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“When you realize there is something you don’t understand,

then you’re generally on the right path to understanding all kinds of things.”

— JOSTEIN GAARDER, The Solitaire Mystery
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ABSTRACT

In emergent networks such as Internet of Things (IoT) and 5G applications, network traf-

fic estimation is of great importance to forecast impacts on resource allocation that can

influence the quality of service. Besides, controlling the network delay caused with route

selection is still a notable challenge, owing to the high mobility of the devices. To analyse

the trade-off between traffic forecasting accuracy and the complexity of artificial intelli-

gence models used in this scenario, this work first evaluates the behavior of several traffic

load forecasting models in a resource sharing environment. Moreover, in order to alle-

viate the routing problem in highly dynamic ad-hoc networks, this work also proposes

a machine-learning-based routing scheme to reduce network delay in the high-mobility

scenarios of flying ad-hoc networks, entitled Q-FANET. The performance of this new al-

gorithm is compared with other methods using the WSNet simulator. With the obtained

complexity analysis and the performed simulations, on one hand the best traffic load fore-

cast model can be chosen, and on the other, the proposed routing solution presents lower

delay, higher packet delivery ratio and lower jitter in highly dynamic networks than exist-

ing state-of-art methods.

Keywords: Routing Protocol. Emergent Networks. Artificial Intelligence. Complexity

Analysis.
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1 INTRODUCTION

The traffic generated by emerging network applications, such as those related to

video surveillance (KUNST et al., 2018), and other Internet of Things (IoT) and 5G-

supported applications (KLIKS et al., 2018) such as e-health and intelligent transporta-

tion systems, is constantly growing. With this growth, it can be expected an overload of

the existing licensed spectrum to occur soon. Dealing with this constant growth without

jeopardizing the quality of experience offered to the network clients is challenging and

may lead to a resource scarcity problem. The traditional approach used by network op-

erators to deal with this problem is to expand and upgrade their network infrastructure,

which generally demands huge investments. Network resource sharing is becoming a

method that can be used by operators to improve the quality of experience perceived by

their clients at a significantly lower cost than in the traditional unilateral approach (Zhang

et al., 2019).

To provide an environment where the sharing of network resources is available,

methods based on Artificial Intelligence algorithms can be used to forecast the traffic load

in these types of networks. Nevertheless, the network operator must take into account

two important aspects when choosing a suitable model and maintain an acceptable QoS:

accuracy and complexity. Considering this trade-off, the first part of this work analyses

the complexity of the most common algorithms that deal with traffic load forecasting. The

goal is to identify the ones that demand less computational power to operate, and at the

same time, provide high levels of accuracy. For this purpose, the main contributions of

this analysis are:

• Identification of the models that demand less computational power and have

high accuracy: Simulations with different amounts and types of network traffic are

performed with several Artificial Intelligence Models implemented in MatLab by

forecasting the network traffic load;

• Discussion of the trade-off between complexity and accuracy: It must be con-

sidered how this trade-off of parameters affects the quality of service delivered by

network operators to their customers.

Such contributions are relevant since a well-organized resource sharing initiative

may lead to a reduction in the investments necessary for the network operators to deal with

the increasing demand for network resources imposed by modern network applications
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and services. Nevertheless, resource sharing in these types of emerging networks is not

the only challenge to be overcome. Considering situations that have unique characteristics

such as network nodes that are constantly moving in regions with artificial and natural

obstacles, in addition to the most varied types of climate conditions in which they operate.

To overcome these difficulties, robust routing protocols are needed.

The technological advances in the last decades, especially in the development and

miniaturization of electronic components lead to the popularization and to the decrease

of production costs of Unmanned Air Vehicles (UAV) (MERWADAY; GÜVENç, 2015).

This allowed UAVs to be applied in many different applications in both military and civil-

ian domains, such as to perform surveillance and monitoring tasks (SUN et al., 2011),

provision of communications networks in natural disasters or in conflict regions, among

others. Common application areas also include wildfire monitoring (BARRADO et al.,

2010), search and rescue operations (MANATHARA; SUJIT; BEARD, 2011), reconnais-

sance operations, hazardous site inspection (MAZA et al., 2011), range extension and the

agriculture field (XIANG; TIAN, 2011).

The use of a single UAV is already well understood and even considered "ordi-

nary", but the use of multiple simultaneous UAVs, which can provide great advantage

over the option of a single UAV, is still a research area with many possibilities to be

explored. Despite its usefulness, this multiple UAVs setup scenario poses a challenge

regarding to the communication among them, which is not a trivial task (SAHINGOZ,

2013). Observing the importance of networked UAV systems, the second part of this

thesis focuses on Flying Ad-Hoc Networks (FANETs).

In FANETs composed of many UAVs (YASSEIN; DAMER; JORDAN, 2016), the

high mobility of the nodes creates a highly dynamic network topology. To address it,

an adaptive and autonomous routing protocol is needed, which means that the routing

protocol for FANETs should have the ability to find a reliable neighbor to complete the

transmission, by detecting the change in the environment. In this context, Q-learning is

an adaptive machine learning with environmental feedback as input, which contributes to

adaptive routing design and presents a promising approach to be used in a routing protocol

scheme (WATKINS; DAYAN, 1992).

The routing protocol based on Q-learning relies on the local data of the neighbor-

ing nodes and it did not make any assumption about any other network aspect. Most of the

Q-learning based routing protocols work by making the best choice among the neighbors

at any moment to transmit a packet to the destination. Due to the requirement of real-time
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data transmission in multiple UAVs systems, to support a number of applications, it is

crucial for a routing protocol to have low delay.

Since UAV networks present a high dynamic, if Q-learning parameters such as the

learning rate and discount factor are fixed, the accuracy of action selection declines, and

the selected link may have low probability of connecting to a neighbor node. This is a

strategy used by most of the existing Q-learning based routing protocols which may limit

they performance.

Based on these limitations, the second part of this work presents a novel Q-

learning that combines other approaches that use Reinforcement Learning to create an

optimized routing protocol for FANETs, called Q-FANET. The main contributions of this

proposed solution are:

• Delay decrease: Without a fixed routing table, Q-learning can be used with specific

rules and mechanisms to choose the optimal routing path based on a low delay

constraint;

• Exploration of last episodes with different weights: Standard Q-learning always

consider the most recent last episode to update the Q-values, which may lead to

imprecise decisions. Therefore, the proposed solution considers a finite amount of

last episodes;

• Enhanced protocol parametrization based on channel conditions: The trans-

mission quality is a important element that can impact directly on the delay of data

transmission in a FANET, even when the optimal route is selected. The proposed

solution also takes into account the channel conditions as a new metric to calculate

the Q-values.

The remainder of this work is organized as follows. In Chapter 2, an overview of

the concepts behind the main Artificial Intelligence models for traffic load forecasting in

network are presented, as well a review of the aspects of routing protocols for FANETs.

This chapter also presents the relevant related work developed in both areas. Chapter

3 presents the first part of the work, an analysis of the trade-off between complexity

and accuracy of the models used for resource sharing in emergent networks. Chapter 4

details the second part of the work, a proposal of a routing protocol for FANETs, called

Q-FANET, as well as the elaborated simulation scenario, performed tests and obtained

results, which are deeply discussed. Finally, this work is concluded in 5 presenting final

remarks and directions for future investigations.
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2 BACKGROUND AND RELATED WORKS

This chapter presents the background on Artificial Intelligence models used to

forecast the traffic load for resource sharing in networks, as well as the routing protocols

for FANETs. The chapter also discusses relevant related work in both areas.

2.1 Artificial Intelligence for Resource Sharing in Networks

The first step towards resource sharing relies on the accurate estimation of net-

work resource usage. Artificial intelligence algorithms often forecast the behavior of the

network clients, considering the amount and frequency of network traffic generated by

each network client. Approaches like Multiple Linear Regression (MLR), Regression

Trees (RT), and Fourier Analysis (FA) have been widely used to this end in the past. A

more recent approach of related work is to implement modern approaches such as Rein-

forcement Learning (RL), Deep Learning (DL) and Genetic Algorithms (GA) for traffic

load forecasting. In (KUNST et al., 2018) is showed that these techniques, in general,

are very accurate to estimate the resources occupation and consequently to allow efficient

resources sharing.

2.1.1 Multiple Linear Regression Model

Multiple Linear Regression Model (MLRM) is a statistic model widely imple-

mented for predictive analysis. MLRM explains the relationship between one continu-

ous dependent variable and two or more independent variables. This model implements

three main functions that impact on the complexity of the algorithm. First, the algorithm

chooses predictors to use during the regression phase, which aims at finding the variance

inflation factor (VIF). Then, VIF measures how much the variance of an estimated regres-

sion coefficient increases due to collinearity. Finally, the algorithm removes the variables

with high VIFs to find the best forecasting solution.

Many pieces of research applied this model in the context of data communications.

The work in (PAPADOPOULI; RAFTOPOULOS; SHEN, 2006) proposed a solution to

allow short term traffic load forecasting for wireless networks. The authors evaluated sev-

eral traffic forecasting algorithms that consider the recent traffic history and information
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related to the current traffic flow. (LIU; LEE, 2014) simulated the behavior of MLRM and

six other algorithms to evaluate whether these algorithms can predict the throughput of

mobile data networks. The approach proposed by (NAIMI et al., 2014) is focused on pre-

dicting network metrics such as the number of retransmissions and the total time expected

to transmit a data packet. The predictions are used to adjust the routing metrics in ad-hoc

wireless networks. (NOULAS et al., 2012) analyzes the information of Foursquare social

platform to predict user mobility. The user, global, and temporal feature sets are analyzed,

aiming at predicting the next check-in state.

2.1.2 Regression Tree Model

Regression Tree Model (RTM) implements a decision tree to serve as a predictive

model that observes an item to conclude its target value. This model mainly applies to the

fields of machine learning, statistics, and data mining, among others. In the field of wire-

less networks, RTM is often used to model the correlation between resource consumption

(e.g. throughput) and other factors, like the number of users in a given network, and the

priority given to each user. This correlation is generally calculated based on a data set

that generates a binary tree. This tree serves as a temporary data structure used to divide

the data set into subsets of the data, which are as homogeneous as possible following the

response variables.

According to (STROBL; MALLEY; TUTZ, 2009), a regression tree is a simple

non-parametric regression approach, which has as main characteristic the featured space.

