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RESUMO

Este trabalho é composto por três ensaios na área de inferência não-paramétrica, bas-

tante inter-relacionados. O primeiro ensaio visa estabelecer ordens de convergência uni-

forme sob condições mixing para o estimador linear local quando a estrutura de pontos

é �xa e da forma t/T, t ∈ {1, . . . , T}, T ∈ N. A ordem encontrada para as convergências

uniforme, em probabilidade e quase certa, é a mesma daquela estabelecida por Hansen

(2008) e Kristensen (2009) para o caso de estrutura de pontos aleatórios. O segundo en-

saio estuda as propriedades assintóticas de estimadores obtidos ao se inverter o esquema

de estimação em três etapas de Vogt e Linton (2014). Foram fornecidas as ordens de

convergência uniforme em probabilidade para os estimadores da função de tendência e da

sequência periódica. Além disso, a consistência do estimador do período fundamental e a

normalidade assintótica do estimador de tendência também foram estabelecidas. O último

estudo investiga o comportamento em amostras �nitas dos estimadores considerados no

segundo ensaio. Foram propostas janelas para o estimador de tendência do tipo plug-in.

Para as simulações realizadas, a janela plug-in mostrou bom desempenho e o estimador

do período revelou-se bastante robusto em resposta à diferentes escolhas de janelas. O

estudo foi complementado com duas aplicações, uma em climatologia e outra em economia.

Palavras chave: Econometria Não-paramétrica. Regressão Local. Teoria Assintótica.

Séries Temporais. Convergência Uniforme.



ABSTRACT

This work is composed of three essays in the �eld of nonparametric inference, all closely

inter-related. The �rst essay aims to stablish uniform convergence rates under mix-

ing conditions for the local linear estimator under a �xed-design setting of the form

t/T, t ∈ {1, . . . , T}, T ∈ N. It was found that the order of the weak and the strong

uniform convergence is the same as that of stablished by Hansen (2008) and Kristensen

(2009) for the random design setting. The second essay studies the asymptotic proper-

ties of the estimators derived from reversing the three-step procedure of Vogt and Linton

(2014). Weak uniform convergence rates was given to the trend and the periodic sequence

estimators. Furthermore, the consistency of the fundamental period estimator and the

asymptotic normality of the trend estimator was also stablished. The last study inves-

tigates the �nite sample behavior of the estimators considered in the second essay. A

plug-in type bandwith was proposed for the trend estimator. From our simulation re-

sults, the plug-in bandwidth performed well and the period estimator showed to be quite

robust with respect to di�erent bandwidth choices. The study was complemented with

two applications, one in climatology and the other in economics.

Keywords: Nonparametric Econometrics. Local Regression. Asymptotic Theory. Time

Series. Uniform Convergence.
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1 INTRODUCTION

The �rst essay of this thesis develops uniform consistency results for the local linear

estimator under mixing conditions in order to be directly applied in the next essays. The

weak and strong uniform convergence rates were provided for general kernel averages from

which we obtained the uniform rates for the local linear estimator. We restricted our atten-

tion to equally-spaced design points of the form xt,T = t/T, t ∈ {1, . . . , T}, T ∈ N. This
setting is quite common in the literature of nonparametric time series regression (ROBIN-

SON, 1989; EL MACHKOURI, 2007; VOGT;LINTON, 2014; among others). Further-

more, it also appears in the literature of nonparametric time-varying models (DALHAUS

et al., 1999; CAI, 2007) and in situations where a continuous-time process is sampled at

discrete time points (BANDI; PHILLIPS, 2003; KRISTENSEN, 2010). The convergences

were stablished uniformly over [0, 1] under arithmetically strong mixing conditions. The

kernel function was restricted to be compactly supported and Lipschitz continuous, and

inlcudes the popular Epanechnikov kernel. The uniform convergence in probability was

provided without imposing stationarity while the almost sure uniform convergence was

proved only for the stationary case.

Hansen (2008) provided a set of results on uniform convergence rates for kernel based

estimators under stationary and strongly mixing conditions. Kristensen (2009) extended

the results of Hansen (2008) by allowing the data to be heterogeneously dependent as well

as parameter dependent. A simple situation where the results of Kristensen (2009) could

be applied relates to local linear regression models where the error process is strongly

mixing without the stationarity restriction. In the literature, one can �nd the direct

application of the results of Kristensen (2009), originally for random design, done for �xed

design settings (see KRISTENSEN, 2009; VOGT; LINTON, 2014). While it is unclear,

we believe that providing explicit results would not only justi�es such application but also

creates a background for further theoretical developments.

The second essay is the main study of this thesis. We investigated the asymptotic

properties of the estimators obtained by reversing the three-step procedure of Vogt and

Linton (2014), for time series modelled as the sum of a periodic and a trend deterministic

components plus a stochastic error process. In the �rst step, the trend function is esti-

mated; given the trend estimate, an estimate of the period is provided in the second step;

the last step consists in estimating the periodic sequence. The weak uniform convergence

rates of the estimators of the trend function and the periodic sequence were provided.
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The asymptotic normality for the trend estimator was also stablished. Furthermore, it

was shown that the period estimator is consistent.

When the data has only the slowly varying component (plus an error term), its

nonparametric estimation is popularly done by using a local polynomial �tting (WAT-

SON, 1964; NADARAYA, 1964; CLEVELAND, 1979; FAN, 1992) or a spline smoothing

(WAHBA, 1990; GREEN; SILVERMAN, 1993; EUBANK, 1999). On the other hand,

for models where the data is written as a periodic component plus an error term, the

nonparametric estimation of the period and values of the periodic component was investi-

gated by Sun et al. (2012) for evenly spaced �xed design points and by Hall et al. (2000)

for a random design setting. A few nonparametric methods are available to address the

problem of estimating models where both periodic and trend components are taken into

account. As an example, there is the Singular Spectrum Analysis (BROOMHEAD; KING,

1986; BROOMHEAD et al., 1987) that have been applied in natural sciences as well as

in social sciences such as economics. A more recent nonparametric method is the three-

step estimation procedure proposed by Vogt and Linton (2014). In their supplementary

material, they suggested that reversing the order of the estimation scheme was possible

in principle. In other words, one could estimate the trend function �rst and subsequently

estimate the period and the periodic sequence. We aimed to investigate this reversed

estimation version more deeply.

The third essay exploits the bandwidth selection problem and the �nite sample per-

formance of the period estimator studied in the second essay. A plug-in type bandwidth

is proposed in order to estimate the trend function and a simulation exercise showed

good performance for the proposed bandwidth. Although we do not provide an optimal

bandwidth selection for the period estimator, we employ another simulation exercise to

evaluate the sensitivity of the estimator for di�erent bandwidth choices having the plug-

in bandwidth, as a baseline. The motivation is simple, if the performance of the period

estimator along di�erent bandwidths is roughly the same as that obtained using the �rst-

step's bandwidth, then we would not be far worse o� by choosing the plug-in bandwidth

again in the second step of the reversed estimation procedure. In our simulation, the

period estimator had a robust behaviour along di�erent bandwidths. To evaluate how the

estimators behave for real data, we made two applications: one for climatological data

and the other for economic data. In the former, we used global temperture anomalies

data which is exactly the same as that in Vogt and Linton (2014). The latter application

consists in providing central estimates for the australian non-accelerating in�ation rate of

unemployment by means of the reversed estimation procedure.
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2 UNIFORM CONVERGENCE OF LOCAL LINEAR REGRESSION FOR

STRONGLY MIXING ERRORS UNDER A FIXED DESIGN SETTING

Abstract. We provide the uniform convergence rates for the local linear estimator on

[0, 1], under equally-spaced �xed design points of the form xt,T = t/T, t ∈ {1, . . . , T}, T ∈
N. The rates of weak uniform consistency are given without imposing stationarity, while

the rates of strong uniform consistency are given only for stationary data. Both rates are

stablished assuming the data is strongly mixing. These results explicitly show that the

result of Kristensen (2009) also hold for the mentioned �xed design setting.

Keywords: Uniform convergence. Convergence in probability. Almost sure convergence.

Local linear regression. Mixing process

JEL Codes. C1,C10, C14
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2.1 Introduction

The uniform consistency of kernel-based estimators in discrete-time has been widely

investigated under various mixing conditions (BIERENS, 1983; PELIGRAD, 1992; AN-

DREWS, 1995; MASRY, 1996; NZE; DOUKHAN, 2004; FAN; YAO, 2008; HANSEN,

2008; KRISTENSEN, 2009; BOSQ, 2012; KONG et al., 2010; LI et al., 2016; HIRUKAWA

et al., 2019). In particular, Hansen (2008) provided a set of results on uniform conver-

gence rates for stationary and strongly mixing data. More recently, Kristensen (2009)

extended the results of Hansen (2008) by allowing the data to be heterogeneously depen-

dent as well as parameter dependent. While the latter extension has an special relevance

for some semiparametric problems (see LI; WOOLDRIDGE, 2002; XIA; HÄRDLE, 2006),

the former is useful in situations where data are allowed to be nonstationary but strongly

mixing, for example, in Markov-Chains that have not been initialized at their stationary

distribution (YU, 1993; KIM; LEE, 2005). A simple situation where the results of Kris-

tensen (2009) could be applied relates to local linear regression models where the error

process is strongly mixing without the stationarity restriction.

In the literature, one can �nd the direct application of the results of Kristensen (2009),

originally for random design, done for �xed design settings (see KRISTENSEN, 2009;

VOGT; LINTON, 2014). While it is unclear, we believe that providing explicit results

would not only justify such application but also creates a background for further theoret-

ical developments.

In this study, we provide the weak and strong uniform convergence rates for kernel

averages under �xed design and its application to the local linear estimator. We restrict

our attention to equally-spaced design points of the form xt,T = t/T, t ∈ {1, . . . , T}, T ∈
N. This setting is quite common in the literature of nonparametric time series regression

(ROBINSON, 1989; HALL; HART, 2012; EL MACHKOURI, 2007; VOGT; LINTON,

2014; among others). Furthermore, it also appears in the literature of nonparametric time-

varying models (DALHAUS et al., 1999; CAI, 2007) and in situations where a continuous-

time process is sampled at discrete time points (BANDI; PHILLIPS, 2003; KRISTENSEN,

2010).

The convergence is stablished uniformly over [0, 1] under arithmetically strong mixing

conditions. The kernel function is restricted to be compactly supported and Lipschitz

continuous, and inlcudes the popular Epanechnikov kernel. The uniform convergence

in probability is provided without imposing stationarity while the almost sure uniform

convergence is proved only for the stationary case.
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2.2 General results for kernel averages

Let {εt,T : 1 ≤ t ≤ T, 1 ≤ T} be a triangular array of random variables on (Ω,F , P ).

In this section, we aim to provide uniform bounds for kernel averages of the form

Ψ̂(x) = T−1

T∑
i=1

εi,TKh(i/T − x)

(
i/T − x

h

)j
, j ∈ {0, 1, . . . , jmax}, x ∈ [0, 1], (2.1)

where jmax ∈ N is �xed, Kh(u) := K(u/h)/h with K : R→ R being a kernel-like function

and h := hT is a positive sequence satisfying h → 0 and Th → ∞ as T → ∞. Since the

local polynomial regression estimators can be computed from simpler terms of the form

(2.1), we �rstly focus on providing bounds for the latter.

For each T > 1, the α-mixing coe�cients of ε1,T , . . . , εT,T is de�ned by

αT (t) = sup
1≤k≤T−t

sup{|P (A ∩B)− P (A)P (B)| : B ∈ FkT,1, A ∈ FTT,k+t}, 0 ≤ t < T,

where FkT,i = σ(εT,l : i ≤ l ≤ k). By convention, set αT (t) = 1/4 for t ≤ 0 and αT (t) = 0

for t ≥ T . This de�nition is in line with Francq and Zakoïan (2005) and Withers (1981).

We say that {εi,T : 1 ≤ i ≤ T, 1 < T} is α-mixing (or strong mixing) if the sequence

α(t) = sup
T :0≤t<T

αT (t), 0 ≤ t <∞,

satis�es α(t)→ 0 as t→∞.

Assumptions Throughout the text, we make the following assumptions:

A.1 [Strong Mixing Conditions] The triangular array {εi,T : 1 ≤ i ≤ T, T ≥ 1} is
strongly mixing with mixing coe�cients satisfying

αT (i) ≤ Ai−β (2.2)

for some �nite constants β,A > 0. In addition, there exist universal constants s > 2

and C > 0 such that, uniformly over T and i,

E[|εi,T |s] ≤ C <∞ (2.3)

and

β >
2s− 2

s− 2
. (2.4)

A.2 [Kernel Function Conditions] The real function K is Lipschitz continuous and
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has compact support, i.e., for every u ∈ R, there are L,Λ1 > 0 such that

K(u) = 0 for |u| > L, and |K(u)−K(u′)| ≤ Λ1|u− u′|,∀u′ ∈ R.

Note that A.2 implies that K is bounded and integrable1:

|K(u)| ≤ K̄ <∞,
∫

suppK

|K(u)|du ≤ µ̄ <∞, (2.5)

for some constants K̄, µ̄ > 0. Furthermore, there is C̄ > 0 such that2∫
suppK

|K(u)uj|du ≤ C̄ <∞, j ∈ N. (2.6)

Assumption A.1 speci�es that the triangular array is arithmetically strong mixing.

The mixing rate in (2.2) is related to the uniform moment bound in (2.3) by the condition

(2.4). Clearly the parameter β, which controls the decay rate of mixing coe�cients, must

be greater than 2.

The boundedness and �niteness in (2.5) and (2.6) show that assumption A.2 is strong

enough so that we do not need to make extra assumptions on the integrability of the

Kernel function.

In what follows, we assume L = 1 and
∫
K(w)dw = 1 for the sake of simplicity. In

addition, we will denote by C > 0 a generic constant which may assume di�erent values

at each appearance and does not depend on any limit variables.

2.2.1 Uniform convergence in probability

As the data is assumed to be dependent, the following variance bound involves nonzero

covariances. The proof strategy of Hansen (2008) and Kristensen (2009) consists of bound-

ing the covariances of short, medium and long lag lengths, separately. Due to our �xed

design setting, this splitting procedure is unnecessary and we are able to prove the result

more straightforwardly.

Theorem 2.1. Under A.1−A.2, for all su�ciently large T , we have

Var(Ψ̂(x)) ≤ C

Th
, ∀x ∈ [0, 1].

1Since |K| has compact support and is continuous, its image is compact, and thus bounded. Since |K|
is continuous, it is Lebesgue-measurable. Then

∫
suppK

|K|dµ ≤ C
∫
suppK

dµ ≤ C as suppK has �nite

(Lebesgue) measure.
2Denote f(u) := K(u)uj . Note that f is a compactly supported continuous real function. Then

f(R) = {0} ∪ f(supp f) which is compact, and thus bounded. Since the functions uj , I(|u| ≤ L) and K
are (Lebesgue) measurable, f(u) = K(u)ujI(|u| ≤ L) is also a measurable function, as well as its absolute

value. Then
∫
R|f |dµ =

∫ L
−L|f(u)|du ≤ 2CL <∞, for some C > 0.
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Observe that, given δ > 0, Theorem 2.1 and Chebyshev's inequality imply

P

(∣∣∣∣Ψ̂(x)− EΨ̂(x)

1/
√
Th

∣∣∣∣ > δ

)
≤ ThVar(Ψ̂(x))

δ2
≤ C

δ2
,

which is su�cient to conclude that |Ψ̂(x)−EΨ̂(x)| = Op(1/
√
Th), pointwise, in x ∈ [0, 1].

Besides establishing a variance bound, we will also need an exponential type inequality.

We state a triangular version of Theorem 2.1 of Liebscher (1996), which is derived from

Theorem 5 of Rio et al. (1995).

Lemma 2.1 (Liebscher-Rio). Let {Zi,T} be a zero-mean triangular array such that |Zi,T | ≤
bT , with strongly mixing sequence αT . Then for any ε > 0 and mT ≤ T such that

4bTmT < ε, it holds that

P

(∣∣∣∣∣
T∑
i=1

Zi,T

∣∣∣∣∣ > ε

)
≤ 4 exp

[
− ε2

64σ2
T,mT

T/mT + εbTmT8/3

]
+ 4αT (mT )

T

mT

,

where σ2
T,mT

= sup0≤j≤T−1E[(
∑min(j+mT ,T )

i=j+1 Zi,T )2].

Now we give the uniform convergence in probability over the interval [0, 1]. This is an

adaptation of Theorem 2 of Hansen (2008).

Theorem 2.2. Assume that A.1−A.2 hold and that, for

β >
2 + 2s

s− 2
(2.7)

and

θ =
β(1− 2/s)− 2− 2/s

β + 2
, (2.8)

the bandwidth satis�es
φT lnT

T θh
= o(1), (2.9)

where φT is a positive slowly divergent sequence. Then, for

aT =

(
lnT

Th

)1/2

, (2.10)

we have supx∈[0,1]|Ψ̂(x)− EΨ̂(x)| = Op(aT ).

Theorem 2.2 establishes the rate for uniform convergence in probability. Note that

(2.7) is a strengthening of (2.4). Furthermore, (2.7) together with (2.8) implies θ ∈ (0, 1).

In particular, when β = +∞, we have θ = 1− 2/s. Therefore condition (2.9) strengthens

of the conventional assumption that Th→∞.
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2.2.2 Almost sure uniform convergence

In this section we establish the almost sure convergence under strict stationarity.

Theorem 2.3. Assume that for any T , {εt,T}Tt=1 have the same joint distribution as

{ut}Tt=1 with {ut : t ∈ Z} being a strictly stationary stochastic process. Furthermore,

assume that A.1−A.2 are satis�ed with

β >
4s+ 2

s− 2
(2.11)

and that, for

θ =
β(1− 2/s)− 4− 2/s

β + 2
, (2.12)

the bandwidth satis�es
φ2
T

T θh
= O(1), (2.13)

with φT = lnT (ln lnT )2. Then, for

aT =

(
lnT

Th

)1/2

, (2.14)

we have supx∈[0,1]|Ψ̂(x)− EΨ̂(x)| = O(aT ) almost surely.

2.3 Application to local linear regression

Assume that the univariate data Y1,T , Y2,T , . . . , YT,T are observed and that

Yt,T = g(t/T ) + εt,T , t ∈ {1, . . . , T} (2.15)

where g is a smooth continuous function on [0, 1] and {εt,T} is a strongly mixing triangular

array of zero mean random variables.

The local linear estimator for g can be de�ned3 as ĝ(x) = e′1S
−1
T DT , where

ST,x =
1

T

[ ∑T
t=1Kh(xt − x)

∑T
t=1Kh(xt − x)(xt − x)/h∑T

t=1Kh(xt − x)(xt − x)/h
∑T

t=1Kh(xt − x)((xt − x)/h)2

]
, (2.16)

DT,x =
1

T

[ ∑T
t=1 Yt,TKh(xt − x)∑T

t=1 Yt,TKh(xt − x)(xt − x)/h

]
and e1 = (1, 0)′. (2.17)

For simplicity, the dependence of the design points, xt = t/T , on T was omitted. It follows

3See Chapter 5 of Wand and Jones (1994) or Section 1.6 of Tsybakov (2008).
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from this representation that

(ST,x)i,j = sT,i+j−2(x) : sT,k(x) =
1

T

T∑
t=1

(
xt − x
h

)k
Kh(xt − x), k ∈ {0, 1, 2}, (2.18)

Simple calculations show that we can also write the local linear estimator as

ĝ(x) =
T∑
t=1

Wt,T (x)Yt,T , (2.19)

where Wt,T (x) = T−1e′1S
−1
T,xX

(
t/T−x
h

)
Kh(t/T − x) for X(u) = (1, u)′. The weights Wt,T

have an useful reproducing property (see Lemma 2.6). We now give the uniform conver-

gence rates of the local linear estimator for the model (2.15).

Theorem 2.4. Assume the conditions of Theorem 2.2 hold. In addition, let the function

g be twice continuously di�erentiable on [0, 1] and let K be nonnegative and symmetric.

Then

sup
x∈[0,1]

|ĝ(x)− g(x)| = Op(aT + h2). (2.20)

If the conditions were strengthen to that of Theorem 2.3, then we have

sup
x∈[0,1]

|ĝ(x)− g(x)| = O(aT + h2) a.s. (2.21)

2.4 Proofs

Appendix A contains several lemmas (from 2.2 to 2.11) which are used in the proofs

of this section.

Proof of Theorem 2.1 Let x ∈ [0, 1] and let T be large enough so that Jx, de�ned by

(2.33) and (2.34), is well-de�ned. By assumptions A.1-A.2, Lemma 2.2 and Dadvydov's

inequality, it follows that

Var(Ψ̂(x)) ≤ 1

T 2

∑
i,t∈Jx

∣∣∣∣Kh(i/T − x)Kh(t/T − x)

(
i/T − x

h

)j(
t/T − x

h

)j
Cov(εi,T εt,T )

∣∣∣∣
≤ C

(Th)2

∑
i,t∈Jx

|Cov(εi,T εt,T )|

≤ C

(Th)2

∑
i,t∈Jx

6αT (|i− t|)((s−2)/s)(E|εsi,T |)1/s(E|εst,T |)1/s

≤ C

(Th)2

∑
i∈Jx

T∑
t=1

|i− t|−β((s−2)/s) ≤ C

(Th)2

∑
i∈Jx

T∑
t=1

|i− t|2/s−2
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≤ C

(Th)2

∑
i∈Jx

2
∞∑
l=0

l2/s−2 ≤
∑
i∈Jx

C

(Th)2
= O

(
1

Th

)
.

Proof of Theorem 2.2 For the sake of brevity, denote ki,T (x) = K((i/T − x)/h)

and ξi,T (x) = ((i/T − x)/h)j, for any x ∈ [0, 1], T ∈ N and i ∈ [T ]. Further, let T be

su�ciently large so that the set Jx, given by (2.33) and (2.34), is well-de�ned. Write

Ψ̂(x) =
1

Th

T∑
i=1

εi,Tki,T (x)ξi,T (x)I(|εi,T | > τT ) +
1

Th

T∑
i=1

εi,Tki,T (x)ξi,T (x)I(|εi,T | ≤ τT )

:= R1,T (x) +R2,T (x), (2.22)

where I is the indicator function and τT = ρT (Th)1/s with ρT = (lnT )1/(1+β)φ
(1+β/2)/(1+β)
T .

Using Holder's and Markov's inequalities, we have that

E(|εi,T |I(|εi,T | > τT )) ≤ [E(|εi,T |s)]1/s[E(I(|εi,T | > τT ))]1−1/s

= [E(|εi,T |s)]1/s[P (|εi,T | > τT )]1−1/s

≤ [E(|εi,T |s)]1/s
[
E(|εi,T |s)

τ sT

]1−1/s

= E(|εi,T |s)τ 1−s
T . (2.23)

It follows by (2.23), Assumption A.2 and Lemma 2.2 that

|ER1,T (x)| ≤ E|R1,T (x)| ≤ 1

Th

∑
i∈Jx

|ki,T (x)ξi,T (x)|E(|εi,T |s)τ 1−s
T

≤
∑
i∈Jx

Cτ 1−s
T

Th
= O(τ 1−s

T ) = o(aT ), (2.24)

since, for s > 2,
τ 1−s
T

aT
= ρ1−s

T T 1/s−1/2

(
h

lnT

)1/2

= o(1).

Hence supx∈[0,1]|ER1,T (x)| = o(aT ). From this, we cannot say much about the order

of supx∈[0,1]|R1,T (x)|. Note that

w ∈
{
w : sup

x

∣∣∣∑
i∈Jx

ki,T (x)ξi,T (x)εi,T (w)I(|εi,T |(w) > τT )
∣∣∣ > CaT

}
=⇒ ∃i ∈ Jx : w ∈ {|εi,T |(w) > τT}

=⇒ w ∈
⋃
i∈Jx

{|εi,T |(w) > τT}.

By the monotonicity and subadditivity of the measure, and using Markov's inequality, we
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have

P
(

sup
x
|R1,T | > CaT

)
≤
∑
i∈Jx

P (|εi,T | > τT ) ≤
∑
i∈Jx

E(|εi,T |s)
τ sT

≤ C
Th

τ sT
≤ C

φT
= o(1). (2.25)

From expressions (2.24), (2.25), Lemma 2.9(v) and the triangle inequality,

sup
x∈[0,1]

|R1,T (x)− ER1,T (x)| ≤ sup
x∈[0,1]

|R1,T (x)|+ sup
x∈[0,1]

|ER1,T (x)|

= Op(aT ) + o(aT ) = Op(aT ).

Lemma 2.9(iv) implies that supx|R1,T (x)− ER1,T (x)| = Op(aT ). The replacement of εi,T
by the bounded variable εi,T I(|εi,T | ≤ τT ) produce an error of order Op(aT ), uniformly in

x.

Now, we focus on the term R2,T (x). We shall construct a grid of N points on A = [0, 1].

Let Aj = {x ∈ R : |x − xj| ≤ aTh}, j ∈ N. For N = d1/(aTh)e, it is easy to see that

there is at least one set E such that E = ∪Nj=1Aj and A ⊆ E. The grid is obtained by

selecting each xj ∈ E as grid points.

Make the following de�nitions

Ψ̃(x) = (Th)−1

T∑
i=1

|k∗i,T (x)ε∗i,T |;

Ψ̄(x) = (Th)−1

T∑
i=1

|ki,T (x)ε∗i,T |;

where ε∗i,T = εi,T I{|εi,T | ≤ τT} and k∗i,T (x) = K∗((i/T − x)/h) with K∗(x) = Λ1I(|x| ≤
2L). By our convention (and without loss of generality), L = 1. From assumption A.1, it

follows that

E|Ψ̃(x)| ≤ C

Th

∑
i∈Gx

E|ε∗i,T | ≤
C

Th

∑
i∈Gx

E|εi,T | ≤ C, (2.26)

for some C > 0 and all T large enough, where Gx = {i ∈ [T ] : i/T ∈ Cx} with Cx given
by (2.36). Analogously, we can show that E|Ψ̄(x)| = O(1).

