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RESUMO 

 

A modelagem da operação de equipamentos é uma opção metodológica importante para a 

melhoria da eficiência de usinas geradoras de energia. Uma dessas metodologias é a rede 

neural artificial (RNA), que vem ganhando espaço devido à sua capacidade de modelar 

problemas complexos com base em comportamentos registrados de sistemas reais. O objetivo 

do presente estudo é desenvolver modelos de RNA capazes de reproduzir o funcionamento do 

gerador de vapor e da torre úmida de arrefecimento da planta termoelétrica a carvão de 

PECÉM, no estado do Ceará, Brasil. O modelo de RNA para o gerador de vapor 

superaquecido a carvão estima a vazão mássica de vapor com base em registros de um ano de 

operação da Usina. A configuração das RNAs é obtida após uma série de testes com o 

objetivo de reduzir o erro de predição através do erro absoluto médio (EAM) em diferentes 

patamares de operação, obtendo-se um MAE de 1,28% para o conjunto total de dados de 

operação, 8,11% para a faixa de operação de 240 MW e 10,82% para a faixa de operação de 

360 MW. O desempenho das redes é comparado ao de modelos de regressão linear múltipla 

aplicados ao mesmo conjunto de dados, para os quais se têm valores de MAE de 2,05%, 

9,47% e 15,76%. Esses resultados mostram a capacidade da RNA de estimar a produção de 

vapor com erro abaixo daqueles de modelos de regressão. O modelo de RNA é desenvolvido 

para um dos conjuntos de torres úmidas de resfriamento ligado ao sistema de condensação de 

uma das plantas do sitio de geração. Essa planta é referenciada como de melhor desempenho e 

o modelo RNA gerado é aplicado aos dados de operação do segundo conjunto de torres, 

ajudando na identificação de possíveis desvios ou problemas de desempenho. Ferramentas 

estatísticas são usadas para avaliar os dois conjuntos de dados referentes as torres de cada 

usina e identificar correlações de parâmetros. Os modelos de RNA com melhor desempenho 

são obtidos com um coeficiente máximo de correlação R² de 0,9956 para a taxa de calor 

rejeitada e 0,8699 para a taxa de vazão mássica de água de reposição para o conjunto de dados 

de referência. O coeficiente R² encontrado para o segundo conjunto de torres é de 0,748 para a 

taxa de calor rejeitada e 0,905 para a vazão mássica de água de reposição. Esse resultado 

ajuda a identificar alguns comportamentos não padronizados da torre. Uma nova simulação 

sem os pontos de fora da curva (outlier) exibiu valores de R² de 0,98 e 0,99, respectivamente. 

 

Palavras-chave: Redes neurais artificiais; Gerador a vapor superaquecido; Torre úmida de 

arrefecimento; Modelagem da operação de usinas termelétricas a carvão. 
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ABSTRACT 

 

The modeling of equipment operation is an important methodological option for improving 

the efficiency of power plants. One of these methodologies is the artificial neural network 

(ANN), which is gaining space due to its ability to model complex problems based on 

acquired data from real systems. The objective of the present study is to develop ANN models 

capable of reproducing the operation of the steam generator and the wet cooling tower of the 

PECÉM coal-fired power plant in the state of Ceara, Brazil. The ANN model for the coal 

superheated steam generator estimates the steam mass flow rate based on year-long records of 

operation. ANN configuration is obtained after a series of tests with the objective of reducing 

the ANN mean absolute error (MAE) in different levels of operation, obtaining an MAE of 

1,28% for the total set of data of operation, 8.11% for the 240 MW operating range and 

10.82% for the 360 MW operating range. The network performance is compared to that of 

multiple linear regression models applied to the same data set, with MAE values of 2.05%, 

9.47% and 15.76%. These results show the ability of ANN to estimate the production of vapor 

with errors below those of regression models. The ANN model is developed for one set of wet 

cooling towers connected to the condensation system. This plant is referred to present the best 

performance and the generated ANN model is applied to the operation data of the second 

plant, helping to identify possible deviations or performance problems. Statistical tools are 

used to evaluate the two cooling towers and to identify parameter correlations. The best 

performing ANN models are obtained with a R² correlation coefficient of 0.9956 for the 

rejected heat rate and 0.8699 for the makeup water mass flow rate for the reference data set. 

The coefficient R² found for the second set of towers is 0.748 for the rejected heat rate and 

0.905 for the makeup water mass flow rate. This result helps to identify some non-standard 

behavior of the tower. A new simulation without the outlier points exhibited R² values of 0.98 

and 0.99, respectively. 

 

Keywords: Artificial neural networks; Super-heated steam generator; Wet cooling tower; 

Coal-fired power plant modeling. 
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1 INTRODUTION  
 

Several studies related to climate change pointed out the impact of global warming on 

many countries economies and social development [European Environment Agency, 2017]. 

Fuel consumption is claimed to produce a large amount of CO2 emissions to the atmosphere, 

as presented in Figure 1.1 

 

 

Figure 1.1 – World CO2 emission from fuel combustion [International Energy Agency, 2017]. 

 

Among all fuels, coal combustion represents an important share of emitted greenhouse 

gases, with 14,535 Mt CO2 in 2015, burned in power plants. Nevertheless, electricity 

production with coal will remain necessary as a base load option or a complement backup due 

to intermittent sources [Starkloff et al., 2015].  

Fossil fuels represent 24.5% of the Brazilian electric power generation, with 40.42 MW 

of installed capacity [ANEEL, 2019]. These numbers show that thermal plants security the 

Brazilian energy matrix, besides the role of hydroelectricity, as shown in Figure 1.2. 
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Figure 1.2 – Brazilian energy matrix [ANEEL, 2019]. 

 

Several studies focus on enhancing coal-fired plant efficiency as they are necessary to 

guarantee the stability of the electric grid. These plants are usually designed to operate at full 

load for long periods, but new market restrictions are continuously reducing operation setups 

due to the contribution of intermittent energy sources, such as hydroelectric, on the grid. As a 

result, power plant operators are forced to develop novel and efficient solutions to operate 

under these circumstances [Starkloff et al., 2015]. 

Modeling complexity of coal-fired power plants is a well-known matter, highlighted in 

several studies. Different methodologies and models are applied to simulate the power plant 

systems or equipment. Studies related to this subject result in the improvement of the process 

efficiency. 

Zhang et al., 2006, modeled a coal-fired power plant based on mass and energy balances 

for different operating conditions to perform a thermo-economic analysis, with relative errors 

less than 2%. However, that particular case study focused on the plant exergy cost analysis. 

Fan et al., 2017, developed a dynamic mathematical model based on mass and energy 

balances associated with a genetic algorithm to achieve plant optimization. Their model could 

simulate and test control algorithms with 50% more accuracy than the reference model used 

in that study. Although the model good accordance, it was not meant to be used without a 

great deal of development effort to be adapted to new situations.  

Starkloff et al., 2015, presented an investigation on the operational flexibility of a coal-

fired power plant to market scenarios. Their model was able to simulate plant operation within 

a wide load range (27.5% to 100%) with high accuracy, validated with power plant real data. 

However, the model complexity turned its application for different cases hard to be 

implemented.  

63,85%9,14%
1,27%

24,53%

1,21%

Hydroelectric

Wind power

Solar power

Thermoeletri
c
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The model developed by Hübel et al., 2017, investigated the optimization potential 

related to power plant control systems, such as costs and environmental impacts. That model 

focused on the start-up operation stage, and could not be used for steady state regime. It 

aimed to identify restrictions for faster start-ups, less fuel consumption and emissions with 

controlled thermal and mechanical stress.  

Liu et al., 2015, developed a low complexity model to perform control strategies of a 

given power generation system based on fundamental physic laws. The maximum relative 

error of that model was 3%, which is a good result for a simple control model. 

Among the options for modeling high complexity systems, the use of Artificial Neural 

Networks ANNs showed to be an attractive approach. They have been used in recent years 

due to their multiple advantages in prediction, classification and forecasting applications, as 

they display high potential to describe complex problems. Furthermore, ANN models are 

compared to other techniques to evaluate model performance with adequate accuracy when 

compared to other well-stablished methodologies. 

Bekat et al., 2012, developed an ANN model to predict the ratio of produced bottom ash 

to burned coal in a coal-fired power plant. The developed model presented a coefficient of 

correlation R² of 0.984, which can be considered as a good achievement for the estimating 

such a complex parameter. Furthermore, the model was able to evaluate the most effective 

parameter associated to the prediction of that ratio. 

Tunckaya and Koklukaya, 2015a, pointed out several limitations related to power plant 

operation, such as cost of energy production, optimization problems related to production and 

emission levels. One power plant was modeled with ANN and multiple linear regression, but 

the first one presented the best performance with R² of 0.992 and RMSE of 0.1642. 

Tunckaya and Koklukaya, 2015b, highlighted that global regulation imposes several 

improvements on existing coal-fired power plants through the implementation of emission 

reduction systems and efficiency improvements, but with high investment impacts on plants. 

A comparative study on the modeling of coal plants was carried out and the emission 

estimation was achieved with an ANN model, with R² of 0.949 and RMSE of 0.819, which 

were approximately 85% and 95% lower than the RMSE values of the concurrent models. 

The reported studies for power plant simulation expressed the ability of ANN 

algorithms to estimate power plant parameters, pointed out that they are appropriate to 

describe the operation of complex processes, mostly when large datasets are available. 

Moreover, the review on that subject showed very little studies on the application of ANN 
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models to perform the comparison of similar equipment as a tool to identify and improve 

process issues.  

 

1.1 Thesis Objectives 

The present work proposes simulation models for the PECEM power plant steam 

generator and cooling tower based on operation data through artificial neural networks. 

The specific objectives of the study are meant to: 

• Employ ANN associated to statistic assessment; 

• Investigate ANN as a tool for problem detection. 

 

1.2 Thesis Outline 

This work is composed by three independent chapters. Chapter 1 provides a review on 

the applications of ANN for power plant and related subjects, together with correlated 

approaches. ANN was evaluated when used in power plant process and equipment. Chapter 2 

brings the development of an ANN trained to estimate the steam mass flow rate generation of 

a real coal-fired power plant, based on past records of its operation. ANN configuration is 

obtained after a series of tests aiming to reduce the prediction error, which are then compared 

to a reference multiple linear regression model. Chapter 3 presents ANN models capable of 

estimating the water makeup and heat rejection of a wet cooling tower. These models can 

estimate tower outputs with high accuracy for similar equipment even under different 

operating conditions. 
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2 A REVIEW ON THE APPLICATION OF ANN TECHNIQUES FOR 

POWER PLANT MODELING  

 

2.1 Introduction 

  

The raising share of renewable sources on electric power generation forced energy 

matrix worldwide to diversify. However, thermoelectric power plants remain important to 

guarantee the electric base load, and research on that field looks forward to identify 

appropriate operational strategies, efficiency enhancement and to adequate plant operation to 

the cohabitation with power generation from renewable sources. That scenario lead to the 

development of tools, such as artificial neural networks, able to handle with complex system 

integration, based on real data. 

