but none with 
sufficient accuracy for any level of uncertainty. This 
is particularly not true in the case of an anti-
optimization approach. Based on the uncertain limits 
of the variables, one tries to maximize and minimize 
output variables that represent the behavior of the 
system and doing this is more prone to correctly 
define and evaluate such uncertain intervals. A 
simple Monte Carlo approach would also be useful 
in this concern, simulating, let’s say, uniform 
random variables into the uncertain limits, but when 
comes to talk about performance and efficiency, this 
will not be the best choice as it will be explored later 
in the examples in this paper. 
 
II. UNCERTAINTY PROPAGATION AND 

ANTI-OPTIMIZATION 
Let’s assume a system with the input vector  

�� = ( x�
� , x�

� , … , x��
� )�, where ni is the number 

of input variables, m means “measured” and an 
output vector as  � = ( z�

� , z�
� , … , z��

� )�� , where 
no is the number of output variables. Let’s assume a 
number of samples of each one of the input vectors 
(called realizations) ��

� , ��
� ,…, ���

�   and the 
corresponding output vectors ��

� , ��
� ,…, ���

�  , where 
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ns means the number of samples. Furthermore, let’s 
assume a numerical model of the system with the 
same measured inputs �� = ( x�

� , x�
� , … , x��

� )�, 
adjustable model’s parameters vector  � =
(θ�, θ�, … , θ��)�, with np representing the number 

of parameters and predicted vector outputs 
� = ( z�

�
, z�

�
, … , z��

�
)��

= f( �� , �). Related to 

the output vector, it is easy to obtain their upper and 
lower bounds based on the values from all 
realizations. These output intervals vector may be 
put together in a two-column vector representation 
as: 

� �� , �
�

� = [ min
���,…,��

( ��
� ) max

���,…,��
( ��

� )]                   (1) 

this represents a measure of the model’s 
output uncertainty or dispersion. The same can be 
stated for the predicted output vector (from the 
numerical model) and the measured input vector: 

[ �� , �
�

 ] = [ min
���,…,��

( ��
� ) max

���,…,��
( ��

� )]                (2) 

��, �� = [ min
���,…,��

� �� � max
���,…,��

� �� �                    (3) 

� �
�

, �
�

� = f �� �� , �
�

� , ��, ��� =

[ min
���,…,��

� ��
�

(��, ��)� max
���,…,��

� ��
�

(��, ���]                (4) 

At each hyper quadrant 
Find�∗ , �∗that  minimizes and maximizes ‖�∗‖�. 

  Subject to ∶  �∗ ∈  � �� , �
�

� , �∗ ∈

��, ��and��, �� =

� min
�� ��� ���������

(�∗) max
�� ��� ���������

(�∗)�            (5) 

 
In this case, where a double optimization happens, 
the number of design variables is (ni+np). A block 
diagram can be sketched in this sense, as represented 
in Figure 1(a). 

(a)  

(b)                     
Figure 1 – (a) Interval uncertainty propagation. (b) 
Linear approximation of Gaussian distribution for x 

by a triangular fuzzy-set, with uncertain intervals 
and -cuts. 

 
The interval upper and lower values form a 

cloud in the hyperspace and, once obtained, a 
convenient way to visualize in constructing a convex 
hull, which is the smallest convex set that contains 

and encompasses the set of points. This convex hull 
can also be constructed, if Monte Carlo Methods are 
used, for the random points obtained by the 
simulations. 
 

III. COMPOSITE MATERIAL 
The differential equations for a laminated 

plate can be derived from analyzing Figure 2, where 
a force diagram is depicted (comma represents the 
corresponding partial derivatives). By the resulting 
forces in x and y directions, we find (i) N�,� +
N��,� = 0and  (ii) N�,� + N��,� = 0. Considering the 

inertia force (density ρ  and height h) and the forces 
in the z-direction, one finds the equilibrium 
equationQ�,� + Q�,� + N�w,�� + 2N��w,�� +

N�w,�� − ρhw,�� = 0. For the moment equations and 

neglecting the third-order terms, one finds M�,� +
M��,� = Q� and M�,� + M��,� = Q� that results in 

(iii)M�,�� + 2M��,�� + M�,�� + N�w,�� +

2N��w,�� + N�w,�� − ρhw,�� = 0. 

 
Figure 2 – Force diagram at the middle surface of a 

laminated plate. 
 