If x ∈ Al, then |x− xl|/h ≤ aT by de�nition. Also, as aT = o(1), we eventually have

aT ≤ 1. Thus, for each Al, l ∈ {1, . . . , N}, for x ∈ Al and T su�ciently large, Lemma

2.3 with δ = aT gives

|R2,T (x)−R2,T (xl)| ≤
1

Th

T∑
i=1

|ε∗i,T ||ξi,T (x)ki,T (x)− ξi,T (xl)ki,T (xl)|I(i ∈ Dx ∪Dxl)
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≤ 1

Th

∑
i∈Dx∪Dxl

|ε∗i,T |{|ki,T (x)||ξi,T (x)− ξi,T (xl)|

+ |ξi,T (xl)||ki,T (x)− ki,T (xl)|}

≤ 1

Th

∑
i∈Dx∪Dxl

|ε∗i,T |
{
|ki,T (x)|

∣∣∣∣xl − xh

∣∣∣∣ j−1∑
l=0

∣∣∣∣i/T − xh

∣∣∣∣l∣∣∣∣i/T − xlh

∣∣∣∣j−1−l

+

∣∣∣∣i/T − xlh

∣∣∣∣jaTk∗i,T (xl)

}
≤ 1

Th

∑
i∈Dx∪Dxl

|ε∗i,T |
{
|ki,T (x)|aT j + aTk

∗
i,T (xl)

}

≤ aT j

Th

T∑
i=1

|ki,T (x)ε∗i,T |+
aT
Th

T∑
i=1

|k∗i,T (xl)ε
∗
i,T |

= aT jΨ̄(x) + aT Ψ̃(xl), (2.27)

where Dx = {i ∈ [T ] : |(i/T −x)/h| ≤ 1} for any x ∈ R. By applying the same arguments

used in expression (2.27), for j = 0, we obtain that |Ψ̄(x) − Ψ̄(xl)| ≤ aT Ψ̃(xl). Using

expressions (2.26)-(2.27), for each l = 1, . . . , N , and for all su�ciently large T , we have

sup
x∈Al
|R2,T (x)− ER2,T (x)| ≤ sup

x∈Aj
{|R2,T (xl)− ER2,T (xl)|

+ |R2,T (x)−R2,T (xl)|+ E|R2,T (xl)−R2,T (x)|}

≤ sup
x∈Al
{|R2,T (xl)− ER2,T (xl)|+ aT jΨ̄(x) + aT Ψ̃(xl) + E(aT jΨ̄(x) + aT Ψ̃(xl))}

= |R2,T (xl)− ER2,T (xl)|+ aT [Ψ̃(xl) + EΨ̃(xl)] + aT j sup
x∈Al

[Ψ̄(x) + EΨ̄(x)]

≤ |R2,T (xl)− ER2,T (xl)|+ aT (|Ψ̃(xl)− EΨ̃(xl)|+ 2|EΨ̃(xl)|) + aT j sup
x∈Al

[Ψ̄(x) + EΨ̄(x)]

≤ |R2,T (xl)− ER2,T (xl)|+ |Ψ̃(xl)− EΨ̃(xl)|+ CaT + j sup
x∈Al

[Ψ̄(x) + EΨ̄(x)]

:= B1,l +B2,l + CaT + j sup
x∈Al

[Ψ̄(x) + EΨ̄(x)].

Along the above lines,

sup
x∈Al
|Ψ̄(x) + EΨ̄(x)| ≤ sup

x∈Al
{|Ψ̄(x)− EΨ̄(x)|+ 2|EΨ̄(x)|}

≤ sup
x∈Aj
{|Ψ̄(xl)− EΨ̄(xl)|+ |Ψ̄(x)− Ψ̄(xl)|+ E|Ψ̄(xl)− Ψ̄(x)|}+ C

≤ |Ψ̄(xl)− EΨ̄(xl)|+ aT (Ψ̃(xj) + EΨ̃(xj)) + C

≤ |Ψ̄(xl)− EΨ̄(xl)|+ |Ψ̃(xj)− EΨ̃(xj)|+ C

:= B3,l +B2,l + C
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for T su�ciently large. Therefore, when T is large enough, we have

sup
x∈Al
|R2,T (x)− ER2,T (x)| ≤ γ(B1,l +B2,l +B3,l + CaT ), l ∈ {1, . . . , N} (2.28)

where γ = 1 + jmax.

De�ne e(x) = |R2,T (x) − ER2,T (x)|. Since A = [0, 1] ⊆
⋃N
l=1 Al, it follows that

supx∈A e(x) ≤ supx∈∪Al e(x) which implies{
sup
x∈A

e(x) > 4γCaT

}
⊆
{

sup
x∈∪Al

e(x) > 4γCaT

}
.

In addition,

w ∈
{

sup
x∈∪Ai

e(x) > 4γCaT

}
=⇒ ∃i : 1 ≤ i ≤ N : w ∈

{
sup
x∈Ai

e(x) > 4γCaT

}
=⇒ w ∈

⋃
i

{
sup
x∈Ai

e(x) > 4γCaT

}
.

Thus, from inequality (2.28), Lemma 2.11, the monotonicity and subadditivity of the

measure,

P
(

sup
x∈A
|R2,T (x)− ER2,T (x)| > 4γCaT

)
≤ P

(
sup
x∈∪Al

|R2,T (x)− ER2,T (x)| > 4γCaT

)
≤

N∑
l=1

P
(

sup
x∈Al

e(x) > 4γCaT

)
≤ N max

1≤l≤N
P
(

sup
x∈Al

e(x) > 4γCaT

)
≤ N max

1≤l≤N
P
(
γB1,l + γB2,l + γB3,l > 4γCaT

)
≤ N max

1≤l≤N
P
(
B1,l > aTC

)
+N max

1≤l≤N
P
(
B2,l > aTC

)
+N max

1≤l≤N
P
(
B3,l > aTC

)
:= T1 + T2 + T3, (2.29)

for su�ciently large T .

We start bounding the term T1. Let Zi,T (x) = ε∗i,Tki,T (x)ξi,T (x)−E(ε∗i,Tki,T (x)ξi,T (x)).

It is clear that |Zi,T (x)| ≤ 2K̄τT ≤ C1τT := bT for some C1 > 0, since |ε∗i,T | ≤ τT and

|ki,T (x)| ≤ K̄. Set mt = (aT τT )−1 and ε = MaTTh. Following the proof of Theorem 2.1,

we can obtain that the sequence σ2
T,mT

de�ned in Lemma 2.1 is O(mTh). Also, note that

mT ≤
1

aT
≤ T 1/2

(
h

lnT

)1/2

≤ T 1/2 ≤ T

for all su�ciently large T , and

mT bT
aTTh

=
C1

a2
TTh

=
C1

lnT
→ 0.
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These facts show that the conditions of Liebscher-Rio's Lemma are satis�ed whenever T

is large enough. Therefore, for any x, and T su�ciently large, we apply Liebscher-Rio's

Lemma to obtain

P (|R2,T (x)− ER2,T (x)| > CaT ) = P

(∣∣∣∣ T∑
i=1

Zi,T (x)

∣∣∣∣ > CaTTh

)
≤ 4 exp

[
− (CaTTh)2

64σ2
T,mT

T/mT + (CaTTh)bTmT8/3

]
+ 4αT (mT )

T

mT

≤ 4 exp

[
− (CaTTh)2

64CTh+ 6C1CTh

]
+ 4(Am−βT )

T

mT

≤ 4 exp

[
− (CaT )2Th

64C + 6C1C

]
+ 4Am−1−β

T T

= 4 exp

[
− Ca2

TTh

64 + 6C1

]
+ 4Am−1−β

T T

= 4 exp

[
− C

64 + 6C1

lnT

]
+ 4Am−1−β

T T

= 4T−C/(64+6C1) + 4AT (aT τT )1+β. (2.30)

The bound (2.30) holds for T2 and T3, which can be checked by the same arguments used

for T1. Recalling that N is asymptotically equivalent to 1/(aTh), it follows from (2.29)

that

T1 + T2 + T3 = O(T−C/(64+6C1)/(aTh)) +O(T (aT τT )1+β/(aTh))

:= O(S1) +O(S2). (2.31)

Now we show that S1 and S2 are o(1). Since C > 0 can be arbitrarily large, ∀η > 0 :

∃C∗ : ∀C > C∗ : S1 ≤ T−η. Therefore S1 = o(1) for any C > 0 large enough. On the

other hand, we have

S2 =
h(1+β)/s

hβ/2
h

h
(lnTφT )1+β/2T 1−β/2+(1+β)/s = o

[(
lnTφT
h

)1+β
2
]
T 1−β/2+(1+β)/s

= o(T θ(2+β)/2+1−β/2+(1+β)/s) = o(1),

since φT lnT/h = o(T θ) and

θ

(
2 + β

2

)
= −1 +

β

2
− β + 1

s
,

by hypothesis. This shows that supx∈[0,1]|R2,T (x)−ER2,T (x)| = OP (aT ). It completes the

proof.
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Proof of Theorem 2.3 We will use the same notation as for the proof of Theorem

2.2. Also, use the shorthand, supx := supx∈[0,1]. Let τT = (TφT )1/s. As in (2.24), it follows

that |ER1,T (x)| = O(aT ), or equivalently, for some M1 > 0 and T ∗ ∈ N, T ≥ T ∗ implies

|ER1,T (x)| ≤M1aT . Therefore, for any T > T ∗,

P (sup
x
|R1,T (x)− ER1,T (x)| > M1aT ) ≤ P (sup

x
|R1,T (x)|+M1aT > M1aT )

= P (sup
x
|R1,T (x)| > 0) ≤ P (|εi,T | > τT for some i ∈ {1, . . . , T})

= P (|uT | > τT ),

using the triangle inequality, the monotonicity of the measure and the strict stationarity

assumption. Further, Markov's inequality gives4

∞∑
T=1

P (|uT | > τT ) ≤ 2 +
∞∑
T=3

C

τ sT
≤ 2 +

∞∑
T=3

1

T lnT (ln lnT )2
<∞. (2.32)

Hence

∞∑
T=1

P (sup
x
|R1,T (x)− ER1,T (x)| > M1aT ) ≤ T ∗ +

∞∑
T=T ∗+1

P (|uT | > τT )

≤ T ∗ +
∞∑
T=1

P (|uT | > τT ) <∞.

The application of Borel-Cantelli's Lemma yields,

P (lim sup
T
{sup

x
|R1,T (x)− ER1,T (x)| > M1aT}) = 0

⇐⇒ P (lim inf
T
{sup

x
|R1,T (x)− ER1,T (x)| ≤M1aT}) = 1

=⇒ P (lim sup
T
{sup

x
|R1,T (x)− ER1,T (x)| ≤M1aT}) = 1,

that is, supx|R1,T (x)− ER1,T (x)| = O(aT ) almost surely (a.s.).

Next, one can check that (2.30) and (2.31) hold for τT = (TφT )1/s. Setting Aj = {x ∈
R : |x− xj| ≤ aTh ln lnT}, then N

a
≈ (aTh ln lnT )−1. By hypothesis, it follows that

S1 =
T−C/(64+6C1)+1/2

(φTh)1/2
= T−C/(64+6C1)+1/2O

(
T θ

φ
3/2
T

)
= T−C/(64+6C1)+(1+β)/2O

(
1

φ
3/2
T

)
= o(T−1)o(φ−1

T ) = o((TφT )−1),

4See page 63 of Rudin (1976).
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for M su�ciently large, and that

S2 = T

(
lnT

Th

)β/2
(TφT )(1+β)/s

h ln lnT
=
T 1−β/2+(1+β)/s

h1+β/2
o(φ

β/2+(1+β)/s
T )

= O(T 1−β/2+(1+β)/s+θ(1+β/2))o(φ
β/2+(1+β)/s−2−β
T )

= o(T 1−β/2+(1+β)/s+θ(1+β/2)φ
−1+[(1+β)/s−1−β/2]
T )

= o((TφT )−1).

To see the last inequality, note that conditions (2.11) and (2.12) imply

θ

(
2 + β

2

)
= −2 +

β

2
− β + 1

s

and

4s+ 2

s− 2
< β ⇐⇒ 4s+ 2 < β(s− 2) ⇐⇒ 4− β

2
< −β + 1

s
⇐⇒ β

2
− 2 >

β + 1

s

=⇒ β

2
+ 1 >

β + 1

s
,

respectively. Since the series
∑

T (TφT )−1 converges, Borel-Cantelli's Lemma implies

P
(

lim sup
T→∞

{ sup
x∈[0,1]

|R2,T (x)− ER2,T (x)| > 4γCaT}
)

= 1

as desired.

Proof of Theorem 2.4 Write

|ĝ(x)− g(x)| ≤ |ĝ(x)− Eĝ(x)|+ |Eĝ(x)− g(x)| := A1 + A2, ∀x ∈ [0, 1].

We start with the bias term A2. Using Lemmas 2.5 and 2.8, and Taylor expansion

with Lagrange reminder, we have that for any x ∈ [0, 1] and any T su�ciently large

A2 =

∣∣∣∣ T∑
t=1

Wt,T (x)
{
g(t/T )− g(x)

}∣∣∣∣
=

∣∣∣∣ T∑
t=1

Wt,T (x)
{
g(x) + g′[x+ τt(t/T − x)](t/T − x)− g(x)

}∣∣∣∣
=

∣∣∣∣ T∑
t=1

Wt,T (x)
{
g′[x+ τt(t/T − x)](t/T − x)

}
−

T∑
t=1

Wt,T (x)(t/T − x)g′(x)

∣∣∣∣
≤

T∑
t=1

|Wt,T (x)||t/T − x|
∣∣g′(x+ τt(t/T − x))− g′(x)

∣∣
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≤ C
T∑
t=1

|Wt,T (x)||t/T − x|2 = C
T∑
t=1

|Wt,T (x)||t/T − x|2I
(∣∣∣∣t/T − xh

∣∣∣∣ ≤ 1

)

≤ C

T∑
t=1

sup
x
|Wt,T (x)|h2 ≤ Ch2,

with τt ∈ (0, 1). The second inequality above holds since g ∈ C2[0, 1] implies g′ is Lipschitz

continuous on [0, 1]. Thus supx∈[0,1]A2 = O(h2).

Turning to the next term, we have

A1 = |e′1S−1
T,xD

ε
T,x|

where Dε
T,x = T−1

[ ∑T
i=1 εi,TKh(t/T − x)∑T

i=1 εi,TKh(t/T − x)((t/T − x)/h)

]
:=

[
dT,0(x)

dT,1(x)

]
.

Therefore, we can write

A1 =

∣∣∣∣∣∣e′1
[
s0 s1

s1 s2

]−1 [
d0

d1

]∣∣∣∣∣∣ =

∣∣∣∣d0 − s2
1s
−1
2 d1

s0 − s2
1s
−1
2

∣∣∣∣ :=
Vn
Vd
,

omitting the dependence of the entries on x and T , for brevity's sake. Note that the fact

||sj| − |µj|| ≤ |sj − µj| guarantees that |sj| = |µj| + O(1/(Th)) holds in Lemma 2.6. In

addition, for any x ∈ [0, 1], we have 0 < µj ≤ C for j ∈ {0, 2} and |µ1| ≤ C by hypothesis.

It implies µ2
1/µ2 = O(1). Thus, from Lemma 2.6, Lemma 2.9, and Theorem 2.2, we have

sup
x∈[0,1]

Vn ≤ sup
x∈[0,1]

|d0|+ sup
x∈[0,1]

|s2
1s
−1
2 | sup

x∈[0,1]

|d1| = Op(aT )

{
1 + sup

x∈[0,1]

|µ2
1|+O(1/(Th))

|µ2|+O(1/(Th))

}
= Op(aT )

{
1 + sup

x∈[0,1]

∣∣∣∣µ2
1

µ2

∣∣∣∣+O

(
1

Th

)}
= Op(aT )

{
O(1) +O

(
1

Th

)}
= Op(aT )O(1) = Op(aT ),

and

Vd =

∣∣∣∣µ0 +O

(
1

Th

)
− µ2

1 +O(1/(Th))

µ2 +O(1/(Th))

∣∣∣∣ =

∣∣∣∣µ0 −
µ2

1

µ2

+O

(
1

Th

)∣∣∣∣.
Lemma 2.7 states that ST,x has a positive de�nite limiting matrix, implying that µ0µ2 −
µ2

1 6= 0. Then

sup
x∈[0,1]

A1 ≤ Op(aT ) sup
x∈[0,1]

∣∣∣∣ 1

µ0 − µ2
1/µ2 +O(1/(Th))

∣∣∣∣ = Op(aT ) sup
x∈[0,1]

∣∣∣∣ µ2

µ0µ2 − µ2
1

+O

(
1

Th

)∣∣∣∣
= Op(aT )O(1) = Op(aT ).



31

Lemma 2.9(v) implies

sup
x∈[0,1]

|ĝ(x)− g(x)| = O(h2) +Op(aT ) = Op(h
2 + aT ),

as desired.

The almost sure uniform convergence rate can be shown using the same arguments

and Lemma 2.10
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Appendix A - Auxiliary results

The quantity Ψ̂(x) involves a sum over the set of indices {i}Ti=1. Since the kernel func-

tion is assumed to be compactly supported, we only need to consider a subset of indices

Jx ⊆ {1, . . . , T}, which depends on the point x ∈ [0, 1]. It is important to distinghish be-

tween x as an interior point and x as a boundary point of [0, 1] once the respective kernel

averages may be related to di�erent asymptotic equivalences. Analytically, we can exam-

ine the behaviour of the kernel average "near" the boundaries instead of its behaviour at

the boundaries. Indeed, this approach is convenient when evaluating the boundary bias

of kernel estimators (see MüLLER, 1991; WAND; JONES, 1994; among others). Inspired

by these ideas, we will give a de�nition for the mentioned set of indices Jx and exploit

various right Riemann sum approximations.

Let T0 ∈ N be such that h < 1/2 for any T ≥ T0. For every T ≥ T0, de�ne the set

Jx = {i ∈ [T ] : i/T ∈ Cx} (2.33)

with

Cx =


[0, x+ h] , if x ∈ [0, h]

[x− h, x+ h] , if x ∈ (h, 1− h)

[x− h, 1] , if x ∈ [1− h, 1]

. (2.34)

In this study, whenever we require T to be su�ciently large such that Jx is well de�ned,

we will be implicity assuming that T is large enough to achieve h < 1/2.

Lemma 2.2. Let T ≥ T0 and let kT be the cardinality of Jx. Then kT = O(Th). In addi-

tion, suppose that the Kernel function K is Lipschitz continuous on its compact support.

Then, for any x ∈ [0, 1] and any su�ciently large T , it holds that ,

∣∣∣∣ 1

T

T∑
i=1

∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣i/T − xh

∣∣∣∣j − ∫ 1

0

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣jdu∣∣∣∣ ≤ C

T
.

Proof. Suppose x ∈ (h, 1− h). Then Jx = {i ∈ [T ] : i/T ∈ [x− h, x+ h]}. Note that the
length of (x− h, x + h) shrinks to zero slower than 1/T , that is, 2h/(1/T ) = 2Th→∞.

It implies that ∃T1 ≥ T0 : ∀T ≥ T1 : Jx 6= Ø. Then, for T ≥ T1, de�ne i∗ = min Jx

and i∗ = max Jx. Since the design points are evenly spaced, we can write the elements of

{i/T}i∈[T ] ∩ (x− h, x+ h) as

i∗/T + (k − 1)/T, k ∈ {1, . . . ,MT}, T ≥ T1,

where MT is a sequence of natural numbers. In order to provide an upper bound for kT ,
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it is su�cient to �nd an upper bound for MT . But we clearly need

i∗
T

+
(MT − 1)

T
<
i∗

T
+ 2h

which implies thatMT < CTh. Hence kT = O(Th). Analogous arguments show the same

results for x ∈ [0, h] and x ∈ [1− h, 1]

Next, note that∫
[0,1]

I(|(u− x)/h| ≤ 1)du =

∫
[0,1]

I(x− h ≤ u ≤ x+ h)du =

∫
[0,1]∩[x−h,x+h]

du.

For x ∈ [0, 1] and T ≥ T0, we evaluate the following cases. If h < x and x < 1− h, then
0 < x − h and x + h < 1, and so [x − h, x + h] ∩ [0, 1] = [x − h, x + h]. If x ≤ h, then

x−h ≤ 0 and 0 < x+h ≤ 2h < 1, which gives [x−h, x+h]∩[0, 1] = [0, x+h]. If 1−h ≤ x,

then 1 ≤ x+ h and 0 < 1− 2h ≤ x− h < 1, which gives [x− h, x+ h]∩ [0, 1] = [x− h, 1].

Therefore ∫
[0,1]

I(|(u− x)/h| ≤ 1)du =

∫
Cx

du, x ∈ [0, 1], T ≥ T0.

Furthermore, given any x ∈ [0, 1], we must have i∗/T ≤ C
	 x

+ 1/T and C̄x − 1/T ≤ i∗/T,

where C
	 x

= inf Cx and C̄x = supCx. Otherwise, if i∗/T − 1/T > C
	 x

or C̄x > i∗/T + 1/T,

then we would �nd a contradiction with the fact that both i∗ and i∗ are the minimum

and the maximum of Jx. These imply that

0 ≤ i∗/T − C
	 x
≤ 1/T and 0 ≤ C̄x − i∗/T ≤ 1/T,

which will be used in the following.

De�ne J∗x = Jx \ {i∗} and let x ∈ [0, 1] be arbitrary. Using the above observations,

the triangle inequality and the Mean Value Theorem for integrals, we have

∣∣∣∣ 1

T

T∑
i=1

∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣i/T − xh

∣∣∣∣j − ∫ 1

0

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣jdu∣∣∣∣
=

∣∣∣∣ 1

T

∑
i∈Jx

∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣i/T − xh

∣∣∣∣j − ∫
Cx

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣jdu∣∣∣∣
≤
∣∣∣∣ 1

T

∑
i∈J∗x

∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣i/T − xh

∣∣∣∣j −∑
i∈J∗x

∫ i/T

(i−1)/T

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣jdu∣∣∣∣
+

1

T

∣∣∣∣K(i∗/T − xh

)∣∣∣∣∣∣∣∣i∗/T − xh

∣∣∣∣j +

∫ i∗/T

C
	
x

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣du
+

∫ C̄x

i∗/T

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣du
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≤ 1

T

∑
i∈J∗x

∣∣∣∣∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣i/T − xh

∣∣∣∣j − ∣∣∣∣K(ξi − xh

)∣∣∣∣∣∣∣∣ξi − xh

∣∣∣∣j∣∣∣∣
+
C

T
+ C

(i∗
T
− C

	 x
)

+ C
(
C̄x −

i∗

T

)
≤ 1

T

∑
i∈J∗x

∣∣∣∣K(i/T − xh

)(
i/T − x

h

)j
−K

(
ξi − x
h

)(
ξi − x
h

)j∣∣∣∣+
C

T

≤ 1

T

∑
i∈J∗x

{∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣(i/T − xh

)j
−
(
ξi − x
h

)j∣∣∣∣
+

∣∣∣∣ξi − xh

∣∣∣∣j∣∣∣∣K(i/T − xh

)
−K

(
ξi − x
h

)∣∣∣∣}+
C

T

≤ C

T

∑
i∈J∗x

{∣∣∣∣i/T − ξih

∣∣∣∣ j−1∑
l=0

∣∣∣∣i/T − xh

∣∣∣∣l∣∣∣∣ξi − xh

∣∣∣∣j−1−l

+

∣∣∣∣i/T − ξih

∣∣∣∣}+
C

T

≤ C

T
kT

{
j

Th
+

1

Th

}
+
C

T
≤ C

T
,

with ξi ∈ ((i− 1)/T, i/T ) for each i ∈ J∗x .

One can easily check that Lemma 2.2 holds for the function K(u)uj, i.e., the function

without taking the absolute value. Also, note that the assumptions of the lemma are

weaker than A.2 once K is allowed to not be continuous everywhere.

Lemma 2.3. Let K be a kernel function satisfying Assumption A.2 and let δ > 0. Then

there is a function K∗ and constants K̄∗ and µ∗ such that |K∗| ≤ K̄∗ <∞,
∫
R|K

∗(u)|du ≤
µ∗ <∞ and

|x1 − x2| ≤ δ ≤ L =⇒ |K(x1)−K(x2)| ≤ δK∗(x1), ∀x1, x2 ∈ R. (2.35)

Particularly, if K∗(x) = Λ1I(|x| ≤ 2L), then

∣∣∣∣ 1

T

T∑
i=1

K∗
(
i/T − x

h

)(
i/T − x

h

)j
−
∫ 1

0

K∗
(
u− x
h

)(
u− x
h

)j
du

∣∣∣∣ ≤ C

T
,

for any x ∈ [0, 1] and T large enough.