This chapter aims to present a review on the application of artificial neural networks 

ANN to power plant equipment, with a special interest on steam generators and cooling 

towers. Attention was given to present up-to-date practices related to steam generators and 

wet cooling towers modeling. 

 

2.2 Artificial neural networks 

 

Artificial neural networks (ANNs) are inspired by the functioning of a biological neural. 

In other words, ANN is an attempt to reproduce the human brain functioning. ANNs resemble 

the human brain because they acquire knowledge of the network from the environment 

through a learning process and use synaptic weights to store the acquired knowledge [Haykin, 

2001]. However, it is noteworthy that the artificial neurons currently developed are primitive 

when compared to brain neurons, able to reproduce the functioning of the human brain 

[Haykin, 2009]. 

 

2.2.1 History 

 

The first work related to ANNs was proposed by McCulloch and Pitts, in 1943, who 

presented an analogy between living cells and electronic processes, simulating the behavior of 

a neuron. Their model did not present a learning law, which was proposed by Hebb in 1949. 
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Hebb demonstrated that the network learning potential depends on the activation of pre and 

post synaptic cells, that once simultaneously activated lead to a change in synaptic weight. 

In 1958, Rosenblatt suggested the perceptron model with the objective of training an 

ANN to obtain greater synaptic efficiency. Minsky, in 1969 proved that the perceptron model 

was not able to solve the so called XOR problem since it is a non-linearly separable problem. 

Since then, studies related to artificial neural networks were reduced due to a lack of 

perspective in the development of the subject. 

However, Rumelhart, Hinton and Williams, in 1986, developed a training method called 

backpropagation algorithm for the training of neural networks based on the use of multi-layer 

perceptron. This algorithm enabled the resolution of more complex problems with the use of 

neural networks [Haykin, 2001], and studies on ANNs and their applications gained a new 

impetus, but they declined again in the 1990's due to configuration and convergence issues for 

solving high complexity, and also due to the competition of new algorithms. 

Finally, in 2006, Hilton et al proved the ability to train highly complex deep learning 

networks without convergence problems. Currently, deep networks continue to be developed, 

aiming to improve the performance of networks in the area of forecasting and regression. 

Despite the revolution caused by deep networks, they require massive amounts of data to 

achieve good performance and are not suitable for all types of problems. 

 

2.2.2 Brief description 

 

ANNs are composed of simple processing units, the neurons, which are able to compute 

mathematical functions. Neurons compose the layers. Layers connections are associated with 

weights that weighted ANN entries. 

The ANN learning phase is the beginning of the problem-solving process that will be 

solved. In the learning process, the weights of the connections are adjusted until they are able 

to represent the problem 

A feed-forward ANN is composed of a set of artificial neuronal processors or elements 

distributed in layers, interconnected by one-way communication channels. The end of these 

channels of communication occurs through the synapses between the neurons [Silva Neto and 

Becceneri, 2009].  

Haykin, 2009, defined three basic elements of a neuron: synapses, summing and 

activation function, as schematically presented in Figure 2.1. 
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Figure 2.1 – Artificial Neuron proposed by McCulloch and Pitts [Adapted from 

Haykin, 2009].  

 

For a given neuron 𝑣𝑘, an input signal x for a synapse 𝑗  is multiplied by the synaptic 

weight 𝑤𝑘𝑗. Different from the weight of a biological process, the synaptic weight of an 

artificial neuron can have both negative and positive values. The adder, , is responsible for 

summing the set of input signals, weighted by their synaptic forces of each neuron k. The 

activation function limits the neuron output amplitude, described in detail in section 2.2.5.1 

[Haykin, 2009]. 

It is also possible to mathematically describe the functioning of a neuron with Equations 

2.1 and 2.2. 

𝑣𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑚

𝑚

𝑗=1

 (2.1) 

𝑦𝑘 = 𝜑(𝑣𝑘 + 𝑏𝑘) (2.2) 

 

The sum of the products of inputs x to their weights w results in the linear combined 

output v. The second Equation gives the output signal of the neuron, y, which depends on the 

previous result from v, the bias 𝑏 and the activation function 𝜑. It should be noted that bias is 

the polarizing parameter, which increases or decreases the intensity of the input signal 

uniformly. 

Neural networks are characterized by parallel search and content addressing, where 

there is no memory address or search for information in sequence; learn from experience; 

association of different patterns; generalization; abstraction and robustness [Silva Neto and 

Becceneri, 2009]. 
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The processing of an ANN occurs in a similar way to the learning process that occurs 

with humans. ANN learning process takes place in two stages, training and execution [Gevrey 

et al., 2003]. In training, ANN is exposed to and based on a dataset, it identifies which 

information is relevant to going through the learning process. In this stage, the weight of the 

connections between the neurons is defined [Mohanraj et al, 2015; Silva Neto and Becceneri, 

2009].   

 

2.2.3 Learning process 

 

The concept of learning in the ANN context can be defined as a process by which non-

pre-set parameters of a network are influenced by a process of stimulation based on the 

environment in which the network is inserted. Learning can vary according to the 

modification of environment variables [Mendel and McLaren, 1970]. There are two common 

learning methods in neural networks, known as supervised and unsupervised learning. What 

differs from these methods is the knowledge or not of the output data, the answers to the 

problem [Lecun et al., 2015; Mohanraj et al, 2015; Silva Neto and Becceneri, 2009]. 

Supervised learning can be compared to learning with a teacher, as shown in Figure 2.2. 

From the concept that the teacher has the information about the environment when both, the 

teacher and the student, are exposed to the environment for a training, the teacher will know 

the correct result. This information is then transferred to the network, and the training process 

goes on iteratively until the error signal is sufficiently low. The error signal represents the 

difference of the value obtained by the network with the real value, that is, the value informed 

by the teacher. 

 

Figure 2.2 - Diagram of the supervised learning method [Adapted from Haykin, 2001]. 
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Supervised learning is based on error correction, its performance is usually measured by 

the mean square error or the sum of the square errors of the training sample. In order for the 

error to become smaller, and as network learning improves, it must achieve a local minimum 

or the global minimum of the error surface. This error surface movement is based on the 

examples presented for the system and the systematic correction of the weights in the 

synapses of the neurons, following the descending gradient method (described in section 

2.2.5.2). This prevents the network from learning randomly [Haykin, 2009]. 

Another possibility for learning is unsupervised, which is divided into two 

subcategories, reinforced learning, and unsupervised learning. Reinforced learning requires 

input and output parameters, as well as supervised learning, but its learning process takes 

place through interaction with the environment, where learning happens by observing the time 

sequence of the stimuli formed by the process [Haykin, 2009]. Non-supervised learning, on 

the other hand, allows us to approach problems where the desired result is not known. Thus, a 

non-supervised network aims to determine standards, characteristics or categories according 

to input data presented to the network [Silva Neto and Becceneri, 2009]. 

 

2.2.4 ANNs architecture 

 

There are basically two classes of network architectures: non-recurrent and recurrent 

networks. The non-recurring is those that only feed the input data and can be classified as: 

single-layer or multi-layer fed networks [Haykin, 2001]. Recurrent networks are those that 

have a feedback process, where the outputs of the neurons are used as input signals to the 

other neurons [Silva Neto and Becceneri, 2009]. 

The architecture of an ANN is summarized by the number of layers, number of neurons 

in each layer and the type of connection between neurons. These variables are dependent on 

the type of problem to be solved, so it is necessary to observe the best architecture for a given 

situation. For example, a single layer ANN composed of a neuron between the input and 

output layers can be used only for linearly separable problems [Haykin, 2001]. 

There are no rules to define the best configuration according to the problem. It is 

important to define a sufficient number of neurons and hidden layers to avoid unnecessary 

training and to achieve the best performance. The dataset has the best generalization 

performance can be reached by evaluating the ANN error [Kavzoglu, 1999].  
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2.2.5 Multiple layer perceptron 

 

The perceptron network is a model composed by one layer of input neurons and another 

one by output neurons. Whenever intermediate layers are added, the model is called 

multilayer perceptron (MLP), which is an extension of the perceptron model, proposed by 

Rosenblatt. It is composed of several intermediate or hidden layers of artificial neurons 

[Gevrey et al., 2003; Silva Neto and Becceneri, 2009]. Figure 2.3 shows a schematic 

representation of the MLP architecture. 

 

 

Figure 2.3 - Perceptron Architecture of Multiple Layers. 

 

Inputs are associated to neurons in the input left hand layer, where the outside 

information feeds the network. As a next step, information passes to the hidden layer to be 

processed. Processed information is transferred to the output layer, the right hand and final 

layer. 

The MLP model stands out for three characteristics, nonlinear activation function, 

hidden neurons and a high degree of connectivity [Haykin, 2001]. The activation function 

must display a smooth non-linearity so that there is gradient variation and the error is reduced. 

Hidden neurons are responsible for the absorption of progressive knowledge, thus enabling 

the execution of more complex tasks. Finally, it is important to emphasize that the network 

has high connectivity and that any modification in the network requires it to be restructured 

[Haykin, 2001]. 
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2.2.5.1 Activation function 

 

The activation function is responsible for modulating the information generated by the 

neuron, and must be used by multiple layers artificial neurons in the perceptron method. Its 

main purpose is to ensure the non-linearity of the model, thus allowing ANN to learn and 

perform more complex tasks. The most known activation functions are linear and sigmoid.  

The sigmoid function represents a linear and non-linear behavior, as shown by the 

logistic function (Equation 2.3) and the hyperbolic tangent function (Equation 2.4). 

 

𝜑(𝑣) =
1

1 + exp (−𝑎𝑣)
 (2.3) 

𝜑(𝑣) = tanh (𝑣) (2.4) 

 

where 𝑎 is the slope parameter of the function. The hyperbolic tangent function (Equation 2.4) 

allows negative values to be assumed by bringing analytical benefits. 

 

2.2.5.2 Backpropagation 

 

The backpropagation algorithm presents an operation described by Haykin, 2001, that 

begins with the initialization, where it is assumed that the network has no previous 

information, followed by examples of training, early computation, inverse computation and 

iteration. 

The backpropagation algorithm is based on the descending gradient method that 

computes the partial derivatives of an error function considering the weight vector of a given 

input vector. In an ANN with more than one input, the network function has as many 

arguments as the number of inputs, then the partial derivate is computed for each argument 

[Rojas, 1996]. 

The following sections aim to present a review of ANN applications to model power 

plant equipment such as steam generators and wet cooling towers are discussed as a closure.    

 

2.3  ANNs applied to steam generators 

 

Steam generators are complex heat exchangers, which produce water vapor under 

pressures greater than atmospheric from the thermal energy of a fuel and an oxidizing 
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element, air [Torreira, 1995]. It is worth mentioning that, in most cases, the steam generator is 

the system responsible for generating steam in thermoelectric plants, where the steam is used 

to generate electric energy through the turbines. In general, steam generators are composed of 

the following components: furnace, boiler, superheating fluids, economizer and air heater. 