This forms a set of three differential 
equations of motion. For a laminated plate, the 
constitutive relations for stress/strains at the local 
coordinate system for laminate k at height z is 
(assuming First-Order Shear Deformation Theory, 
FSDT): 

�

σ�

σ�

τ��

�

�

= �

Q�� Q�� Q��

Q�� Q�� Q��

Q�� Q�� Q��

�

�

��

ε�
�

ε�
�

γ��
�

� + z �

k�

k�

k��

��(6) 

and the internal forces evaluated as: 

�

N�

N�

N��

� = ∫ �

σ�

σ�

τ��

�

�

dz
��/�

��/�
, �

M�

M�

M��

� = ∫ �

σ�

σ�

τ��

�

�

zdz
��/�

��/�
  

(7) 
and applying Equation (6), one recovers: 

�

N�

N�

N��

� = ��� �

ε�
�

ε�
�

γ��
�

� + ��� �

k�

k�

k��

� , �

M�

M�

M��

� =

��� �

ε�
�

ε�
�

γ��
�

� + D�� �

k�

k�

k��

� (8) 
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The matrices �, B and �are evaluated as usual, 

along each ply, as ��� = ∑ � �Q���
�

(z� − z���)�
��� , 

��� =
�

�
∑ �Q���

�
(z�

� − z���
�)�

���  and ��� =

�

�
∑ �Q���

�
(z�

� − z���
�)�

���  and � = 5/6. Based on 

the Classical Laminated Theory, taking the strain 
displacement relationship, one finds: 

�

ε�
�

ε�
�

γ��
�

� = +��� �

u,�

v,�

u,� + v,�

�, �

k�

k�

k��

� = �

−w,��

−w,��

−2w,��

�  (9) 

and finally, the set of the three differential equations, 
taking into consideration Equation (8) results in: 
A��u,�� + 2A��u,�� + A��u,�� + A��v,��

+ (A�� + A��)v,�� + A��v,��

− B��w,��� − 3B��w,���

− (B�� + 2B��)w,��� − B��w,���

= 0 
A��u,�� + (A�� + A��)u,�� + A��u,�� + A��v,�� +

2A��v,�� + A��v,�� − B��w,��� = 0   (10) 

����,���� + 4����,���� + 2(��� + 2���)�,����

+ 4����,���� + ����,����

− ����,��� − 3����,���

− (��� + 2���)�,��� − ����,���

− ����,��� − (��� + 2���)�,���

− 3����,��� − ����,��� + ���,��

+ ���,�� + �ℎ�,�� = 0 

In the case of symmetrically angle-ply 
oriented composite plates, ��� = ��� = ��� =
��� = ��� = 0 and the previous equations simplify. 

To solve such equation one can use the separability 
of space and time with Fourier series in the form: 
�(�, �, �) =   [��� ���(��) + ��� ���(��)]��(�)��(�) 
and considering the corresponding boundary 
conditions, results in a system of equations that will 
give the natural frequencies and mode shapes, only 
if a nontrivial solution exists. In this case, for a 
simply supported plate with edges a and b, the 
following equation for natural frequencies results: 

��,�
� =

��

��
[���(

�

�
)� + 2(��� + 2���)(

�

�
)�(

�

�
)� +

��� �
�

�
)��    (11) 

where � and � are positive integers that should be 
tried to get each of the mode frequencies. 

Assuming that the only applied load are 
those from in-plane and taking the effects in the total 
potential energy split into two parts, bending and 
external forces (� = �� + ��), one can evaluate 

those parts for an assumed field solution that 
accounts for boundary conditions of the form of sine 
series. In the case of a simply supported plate, it 
assumes the form �(�, �) = ��� ���(���/
�) ���(���/�) with ��� being the displacement 
coefficients and �, �, positive integers. Substituting 
this assumed displacement field into the total 

potential energy, forcing a stationary condition 
(��/����=0) and solving for �=�����/�� (critical 
to the reference applied load ratio), the buckling 
loads are computed. In fact, the first buckling load is 
of interest, and one should search for the 
combinations of � and �that gives the lower � (first 
buckling load). In case of a simply supported plate 
with two in-plane loads Nx and Ny, the resulting 
expression is: 

��,� =
����

�������
�������

������
�������������������������

��(�������
�)����(�������

�)
  

(12) 
 
where� = ��/��and �� = −����� − ����� −

����, �� = −����� − �����, �� = −�����, �� =
−����� − ����� − ���� and �� = −�����, � =
��/�, � = ��/�. 
 

IV. COMPOSITE MATERIAL 
UNCERTAINTIES 

There are some unavoidable uncertainties 
in composite manufacturing, such as intra-laminate 
voids, incomplete curing of the resin and excess 
resin between plies, porosity, excess matrix voids, 
variations in ply thickness and fiber parameters, all 
those making the overall behavior and prediction of 
such materials difficult. In this study, only mass 
density, ply angle orientation and Elastic modulus 
values will be considered with uncertain values since 
those are the most important source of the variability 
described in the literature (Dey et al., 2018).  

 
4.1 Numerical Examples 

The following example shows a composite 
with the total length and breadth of the laminated 
plate with orthotropic cross-ply [90°/0°/0°/90°] 
configuration, and dimensions a=0.6 m and b=0.6 m 
and laminate thickness of t=0.125 mm. The material 
properties of the laminate are E11=1.35×1011 Pa, 
E22=8.8×109 Pa, G12=4.8×109 Pa, ν12=0.33 and 
ρ=1380kg/m3. The boundary conditions are simply 
supported on each side (SSSS).  