Proof. Fix δ > 0 and let x1, x2 : |x1 − x2| ≤ δ ≤ L. Indeed, if K is Lipschitz, then

|K(x1)−K(x2)| ≤ Λ1|x1−x2| = Λ1|x1−x2|{I(|x1| ≤ 2L) + I(|x1| > 2L)}. But |x1| > 2L

implies 2L− |x2| < |x1| − |x2| ≤ |x1− x2| ≤ L. So |x2| > L, and then K(x1)−K(x2) = 0

sinceK has compact support. Therefore the term I(|x1| > 2L) is super�uous for the upper

bound. Hence, we can take K∗(x) = Λ1I(|x| ≤ 2L) which satis�es |K(x1) − K(x2)| ≤
δK∗(x1), |K∗| ≤ Λ1 and

∫
R|K

∗(u)|du ≤ Λ1(4L).
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Next, let T be large enough so that the set Jx = {i : i/T ∈ Cx} with

Cx =


[0, x+ h∗] , if x ∈ [0, h∗]

[x− h∗, x+ h∗] , if x ∈ (h∗, 1− h∗)

[x− h∗, 1] , if x ∈ [1− h∗, 1]

, (2.36)

where h∗ = 2Lh, is well-de�ned and nonempty. Note that the arguments of Lemma 2.2's

proof can be applied to K∗ even though it is not continuous everywhere. Then, along the

same lines of the proof of Lemma 2.2, for any T large enough and any x ∈ [0, 1], we have

∣∣∣∣ 1

T

T∑
i=1

K∗
(
i/T − x

h

)(
i/T − x

h

)j
−
∫ 1

0

K∗
(
u− x
h

)(
u− x
h

)j
du

∣∣∣∣
=

∣∣∣∣ 1

T

∑
i∈Jx

Λ1

(
i/T − x

h

)j
−
∫
Cx

Λ1

(
u− x
h

)j
du

∣∣∣∣
≤ Λ1

T

∑
i∈J∗x

∣∣∣∣(i/T − xh

)j
−
(
ξi − x
h

)j∣∣∣∣+
C

T
≤ C

T
,

where J∗x = Jx \ {i∗} with i∗ = min Jx, and ξi ∈ ((i− 1)/T, i/T ),∀i ∈ J∗x .

Lemma 2.4. Let T ∈ N and f : (R,BR) → (R,BR) be a measurable function. De-

�ne α1,T (j) and α2,T (j) as the mixing coe�cients of the processes {Yt,T} and {f(Yt,T )},
respectively. Then α2,T (j) ≤ α1,T (j), for all 0 ≤ j < T .

Proof. Fix j : 0 ≤ j < T . Denote GkT,i = σ((f(Yl,T )) : i ≤ l ≤ k) and FkT,i = σ((Yl,T ) :

i ≤ l ≤ k) for 1 ≤ i ≤ k ≤ T . If σ(f(Yt,T )) ⊆ σ(Yt,T ), for any t ∈ {1, . . . , T}, then
GkT,i ⊆ FkT,i for any i, k, which in turn implies that α2,T (j) ≤ α1,T (j). But, σ(f(Yt,T )) =

{(Y −1
t,T ◦ f−1)(A) : A ∈ BR} ⊆ {Y −1

t,T (B) : B ∈ BR} = σ(Yt,T ), ∀t ∈ [T ], and so the

result.

A direct consequence of Lemma 2.4 is that if {εt,T} is strongly mixing triangular array

of random variables on (Ω,F) to (R,BR), then so is {|εt,T |}, since the function | · | is
(BR,BR)-measurable.

Now we restate the Proposition 1.12 of Tsybakov (2008).

Lemma 2.5 (Tsybakov). Let x ∈ [0, 1] such that ST,x, de�ned in (2.16), is positive de�nite

and let Q be a polynomial of degree at most 1. Then the local linear weights satisfy

T∑
t=1

Q(xt)Wt,T (x) = Q(x),
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for any sample (x1, . . . , xT ). In particular,

T∑
t=1

Wt,T (x) = 1 and
T∑
t=1

(xt − x)Wt,T (x) = 0. (2.37)

Proof. By hypotesis ∂kQ(xt)/∂x
k
t = 0,∀k ≥ 2, and then expanding Q(xt) around x gives

Q(xt) = Q(x) +Q′(x)(xt − x) := q′(x)

[
1

(xt − x)/h

]
,

where q(x) = (Q(x), Q′(x)h)′. Since the local linear estimator is the solution of a weighted

least squares, for Zt = Q(xt) we have that

β̂T (x) = arg min
βx

(Z −Xxβx)
′W (Z −Xxβx) = arg min

βx

(Xxq −Xxβx)
′W (Xxq −Xxβx)

= arg min
βx

(Xx(q − βx))′W (Xx(q − βx)) = arg min
βx

(q − βx)′X ′xWXx(q − βx)

= arg min
βx

(q − βx)′ST,x(q − βx)

where Z =


Z1

...

ZT

 , Xx =


1 (x1 − x)/h
...

...

1 (xT − x)/h

 , βx = (g(x), g′(x)h)′, q = q(x) and

W = diag(K((x1 − x)/h), · · · , K((xT − x)/h)). The necessary condition for β̂T (x) is

∂q′BT,xq − 2q′BT,xβx + β′xBT,xβx
∂βx

= −2B′T,xq + 2BT,xβx.

As BT,x is symmetric and positive de�nite, the unique solution is given by β̂T (x) = q.

Then ĝ(x) = e′1β̂T (x) = Q(x). Hence Q(x) =
∑

T=1 Q(xt)Wt,T (x) by (2.19). The results

in (2.37) are immediate from the choices Q(xt) = 1 and Q(xt) = xt − x.

The following lemma is an extension of Proposition 1 of Fernández and Fernández

(2001).

Lemma 2.6. Under A.2, for any x ∈ [0, 1], we have

sT,j(x) = µj(x) +O(1/(Th)), ∀j ∈ {0, 1, 2, 3}, (2.38)

where µj(x) =
∫
Gx
ujK(u)du with

Gx =


[−c, 1] , if x = ch

[−1, 1] , if x ∈ (h, 1− h)

[−1, c] , if x = 1− ch
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and 0 ≤ c ≤ 1.

The proof of the above result follows directly from Lemma 2.2 and the de�nition of

Big Oh, and thus is omitted. Lemma 2.6 implies that ST,x → Sx as T →∞ where

Sx =

∫
Gx

[
1 u

u u2

]
K(u)du (2.39)

Lemma 2.7. Let K be nonnegative satisfying Assumption A.2. Suppose µ({K > 0}) > 0.

Then the limiting matrix Sx in (2.39) is positive de�nite. Moreover,

∃λ0, T0 > 0 : λmin ≥ λ0, ∀T ≥ T0, ∀x ∈ [0, 1],

where λmin is the smallest eigenvalue of ST,x.

Proof. Let z ∈ R2 be a nonzero vector. Since K is nonnegative, we have

z′Sxz =

∫
Gx

z′XX ′zKdµ ≥ 0,

for X := X(w) = (1, w)′. To get a contradiction, suppose ∃y 6= 0 :
∫

[−c,c] y
′XX ′yKdµ = 0.

Then y′XX ′y = 0 µ-almost everywhere (a.e.) on {K > 0} ∩ Gx which has positive

measure. However, y′XX ′y is a polynomial of degree at most 2 and cannot be equal to

zero except on �nitely many number of points. This means y′XX ′y
a.e.

6= 0 on {K > 0}∩Gx,

a contradiction. Hence, we must have z′Sxz > 0 .

To show the next result, note that detSx, trSx > 0 as Sx is positive de�nite. Also,

the trace and the determinant are continuous mappings. Since ST,x → Sx, the continuity

implies trST,x → trSx and detST,x → detSx. Therefore, there must be T0 : ∀T ≥ T0

we have detST,x > 2−1 detSx > 0 and trST,x > 2−1 trSx > 0. Thus, the sum and the

product of the two disctinct eigenvalues of ST,x are positive, implying a set of (strictly)

positive eigenvalues, for all su�ciently large T .

For any vector y ∈ R2 and for an eigenpair ((λu, u), (λv, v)) of ST,x, it holds from

Lemma 2.8 that there are λ0, c1, c2 > 0 such that ST,xy = ST,x(c1u+c2v) = c1λuu+c2λvv ≥
λ0y when T is large enough. It implies (1/λ0)‖y‖ ≥ ‖S−1

T,xy‖.
The following lemma is a restatement of Lemma 1.3 of Tsybakov (2008).

Lemma 2.8 (Tsybakov). Let Assumption A.2 hold, T0 be as in Lemma 2.7 and T ∗ ∈ N
is such that ∀T ≥ T ∗, Th ≥ 1/2. Then for any T ≥ max(T ∗, T0) and any x ∈ [0, 1], the

weights of the local linear estimator de�ned in (2.19) satisfy

(i) supt,x|Wt,T (x)| ≤ C
Th

;

(ii)
∑T

t=1 supx|Wt,T (x)| ≤ C;

(iii) Wt,T (x) = 0 if |Xt−x
h
| /∈ suppK.

for some constant C > 0.
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Proof. (i) Denote xt = t/T for all t ∈ {1, . . . , T}. By Lemma 2.7,

|Wt,T (x)| = ‖Wt,T (x)‖ =

∥∥∥∥ 1

Th
e′1S

−1
T,xX

(xt − x
h

)
K
(xt − x

h

)∥∥∥∥
≤ 1

Th
‖e′1‖

∥∥∥∥S−1
T,xX

(xt − x
h

)∥∥∥∥∣∣∣∣K(xt − xh

)∣∣∣∣
≤ 1

Th

1

λ0

∥∥∥∥X(xt − xh

)∥∥∥∥∣∣∣∣K(xt − xh

)∣∣∣∣
≤ 1

Thλ0

∥∥∥∥X(xt − xh

)∥∥∥∥ sup|K|I[(xt − x)/h ∈ suppK]

≤ C

Th

∥∥∥∥X(xt − xh

)∥∥∥∥ ≤ C
√

2

Th
≤ C

Th
.

(ii) From the previous result, Lemma 2.7, it follows that

T∑
t=1

sup
x
|Wt,T (x)| ≤ C

Th

T∑
t=1

I
[
(xt − x)/h ∈ suppK

]
=

C

Th

∑
t∈Jx

1 ≤ C,

with Jx being as in Lemma 2.2, which has cardinality of order O(Th).

(iii) From the proof of (i), we have |Wt,T (x)| ≤ C
Th
I
(
|xt−x

h
| ∈ suppK

)
, and hence the

result.

The next lemmas provide a list of results involving asymptotic notations.

Lemma 2.9. Let at and bt be positive sequences converging to zero. The following results

hold:

(i) If C1, C2 ∈ R : C2 6= 0, then

C1 +O(aT )

C2 +O(bT )
=
C1

C2

+O(aT ) +O(bT );

In particular,
C1

C2 +O(bT )
=
C1

C2

+O(bT );

(ii) If YT = Op(aT ) and aT = o(bT ), then YT = op(bt);

(iii) Op(aT )O(bT ) = Op(aT bT );

(iv) If YT ≤ XT and XT = Op(aT ), then YT = Op(aT );

(v) If cT = o(bT ) and XT = Op(aT ), then cT +XT = Op(aT +bT ); if instead cT = O(bT ),

then also cT +XT = Op(aT + bT ).

Proof. (i) Denote cT = O(aT ) and dT = O(bT ). Then, using Taylor expansion,

C1 + cT
C2 + dT

=
C1

C2

1

1 + dT/C2

+
cT
C2

1

1 + dT/C2

=
C1

C2

{
1− dT

C2

+ o(dT )

}
+
cT
C2

{
1− dT

C2

+ o(dT )

}



42

=
C1

C2

+O(dT ) +O(cT ) + o(dT ) =
C1

C2

+O(aT ) +O(bT ).

The second result is obtained analogously by setting cT = 0.

(ii) Let ε, δ > 0 be given. By the hypotheses, ∃T0,M : P (|YT | ≥ MaT ) ≤ ε for all

T ≥ T0. Further, ∃T1 : aT ≤ δbT since aT = o(bT ), for all T ≥ T1. Take δ∗ = Mδ. Hence

P (|YT | ≥ δ∗bT ) ≤ P (|XT | ≥MaT ) ≤ ε,

for every T ≥ max(T0, T1).

(iii) Let Xt = Op(aT ) and cT = O(bT ). Fix ε > 0. Then ∃T ∗,M1, C > 0 : ∀T ≥ T ∗ :

P (|XT | ≥M1aT ) ≤ ε and |cT/bT | ≤ C. Take M = M1C. Then

P (|XT cT | ≥MaT bT ) = P (|XT ||cT/bT | ≥MaT ) ≤ P (C|XT | ≥MaT )

= P (|XT | ≥M1aT ) ≤ ε.

This shows that XT cT = Op(aT bT ) as desired.

(iv) Clearly, P (|YT | ≥M) ≤ P (|XT | ≥M) if YT ≤ XT , and this implies the result.

(v) Let ε > 0 be �xed. By hypothesis, ∀δ > 0, ∃M1 > 0 : P (|XT | ≥ M1aT ) ≤ ε and

|cT | ≤ δbT , for su�ciently large T . Choose M : M ≥ max(δ,M1). Then

P
(
|XT + cT | ≥M(aT + bT )

)
≤ P

(
|XT | ≥M(aT + bT )− |cT |

)
≤ P

(
|XT | ≥M(aT + bT )− δbT

)
= P

(
|XT | ≥MaT + bT (M − δ)

)
≤ P

(
|XT | ≥MaT

)
≤ P

(
|XT | ≥M1aT

)
≤ ε.

The proof for cT = O(bT ) is analogous.

The next lemma is Lemma 2.9's analogue for Big Oh and small oh almost surely.

Let {Yn} be a seqence of random variables on (Ω,F , P ). We say that Yn = O(1)

almost surely, brie�y Yn = O(1)a.s., if ∃M > 0 such that P (lim supn→∞{|Yn| ≤M}) = 1,

and Yn = o(1) a.s. if ∀δ > 0 we have P (lim supn→∞{|Yn| > δ}) = 0.

Lemma 2.10. Let at and bt be positive sequences converging to zero. The following results

hold:

(i) If YT = O(aT ) a.s. and aT = o(bT ), then YT = o(bt) a.s.;

(ii) If YT = O(aT ) a.s. and cT = O(bT ), then YT cT = O(aT bT ) a.s.;

(iii) If YT ≤ XT and XT = O(aT ) a.s., then YT = O(aT ) a.s.;

(iv) If cT = O(bT ) and XT = O(aT ) a.s., then cT +XT = O(aT + bT ) a.s.;

(v) If YT = O(1) a.s., then aTYT = O(aT ) a.s.; similarly, if YT = o(1) a.s., then

aTYT = o(aT ) a.s.;
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(vi) If YT = O(1) a.s. and XT = o(1) a.s., then YT +XT = O(1) a.s.

Proof. In what follows we will use the shorthand lim supT for lim supT→∞.

(i) By hypothesis, ∃M > 0 : P (lim supT{|YT | ≤MaT}) = 1 and aT ≤ δbT for all δ > 0

and all T su�ciently large. Let δ/M > 0 be given. Then, for every T su�ciently large,

{|YT | ≤MaT} ⊆ {|YT | ≤ δbT}

Claim 1. Let AT and BT be two sequence of sets. Suppose that, for all su�ciently large

T , AT ⊆ BT . Then lim supT AT ⊆ lim supT BT .

Proof of claim: By de�nition, lim supT AT =
⋂∞
T=1

⋃∞
k=T Ak :=

⋂∞
T=1CT , where CT =⋃∞

k=T Ak is a decreasing sequence. Similarly, we can write lim supT BT :=
⋂∞
T=1DT ,

with DT =
⋃∞
k=T Bk. By hypothesis, there is some T0 such that, for any T > T0, we have

CT ⊆ DT , which implies
⋂
T>T0

CT ⊆
⋂
T>T0

DT . Since the sets CT and DT are decreasing,

∞⋂
T

CT =
∞⋂

T>T0

CT ⊆
∞⋂

T>T0

DT =
∞⋂
T

DT ,

and hence the result. �

By Claim 1 and using the monotonicity of the measure,

1 = P (lim sup
T
{|YT | ≤MaT}) ≤ P (lim sup

T
{|YT | ≤ δbT}),

which implies that P (lim supT{|YT | ≤ δbT}) = 1. As δ is arbitrary, the result follows.

(ii) By hypothesis, ∃M > 0 : P (lim supT{|YT | ≤ MaT}) = 1 and |bT/cT | ≥ 1/C for

some constant C > 0 and all T su�ciently large. Take M1 = MC. Then, for all T large

enough,

{|YT cT | ≤M1aT bT} = {|YT | ≤M1aT |bT/cT |} ⊇ {|YT | ≤MaT}

From Claim 1 and the monotonicity of P ,

P (lim sup
T
{|YT cT | ≤M1aT bT}) ≥ P (lim sup

T
{|YT | ≤MaT}) = 1

and thus the result.

(iii) By hypothesis and using Claim 1, there is M > 0 satisfying

P (lim sup
T
{|YT | ≤MaT}) ≥ P (lim sup

T
{|XT | ≤MaT}) = 1,

implying the result.

(iv) By hypothesis, ∃M > 0 : P (lim supT{|XT | ≤ MaT}) = 1 and |cT | ≤ CbT for

some constant C > 0 and all T su�ciently large. Choose M1 = max(M,C). For this
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choice and all su�ciently large T ,

{|XT + cT | ≤M1(aT + bT )} ⊇ {|XT | ≤M1(aT + bT )− |cT |}

⊇ {|XT | ≤M1aT + bT (M1 − C)}

⊇ {|XT | ≤M1aT + bT (M1 −M1)}

⊇ {|XT | ≤MaT}

Hence,

P (lim sup
T
{|XT + cT | ≤M1(aT + bT )}) ≥ P (lim sup

T
{|XT | ≤MaT}) = 1,

which gives the result.

(v) By hypothesis we clearly have, for some M > 0,

P (lim sup
T
{|YTaT | ≤MaT}) = P (lim sup

T
{|YT | ≤M}) = 1.

The proof for the small oh goes in the same lines.

(vi) Given any c > 0, note that

w ∈ lim sup
T
{|YT | ≤ c} ⇐⇒ |YT (w)| ≤ c for in�nitely many T

and

w ∈ lim sup
T
{|XT | > c} ⇐⇒ |XT (w)| > c for in�nitely many T

⇐⇒ |XT (w)| ≤ c for all but �nitely many T.

By hypothesis, for all δ > 0 and for some M > 0, we have

|YT (w)| ≤M for in�nitely many T, and

|XT (w)| ≤ δ for all but �nitely many T,

with probability one. Then, with probability one, the triangle inequality gives

|XT (w) + YT (w)| ≤M + δ for in�nitely many T,

and hence the result XT + YT = O(1)a.s.

Lemma 2.11. Let X and Y be two random variables and let b ∈ R. Then

P (|X + Y | > b) ≤ P (|X| > b/2) + P (|Y | > b/2).
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Proof. Let A = {(x, y) : |x + y| ≤ b} and B = {(x, y) : |x| ≤ b/2, |y| ≤ b/2}. Note that
A lies in the square of side b centered at the origin. Then A ⊇ B, which in turn implies

that {(X, Y ) ∈ A} ⊇ {(X, Y ) ∈ B}. Using DeMorgan's Law, it follows that

{(X, Y ) ∈ A}c = {|X + Y | > b} ⊆ {|X| > b/2} ∪ {|Y | > b/2} = {(X, Y ) ∈ B}c.

From the monotonicity and subadditivity of the measure,

P (|X + Y | > b) ≤ P ({|X| > b/2} ∪ {|Y | > b/2}) ≤ P (|X| > b/2) + P (|Y | > b/2).
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Appendix B - The Davydov's inequality

The Davydov's inequality is a covariance inequality which will be extensively used in

this study. Because it is our basic tool, we will review how it can be proved based on Bosq

(2012) and Rio (2017). A good understanding of the results below can give us insights on

how to bound covariances when we are faced with more complicated situations.

De�ne the indicator function of a subset A ⊆ R as

χA(x) =

{
1 , if x ∈ A
0 , if x /∈ A

.

The following identity will be shown to be useful when dealing with covariances.

Lemma 2.12. For any a, b ∈ R, we have that b− a =
∫∞
−∞ χ(−∞,x](a)− χ(−∞,x](b)dx.

Proof. Clearly, χ(−∞,x](a)− χ(−∞,x](b) is nonzero if, and only if, a ≤ x < b or b ≤ x < a.

Furthermore,

a ≤ x < b =⇒
∫ ∞
−∞

χ(−∞,x](a)− χ(−∞,x](b)dx =

∫ b

a

1dx = b− a

and

b ≤ x < a =⇒
∫ ∞
−∞

χ(−∞,x](a)− χ(−∞,x](b)dx =

∫ a

b

−1dx

=

∫ b

a

1dx = b− a.

Hence, regardless the case, the desired equality holds.

Given a measurable space (Ω,A), the above lemma shows that if Z1, Z2 : Ω→ R are

random variables, then Z2(w)− Z1(w) =
∫
χ(−∞,x](Z1(w))− χ(−∞,x](Z2(w))dx, ∀w ∈ Ω.

Let (Ω,A, P ) be a probability space and letX, Y : Ω→ R be random variables. De�ne

the joint distribution function as FX,Y (x, y) = PX,Y ((−∞, x] × (−∞, y]) = P{X(w) ≤
x, Y (w) ≤ y}, where PX,Y : BR2 → [0, 1] is the joint probability distribution (or the push-

forward measure) of X and Y . Given the joint distribution function FX,Y , the marginal

distribution function of X is de�ned as FX(x) = PX,Y ((−∞, x] × R). We assume the

notation {X(w) ∈ B} = X−1(B).

Lemma 2.13 (Hoe�ding's Lemma). Let FX and FY be the marginal distribution functions

of X and Y , respectively, given their joint distribution function FX,Y . Then

Cov(XY ) = E(XY )− E(X)E(Y ) =

∫ ∞
−∞

∫ ∞
−∞

FXY (x, y)− FX(x)FY (y)dxdy, (2.40)

provided the expectations E|XY |, E|X| and E|Y | are �nite.
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Proof. Firstly, we need to show a few results. Let (X, Y ), (X2, Y2) be independent and

identically distributed according to FX,Y .

Claim 2. (i) Cov(X, Y ) = Cov(X2, Y2);

(ii) EX = EX2;

(iii) X ⊥ Y2 and X2 ⊥ Y , where ⊥ denotes the independence of random variables;

(iv) Cov(χ(−∞,x](X), χ(−∞,x](Y )) = Cov(χ(−∞,x](X2), χ(−∞,x](Y2)),∀x ∈ R;

(v) Eχ(−∞,x](X) = Eχ(−∞,x](X2),∀x ∈ R;

(vi) χ(−∞,x](X) ⊥ χ(−∞,x](Y2) and χ(−∞,x](X2) ⊥ χ(−∞,x](Y ),∀x ∈ R;

(vii) E[(χ(−∞,x] ◦X)(χ(−∞,y] ◦Y )] = P ({X ≤ x, Y ≤ y}) and E[(χ(−∞,x] ◦X)] = P ({X ≤
x}).

Proof of claim: (i) The �rst result is obvious. (ii) Since the probability distribution PX,Y is

uniquely determined by the distribution function FX,Y , it follows that FY (y) = PX,Y (R×
(−∞, y]) = PX2Y2(R × (−∞, y]) = FY2(y), which in turn, implies that PY = PY2 . Hence

E(Y ) =
∫
xPY (dx) =

∫
xPY2(dx) = E(Y2). (iii) To see the independence, FX,Y2(x, y2) =

limy,x2→∞ FX,Y,X2,Y2(x, y, x2, y2) = limx2→∞ FX2,Y2(x2, y2) limy→∞ FX,Y (x, y) = FX(x)FY2(y2).

(vi) Since X is independent of Y2, by de�nition, σ(X) = {X−1(B) : B ∈ BR}
and σ(Y2) are independent, meaning that P (A ∩ B) = P (A)P (B), ∀A ∈ σ(Y2), B ∈
σ(X). It is well known that σ(X), σ(Y2) are sub-σ-algebras of A. Given any x, y ∈
R, let f = χ(−∞,x] and g = χ(−∞,y] be two (R,BR) − (R,BR) measurable functions.

Then (f ◦ X)−1(A) = X−1(f−1(A)) ∈ σ(X),∀A ∈ BR, since f−1(A) ∈ BR. The same

holds for g ◦ Y2. It implies that σ(f ◦ X) = {(f ◦ X)−1(A) : A ∈ BR} ⊆ σ(X)

and σ(g ◦ Y2) ⊆ σ(Y2). As σ(Y2) and σ(X) are independent, so are σ(f ◦ X) and

σ(g ◦ Y2). Therefore the measurable indicator functions preserve the independence of

the random variables. (iv) Furthermore, Ff◦X,g◦Y (x1, y1) = P{f(X) ≤ x1, g(Y ) ≤
y1} = P{X ∈ f−1(−∞, x1], Y ∈ g−1(−∞, y1]} = PX,Y (f−1(−∞, x1] × g−1(−∞, y1]) =

PX2Y2(f
−1(−∞, x1]×g−1(−∞, y1]) = Ff◦X2,g◦Y2(x1, y1). This immediately implies Cov(f ◦

X2, g◦Y2) = Cov(f ◦X, g◦Y ). (v) By assumption, it is clear that the marginal probability

distributions must be the same (PX = PX2). Therefore, E(f ◦X) =
∫

Ω
(f ◦X)(z)P (dz) =∫

R f(w)PX(dw) =
∫
R f(w)PX2(dw) = E(f ◦X2), since the indicator function is a nonneg-

ative measurable function. (vii) Finally,∫
Ω

(χ(−∞,x] ◦X)(w)P (dw) =

∫
R
χ(−∞,x](w

′)PX(dw′) = PX((−∞, x]) = P ({X ≤ x})

and ∫
Ω

χ(−∞,x]×(−∞,y](X(w), Y (w))P (dw) =

∫
R2

χ(−∞,x]×(−∞,y](w
′)PX,Y (dw′)

= P ({X ≤ x, Y ≤ y}).
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�

By Claim 2, Lemma 2.12 and the Fubini-Tonelli's theorem, it follows that

2 Cov(X, Y ) = Cov(X, Y ) + Cov(X2, Y2)

= E(X, Y ) + E(X2, Y2)− E(X)E(Y )− E(X2)E(Y2)

= E(X, Y +X2, Y2)− E(X2Y )− E(XY2)

= E((X2 −X)(Y2 − Y ))

=

∫
Ω

∫ ∫ [
χ(−∞,x](X)− χ(−∞,x](X2)

][
χ(−∞,y](Y )− χ(−∞,y](Y2)

]
dxdydP

=

∫ ∫ ∫
Ω

[
χ(−∞,x](X)− χ(−∞,x](X2)

][
χ(−∞,y](Y )− χ(−∞,y](Y2)

]
dPdxdy

= 2

∫ ∫
Cov(χ(−∞,x](X), χ(−∞,x](Y ))dxdy

= 2

∫ ∫
E
[
χ(−∞,x](X)χ(−∞,x](Y )

]
− E

[
χ(−∞,x](X)

]
E
[
χ(−∞,x](Y )

]
dxdy

= 2

∫ ∫
FX,Y (x, y)− FX(x)FY (y)dxdy

since E|X2 −X||Y2 − Y | ≤ 2(E|XY |+ E|X|E|Y |) <∞.