Figure 2.4 schematically shows a steam generator [Bazzo, 1995]. 

 

 

Figure 2.4 - Schematic representation of a steam generator. 

 

 Fuel (1) is burned in the furnace or the combustion chamber (2). During the 

combustion process, heavy ashes fall and settle to the bottom in the furnace (3) where they are 

collected and generally used in the cement industry. The light ashes are carried by the gasses, 

upwards towards the superheaters (6). The boiler comprises the parts where the phase change 

of water from the liquid state to the vapor occurs. The water walls (4) and the drum (5) are 

part of the boiler. The water circulates freely by density difference and the formed vapor is 

accumulated in the upper part of the drum. The steam is saturated and from there is directed to 

the superheaters (6). The superheater is designed to increase the temperature of the steam 

generated in the boiler by absorbing energy by radiation and by convection [Bazzo, 1995].   

Despite the simplified explanation of the operation of steam generators, these devices 

have complex functions, as well as the control and maintenance of steam generators. Power 

plant maintenance affects the efficiency of the process. Due to this, the importance of 

planning and prevention of maintenance in the power plants. In addition to avoiding 
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equipment losses, there is a reduction in the need for plant shutdowns, which result in a power 

outage and higher power consumption for startup of power units [Kopanos et al., 2018]. 

In the last two decades, several studies have emerged evaluating the accuracy of neural 

networks to estimate or predict steam generator parameters [Deshpande et al., 2012; Estiati et 

al., 2016; Fast and Palmé, 2010; Ghugare et al., 2014; Li et al., 2002; Mesroghli et al., 2009; 

Nowak and Rusin, 2016; Oko et al., 2015; Smrekar et al., 2009; Strušnik and Avsec, 2015; 

Strušnik et al., 2015; Suresh et al., 2011; Tunckaya and Koklukaya, 2015a, 2015b]. 

ANNs have a wide range of application, ranging from problems involving some kind of 

association that must be established within a set of references or benchmarks, with many data 

or variables, to problems where the parameter correlations are hard to stablish [Dave and 

Dutta, 2014]. 

Li et al., 2002, demonstrated the potential of the application of neural networks in the 

control of thermoelectric power plants. Initially, an ANN was trained to learn the steam 

generator dynamics for given burning rates and turbine valve positions. The number of 

intermediate layers and their neurons was determined from the test by evaluating the 

performance of the neural networks. The sigmoid function was used in the intermediate layers 

and a linear function in the output layer, with the backpropagation method. Authors have 

proved the good performance of the networks to estimate fluid pressure and energy 

production of the steam generator. 

Mesroghli et al., 2009, evaluated the coal gross calorific value (GCV) from 25 US sites 

with regression approaches and ANNs. The aim of the paper was to answer three general 

questions. Firstly, the possibility to generate relationship between parameters of analysis of 

the GCV for different coal samples, followed by the possibility of increasing the accuracy of 

the classification, and finally the comparison of ANNs with regressions in respect to the 

performance of GCV estimation. Input parameters were normalized to increase the efficiency 

of the network training. Three neural networks were assembled and authors chose to use feed-

forward ANNs with error backpropagation mechanism and the sigmoid logistic function as 

the activation function. Authors showed that the regression performance was superior because 

of the linear relationship between the input and output parameters, although ANN 

performance was satisfactory. 

Smrekar et al., 2009, developed a study of the application of the ANN models to 

estimate the steam mass flow, pressure and temperature of a coal-fired steam generator, based 

on actual plant operating data. Authors evaluated the performance of two neural networks, 
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where the input parameters were varied. Data was pre-treated and the relation among 

parameters was assessed. Feed-forward ANN was used with the error-propagation mechanism 

as an intermediate layer with 22 neurons and a hyperbolic tangent as the activation function. 

Both models presented three input parameters, two of which are identical, valve openings at 

the outlet of the boiler and pressure of the feed water at the outlet of the valve, and displayed 

low error values when estimating vapor properties. The first model presented a mean error of 

0.95, 0.38 and 0.47% for flow, temperature and pressure, and 1.35, 0.39 and 0.48% for the 

second model, considering the same parameters. Since their errors were very close, it was 

concluded that the two models can estimate the steam properties of a coal-fired steam 

generator. 

Fast and Palmé, 2010, developed a set of integrated ANNs, where each modeled a 

thermoelectric plant component as a basis for actual operating data. The developed networks 

were multilayer perceptron type with an intermediate layer and as the hyperbolic tangent 

function as the activation function. Four models were developed: gas turbine, heat recovery, 

steam generator and turbine. Model performances presented parameter prediction errors of 

less than 1% in most cases. This study allowed for plant optimization, as well as the 

advancement of its maintenance with economic benefits. 

Suresh et al., 2011, developed a model for a real thermoelectric plant with the aim of 

optimizing its parameters. An association of methodologies was used, including neural 

networks. The developed ANN indicated the lowest required energy for plant operation. Two 

scenarios were studied, with and without water feedback, with a 0.9999 R² and 0.9728. The 

study showed the ANNs' ability to predict the desired output with backpropagation with 

Levenberg-Marquardt learning algorithm and an intermediate layer with four and six neurons.  

Deshpande et al., 2012, presented a comparative study of two types of neural networks, 

backpropagation (BProp) and radial baseS (RB). These models were used to evaluate the 

performance of coal-fired power plants by evaluating their heating rate and efficiency of the 

steam generator through actual operating data. Two ANNs were developed for each 

configuration. RP network was assembled with two intermediate layers, ten neurons each. The 

BR network used an intermediate layer with 219 and 162 neurons for the steam generator 

heating rate and efficiency. In both cases, BProp network presented better performance with 

R² of 0.91 and 0.964 the former outputs. 

Ghugare et al., 2014, studied the ability of an artificial ANN to predict higher heat 

values (HHV) of biomass fuels based on the difficulty predicting HHV for non-homogeneous 
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fuels. Authors developed two ANN models with different input parameters to estimate HHV. 

Both neural networks used the sigmoid function as a transition function and the linear 

function on the output layer. Finally, ANN models were still compared to genetic algorithm 

(GA) models to evaluate the performance of each methodology for HHV ranges (low, 

medium and high values). ANN and GA models can be compared for one of the cases but 

ANN displayed a higher performance for the second one (ANN R² of 0.907, 0.844 and 0.838 

and GA R² of 0.843, 0.825 and 0.751. 

Oko et al., 2015, applied neural network modeling to estimate the pipe pressure and 

water level of a coal-fired power plant. Database was generated after simulations. The work 

resulted in an ANN NARX with three input parameters and two output parameters, two 

intermediate layers, with 100 neurons each. Authors emphasized the ANN training process, 

stressing the importance of data pre-processing, avoiding excessive network training, 

overtraining, and post-processing network exit data. It also presented ANNs ability to 

estimate the output parameters, even if the input parameters show sudden changes. 

Strušnik and Avsec, 2015, analyzed turbine control valves and heater throttling valves 

of a combined heat and power system. They proposed three ANNs combined in a fuzzy logic 

algorithm for control. ANNs presented R² values very close to 1, and the mean square error 

was 1.82, 1.47 and 2.49 for each ANN. The same ANNs were used to optimize the use of the 

heater and thus use the plant in a more rational way. 

Strušnik et al., 2015, presented a study with real data of an energy generator. Two ANN 

were developed aiming to estimate steam generation and its efficiency. Authors found very 

close values for efficiency, with 90.722% for the actual measurement and 90.018% for ANN. 

Tunckaya and Koklukaya, 2015a, presented a comparative study of ANN performance 

with two other methodologies, linear multiple regression and integrated autoregressive 

moving average from real operating data. The purpose of the study is to predict the rate and 

production of a coal-fired thermoelectric plant. All methodologies presented good 

performance with R² above 0.927 and RMSE lower than 0.3353. However, the best 

performance was achieved with the use of the artificial neural network with R² equal to 0.992 

and RMSE equal to 0.164. It is noteworthy that the study had 37 input parameters to 

determine the plant production rate. 

Tunckaya and Koklukaya, 2015b, conducted a similar study to predict NOX emission, 

and found low performance for all the proposed models, due to the database small sizes. 
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Estiati et al., 2016, evaluated the performance of an ANN in estimating biomass higher 

heat value, based on literature values. ANN performance was compared to regressions for 

three scenarios, and found better results for ANN. 

Nowak and Rusin, 2016, developed an ANN to estimate the steam temperature at a 

turbine inlet. That parameter was used to assess machine operation for power generation and 

provide support for decision making. A metamodel based on two ANNs was developed and 

presented results with errors around 20%. Authors suggested to increase the size of the data 

set for the training of the models in order to enhance the model accuracy. 

Table 2.1 shows a summary of the studies described above comparing their 

applications, the data set characteristics used, the ANN model and type, and the learning 

algorithm used. 
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Table 2.1 – Review of papers using ANN for problems involving steam generators. 

Reference Application Output Data Architecture 
Network 

type 

Learning 

algorithm 

Li et al., 2002. Power plant boiler Throttle pressure and 

megawatt 

Operation data 5-5-5-1 

5-11-11-1 

MLPNN BProp 

Mesroghli et al., 

2009. 

Gross calorific value 

of coal 

Gross calorific value 

(GCV) 

Real plant data 3-10-1 

6-10-1 

7-10-1 

FFNN BProp 

Smrekar et al., 

2009. 

Fresh steam 

properties on coal-

fired boiler 

Pressure, temperature 

and mass flow rate of 

steam produced 

Real plant data 3-22-3 FFNN BProp 

Fast and Palmé, 

2010 

Heat and power 

plant 

Combined heat and 

power plant 

components 

Operation data 4 inputs and 9 outputs (Gas 

turbine) 

6 inputs and 6 outputs (HRS) 

2 inputs and 3 outputs (Boiler) 

7 inputs and 3 outputs (Steam 

turbine) 

MLPNN LM 

Suresh et al., 

2011. 

Coal-fired 

supercritical power 

plant 

Minimum heat input Simulated data 5-4-1 

5-6-1 

MLPNN LM 

Deshpande et al., 

2012. 

Thermal power 

plant 

Heat rate and boiler 

efficiency 

Real plant data 9-10-10-1 (Heat Rate) 

9-219-1 (Heat Rate) 

5-10-10-1 (Boiler efficiency) 

5-162-1 (Boiler efficiency) 

MLPNN BProp 

RB 

Ghugare et al., 

2014. 

 

Higher heat value of 

biomass fuel 

Higher heating value 

of solid biomass fuels 

Theoretical data 3-5-3-1 

5-6-4-1 

MLPNN BProp 

Oko et al., 2015. Coal-fired 

subcritical power 

plant 

Drum pressure and 

level 

Simulated data 3-100-2 NARXNN LM 
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Strušnik and 

Avsec, 2015. 