In other words, space spanned by all predictor variables is recursively split into a set of

rectangular areas. The authors advocate that the technique group observations with simi-

lar response values. After this grouping, the solution predicts a constant value within each

resulting area. (XU et al., 2013) proposed a model to forecast network performance in a

real-time mobile applications scenarios. The solution uses a machine learning framework

that implements the concept of regression trees to identify the trend of the network per-

formance over short, fine-grained time windows, using previously available observations.
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2.1.3 Fourier Series Model

Fourier series can forecast the behavior of phenomena in various fields of research,

such as engineering, seismology, and economics, among others. A contribution of this

model is to capture the effects of seasonality over the data. The implementation of the

Fourier Series Model follows the concept of curve fitting to find the solution of the heat

equation.

The work of (LYE; YUAN; CAI, 2009) has important research that relates to this

model. Their solution decomposes the given time series (i.e. historical data) into a lin-

ear combination of frequency components via an orthogonal transform method. This

approach results in a new method for forecasting through the analysis of the frequency

domain. In this sense, the authors use Fourier’s approach for forecasting changes in elec-

tricity load, transportation, and prices.

2.1.4 Reinforcement Learning

Reinforcement Learning (RL) is an important paradigm of the Learning Process

in the field of Artificial Intelligence studies as well as an area of Machine Learning (ML)

(SUTTON; BARTO, 2018). A simple analogy that is possible to imagine is a person that

does not know the flavor of an specific food and tries it for the first time. This individual

may identify the food as something bad or good and this acquired knowledge may be used

to decide next time if this individual should eat or do not eat that food.

In the context of Computer Science, RL may be applied to an algorithm that has

some knowledge about the task that it should perform and can use it to make better choices

in order to complete the task. As shown in (BITHAS et al., 2019), ML can deal with sev-

eral challenges involving the communication in emergent networks (specially FANETs),

as well as improving various design and functional aspects such as channel modeling,

resource management, positioning, and security. The key components of a RL algorithm

are: the agent, the environment, the state, the action and the reward.

The agent learns over time to behave optimally in an environment by interacting

continuously. The agent, during its course of learning, experiences various scenarios in

the environment, which are called states. While in a particular state, the agent may choose

from a set of allowable actions and, depending on the result of each action, it receives

rewards or penalties. The learning agent overtime learns to maximize these rewards to
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behave optimally at any given state it is in.

Q-Learning is a basic form of RL which uses Q-values (also called action values)

to iteratively improve the behavior of the learning agent. These action values are defined

for states and actions. Q(S,A) is an estimation of how good is it to take the action A at

the state S.

In Q-Learning, an agent starts from a given state and makes several transitions

from its current state to a next state. Every transition happens due to an action considering

the environment the agent is interacting with. In every step of the transition, the agent

takes action, receives a reward from the environment, and then transitions to another state

until it reaches the goal. This situation is called the completion of an episode. This

estimation of Q(S,A) will be iteratively computed using a specific rule that estimates the

value of Q at every interaction of an agent with the environment is expressed by (2.1):

Q(S,A)← Q(S,A) + α(R + γmaxQ(S ′, A′)−Q(S,A)) (2.1)

S is the current state of the agent, A represents the current action picked according

to some policy, S ′ is the Next State where the agent ends up, A′ is the next best action

to pick using current Q-value estimation, and R is the reward received from the current

action. Other important parameters of this update function are:

• Discounting Factor for Future Rewards (γ): a value set between 0 and 1. Future

rewards are less valuable than current ones. Therefore they must be discounted;

• Learning rate (α) : step length taken to update the estimation of Q(S,A);

• ε-greedy policy: a simple method to select actions using the current Q-value esti-

mations. The probability of choosing the action with the highest Q-value is given

by (1-ε), while the probability of selecting a random action is (ε).

2.1.5 Deep Learning Model

The majority of modern deep learning models implement a multilayer artificial

neural network (BENGIO; COURVILLE; VINCENT, 2013). In this type of model, each

layer learns to transform input data into a more abstract and composite representation.

The main difference between deep learning and the traditional approach of an artificial
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neural network model is the number of layers that deal with the inputs. Deep learn-

ing architectures are often constructed with a greedy layer-by-layer method, choosing

which features improve performance. For supervised learning tasks, deep learning meth-

ods translate data into compact intermediate representations and derive layered structures

that remove redundancy in the representation. One can also use deep learning to imple-

ment unsupervised learning tasks, which is an important benefit since unlabeled data are

more abundant than labeled data. Examples of deep structures that fit unsupervised learn-

ing are neural history compressors and deep belief networks (BENGIO; COURVILLE;

VINCENT, 2013).

Deep learning models can deal with forecasting-related problems in diverse fields.

For example, (KHATIB et al., 2012) proposed the evaluation for sunlight based radiation

forecast to create precise models for anticipating hourly sun based radiation based on the

number of daylight hours, day, month, temperature, dampness, and area position. They

regarded the neural network-based models such as feed-forward backpropagation, cas-

cade forward backpropagation, and Elman backpropagation for the hourly solar radiation

prediction. The work of (CHEEPATI; PRASAD, 2016) modeled the load forecasting of

electricity power plant using multilayer neural networks. In that case, the authors consid-

ered the historical data as input (average measurements of electrical load) from the last

24 hours, obtaining a mean average error of 2.9%.

2.1.6 Genetic Algorithm Model

In a genetic algorithm (GA), a population of candidate solutions (individuals)

evolves to seek for the best solution for a problem. Each candidate solution has a set

of properties (chromosomes or genotype) that suffer mutations (Srinivas; Patnaik, 1994).

The evolution process begins with a population of random individuals that form a new

generation in each iteration of the algorithm. For each generation, the fitness (value of

the objective function in the optimization problem) of every individual in the population

is evaluated. The more fit individuals are selected from the current population, and each

individual’s genome is modified (recombination, mutation) to form a new generation of

candidate solutions to be used in the next iteration. The process terminates when either a

maximum number of generations has been created, or the population reaches a satisfac-

tory fitness level.

The GA approach applies to the forecasting of diverse variables. The work of
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(Kampouropoulos et al., 2018) proposes a method for the energy optimization of multi-

carrier energy systems. The method combines an adaptive neuro-fuzzy inference system,

to model and forecast the power demand of a plant. Moreover, the authors implement a

genetic algorithm to optimize the energy flow, taking into account the dynamics of the

system and the equipment thermal inertia.

2.2 Related Works in Resource Sharing for Network Clients

Find the accurate estimation of network usage is of great importance to network

operators, which may need to implement resource sharing to seek for quality of service

to their customers. However, accuracy is not the only variable to consider in resources

sharing, since a fast allocation decision is often necessary for realistic resources sharing

scenarios. Thus, one also needs to consider the computational complexity of the algo-

rithms that forecast the behavior of the customers.

Many related pieces of research have dealt with traffic load forecasting in the con-

text of wireless network operators. In (AL-TURJMAN et al., 2017), a traffic model is pre-

sented for a new generation of sensor networks that support a wide range of communication-

intensive real-time multimedia applications. The model is used to investigate the effects of

multi-hop communication on Intelligent Transportation Systems (ITS) through the imple-

mentation of a Markov discrete-time queuing system, designed to simulate the network

traffic. (QI; YAN; PENG, 2018) proposed a stochastic geometry tool to determine the

coverage probability and spectral efficiency of Unmanned Aerial Vehicle networks. Al-

though very relevant, none of these related works focuses on analyzing the computing

power demanded to operate the proposed solutions. Consequently, the trade-off between

accuracy and complexity, and its impacts on the implementation of resources sharing

among network operators are not analyzed.

2.3 Routing protocols for FANETs

This section aims to present background aspects on routing protocols for FANETs.

Towards this aim, first different types of routing protocols are introduced, then, aspects

related to each one of the major protocols are discussed. The existing routing protocols

used in so called Mobile Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks
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(VANETs) are not completely suitable to be directly applied in UAVs networks, as they

must be adapted to the higher degree of mobility that characterizes FANETs and the con-

sequently more frequent changes in the topology and in the communication links (JIANG;

HAN, 2018). Therefore, the routing protocols used in FANETs are classified in two cat-

egories: single-hop routing (FU et al., 2013) and multi-hop routing (Jean-Daniel Medjo

Me Biomo, Thomas Kunz, 2014), each one containing specific types of protocols.

In single-hop routing protocols, a static routing table is used to define the trans-

mission paths. This table is computed and loaded before the operation of the UAV nodes

and cannot be changed until the network operation is over.

As for the multi-hop routing protocols, packets are forwarded hop by hop towards

the destination. The selection of the proper hop node is the core issue of the routing

discovery. Usually, these protocols are divided into two categories: topology-based and

position-based routing (BOUKERCHE et al., 2011). Furthermore, the first category con-

sists of three types of protocols: proactive, reactive, and hybrid.

2.3.1 Static Protocols

The static protocols are considered lightweight and are designed to be imple-

mented in fixed topologies. Nevertheless, they are not fault tolerant, since it is necessary

to wait until the end of the operation in case of failure to update the routing table, what

makes these protocols not suitable for dynamic environments. To exemplify this class of

protocols, some algorithms are presented, as follows.

Load-carry-and-deliver (LCAD): Also known as Load Carry and Deliver Rout-

ing (LCDR) (CHENG et al., 2007) is a classical static routing protocol. In this protocol,

the UAVs carry and deliver packets from a ground node to the destination node. The

process consists of three main phases: loading the packets from source node, carrying

packets when flying, and delivering the packets to the destination node. LCAD provides

high network throughput and it is recommended for delay-tolerant networks. Even so,

increasing distances between source and destination can cause latency problems.

In (HEIMFARTH; ARAUJO; GIACOMIN, 2014), an adaptation of the LCAD

protocol, is used to physically carry packets, as "data mule", across the disjoint parti-

tions of a Wireless Sensor Network (WSN). The simulations show the effectiveness of

the system for concentrated traffic. Also exploring the concepts of the LCAD protocol

with UAVs serving as "data mules", the authors in (PALMA et al., 2017) proposed a field
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experiment, using the obtained results to define and implement an emulator for intermit-

tent links of the network. The results showed that trajectories at higher altitudes, despite

increasing distance between nodes, improve communication performance.

Data Centric Routing (DCR): DRC is a routing protocol for FANETs in which

the destination node (either a ground node or a UAV) sends queries with a specific goal to

gather specific information from a particular zone (KO; MAHAJAN; SENGUPTA, 2002).

This model involves minimum assistance when small numbers of UAVs are on the path.

2.3.2 Proactive Protocols

Proactive protocols, also know as active routing protocols, record and store the

routing information in each UAV belonging to the network. Each node updates its rout-

ing table to meet changes in the network topology. Therefore, the routing paths can be

selected to transmit packets with minimum waiting time (YANG; TIAN; YU, 2005). Al-

though highly used due to its characteristics of serving high-mobility network scenarios,

this type of protocols present several disadvantages, such as the amount of control packets

necessary for route establishment, what generally increases the communication overhead.