Lemma 2.14. Let F be the distribution function of random variable X and let F−1 :

[0, 1] → R be the generalized inverse distribution function de�ned by F−1(u) = inf{x ∈
R : F (x) ≥ u}. Moreover, de�ne the quantile function of X by Q(z) = inf{x ∈ R :

P (X > x) ≤ z}, z ∈ R. Then, for any x ∈ R and any z ∈ (0, 1)

z < P (X > x) ⇐⇒ x < Q(z). (2.41)

Proof. Let x ∈ R and z ∈ (0, 1). Then x ∈ {y : F (y) ≥ F (x)} and F−1(F (x)) = inf{y :

F (y) ≥ F (x)}, by de�nition. Thus F−1(F (x)) ≤ x, or equivalently, Q(1 − F (x)) ≤ x,

since Q(1 − z) = inf{x : 1 − F (x) ≤ 1 − z} = F−1(z). Also, F (F−1(z)) = F (inf{y :

F (y) ≥ z}) ≥ z. It is clear that Q is nonincreasing since z1 ≤ z2 implies {P (X > x) ≤
z1} ⊆ {P (X > x) ≤ z2}.

Supose z ≥ P (X > x) = 1−F (x). Then Q(z) ≤ Q(1−F (x)) ≤ x. Conversely, if x ≥
Q(z) = F−1(1− z), then F (x) ≥ F (F−1(1− z)) ≥ 1− z ⇐⇒ z ≥ 1−F (x) = P (X > x).

The result follows by contraposition.

The next theorem can be found in Bosq (2012, Theorem 1.1).

Theorem 2.5 (Rio's Inequality). Let X and Y be two integrable random variables and let

Q|X|, Q|Y | be the quantile functions of |X|, |Y |, respectively. Then if Q|X|Q|Y | is integrable

over (0, 1),

|Cov(X, Y )| ≤ 2

∫ 2α

0

Q|X|(u)Q|Y |(u)du (2.42)
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where α = α(σ(X), σ(Y )) = supB∈σ(X),C∈σ(Y )|P (B ∩ C)− P (B)P (C)|.

Proof. Let X = X+ −X− and Y = Y + − Y −. From the bilinearity of the covariance,

Cov(X, Y ) = Cov(X+, Y +) + Cov(X−, Y −)− Cov(X+, Y −)− Cov(X−, Y +)

≤ Cov(X+, Y +) + Cov(X−, Y −) + Cov(X+, Y −) + Cov(X−, Y +)

= Cov(|X|, |Y |).

By the Hoe�ding's Lemma, Cov(X+, Y +) =
∫∞

0

∫∞
0
P (X ≤ u, Y ≤ v)−P (X ≤ u)P (Y ≤

v)dudv. Note that, if A1 = {X ≤ u} and A2 = {Y ≤ v}, then P (A1∩A2)−P (A1)P (A2) =

1 − P (Ac1 ∪ Ac2) − [(1 − P (Ac1))(1 − P (Ac2))] = P (Ac1 ∩ Ac2) − P (Ac1)P (Ac2). Hence

Cov(X+, Y +) =
∫∞

0

∫∞
0
P (X > u, Y > v) − P (X > u)P (Y > v)dudv. Apply the same

argument to the other covariance's terms to obtain the following set of equalities

Cov(X+, Y +) =

∫ ∞
0

∫ ∞
0

P (X > u, Y > v)− P (X > u)P (Y > v)dudv

Cov(X−, Y −) =

∫ ∞
0

∫ ∞
0

P (−X > u,−Y > v)− P (−X > u)P (−Y > v)dudv

Cov(X−, Y +) =

∫ ∞
0

∫ ∞
0

P (−X > u, Y > v)− P (−X > u)P (Y > v)dudv

Cov(X+, Y −) =

∫ ∞
0

∫ ∞
0

P (X > u,−Y > v)− P (X > u)P (−Y > v)dudv.

Put a = P (X > u), b = P (−X > u), c = P (Y > v) and d = P (−Y > v). Note that the

integrand of any of the above equations are bounded by α ≥ 0 as well as by, at least, two

elements of {a, b, c, d}, due to the monotonicity of the measure. Then

|Cov(X, Y )| ≤ |Cov(|X|, |Y |)|

≤ |Cov(X+, Y +)|+ |Cov(X−, Y −)|+ |Cov(X+, Y −)|+ |Cov(X−, Y +)|

=

∫ ∞
0

∫ ∞
0

[
inf{α, a, c}+ inf{α, a, d}+ inf{α, b, c}+ inf{α, b, d}

]
dudv

=

∫ ∞
0

∫ ∞
0

[
inf{2α, 2a, c+ d}+ inf{2α, 2b, c+ d}

]
dudv

=

∫ ∞
0

∫ ∞
0

inf{4α, 2(a+ b), 2(c+ d)}dudv

= 2

∫ ∞
0

∫ ∞
0

inf{2α, P (|X| > u), P (|Y | > v)}dudv, (2.43)

where the last equality follows from

a+ b = P (X > u) + P (−X > u) = P ({X > u} ∪ {X < −u}) + P ({X > u} ∩ {X < −u})

= P ({X > u} ∪ {X < −u}) + P (∅)

= P (|X| > u),
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and, similarly, from c+ d = P (|Y | > v). De�ne e = P (|X| > u) and f = P (|Y | > v), and

note that ∫ α

0

χ(−∞,inf(e,f)](z)dz =

{
α , if α ≤ inf{e, f}
inf{e, f} , if α > inf{e, f}

,

and that z ∈ (−∞, inf(e, f)] ⇐⇒ z ∈ (−∞, e] ∩ (−∞, f ]. Then, by Lemma 2.14,

inf(2α, e, f) =

∫ 2α

0

χ(−∞,e](z)χ(−∞,f ](z)dz =

∫ 2α

0

χ(−∞,Q|X|(z)](u)χ(−∞,Q|Y |(z)](v)dz,

since it holds that 0 ≤ α ≤ 1/4 (see Bradley, 2005). From Fubini-Tonelli's theorem and

(2.43), we have that

|Cov(X, Y )| ≤ 2

∫ ∞
0

∫ ∞
0

[∫ 2α

0

χ(−∞,Q|X|(z)](u)χ(−∞,Q|Y |(z)](v)dz

]
dudv

≤ 2

∫ 2α

0

[∫ Q|X|(z)

0

1du

∫ Q|Y |(z)

0

1dv

]
dz

= 2

∫ 2α

0

Q|X|(z)Q|Y |(z)dz.

Corollary 2.5.1 (Davydov's Inequality). Let X and Y be two random variables such that

X ∈ Lq(P ), Y ∈ Lr(P ) where q > 1, r > 1 are �nite and 1/q + 1/r = 1− 1/p. Then

|Cov(X, Y )| ≤ 2p(2α)1/p‖X‖q‖Y ‖r. (2.44)

Proof. Let X ∈ Lp(P ), Y ∈ Lp(P ), meaning that ‖X‖q = (
∫
|X|qdP )1/q < ∞ and that

‖Y ‖r = (
∫
|Y |rdP )1/r <∞, respectively. By the Markov's inequality, we have that

P

[
|X| > ‖X‖q

u1/q

]
= P

[
|X|q >

(
‖X‖q
u1/q

)q ]
≤ P

[
|X|q ≥

(
‖X‖q
u1/q

)q ]
≤ u

‖X‖qq

∫
Ω

|X|qdP =
u

‖X‖qq
‖X‖qq

= u, ∀u ∈ (0, 1). (2.45)

The inequality (2.45) is equivalent to Q|X|(u) ≤ ‖X‖q/u1/q,∀u ∈ (0, 1), by the contrapo-

sition of Lemma 2.14. These results hold analogously for Y . From Rio's inequality,

|Cov(X, Y )| ≤ 2

∫ 2α

0

Q|X|(u)Q|Y |(u)du ≤ 2

∫ 2α

0

‖X‖q‖Y ‖r
u1/qu1/r

du

= 2‖X‖q‖Y ‖r
∫ 2α

0

u1/p−1du = 2‖X‖q‖Y ‖r(2α)1/pp.
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Assumption A.1 imposes that {εt,T} is strongly mixing on (Ω,F , P ). Remember that

the α-mixing coe�cients are de�ned as

αT (j) = sup
1≤k≤T−j

sup{|P (A ∩B)− P (A)P (B)| : B ∈ FkT,1, A ∈ FTT,k+j}, 0 ≤ j < T,

where FkT,i = σ(εT,l : i ≤ l ≤ k). Let f(A,B) = |P (A∩B)−P (A)P (B)| for any A,B ∈ F .
It holds that

α(σ(εt,T ), σ(εl,T ))
def
= sup{f(A,B) : A ∈ σ(εt,T ), B ∈ σ(εl,T )}

∈ {sup{f(A,B) : A ∈ σ(εj,T ), B ∈ σ(εj+|t−l|,T )} : 0 ≤ j < T}

⊆ {sup{f(A,B) : A ∈ σ(∪ji=1σ(εi,T )), B ∈ σ(∪∞i=j+|t−l|σ(εi,T ))} : 0 ≤ j < T}

= {sup{f(A,B) : A ∈ F j1 , B ∈ F∞j+|t−l|} : 0 ≤ j < T}.

Taking the supremum over j yields α(σ(εt), σ(εl)) ≤ α(|l−t|). We shall use this fact when

applying Davydov's inequality.

If X and Y are essentially bounded random variables (X, Y ∈ L∞(P )), where we

de�ne ‖Z‖∞ = inf
{
a : P (Z > a) = 0

}
< +∞, ∀Z ∈ L∞(P ), then Rio's inequality

implies

|Cov(X, Y )| ≤ 2Q|X|(0)Q|(Y )|(0)

∫ 2α

0

du = 4α‖X‖∞‖Y ‖∞.

This result is also known as Billingsley's inequality. From Corollary 2.5.1, we immediately

see that

|Cov(X, Y )| ≤ 4α1−1/q‖X‖q‖Y ‖∞,

if X ∈ Lq(P ) and Y ∈ L∞(P ). It is then possible to derive another version of Davydov's

inequality.

Corollary 2.5.2 (Davydov's Inequality 2). Let X and Y be two random variables such

that X ∈ Lq(P ), Y ∈ Lr(P ) where q > 1, r > 1 are �nite and 1/q + 1/r = 1− 1/p. Then

|Cov(X, Y )| ≤ 6α1/p‖X‖q‖Y ‖r. (2.46)

Proof. Put M = α−1/r‖Y ‖r, Y1 = Y χ{|Y |≤M} and Y2 = Y − Y1. Then Y = Y1 + Y2 and

|Y1| ≤M . Therefore, applying Corollary 2.5.1 and Holder's inequality,

|Cov(X, Y )| = |Cov(X, Y1 + Y2)| ≤ |Cov(X, Y1)|+ |Cov(X, Y2)|

≤ 4α1−1/q‖X‖q‖Y1‖∞ + 2‖X‖q‖Y2‖q/(q−1)

≤ 2‖X‖q(2Mα1−1/q + ‖Y2‖q/(q−1)).
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Let s = q/(q − 1) for simplicity. By Holder's and Markov's inequalities, it follows that

E(|Y |sχ{|Y |>M}) ≤ [E|Y |r]s/r(P (|Y | > M))1−s/r ≤ [E|Y |r]s/r[E(|Y |r/M r)]1−s/r

= E|Y |rM s−r,

and then

‖Y2‖s =
{
E
∣∣Y (1− χ{|Y |≤M})

∣∣s}1/s
=
{
E
(
|Y |sχ{|Y |>M}

)}1/s
=
{
E|Y |rM s−r}1/s

= {E|Y |r(α−1E|Y |r)(s−r)/r}1/s = (E|Y |r)
1
r

(
1− r

s

)
+ 1
sα−

1
r

(
1− r

s

)
= (E|Y |r)1/rα1/p.

From this, |Cov(X, Y )| ≤ 2‖X‖q(2α1/p‖Y ‖r + ‖Y ‖rα1/p) = 6α1/p‖X‖q‖Y ‖r.
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3 NONPARAMETRIC ESTIMATION OF A SMOOTH TREND IN THE

PRESENCE OF A PERIODIC SEQUENCE

Abstract. We develop the asymptotic theory for the estimators derived from reversing

the three-step procedure of Vogt and Linton (2014). We provide the uniform weak con-

vergence rates of the trend function and periodic sequence estimators. We establish the

asymptotic normality for the trend estimator. We also show that the period estimator is

consistent.

Keywords: Nonparametric Regression. Periodic sequence. Asymptotic analysis

JEL Codes. C13, C14, C22;
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3.1 Introduction

One way to deal with time series presenting a periodic and a trend behavior is to

model them additively. That is, the series is written as the sum of a periodic and a

trend components plus a stochastic error process. Although the nonparametric estima-

tion of such model seems to be appealing due to its �exibility, in most studies the data

are modeled as having only the trend or only the periodic component, and rarely both

components are considered together. When the data has only the slowly varying com-

ponent (plus an error term), its nonparametric estimation is popularly done by using a

local polynomial �t (WATSON, 1964; NADARAYA, 1964; CLEVELAND, 1979; FAN,

1992) or a spline smoothing (WAHBA, 1990; GREEN; SILVERMAN, 1993; EUBANK,

1999). On the other hand, for models where the data is written as a periodic component

plus an error term, the nonparametric estimation of the period and values of the periodic

component was investigated by Sun et al. (2012) for evenly spaced �xed design points and

by Hall et al. (2000) for a random design setting.

A few nonparametric methods are available to address the problem of estimating mod-

els where both periodic and trend components are taken into account. As an example,

we can mention the Singular Spectrum Analysis (BROOMHEAD; KING, 1986; BROOM-

HEAD et al., 1987) that have been applied in natural sciences as well as in social sciences

such as economics. A more recent nonparametric method is the three-step estimation

procedure proposed by Vogt and Linton (2014). In the �rst step, the fundamental period

of the periodic sequence is estimated. Given the period estimate, an estimate of the pe-

riodic sequence is provided in the second step. The last step consists in estimating the

trend function using the local linear regression. Their asymptotic analysis investigated the

uniform weak convergence rates and the asymptotic normality for the estimators of the

trend function and the periodic sequence. In addition, the period estimator was proved

to be consistent. In their supplementary material, they suggested that reversing the order

of the estimation scheme was possible in principle. In other words, one could estimate

the trend function �rst and subsequently estimate the period and the periodic sequence.

We aim to investigate this reversed estimation version more deeply.

In this section, we develop the asymptotic theory for the estimators involved in the

reversed procedure of Vogt and Linton (2014). We provide the uniform weak convergence

of the estimators of the trend function and of the periodic sequence. The asymptotic nor-

mality for the trend estimator is also stablished. We also show that the period estimator

is consistent.
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3.2 The model

Let T ∈ N and assume the time series {Yt,T : t = 1, · · · , T} is observed and follows

the model

Yt,T = g(t/T ) +m(t) + εt,T , t = 1, 2, . . . , T, (3.1)

where g is a function of deterministic trend, {m(t)}t∈N is a deterministic periodic sequence

with unknown period θ0 ∈ N and E(εt,T ) = 0. By de�nition, the periodic sequence must

satisfy m(s) = m(s+ kθ0) for any s ∈ [θ0] and any k ∈ N. Implicitly, θ0 is assumed to be

the smallest period of the sequence m(t). For the asymptotic analysis, model (3.1) o�ers

a framework such that as T grows we get additional information on the value of g(t/T ),

at a given neighborhood of t/T , and on the value m(s), for a given s ∈ [θ0], due to its

periodic property.

The assumption on m(t) allows us to represent the values of the sequence as m(t) =∑θ0
s=1 βsIs(t) where Is(t) = I(t = s+ kθ0 : k ∈ N) and I the indicator function. Note that

this representation comes naturally from the periodicity of the sequence without having

to make any additional parametric restriction.

In matrix notation, model (3.1) becomes

Y = g +Xθ0β + ε, (3.2)

where Y = (Y1,T , . . . , YT,T )′ is the vector of observations, g = {g(1/T ), . . . , g(T/T )}′ is the
trend component, Xθ0 = [Iθ0 Iθ0 . . . ]′ is the design matrix with Iθ0 being the θ0 × θ0

identity matrix and ε = (ε1,T , . . . , εT,T )′ is the error vector.

3.3 Estimation

The estimation procedure is done by reversing the steps of Vogt and Linton (2014) as

they suggested in their supplementary material. We �rst estimate the trend function and

then proceed by estimating the periodic sequence.

For the asymptotic analysis, we assume that m and g are normalized to satisfy∑θ0
s=1 m(s) = 0. From now on, we denote by C a generic positive constant which may

take di�erent values at di�erent appearances.

3.3.1 Step 1: Estimation of the Trend Function

If the periodic sequence m in equation (3.1) is known, then the local linear estimator

for the trend g and its �rst derivative g(1)h, at x ∈ [0, 1], is given by

P̃ (x) =

[
g̃(x)

g̃(1)(x)h

]
:= S−1

T,xAT,x (3.3)
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where

ST,x =
1

Th

 ∑T
t=1K

(
t
T
−x
h

) ∑T
t=1

(
t
T
−x
h

)
K
(

t
T
−x
h

)
∑T

t=1

(
t
T
−x
h

)
K
(

t
T
−x
h

) ∑T
t=1

(
t
T
−x
h

)2

K
(

t
T
−x
h

)
 , Zt,T = Yt,T −m(t)

AT,x =
1

Th

 ∑T
t=1K

(
t
T
−x
h

)
Zt,T∑T

t=1

(
t
T
−x
h

)
K
(

t
T
−x
h

)
Zt,T

 ,
with ST,x being an invertible matrix, hT := h a bandwidth sequence and K a kernel-like

function. Straighforward calculations shows that we can write

g̃(x) =
T∑
t=1

Wt,T (x)Zt,T , (3.4)

where Wt,T (x) = 1
Th
e′1S

−1
T,xX

(
t/T−x
h

)
K
(

t
T
−x
h

)
for e1 = (1, 0)′ and X(u) = (1, u)′. How-

ever, the estimator P̃ is infeasible since we do not observe m(t). One could try to estimate

g by simply ignoring the periodic component, i.e., using

ĝ(x) =
T∑
t=1

Wt,T (x)Yt,T . (3.5)

The local linear weightsWt,T (x) can be readily replaced by Nadaraya-Watson's weights.

Although the latter is simpler, it su�ers from boundary bias (WAND; JONES, 1994, p.

126).

3.3.2 Step 2: Estimation of the Period

The period estimation is carried out by means of a penalized residual sum of squares

minimization.

Let St,T = Yt,T − g(t/T ). If the trend function were known, the period θ0 could be

estimated from

S = Xθ0β + ε, (3.6)

where S = [S1,T , . . . , ST,T ]′. For each θ ∈ {1, . . . ,ΘT} with ΘT < T , de�ne the least

squares estimate of model (3.6) with period θ by

β̂θ = (X ′θXθ)
−1X ′θS, (3.7)

where Xθ = [Iθ Iθ . . . ]′ with Iθ being the θ × θ identity matrix. In addition, let the

associated penalized residual sum of squares be given by

Q(θ, λT ) = RSS(θ) + λT θ, (3.8)
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where λT is a divergent real sequence and RSS(θ) = ‖S −Xθβ̂θ‖2 with ‖·‖ denoting the

usual Euclidean norm on RT . The estimator of the period θ0 is the minimizer

θ̂ = arg min
1≤θ≤ΘT

Q(θ, λT ). (3.9)

The rates with which the sequences λT and ΘT are allowed to diverge will be speci�ed

later on. The estimator in (3.9) is infeasible though. We approximate θ̂ using S̃t,T =

Yt,T − ĝ(t/T ) through

θ̃ = arg min
1≤θ≤ΘT

Q̃(θ, λT ) (3.10)

where

Q̃(θ, λT ) = RSS(θ) + λT θ and RSS(θ) = ‖S̃ −Xθβ̃θ‖2,

with β̃θ = (X ′θXθ)
−1X ′θS̃ and S̃ = [S̃1,T , . . . , S̃T,T ]′.

As pointed out by Vogt and Linton (2014), this period estimation can also be regarded

as a model selection problem. Also, the presence of the l0-regularization parameter λT can

prevent the period estimator from choosing large periods (multiples of θ0). The selection

of λT will be discussed in the next chapter.

3.3.3 Step 3: Estimation of the Periodic Sequence

If St,T = Yt,T − g(t/T ) and θ0 were known, we could estimate β using

β̂ = (X ′θ0Xθ0)
−1Xθ0S. (3.11)

We propose to estimate β by the feasible estimator

β̃ = (X ′
θ̃
Xθ̃)

−1Xθ̃S̃. (3.12)

3.4 Asymptotics

For the asymptotic analysis, the following conditions are made.

1. (Condition 1) The triangular array {εt,T} is strongly mixing with coe�cients α(k)

satisfying α(k) ≤ Cak for some positive constants a < 1 and C.

2. (Condition 2) E(|εt,T |(4+δ)) ≤ C and E(ε4t,T (ln(1 + εt,T ))3) ≤ C for some constants

0 < δ and 0 < C <∞.

3. (Condition 3) g is twice continuously di�erentiable on [0, 1]

4. (Condition 4) The kernel function K is nonnegative, symmetric around zero, Lip-

schitz continuous and has compact support.

5. (Condition 5) The bandwidth h > 0 satis�es h→ 0 and Th2 →∞ as T →∞.

Condition 1 says that the error array is α-mixing with geometrically mixing rates.
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Condition 2 gives uniform moment bounds for the error random variables. The bound on

E(ε4t,T (ln(1 + εt,T ))3) will be shown to be important since we are allowing for nonstation-

arity. The conditions on g and K are standard to derive the properties of the local linear

estimator.

Without loss of generality, assume suppK = [−1, 1] and
∫

suppK
K(u)du = 1.

To derive the asymptotic properties of ĝ(x), de�ne

VT,x =
1

kT

T∑
t,j=1

K

(
t/T − x

h

)
K

(
j/T − x

h

)
E(εt,T εj,T ), x ∈ (h, 1− h),

where kT is the cardinality of the set Jx = {i ∈ [T ] : i/T ∈ (x− h, x+ h)}.

Theorem 3.1. Suppose Conditions 1-4 hold. If lnT/(T θh) = o(1) for some θ ∈ (0, 1],

then it holds that

sup
x∈[0,1]

|ĝ(x)− g(x)| = Op

(√
lnT

Th
+ h2

)
, T →∞.

Moreover, if Vx = limT→∞ VT,x exists and Th5 = O(1), then

√
Th
(
ĝ(x)− g(x)− Jx

) d→ 2N(0, Vx), T →∞, ∀x ∈ (h, 1− h),

where Jx = 2−1h2g′′(x)
∫
u2K(u)du.

Theorem 3.1 says that the local linear estimator still has good asymptotic properties

if we ignore the presence of the periodic component. The uniform convergence rate is the

same as that obtained in the oracle case. Inspecting the proof of the theorem, we can

conclude that the naive estimator ĝ has the oracle property, i.e., ĝ has the same limiting

distribution as that of estimator g̃, de�ned in (3.4), which is obtained assuming that m

is known. We can also �nd that the replacement of g̃(x) by ĝ(x) results in an error of

asymptotically negligible order O(T−1), uniformly on x and h. This implies that the

bandwidth for ĝ could be selected using the same techniques as used for the estimator g̃.

In the next chapter, however, we will see that employing asymptotic bandwidth selection

rules for ĝ may lead to poor performance on �nite samples. [This is another theoretical

result suggesting that the optimal plugin h for ĝ is of order T−1/5.]

Note that Theorem 3.1 can be applied to cases where the aim is only to estimate

the trend function nonparametrically. If a correct examination detects the presence of

a periodic component in the time series, then the direct application of the local linear

estimator is acceptable, under certain circumstances.

Say that a real sequence aT is Θ(bT ) if there are constants m,M > 0 such that

bTm ≤ aT ≤MbT for all su�ciently large T .
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Theorem 3.2. Let Conditions 1 − 4 be ful�lled. Assume that the bandwidth satis�es

h = Θ(T−1/4) and that ΘT ≤ CT 2/5−ω , for some small ω > 0. Moreover, choose

the regularization parameter λT to satisfy T 1/4ΘTρ
1/2
T = o(λT ) and λT = o(T ) for some

positive sequence ρT slowly diverging to in�nity (e.g. ρT = ln lnT ). Then θ̃ = θ0 + op(1).

Theorem 3.3. Let the conditions of Theorem 3.2 be satis�ed. Then

max
1≤t≤T

|m̃(t)−m(t)| = Op

((
ρT
Th

)1/2)
, T →∞,

where ρT is a positive sequence slowly diverging to in�nity.

3.5 Proofs

Appendix C contains several lemmas (from 3.1 to 3.11) which are used in the proofs

of this section.

Proof of Theorem 3.1. Write

|ĝ(x)− g(x)| ≤ |ĝ(x)− g̃(x)|+ |g̃(x)− g(x)|

:= A1 + A2, (3.13)

where g̃ is the estimator in the oracle case, de�ned in (3.4).