Heat and power 

system in thermal 

power 

Steam enthalpy and 

entropy 

Simulated data 

with supply 

information from 

plant operation 

2-60-10-2 

2-35-5-2 

2-80-2 

FFBP LM 

Strušnik et al., 

2015. 

Boiler steam 

generator 

Electrical power, 

industrial steam 

power, thermal power 

1 and 2, thermal plant 

efficiency, gross 

power 

Real plant data 1-20-8-2-4 

1-60-10-2 

FFBP LM 

Tunckaya and 

Koklukaya, 

2015a. 

Coal-fired power 

plant 

Coal-fired power plant 

production rate 

Real plant data 37-12-1 FFBP LM 

Tunckaya and 

Koklukaya, 

2015b. 

Coal-fired power 

plant 

NOx emissions Real plant data 8-24-1 FFBP LM 

Estiati et al., 

2016. 

Higher heating 

value of biomass 

fuel 

Higher heating value Theoretical data 3-7-1 FFBP LM 

Nowak and 

Rusin, 2016. 

Steam turbine 

heating 

Steam temperature at 

the turbine inlet 

Theoretical data 6-25-11-3 

9-7-4-3-1 

FBNN BProp 
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Based on the above review, it can be observed that there is a wide application of ANNs 

in problems involving steam generators. The supervisory system enables these to be 

performed on steam generators from the data set of the operation of that equipment. This 

makes it possible to model equipment with a high complexity of the operation. 

 

2.3.1  ANNs applied to steam generators bibliometric 

 

The articles presented in section 2.3 were analyzed in relation to the year of publication, 

as shown in Figure 2.5. 

 

 

Figure 2.5 - Bibliometrics: Publications years of steam generator studies. 

 

It is possible to observe that studies related to the use of the neural network for 

modeling of steam generators and the like have been occurring in the last 15 years proving the 

efficiency of the methodology in modeling these types of equipment. In addition, there has 

been an increase in the application of neural networks in recent years in works related to 

steam generators. Figure 2.6 illustrates the type of data set used in the studies presented in the 

previous section. In addition, the methodology used to evaluate the performance of the 

models. 
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(a) (b) 

Figure 2.6 – Bibliometrics of (a) Steam generator articles dataset; (b) Steam generator 

articles models comparison. 

 

Based on the evaluated works, it was noticed that for the modeling of equipment related 

to the steam generator, both simulated databases and actual operating data are used. For me, 

most of the studies used some methodology to compare the performance of the neural 

network model developed for the study. 

 

2.4  ANNs applied to wet cooling towers 

 

Cooling tower is heat-withdrawal equipment from a stream of water to atmospheric air 

with consequent water cooling [Cooling Tower Institute, 2007]. Its thermal performance is 

vital for industrial units and small deviations from design specifications can lead to serious 

implications for the operation and economy of a process [Jasiulionis, 2012]. Figure 2.7 shows 

a schematic view of the water and air counter flows of a wet cooling tower. 

 

Figure 2.7 - Direct contact or open evaporative cooling tower schematic view [Adapted from 

ASHRAE, 2016]. 

Real dataset

Theoretical dataset

No comparision

ANN vs. GA

ANN vs. Regression
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Water cooling is done by a combination of heat and mass transfer. Hot water is 

distributed in the tower by spray nozzles (1), splash bars or films, thereby increasing the ratio 

of exchange contact surface to volume of the droplets. Atmospheric air circulates through fans 

(2), convection current, natural wind current or spray induction effect. A fraction of water 

absorbs heat to change from liquid phase to vapor at constant pressure, which is the main 

source of heat exchange.  

 Modeling involves heat and mass transfer phenomena of both air and water streams, 

with complex interactions. Accurate analytical or numerical modeling aims to reproduce wet 

cooling tower behavior with different accuracy levels. However, some operation issues are 

not easily modeled, like decreasing capacity, leakages, and environmental changes. Several 

studies emphasized these limitations, thus justifying the use of models based on Artificial 

Neural Networks ANN [Cortinovis, 2009a; Jasiulionis, 2012; Qi et al., 2016; Wu et al., 2018].  

Hosoz et al., 2007, trained an ANN with experimental data obtained from a 

countercurrent cooling tower operating on a steady state to predict the performance of a 

cooling tower. The model was able to predict the rejected heat, the evaporated water rate, the 

process water outlet temperature, the dry bulb temperature and the relative humidity of the 

outlet air. Correlation coefficients between simulated and experimental data were predicted to 

range from 0.975 to 0.994, as well as the mean relative errors was found to lie between 0.89% 

to 4.64%. 

Good results were also found by Qasim and Hayder, 2017, who trained an ANN from 

acquired data from an experimental cooling tower, obtaining correlation coefficients in the 

range of 0.913 to 0.985 and mean relative errors in the range of 1.22% to 6.01%. 

Qi et al., 2016, developed an ANN model to predict the performance of shower cooling 

towers with the use of wavelets activation functions, obtaining good results between 

experimental data and simulated data in the range of 0.990 to 0.998 for the coefficient of 

correlation and 1.39% to 2.28% for the mean relative error. 

With the objective of developing an ANN based controller for evaporative capacitors, 

Abbassi and Bahar, 2005, obtained good results in ANN training for prediction in transient 

and steady state regimes of the evaporated water mass flow rate, dry bulb temperature and 

specific humidity air outlet temperature from the condensing temperature of the refrigerant 

fluid, massive flow of refrigerant, air inlet temperature, specific inlet moisture and water mass 

flow rate. 
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Gao et al., 2013, and Mahdi et al., 2014, trained ANNs to predict natural draft and to 

predict the effects of wind direction and velocity on the performance of hyperbolic cooling 

towers with satisfactory results. 

According to the literature review, it can be stated that ANN is an appropriate 

methodology to model and simulate wet cooling towers whenever experimental data are 

available.  

 

2.4.1  ANNs applied to cooling towers bibliometric 

 

Figures 2.8 and 2.9 illustrate the frequency of published work in relation to neural 

network application in cooling towers over the last 13 years. Moreover, the data set used to 

carry out the study. 

 

 

Figure 2.8 – Bibliometrics: Publications years of cooling towers studies. 

 

Figure 2.9 – Bibliometrics of cooling tower dataset. 
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According to the studies evaluated, they allow concluding that an application of 

artificial neural networks for cooling tower modeling has been performed in the last 13 years.  

This shows that the methodology has been applied constantly due to the good performance of 

the methodology in modeling cooling towers. However, as shown in Figure 2.9, the set of 

data used for the development of the model refers to experimental data or simulated data. This 

analysis allows concluding the lack of cooling tower models based on actual operating data. 

 

2.5 Dataset 

 

The dataset used in this study refers to the operation log of two identical thermoelectric 

power plants. The plants have a generation capacity of 360 MW each. The operating 

condition of each plant varies between 240 MW and 360 MW according to the demand of the 

electric system. The data sets are composed of measurements of operational parameters of the 

plant over a one-year hourly average. The data set was randomly reorganized for the statistical 

analyses and for the development of linear multiple regression and artificial neural network 

models. 

For the development of the linear multiple regression model, we chose to divide the data 

set into training and testing. For the development of the artificial neural network model, the 

data set was divided into three groups, training, testing and validation. 

it was decided to model the steam generator and the cooling tower due to its relevance 

to the operation of the plant. 

 

2.6 Conclusions 

  

Literature review pointed out that ANNs are powerful tools to model real equipment as 

steam generators and wet cooling towers with significant benefits. That approach has already 

been employed since the last 20 years for different situations. Some studies also propose the 

use of more than one methodology for developing models capable of estimating complex 

behavior of real equipment. It came clear that the use of ANNs is effective in improving 

power plant efficiency, and they should be considered as a helpful tool for improving system 

control and operation.  
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3 STEAM FLOW ESTIMATION WITH ARTIFICIAL NEURAL 

NETWORK BASED ON POWER PLANT OPERATIONAL DATA 

 

3.1 Introduction  

 

Thermoelectric power generation stands for 24.5% of the Brazilian electricity matrix 

[ANEEL, 2019], and improvements on its operating efficiency are important to enhance 

system availability and reliability with less environmental impact. The development of better 

control and monitoring techniques is constantly done by power generation developers and 

stakeholders. Steam generation is a multi-parametric process and its modeling involves 

coupled phenomena. This complexity associated with the available access to important 

amounts of continuous operation data from supervisory systems makes this problem 

particularly suitable to machine learning models. Machine learning models such as artificial 

neural networks (ANN) are able to recognize patterns and to infer relationships from complex 

sets of data.  

ANNs have already been successfully applied to reproduce and simulate the behavior of 

heat transfer problems involving gas modeling, optimization of energy efficiency and NOx 

emissions, forecasting of energy resources, among others [Ghugare et al., 2014]. Specific 

ANN models were proposed by [De et al., 2007; Smrekar et al., 2009; Strušnik et al., 2015] to 

simulate real power plants and their equipment. 

De et al., 2007, present the development of an ANN model for the biomass and coal 

cofired CHP plant. The developed model is found to quickly predict the performance of the 

plant with good accuracy with 1.93% of maximum error in estimating the power output. 

Smrekar et al., 2009, examine the feasibility of ANN modeling for coal-based power or 

combined heat and power (CHP) plants. The developed model can model the power plant 

with average errors of around 1%. Strušnik et al., 2015, modelled a boiler and found an 

efficiency increases by 0.704%, representing 1960 tons of coal consumption saving, and 

consequently, 5628 tons of CO2 emissions reduced. 

The objective of this work is to present the development of an ANN model to estimate 

steam generation of a coal-fired power plant. The model is based on a real operational 

database of the PECEM 1 power plant (2x360 MW of rated capacity). Records of steam flow 

rate and pressure, fuel flow rate and water temperature at the steam generator inlet, primary, 

                                                 
1 www.energiapecem.com.br 
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secondary and over-fired air flow, oxygen level and wet bulb temperature for several periods 

and operation conditions were used.  

This study evaluates the performance of ANNs and regression models in respect to 

performance parameters for different operating conditions. Furthermore, fine tuning 

procedures regarding the ANN training structure were done with the aim to decrease the 

estimation error.  

 

3.2  Problem description 

 

PECEM power plant generates 720 MW of electricity with two similar size power 

groups, equipped with coal-fired superheated steam generators (SSG), each one designed to 

produce 360 MW with 1200 t/h of superheated steam at 540ºC and 18MPa. Figure 3.1 

presents the SSG schematic layout and displays the set of input and output parameters.  