Some examples of algorithms that implement the concepts of proactive multi-hop proto-

col are presented as follows.

Destination Sequenced Distance Vector (DSDV): in this routing protocol, each

node behaves like a router, therefore, each UAV can maintain its routing table and se-

quence number for each node of the network, triggering update mechanisms whenever

there is a change in the topology (BANI; ALHUDA”, 2016). Despite being highly used,

this kind of protocols is generally not applied to dynamic networks because it is unable

to deal with fast changes in the network topology and lacks support for multipath routing

(WU; HARMS, 2001).

Optimized Link State Routing Protocol (OLSR): this well-known approach

uses two types of messages to establish the routing information. The "hello" message

finds the neighbor nodes and generates a list of neighbors and broadcasts it to the next

hop. The "topology control message" is used to maintain the topology information, mak-

ing each node to update its routing table when there is a change in the topology informa-

tion (VASILIEV; ABILOV; KHVORENKOV, 2016). OLSR is able to deal with dynamic

environments at the cost of a high overhead, due to the frequent control message exchange

demanded by the algorithm. Because of the high overhead in the original implementation
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of OLSF, alternative approaches have been proposed, such as Speed-aware Predictive-

OLSR (POLSR) protocol (ROSATI et al., 2013), in which GPS information is used to

assist the routing protocol. Based on GPS information, the relative speed between two

nodes can be obtained, which is used to evaluate the communication link quality, allow-

ing the algorithm to select the UAV with higher link quality for routing.

2.3.3 Reactive Protocols

Other common approach in the context of multi-hopping, are the reactive proto-

cols, also known as passive routing or on-demand routing protocols. This class of routing

protocols presents low overhead, since the routing information is created only when there

is a communication between two nodes. However, the overhead reduction comes at the

cost of increasing the end-to-end delay, due to the processing time required before a path

is established (HABIB; SALEEM; SAQIB, 2013). Examples of algorithms that imple-

ment the concepts of reactive protocols are provided as follows.

Dynamic Source Routing (DSR): better suitable for high-mobility networks, this

protocol establishes routing paths only when they are necessary, making it more adaptive

to link dynamics and failures (JOHNSON; MALTZ, 1996). In this protocol, the sender

node sends a unique request id to its neighbor nodes, which use their route caches to send

the packet towards the destination. The main challenge in this protocol is to refresh the

route caches in each UAV in highly dynamic environments.

Ad-hoc On-demand Distance Vector (AODV): this protocol is similar to DSR

in a way that both operate on demand. The main difference between them is that AODV

assigns dedicated time slots for packet transmission to avoid congestion and improve the

packet delivery ratio. Every node in this protocol can store different entries in the table for

every destination and establish the path for the packet transfer from source to destination

(MAISTRENKO; ALEXEY; DANIL, 2016). If the next hop is unreachable, there are

two options: drop the packet or resend it using the new established route. The protocol

consists of three phases: routing discovery, packet transmission, and route maintenance.
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2.3.4 Hybrid Protocols

The hybrid protocols are other important class, representing a combination of

proactive and reactive routing protocols, used to overcome their limitations: time de-

manded to find routes and control messages overhead, respectively. In hybrid routing

protocols, the network is divided into different regions. Proactive protocols are used to

implement intra region routing, while reactive protocols are used for inter region routing

(JAILTON et al., 2017). Research approaches that implement this concept are presented

as follows.

Zone Routing Protocol (ZRP): the concept of zones is implemented, in which

each node node belongs to a zone with a range called R. Proactive routing is used inside

the zone, while reactive routing is used when information is needed to be sent outside the

zone.

Temporarily Ordered Routing Algorithm (TORA) is a scalable, efficient and

adaptive algorithm that finds several routes between source and destination, supporting

link reversal and using an approach very similar to Multi-Path routing protocols (PARK;

CORSON, ). Unfortunately, TORA is a complex protocol, presenting high overhead when

applied to large networks. A Rapid-reestablish Temporarily Ordered Routing Algorithm

(RTORA), based on TORA, is proposed in (ZHAI; DU; REN, 2013). This algorithm

adopts a reduced-overhead mechanism to overcome the adverse effects caused by link

failure in TORA. Simulations results demonstrated that this approach has lower control

overhead and better end-to-end delay performance in comparison to TORA.

2.3.5 Position-based Protocols

Position-based protocols are another common approach, designed to deal with the

high speed of UAVs. This approach is justified because static routing tables maintained

in proactive routing protocols are not always effective for dynamic networks. At the same

time, in reactive protocols, it is costly to repeat routing establishment before each packet

transmission (RAW; DAS, 2012). To solve these problems, researchers proposed a new

kind of routing protocol based on geographic location information (LIN et al., 2012).

Greedy Perimeter Stateless Routing (GPSR): this protocol is the major exam-

ple of this class. Simulation results demonstrate that GPSR (KARP; KUNG, 2000) out-

performs most proactive and reactive protocols with respect to packet delivery ratio and
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transmission delay. Since it relies on a greedy approach, this protocol fails when a packet

arrives at a node that has no neighbor. However, recovery strategies have already been

proposed to solve this problem, such as forwarding the packet to the furthest neighbor

(BIOMO; KUNZ; ST-HILAIRE, 2014).

2.3.6 Hierarchical Protocols

The last class of routing protocols explored in this paper is the class of hierarchical

protocols. The algorithms in this class are based on a clustered approach, in which the

formation of the cluster poses as the main issue for these protocols.

Mobility prediction clustering (MPC): this is the first example of this class of

protocols. Due to high mobility in FANETs, the formation of clusters demands fast up-

dates, and this algorithm addresses this issue by predicting the updates regarding the net-

work topology (ZANG; ZANG, 2011). It forecasts the structure of mobility of the UAVs

by using structure prediction algorithm and a link expiration based mobility model, which

allows the selection of the most suitable UAV to be the cluster head.

Clustering Algorithm of UAV Networking: another clustering algorithm is pro-

posed by (KESHENG; JUN; TAO, 2008). In this approach, the clusters for multi-UAV

systems are constructed on the ground and then updated during the flying operation. The

clustering plan is calculated for selection of the cluster heads according to the geograph-

ical information. Results showed that this algorithm can be used to increase the stability

and guarantee the ability of dynamic networking.

2.4 Related Works in Routing Protocols for FANETs

From all the existing routing protocols that are used in FANETs, the ones which

are based on Q-Learning methods have proven to be a promising strategy to deal with

the dynamic changes and the high mobility of this type of emergent network. Q-Grid

(LI et al., 2014) is a routing protocol for VANETs that considers both macroscopic and

microscopic aspects when making the routing decision, dividing the region into different

grids. Q-Grid computes the Q-values of different movements between neighboring grids

for a given destination using Q-learning. Simulation comparison among Q-Grid and other

existing position-based routing protocols confirms its advantages.
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Q-Learning based Adaptive Routing model (Q-LAR) (SERHANI; NAJA; JAMALI,

2016) detects the level of mobility at each node in the network and uses a new metric,

called Q metric, which accounts for the static and dynamic routing metrics, and which are

combined and updated to the changing network topologies. Both are deployed on OLSR

protocol, with the simulations validating the effectiveness of Q-LAR over standard OLSR

protocol.

Q-Learning based gegraphic routing (Q-Geo) (JUNG; YIM; KO, 2017) uses a

scheme to reduce network overhead in high- mobility scenarios. The performance of

Q-Geo is evaluated in comparison with other methods using the NS-3 simulator. It was

found that Q-Geo has a higher packet delivery ratio and lower network overhead than

existing methods.

Q-Fuzzy (YANG; JANG; YOO, 2020) uses fuzzy logic with link- and path-level

parameters - which include transmission rate, energy state, and flight status between

neighbor UAVs - to determine the optimal routing path to the destination. These param-

eters are dynamically updated by the RL method. The results show that, in comparison

with distance vector routing based on Q-Values, Q-Fuzzy can maintain low hop count and

energy consumption and extend the network lifetime.

Q-Learning Multi-Objective Routing (QMR) (LIU et al., 2020) is a routing proto-

col that uses adaptive parameters (as the learning rate and the mechanism of exploration)

combined with link condition and specific constraints to provide low delay and low en-

ergy consumption. Compared to Q-Geo, QMR provides higher packet arrival ratio, lower

delay and energy consumption.

In the context of MANETs, (HE et al., 2019) uses a Q-Learning based CSMA/MAS

protocol. In this method, all nodes in network can be synchronized and then served in a

round-robin way without contention collisions. At the network layer, it modifies Q-Geo

and Q-Grid. The results show that this approach of the transmission protocol can pro-

vide higher packet arrival ratio and lower end-to-end delay than the existing transmission

protocols.

QNGPSR (LYU et al., 2018) is a routing protocol based on well-known GPSR for

the ad-hoc network. By using the reinforcement learning and neighbor topology informa-

tion to make next-hop selection in multiple available paths, the probability of exploring

perimeter forwarding mode that may induce network delay can be greatly reduced. The

results show that QNGPSR obtains a higher packet delivery ratio and a lower end-to-end

delay compared with the original GPSR.
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In the context of cognitive sensor networks, Q-Noise+ (FAGANELLO et al., 2013)

uses three improvements to the dynamic spectrum allocation algorithms based on rein-

forcement learning. Simulation results show that Q-Noise+ allows allocating channels

with up to 6dB better quality and 4% higher efficiency than standard Q-Learning.

In this work, both techniques used in QMR and improvements of optimal channel

selection made by Q-Noise+ are considered, with focus on providing low delay, using a

finite number of last episodes to calculate the Q-Values.
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3 COMPLEXITY ANALYSIS OF TRAFFIC LOAD FORECASTING MODELS

In this chapter, the complexity of the most common algorithms that deal with

traffic load forecasting is analysed. The goal is to identify the ones that demand less

computational power to operate, and at the same time, provide high levels of accuracy.

The trade-off between complexity and accuracy is discussed, considering how it affects

the quality of service delivered by network operators to their customers. The results

obtained indicate the more suitable artificial intelligence algorithms that enable efficient

resource sharing among network operators.

3.1 Multiple Linear Regression Model

MLRM can be applied to perform the prediction of scenario variables based on

historical information. The complexity analysis of this algorithm must take into account

three main functions performed during its operation: (I) selection of predictors, (II) search

for VIFs, and (III) removal of variables with high VIF. The computing cost of each func-

tion and the resulting order of complexity are presented in Table 3.1. The flowchart for

the algorithm is presented in Figure 3.1.