From Theorem 2.4 of Chapter 2, we have that supx∈[0,1]A2 = Op(
√

lnT/(Th) + h2).

Now, we show that supx∈[0,1] A1 is dominated by supx∈[0,1]A2. For this, we go along the

lines of the proof of Theorem 2.4.

We have that A1 = |e′1S−1
T,xMT,x| where

MT,x =
1

T

[ ∑T
t=1 Kh(t/T − x)m(t)∑T
t=1

( t/T−x
h

)
Kh(t/T − x)m(t)

]
:=

[
m0

m1

]
.

Then, rewrite

sup
x∈[0,1]

A1 = sup
x∈[0,1]

∣∣∣∣∣∣e′1
[
s0 s1

s1 s2

]−1 [
m0

m1

]∣∣∣∣∣∣ = sup
x∈[0,1]

∣∣∣∣m0 − s2
1s
−1
2 m1

s0 − s2
1s
−1
2

∣∣∣∣ := sup
x

Vn
Vd
, (3.14)

where the dependencies of the entries on T and x were omitted, for brevity's sake. Consider

the quantity µj, j ∈ {0, 1, 2}, de�ned in Lemma 2.6 of Chapter 2. The fact ||sj| − |µj|| ≤
|sj − µj| guarantees that |sj| = |µj|+O(1/(Th)) also holds. In addition, given x ∈ [0, 1],

we have 0 < µj ≤ C for j ∈ {0, 2} and |µ1| ≤ C, by Condition 4. It implies µ2
1/µ2 = O(1).

For any natural numbers T, θ0 > 0, de�ne E = {i ∈ [θ0] : Kθ0
i,T = bT/θ0c + 1}. Then,
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for j ∈ {0, 1}, x ∈ [0, 1] and T su�ciently large, Lemmas 3.4 and 3.10 gives

1

T

T∑
t=1

m(t)Kh(t/T − x)

(
t/T − x

h

)j
=

1

T

θ0∑
i=1

m(i)
∑
k∈Jx,i

Kh

(i+ (k − 1)θ0

T
− x
)((i+ (k − 1)θ0)/T − x

h

)j

=
1

T

θ0∑
i=1

m(i)O(Kθ0
i,T ) = O

(
1

T

)[∑
i∈E

m(i)Kθ0
i,T +

∑
i/∈E

m(i)Kθ0
i,T

]
= O

(
1

T

)[∑
i∈E

m(i)

(⌊
T

θ0

⌋
+ 1

)
+
∑
i/∈E

m(i)

⌊
T

θ0

⌋]

= O

(
1

T

)[∑
i∈E

m(i)︸ ︷︷ ︸
≤C

+

θ0∑
i=1

m(i)︸ ︷︷ ︸
=0

⌊
T

θ0

⌋]
= O

(
1

T

)
.

It implies that m0 and m1 are O(1/T ) uniformly on x ∈ [0, 1]. Then

Vn ≤ sup
x∈[0,1]

|m0|+ |s2
1s
−1
2 | sup

x∈[0,1]

|m1| = O(T−1)

{
1 +
|µ2

1|+O(1/(Th))

|µ2|+O(1/(Th))

}
= O(T−1)

{
1 +

∣∣∣∣µ2
1

µ2

∣∣∣∣+O

(
1

Th

)}
= O(T−1)

and

Vd =

∣∣∣∣µ0 +O

(
1

Th

)
− µ2

1 +O(1/(Th))

µ2 +O(1/(Th))

∣∣∣∣ =

∣∣∣∣µ0 −
µ2

1

µ2

+O

(
1

Th

)∣∣∣∣.
Lemma 2.7 of Chapter 2 guarantees that the limiting matrix of ST,x is positive de�nite.

It implies that µ0µ2 − µ2
1 6= 0. Then

A1 = O(T−1) sup
x∈[0,1]

∣∣∣∣ 1

µ0 − µ2
1/µ2 +O(1/(Th))

∣∣∣∣ = O(T−1) sup
x∈[0,1]

∣∣∣∣ µ2

µ0µ2 − µ2
1

+O

(
1

Th

)∣∣∣∣
= O(T−1).

Hence supx∈[0,1]|ĝ(x)− g(x)| = Op(
√

lnT/(Th) + h2 + T−1) = Op(
√

lnT/(Th) + h2). To

make the second equality clear, note that

TaT =

(
T lnT

h

)1/2

→∞ and Th2 →∞

and so
√

lnT/(Th) + h2 + T−1 = O(
√

lnT/(Th) + h2).
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We now turn to the asymptotic normality. Write

ĝ(x)− g(x) =
[
ĝ(x)− g̃(x)

]
+
[
g̃(x)− g(x)

]
=
[
ĝ(x)− g̃(x)

]
+

[ T∑
t=1

Wt,T (x)g(t/T )− g(x)

]
+

[ T∑
t=1

Wt,T (x)εt,T

]
(3.15)

:= gO + gB + gV . (3.16)

From the previous part of the proof,
√
ThgO = O((h/T )1/2) . Furthermore, standard

calculations for the bias of the local linear estimator give gB = Jx + o(h2) where Jx =

2−1h2g′′(x)
∫
u2K(u)du (see Appendix G of Chapter 4). From (3.3), we can express the

stochastic term by

gV = e′1S
−1
T,xVT,x, (3.17)

where

VT,x =
1

T

[ ∑T
t=1Kh(t/T − x)εt,T∑T
t=1

( t/T−x
h

)
Kh(t/T − x)εt,T

]
:=

[
v0

v1

]
.

As before, rewrite

gV =
v0 − s2

1s
−1
2 v1

s0 − s2
1s
−1
2

=
v0

s0 − s2
1s
−1
2

− s2
1s
−1
2 v1

s0 − s2
1s
−1
2

,

where

s2
1s
−1
2 =

µ2
1 +O(1/(Th))

µ2 +O(1/(Th))
=
µ2

1

µ2

+O(1/(Th))

and

s0 − s2
1s
−1
2 =

µ2µ0 − µ2
1

µ2

+O(1/(Th)),

using Lemma 2.6 of Chapter 2. The assumption that x ∈ (h, 1 − h) implies µ1 = 0 and

µ0 = 1 for T large enough. Also, we have that 0 < µ2 ≤ 1 and that µ2µ0 − µ2
1 6= 0, where

the latter is implied by Lemma 2.7 of Chapter 2 . Thus, from Theorem 2.2 and Lemma

2.9 of Chapter 2, it is easily seen that

gV =
1

1 +O(1/(Th))
v0 +

O(1/(Th))

1 +O(1/(Th))
v1 = (1 +O(1/(Th)))v0 +O(1/(Th))v1

= v0 +O(1/(Th))Op(
√

lnT/(Th)) = v0 + op(1/
√
Th).

By de�nition,

√
Thv0 =

√
kT
Th

1√
kT

T∑
t=1

K

(
t/T − x

h

)
εt,T I(t ∈ Jx) =

√
kT
Th

1√
kT

T∑
t=1

Xt,T (3.18)

where Xt,T := K((t/T − x)/h)εt,T I(t ∈ Jx). Lemma 3.11 implies that the triangle array
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{Xt,T} is also strong mixing with mixing coe�cients bounded by the mixing coe�cients of

{εt,T}. The problem of obtaining exact value of kT is similar to that of counting the number

of 1/T -periodic points on the set (0, 2h). Therefore, kT equals K1/T
s,2h = b(2h− s)/(1/T )c,

for some 0 < s ≤ 1/T . Thus kT
a
≈ 2Th − sT

a
≈ 2Th, since 0 < sT ≤ 1. It implies√

kT/(Th)
a
≈
√

2.

The application of Politis-Ekstrom's CLT (Theorem 3.6 of Appendix D) and Corollary

3.6.1 gives √
Thv0

d→ 2N(0, Vx). (3.19)

Hence, by Slutsky's Theorem,

√
Th
(
ĝ(x)− g(x)− Jx

)
= o(1) + o(

√
Th5) + op(1) +

√
Thv0

d→ 2N(0, Vx).

Proof of Theorem 3.2 By Lemmas 3.2 ,3.8 and 3.9, we obtain that P (θ̃ 6= θ0) = o(1).

Note that, for any δ > 0, {|θ̃ − θ0| ≥ δ} ⊆ {|θ̃ − θ0| > 0} = {θ̃ 6= θ0}. Using the

monotonicity of the measure and taking limits, it follows that limT→∞ P (|θ̃ − θ0| ≥ δ) =

0, ∀δ > 0, that is, θ̃ − θ0 = op(1).

Proof of Theorem 3.3 Denote

m̃(s) = e′sβ̃ = e′s(X
′
θ̃
Xθ̃)

−1X ′
θ̃
S̃, s ∈ {1, . . . , θ̃}

m̄(s) = e′sβ̄ = e′s(X
′
θ0
Xθ0)

−1X ′θ0S̃, s ∈ {1, . . . , θ0}

m̂(s) = e′sβ̂ = e′s(X
′
θ0
Xθ0)

−1X ′θ0S, s ∈ {1, . . . , θ0}.

Then

max
1≤t≤T

|m̃(t)−m(t)| ≤ max
1≤t≤T

|m̃(t)− m̄(t)|+ max
1≤t≤T

|m̄(t)− m̂(t)|+ max
1≤t≤T

|m̂(t)−m(t)|

:= M1 +M2 +M3.

By monotonicity ans subadditivity of the measure and by Theorem 3.2, we have that

P (
√
ThM1 > δ) ≤ P (

√
Th max

1≤t≤T
|m̃(t)− m̄(t)| > δ, θ̃ = θ0) + P (θ̃ 6= θ0)

≤
θ0∑
t=1

P (
√
Th|m̃(t)− m̄(t)| > δ, θ̃ = θ0) + o(1)

= θ0P (∅) + o(1) = o(1),

for every δ > 0, since β̄ = β̃ when θ̃ = θ0. Thus

√
ThM1 = op(1). (3.20)
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For the term M2, observe that

β̄ − β̂ = Dθ0X
′
θ0

(ĝ − g) =


1

K
θ0
1,T

. . .
1

K
θ0
θ0,T



∑K

θ0
1,T

k=1 ĝ

(
1+(k−1)θ0

T

)
− g
(

1+(k−1)θ0
T

)
...∑K

θ0
θ0,T

k=1 ĝ

(
θ0+(k−1)θ0

T

)
− g
(
θ0+(k−1)θ0

T

)


=


m̄(1)− m̂(1)

...

m̄(θ0)− m̂(θ0)

 .
In addition, both m̄(t) and m̂(t) are θ0-periodic, and then, max1≤t≤T |m̄(t) − m̂(t)| =

max1≤t≤θ0|m̄(t)− m̂(t)|. We can then represent M2 as averages of the form:

max
1≤t≤θ0

|m̄(t)− m̂(t)| = max
1≤t≤θ0

∣∣∣∣ 1

Kθ0
wθ0,t,T

K
θ0
wθ0,t

,T∑
k=1

ĝ

(
wθ0,t + (k − 1)θ0

T

)
− g
(
wθ0,t + (k − 1)θ0

T

)∣∣∣∣
≤ max

1≤t≤θ0

∣∣∣∣ 1

Kθ0
wθ0,t,T

K
θ0
wθ0,t

,T∑
k=1

T∑
i=1

Wi,T

(
wθ0,t + (k − 1)θ0

T

)[
g

(
i

T

)
− g
(
wθ0,t + (k − 1)θ0

T

)]∣∣∣∣
+ max

1≤t≤θ0

∣∣∣∣ 1

Kθ0
wθ0,t,T

K
θ0
wθ0,t

,T∑
k=1

T∑
i=1

Wi,T

(
wθ0,t + (k − 1)θ0

T

)
m(i)

∣∣∣∣
+ max

1≤t≤θ0

∣∣∣∣ 1

Kθ0
wθ0,t,T

K
θ0
wθ0,t

,T∑
k=1

T∑
i=1

Wi,T

(
wθ0,t + (k − 1)θ0

T

)
εi,T

∣∣∣∣
:= M g

2 +Mm
2 +M ε

2.

The non-stochastic terms satisfy

√
ThM g

2 ≤ C(Th)1/2h2 ≤ C(Th5)1/2 = o(1), (3.21)

√
ThMm

2 ≤ C(Th)1/2 1

T
≤ C

(
h

T

)1/2

= o(1). (3.22)

On the other hand, for each t ∈ {1, . . . , T}, we have

E

{
1

(Kθ0
wθ0,t,T

)2

K
θ0
wθ0,t

,T∑
k,k′=1

T∑
i,j=1

Wi,T

(
wθ0,t + (k − 1)θ0

T

)
Wj,T

(
wθ0,t + (k′ − 1)θ0

T

)
εi,T εj,T

}

≤ 1

(Kθ0
wθ0,t,T

)2

K
θ0
wθ0,t

,T∑
k,k′=1

T∑
i,j=1

(sup
x,i
|Wi,T (x)|)2|Cov(εi,T , εj,T )| ≤ C

Th
,
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and then Chebychev's inequality implies

P

(
M ε

2 > C

√
ρT
Th

)
≤

θ0∑
i=1

C

Th

Th

ρT
= o(1).

Thus M ε
2 = Op(

√
ρt/(Th)). Analogously, we can obtain that

Var

(
1

Kθ0
wθ0,t,T

K
θ0
wθ0,t

,T∑
k=1

εwθ0,t+(k−1)θ0,T

)

≤ 1

(Kθ0
wθ0,t,T

)1/2

K
θ0
wθ0,t

,T∑
k,k′=1

|Cov(εwθ0,t+(k−1)θ0,T , εwθ0,t+(k′−1)θ0,T )| ≤ C

Kθ0
wθ0,t,T

∞∑
k=0

(aθ0)k

≤ C

T
.

Therefore,

P

(
M3 >

C√
Th

)
≤

θ0∑
i=1

C

T
Th = o(1).

Finally, combining these results we obtain

max
1≤t≤T

|m̃(t)−m(t)| = op((Th)−1/2) + o((Th)−1/2) +Op((Th)−1/2) +Op(ρT (Th)−1/2)

= Op((Th)−1/2 + ρT (Th)−1/2) = Op(ρT (Th)−1/2).
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Appendix C - Technical Details

We start by stating some preliminary results. For every θ ∈ N, let Πθ = Xθ(X
′
θXθ)

−1X ′θ
be the matrix of projection onto the column space of Xθ and call Mθ = I − Πθ as the

annihilator matrix of Xθ, with Xθ = [Iθ Iθ . . . ]′ being a T × θ matrix. To simplify the

notations, we will use the shorthands X := Xθ, Π := Πθ and M := Mθ whenever no risk

of confusion exists.

Lemma 3.1. Let θ ∈ N. It holds that:
(i) Π and M are symmetric and idempotent;

(ii) for a regression model S = Xβ + ε, the least residual sum of squares can be written

as RSS(θ) = S ′MS.

Proof. (i) Π′ = [X(X ′X)−1X ′]′ = X[(X ′X)−1]′X ′ = X[(X ′X)′]−1X ′ = X(X ′X)−1X ′ =

Π. Further, Π2 = X(X ′X)−1X ′X(X ′X)−1X ′ = XI(X ′X)−1X ′ = Π.

The annihilator is also symmetric as M ′ = I − Π′ = I − Π = M . In addition, M2 =

(I − Π)(I − Π) = I − 2Π + Π2 = I − 2Π + Π = I − Π = M .

(ii) Since ΠS = X(X ′X)−1X ′S = Xβ̂, it follows that S−Xβ̂ = S−ΠS = (I−Π)S = MS.

Hence, RSS(θ) = (S −Xβ̂)′(S −Xβ̂) = S ′M ′MS = S ′M2S = S ′MS.

Lemma 3.2. Let

gb = (gb(1/T ), . . . , gb(T/T ))′ with gb(x) =
T∑
i=1

Wi,T (x)[g(x)− g(i/T )];

gm = (gm(1/T ), . . . , gm(T/T ))′ with gm(x) =
T∑
i=1

Wi,T (x)m(i); and

gε = (gε(1/T ), . . . , gε(T/T ))′ with gε(x) =
T∑
i=1

Wi,T (x)εi,T .

Denote B = Πθ − Πθ0. Then

P (θ̃ 6= θ0) ≤
∑

1≤θ≤ΘT
θ 6=θ0

P{Q̃(θ, λT ) ≤ Q̃(θ0, λT )}, (3.23)

and, for each θ 6= θ0, it holds that

P{Q̃(θ, λT ) ≤ Q̃(θ0, λT )} = P{V (ε,ε)
θ + V

(ε,gε)
θ + V

(gε,gε)
θ ≤ −Bθ +W gb

θ +W gm
θ

− 2Sgbθ + 2Sgmθ − 2U
(gb,gm)
θ − 2U

(gb,gε)
θ − 2U

(gb,ε)
θ + 2U

(gm,gε)
θ − 2U

(gm,ε)
θ + Sgεθ

− Sεθ + λT (θ0 − θ)}, (3.24)
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where

V
(ε,ε)
θ = −ε′Bε, V

(ε,gε)
θ = −ε′Bgε, V

(gε,gε)
θ = −g′εBgε, Bθ = (Xθ0β)′Mθ(Xθ0β).

W gb
θ = g′bBgb, W gm

θ = g′mBgm, Sgbθ = (Xθ0β)′Mθgb, Sgmθ = (Xθ0β)′Mθgm,

U
(gb,gm)
θ = g′bBgm, U

(gb,gε)
θ = g′bBgε, U

(gb,ε)
θ = g′bBε, U

(gm,gε)
θ = g′mBgε

U
(gm,ε)
θ = g′mBε, Sgεθ = (Xθ0β)′Mθgε, Sεθ = (Xθ0β)′Mθε.

Proof. Since θ̃ ∈ [ΘT ],

w ∈ {θ̃ 6= θ0} ⇐⇒ ∃θ1 ∈ [ΘT ] \ {θ0} : w ∈ {θ̃ = θ1} ⇐⇒ w ∈
⋃

θ1∈[ΘT ]\{θ0}

{θ̃ = θ1}.

From the subadditivity of the measure, P (θ̃ 6= θ0) ≤
∑

1≤θ1≤ΘT
θ1 6=θ0

P (θ̃ = θ1). For each

θ1 ∈ [ΘT ] \ {θ0}, the following relations hold

θ̃ = θ1 ⇐⇒ arg min
1≤θ≤ΘT

Q̃(θ, λT ) = θ1 ⇐⇒ min
1≤θ≤ΘT

Q̃(θ, λT ) = Q̃(θ1, λT )

⇐⇒ Q̃(θ, λT ) ≥ Q̃(θ1, λT ), ∀θ ∈ {1, . . . ,ΘT}. (3.25)

It implies that, for each θ1 ∈ [ΘT ] \ {θ0},

{θ̃ = θ1} =
⋂

1≤θ≤ΘT

{Q̃(θ, λT ) ≥ Q̃(θ1, λT )} ⊆ {Q̃(θ0, λT ) ≥ Q̃(θ1, λT )},

and then P (θ̃ = θ1) ≤ P (Q̃(θ0, λT ) ≥ Q̃(θ1, λT )), by the monotonicity of the measure.

Thus P (θ̃ 6= θ0) ≤
∑

1≤θ1≤ΘT
θ1 6=θ0

P{Q̃(θ1, λT ) ≤ Q̃(θ0, λT )}.

Lemma 3.1 implies that RSS(θ) = S̃ ′MθS̃. Therefore, from (3.2),

RSS(θ) =
(
Xθ0β + (g − ĝ) + ε

)′
Mθ

(
Xθ0β + (g − ĝ) + ε

)
=
(
Xθ0β + gb − gm − gε + ε

)′
Mθ

(
Xθ0β + gb − gm − gε + ε

)
=(Xθ0β)′Mθ(Xθ0β) + g′bMθgb + g′mMθgm + g′εMθgε + ε′Mθε

+ 2
[
(Xθ0β)′Mθgb − (Xθ0β)′Mθgm − (Xθ0β)′Mθgε + (Xθ0β)′Mθε

− g′bMθgm − g′bMθgε + g′bMθε+ g′mMθgε − g′mMθε+ g′εMθε
]
, (3.26)

where ĝ = (ĝ(1/T ), . . . , ĝ(T/T ))′ with ĝ(x) =
∑T

i=1Wi,T (x)Yi,T =
∑T

i=1 Wi,T (x)[g(i/T ) +

m(i) + εi,T ].

Since Mθ0 annihilates Xθ0 , i.e., Mθ0Xθ0 = 0, we immediately see from equation (3.26)

that

RSS(θ0) =g′bMθ0gb + g′mMθ0gm + g′εMθ0gε + ε′Mθ0ε+ 2
(
−g′bMθ0gm
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− g′bMθ0gε + g′bMθ0ε+ g′mMθ0gε − g′mMθ0ε+ g′εMθ0ε
)
. (3.27)

Hence, from de�nition (3.10),

0 ≤ Q̃(θ0, λT )− Q̃(θ, λT ) = S̃ ′Mθ0S̃ − S̃ ′MθS̃ + λT (θ0 − θ)

= −(Xθ0β)′Mθ(Xθ0β) + g′b(Mθ0 −Mθ)gb + g′m(Mθ0 −Mθ)gm − g′ε(Mθ −Mθ0)gε

− ε′(Mθ −Mθ0)ε+ 2
[
−(Xθ0β)′Mθgb + (Xθ0β)′Mθgm + (Xθ0β)′Mθgε − (Xθ0β)′Mθε

− g′b(Mθ0 −Mθ)gm − g′b(Mθ0 −Mθ)gε + g′b(Mθ0 −Mθ)ε+ g′m(Mθ0 −Mθ)gε

− g′m(Mθ0 −Mθ)ε− g′ε(Mθ −Mθ0)ε
]

which gives the desired result.

Now we need to investigate the structure of the terms described in equation (3.24).

Given a sample size T ∈ N, a period θ ∈ {1, . . . ,ΘT} and a point s ∈ {1, . . . , θ},
de�ne the subset Aθs,T = {s + kθ : k ∈ N} ⊆ [T ]. In addition, denote the cardinality of

Aθs,T by Kθ
s,T . In words, Aθs,T is the set of θ-periodic points, starting at s, in {1, . . . , T}.

Lemma 3.3. It holds that Kθ
s,T = bT−s

θ
c+ 1.

Proof. The elements of Aθs,T are s, s+ θ, s+ 2θ, . . . , s+ (Kθ
s,T −1)θ. Clearly, T is an upper

bound of Aθs,T and s+Kθ
s,T θ > T . Then

s+ (Kθ
s,T − 1)θ ≤ T and s+Kθ

s,T θ > T ⇐⇒ Kθ
s,T ≤

T − s
θ

+ 1 and Kθ
s,T >

T − s
θ

⇐⇒ T − s
θ
− 1 < Kθ

s,T − 1 ≤ T − s
θ

. (3.28)

Claim 3. Let a ∈ R and K ∈ Z. Then a− 1 < K ≤ a implies K = bac.

Proof of claim: From K ≤ a, we have K ≤ bac. On the other hand, from a− 1 < K, we

have a < K + 1, which implies bac < K + 1 since bac ≤ a. Also, bac < K + 1 if, and only

if, bac ≤ K. Hence K = bac. �

The application of Claim 2 in (3.28) leads to Kθ
s,T =

⌊
T−s
θ

⌋
+ 1.

We shall see that Kθ
s,T

a
≈ T/θ as a consequence of Lemma 3.3.

Lemma 3.4. Kθ
s,T is either

⌊
T
θ

⌋
or
⌊
T
θ

⌋
+ 1.

Proof. From Lemma 3.3, Kθ
s,T = bT−s

θ
c+ 1.

Claim 4. For any a, b ∈ R, bac+ bbc ≤ ba+ bc ≤ bac+ bbc+ 1 .

Proof of claim: Put a = bac+ c1 and b = bbc+ c2 with c1, c2 ∈ [0, 1). Then 0 ≤ c1 + c2 <

2 =⇒ 0 ≤ bc1 + c2c ≤ 1. Since ba + bc = bbac + bbc + c1 + c2c = bac + bbc + bc1 + c2c,
we immediately have the result. �

By Claim 4, we have that
⌊
T
θ

⌋
+
⌊
−s
θ

⌋
≤
⌊
T−s
θ

⌋
≤
⌊
T
θ

⌋
+
⌊
−s
θ

⌋
+ 1. Since

⌊
−s
θ

⌋
=

−
⌈
s
θ

⌉
and

⌈
s
θ

⌉
= 1 for s = 1, . . . , θ, it follows that

⌊
T
θ

⌋
− 1 ≤

⌊
T−s
θ

⌋
≤
⌊
T
θ

⌋
. Thus
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⌊
T
θ

⌋
≤ Kθ

s,T ≤
⌊
T
θ

⌋
+ 1, and so the integer Kθ

s,T can only be
⌊
T
θ

⌋
or
⌊
T
θ

⌋
+ 1.

Let w∗ : Z× Z→ Z be a function given by w∗(x, y) = y − by−1
x
cx and let the section

of w∗ at x, denoted by w∗x : Ex → Z, be de�ned as y 7→ w∗(x, y), where Ex = {y : (x, y) ∈
Z× Z}. If wT : [ΘT ]× [T ]→ [T ] is de�ned exactly as w∗, i.e., wT (θ, t) = t− b(t− 1)/θc,
then its section satis�es wθ,T : [T ] → {1, . . . , θ}. For brevity's sake, we will use the

shorthand wθ,T (t)
def

= wθ,t. Intuitively, this function is an initial point catcher in the sense

that if t ∈ Aθs,T , then wθ,t = s. Although this function may look fairly technical, it will

be conveninent when exploiting the structure of the matrices involved in the estimator

(3.10).

Lemma 3.5. The projection matrix Πθ is given by

Πθ = XθDX
′
θ,

where D = diag(1/Kθ
1,T , . . . , 1/K

θ
θ,T ), and corresponds to the �rst T rows and to the �rst

T columns of the block matrix IKθ
1,T
⊗D. That is,

Πθ =


D D · · ·
D D
...