 

 

Figure 3.1 – PECEM Superheated Steam Generator SSG  

 

Input parameters were selected from a yearlong dataset, allowing the identification of 

two separate power plant electric output regimes, at 240 MW and 360 MW, imposed by the 

national electric grid operator2 (ONS). Steam generation mass flow rate �̇�𝑠 was chosen as the 

parameter to be estimated by the ANN, based on the SSG inlet water temperature 𝑇𝑤, steam 

                                                 
2 ://ons.org.br 
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pressure steam 𝑃𝑠 , coal mass flow rate �̇�𝑐, primary air flow  �̇�𝑎𝑖𝑟1, secondary air flow �̇�𝑎𝑖𝑟2, 

over fire air flow �̇�𝑂𝐹𝐴, oxygen 𝑂2 and wet bulb temperature 𝑇𝑤𝑏 . Reference values for those 

parameters are displayed in Table 3.1. 

 

Table 3.1 – SSG parameters and their ranges  

Parameter Abbreviation Minimum Maximum 

Water temperature 𝑇𝑤 168.41 ºC 279.10 ºC 

Steam pressure 𝑃𝑠 0.799MPa  18.54 MP 

Coal mass flow rate �̇�𝑐 0.923 t/h 149.81 t/h 

Primary air flow �̇�𝑎𝑖𝑟1 12.30 kg/s 97.07 kg/s 

Secondary air flow �̇�𝑎𝑖𝑟2 106.24 kg/s 281.61 kg/s 

Over fire air flow �̇�𝑂𝐹𝐴 6.04 kg/s 69.37 kg/s 

Oxygen 𝑂2 0.69% 16.63% 

Wet bulb temperature 𝑇𝑤𝑏 17.71 °C 27.86 °C 

Steam mass flow rate �̇�𝑠 0.803 t/h 1285.63 t/h 

 

These minimum and maximum values were based on the supervisory dataset and 

assumed as reference boundaries of the SSG operation.  

 

3.3 Methodology  

 

The present section aims to describe a step-by-step sequence of actions, or 

methodology, applied to estimate the SSG steam mass flow rate �̇�𝑠. The methodology was 

developed in four blocks due to the problem complexity. Block 1 (Figure 3.2) refers to the 

data processing.  
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Figure 3.2 –Block 1- Data processing 

 

Dataset (letter A) refers to parameters presented in Table 3.1. The preprocessing 

procedure (letter B) is dedicated to data cleaning, as the original data source can present 

defective values, like zeros and negative numbers. Faulty data were replaced by interpolated 

adjacent values as this is a recommended practice (Han et al., 2012). 

Statistic analyses (letter C) perform assessments based on correlations to understand the 

relationship between the parameters. An important outcome is to identify whether data are 

part of a time series by searching for correlations based on timesteps. The Pearson correlation 

index was used to assess the mutual influence between parameters (Table 3.2). The upper 

diagonal was leaved blank due to the matrix symmetry.  
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Table 3.2 –Dataset Pearson correlation index for the SSG parameters from Table 3.1 for 

the plant yearlong dataset 

 

Water 

temperature 

(𝑇𝑤) 

Steam 

pressure 

(𝑃𝑠) 

Coal 

mass 

flow 

rate 

(�̇�𝑐) 

  Primary 

air flow 

rate  

(�̇�𝑎𝑖𝑟1) 

Secondary air 

flow rate 

(�̇�𝑎𝑖𝑟2) 

Over fire 

air flow 

rate 

(�̇�𝑂𝐹𝐴) 

Oxygen 

(𝑂2) 

Wet bulb 

temperature 

(𝑇𝑤𝑏) 

Steam 

mass 

flow 

(�̇�𝒔) 

Water temperature 

(𝑇𝑤) 
1         

Steam pressure 

(𝑃𝑠) 
0.96 1        

Coal mass flow rate 

(�̇�𝑐) 
0.96 0.96 1       

Primary air flow 

rate  

(�̇�𝑎𝑖𝑟1) 

0.72 0.65 0.74 1      

Secondary air flow 

rate 

(�̇�𝑎𝑖𝑟2) 

0.86 0.90 0.90 0.49 1     

Over fire air flow 

rate 

(�̇�𝑂𝐹𝐴) 

0.27 0.27 0.21 0.07 0.10 1    

Oxygen 

(𝑂2) 
-0.60 -0.52 -0.47 -0.54 -0.27 -0.18 1   

Wet bulb 

temperature 

(𝑇𝑤𝑏) 

-0.15 -0.18 -0.07 0.05 -0.06 -0.22 0.10 1  

Steam mass 

flow 

(�̇�𝒔) 

0.98 0.99 0.96 0.66 0.90 0.29 -0.55 -0.18 1 

 

Table 3.2 last line displays the steam mass flow rate Pearson correlation index, ranging 

from 1 (best values) to 0 (poor correlation) in absolute value. Steam pressure showed to be the 

highest correlated parameter in respect to steam mass flow rate, followed by water 

temperature, coal mass flow rate and secondary air flow. Input parameters also displayed high 

cross coefficients, showing that they also are strongly correlated.  Wet bulb temperature and 

over fire air flow did not present strong correlation with steam mass flow. These same 

correlations can be graphically seen in Figure 3.3. 
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Figure 3.3 – Steam generator correlation matrix.
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Figure 3.4 presents the sequence of actions to obtain results from linear multiple 

regression (Block 2), followed by results from ANN (Blok 3), that are compared in Block 4.  

 

 

Figure 3.4 – Methodology scheme for Linear multiple regression (Block 2), ANN (Block 

3) and Conclusions (Block 4)  

RMSE RMSE 
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Diverse set configurations were assembled with dataset processed in letter E; Block 2, 

each one built upon a particular training and testing partition. The test group was fixed with 

1489 samples, 20% of the dataset, and the training group ranged from 1489 to 5957 samples, 

or 20% to 80% of the dataset. The variation of training group size allows the decision making 

of the best set configuration to develop the ANN model. A reference model was built based 

on linear regression with all set configurations (letter F).  

Linear regression evaluation was performed in letter G (Set configurations evaluation) 

based on the Mean Absolute Error MAE, calculated by Equation 3.1 with data from the test 

group.  

 

𝑀𝐴𝐸 = (
1

𝑛
∑|𝑋𝑒𝑠𝑡 − 𝑋𝑜𝑏𝑠|

𝑛

𝑖=1

) (3.1) 

 

with X the steam mass flow rate for both measured (obs) and estimated (est) values and n the 

number of data points.  

 After the training dataset evaluation (letter G), the number of input parameters was 

downgraded from 8 to 3 input parameters, (letter H), and the model performance was 

evaluated in letter I with the same criterion.  

 PECEM power plant concentrates its operation on two electric power output levels, as 

presented in Figure 3.5. 

 

 

Figure 3.5 – PECEM electric power output levels as a function of the vapor condensation 

pressure 
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 Dataset with operational conditions concerning the mean value of 240 MW and 360 

MW were prepared in letter K. The intermediary points were disconsider as they stand for 

transitional operation. The regression model performance was evaluated once more by their 

Mean Absolute Error MAE but also by their Root Mean Squared Error RMSE (letter L), the 

former calculated by Equation 3.2. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑋𝑒𝑠𝑡 − 𝑋𝑜𝑏𝑠)2

𝑛

𝑖=1

 (3.2) 

 

RMSE penalizes large errors values, while the MAE evaluates the absolute error, 

without differentiating individual error weights. 

Block 3 presents the ANN development methodology. The processed dataset was also 

divided into training and test group to evaluate the best set configuration (letter O; Block 3). 

All set configurations were used to build ANNs, evaluated by their Mean Absolute Error 

MAE in order to identify the best set configuration. (letter Q). The number of input 

parameters was evaluated, in letter R, and the best ANN architecture was defined, in letter T, 

throughout MAE and RMSE. After the definition of the inputs number, the dataset was 

divided into the operational states (letter U), 240 and 306 MW. ANN evaluation for each 

operation stage (letter V) was made by calculation of MAE, RMSE and R² (Equation 3.3) for 

the evaluation of each ANN developed in relation to the observed values of steam flow.  

 

𝑅2 = ( 1 −
∑ (𝑋𝑜𝑏𝑠 − 𝑋𝑒𝑠𝑡)2𝑛

𝑖=1

∑ (𝑋𝑜𝑏𝑠)𝑛
𝑖=1

) (3.3) 

 

ANN Multi-Layer Perceptron MLP type was chosen to simulate the SSG, which is an 

extension of the perceptron model proposed by Rosenblatt, built with several intermediate or 

hidden layers of artificial neurons (Gevrey et al., 2003; Silva Neto and Becceneri, 2009). 

MLP model comprehends intermediary neurons, responsible for the absorption of progressive 

knowledge, enabling the execution of more complex tasks. Finally, it is worth emphasizing 

that the ANN has high connectivity since any modification in the neural network requires a 

restructuring (Haykin, 2001).  
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The network architecture and parameters had to be set: activation function; the number 

of hidden layers; the number of neurons in each layer; the number of inputs to be used; and 

the amount of data to be used in the training of the ANN.  Figure 3.6 shows the ANN 

architecture used in this work. 

 

 

Figure 3.6 - ANN architecture developed for steam flow estimation 

 

The input parameters are presented at the first layer in Figure 3.6. Hidden layer and the 

number of neurons needed to be set are also shown. That step was evaluated by trial and error 

by changing the number of neurons and the consequent RMSE and MAE values for each 

individual ANN. Sigmoidal hyperbolic tangent function, tansig, was set as the transfer 

function. The output layer with the steam mass flow rate in this architecture holds one only 

neuron and the linear function was used as the transfer function. The ANN multilayer feed 

forward perceptron with backpropagation mechanism was chosen, together with trainlm 

(Levenberg-Marquardt back propagation) as the training function. The Matlab nntool was 

used to develop the ANN. Error assessment were performed with the aid of Minitab and 

Excel. 

  

3.4  Results and discussion 

 

3.4.1 Linear Multiple Regression 

 

Estimation of the steam mass flow rate �̇�𝑠 based on real data from PECEM power 

plant, as described in Table (3.1) can be represented by Equation (3.4), 
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�̇�𝑠 = 𝑓(𝑇𝑤,  𝑃𝑠,   �̇�𝑐,  �̇�𝑎𝑖𝑟1,  �̇�𝑎𝑖𝑟2,  �̇�𝑂𝐹𝐴,  𝑂2,  𝑇𝑤𝑏) (3.4) 

 

and followed the steps of the proposed methodology, whose application is described in this 

section. The consolidated dataset prepared in Block 1 became the input for the calculation of 

linear multiple regressions along Block 2. Results were assessed by means of their Mean 

Squared Error RMSE and the Mean Absolute Error MAE (letter G). Figure 3.7 presents the 

evaluation of regression accuracy in respect to the training data size. 

 

Figure 3.7 – Regression evaluation for training data size 

  

Calculated MAE values ranged from 1.34 to 1.40, a narrow variation that does not allow 

to conclude witch training data size displayed the best performance. Complementary MAE 

calculations were performed (letter H) in respect to the number of input parameters of the 

linear multiple regressions, as shown in Figure 3.8.  