The first observation regarding the complexity analysis of this algorithm is that

step 2 has linear complexity, i.e., O(n), where n is the number Xk to be chosen. In

step 3, assuming that each X is a (n × m) matrix, the linear regression execution takes

(X ′X)−1X ′y computing instructions, resulting in an order of complexityO(k2∗(n+m)).

Continuing the complexity analysis, step 4 has constant complexity, i.e., O(1),

since VIF values were selected beforehand. Therefore, it is only necessary to check if

there are more than one of these values. Step 5 also has linear complexity, O(1), because

this step only removes a value X from the system. Step 6, in turn, has linear complexity,

O(n), since it searches among all VIF values to check whether any of them is greater than

5. Step 7 also presents linear complexity, O(1), because this step only removes a value X

from the system.

The next function executed in MLRM is to find the best model in terms of Cp, the

Mallow’s Cp (step 8). To do that, the regression process is executed over subsets, leading

to the same complexity observed in step 3. In step 9, the algorithm passes through the

subsets to perform an analysis of the results, leading to a complexity of O(n), where n is

the number of subsets. Finally, step 10 presents linear complexity, O(n), where n is the
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Figure 3.1: Multiple Linear Regression algorithm flowchart
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number of quadratic, interaction terms, or transform variables to be added.

Considering the complexity of each step, it is possible to conclude that the joint

complexity of the algorithm is equal to O(2 ∗ (k2(n + m) + 3n). Therefore, it can be

considered that the general order of complexity for the Multiple Linear Regression Model

is O(n2).

The pseudo-code for the Multiple Linear Regression Model is described in Algo-

rithm 1:

Algorithm 1 MLRM
procedure CHOOSE X,X2, ..., XK

procedure RUN REGRESSION TO FIND VIFS

if Any VIF > 5 then
if More than one then

Remove variable with highest VIF

else
Remove this X

end if
else

Run subsets regression to obtain "best" models in terms of Cp

end if
procedure DO COMPLETE ANALYSIS

procedure ADD QUADRATIC AND/OR INTERACTION TERMS OF TRANS-
FORM VARIABLES

procedure PERFORM PREDICTIONS

3.2 Regression Tree Model

The complexity of RTM relies on two main functions, which execute over a bi-

nary tree. First, the algorithm computes the best split point, using a function that creates

subsets of the original data set. Next, the algorithm selects the best attributes aiming at

implementing an accurate forecast. In this case, the computing cost of the algorithm is

proportional to the size of the data set that feeds the model. The information related to

both the computing cost and the overall order of complexity of TRM is summarized in

Table 3.1 and the flowchart for the algorithm is presented in Figure 3.2.

The complexity of this algorithm mostly depends on the procedure for selecting
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Figure 3.2: Regression Tree algorithm flowchart.

START

For each attribute A,
Traverse attribute list for

A at examine node

Find probability using
value of A to be in a

class

Update
class for A

Next
attribute

Is there
any

attribute?

STOP

All values
in A have
attribute?

C1

No

Yes

No

Yes

1

2

3

4

5

6

7

8



30

the best attribute to split and the split point. The two parameters that play a pivotal role in

the analysis are the number of attributes and the number of training examples.

The part of the algorithm that demands more resources comprises the computation

of the best split point for the continuous attribute (discretization), and the selection of the

best attributes from among the set of candidate attributes to split on. One can assume

that the complexity is quadratic in the number of attributes (denoted a) and linear in the

number of examples (denoted n). Therefore, the total complexity is O(n ∗ a2). With this

result, it can be considered that the general order of complexity for the Regression Tree

model is O(n2).

The pseudo-code for the Regression Tree is described in Algorithm 2:

Algorithm 2 Regression Tree
while Is there any attribute = TRUE do

Get next attribute

for Each attribute A do
Traverse attribute list for A at examine node

end for
while All values in A have attribute = FALSE do

Find probability using value of A to be in a class

Update class for A

end while
end while

3.3 Fourier Series Model

The Fourier Series Model can be adapted to apply it for network traffic forecast-

ing by identifying traffic patterns based on previous measurements of the traffic. The

flowchart for the Fourier series implementation is presented in Figure 3.3.

The step-by-step analysis of the algorithm’s complexity allows one to observe that

the DFT in step 2 is an important function for the implementation of the Fourier Series.

This function sets a series X[1], ..., X[N ] and, consequently has a complexity in the order

of O(2N2). Steps 3 and 4 regard to the optimization problem solved by the algorithm

using the least-squares curve fitting function. In this case, one can assume that for a least-

squares regression with N training examples and C features, it takes O(C2N) to multiply

XT by X; O(CN) to multiply XT by X; and O(C3) to compute the LU factorization of
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Figure 3.3: Fourier Series algorithm flowchart
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XTX and use it to compute the product (XTX) − 1(XTY ). Asymptotically, O(C2N)

dominatesO(CN). We can also consider thatN > C, which means thatO(C2N) asymp-

totically dominatesO(C3). This results in a total complexity of O(2N2+C3). Therefore,

it can be considered that the general order of complexity for the Fourier Series model is

O(C3).

The pseudo-code for the Fourier Series model is described in Algorithm 3:

Algorithm 3 Fourier Series
procedure LET DFT OF x[1], ..., x[N ] BE X[1], ..., X[N ]

procedure FIND AN x[N+1() SUCH THAT X[1], ..., X[N ] IS AS CLOSE AS POSSIBLE

AS X[2], ..., X[N + 1]

while Minimum X = FALSE do
Use least squares curve fitting function

end while

3.4 Reinforcement Learning

Q-Learning is the most well known algorithm that uses Reinforcement Learning

and it can be easily adapted to be applied to network traffic forecasting. The flowchart for

the Q-Learning algorithm is presented in Figure 3.4.

The analysis of the complexity of Q-learning shows that steps 2, 4, 6, and 7 have

constant complexity, i.e., O(1). Step 3 has linear complexity, O(n) since it chooses one

of the n actions from the Q-Table. Step 5 also presents linear complexity, in the order

of O(m), where m is the sum of updating the r rewards and the p penalties. The final

complexity value for this model is given by O(n · m). If assumed that the number of

actions is equal to the total of rewards and penalties of the model, then the total complexity

for the Q-Learning model is O(n2).

The pseudo-code for the Q-Learning model is described in Algorithm 4:

3.5 Deep Learning Model

A deep learning model implementation usually follows three distinct phases. The

first phase regards the selection of a data set for validation, training, and testing purposes.

Next, occurs the adaptation of the parameters of this data for training the artificial neural
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Figure 3.4: Q-Learning Algorithm flowchart
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Algorithm 4 Q-Learning
while Reach goal = FALSE do

Identify current state

Choose an action from Q-Table

Reward or penalize the action

Update the reward in Q-Table

Determine the next state

end while

network. The final phase consists of obtaining the best neural network considering the

available training data. The computing cost of each phase and the resulting order of

complexity are available in Table 3.1, while Figure 3.5 presents the flowchart for this

algorithm.

Steps 2, 7, and 13 of the flowchart present constant complexity, i.e., O(1). Steps

4 and 9 have linear complexity O(n), where n is the number of elements to split into

the three datasets. The major steps that define the complexity of this model are the feed-

forward and back-propagation processes that occur in step 5, the training in steps 6 and 8,

and the network simulation in step 12. Therefore, we do not consider the complexity of

the remaining functions on our analysis, since the complexity of the mentioned processes

will dominate the overall evaluation. In the feed-forward approach, for each layer, matrix

multiplication and an activation function are computed. It is known that naive matrix mul-

tiplication has an asymptotic runtime ofO(n3), assuming that there is the same number of

neurons in each layer and that the number of layers equals the number of neurons in each

layer. For the back-propagation, by assuming that gradient descent runs for n iterations

and that there are n layers each with n neurons, the total complexity of back-propagation

is expressed as O(n6).

Assuming that only the computational times for the feed-forward and back-propagation

are relevant to estimate the complexity of this model, the total complexity for the neural

network model is given by O(n3 + n6). Nevertheless, since the learning process is an

NP-hard problem, this conclusion is not definitive (FELDMAN, 2007). Therefore, it can

be considered that the general order of complexity for the Deep Learning model is, at

least, equivalent to O(n2).

The pseudo-code for the Deep Learning model is described in Algorithm 5:
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Figure 3.5: Deep Learning algorithm flowchart.
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Algorithm 5 Deep Learning
procedure DEFINE INPUT AND OUTPUT PARAMETERS

procedure TRAINING, VALIDATION AND TEST DATA SET EXTRACTED FROM THE

EXPERIMENTAL RESULTS

procedure DEFINE LEARNING ALGORITHM

procedure NN TRAINING AND NETWORK OPTIMIZATION

procedure WEIGHT AND BIAS ARE SELECTED RANDOMLY

while Error goal reached = FALSE do
Increase iteraction

procedure CHANING OF PARAMETERS FOR TRAINING OF THE

NETWORK(Number of hidden layers, Number of neurons in hidden layers, Momentum
factor, Transfer function)

Updated parameters (wij, wjk, bj, bk)

Validation of network

procedure OBTAINING THE BEST NN ARCHITECTURE AND

TRAINING PARAMETERS

Network is ready for performance prediction

3.6 Genetic Algorithm Model

To be applied to network traffic forecasting, the GA model can be implemented

considering three phases: (I) initial random population generation, (II) fitness calculation,

and (III) crossover or mutation. Each phase has its own computing cost that contributes

to an order of complexity. These values are presented in Table 3.1. The flowchart for this

algorithm presented in Figure 3.6.

The step-by-step complexity analysis of our implementation of GA shows that

steps 1, 6, and 10 have constant complexity, i.e., O(1). In Step 2, the complexity is lin-

ear, O(P ), where P represents the size of the population. Step 3 also presents a linear

complexity, O(P ∗G ∗O(Fitness), where G is the number of generations from the pop-

ulation that will have their fitness calculated. Both steps 7 and 8 have linear complexity,

O(Pc ∗ O(Crossover)) and O(Pm ∗ O(Mutation)), respectively. Pc is the crossover

probability and Pm is the mutation probability. The crossover type is a one-point random

crossover. The mutation consists of randomly changing one gene. The stop criteria for

this model is reached when the generation number 1000 is obtained.

The complexity of this model is highly dependent on the number of items, the
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Figure 3.6: Genetic Algorithm flowchart
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number of generations, and the computation time per generation. Therefore, considering

the complexity analysis of the algorithm steps, the overall result isO(P ∗G∗O(Fitness)∗

((Pc ∗ O(Crossover)) + (Pm ∗ O(Mutation)))). Since the complexity of the GA de-

pends mainly of O(Fitness), O(Crossover) and O(Mutation), it can be considered

that the general order of complexity for the Genetic Algorithm model is linear, therefore

equivalent to O(n), where n is the size of the population.