. . .


T×T

(3.29)

Proof. The ith column of X
def

= Xθ is a T -vector with ones in the coordinates k : k ∈ Aθi,T
and zeros everywhere else. Then we can write X ′ = [x1 · · ·xθ]′ where xi =

∑
k∈Aθi,T

ek,∀i ∈
{1, . . . , θ}, i.e., a summation of canonical vectors of RT . It follows that

(X ′X)i,j = x′ixj =

{
Kθ
i,T , if i = j

0 , if i 6= j
(3.30)

Hence (X ′X)−1 = D = diag(1/Kθ
1,T , . . . , K

θ
θ,T ).

Now, describe the matrix X in terms of rows as X = [y1, . . . , yT ]′ with yi ∈ Rθ, i ∈
{1, . . . , T}. Observe that Πθ = XDX ′ is equivalent to

Πθ =


y′1Dy1 · · · y′1DyT

...
. . .

...

y′TDy1 · · · y′TDyT

 (3.31)

and that yi = ewθ,i with wθ,i = i−b i−1
θ
cθ, ∀i ∈ {1, . . . , T}. Denote ewθ,i = (ewθ,i,1, . . . , ewθ,i,θ)

′.

Then for any 1 ≤ i, j ≤ T ,

y′iDyj = e′wθ,iDewθ,j =
θ∑

k=1

θ∑
l=1

ewθ,i,kewθ,j ,l(D)k,l = ewθ,i,wθ,iewθ,j ,wθ,j(D)wθ,i,wθ,j
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=

{
(D)wθ,i,wθ,i , if wθ,i = wθ,j

0 , if wθ,i 6= wθ,j

since the only nonzero coordinate of the canonical vector ewθ,i is the (wθ,i)-th coordinate.

However, wθ,i = wθ,j is equivalent to say that i, j ∈ Aθs,T for some s ∈ {1, . . . , θ}. It

determines the desired structure

Πθ =



D1,1 · · · 0 D1,1 · · · 0
...

. . .
...

...
. . .

... · · ·
0 · · · Dθ,θ 0 · · · Dθ,θ

D1,1 · · · 0 D1,1 · · · 0
...

. . .
...

...
. . .

... · · ·
0 · · · Dθ,θ 0 · · · Dθ,θ

...
...

. . .


=


D D · · ·
D D · · ·
...

...
. . .

 . (3.32)

Several terms in equation (3.24) of the Lemma 3.2 have in common the product

(I − Πθ)(Xθ0β). The next lemma gives a convenient form, although technical, to deal

with this term afterwards.

Lemma 3.6. The expression (I − Πθ)(Xθ0β) can be written as the vector

(γ1,T , . . . , γθx,T , γ1,T , . . . , γθx,T , . . . ) ∈ RT

where

γs,T = m(s)− 1

Kθ
wθ,s,T

Kθ
wθ,s,T∑
k=1

m((k − 1)θ + wθ,s), ∀s ∈ {1, . . . , θx} (3.33)

with T > θx and θx denoting the least common multiple of θ0 and θ. Moreover, γs,T can

be decomposed as

γs,T = ξs +Rs,T (3.34)

with Rs,T = R1,s,T +R2,s,T and

ξs = m(s)− 1

θ0

θ0∑
k=1

m((k − 1)θ + wθ,s) (3.35)

R1,s,T =

(
1− θ0

Kθ
wθ,s,T

⌊
Kθ
wθ,s,T

θ0

⌋)
1

θ0

θ0∑
k=1

m((k − 1)θ + wθ,s) (3.36)
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R2,s,T = − 1

Kθ
wθ,s,T

Kθ
wθ,s,T∑

k=θ0

⌊
Kθ
wθ,s,T

/θ0

⌋
+1

m((k − 1)θ + wθ,s). (3.37)

Proof. From Lemma (3.5), it holds that

(IT − Πθ)Xθ0β =


Iθ −Dθ −Dθ · · ·
−Dθ Iθ −Dθ · · ·
...

...
. . .




m(1)
...

m(θ0)

m(1)
...


=


γ1,T

γ2,T

γ3,T

...

 , (3.38)

which immediately gives

γ1 = m(1)− 1

Kθ
1,T

Kθ
1,T∑
k=1

m((k − 1)θ + 1)

...

γθ = m(θ)− 1

Kθ
θ,T

Kθ
θ,T∑
k=1

m((k − 1)θ + 1)

γθ+1 = m(θ + 1)− 1

Kθ
1,T

Kθ
1,T∑
k=1

m((k − 1)θ + 1

...

omitting the dependence of the indices of γ on T , for simplicity. Hence, for i = 1, . . . , T ,

we have that

γi = m(i) +
1

Kθ
wθ,i,T

Kθ
wθ,i,T∑
k=1

m((k − 1)θ + wθ,i). (3.39)

Given any i ∈ {1, . . . , θx}, observe that

wθ,i+kθx = i+ kθx −
⌊
i+ kθx − 1

θ

⌋
θ = i+ kθx −

{⌊
i− 1

θ

⌋
+
kθx

θ

}
θ

= i+ kθx −
⌊
i− 1

θ

⌋
θ − kθx = i−

⌊
i− 1

θ

⌋
θ

= wθ,i, k = 1, . . . ,

⌊
T − i
θx

⌋
+ 1. (3.40)

By (3.39) and (3.40), for all i ∈ {1, . . . , θx} and all k ∈ {1, . . . , b(T − i)/θxc+ 1},

γi+kθx = γi −m(i) +m(i+ kθx) = γi,



73

since θx is a multiple of θ0 and m has period θ0 by de�nition. This gives us the desired

formula, i.e., (I − Πθ)(Xθ0β) = (γ1,T , . . . , γθx,T , γ1,T , . . . , γθx,T , . . . ).

To decompose γs,t, we �rst consider at the summation

Kθ
wθ,s,T∑
k=1

m((k − 1)θ + wθ,s), s ∈ {1, . . . , θx}. (3.41)

Note that we are evaluating the θ0-periodic sequence m at points that are multiples of θ,

in (3.41). Therefore, we must have

m(wθ,s) + · · ·+m(wθ,s + (θ0 − 1)θ) = m(wθ,s + θ0θ) + · · ·+m(wθ,s + (2θ0 − 1)θ)

= m(wθ,s + 2θ0θ) + · · ·+m(wθ,s + (3θ0 − 1)θ)

= · · ·

= m(wθ,s + (k − 1)θθ0) + · · ·+m(wθ,s + (kθ0 − 1)θ), (3.42)

for any k ∈ {1, . . . , kmax}. Without loss of generality, let wθ,s = s ∈ {1, . . . , θ}. De�ne

kmax = max{k ∈ N : s+(kθ0−1)θ ∈ Aθs,T}. Since the greatest element of Aθs,T is s+(Kθ
s,T−

1)θ, we clearly have that kmaxθ0 is bounded by Kθ
s,T , and thus kmax ≤ bKθ

s,T/θ0c. On the

other hand, bKθ
s,T/θ0cθ0 ≤ Kθ

s,T , which implies bKθ
s,T/θ0c ∈ {k ∈ N : s+(kθ0−1)θ ∈ Aθs,T}.

Hence the equality1, kmax = bKθ
s,T/θ0c .

From the above observations, we can split (3.41) as a sum of (θ0θ)-periodic points,

given by (3.42), plus a remainder:

Kθ
wθ,s,T∑
k=1

m((k − 1)θ + wθ,s)

=

b(Kθ
wθ,s,T

)/θ0cθ0∑
k=1

m((k − 1)θ + wθ,s) +

Kθ
wθ,s,T∑

k=b(Kθ
wθ,s,T

)/θ0cθ0+1

m((k − 1)θ + wθ,s)

=

⌊
Kθ
wθ,s,T

θ0

⌋ θ0∑
k=1

m((k − 1)θ + wθ,s) +

Kθ
wθ,s,T∑

k=b(Kθ
wθ,s,T

)/θ0cθ0+1

m((k − 1)θ + wθ,s). (3.43)

1To gain insight into this result, observe that counting points of the form s + (kθ0 − 1)θ in Aθs,T is

equivalent to count points of the form θ0 + (k− 1)θ0 in the enumeration Eθs,T = {1, 2, . . . ,Kθ
s,T }. Indeed,

the set {s+ (kθ0 − 1)θ}k∈N ∩Aθs,T is consituted by the θ0th, 2θ0th, . . . points of A
θ
s,T . So we rely on the

problem of counting the multiples of θ0 starting at θ0 in Eθs,T . Lemma (3.3) tells that the number kmax

is exactly Kθ0
θ0,Kθ

s,T

= b(Kθ
s,T − θ0)/θ0c+ 1 = b(Kθ

s,T )/θ0c.
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From equations (3.33) and (3.43),

γs,T = m(s)− 1

Kθ
wθ,s,T

Kθ
wθ,s,T∑
k=1

m((k − 1)θ + wθ,s) (±)
1

θ0

θ0∑
k=1

m((k − 1)θ + wθ,s)

= m(s)− 1

θ0

θ0∑
k=1

m((k − 1)θ + wθ,s)

+
1

θ0

θ0∑
k=1

m((k − 1)θ + wθ,s)−
1

Kθ
wθ,s,T

⌊
Kθ
wθ,s,T

θ0

⌋ θ0∑
k=1

m((k − 1)θ + wθ,s)

− 1

Kθ
wθ,s,T

Kθ
wθ,s,T∑

k=b(Kθ
wθ,s,T

)/θ0cθ0+1

m((k − 1)θ + wθ,s)

:= ξs +R1,s,T +R2,s,T

for any s ∈ {1, . . . , θx}, where (±) stands for �plus and minus�.

From equation (3.33), we immediately see that if θ = θ0, then γs,T = 0. When θ 6= θ0,

distinguish between two cases:

(A) θ 6= θ0 and θ is not a multiple of θ0.

(B) θ 6= θ0 and θ is a multiple of θ0.

Lemma 3.7. The decomposition γs,T = ξs + Rs,T , s = 1, . . . , θx, has the following prop-

erties:

(i) |Rs,T | ≤ Cθ0
Kθ
wθ,s,T

, where C is a positive constant;

(ii) if case B holds, then ξs = 0,∀s ∈ [θx];

(iii) if case A holds, then ∃s ∈ [θx] : ξs 6= 0; moreover, uniformly on the set {s ∈ [θx] :

ξs 6= 0}, ∃η > 0 such that |ξs| ≥ η.

Proof. (i) Without loss of generality, assume wθ,s = s. Let s ∈ {1, . . . , θ}. Since for any
x ∈ R, n ∈ Z, it holds that bxc = n ⇐⇒ n ≤ x < n+ 1, we have⌊

Kθ
s,T

θ0

−
⌊
Kθ
s,T

θ0

⌋⌋
=

⌊
Kθ
s,T

θ0

⌋
+

⌊
−
⌊
Kθ
s,T

θ0

⌋⌋
=

⌊
Kθ
s,T

θ0

⌋
−

⌈⌊
Kθ
s,T

θ0

⌋⌉
= 0

⇐⇒ 0 ≤
Kθ
s,T

θ0

−
⌊
Kθ
s,T

θ0

⌋
< 1 (3.44)

⇐⇒ 0 ≤ 1−
⌊
Kθ
s,T

θ0

⌋
θ0

Kθ
s,T

<
θ0

Kθ
s,T

(3.45)

Then, by Lemma 3.6 and (3.45),

|R1,s,T | =
∣∣∣∣ 1

θ0

∣∣∣∣
∣∣∣∣∣1− θ0

Kθ
s,T

⌊
Kθ
s,T

θ0

⌋∣∣∣∣∣
∣∣∣∣∣
θ0∑
k=1

m((k − 1)θ + s)

∣∣∣∣∣
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<
1

θ0

θ0

Kθ
s,T

∣∣∣∣∣
θ0∑
k=1

m((k − 1)θ + s)

∣∣∣∣∣
≤ C

θ0

Kθ
s,T

(3.46)

with C = supt∈{1,...,θ0}|m(t)|. Next, by (3.44), it follows that

0 ≤ θ0

(
Kθ
s,T

θ0

−
⌊
Kθ
s,T

θ0

⌋)
< θ0. (3.47)

Thus, by Lemma 3.6 and (3.47),

|R2,s,T | =
∣∣∣∣− 1

Kθ
wθ,s,T

∣∣∣∣
∣∣∣∣∣

Kθ
wθ,s,T∑

k=θ0bKθ
wθ,s,T

/θ0c+1

m((k − 1)θ + wθ,s)

∣∣∣∣∣
≤ C

Kθ
s,T

(
Kθ
s,T − θ0

⌊
Kθ
s,T

θ0

⌋)
< C

θ0

Kθ
s,T

(3.48)

By combining (3.46) and (3.48), we obtain |Rs,T | ≤ C θ0
Kθ
s,T
.

(ii) Suppose that case B holds, i.e., θ = lθ0 for some natural number l > 1. Since θ0

is the period of m, we obtain that

ξs = m(s)− 1

θ0

θ0∑
k=1

m((k − 1)lθ0 + wlθ0,s) = m(s)− θ0

θ0

m(wlθ0,s)

= m
((
s−

⌊s− 1

lθ0

⌋
lθ0

)
+
⌊s− 1

lθ0

⌋
lθ0

)
−m

(
s−

⌊s− 1

lθ0

⌋
lθ0

)
= 0, ∀s ∈ {1, . . . , θx}.

(iii) Suppose that case A holds and that there is some θ such that ξs = 0, ∀s ∈
{1, . . . , θx}. But, for any r ∈ N, it holds that m(s) = m(s+ rθx) and

wθ,s+rθx = (s+ rθx)−
⌊

(s+ rθx)− 1

θ

⌋
θ = s−

⌊
s− 1

θ

⌋
θ = wθ,s.

Thus, formula (3.35) implies that θ satis�es ξs = 0, ∀s ∈ N. Since s + rθ ∈ N and

wθ,s+rθ = wθ,s also holds, for all s, r ∈ N, then ξs+rθ = 0 and

1

θ0

θ0∑
k=1

m((k − 1)θ + wθ,s) =
1

θ0

θ0∑
k=1

m((k − 1)θ + wθ,s+rθ), s, r ∈ N, (3.49)

respectively. Hence m(s) = m(s+ rθ), ∀s, r ∈ N, which implies that m has period θ. As

θ0 is the smallest period of m, we cannot have θ < θ0. Then assume θ > θ0. Note that
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θ/θ0 − 1 < bθ/θ0c < θ/θ0 and hence bθ/θ0cθ0 is in the interval (θ − θ0, θ) which contains

exactly θ0 − 1 integers. It means that ∃k ∈ {1, . . . , θ0 − 1} : θ = bθ/θ0cθ0 + k, which in

turn implies

m(s) = m(s+ θ) = m(s+ bθ/θ0cθ0 + k) = m(s+ k), ∀s ∈ N,

contradicting the fact that k < θ0 cannot be a period of m. Hence, for every θ under case

A, ∃s ∈ {1, . . . , θx} : ξs 6= 0.

To prove the next result, let s ∈ {1, . . . , θx} be such that ξs 6= 0. Observe that

θ−1
0

∑θ0
k=1m((k − 1)θ + wθ,s) is the average of θ0 points of the sequence {m(t)}. Since

the range of {m(t)} has at most θ0 distinct points, the number of possible values that

the average can take is at most
(

2θ0−1
θ0

)
(i.e., the combination of θ0 values taken θ0 at

a time with repetition). As a consequence, ξs can also take only a �nite number of

values. Denote the �nite set of possible values of ξs by Bs. De�ne B∗s = B+
s ∪B−s , where

B+
s = {x ∈ Bs : x > 0} and B−s = {x ∈ Bs : x < 0}. Since B+

s , B
−
s are �nite sets,

there are M1 = min(B+
s ) and M2 = max(B−s ). Set ηs = min(M1,−M2) > 0. Then

B∗s ∩ Bηs(0) = Ø, where Bηs(0) = {x ∈ R : |x| < ηs} is the open ball centered at zero

with radius ηs. It implies that B∗s ⊆ [Bηs(0)]c. Take η = mins∈{1,...,θx}:ξs 6=0 ηs to obtain

B∗s ⊆ [Bηs(0)]c ⊆ [Bη(0)]c, ∀s ∈ {1, . . . , θx} : ξs 6= 0. In words, all possible nonzero values

of ξs satis�es |ξs| ≥ η uniformly.

Now we are in position to characterize some asymptotic properties of the terms in-

volved in equation (3.24).

Lemma 3.8. Let {vt} be an arbitrary divergent sequence of positive numbers. Let h =

O(T−1/4) and ΘT ≤ CT 2/5−ω for some small ω > 0. Assume that Conditions 1-4 are

ful�lled . Moreover, consider n ≡ n(θ) = #S, where S is the subset of indices s ∈
{1, . . . , θx} for which ξs 6= 0. Then there are a su�ciently small constant c > 0 and

T0 ∈ N such that for all T > T0,

(in case A) : Bθ ≥ c
nT

θ
, P

(∣∣Sεθ∣∣ > vT
n
√
T

θ

)
≤ C

v2
T

, P

(∣∣Sgεθ ∣∣ > vT
n
√
T/h

θ

)
≤ C

v2
T

|Sgmθ | ≤ C
n
√
T

θ
, |Sgbθ | ≤ C

n
√
T

θ
;

(in case B) : Bθ = 0, Sεθ = 0, Sgεθ = 0, Sgmθ = 0, Sgbθ = 0.

Moreover, in both cases A and B,

P
(
|U (gm,gε)

θ | > vT/
√
h
)
≤ C

v2
T

, P
(
|U (gb,gε)

θ | > vT/
√
h
)
≤ C

v2
T

, |W gm
θ | ≤ C,

P
(
|U (gm,ε)

θ | > vT/
√
h
)
≤ C

v2
T

, P
(
|U (gb,ε)

θ | > vT/
√
h
)
≤ C

v2
T

, |W gb
θ | ≤ C,
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|U (gb,gm)
θ | ≤ C.

Proof. We begin with θ satisfying case A.

De�ne Sc = {1, . . . , θx} \ S. Lemma 3.7 (i) and Lemma 3.4 imply that |Rs,T | ≤
Cθ0/bT/θc ≤ CΘT/T, ∀s ∈ {1, . . . , θx}. It follows from Lemmas 3.1, 3.6, 3.7 and the

triangle inequality for subtraction that

Bθ = (Xθ0β)′(I − Πθ)(Xθ0β) = (Xθ0β)′(I − Πθ)
′(I − Πθ)(Xθ0β)

= (γ1,T , . . . , γθx,T , . . . )(γ1,T , . . . , γθx,T , . . . )
′

=

⌊
T

θx

⌋ θx∑
k=1

γ2
k,T +

T∑
k=θxbT/θxc+1

γ2
k,T ≥

⌊
T

θx

⌋{∑
k∈S

γ2
k,T +

∑
k∈Sc

γ2
k,T

}

≥
⌊
T

θx

⌋∑
k∈S

|ξk +Rk,T |2 =

⌊
T

θx

⌋∑
k∈S

|ξk − (−Rk,T )|2 ≥
⌊
T

θx

⌋∑
k∈S

(|ξk| − |Rk,T |)2

=

⌊
T

θx

⌋∑
k∈S

(|ξk|2 + |Rk,T |2 − 2|ξkRk,T |) ≥
⌊
T

θx

⌋∑
k∈S

|ξk|(|ξk| − 2|Rk,T |)

≥ c1
T

θ

∑
k∈S

[η(η − 2|Rk,T |)] ≥ c1
T

θ

∑
k∈S

[ηc2]

= c1c2η
nT

θ
:= c

nT

θ
, ∀T ≥ T0,

for some T0 > 0 and some su�ciently small constants2 c1, c2 > 0. The fact that |Rk,T | → 0

implies the existence of such positive constant c2 for all su�ciently large T .

Next, write

Sεθ =
T∑
t=1

γt,T εt,T =
∑
t∈IS

γt,T εt,T +
∑
t∈ISc

γt,T εt,T ,

where IS = {t : wθx,t ∈ S} and ISc = {t : wθx,t ∈ Sc}. Using Lemma 3.4, the cardinalities

of IS and ISc satisfy

#IS ≤ n

(⌊
T

θx

⌋
+ 1

)
≤ n

(
T

θx
+ 1

)
≤ n

(
T

θ
+ 1

)
= n

T + θ

θ
≤ 2nT

θ
; (3.50)

#ISc ≤ (θx − n)

(⌊
T

θx

⌋
+ 1

)
≤ θx

(
T

θx
+ 1

)
≤ θ0(T + θ) ≤ 2θ0T, (3.51)

2As bT/θxc > T/θx − 1 ≥ T/(θθ0)− 1 and the convergent sequence

T/(θθ0)− 1

T/θ
=

1

θ0

(
1− θ

T

)
T→∞−→ 1

θ0

is monotone increasing and strict positive by the assumption ΘT < T , we can take c1 ∈ (0, 1/θ0) so that
bT/θxc ≥ c1T/θ holds for all T large enough.
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for every T . By Lemma 2.11 of Chapter 2,

P

(∣∣Sεθ∣∣ > vT

√
nT

θ

)
≤ P

(∣∣∣∣∑
t∈IS

γt,T εt,T

∣∣∣∣ > vT
2

√
nT

θ

)

+ P

(∣∣∣∣∑
t∈ISc

γt,T εt,T

∣∣∣∣ > vT
2

√
nT

θ

)
. (3.52)

From Lemmas 3.6 and 3.7 (iii), it follows that |γt,T | ≤ |ξt|+|Rt,T | ≤ maxi∈1,...,θ0|m(i)|+
Cθ0/K

θ
wθ,t
≤ C, ∀t ∈ {1, . . . , T}. Furthermore, it holds that E

[∑T
t=1 γt,T εt,T

]
= 0, by

assumption. From Chebychev's and Davydov's (Corollary 2.5.1) inequalities, Conditions

1-2 and (3.50),

P

(∣∣∣∣∑
t∈IS

γt,T εt,T

∣∣∣∣ > vT
2

√
nT

θ

)
≤ Var

( ∑
t∈IS

γt,T εt,T

)
4θ

v2
TnT

= E

[( ∑
t∈IS

γt,T εt,T

)2]
4θ

v2
TnT

=
4θ

v2
TnT

E

[∑
t∈IS

∑
l∈IS

γt,T γl,T εt,T εl,T

]
≤ 4θ

v2
TnT

∑
t,l∈IS

|γt,T | |γl,T |
∣∣Cov(εt,T , εl,T )

∣∣
≤ Cθ

v2
TnT

∑
t,l∈IS

∣∣Cov(εt,T , εl,T )
∣∣

≤ Cθ

v2
TnT

∑
t,l∈IS

α(|t− l|)(2+δ)/(4+δ)E(|εt,T |)4+δE(|εl,T |)4+δ

≤ Cθ

v2
TnT

∑
t,l∈IS

(a|t−l|)1−2/(4+δ) ≤ Cθ

v2
TnT

∑
t∈IS

T∑
l=1

a|t−l|

≤ Cθ

v2
TnT

∑
t∈IS

∞∑
w=0

2aw︸ ︷︷ ︸
≤C

≤ Cθ

v2
TnT

2nT

θ
≤ C

v2
T

. (3.53)

On the other hand, Lemma 3.7(i) implies that |γi,T | = |Ri,T | ≤ CΘT/T,∀i ∈ Sc , which
in turn gives

Var

( ∑
t∈ISc

γt,T εt,T

)
= E

[( ∑
t∈ISc

γt,T εt,T

)2]
≤
∑
t∈ISc

∑
l∈ISc

|γt,T ||γl,T ||Cov(εt,T , εl,T )|

≤ C

(
ΘT

T

)2

2θ0T

∞∑
w=0

2aw ≤ C
Θ2
T

T
,
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using (3.51). Then, by Chebychev's inequality,

P

(∣∣∣∣∑
t∈ISc

γt,T εt,T

∣∣∣∣ > vT
2

√
nT

θ

)
≤ C

Θ2
T

T

θ

v2
TnT

≤ C
Θ3
T

v2
TT

2
≤ C

T 3(2/5−ω)−2

v2
T

≤ C
T−4/5

v2
T

≤ C

v2
T

. (3.54)

By combining the inequalities (3.52)-(3.54), we have that

P

(∣∣Sεθ∣∣ > vT
2

√
nT

θ

)
≤ C

v2
T

, (3.55)

for any T .

Similarly,

Sgεθ =
∑
t∈IS

γt,T

T∑
i=1

Wi,T (t/T )εi,T +
∑
t∈ISc

γt,T

T∑
i=1

Wi,T (t/T )εi,T := Agε1 + Agε2 .