In this examples it is assumed an interval 
uncertainty of ±10%, for the worst-case scenario 
(corresponding to α-cut level 0) in E11, ρ, G12 and an 
uncertainty ±5ofor. This uncertainty is assumed 
independent for each layer, so the number of 
uncertainties are 16 in total. The proposed algorithm 
is tested using the interval approach proposed in this 
paper and compared with simple MC (Monte Carlo 
simulations). For fair comparisons, the number of 
MC simulations equals the number of function calls 
used in the Interval-based proposed algorithm (that 
runs first). The uncertainty in the dynamic behavior 
is sought in this example so, the first four natural 
frequencies are evaluated. The analytical solutions 
for the deterministic situation for this particular case 
are given by Equation (10).The following Figure 1 is 
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obtained for the convex-hulls for the first 4 natural 
frequencies (y1=f1, y2=f2, y3 =f3 and y4=f4in Hz). 
 

 
Figure 3 – Output uncertain intervals and convex 

hulls for the interval-based procedure and MC 
Simulation for mode frequencies. 

 
Table 1 shows the relative differences 

between the Interval-based Method interval method 
proposed here and the traditional Monte Carlo 
Method based on the Error (E) values defined as the 
ratio between twice the Interval Radius of the 
uncertain output variables (first 4 mode frequencies) 
for the zero -cut level and the Interval Center. The 
Interval Radius for an uncertain variable � is defined 
as �� = (� − �)/2, while the Interval Center is 

defined as  �� = (� + �)/2, so � = 2 ��/��. 
 
Table 1 – Error-values for interval output variables 
obtained by the Interval-based Method and the MC 

method. 

 
 

Analyzing Table 1, one can notice the 
spread of the results obtained with Interval-based 
Method when compared to the MC method since E 
values are greater (5% on average). This also can the 
notice by the graphs of Figure 3, where the convex 
hull and interval limits for the Interval-based 
Method encompass the corresponding values for the 
MC Method. The numerical evaluations took less 
than 100 seconds in a computer i9-3.6 GHz with 32 
GB RAM. 

The second example is intended to 
investigate the uncertainty in the first four buckling 
loads in the cross-ply [90°/45°/0°/45°/90°] of a 
simply supported plate. In this case, the mass density 
is not assumed uncertain since it does not collaborate 
with the buckling load. It is assumed the same 

uncertainty of ±5o for  at each layer and uncertainty 
of ±10%, (for α-cut level 0) in E11, G1 and 12. For 
the buckling analysis, it is assumed Ny=Nx (equal 
compressive load). Figure 4 is obtained for the 
convex-hulls for the first 4 buckling loads, where 
y1=1, y2=2, y3 =3 and y4=4 that are 
dimensionless).For comparisons purposes, Table 2 
shows the differences in for the interval FEM and 
the Monte Carlo results in terms of the Error values. 
 
Table 2 – Error-values for interval output variables 
obtained by the Interval-based Method and the MC 

method. 

 
 

 
Figure 4 – Output uncertain intervals and convex 

hulls for the Interval-based procedure and MC 
Simulation for buckling loads (dimensionless 

buckling ratio, � = �����/��). 
 

Again, analyzing Table 2, one can notice 
the spread of the results obtained with Interval-based 
Method when compared to the MC method since E 
values are greater (3% on average). 
 

V. CONCLUSION 
It was observed that the convex hulls as the 

output intervals are not well-defined when using 
traditional Monte Carlo Simulation. This is 
attributed to the fact that the worst scenario is a 
precise combination of values of uncertain input 
variables that cannot be obtained by simple random 
simulations. Despite the huge amount of simulations, 
the extreme (worst-case scenario) is correctly 
defined only by the Interval based methodology 
proposed in this paper. In the examples analyzed, 
mode frequencies and buckling loads, the Interval 
based methodology presented 5% to 3% larger Error 
values when compared to the Monte Carlo Method, 

Mode Frequency  
(Hz) 

Interval-based Method MC Method 
Lower 

bound � 
Upper 

bound � 
E (%) 

Lower 
bound � 

Upper 

bound � 
E (%)

f1 2.9635102 3.5503102 18.22 3.0268102 3.4657102 13.63 

f2 5.7025102 6.7518102 17.07 5.8334102 6.5786102 12.12 

f3 9.9929102 1.2130103 19.41 1.0157103 1.1924103 16.05 

f4 1.0970103 1.3021103 17.26 1.1188103 1.2716103 12.87 

Buckling load 
ratio 

Interval-based Method MC Method 
Lower 

bound � 
Upper 

bound � 
E (%) 

Lower 
bound � 

Upper 

bound � 
E (%) 

�1 5.7114106 7.0246106 20.73 5.8045106 6.8921106 17.17 

�2 7.2834106 9.7252106 29.20 7.5910106 9.4138106 21.80 

�3 1.1425107 1.5950107 33.81 1.1895107 1.5448107 26.55 

�4 1.7598107 2.5082107 35.93 1.8282107 2.4329107 29.04 
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which means a larger uncertain area. 
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