The pseudo-code for the Genetic Algorithm model is described in Algorithm 6:

Algorithm 6 Genetic Algorithm
procedure GENERATE INITIAL RANDOM POPULATION

while (Crossover) OR (Mutation) = TRUE do
Calculate fitness of individuals

if Satisfy stop criteria = TRUE then
Best population

else
Select individuals

end if
procedure SELECT GENETIC OPERATOR

procedure CROSSOVER(Select two individuals and swap a section of a gene
between them)

procedure MUTATION(Select one individual and mutate the its genes)

Table 3.1: Complexity Analysis
Model Function Computing Cost Order of complexity
MLRM Choose Predictors n O(n2)

Run regression to find VIFs n2

Remove variable n
Regression Tree Compute best split point n O(n2)

Selection of best attributes a2

Fourier Series Discrete Fourier Transform 2n2 O(c3)
Find the optimized value for fitting c3

Least squares fitting c2n

Q-Learning Identify current state k O(n2)
Choose an action from the Q-Table n
Update the reward in Q-Table m

Deep Learning Training, validation and test dataset n O(n2)
Changing of parameters for training the network n2

Obtaining best neural network m
Genetic Algorithm Generate initial random population n O(n)

Calculate fitness n ∗ f
Crossover/Mutation (pc ∗ n)+(pm ∗ n)

In the complexity analysis table (Table 3.1), n represents a variable corresponding

to the size of the data set used on the model. For the Regression Tree model, a represents

the number of attributes. In the Fourier Series model, c represents the number of features.
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In the Q-Learning model, k represents the constant number of identifying the current state,

n is the number of actions in the Q-Table, and m is the sum of the rewards and penalties.

For the Deep Learning model, m represents the number of datasets obtained after the

error goal is achieved. Finally, in the Genetic Algorithm Model, pc and pm represent the

probability of choosing either the crossover or the mutation operator, respectively.

3.7 Artificial Intelligence Models’ Analysis

The discussion on the trade-off between accuracy and complexity considers the

results obtained from a Matlab simulation model that takes into account three kinds of

network traffic. The traffic is aggregated to evaluate the performance of the system us-

ing different artificial intelligence approaches to forecast resource occupancy. The traffic

models for simulation consider two aspects: the connection arrival and the amount of traf-

fic per connection. The traffic generation follows the specification of the WiMAX Forum

methodology (JAIN, 2006) for system evaluation. In the simulations, there are considered

three different kinds of traffic: HTTP, VoIP, and video streaming, each one corresponding

to 60%, 20%, and 20% of the total traffic, respectively. Considering the current increase

of the amount of video streaming traffic, the WiMAX Forum methodology would need to

change this aspect to be at least higher than the HTTP and VoIP traffic, corresponding to

50% or 60% of the total traffic.

The first kind of traffic models best-effort HTTP packets. In this case, the trans-

missions comprise the main page and various objects, such as images, scripts, and other

types of files. This model processes the HTTP packets in the following manner: after re-

questing and receiving the files, the browser parses the page to produce a readable version

for the user, then the user reads the page before making a new request. To model the num-

ber and size of the objects for this simulation, we use lognormal and Pareto distributions,

respectively. The reading and parsing times follow an exponential distribution.

The model for VoIP transmissions follows the Adaptive Multi-Rate (AMR) codec,

which presents an ON/OFF behavior. To model the duration of each period, it is applied

an exponential distribution with a mean of 1026ms for the conversations, corresponding

to the ON period, and 1171ms of silence, for the OFF period, with the generation of a

Packet Data Unit (PDU) every 20ms.

Finally, the streaming of video clips implements the MPEG-4 encoding. All the

videos have variable lengths, from 15s to 60s. For the display size of the video clip,
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it is considered a resolution of 176x144. This choice of pattern creates a frame size

with a mean of 2725Kbytes after the video clip is fully compressed. It is worth men-

tioning that if the simulations considered the MPEG-10 encoding (which runs over TCP

transmissions), there would be eventual packet loss and some parameters for the video

transmissions should be changed to deal with these losses.

All simulations consider a frame duration of 10ms and a wireless channel band-

width of 10MHz. To evaluate the performance of the machine learning models for dif-

ferent traffic load scenarios, the number of active connections is varied. Considering the

simulation results, the discussion focus in two main aspects: (I) the trade-off between

accuracy and complexity, and (II) the number of connections supported with guaranteed

QoS, which is an important metric for network operators to allocate network resource.

The analysis of the trade-off between accuracy and complexity takes into account

the graphs in Figure 3.7. The first one, in Figure 3.7a, compares the order of complexity of

each machine learning model. Next, in Figure 3.7b, it is shown the percentage of accuracy

of each model in the evaluated scenario. In the complexity graph, a lower bar indicates

a better result, since in this case, it means that less computational effort is necessary to

execute the model. On the other hand, in the second graph, a higher bar is desirable and

indicates better performance in terms of forecasting accuracy.

Analyzing the graphs, one can conclude that Genetic Algorithms demand rela-

tively low computing power. On the other hand, GA presents the lowest accuracy among

all models. This behavior indicates that this technique suits the real-time needs, where the

response time is a key factor, and 93% is an acceptable level of accuracy. A network op-

erator can, for example, implement genetic algorithms to forecast the behavior of a video

conference transmission since this kind of traffic can deal with a certain level of packet

loss. However, other parameters like delay and jitter demand more control.

Another interesting behavior regards the implementation of deep learning based on

artificial neural networks. This technique is the best one in terms of accuracy, attaining a

level of more than 98%. The complexity, in this case, is in the order of O(n2). However,

analyzing Table 3.1, it is possible to conclude that this value is due to the training phase

of the model, which occurs only sporadically. The main function of the model, which is

the generation of the neural network, demands a cost in the order of O(n), demanding

considerably less computing power. Taking the trade-off between complexity and accu-

racy into consideration, for a more generic usage, a network operator should choose using

deep learning as the main technique to forecast the behavior of traffic in its channels.
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Figure 3.7: Complexity vs. Accuracy
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The second group of results, presented in Figure 3.8, relates to the QoS parame-

ters. In this case, the first graph (Fig. 3.8a) shows how many simultaneous connections are

supported while the network delay is maintained under an acceptable limit, considering

the requirements of VoIP and video applications. The second graph (Fig. 3.8b) considers

the same kind of application requirements, but it cares for the network jitter QoS param-

eter. In both graphs, a higher bar is desirable, since it indicates that more simultaneous

connections are supported.

Figure 3.8: QoS Parameters
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A visual comparison between the graphs allows one to conclude that MLRM is the

model that accepts the highest amount of connections, while it also guarantees an accept-

able level of both delay and jitter QoS parameters. This behavior clearly shows that the

network operators - which need to provide QoS-enable transmissions to their customers

- should consider the implementation of MLRM as a tool to forecast the behavior of the

transmission channels since it would demand fewer investments to serve a high number

of clients. Deep learning and genetic algorithms appear as other possibilities to address

the transmissions of traffic generated by applications demanding more restrict QoS pa-

rameters. Considering all the results, MLRM, deep learning, and genetic algorithms are

indicated to be used by network operators and the selection of one of them must rely on

the transmission scenario required by each operator.
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4 Q-FANET PROPOSAL AND EVALUATION

This chapter introduces and describes in details Q-FANET, an improved Q-learning

based routing protocol for FANETs. Even considering that, in the context of resource

sharing in networks the MLRM presents the best approach for traffic load forecasting in

terms of low complexity and high levels of accuracy, the literature review demonstrates

that routing protocols based on Q-learning methods are able to deal with the mobility

issues and high dynamic of FANETs and provide promising results in terms of network

performance.

Therefore, the proposed routing protocol is based on two Q-learning methods: Q-

Noise+ and QMR. In Q-FANET, nodes use a reinforcement learning algorithm without

having the knowledge of the entire network topology to make optimal routing decisions

considering low-delay service.

4.1 Q-FANET Design Overview

Q-FANET uses several components of QMR as basis to change and improve the

algorithm, some simplifications, and appropriate adjustments to explore other techniques

that are suitable with Q-learning. In QMR, nodes use a reinforcement learning algo-

rithm without knowledge of entire networks to make optimal routing decisions consider-

ing low-delay and low-energy service. To solve the routing problem caused by the high

mobility within FANETs, QMR also uses adaptive Q-learning parameters and a new ex-

ploration and exploitation mechanism to enhance the routing performance. The proposed

Q-FANET consists of two major modules, the Neighbor Discovery and the Routing de-

cision. On its turn, this last module contains a Q-learning sub-module and a QMR sub-

module. This overview of Q-FANET is shown in Figure 4.1.

In Q-FANET, nodes acquire their geographic location information by GPS. Fur-

ther, the routing neighbor discovery is implemented by sending HELLO packets. When

a data packet generated from a source and directed to a destination, Q-learning is the key

component of the routing decision. In this sense, if a routing hole problem happens (i.e.,

all the neighbors of a node are distant than the distance from this node to the destination),

the penalty mechanism is triggered.

Algorithm 7 shows Q-FANET method and the details of the work at each phase.
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Figure 4.1: Q-FANET flowchart exposing its internal modules.
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Algorithm 7 Q-FANET
α := 0.6

ε := 0.1

QV alues := 0.5

procedure ROUTING NEIGHBOR DISCOVERY

if TimeToGetNodeLocation = True then
Send HELLO Packet

Update Neighbor Table

end if
procedure ROUTING DECISION

while dataToSend = True do
if neighborsList 6= Empty then

Q-learning

else if neighborsWithV elocity > 0 then
routingNeighbor := neighborWithTopV elocity

else
Penalty Mechanism

end if
end while
procedure Q-LEARNING

if randomEpsilon > ε then
Select neighbor with highest Q-value

else
Select random neighbor

end if
Update Q-value using Q-Noise+

procedure PENALTY MECHANISM

Related neighbors receive minimum reward

Update Q-value of related neighbors using Q-Noise+
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4.1.1 Routing Neighbor Discovery

The Neighboring Discovery module is a control structure used to maintain the

routing information updated. Q-FANET updates the location of the nodes regularly.

The updating frequency is one of the parameters of the proposal, and its default value

is 100ms. In cases where a node does not inform its location within a specific expiration

time of 300ms, its neighbors remove the specific route from their routing tables.

This updating process in Q-FANET relies on the exchange of HELLO packets. In

this case, a given network node broadcasts these packets aiming to discover its neighbors.

This packet exchange happens periodically and carries the node’s geographic location,

energy, mobility model, queuing delay, learning rate, and Q-value. When a node receives

HELLO packets, it uses the information to establish and maintain its neighbor table.