Using the de�nition of Jx, given by (2.33) and (2.34), Lemma 2.8 of Chapter 2 and the

assumption that K has compact support,

Var(Agε1 ) = E

{∑
t,l∈IS

T∑
i,j=1

γt,Tγl,TWi,T (t/T )εi,TWj(l/T )εj,T I(i ∈ Jt/T )I(j ∈ Jl/T )

}
≤
∑
t,l∈IS

∑
(i,j)∈Jt/T×Jl/T

|γt,Tγl,T ||Cov(εi,T , εj,T )| sup
i∈[T ]

sup
x∈[0,1]

|Wi,T (x)| sup
j∈[T ]

sup
x∈[0,1]

|Wj,T (x)|

≤ C

(Th)2

∑
t,l∈IS

∑
(i,j)∈Jt/T×Jl/T

|Cov(εi,T , εj,T )| ≤ C

(Th)2

∑
t,l∈IS

∑
i∈Jt/T

2
∞∑
j=0

aj

≤ C

(Th)2

(
2nT

θ

)2

kT ≤ C

(
n

θ

)2
T

h
, (3.56)

for all T su�ciently large, where kT = #Jx = O(Th) by Lemma 2.2 of Chapter 2. Since

|γi,T | ≤ CΘT/T = o(1), ∀i ∈ Sc, Var(Agε2 ) is dominated by Var(Agε1 ). Therefore, for T

su�ciently large,

P

(
|Agεi | >

vT
2

n
√
T/h

θ

)
≤ C

T

h

(
n

θ

)2(
2θ

vTn
√
T/h

)2

=
4C

v2
T

, i ∈ {1, 2}

and thus,

P

(∣∣Sgεθ ∣∣ > vT
n
√
T/h

θ

)
≤ C

v2
T

. (3.57)

From the proofs of Theorems 3.1 and 2.4, |
∑T

i=1Wi,T (x)m(i)| ≤ C/T and |
∑T

i=1Wi,T (x)[g(x)−
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g(i/T )]| ≤ Ch2 hold uniformly over x ∈ [0, 1] for T large enough, respectively. Then

|Sgbθ | ≤
T∑
t=1

|γt,T |
∣∣∣∣ T∑
i=1

Wi,T (t/T )[g(t/T )− g(i/T )]

∣∣∣∣ ≤ Ch2

T∑
t=1

|γt,T |

≤ Ch2

( ∑
t∈IS

|γt,T |+
∑
t∈ISc

|γt,T |
)

≤ Ch2

(
2nT

θ
+ 2θ0T

ΘT

T

)
= 2Ch2

(
nT

θ
+ θ0ΘT︸ ︷︷ ︸

=o(T )

)

≤ C
n

θ
Th2 ≤ C

n
√
T

θ
(3.58)

for all su�ciently large T , using the hypothesis that h = O(T−1/4). By Condition 5,

T−1 = o(h2), implying that the term |Sgmθ | is dominated by |Sgbθ |. Hence |S
gm
θ | ≤ Cn

√
T/θ,

also holds for T large enough.

Now, let θ satisfy case B. Using similar arguments as for Lemma 3.7(ii)'s proof ,

γs,T = m(s)− 1

Kθ
wθ,s,T

Kθ
wθ,s,T∑
k=1

m((k − 1)θ + wθ,s)

= m(s)− 1

Kθ
wlθ0,s,T

K
lθ0
wlθ0,s

,T∑
k=1

m((k − 1)lθ0 + wlθ0,s)

= m(s) +m(wlθ0,s)

= m

(
wlθ0,s +

⌊
s− 1

lθ0

⌋
lθ0

)
+m(wlθ0,s) = 0, ∀s ∈ {1, . . . , θx},

for some 1 < l ∈ N. Then, by Lemma 3.6, (I − Πθ)Xθ0β is the zero T -vector. We thus

have Bθ = Sεθ = Sgεθ = Sgmθ = Sgbθ = 0.

It remains to bound the terms W gb
θ ,W

gm
θ , U

(gb,gm)
θ , U

(gb,gε)
θ , U

(gb,ε)
θ , U

(gm,gε)
θ and U (gm,ε)

θ ,

which do not have (I−Πθ)Xθ0β in their formulas. We start with the non-stochastic terms

W gb
θ ,W

gm
θ , U

(gb,gm)
θ . From Lemma 3.5,

(Πθ − Πθ0)gb =



Dθ Dθ · · ·
Dθ Dθ

...
. . .

−

Dθ0 Dθ0 · · ·
Dθ0 Dθ0
...

. . .


 gb

=



1
Kθ

1,T

∑Kθ
1,T

k=1 gb

(
1+(k−1)θ

T

)
...

1
Kθ
θ,T

∑Kθ
θ,T

k=1 gb

(
θ+(k−1)θ

T

)
...


−



1

K
θ0
1,T

∑K
θ0
1,T

k=1 gb

(
1+(k−1)θ0

T

)
...

1

K
θ0
θ0,T

∑K
θ0
θ0,T

k=1 gb

(
θ0+(k−1)θ0

T

)
...
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where Dθ = diag(1/Kθ
1,T , . . . , 1/K

θ
θ,T ) and Dθ0 = diag(1/Kθ0

1,T , . . . , 1/K
θ0
θ0,T

). Hence,

|g′b(Πθ − Πθ0)gb| ≤

∣∣∣∣∣
T∑
l=1

gb

(
l

T

)[
1

Kθ
wθ,l,T

Kθ
wθ,l,T∑
k=1

gb

(
wθ,l + (k − 1)θ

T

)]∣∣∣∣∣
+

∣∣∣∣∣
T∑
l=1

gb

(
l

T

)[
1

Kθ0
wθ0,l,T

K
θ0
wθ0,l

,T∑
k=1

gb

(
wθ0,l + (k − 1)θ0

T

)]∣∣∣∣∣
:= Dgb

1 +Dgb
2 . (3.59)

Since supx∈[0,1]|gb(x)| = O(h2) and h = O(T−1/4), it holds that

Dgb
1 ≤ C

T∑
l=1

h2

[
1

Kθ
wθ,l,T

Kθ
wθ,l,T∑
k=1

h2

]
≤ CTh4 = O(1).

Clearly, we also have Dgb
2 = O(1). Therefore, for T su�ciently large

|W gb
θ | ≤ C. (3.60)

Since supx∈[0,1]|gm(x)| = O(1/T ) and so, dominated by supx∈[0,1]|gb(x)|, we have that the
terms |W gm

θ | and |U
(gb,gm)
θ | are also dominated by |W gb

θ |. Then, for T su�ciently large

|W gm
θ | ≤ C, (3.61)

|U (gb,gm)
θ | ≤ C. (3.62)

We �nally turn to the stochastic terms U (gb,gε)
θ , U

(gb,ε)
θ , U

(gm,gε)
θ and U (gm,ε)

θ . Note that

for arbitrary x, y ∈ RT , x′By = y′Bx. Then write

U
(gb,gε)
θ =

T∑
l=1

gε(l/T )

[
1

Kθ
wθ,l,T

Kθ
wθ,l,T∑
k=1

gb

(
wθ,l + (k − 1)θ

T

)]

−
T∑
l=1

gε(l/T )

[
1

Kθ0
wθ0,l,T

K
θ0
wθ0,l

,T∑
k=1

gb

(
wθ0,l + (k − 1)θ0

T

)]
:= G

(gb,gε)
1 −G(gb,gε)

2 . (3.63)

Then, from Davydov's inequality,

Var
(
G

(gb,gε)
1

)
= E

{
T∑

l,t=1

gε(l/T )gε(t/T )
1

Kθ
wθ,l,T

Kθ
wθ,t,T
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×
[ Kθ

wθ,l,T∑
k=1

gb

(
wθ,l + (k − 1)θ

T

)][ Kθ
wθ,t,T∑
k′=1

gb

(
wθ,t + (k′ − 1)θ

T

)]}

≤ C

T∑
l,t=1

∑
(i,j)∈Jt/T×Jl/T

|Cov(εi,T εj,T )| sup
i∈[T ]

sup
x∈[0,1]

|Wi,T (x)| sup
j∈[T ]

sup
x∈[0,1]

|Wj,T (x)|h4

≤ Ch4

(Th)2

T∑
l,t=1

∑
(i,j)∈Jt/T×Jl/T

|Cov(εi,T εj,T )| ≤ C
h2

T 2
T 2kT ≤ CTh3,

for T large enough, where Jx and kT are de�ned as in (3.56). Also, Var
(
G

(gb,gε)
2

)
≤ CTh3.

By Chebychev's inequality,

P

(
|U (gb,gε)

θ | > vT/
√
h

)
≤ P

(
|G(gb,gε)

1 |+ |G(gb,gε)
2 | > vT/

√
h

)

≤ P

(
|G(gb,gε)

1 | > vT

2
√
h

)
+ P

(
|G(gb,gε)

2 | > vT

2
√
h

)

≤ C
Th4

v2
T

≤ C

v2
T

, (3.64)

for T large enough. Analogously as in (3.63), we decompose

U
(gb,gε)
θ = G

(gm,gε)
1 −G(gb,gε)

2 ,

U
(gm,ε)
θ = G

(gm,ε)
1 −G(gm,ε)

2 ,

U
(gb,ε)
θ = G

(gb,ε)
1 −G(gb,ε)

2 .

It can be easily seen that the sequence Var
(
G

(gb,gε)
i

)
dominates Var

(
G

(gm,gε)
i

)
,Var

(
G

(gm,ε)
i

)
and Var

(
G

(gb,ε)
i

)
, i ∈ {1, 2}. Hence,

P

(
|U (gm,gε)

θ | > vT/
√
h

)
≤ C

v2
T

, (3.65)

P

(
|U (gm,ε)

θ | > vT/
√
h

)
≤ C

v2
T

, (3.66)

P

(
|U (gb,ε)

θ | > vT/
√
h

)
≤ C

v2
T

, (3.67)

for T large enough.

Say that a real sequence aT is Θ(bT ) if there are constants m,M > 0 such that

bTm ≤ aT ≤MbT for all su�ciently large T .

Lemma 3.9. Suppose the conditions of Lemma 3.8 hold. Assume that h = Θ(T−1/4),
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λT = o(T ) and T 1/4ΘTρ
1/2
T = o(λT ), where ρT is a positive sequence slowly diverging to

in�nity. Then for all θ 6= θ0 : 1 ≤ θ ≤ ΘT and all T su�ciently large,

Pr{Q(θ, λT ) ≤ Q(θ0, λT )} ≤ C

ΘTρT
.

Proof. In general, given a probability space (Ω,F , P ) and F -measurable setsA,A1, . . . , Ak,

it holds that

A = A ∩

(⋂
i∈[k]

Ai

)
∪
(⋂
i∈[k]

Ai

)c  =
[
A ∩

(⋂
i∈[k]

Ai

)]
∪
[
A ∩

(⋃
i∈[k]

Aci

)]
⊆
[
A ∩

(⋂
i∈[k]

Ai

)]
∪
(⋃
i∈[k]

Aci

)
,

and then, by the monotonicity and subadditivity of the measure, P (A) ≤ P
[
A∩
(⋂

i∈[k] Ai

)]
+∑k

i=1 P (Aci).

Set vT =
√

ΘTρT and ρT = ln lnT . Then ρT = o(T a), for any a > 0. Suppose that θ

satis�es the case A. By the above result together with Lemma 3.8, we obtain

P{Q̃(θ,λT ) ≤ Q̃(θ0, λT )} ≤ P

{
V

(ε,ε)
θ + V

(ε,gε)
θ + V

(gε,gε)
θ ≤ −Bθ +W gb

θ +W gm
θ

− 2Sgbθ + 2Sgmθ − 2U
(gb,gm)
θ − 2U

(gb,gε)
θ − 2U

(gb,ε)
θ + 2U

(gm,gε)
θ − 2U

(gm,ε)
θ + Sgεθ

− Sεθ + λT (θ0 − θ),
∣∣Sεθ∣∣ ≤ vT

n
√
T

θ
,
∣∣Sgεθ ∣∣ ≤ vT

n
√
T/h

θ
, |U (gm,gε)

θ | ≤ vT/
√
h,

|U (gb,gε)
θ | ≤ vT/

√
h, |U (gb,ε)

θ | ≤ vT/
√
h, |U (gm,ε)

θ | ≤ vT/
√
h

}
+ P

(∣∣Sεθ∣∣ > vT
n
√
T

θ

)
+ P

(∣∣Sgεθ ∣∣ > vT
n
√
T/h

θ

)
+ P

(
|U (gm,gε)

θ | > vT/
√
h

)
+ P

(
|U (gb,gε)

θ | > vT/
√
h

)
+ P

(
|U (gb,ε)

θ | > vT/
√
h

)
+ P

(
|U (gm,ε)

θ | > vT/
√
h

)
≤ P

{
V

(ε,ε)
θ + V

(ε,gε)
θ + V

(gε,gε)
θ ≤ −Bθ + CvT

n
√
T/h

θ
+ λT (θ0 − θ)

}
+
C

v2
T

,

for all T su�ciently large.

If θ ≥ θ0, then(
CvT

n
√
T/h

θ
+ λT (θ0 − θ)

)
θ

nT
≤ CvT√

Th
≤ C(T−7/20−ω ln lnT )1/2 = o(1),

for T large enough. If θ < θ0, then(
CvT

n
√
T/h

θ
+ λT (θ0 − θ)

)
θ

nT
≤ CvT√

Th
+
θ2

0λT
T

= o(1),
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by the hypothesis λT = o(T ). Therefore, regardless of whether θ > θ0 or θ < θ0, it holds

that ∀δ2 > 0 : ∃T1 ∈ N : ∀T ≥ T1 : |CvTn
√
T/h/θ + λT (θ0 − θ)| ≤ δ2nT/θ . Hence, for

every δ2 : c > δ2 > 0, Lemma 3.8 implies that there exists T2 ≥ T1 > 0 such that for all

T > T2

−Bθ + CvTn/θ
√
T/h+ λT (θ0 − θ) ≤ −(c− δ2)nT/θ = −C1nT/θ, (3.68)

for some positive constant C1. Applying Lemma 2.11 two times, we have

P{Q̃(θ, λT ) ≤ Q̃(θ0, λT )} ≤ P

{
V

(ε,ε)
θ + V

(ε,gε)
θ + V

(gε,gε)
θ ≤ −C1nT/θ

}
+
C

v2
T

≤ P

{
|V (ε,ε)
θ |+ |V (ε,gε)

θ |+ |V (gε,gε)
θ | ≥ C1nT/θ

}
+
C

v2
T

≤ P

{
|V (ε,ε)
θ | ≥ CnT/θ

}
+ P

{
|V (ε,gε)
θ | ≥ CnT/θ

}
+ P

{
|V (gε,gε)
θ | ≥ CnT/θ

}
+
C

v2
T

:= P1 + P2 + P3 +
C

v2
T

, (3.69)

for T su�ciently large. Now we need to bound each of the probabilities P1, P2 and P3.

We start with P3. Analogously to the decomposition as for (3.59) in the Lemma 3.8's

proof, we can write

V
(gε,gε)
θ = g′ε(Πθ0 − Πθ)gε

=
T∑
l=1

gε(l/T )

[
1

Kθ0
wθ0,l,T

K
θ0
wθ0,l

,T∑
k=1

gε

(
wθ0,l + (k − 1)θ0

T

)]

−
T∑
l=1

gε(l/T )

[
1

Kθ
wθ,l,T

Kθ
wθ,l,T∑
k=1

gε

(
wθ,l + (k − 1)θ

T

)]
:= V

(gε,gε)
θ,1 − V (gε,gε)

θ,2 . (3.70)

From Lemma 2.11 we have that

P3 ≤ P

(
|V (gε,gε)
θ,1 − V (gε,gε)

θ,2 | ≥ C
nT

ΘT

)
≤ P

(
|V (gε,gε)
θ,1 |+ |V (gε,gε)

θ,2 | ≥ C
nT

ΘT

)
≤ P

(
|V (gε,gε)
θ,1 | ≥ C

2

nT

ΘT

)
+ P

(
|V (gε,gε)
θ,2 | ≥ C

2

nT

ΘT

)
:= P3,a + P3,b. (3.71)

Denote Jl,t = Jt/T × Jl/T × J[wθ,l+(k−1)θ]/T × J[wθ,t+(k−1)θ]/T , for any l, t ∈ [T ], where

Jx, x ∈ [0, 1], is de�ned as in (3.56). The application of Theorem 2.1 of Rio (2017) with
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the hypothesis that E(ε4t,T (ln(1 + εt,T )3)) <∞ gives

Var
(
V

(gε,gε)
θ,2

)
≤ E

{[ T∑
l=1

gε(l/T )

[
1

Kθ
wθ,l,T

Kθ
wθ,l,T∑
k=1

gε

(
wθ,l + (k − 1)θ

T

)]]2
}

≤ C

(Th)4

T∑
l,t=1

Kθ
wθ,l,T∑
k=1

Kθ
wθ,t,T∑
k=1

T∑
i,i′,j,j′=1

|E(εi,T εi′,T εj,T εj′,T )|

× 1

Kθ
wθ,l,T

Kθ
wθ,t,T

I((i, i′, j, j′) ∈ Jl,t)

≤ C

(Th)4

T∑
l,t=1

{
3

( ∑
i,i′∈Jt/T×Jl/T

|E(εp,T εq,T )|
)2

+ 48
T∑
k=1

∫ 1

0

[min(α−1(u), n)]3Q4
k(u)du

}
≤ C

T 2h4

{
k2
T + T︸ ︷︷ ︸

=O((Th)2)

}
≤ C

h2
, (3.72)

for T large enough, where kT = #Jx = O(Th), (p, q, r, s) = (i, i′, j, j′) − min Jl/T + 1,

α−1(u) = inf{k ∈ N : α(k) ≤ u}, Qk(u) = inf{t > 0 : P (|εk| > t) ≤ u} .
The same bound holds for Var

(
V

(gε,gε)
θ,1

)
. By Chebychev's inequality

P3 ≤ C

(
ΘT

Th

)2

≤ CT−7/10−2ω = CT−2/5+ωT−3/10−3ω ≤ C

ΘTρT
. (3.73)

The remaining stochastic terms can be decomposed analogously as

V
(ε,gε)
θ = V

(ε,gε)
θ,1 − V (ε,gε)

θ,2 ,

V
(ε,ε)
θ = V

(ε,ε)
θ,1 − V

(ε,ε)
θ,2 .

Using Theorem 2.1 of Rio (2017) again, we have

Var
(
V

(ε,gε)
θ,1

)
,Var

(
V

(ε,gε)
θ,2

)
≤ C

1

(Th)2

T∑
i,i′,j,j′=1

|E(εi,T εi′,T εj,T εj′,T )| ≤ C

h2
;

Var
(
V

(ε,ε)
θ,1

)
,Var

(
V

(ε,ε)
θ,2

)
≤ CΘ2

T

T 2

T∑
i,i′=1

Kθ
wθ,i,T∑
k=1

Kθ
wθ,i′ ,T∑
k′=1

|E(εi,T εi′,T εwθ,i+(k−1)θ,T εwθ,i′+(k′−1)θ,T
)|

≤ CΘ2
T

T 2

T∑
i,i′,j,j′=1

|E(εi,T εi′,T εj,T εj′,T )| ≤ CΘ2
T .
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for T large enough. Then P2 ≤ C/(ΘTρT ). In addition, from Chebychev's inequality,

P1 ≤ CT−2/5−4ω = CT−2/5+ωT−5ω ≤ C

ΘTρT
, (3.74)

for all su�ciently large T .

Hence, in case A,

P{Q̃(θ, λT ) ≤ Q̃(θ0, λT )} ≤ C

ΘTρT
, (3.75)

for all su�ciently large T .

Next, let us focus in case B. By Lemma 3.8,

P{Q̃(θ, λT ) ≤ Q̃(θ0, λT )} ≤ P

{
V

(ε,ε)
θ + V

(ε,gε)
θ + V

(gε,gε)
θ ≤ W gb

θ +W gm
θ − 2U

(gb,gm)
θ

− 2U
(gb,gε)
θ − 2U

(gb,ε)
θ + 2U

(gm,gε)
θ − 2U

(gm,ε)
θ + λT (θ0 − θ), |U (gm,gε)

θ | ≤ vT/
√
h,

|U (gb,gε)
θ | ≤ vT/

√
h, |U (gb,ε)

θ | ≤ vT/
√
h, |U (gm,ε)

θ | ≤ vT/
√
h

}
+
C

v2
T

≤ P

{
V

(ε,ε)
θ + V

(ε,gε)
θ + V

(gε,gε)
θ ≤ CvT/h+ λT (θ0 − θ)

}
+
C

v2
T

,

for T large enough. Since θ0 − θ < 0 and T 1/4ρ
1/2
T ΘT = o(λT ), it follows that, for all T

su�ciently large, there is C4 > 0 satisfying

vT
h

+ λT (θ0 − θ) ≤ CT 1/4(ΘTρT )1/2 + λT (θ0 − θ) ≤ λT (Cδ4 + (θ0 − θ)) ≤ −C4λT ,

for any δ4 > 0 small enough so that Cδ4 + (θ0 − θ) < 0. We thus have that

P{Q̃(θ, λT ) ≤ Q̃(θ0, λT )} ≤ P

{
V

(ε,ε)
θ + V

(ε,gε)
θ + V

(gε,gε)
θ ≤ −CλT

}
+
C

v2
T

≤ P

{
|V (ε,ε)
θ | ≥ CλT

}
+ P

{
|V (ε,gε)
θ | ≥ CλT

}
+ P

{
|V (gε,gε)
θ | ≥ CλT

}
+
C

v2
T

:= Q1 +Q2 +Q3 +
C

v2
T

. (3.76)

Along the same lines as for the case A, we have that

Q2, Q3 ≤
C

(λTh)2
≤ C

Θ2
TρT
≤ C

ΘTρT
;

Q1 ≤ C
Θ2

λ2
T

≤ C
Θ

5/4
T Θ

3/4
T

T 1/2Θ2
TρT
≤ C

T 5ω/4Θ
5/4
T ρT

≤ C

ΘTρT
.
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Therefore, in case B,

P{Q̃(θ, λT ) ≤ Q̃(θ0, λT )} ≤ C

ΘTρT
,

for su�ciently large T .

Lemma 3.10. Let x ∈ [0, 1], i ∈ {1, . . . , θ0} and θ0 ∈ {1, . . . ,ΘT}, with 1 ≤ ΘT < T , be

given with T large enough so that the set

Jx,i = {k ∈ {1, . . . , Kθ0
i,T} : (i+ (k − 1)θ0)/T ∈ Cx}

where

Cx =


[0, x+ h] , if x ∈ [0, h]

[x− h, x+ h] , if x ∈ (h, 1− h)

[x− h, 1] , if x ∈ [1− h, 1]

,

is well-de�ned and nonempty. Then the cardinality of Jx,i is O(Kθ0
i,Th). Denote γθ0i,x,T,k =

(i+ (k − 1)θ0)/T, ∀T, k ∈ N. Under Condition 4, for all su�ciently large T and j ∈ N,

∣∣∣∣ 1

Kθ0
i,T

K
θ0
i,T∑

k=1

Kh

(
γθ0i,x,T,k − x

)(γθ0i,x,T,k − x
h

)j
−
∫ 1

0

Kh

(
u− x

)(u− x
h

)j
du

∣∣∣∣ ≤ C

Th
.

Proof. De�ne k∗ = min Jx,i, k∗ = max Jx,i, C̄x = supCx and C
	 x

= inf Cx. For brevity's

sake, let γk := γθ0i,x,T,k and J
∗
x,i = Jx,i \ {k∗}. Along the same lines of Lemma 2.2's proof

in the previous chapter, we can �nd that #Jx,i = O(Th/θ0) = O(Kθ0
i,Th), by Lemma 3.4,

and that 0 ≤ C̄x − γk∗ ≤ θ0/T and 0 ≤ γk∗ − C	 x
≤ θ0/T hold. Furthermore, we have∣∣∣∣ 1

Kθ0
i,T

∑
k∈Jx,i

Kh

(
γk − x

)(γk − x
h

)j
−
∫
Cx

Kh

(
u− x

)(u− x
h

)j
du

∣∣∣∣
≤
∣∣∣∣ 1

Kθ0
i,T

∑
k∈J∗x,i

Kh

(
γk − x

)(γk − x
h

)j
−
∑
k∈J∗x,i

∫ γk+θ0/T

γk

Kh

(
u− x

)(u− x
h

)j
du

∣∣∣∣
+

1

Kθ0
i,T

Kh

(
γk∗ − x

)∣∣∣∣γk∗ − xh

∣∣∣∣j +

∫ γk∗

C
	
x

Kh

(
u− x

)∣∣∣∣u− xh
∣∣∣∣jdu

+

∫ C̄x

i∗/T

Kh

(
u− x

)∣∣∣∣u− xh
∣∣∣∣jdu

≤
∑
k∈J∗x,i

∣∣∣∣ 1

Kθ0
i,T

Kh

(
γk − x

)(γk − x
h

)j
− θ0

T
Kh

(
ξk − x

)(
ξk − x
h

)j∣∣∣∣+
C

Th

≤ 1

Kθ0
i,T

∑
k∈J∗x,i

∣∣∣∣Kh

(
γk − x

)(γk − x
h

)j
−Kh

(
ξk − x

)(
ξk − x
h

)j∣∣∣∣
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+

∣∣∣∣ 1

Kθ0
i,T

− θ0

T

∣∣∣∣︸ ︷︷ ︸
≤C/T 2

∑
k∈J∗x,i

∣∣∣∣Kh

(
ξk − x

)(
ξk − x
h

)j∣∣∣∣+
C

Th

≤ 1

Kθ0
i,T

∑
k∈J∗x,i

∣∣∣∣Kh

(
γk − x

)(γk − x
h

)j
−Kh

(
ξk − x

)(
ξk − x
h

)j∣∣∣∣+
C

T
+

C

Th

≤ 1

Kθ0
i,T

∑
k∈J∗x,i

{
Kh

(
γk − x

)∣∣∣∣(γk − xh

)j
−
(
ξi − x
h

)j∣∣∣∣
+

∣∣∣∣ξi − xh

∣∣∣∣j∣∣∣∣Kh

(
γk − x

)
−Kh

(
ξk − x

)∣∣∣∣}+
C

Th
≤ C

Th
,

where ξk ∈ (γk, γk + θ0/T ) for each k ∈ J∗x,i. To see that |1/Kθ0
i,T − θ0/T | ≤ C/T 2 holds,

note that the facts

T

θ0

− 1 <

⌊
T

θ0

⌋
≤ T

θ0

⇐⇒ aT :=
1

T/θ0 − 1
− 1

T/θ0

>
1

bT/θ0c
− 1

T/θ0

≥ 0

and

T

θ0

<

⌊
T

θ0

⌋
+ 1 ≤ T

θ0

+ 1 ⇐⇒ 0 >
1

bT/θ0c+ 1
− 1

T/θ0

≥ 1

T/θ0 + 1
− 1

T/θ0

:= −bT ,

imply

lim
T→∞

T 2aT = lim
T→∞

T 2θ2
0

T 2 − θ0T
= θ2

0

lim
T→∞

T 2bT = lim
T→∞

T 2θ2
0

T 2 + θ0T
= θ2

0,

and thus T 2aT , T
2bT are convergent nonnegative sequences, which in turn imply that there

is C > 0 such that both aT and bT are bounded by C/T 2. By Lemma 3.4, Kθ0
i,T is either

bT/θ0c or bT/θ0c+ 1. Therefore, |1/Kθ0
i,T − θ0/T | ≤ max(aT , bT ) ≤ C/T 2.