 

 

Figure 3.8 – Regression evaluation for number of inputs 
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Training data size was built with 70% of the dataset and remaining 30% were left for 

the testing procedure. The best performance was achieved with MAE of approximately 2.0% 

for 8 inputs (letter J), but its difference from the worse one, with a calculated MAE close to 

then 2.4 % for 4 inputs, can be seen as a close result.  

The correlation index between the input and the output parameters helped to decide 

which input parameter could be excluded, once lower Person index values means that the 

relation between the parameters are low. In one hand, the smaller the number of input 

parameters, the less information is transmitted to the model, but in this particular case the 

exclusion of some input parameters did not significantly increase the error.  

Finally, the dataset was divided into two groups according to the power generation 

level, 240 MW and 360 MW (letter K), although the transitional stage was also evaluated, as 

presented in Table 3.3 (letter M).  

 

Table 3.3 – Regression evaluation for operation levels and stages 

# Regression RMSE (%) MAE (%) 

1 360 MW_8 inputs 25.21 15.43 

2 360 MW_3 inputs 30.13 17.76 

3 240 MW_8 inputs 11.32 9.47 

4 240 MW_3 inputs 11.54 9.29 

5 Transitional_8 inputs 7.19 5.31 

6 Transition_3 inputs 8.06 6.06 

7 Overall dataset_8 inputs 2.92 2.05 

8 Overall dataset_3 inputs 3.35 2.3 

 

Best results were found for regressions built out from the larger dataset (#7 and #8), 

followed by the ones for the transition stages. It is possible to observe an increase of the error 

values with the restriction of the output power range. Thus, it can be inferred that restricting 

the range of operation increases the complexity of the problem as the noise of the input-output 

variables starts to become important and the problem itself becomes less linear. As a 

consequence, the regression model presented higher error values since it became less able to 

characterize the relation between the input-output variables. (letter N). 
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3.4.2 Artificial Neural Network 

 

The same assessment was performed with the ANN approach. Seven set configurations 

with particular ranges for the input parameters (Table 3.4) were evaluated to choose the 

training data size (letter O), as shown in Figure 3.9. 

 

Table 3.4 –Set configurations with particular ranges for training data size  

# Training data size Test data size 

1 20% (1489) 

20% (1489) 

2 30% (2234) 

3 40% (2978) 

4 50% (3723) 

5 60% (4468) 

6 70% (5212) 

7 80% (5957) 

 

 

Figure 3.9 – ANN evaluation for each set configuration as a function of the training data 

size 

 

MAE values shown that the training data size had negligible effect on the model 

performance. Thus, the configuration chosen was the same as used for linear multiple 

regression, 70% of the dataset for training and 30% for test.  
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The steam mass flow rate ANN architectures were also assessed in respect to their 

number of neurons and hidden layers. Four different architectures built with the complete 

dataset were compared and evaluated by their RMSE values, as presented in Table 3.5. 

  

Table 3.5 – Steam mass flow rate ANN architectures performance with the complete 

dataset  

# Architectures RMSE (%) MAE (%) 

1 ANN_8_8_1 1.59 1.175 

2 ANN_8_16_1 13.37 1.207 

3 ANN_8_8_8_1 1.60 1.188 

4 ANN_8_16_16_1 1.63 1.193 

 

The lowest RMSE and MAE values were found for architectures with two intermediate 

layers and 8 neurons in the first one and one in the last hidden layer (ANN #1), although the 

remaining networks presented similar error values. Thus, the ANN chosen to the next 

evaluations steps is ANN #1. 

Figure 3.10 presents the ANN performance in respect to the number of input 

parameters.  

 

 

Figure 3.10 – ANN performance in respect to the number of inputs 
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The variation of the number of inputs did not present significant difference of their 

MAE values. Based on that assessment, the following steps were performed with both three 

and eight input parameters. 

Finally, the dataset was separated into two operational electric output power levels, 240 

MW and 360 MW, presented in Figures 3.11 and 3.12. 

 

 

Figure 3.11 – Calculated errors RMSE and MAE for several ANN with data from plant 

240 MW power output. 

 

 

Figure 3.12 – Calculated errors RMSE and MAE for several ANN with data from plant 

360 MW power output 
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The best ANN architecture with eight inputs for 240 MW electric output was found with 

two hidden layers, sixteen neurons in the first one and one neuron in the last hidden layer 

(ANN_8_16_1). The best architecture for the model with three inputs is composed by four 

hidden layers, with six neurons in the first three layers and one in the last layers 

(ANN_3_6_6_6_1).  

The best ANN with eight input parameters for 360 MW electric output was found with 

three hidden layers with sixteen neurons in the first two layers and one neuron in the last 

neuron (ANN_8_16_16_1). However, for the same power level with three input parameters, 

the best ANN is formed by four intermediary layers with six neurons each and one neuron in 

the output layer (ANN_3_6_6_6_1).   

When comparing the performance of each model to the two 240 and 360 MW ranges, 

errors, RMSE and MAE, are higher for the 360 MW range. For the transition study the 

architectures evaluated are presented in Table 3.6. 

 

Table 3.6 – Steam mass flow rate ANN architectures errors for the transition stage 

# ANN RMSE (%) MAE (%) 

1 ANN_8_8_1 6.66 4.85 

2 ANN_8_8_8_1 7.42 5.15 

3 ANN_8_16_1 7.25 5.68 

4 ANN_3_3_1 6.74 5.17 

5 ANN_3_6_1 6.24 5.02 

6 ANN_3_3_3_1 6.54 5.21 

7 ANN_3_6_6_1 6.11 4.19 

8 ANN_3_6_12_1 6.32 5.00 

9 ANN_3_6_6_6_1 6.14 4.76 

 

 

 The best architecture for eight input parameters was ANN #1, composed of two 

intermediate layers with eight neurons each and one neuron in the output layer, and the best 

one for three input parameters was ANN #7, with by two intermediary layers with six neurons 

each and one neuron in the output layer. Table 3.7 presents the ANN models summary for 

each operation stage and number of inputs.  
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Table 3.7 - ANN evaluation for operation stages 

ANN RMSE (%) MAE (%) R² 

360 MW_8 inputs 13.85 10.82 0.87 

360 MW_3 inputs 16.69 13.19 0.80 

240 MW_8 inputs 10.28 8.11 0.91 

240 MW_3 inputs 11.47 9.18 0.89 

Transition_8 inputs 6.66 4.85 0.99 

Transition_3 inputs 6.11 4.91 0.99 

Overall dataset_8 inputs 1.76 1.28 0.99 

Overall dataset_3 inputs 1.99 1.46 0.99 

 

After completing the best ANN architecture for each specific set configuration, these 

models were compared to their respective regressions, as shown in Figure 3.13 to verify 

which one displayed the best capacity to estimate the generated steam mass flow rate. 

 

 

Figure 3.13 - ANN and regression RMSE for selected models 

 

ANN models presented lower RMSE values than their respective regressions. Higher 

errors were found for the 360 MW power level, for both ANNs and regressions. Best results 

were found for the complete dataset, composed by data from 240 up to 360 MW. The 360 
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MW power level error was estimated to be around 15 %, followed by errors of 10% for the 

240 MW power level, 5% for the transition regime, and less than 3% whenever the complete 

set of data was used to build the neural networks. ANN models were likely more efficiency to 

reproduce the problem profile than regression when the problem does not present a profile. 

The correlation coefficient of the models confirms the best performance of the models 

for the total dataset and transition range, followed by 240 MW and 360 MW power level. 

These results affirm the best ANN performance when presenting a data set with a more 

evident linear profile of the operation. 

Since the regression RMSE values were much higher than the ones for the ANN 

models, the ANN models were used to evaluate the describe the steam generator operation. 

As an example, the actual steam mass flow rate of 1093.4 t/h was compared to both regression 

and ANN outputs, which resulted in estimated values of 1114.0 t/h and 1088.2 t/h, 

respectively, or 20.6 t/h and 5.16 t/h deviation in respect to the reference value. 

 

3.5  Conclusions 

 

The aim of this study was to develop ANNs models capable of estimating the steam 

mass flow rate from a steam generator of a coal-fired power plant, based on acquired data. 

Linear multi variable regression models were built and compared to the neural network. 

Different combinations of training group sizes, number of inputs and the operation levels or 

regimes were set to be investigated.  

The effects of these combinations must be evaluated for each regression and ANN 

model, as they brought complexity to the problem. The best ANN architecture for the eight-

input combination was made of two hidden layers with sixteen neurons in the first hidden 

layer and one neuron in the last layer for 240 MW and three hidden layers with sixteen 

neurons in the first two layers and one neuron in the last neuron for 360 MW. The best-

performing ANN the three-input combination was found to be made of two hidden layers, six 

neurons in the first one and one in the last for 240 MW and four intermediate layers, six 

neurons in the first three layers and one in the last for 360 MW. 

All evaluated combinations displayed lower MAE and RMSE values for ANN models 

then for regressions. For overall dataset with the combination with eight inputs that difference 

became unimportant whenever the models were built from the complete dataset, with ANN 

RMSE and MAE of 1.76% 1.28% respectively in contrast with RMSE and MAE of 2.92% 

and 2.05%. Segregated datasets for 240 MW or 360 MW presented better results than the ones 
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from regression, as they displayed errors approximately 50% larger for the 360 MW power 

output level complete dataset and transition regime displayed similar low error responses.  

Based on these error assessments, it became possible to conclude that the ANN models 

were able to estimate steam mass flow rates based on actual data with better results than the 

ones from regression models.  
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4 PERFORMANCE ESTIMATION OF A COOLING TOWER USING AN 

ANN MODEL  

 

4.1 Introduction  

 

Heat rejection to the environment is a key factor to guarantee thermal power plant 

performance. Among several types of available equipment, wet cooling towers appear as a 

suitable option due to their high heat rejection capacity as they operate at wet bulb 

temperature level, allowing to enhance plant efficiency. Research and development actions 

toward the improvement of the equipment capacity and operational conditions are though 

justified as they can impact other factors besides fuel consumption efficiency.  

The power plant working fluid has its temperature lowered after the contact with 

atmospheric air, in a combined heat and mass transfer interaction. Convective exchange is 

added to water evaporation, in a large contact surface area. The main contribution to promote 

water cooling is given by the partial evaporation of water, accounting for 80% of the water 

temperature reduction [Cortinovis et al., 2009a, 2009b]. 

Cooling towers are classified according to the type of air circulation and can be natural, 

induced or forced. Natural air circulation towers, or atmospheric towers, the upper part of the 

equipment is closed to compel the air to circulate in the horizontal direction, ensuring its cross 

flow while water is sprayed from the top. The cooling tower is free of auxiliary power to 

induce air flow but displays large drag losses. Induced air circulation tower operates with fans 

to promote air flow, placed at the top of the equipment, so the air flows vertically from bottom 

to top, while water is distributed from the top, in a counter current flow. This type of tower 

presents greater thermal exchange efficiency, but need external power to operate. And finally, 

the forced airflow towers, where the fans are positioned in the air inlet at the bottom of the 

equipment. Thus, the air circulates from the bottom up, increasing the efficiency of the heat 

exchange, however, the fans have higher powers [Jasiulionis, 2012]. 