The idea behind this module is to keep the network ready for transmission at any

time. Therefore, its functionalities are always running, despite the existence of a cur-

rent transmission session. Whenever a transmission is necessary, the Neighbor Discovery

module communicates with the Routing Decision, the other module of Q-FANET, to pro-

vide information regarding the best routes.

4.1.2 Routing Decision Module

The Routing Decision Model receives information about the available routes and

selects the one for a given node to transmit data. To do that, it counts with two sub-

modules: (I) QMR and (II) Q-learning that consider the background of existing ap-

proaches but modify them to improve the routing response.

4.1.2.1 Q-learning Sub-module

The standard Q-learning algorithm applies a reward-based approach which takes

into account two criteria: (I) the transmission successful rate in the last episode, and (II)

the sum of the successful rates of all past episodes. However, except for the most recent

episode, the remaining episodes are considered to have the same weight in the decision

process. This approach can lead to imprecise decisions, especially in scenarios where

a high number of epochs are used, as for example, in military, surveillance and rescue

mission application scenarios where dynamism of the situation implies in high mobility
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of the nodes.

Taking the mobility problem into consideration, an extension of Q-learning, called

Q-learning+, was proposed in (FAGANELLO et al., 2013). This extension of the algo-

rithm considers a finite amount of past episodes. In this approach, the newer the epoch, the

higher its weight is. A look back value (l) is defined to designate the amount of episodes

to be considered.

Considering this new information, the Q-value at the instant of time t + 1 is cal-

culated as expressed in (4.1), where wi represents the weight of the last l instants of time

and ri is the reward calculated based on l + 1 actions.

Qt+1(at) = (1− α)
l∑

n=1

[wt−irt−i](at) + αrt(at) (4.1)

Although Q-learning+ is designed to improve the efficiency of the original ap-

proach, it keeps only considering the amount of successful transmissions to perform its

decision, ignoring the propagation conditions of the channel. In order to consider also the

channel conditions, another algorithm called Q-Noise can be used. This algorithm con-

siders the transmission quality as a secondary metric, which is calculated according to the

Signal-to-Interference-plus-Noise Ratio (SINR) measured in a given channel. This ap-

proach tries to avoid the selection of a channel when it is available but noisy. In this case,

Q-learning+ would elect this channel as a transmission candidate, but the transmission

quality should be unacceptable.

Q-Noise deals with two criteria to take the decision: (I) the learning rate consider-

ing the reward obtained in an episode T , (II) a quality criteria that considers both the SINR

level of the channel, and the importance of the SINR for a given transmission, calculating

a weighted reward in the last episode with respect to the trade-off between channel avail-

ability and transmission quality. These adaptations to the Q-learning+ algorithm create

the Q-Noise+ approach and are expressed in (4.2).

Qt+1(at) = (1− α)
l∑

n=1

[wt−irt−i](at) + αrt(at) + (Sw + η) (4.2)

In (4.2), two new terms are included, Sw and η. Sw (0 ≤ Sw ≤ 1) represents the

weight of the SINR in the calculated reward. The η value corresponds to the intervals of

SINR, as described in Table 4.1. The values defined for η have been chosen to change

the Q-value according to the channel conditions based on (RAPPAPORT, 1996). In good

propagation conditions, η will be higher, increasing the Q-value of the channel. On the



49

other hand, as the channel conditions get worse, η decreases, unchanging the Q-value.

Table 4.1: Noise level correspondence.
SINR value η

SINR < 15dB 0
15dB ≤ SINR < 17dB 0.25
17dB ≤ SINR < 20dB 0.5
20dB ≤ SINR < 25dB 0.75

SINR ≥ 25dB 1

Q-FANET also makes use of an ε-greedy policy for exploration and exploitation

(WUNDER; LITTMAN; BABES, 2010). The exploration consists in searching for un-

known actions (i.e. obtain new knowledge). Nevertheless, exploration in excess makes

it difficult to retain some better actions. On the other hand, the exploitation is to take

advantage of explored actions which may generate high rewards. Although, too much

exploitation makes it difficult to select some undiscovered potential optimal actions.

In order to balance the trade-off between exploration and exploitation, the ε-greedy

policy instructs the Q-learning Sub-module to explore by choosing a random path with

probability ε (usually 10%) and exploit by choosing the option which offers the highest

Q-value.

Q-FANET benefits from these approaches as building blocks of the Q-learning

Sub-module. One crucial adaptation proposed in Q-FANET regards the reward function,

which is discussed in the next sub-section.

4.1.2.2 Reward function

In Q-FANET, a data structure called R-Table (Reward Table) is proposed to store

reward cells. The initial value of the reward cell values is zero. After each forwarded data

from node i to node j, the R-table values are updated according to the logic expressed in

(4.3):

R(s, a) =


rmax = 100, if link (i, j) leads to destination

rmin = −100, if link (i, j) is local minimum

r = 50, otherwise

(4.3)

When the next hop j is the destination node, it means that the destination node
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is the neighbor of node i, so the link from node i to node j gets the maximum reward

value rmax. Node i is a local minimum when all its neighbors are farther away from the

destination than itself, therefore the minimum reward value rmin is applied. In any other

case, such as node j being a relay node in the path to the destination, the value of 50 will

be given as reward.

4.1.2.3 QMR Sub-module

The QMR sub-module is responsible for the penalty mechanism and to control the

constraint regarding the velocity of the nodes to support the better decision.

Penalty Mechanism :

Routing holes will increase the delay of the data packet. Q-FANET proposes a

modification to the penalty mechanism of QMR, aiming to reduce the existence of routing

holes. This mechanism applies to the following cases:

• Routing hole: if a node j discovers that all of its neighbors are further than itself

from the destination, then it sends a feedback to the previous node i.

• Not-ACK: if a node i does not receive an ACK packet from next-hop node j.

In both scenarios, the action taken by the penalty mechanism will be that node i

will give the rmin for the link i, j and update the corresponding Q-value of the link.

V elocity Constraint :

To always obtain the minimum delay between the hops, QMR defines a veloc-

ity constraint, which was here adapted to a more simplified approach in Q-FANET. The

velocity is a given to a link i, j and it is defined in (4.4), observing (4.5):

V elocity(i, j) =
d(i,D)− d(j,D)

delay(i, j)
(4.4)

 V elocity(i, j) < 0, if d(j,D) > d(i,D)

V elocity(i, j) > 0, if d(j,D) < d(i,D)
(4.5)

These equations show that higher delays will lead to lower velocity constraint

values. Moreover, velocities below zero indicate that the distance between node j and the

destination is bigger than the one from i to the destination. Q-FANET will obtain this
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velocity information during the routing neighbor discovery process, where each node will

create its routing table.

4.2 Q-FANET Working Example

For a better understanding of how Q-FANET system works in FANETs, Figure

4.2 shows a simple network topology as an example scenario for the application of the

proposed Q-FANET. In this network there are the source node (S), destination node (D)

and relay nodes (1, 2, 3, 4, 5). In the scenario represented in 4.2a, it is assumed that at a

current time t, there are two data packets in the network, i.e„ two agents. Packet 1 (P1)

and Packet 2 (P2) are in nodes S and 1, and their states are SS and S1, respectively. In

4.2a it is possible to determine that the set of neighbors of node S is node 1, node 2 and

of node 1 is node S, node 3, node 4, node 5. Node S and node 4 need to select one of their

neighbors as the next hop to forward the packet until it reaches the destination node.

By using the Velocity Constraint sub-module from QMR, it is possible to deter-

mine the velocity of the links described in 4.2b. According to the Q-FANET algorithm,

that determines that the velocity of the candidate neighbors must be greater than zero, the

set of candidate neighbors is then obtained. Therefore, the set of neighbors of node S and

node 1 are node 1, node 2 and node 3, node 4, node 5. Suppose that at time t, the Q-value

using only the Q-learning+ approach (without considering the channel conditions), SINR

and the Q-value when using the Q-Noise+ approach for the links in the network are shown

in Table 4.2. It is important to note that the SINR information was obtained in a time t−1,

since channel conditions may vary through time.

For Packet 1 (agent 1), although the Q-value of the link (S,1) is bigger than the

Q-learning+ Value of the link (S,2), the link (S,2) presented a greater SINR than the link

(S,1), therefore the updated Q-value by Q-Noise+ of the link (S,2) will be higher than the

value of the link (S,1) and the link (S,2) will be selected to forward the packet. It is also

possible to observe that the Q-learning+ Value of the link (S,2) is equal to the initial value

of 0.5, which implies that now Packet 1 (agent 1) will explore a new link, meaning that

previously undiscovered links might be explored.

As for Packet 2 (agent 2), the link (1,5) presents the higher Q-learning+ Value

between the possible forwarding neighbor candidates. Even so, notice that this link had at

time t − 1 the highest SINR value amongst all possible links and it was the best channel

to forward the packet. Therefore, the updated Q-value by Q-Noise+ of the link (1,5)
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Figure 4.2: Network topology example
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shows that this is the most suitable link to forward Packet 2. It is also possible to observe

that the link (1,5) was the best forwarding link in the past (even considering the channel

conditions, since its high SINR). Since Packet 1 (agent 1) is choosing the bast link in

the past to forward data, Q-FANET is exploiting the knowledge that has been previously

learned.

Table 4.2: Network link information
Link (S,1) (S,2) (1,3) (1,4) (1,5)

Q-learing+ Value 0.63 0.5 0.52 0.61 0.7
SINR 16.2dB 17.5dB 17.8dB 15.5dB 20.3dB

Q-Noise+ Value 0.8 0.85 0.87 0.78 1.22

From this example, it is possible to state that the adaptations to the Q-learning

algorithm provided by the Q-Noise+ method will allow that Q-FANET uses the channel

quality condition to explore new links that would normally not be used in the standard

routing approach.
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4.3 Experiment and Results

To validate the proposed Q-FANET, experiments were performed by means of

simulation that compared its performance with other existing approaches, namely, QGeo,

Q-Noise+, and QMR, using an event-driven wireless networks simulator WSNet (HAMIDA,

2009). The WSNET simulator is generally used to simulate the behavior of large scale

sensor networks, but it can be extended to FANET scenarios as well.

WSNet is an event-driven simulator for large scale wireless networks that has main

features such as node, environment and radio medium simulation, as well as dealing with

network scalability.

In WSNet (HAMIDA, 2009), the simulated nodes are built as an arbitrary assem-

bly of blocks which represent either a hardware component, a software component or

a behavior/resource of the node. There is no restriction in the number of blocks or the

relation between the blocks. As an consequence, MIMO (multiple-input and multiple-

output) systems or nodes with multiple radio interfaces may easily be implemented. The

blocks may model the following components/ behaviors such as mobility, energy source,

application, routing protocols, mac protocols, applications, radio interface and antenna

settings. An example of node architecture is depicted in the Figure 4.3:

In a simulation, the nodes birth time can be specified and does not necessarily

correspond to the the start of the simulation. Nodes can also die during a simulation

due to external physical environments or to a lack of energy. Finally, nodes can read

physical measures in their environment and impact on these measures. This feature gives

the opportunity to simulate sensor-actuator networks.

For the simulation scenario, 25 nodes (representing the UAVs) are randomly dis-

tributed in an area of 500m × 500m, with the source node being randomly selected and

coordinates of destination node set to (500, 500). The source is set to transmit a periodic

flow of data packets whose data interval is set differently for comparison. The parameters

for the scenario are shown in Table 4.3.

In the simulations, all mobile nodes move according to the Random Waypoint Mo-

bility Model (CAMP; BOLENG; DAVIES, 2002), and follow the study of (Orfanus; de

Freitas, 2014). A mobile node moves from its current location to a new random location

by choosing a direction and speed (in [minspeed, maxspeed]). In this mobility model,

after the mobile node moves to the new destination, it pauses for a specified period, and

then starts to move to another new location, set to 0 for all the simulations. Also, this
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Figure 4.3: WSNet simulator Node Architecture.
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Table 4.3: Simulation Parameters Setup.
Parameters Settings

Area size 500m × 500m
Number of nodes 25
Radio propagation propagation range, rang = 180m

Interferences interferences orthogonal
Modulation modulation bpsk

Antenna antenna omnidirectionnal
Battery energy linear

HELLO Interval 100ms
Expire Time 300ms

Initial Q-values 0.5
minspeed 0 m/s
maxspeed 15 m/s

Data packet 127 Bytes
Look back for Q-Noise+ (l) 10

SINR weight 0.7
w 0 < w < 1
α 0.6
ε 0.1
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approach considers a lookback of ten episodes to parametrize Q-Noise+. The simulation

tool generates random weights for each episode at the beginning of the simulation. The

simulation tool generates random weights for each episode at the beginning of the sim-

ulation. Different from the original Q-Noise+ approach, the most recent episode does

not receive the higher weight. Therefore, in this manner, Q-FANET can assign random

weights to each episode, not prioritizing a specific one.

Two sets of simulations were performed for each algorithm. In the first one, all 25

nodes work correctly, while the second one simulates the existence of ten faulty nodes.

This last set evaluates the protocols’ capability to overcome the unfavorable conditions of

a network with faulty nodes. The data transmission intervals vary between 10ms an 50ms,

with an increasing pace of 10 ms (LIU et al., 2020). This approach allows comparing the

results of QMR and Q-FANET in the same conditions. For each transmission interval,

initially 100 simulations runs were performed, with the final values been represented as

the results’ average. Then, the confidence interval was calculated using the t-student

distribution and performed additional runs, if necessary, to reach a confidence interval of

95%. The evaluation considers the following metrics.

• Maximum end-to-end delay: The maximum delay of the data packet from the

source node to the destination node.

• Jitter: The average delay of the data packet from the source node to the destination

node.

• Packet delivery ratio: The ratio of the number of data packets received by the

destination node to the number of data packets transmitted by the source node.

As most of the reinforcement learning techniques, it is recommended that Q-

learning uses a training time or number of cases to compose a training set, which would

be executed until a convergence of results was obtained. Nevertheless, since 100 simula-

tions are executed for each time interval - with the final average representing the result -

the training aspect of this algorithm is not used in the simulation.

This simulation parameters were chosen according to the ones stated in (LIU et

al., 2020) in order to compare the results obtained with Q-Noise+ and Q-FANET in a

equivalent test environment.



56

4.3.1 Tests for a scenario without faulty nodes

In this simulation, the source node sends one thousand data packets at different

intervals, as explained above. In Figures 4.4 to 4.6, the performance of Q-FANET for the

different tested data intervals is compared with QGeo, Q-Noise+ and QMR considering

the selected performance metrics.

Figure 4.4: Max end-to-end delay for the first scenario with all nodes working properly.
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In Figures 4.4 and 4.5 it is possible to observe that Q-FANET presents a lower

max end-to-end delay, as well as a lower jitter than Q-Geo, Q-Noise+ and QMR. There

are two reasons for this better performance: the first is the use of the velocity constraint

adapted from QMR, and the second is the channel selection from Q-Noise+. The velocity

constraint always select the routing path with the lowest delay from source to destination.

Furthermore, the use of Q-Noise+ features gives a higher weight to the channels with a

good SINR value. Exploring advantageous features of both algorithms, the new proposal

surpass them two. Besides, the standard deviation error bar shows that the results of

Q-Noise+ and Q-FANET are inside an acceptable error margin.

Figure 4.6 shows that Q-FANET increases the packet delivery ratio compared to

the other algorithms. This improvement mainly occurs because the weighted last ten

episodes change the learning rate and discount factor in the Q-learning sub-module of
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Figure 4.5: Jitter for the first scenario with all nodes working properly.
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Figure 4.6: Packet delivery ratio for the first scenario with all nodes working properly.
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Q-FANET. The SINR-based selection of the best channel, in the QMR sub-module, also

collaborates for this result.

4.3.2 Tests for a scenario with faulty nodes

In this second set of simulations, 10 out of the 25 nodes were randomly selected

to stop working by powering them off at 1 second after starting the simulation. The

performance of the proposed Q-FANET and the existing Q-Geo, Q-Noise+ and QMR

under different data interval are compared.

Figure 4.7: Max end-to-end delay for the scenario with faulty relay nodes.
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From Figures 4.7 to 4.9, it is still possible to observe that Q-FANET presents a

better performance in all the evaluation metrics. As observed in Figures 4.7 and 4.8, Q-

Geo, and Q-Noise+ are greatly affected by the presence of the faulty nodes while both

QMR and Q-FANET present a better adaptive behavior, and can overcome the problem

by selecting better routes to transmit. The packet delivery is also more affected in Q-Geo

and Q-Noise+ compared to Q-FANET and QMR. The difference between the latter ones

is smaller in this situation with faulty nodes, but still significant, particularly considering

applications such as video streaming, which are very sensitive to the Quality of Service
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Figure 4.8: Jitter for a scenario with faulty relay nodes
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Figure 4.9: Packet delivery ratio for the scenario with faulty relay nodes.
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(QoS) degradation, as discussed by (ZACARIAS et al., 2018).

It is also worth mentioning the behavior of the network after 1 s when the 10

nodes are turned off in regards to its level of connectivity. As shown in (ORFANUS;

FREITAS; ELIASSEN, 2016) this is an important measure to analyse when performing

experiments and simulations in FANETs. Since Q-FANET algorithm needs to readjust

the neighbor table of each node, the level of connectivity in the network is changed.

Nevertheless, Figure 4.10 shows that in comparison with Q-Noise+, Q-FANET presents a

better performance in this aspect, converging faster to establish the connections between

the remaining 15 nodes in the test scenario where the data transmission interval is of 10

ms and the simulation runtime has an average of 50 s.

Figure 4.10: Maximum connectivity in the scenario with faulty nodes and data interval of
10 ms.
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4.3.3 Discussing the improvements provided by Q-FANET

Figures 4.11 and 4.12 show that Q-FANET can enhance routing performance and

presents a significant improvement over QMR, which is the best among the other three

protocols. Q-FANET presents an increasing improvement in terms of maximum delay and

jitter over QMR as the time intervals between the data transmission increase, achieving
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between 45.71% and 46.75%, respectively, of better performance than QMR for the 50 ms

data sending time interval. Even in the scenario with the faulty nodes, Q-FANET shows

improvements of 44.49% and 48.28% for the maximum delay and jitter.

It is worth mentioning that Q-FANET has a minor improvement over QMR in

terms of packet delivery ratio, showing a better performance of 0.81% and 1.26%, for the

scenario with all the nodes working and the scenario with the faulty nodes, respectively.

However, considering the possible video streaming applications, this small improvement

can represent a significant result for the final user, considering Quality of Experince (QoE)

evaluations, as discussed in (ZHAO et al., 2019). Analyzing these results in light of the

discussions provided by (ZHAO et al., 2019) and (ZACARIAS et al., 2018), it is possible

to assess that the improvements provided by Q-FANET can benefit end-users of video

streaming applications through lowering the number and length of stalls in the videos, as

these QoE metrics are directly affected by the QoS delay and jitter metrics.

Figure 4.11: Improvement percentage of Q-FANET over QMR.
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Figure 4.12: Improvement percentage of Q-FANET over QMR in the faulty nodes simu-
lation scenario.

10 20 30 40 50
Data interval (ms)

0

10

20

30

40

50

Im
pr

ov
em

en
t (

%
)

Maximum delay
Jitter
Packet delivery ratio



63

5 CONCLUSION

This work addressed two important issues in emergent networks: (I) the trade-off

between accuracy and complexity of several traffic load forecasting models and (II) an

improvement to the Q-learning method for routing data information in FANETs. In the

context of the Artificial Intelligence algorithm models used in resource sharing, the review

of the main concepts of each analyzed heuristic provided a comprehensive complexity

analysis that can be used as background knowledge to support decisions about which

model is more appropriate to network operators.

The analysis results have shown that the MLRM provides the best trade-off be-

tween high accuracy and low complexity to forecast load traffic in emergent networks

such Internet of Things (IoT) and 5G applications. The results obtained also demonstrate

that Deep Learning and Genetic Algorithms present suitable options to be used by net-

works operators. The selection of one of them will often vary depending of the QoS

requirements for a specific transmission scenario.

In this sense, directions for future work include the execution of the machine learn-

ing models in realistic testbeds. A few existing testbeds are compatible with the approach

proposed by this work. The most important one is the Cognitive Radio Trial Environ-

ment (CORE) from VTT Technical Research Center of Finland (Matinmikko et al., 2013).

Moreover, after validating the models in a testbed, the goal is to implement the artificial

intelligence models in a real network operator.

Nevertheless, it would be interesting to analyse the complexity and performance

of Autoregressive integrated moving average models (ARIMA) (ZHANG, 2003) in the

forecast of network traffic load. ARIMA is one of the popular linear models in time series

forecasting and is quite flexible in that they can represent several different types of time

series.