The removal of heat from the plant occurs through the cooling of the fluid through the 

exchange of heat with atmospheric air [Cooling tower institute, 2007]. Cooling towers are 

responsible for lowering the temperature of the water and this occurs through a combination 

of heat mass transfer. Process water is exposed to an area with a large contact surface with 

atmospheric air. Figure 4.1 shows the temperature relationship between water and air in 

counterflow cooling towers. 
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Figure 4.1 - Counterflow cooling tower operation [ASHRAE, 2016] 

 

Figure 4.1 shows the reduction of water temperature (A to B) consecutively the humid 

temperature of the air increases (C to D). The difference between the water temperature at the 

exit of the cooling process and the air temperature at the inlet of the process is called the 

approach. The approach is related to the cooling capacity of the cooling tower. The range is 

known for the difference in water temperature at the inlet and outlet of the process. The 

thermal performance of the cooling tower is mainly dependent on the wet bulb temperature at 

the process input. 

In a cooling tower, the main contribution to cooling the water is given by the 

evaporation of part of the water. Evaporation accounts for 80% of the water temperature 

reduction. The remaining 20% refers to the temperature difference between air and water 

[Cortinovis and Song, 2005]. 

There are some factors that directly influence the efficiency of the cooling tower. The 

wet bulb temperature has a great influence on the tower design, being therefore of great 

influence in the operation of the tower. With the high variation of the wet bulb temperature 

relative to the design reference temperature, the plant's operating efficiency is reduced. Other 

factors that influence the performance of cooling towers are the range, approach, the 

volumetric flow of water and the evaluation factor. 

Modeling involves heat and mass transfer phenomena of both air and water streams, 

with complex interactions. Accurate analytical or numerical modeling aims to reproduce wet 
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cooling tower behavior with different accuracy levels. However, some operation issues, like 

decreasing capacity, leakages, and environmental changes, are not easily modeled. Several 

studies emphasized these limitations, thus justifying the use of models based on Artificial 

Neural Networks ANN [Cortinovis et al., 2009a; Jasiulionis, 2012; Qi et al., 2016; Wu et al., 

2018]. 

This work aims to evaluate the capacity of an Artificial Neural Network ANN 

developed for a reference cooling tower to reproduce the behavior of similar equipment. This 

ANN can be seen as a research tool for problem identification, as it can compare operational 

data from a given tower to a reference case. 

 

4.2  Problem description 

 

PECEM site hosts two independent 360 MW subcritical coal-fired power plants, with 

identical design, here referred to as GP1 and GP2. Heat rejection is performed by a set of 16 

wet cooling towers per plant, as a part of the condensation circuit connected to the plant, 

presented in Figure 4.2 (a).  Figure 4.2 (b) shows a schematic view of the water and air 

counter flows of one cooling tower unit with its main operational mass flow parameters.  

  
(a) (b) 

Figure 4.2 - (a) PECEM plant cooling system composed by the condenser heat exchanger, 

pump and cooling tower assembly, (b) Schematic representation of a cooling tower. 

 

Hot water from the condenser is admitted into the tower at a mass flow rate of �̇�𝑤,𝑖 

releases heat to the air �̇�𝑤 and returns to the plant condenser at a mass flow rate of �̇�𝑤,𝑜. 

Makeup water at mass flow rate of �̇�𝑤,𝑟 is added to compensate water evaporation and drag 
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to the atmosphere, which is accounted to the output air mass flow rate �̇�𝑎𝑖𝑟,𝑜 in the present 

mass balance. 

Table 4.1 presents some common operational parameters for each of the plants, 

designed to deliver a gross 360 MW electric power output, 1134 t/h of superheated steam at 

180 bar and 541 ºC and steam backpressure of 85 mbar.  

 

Table 4.1 - Operating range of the two towers parameters 

Parameter Abbreviation Minimum Maximum 

Power generation P 200.27 MW 363.52 MW 

Vapor back pressure BP 67.57 mbar 1038.36 mbar 

Air dry bulb temperature 𝑇𝑑𝑏 18.73 ºC 36.55 ºC 

Air wet bulb temperature 𝑇𝑤𝑏 17.71 ºC 27.86 ºC 

Tower water output temperature Tout 27.70 ºC 38.02 ºC 

Tower water input temperature Tin 37.87 ºC 54.38 ºC 

 

𝑇𝑑𝑏 and 𝑇𝑤𝑏 are useful parameters to model cooling tower operation as the last one is 

determinant to the plant efficiency. However, the nearest weather station was located 50 

kilometers far from PECEM, and do not represent the plant site conditions. Makeup water 

mass flow is another key parameter for tower modeling, but its flow was only accounted on 

monthly basis. Heat rejection �̇�𝑟𝑒𝑗from the tower to the environment was then estimated with 

the aid of available parameters, as shown in Equation 4.1. 

𝑄𝑟𝑒𝑗
̇ = �̇�𝑤,𝑡 𝑐𝑝𝑤 ∆𝑇𝑤 (4.1) 

 

where �̇�𝑤,𝑡 is the tower water flow, where  �̇�𝑤,𝑡= �̇�𝑤,𝑖= �̇�𝑤,𝑜 ,  𝑐𝑝𝑤 is the water specific heat 

and ∆𝑇𝑤 the temperature difference ∆𝑇𝑤 =  𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛 . The makeup water mass flow rate 

�̇�𝑤,𝑟 was estimated based on Equation 4.2. 

�̇�𝑤,𝑟 =
 𝑄𝑟𝑒𝑗

̇

𝑖𝑙,𝑣 𝜌
 (4.2) 

with 𝑖𝑙,𝑣 is the water latent heat of vaporization and 𝜌 is the water liquid phase density.   
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Although sharing the same design, plants actually display slightly different operating 

conditions and performances, resulting in different vapor backpressure values. Plant operator 

indicated GP1 to be the reference case due to its reliability and better performance.  

 

4.3 Methodology 

 

A two-step methodology is presented to identify equipment operational problems or 

deviations in respect to a reference basis. Operational parameters such as Power generation P, 

vapor back pressure BP, tower water output and input temperatures Tout and Tin were acquired 

from the plant supervisory system and organized together with the calculated rejected heat 

�̇�𝑟𝑒𝑗, Equation 4.1, and the makeup water mass flow rate �̇�𝑤,𝑟 , Equation 4.2, to compose two 

separate dataset for GP1 and GP2 cooling towers. Firstly, a statistic assessment was 

performed for two the cooling tower datasets, followed by the ANN development to estimate 

makeup water mass flow rate and heat rejection. 

 

4.3.1 Statistical analysis 

 

Operational parameters were acquired from the plant supervisory system in respect to 

the electric output range from 240 MW to 360 MW, with additional filtering to exclude 

invalid data such as zeros and negative values, which referred to the plant shutdowns or 

measurement errors. Datasets were processes with Minitab, Figure 4.3 and Table 4.2 show the 

correlation matrix and the Pearson correlation index for GP1. 

 

Table 4.2- Dataset Pearson correlation index for GP1 

 P BP Tin Tout �̇�𝑤,𝑟 �̇�𝑟𝑒𝑗 

P 1      

BP -0.70 1     

Tin 0.61 0.95 1    

Tout 0.09 0.59 0.67 1   

�̇�𝑤,𝑟 0.94 0.84 0.80 0.19 1  

�̇�𝑟𝑒𝑗 0.74 0.89 0.90 0.28 0.92 1 
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Figure 4.3 - Matrix correlation for GP1. 

 

Heat rejected �̇�𝑟𝑒𝑗 presented high correlation with vapor backpressure BP and water 

input temperature Tin, with Pearson index close to 1. Makeup water flow rate �̇�𝑤,𝑟 presented 

high correlation with power generation P, vapor backpressure BP and water input temperature 

Tin. Low Person correlation indexes were found for water output temperature Tout for the two 

calculated parameters �̇�𝑤,𝑟 and �̇�𝑟𝑒𝑗. Figure 4.4 and Table 4.3 presents a similar assessment 

applied to GP2. 

 

Table 4.3- Dataset Pearson correlation index for GP2 

 P BP Tin Tout �̇�𝑤,𝑟 �̇�𝑟𝑒𝑗 

P 1      

BP 0.76 1     

Tin 0.72 0.94 1    

Tout 0.32 0.46 0.53 1   

�̇�𝑤,𝑟 0.89 0.82 0.78 0.13 1  

�̇�𝑟𝑒𝑗 0.61 0.72 0.69 -0.07 0.90 1 
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Figure 4.4 - Matrix correlation for GP2. 

 

Results for the Person correlation index in respect to GP2 showed similar trends when 

compared to GP1, but with different intensities and even slope inversions. That observation 

allows to induce that the two generating plants operate under particular conditions.  

Figure 4.5 brings plots of the rejected heat in respect to the measured parameters for 

GP1 (left side column) and GP2 (right side column). 

Figure 4.6 brings the same organization proposed in Figure 4.5 for the makeup water 

mass flow rate �̇�𝑤,𝑟 with respect to the measured parameters for GP1 (left side column) and 

GP2 (right side column).   
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 4.5 - Data plotting with the behavior of the rejected heat �̇�𝑟𝑒𝑗 respect to the measured 

parameters vapor backpressure BP, input and output water temperature Tin and Tout and power 

generation P for GP1 (a to d) and GP2 (e to h). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 4.6 - Data plotting with the behavior of the makeup water mass flow rate �̇�𝑤,𝑟 in 

respect to the measured parameters vapor backpressure BP, input and output water 

temperature Tin and Tout and power generation P for GP1 (a to d) and GP2 (e to h). 
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It is possible to identify that GP1 and GP2 presented similar behavior, but with different 

intensities. Backpressure BP presented a direct relation to rejected heat with less dispersion 

for GP1 when compared to GP2 (plots a and e). Some outline data could be identified on plot 

e around the main concentration of measured points, and the same observation can be 

extended to the remaining plots. Power generation P versus rejected heat �̇�𝑟𝑒𝑗 (plots d and h) 

allows to identify two operational baselines, one around 360 MW and another around 240 

MW, with the intermediate points probably referring to power range changes. 

The same trends formerly presented in respect to the rejected heat in Figure 4.5 can be 

observed for the makeup water mass flow rate in Figure 4.6. These findings suggest that there 

are differences concerning the power plants that justify the evaluation of the role of their 

cooling towers. 

 

4.3.2 Artificial neural network 

 

The ANN models were built based on the GP1 dataset after the examination of the 

independency and cross correlation of the input parameters. Model performance was assessed 

by the mean absolute error MSE (4.3), the root mean squared error RMSE (4.4), the mean 

absolute error MAE (4.5), and the coefficient of determination R² (4.6), presented in 

Equations (4.3) to (4.6). 