Also, this work addressed the routing protocols for FANETs and its main chal-

lenges, proposing Q-FANET, an improved Q-Learning based routing protocol that is able

to deal with the high dynamic and mobility of this type of network. The proposed ap-

proach has brought together the main techniques and elements used in two different rout-

ing protocols that make use of Reinforcement Learning: QMR and Q-Noise+. By com-

bining and adapting elements of these base protocols, the goal was to propose a protocol

that better suites for the dynamic behavior of FANETs, improving the network reliability

and performance.
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The proposed routing solution was evaluated and compared with QMR, Q-Noise+

and Q-Geo protocols. This evaluation was performed in a scenario in which all the nodes

were active and running in normal conditions and in another scenario in which there were

a number of selected faulty nodes. The obtained results from the simulations have shown

that Q-FANET possesses significant lower maximum end-to-end delay and jitter than the

competitors in both scenarios. There was also a minor increase in the packet delivery

ratio.

For Q-FANET, future works can address other issues regarding energy consump-

tion, which is an important concern regarding small UAVs with constrained energy re-

sources. Online inner parameters adaptation is a possible direction to further enhance

the proposed solution. Moreover, particular movement patterns, use of multiple IA algo-

rithms in the same experiment, simulated LTE network environments and other wireless

ad-hoc network simulators such as NS3 (RILEY; HENDERSON, 2010) can also be used

in additional exploratory experiments.
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APPENDIX A — RESUMO EXPANDIDO

Devido ao desenvolvimento de redes emergentes como Internet of Things, apli-

cações em 5G e redes compostas por múltiplos UAVs (FANETs), existem dois desafios

principais a serem resolvidos de forma a garantir condições aceitáveis de qualidade de

serviço nesse tipo de rede: a predição da quantidade de tráfego e o roteamento eficiente

de dados.

A predição da quantidade de tráfego em redes emergentes é um assunto de grande

importância para garantir o compartilhamento igualitário de recursos e lidar com a even-

tual sobrecarga do espectro de frequências. Realizar altos investimentos para ampliar a

infra-estrutura desse tipo de rede é uma opção inviável e muito custosa. Dessa forma,

métodos baseados em abordagens que utilizam algoritmos de inteligência artificial po-

dem ser usados para criar modelos de predição de tráfego e garantia de um QoS aceitável.

Nesse tipo de modelo, dois aspectos devem ser levados em conta pelo operador de rede ao

escolher a forma de predição: precisão e complexidade. Considerando um balanceamento

justo desses dois aspectos, a análise da complexidade desses algoritmos é importante.

A popularização e a diminuição dos custos de produção de UAVs levou ao seu

amplo uso em diferentes tipos de aplicações tanto militares quanto civis. Dentre as prin-

cipais características das FANETs estão a alta mobilidade dos nodos e alta dinamismo

da topologia da rede. Sendo assim, protocolos de roteamento adaptativos e autonômos

são necessários para lidar com os desafios da transmissão eficiente de dados. Tais proto-

colos precisam ser robustos e confiáveis, e, nesse aspecto, o Q-learning é um algoritmo

adaptável de aprendizado por reforço que apresenta uma abordagem promissora para ser

utilizado como um esquema de protocolo de roteamento em uma FANET.

Sendo assim, as principais contribuições desse trabalho se dividem em dois as-

pectos diferentes. Primeiramente, na análise de complexidade dos modelos de predição

de carga de tráfego que utilizam inteligência artificial. Nesse caso, se busca identificar

os modelos que necessitam de menor poder computacional e possuem o maior nível de

precisão. Além disso, é realizada uma dicussão sobre a troca justa entre os fatores de

complexidade e precisão. Já em relação ao algoritmo de roteamento proposto Q-FANET,

deseja se obter uma diminuição no delay da rede, a exploração dos últimos episódios com

pesos diferentes e o melhoramento da parametrização do protocolo de transmissão em

FANETs baseado nas condições do canal.

Dentre os algoritmos beaseados em inteligência artificial mais utilizados para mod-
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elos de predição de carga de tráfego em redes estão o Modelo de Regressão Linear Múlti-

pla (MLRM), a Árvore de Regressão, a Série de Fourier, o Aprendizado por Reforço (com

foco especialmente no Q-learning), o Aprendizado Profundo e os Algoritmos Genéticos.

Diversos trabalhos demonstram o uso de um ou mais modelos combinados para desen-

volver padrões de carga e comportamento do tráfego. Além disso, tais abordagens com

inteligência artificial também se mostram uteis até mesmo na predição da quantidade de

incidência de radiação solar com base em informações de hora do dia, quantidade de luz,

temperatura, área, etc, utilizando diferentes modelos de redes neurais.

No âmbito de protocolos de roteamento para FANETs, eles podem ser divididos

em duas categorias principais: single-hop e multi-hop. Os protocolos do tipo single-hop,

por sua vez, são categorizados como estáticos (LCAD e DCR). Já os protocolos do tipo

multi-hop são divididos entre os baseados em topologia, posição (GPSR) e hierárquicos

(MPC e CAUAV). Por fim, os protocolos baseados em topologia são divididos em pró-

ativos (DSDV e OLSR), reativos (DSR e AODV) e híbridos (ZRP e TORA). No entanto,

a categoria de protocolos de roteamento para FANETs que se mostra mais promissora em

termos de performance são aqueles baseados em técnicas de aprendizado por reforço -

nesse caso o algoritmo de Q-learning. Diversos trabalhos apresentam as vantagens de tal

abordagem, exibindo resultados que mostram delays menores, maior taxa de entrega de

pacotes, entre outros benefícios, quando comparados a soluções similares no "estado-da-

arte".

De forma a se verificar o aspecto de troca favorável entre os aspectos de com-

plexidade e precisão, executou-se uma série de simulações com os modelos baseados em

inteligência artificial para a predição de carga de tráfego em rede. Os experimentos con-

sistiram na geração de tráfego de rede composto por 60% HTTP, 20% VoIP e 20% de

video streaming. Apesar de as primeiras análises identificarem que o modelo de série de

Fourier e o modelo de Deep Learning se mostrarem o mais preciso e o mais complexo

dentre todos, respectivamente, os resultados da simulações apresentaram diferentes resul-

tados. Satisfazendo padrões de QoS como delay e jitter, o MLRM se mostrou a melhor

abordagem para ser utilizada por operadores de rede, além de oferecer a melhor troca

entre os aspectos de complexidade e precisão.

Com tais resultados obtidos, desenvolveu-se a implementação da arquitetura do

protocolo de roteamento proposto para FANETs, o Q-FANET. O algoritmo consiste de

vários modelos que trabalham em conjunto para fornecer a rota que possua o menor delay

e melhores condições de canal possível. Primeiramente, o módulo de descoberta de viz-
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inhos estabelece a tabela de vizinhos de cada nodo através da troca de pacotes HELLO.

Após isso, um módulo de decisão de roteamento utiliza das informações obtidas pela

função de recompensa, o mecanismo de penalidade (que pune com recompensas mínimas

os links em que problemas sejam detectados) e a limitação de velocidade (que garante

a escolha de links com os menores delays possíveis para o encaminhamento de pacotes)

para computar os Q-values. Tais valores são obtidos através do uso de uma versão mod-

ificada do algoritmo Q-Noise+, uma abordagem do algoritmo tradicional do Q-Learning

que substitui o fator de desconto por uma quantidade limitada de episódios passados com

pesos diferentes e um fator que leva em conta as condições do canal.

Para testar as vantagens do Q-FANET, um experimento com diferentes simulações

foi executado para comparar a performance da solução proposta com dois algoritmos de

roteamento de dados: Q-Geo, Q-Noise+ e QMR. O cenário de simulações proposto foi

desenvolvido no simulador WSNet com 25 nodos em uma área de 500x500 m. Nas sim-

ulações, 1000 pacotes de 127Bytes são transmitidos com diferentes intervalos de tempo

(10, 20, 30, 40 e 50ms). Para cada intervalo de tempo, são executadas 100 rodadas, onde

o resultado final é representado pela média dos valores coletados. As simulações avaliam

três aspectos diferetes: delay máximo, jitter e taxa de entrega de pacotes. São realizados

dois conjuntos de testes: um em que todos os nodos funcionam normalmente, e outro em

que 10 nodos são desligados após 1s de início da simulação.

Analisando-se os resultados obtidos, pode-se afirmar que o Q-FANET apresenta

ganhos significativos em relação ao seu principal concorrente em performance, o QMR.

Em relação ao delay máximo, o Q-FANET mostrou melhoras de 45.71% (cenário normal)

and 46.75% (cenário com nodos falhando), o que se deve principalmente por causa do uso

do módulo de limitação de velocidade que escolhe o link com o menor delay possível.

Já em em relação ao jitter, o Q-FANET teve melhoras de 44.49% (cenário normal) and

48.28% (cenário com nodos falhando), uma consequência direta da diminuição do delay.

Por outro lado, o Q-FANET apresentou apenas uma baixa melhora em relação à taxa de

entrega de pacotes, com ganhos de 0.81% (cenário normal) e 1.26% (cenário com nodos

falhando), que foram ocasionados pelo uso dos 10 episódios mais recentes a escolha do

canal com melhor SINR no no algoritmo do Q-Noise+.

Sumarizando, esse trabalho forneceu contribuições em dois tópicos diferentes. Em

relação à predição de carga de tráfego em redes emergentes, se obteve que a revisão dos

principais conceitos de cada heurística analisada proporcionou uma análise extensa de

suas complexidades, informação que pode ser utilizada como conhecimento importante
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para auxiliar as decisões de operadores de rede. Além disso, o MLRM mostrou-se o

melhor modelo de predição de carga de tráfego ao balancear de forma favorável a alta

precisão e baixa complexidade em cenários de redes emergentes como Internet of Things

(IoT) e aplicações 5G.

Já o protocolo de roteamento proposto com o Q-FANET exibiu resultados que

evidenciam a alta performance da abordagem em apresentar baixos delay máximo e jitter,

quando comparado a outros protocolos competidores. Nos cenários de simulação, o Q-

FANET também apresentou um pequeno aumento na taxa de entrega de pacotes.

Com relação a trabalhos futuros, no âmbito da predição de carga de tráfego em

redes espera-se executar cenários de simulação mais realistas utilizando algoritmos de

aprendizagem de máquina, além da implementação dos modelos de predição que utilizam

inteligência artificial em ambientes reais de operação de redes emergentes. Para o Q-

FANET, se almeja tratar de outros problemas importantes como o consumo de energia -

um fator de grande importante quando tratamos de pequenos UAVs com recursos energéti-

cos limitados. A adoção de parâmetros online também é uma possível direção futura para

melhorar a abordagem proposta pelo Q-FANET. Além do mais, seria interessante explorar

diferentes padrões de movimento, ambientes simulando redes LTE e outros simuladores

de redes sem fio como o NS3 para simular experimentos exploratórios adicionais.
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