 

𝑀𝑆𝐸 =  (
1

𝑛
∑(𝑋𝑒𝑠𝑡 − 𝑋𝑜𝑏𝑠)2

𝑛

𝑖=1

) (4.3) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑋𝑒𝑠𝑡 − 𝑋𝑜𝑏𝑠)2

𝑛

𝑖=1

 (4.4) 

𝑀𝐴𝐸 = (
1

𝑛
∑|𝑋𝑒𝑠𝑡 − 𝑋𝑜𝑏𝑠|

𝑛

𝑖=1

) (4.5) 

𝑅2 = ( 1 −
∑ (𝑋𝑜𝑏𝑠 − 𝑋𝑒𝑠𝑡)2𝑛

𝑖=1

∑ (𝑋𝑜𝑏𝑠)𝑛
𝑖=1

) (4.6) 

 

with X the steam mass flow rate for both measured (obs) and estimated (est) values and n the 

number of data points.  
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Two separate ANN models were developed to estimate rejected heat and the makeup 

water mass flow rate, with a common set of four input parameters, as presented in Figure 4.7. 

 

  

(a) (b) 

Figure 4.7 – ANN inputs (a) heat rejected and (b) makeup water mass flow rate. 

 

Models were built following a two-stage procedure. The first one consisted on the ANN 

training based on GP1 dataset, and comprehended the definition of the number of hidden 

layers and neurons. The resulting network was a feed forward perceptron multilayer structure, 

with back propagation mechanism. A sigmoidal hyperbolic tangent function (tansig) was 

selected as transition function. Dataset was normalized for the -1 to +1 range to be further on 

divided in 70% for training, 15% for testing and 15% for validation. Matlab was used to build 

the ANN models, whose details and configurations are presented in the next section. The 

second stage of the methodology was dedicated to identify operational deviations of GP2 in 

respect to the reference case by feeding the GP1 ANN with data from GP2.  

 

4.4 Results and discussion 

 

ANN accuracy was assessed by searching the combination of number of neurons and 

hidden layers capable of achieving low MSE values (4.3) in respect to the observed data. Four 

ANN models were proposed to simulate the rejected heat rate �̇�𝑟𝑒𝑗 and the makeup water 

mass flow rate �̇�𝑤,𝑟 separately with data from the GP1 dataset. Results reported in Table 4.4 

were ranked in respect to the rejected heat rate mean absolute error MSE. The first number 

after the label ANN indicates the model number of inputs. Each case is reserved to a given 

hidden layer and the digit indicates the number of neurons per hidden layer. 
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Table 4.4- ANN configuration analysis GP1 

ANN configuration Makeup water mass flow rate MSE (%) Heat rejected MSE (%) 

ANN_4_4_4_1 0.0013 0.0032 

ANN_4_8_8_1 0.033 0.076 

ANN_4_4_4_4_1 0.0056 0.0058 

ANN_4_16_16_1 0.033 0.0052 

 

The smallest MSE was found for the first ANN model, with 4 inputs, 3 hidden layers 

with 4 + 4 +1 neurons per layer, respectively, for both �̇�𝑟𝑒𝑗 and �̇�𝑤,𝑟. That same ANN model 

was tested with the GP2 dataset and results are shown in figures 4.8 and 4.9.   

 

Figure 4.8 – Estimated vs. calculated results for the normalized makeup water mass flow 

rate with ANN_4_4_4_1 (Table 4.4) for GP2 dataset. 

 

Figure 4.9 - Estimated vs. calculated results for the normalized heat rejected rate with 

ANN_4_4_4_1 (Table 4.4) for GP2 dataset. 
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The ANN_4_4_4_1 model built with the GP1 dataset proved to be able to estimate both 

�̇�𝑟𝑒𝑗 and �̇�𝑤,𝑟 values from the GP2 dataset with R² of 0.7483 and 0.9053. Some outliers were 

not captured by the ANN, like the ones already observed in plots e to h in figures 4.5 and 4.6, 

which are off standard operational points. That apparent lack of accuracy can be actually used 

as a tool to identify anomalous or off standard operational points. These former points were 

removed from GP2 dataset in order to evaluate the performance of the ANN models in 

estimating the output parameters, as shown in figures 4.10 and 4.11, expressed on the original 

operational units. 

 

Figure 4.10 – Estimated vs. calculated results for the makeup water mass flow rate with 

ANN_4_4_4_1 (Table 4.4) for GP2 dataset. 

 

Figure 4.11 - Estimated vs. calculated results for the heat rejected rate with ANN_4_4_4_1 

(Table 4.4) for GP2 dataset.  
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Estimation accuracy increased from R² values of 0.7483 and 0.9053 to 0.9693 and 

0.9922 for �̇�𝑟𝑒𝑗 with MAE value of 31.37 MW and 35.58 MW of RMSE. For �̇�𝑤,𝑟 the MAE 

value is equal to 26.09 m³/h and RMSE value of 29.55 m³/h. It is worth mentioning that the 

rejected heat rate can range from 290 to 700 MW and the makeup water mass flow rate from 

470 to 900 m³/h, which means that the MAE values present a relative deviation from 4.5% to 

10.8% for the heat rejection and from 3.7% to 5.5% for the makeup water mass flow rate. The 

RMSE values stand for a relative deviation from 5.1% to 12.3% for the first case and from 

3.3% to 6.3% for the second one. 

The present research looked at some other issues. The water temperature difference 

established by the cooling tower input and output streams was tested in order to build the 

equipment ANN, but results have shown that the use of individual parameters instead showed 

to be more accurate. The rejected heat was also calculated by means of the steam 

condensation right after the turbine discharge, but it also turned out to be less accurate then 

the use of separate water tower streams.  

 

4.5  Conclusion 

 

Cooling towers modeling is a complex task and ANN showed to be an adequate and 

convenient tool to simulate their operational parameters.  

This work aimed at developing ANN models based on data from a reference cooling 

tower and use them to simulate similar towers with different datasets willing to identify 

equipment operating deviations. In the present work, the dataset from a power plant whose 

operation was considered as well behaved and stable, called GP1, was taken as a reference to 

build ANN models to simulate a second tower dataset, GP2, as a tool for identifying 

malfunctioning or anomalous situations.  

It is worth stressing the need to evaluate the ANN architectures for each set 

configuration, which depends on the complexity of the problem. Four parameters were 

selected as independent input, enabling to calculate the tower rejected heat rate in MW and 

the makeup water mass flow rate in m³/h.  

The best ANN architecture for both calculated outputs was found with three hidden 

layers, with four neurons on the first and second ones, and one neuron on the last one, with 

mean absolute error MSE of 0.0032% and 0.0013% for the rejected heat rate and the makeup 

water mass flow rate respectively. 
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ANN models built with GP1 data were tested with the GP2 dataset, and the coefficient 

of correlation R² was found to be 0.748 and 0.905 for the rejected heat rate and the makeup 

water mass flow rate. Although less accurate, that result helped to identify some non-standard 

behavior of the tower. Therefore, another simulation was performed with a new set of 

operational data without the GP2 outlier points to give R² values of 0.98 and 0.99.  Finally, it 

is worth mentioning that the ANN models were able to identify outliers on the tower rejected 

heat rate and the makeup water mass flow rate from reliable datasets.   
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5 CONCLUSIONS 

The aim of the present study was to develop models capable of reproducing the PECEM 

coal-fired power plant equipment. ANN models were used to estimate the steam flow of the 

PECEM power plant, the rejected heat and the make-up water flow of the PECEM power 

plant cooling tower. In the second chapter, several studies were presented with ANN models 

of power plants and related process. They pointed out the satisfactory performance of this 

methodology in complex problems, such as coal-fired power plants and related processes. 

The ANN developed for the steam mass flow rate of the power plant was presented in 

Chapter 3. In this study, two models were developed, linear multivariable regression and an 

ANN model. The study evaluated the training group size, the number of inputs and the 

operation stages (240MW, 360 MW and transition stage). The best ANN architecture for the 

eight-input was composed by two hidden layers with sixteen and one neuron (ANN_8_16_1) 

for 240 MW and three hidden layers with sixteen neurons in the first two layers and one 

neuron in the last neuron (ANN_8_16_16_1) for 360 MW. For the analysis with three-inputs, 

the best-performing ANN was with four intermediate layers, six neurons in the first three 

layers and one in the last (ANN_3_6_6_6_1) for 240 MW and four hidden layers with six in 

the first three and one in the last one (ANN_3_6_6_6_1) for 360 MW. 

In all evaluated cases, ANN models presented lower RMSE values than regressions 

models. Higher errors were found for the 360 MW power operational stage. Best results were 

found for the complete dataset analysis. Power operation stage of 360 MW error was 

approximately 15%, for 240 MW stage was 10%, and 5% for the transition regime. The 

complete dataset RMSE was less than 3%. 

Finally, the best model was compared to the regression model to evaluate the steam 

generator operation. As an example, when the steam mass flow rate is 1093.4 t/h, the 

regression model and the ANN model estimate values of 1114.0 t/h and 1088.2 t/h, 

respectively, resulting in a deviation of 20.6 t/h and 5.16 t/h.  

In Chapter 4, an ANN model for a cooling tower was developed. The ANN was 

developed based on data from a reference (GP1) cooling tower and the model was applied to a 

similar tower with different datasets (GP2). This application will allow the identification of 

operational deviations in the equipment. The ANN architectures were also evaluated for each 

set configuration. Four parameters were selected as independent input, enabling to calculate 

the tower rejected heat rate in MW and the makeup water mass flow rate in m³/h.  For both 

models, the ANN architecture with higher performance was found with three hidden layers, 
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with four neurons on the first and second ones, and one neuron on the last layers 

(ANN_4_4_4_4_1), with MSE values of 0.0032% and 0.0013% for the rejected heat rate and 

the makeup water mass flow rate respectively.  

The ANN models built with GP1 data were tested in the GP2 dataset to evaluate the 

model capacity in reproducing the cooling tower operation of similar equipment. In this 

analysis, the coefficient of correlation was found equal to 0.748 and 0.905 for the rejected 

heat rate and the makeup water mass flow rate respectively. This analysis result helped to 

identify outlier behavior points of the equipment.  Removing the non-standard points from the 

dataset, the model gives R² values of 0.98 for the rejected heat rate and 0.99 for the makeup 

water mass flow rate. To conclude, the analysis developed in this chapter allows concluding 

that the ANN models were able to identify non-standard points on the cooling tower. 

 

5.1 Future works 

 

Future work could be the evaluation of variables with statics analysis and the 

development of models for other important equipment and processes based on PECEM plant 

dataset. As such, models can be associated to simulate the complete process of the power 

plant, and to promote their coupling to the supervisory control and data acquisition system in 

order to assist the operator in the decision-making process. 

In addition, the models developed in this work could be applied to the same equipment 

but in different environments. The application of these models will facilitate the modeling of 

the equipment, allowing a focus on process improvement studies. 
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