Lemma 3.11. Let T ∈ N be given. Let {εt,T : 1 ≤ t ≤ T, T ≥ 1} be a strong mixing

triangular array on (Ω,F , P ) with mixing sequence αT and {at,T (x) : 1 ≤ t ≤ T, T ≥ 1} be
a triangular array of �nite real numbers. Finally, let J ⊆ [T ] be a set and kT its cardinality

with kT being a sequence diverging to in�nity. Then the sub-array {at,T εt,T I(t ∈ J) : 1 ≤
t ≤ T, T ≥ 1} is also strongly mixing with mixing coe�cients α′T (j) bounded by αT (j), for

any 0 ≤ j < T .

Proof. By de�nition,

α′T (j) = sup
1≤k≤T−j

sup{|P (A ∩B)− P (A)P (B)| : A ∈ Fk1,T , B ∈ FTk+j,T}, 0 ≤ j < T
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where Fki,T = σ(al,T ε
∗
l,T : i ≤ l ≤ k) and ε∗t,T = εt,T I(t ∈ J). For any 1 ≤ i ≤ k ≤ T , we

have

Fki,T = σ(al,T ε
∗
l,T : i ≤ l ≤ k) = σ(∪kl=iσ(al,T ε

∗
l,T ))

⊆ σ(∪kl=iσ(al,T , ε
∗
l,T ))

= σ{∪kl=i[(ε∗l,T )−1(BR) ∪ {∅,Ω}]}

= σ(∪kl=i(ε∗l,T )−1(BR)) = σ(ε∗l,T : i ≤ l ≤ k), (3.77)

since the sigma-algebra generated by a constant is the trivial sigma-algebra. To justify

the inclusion in (3.77), consider the function f : R2 → R de�ned by f(x, y) = xy.

Claim 5. The function f : (R2,BR2)→ (R,BR) is measurable.

Proof of claim: The Borel sigma-algebra on R2 is de�ned as the sigma-algebra generated

by the set of open sets in R2. That is, it is the smallest sigma-algebra containing all open

sets in R2. Furthermore, it is well known that f : (R2,BR2) → (R,BR) is measurable if,

and only if, ∀a ∈ R, {(x, y) : f(x, y) < a} ∈ BR2 . Since f is continuous, {f−1(−∞, a)} is
open, and hence must be in BR2 , for any a ∈ R. �

De�ne the random vector Z = (X, Y ). As XY = f(Z) and f is Borel,

σ(XY ) = σ(f(Z)) = {(Z−1 ◦ f−1)(A) : A ∈ BR} ⊆ {Z−1(B) : B ∈ BR} = σ(X, Y ).

From (3.77), for any 0 ≤ j < T and any 1 ≤ k ≤ T − j, it holds that

Fk1,T ⊆ σ(ε∗l,T : 1 ≤ l ≤ k) = σ{(∪l∈[k]∩Jσ(εl,T )) ∪ (∪l∈[k]\Jσ(0))}

= σ{(∪l∈[k]∩[dT ]σ(εl,T )) ∪ {∅,Ω}}

= σ{∪l∈[k]∩[dT ]σ(εl,T )} ⊆ σ{(∪kl=1σ(εl,T ))} (3.78)

and similarly

FTk+j,T ⊆ σ(ε∗l,T : k + j ≤ l ≤ T ) ⊆ σ{(∪Tl=k+jσ(εl,T ))}. (3.79)

The inclusions (3.78) and (3.79) imply the result.
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Appendix D - General Central Limit Theorems for mixing arrays

Politis et al. (1997) obtained a Central Limit Theorem (CLT) for strong mixing se-

quences without the strict stationarity assumption. CLTs for strong mixing sequences are

traditionally proved using Bernstein's method. The main idea of this method is to split

a sum X1 + . . .+Xn into a sum of nearly independent random variables (the big blocks)

and a sum of other terms (small blocks) which is asymptotically negligible if properly

normalized. In order to derived this result, we need the following lemmas.

Lemma 3.12 (Ibragimov's Bound). Let {Xt} be a sequence of random vectors de�ned on

a probability space and let F ba = σ(Xt : a ≤ t ≤ b). Also, denote the mixing coe�cient

corresponding to {Xt} by αX . Let Y1, Y2 be random variables measurable with respect to

Fn−∞,F∞n+m, respectively. In addition, let Y ′1 , Y
′

2 be independent random variables having

the same probability distribution as Y1, Y2, respectively. Denote the characteristic functions

of Y1 + Y2 and Y ′1 + Y ′2 by ϕ and ϕ′, respectively. Then supt|ϕ(t)− ϕ′(t)| ≤ 16αX(m).

Proof. By Euler's formula and Billingsley's inequality, we have

|ϕ(t)− ϕ′(t)| =
∣∣E(eit(Y1+Y2)

)
− E

(
eit(Y

′
1+Y ′2)

)∣∣ =
∣∣E(eitY1eitY2)− E(eitY1)E(eitY2)∣∣

=
∣∣Cov(cos tY1 + i sin tY1, cos tY2 + i sin tY2)

∣∣
≤ |Cov(cos tY1, cos tY2)|+ |Cov(sin tY1, sin tY2)|

+ |Cov(cos tY1, sin tY2)|+ |Cov(sin tY1, cos tY2)|

≤ 16αX(m),

since ess sup|cos(tYi)| ≤ 1 and ess sup|sin(tYi)| ≤ 1 (and thus are in L∞), for any t and

any i = 1, 2.

Lemma 3.13 (Doukhan's Moment Bound). Let {Xi} be a sequence of mean zero random

variables and denote the corresponding mixing coe�cient by αX . De�ne, for τ ≥ 2 and

δ > 0

C(τ, δ) =
∞∑
k=0

(k + 1)τ−2α
δ/(τ−δ)
X (k),

L(τ, δ, d) =
d∑
i=1

‖Xi‖ττ+δ,

D(τ, δ, d) = max(L(τ, δ, d), [L(2, δ, d)]τ/2).

Then E
∣∣∑d

i=1Xi

∣∣τ ≤ BD(τ, δ, d), where B is a constant depending only on τ, δ and αX .
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In particular, if τ is an even integer, then

E
∣∣ d∑
i=1

Xi

∣∣τ ≤ B(τ, δ)D(τ, δ, d)

where B(τ, δ) can be computed recursively, e.g., for τ up to 4,

B(1, δ) ≤ 1;

B(2, δ) ≤ 18 max{1, C(2, δ)};

B(3, δ) ≤ 102 max{1, C(3, δ)};

B(4, δ) ≤ 3024 max{1, C2(4, δ)}.

If we additionally assume that ‖Xi‖2+2δ ≤ ∆, ∀i, then

E
∣∣ d∑
i=1

Xi

∣∣2+2δ ≤ Γd1+δ/2

where Γ = {3024 max[1, C2(4, δ)]}24[1+4(2−δ)/δ]∆(2+δ)(1+δ/2).

The proof of this lemma is in the Appendix A of Politis et al. (1997).

Theorem 3.4 (Lyapunov's CLT). Suppose that {Xi} is a sequence of independent random
variables such that, for each i, E(Xi) = µi < ∞ and Var(Xi) = σ2

i < ∞. De�ne

s2
n =

∑n
k=1 σ

2
k. If there exists δ > 0 so that |Xi|2+δ are integrable and the Lyaponov's

condition holds, i.e.,

lim
n→∞

1

s2+δ
n

n∑
k=1

E{|Xk − µk|2+δ} = 0,

then
1

sn

n∑
k=1

(Xk − µk)
d→ N(0, 1).

For a proof of the Lyapunov's CLT, see Theorem 27.3 of Billingsley (1995).

Theorem 3.5 (Politis' CLT). Let {Xn,i : 1 ≤ i ≤ dn} be a triangular array of mean zero

random variables. Denote the strong mixing coe�cient corresponding to the nth row by

αn. De�ne

Sn,k,a =
a+k−1∑
i=a

Xn,i; Tn,k,a = k−1/2

a+k−1∑
i=a

Xn,i; and σ2
n,k,a = Var(Tn,k,a).

Assume the conditions: for some δ > 0,

(A.1) ‖Xn,i‖2+2δ ≤ ∆, ∀n, i;
(A.2) σ2

n,k,a → σ2 uniformly in a, i.e., for any sequence kn := k that tends to in�nity,

supa|σ2
n,k,a − σ2| → 0 as n→∞;
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(A.3)
∑∞

k=0(k + 1)2α
δ/(δ+4)
n (k) ≤ K, ∀n,

where ∆, K are �nite constants, independent of n, k or a. Then

Tn,dn,1
d→ N(0, σ2), i.e., d−1/2

n

dn∑
i=1

Xn,i → N(0, σ2).

Proof. For each row n, and given lengths bn, ln, de�ne

Un,i =
bn∑
k=1

Xn,(i−1)(bn+ln)+k, 1 ≤ i ≤ rn

Vn,i =
bn+ln∑
k=bn+1

Xn,(i−1)(bn+ln)+k, 1 ≤ i ≤ rn − 1;

Vn,rn = Xn,(rn−1)(bn+ln)+1 + · · ·+Xn,dn ,

where rn is the greatest integer i so that (i − 1)(bn + ln) + bn < dn. Then Sn,dn,1 =∑rn
i=1 Un,i +

∑rn
i=1 Vn,i. Note that representing Sn,dn,1 in this way, the indices of the sum is

splitted into alternating blocks of lengths bn and ln. We want to choose ln small enough

so that d−1/2
n

∑rn
i=1 Vn,i

p→ 0 but big enough so that d−1/2
n

∑rn
i=1 Un,i can be approximated

by a sum of independent random variables also normalized by d−1/2
n .

Choose bn = bd3/4
n c and ln = bd3/4

n c. Observing that rn is b(dn − bn)/(bn + ln)c or
b(dn − bn)/(bn + ln)c+ 1, we have the asymptotic equivalences3: bn ∼ d

3/4
n , ln ∼ d

1/4
n and

rn ∼ d
1/4
n .

Firstly, we show that d−1/2
n

∑rn
i=1 Vn,i

p→ 0 as n→∞. Since its expectation is zero, it

is su�cient to prove that the variance vanishes. Under assumptions A.1 and A.3, note

that Lemma 3.13 implies4

E|Vn,i|2 = E

∣∣∣∣ ln∑
k=1

Xn,(i−1)(bn+ln)+bn+k

∣∣∣∣2 ≤ B(2, δ)D(2, δ, ln)

≤ 18 max{1, C(2, δ)}L(2, δ, ln) ≤ 18Kln∆2 := Cln.

Then the application of Minkowski's inequality rn − 1 times gives[
Var

(
d−1/2
n

rn∑
i=1

Vn,i

)]1/2

=

[∫ ( rn∑
i=1

d−1/2
n Vn,i

)2

dP

]1/2

≤
rn∑
i=1

[∫ (
d−1/2
n Vn,i

)2

dP

]1/2

3Since dn − bn ∼ dn and bn + ln ∼ d3/4n , we have limn→∞
d3/4n (dn−bn)
dn(bn+ln)

= 1.
4For every k ≥ 0, it holds that 1 ≤ (k + 1)2 and α

δ/(2+δ)
n (k) ≤ αδ/(4+δ)n (k), with the observation that

0 ≤ αn ≤ 1/4,∀n. Thus C(2, δ) ≤ C(4, δ) ≤ K. Further, note that when i = rn, Vn,rn is the sum of at
most ln + bn terms. In this case, E|Vn,rn |2 ≤ C(bn + ln), for some C > 0.



93

= d−1/2
n

{rn−1∑
i=1

[E(V 2
n,i)]

1/2 + [E(V 2
rn,i)]

1/2

}
≤ d−1/2

n

{
rn(Cln)1/2 + [C(bn + ln)]1/2

}
= d−1/2

n O(d3/8
n )

= O(d−1/8
n ) = O(o(1)) = o(1)

From Chebychev's inequality, P (|d−1/2
n

∑rn
i=1 Vn,i| > ω) ≤ ω−2 Var(d

−1/2
n

∑rn
i=1 Vn,i) for any

ω > 0. Taking the limit over n gives the convergence in probability.

Let U ′n,i, 1 ≤ i ≤ rn, be independent random variables so that U ′n,i has the same

distribution as Un,i, for each 1 ≤ i ≤ rn. De�ne the sums Fn,k = d
−1/2
n

∑k
j=1 Un,i and

F ′n,k = d
−1/2
n

∑k
j=1 U

′
n,i, and their characteristic functions ϕFn,k , ϕF ′n,k , respectively. Then,

for any t and n,

∣∣ϕFn,rn (t)− ϕF ′n,rn (t)
∣∣ =

∣∣EeitFn,rn − EeitF ′n,rn ∣∣
=
∣∣∣EeitFn,rn − EeitF ′n,rn ± EeitFn,rn−1Ee

it
U′n,rn√
dn

± EeitFn,rn−2Πrn
j=rn−1Ee

it
U′n,j√
dn ± · · · ± EeitFn,2Πrn

j=3Ee
it
U′n,j√
dn

∣∣∣
=
∣∣∣EeitFn,rn − EeitF ′n,rn + EeitFn,rn−1Ee

it
U′n,rn√
dn − EeitFn,rn−1Ee

it
Un,rn√
dn

+ EeitFn,rn−2Πrn
j=rn−1Ee

it
U′n,j√
dn − EeitFn,rn−2Ee

it
Un,rn√
dn Πrn

j=rn
Ee

it
U′n,j√
dn

± · · ·

+ EeitFn,2Πrn
j=3Ee

it
U′n,j√
dn − EeitFn,2Eeit

Un,3√
dn Πrn

j=4Ee
it
U′n,j√
dn

∣∣∣
=

∣∣∣∣rn−2∑
k=1

(
EeitFn,k+1 − EeitFn,kEeit

Un,k+1√
dn

)
Πrn
j=k+2Ee

it
U′n,j√
dn

+ EeitFn,rn − EeitFn,rn−1Ee
it
Un,rn√
dn

∣∣∣∣
≤
∣∣∣∣rn−1∑
k=1

(
EeitFn,k+1 − EeitFn,kEeit

Un,k+1√
dn

)∣∣∣∣ ≤ rn∑
k=2

∣∣ϕFn,k − ϕF ′n,k∣∣
≤ rn(16αn(ln)),

using Lemma 3.12 (Ibragimov's Bound) and the fact that |ϕUn,k | ≤ 1, ∀k = 1, . . . , rn.

Purposely choose αn(k) ≤ K/k2, which allows the mixing coe�cient to decrease slow

enough so that condition A.3 is violated. Then

16rnαn(ln) ≤ 16rnK/l
2
n = O(d−1/4

n ) = o(1).

Since αn(k) has to be strictly less that K/k2 (i.e., decrease at a faster rate) to satisfy

condition A.3, then supt
∣∣ϕFn,rn (t)− ϕF ′n,rn (t)

∣∣→ 0 as n→∞. Hence, Fn,rn
d→ F ′n,rn , n→
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∞.

We now show that F ′n,rn
d→ N(0, σ2). Write

1

rnbn
Var

( rn∑
i=1

U ′n,i

)
=

1

rnbn

rn∑
i=1

Var(U ′n,i) =
1

rnbn

rn∑
i=1

E(U ′n,i
2
)

=
1

rn

rn∑
i=1

E[(b−1/2
n Un,i)

2] =
1

rn

rn∑
i=1

E

[(
1

b
1/2
n

bn∑
k=1

Xn,(i−1)(bn+ln)+k

)2]
.

Condition A.2 implies that Var(b
−1/2
n Un,i)→ σ2 uniformly in i. Then∣∣∣∣ 1

rn

rn∑
i=1

Var(b−1/2
n Un,i)− σ2

∣∣∣∣ =

∣∣∣∣ 1

rn

rn∑
i=1

[
Var(b−1/2

n Un,i)− σ2
]∣∣∣∣

≤ 1

rn

rn∑
i=1

|Var(b−1/2
n Un,i)− σ2|

≤ sup
i
|Var(b−1/2

n Un,i)− σ2| → 0 (3.80)

Assume K ≥ 1 without loss of generality. From Lemma 3.13,

1

b
(2+δ)/2
n

E|U ′n,i|2+δ ≤ {3024 max[1, K2]}24[1+4(2−δ)/δ]∆(2+δ)(1+δ/2) := C (3.81)

Combining (3.80) and (3.81), we have

[
Var

( rn∑
k=1

U ′n,i

)]−(2+δ)/2 rn∑
i=1

E|U ′n,i|2+δ = r
− 2+δ

2
n

[
1

rnbn
Var

( rn∑
k=1

U ′n,i

)]− 2+δ
2

rn∑
i=1

E

∣∣∣∣U ′n,i
b

1/2
n

∣∣∣∣2+δ

≤ r
− 2+δ

2
n O(1)O(rn) = O(r−δ/2n ) = o(1).

Since the Lyapunov's condition is satis�ed, we use Theorem 3.4 to obtain that∑rn
i=1 U

′
n,i

V ar(
∑rn

i=1 U
′
n,i)

1/2

d→ N(0, 1). (3.82)

As showed in (3.80), (rnbn)−1 Var(
∑rn

k=1 U
′
n,i)→ σ2, but rnbn ∼ dn. Therefore

lim
n→∞

1

dn
Var(

rn∑
k=1

U ′n,i) = lim
n→∞

rnbn
dn

lim
n→∞

1

rnbn
Var(

rn∑
k=1

U ′n,i) = σ2,

and hence, √
Var(

∑rn
k=1 U

′
n,i)

dn
→ σ. (3.83)

For simplicity, denote Yn =
∑rn

i=1 Un,i/
√
sn and bn =

√
sn/dn, where sn = Var(

∑rn
k=1 U

′
n,i),
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and consider Y ∼ N(0, 1). Assume Yn
d→ Y and bn → σ to represent expressions (3.82)

and (3.83), respectively. It follows that ∀x ∈ R : ∀ε1, ε2 > 0 : ∃N1, N2 ∈ N : n ≥ N1 =⇒
|P (Yn ≤ x/bn)− P (Y ≤ x/bn)| < ε1/2 and n ≥ N2 =⇒ |P (Y ≤ x/bn)− P (Y ≤ x/σ)| <
ε2/2, since the distribution function of Y is continuous. In particular, for ε1 = ε2,

|P (bnYn ≤ x)− P (bY ≤ x)| ≤ |P (Yn ≤ x/bn)− P (Y ≤ x/bn)|

+ |P (Y ≤ x/bn)− P (Y ≤ x/σ)|

≤ ε1

Thus bnYn
d→ σY . That is,√

Var(
∑rn

k=1 U
′
n,i)

dn

∑rn
i=1 U

′
n,i

V ar(
∑rn

i=1 U
′
n,i)

1/2
=

∑rn
i=1 U

′
n,i

d
1/2
n

d→ σN(0, 1). (3.84)

Since d−1/2
n

∑rn
i=1 Vn,i

p→ 0 and (3.84) hold, the application of Slutsky's theorem gives

Sn,dn,1

d
1/2
n

=

∑rn
i=1 Un,i +

∑rn
i=1 Vn,i

d
1/2
n

d→ N(0, σ2).

The next theorem is due to Ekström (2014) who provided a more general CLT with-

out imposing the condition A.2 of Politi's CLT. Belyaev and Sjöstedt-de Luna (2000)

introduced the notion of weakly approaching sequences of distributions, generalizing the

concept of weak convergence of distributions without the need to have a limiting distri-

bution. Two sequences of distribution laws {L(Yn)} and {L(Xn)} of random variables

{Yn} and {Xn}, respectively, are said to weakly approach each other if for any bounded

continuous function f , we have E(f(Yn)) − E(f(Xn)) → 0 as n → ∞, and we write

L(Yn)
w.a.←→ L(Xn), n→∞.

Theorem 3.6 (Politis-Ekstrom's CLT). Let {Xn,i : 1 ≤ i ≤ dn} be a triangular array of

mean zero random variables and consider the notations of Theorem 3.5. If conditions A.1

and A.3 of Theorem 3.5 hold true, then

L(Tn,dn,1)
w.a.←→ N(0, σ2

n,dn,1).

Corollary 3.6.1. Under the assumptions of Theorem 3.6, if we additionaly have σ2
n,dn,1

→
σ2 as n→∞, then Tn,dn,1

d→ N(0, σ2).

Proof. Let {Xn} : Xn ∼ N(0, σ2
n,dn,1

) and Yn = Tn,dn,1 for every n. Denote Mn(t) as

the moment generating function associated to Xn for each n. Then limn→∞Mn(t) =

limn→∞ e
σ2
n,dn,1

t2/2 = eσ
2t2/2, for all t ∈ R, by hypothesis. Therefore Xn

d→ X with

X ∼ N(0, σ2), from Theorem 3 of Curtiss (1942). Using portmanteau's Lemma (VAART,
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1998, p. 6) we have that for all bounded continuous function f ,

lim
n→∞

E(f(Yn))− E(f(X)) = lim
n→∞

E(f(Yn))− E(f(Xn)) + lim
n→∞

E(f(Xn))− E(f(X)) = 0

implying Yn
d→ X, as desired.

To illustrate the applicability of the Politis-Ekstrom's CLT, consider the triangular

array {Xt,T} = {Xt,T I(t ∈ Jx,T )} in (3.18) where the set Jx,T = {t ∈ [T ] : t/T ∈ (x −
h, x+h)}, for some x ∈ (h, 1−h), has cardinality kT . For each T , the smallest element of

Jx,T ⊆ [T ] does not need to be 1. It does not mean, however, that we cannot use the CLT.

If {εt,T} satis�es the conditions of Theorem 3.6, so does {Xt,T} by Lemma 3.11. Since,

for each T , Jx,T is a �nite set, then there is a bijection fT : Jx,T → {1, . . . , bkT c} which
enables us to treat the array {Xt,T I(t ∈ Jx,T )} = {Xt,T , t ∈ Jx,T , T ≥ 1} equivalently as

{Zi,T , 1 ≤ i ≤ bkT c, T ≥ 1} where Zi,T := XfT (t),T .
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Appendix E - A note on the proof of Vogt and Linton

In the proof of Lemma A4 in the supplementary material of Vogt and Linton (2014),

a similar bound problem to that of inequality (3.72), in this study, appeared. An upper

bound for a sum of products of four random variables was required in order to prove

the lemma and, ultimately, to prove the consistency of the period estimator. For this,

they introduced the concept of separated indices. In their words, "we say that an index

i1 is separated from the indices i2, . . . , id if |i1 − ik| > C2 log T for a su�ciently large

constant C2 and all k = 2, . . . , d". This concept allowed the authors to split the following

summation as

T∑
l,l′=1

K
bθc
lθ,T∑
k=1

K
′bθc
lθ,T∑
k′=1

E[ε(k−1)θ+lθεlε(k′−1)θ+l′θ
εl′ ] =

∑
(l,l′,k,k′)∈Γ

E[ε(k−1)θ+lθεlε(k′−1)θ+l′θ
εl′ ]

+
∑

(l,l′,k,k′)∈Γc

E[ε(k−1)θ+lθεlε(k′−1)θ+l′θ
εl′ ],

where "Γ is the set of tuples (l, l′, k, k′) such that none of the indices l, l′, (k − 1)θ, (k′ −
1)θ + l′θ is separated from the others and Γc is its complement" and iθ := wθ,i in our

notation. After bounding the sum over Γ, the sum over its complement Γc was bounded

using the argument that "for any tuple (l, l′, k, k′) ∈ Γc, there exists an index, say l, which

is separated from the others". However, such set of indices is only a proper subset of Γc.

To make our argument clearer, let us give an explicit de�nition of Γ based on Vogt

and Linton (2014):

Γ = {(l, l′, k, k′) ∈ [T ]4 : none of l, l′, (k − 1)θ + lθ, (k
′ − 1)θ + l′θ

is separated from the others}

= {(l, l′, k, k′) ∈ [T ]4 : every index l, l′, (k − 1)θ + lθ, (k
′ − 1)θ + l′θ

is not separated from the others}

= {(i1, i2, i3, i4) ∈ [T ]4 : ∀j ∈ [4] : ∀k ∈ [4] \ {j} : |f(ij)− f(ik)| ≤ C2 log T}

where

f(ij) =


ij , if j ∈ {1, 2}

(ij − 1)θ + i1 − b(i1 − 1)/θc , if j = 3

(ij − 1)θ + i2 − b(i2 − 1)/θc , if j = 4

.

Therefore, its complement is given by

Γc = {(i1, i2, i3, i4) ∈ [T ]4 : ∃j ∈ [4] : ∃k ∈ [4] \ {j} : |f(ij)− f(ik)| > C2 log T}.
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Note that Vogt and Linton considered the set

{(i1, i2, i3, i4) ∈ [T ]4 : ∃j ∈ [4] : ∀k ∈ [4] \ {j} : |f(ij)− f(ik)| > C2 log T},

which is a proper subset of Γc, and is not su�cient for the proof.

As an example, assume {εi} i.i.d. (and thus, strongly mixing) with mean zero and �nite

variance. The tuple (l, l, k, k) with l = 1 and k = C2 log T/θ+2 is in Γc for T large enough.

But Cov(εl, εlε1+θ+C2 log T ε1+θ+C2 log T ) = E(ε2l )E(ε21+θ+C2 log T ) = [E(ε2l )]
2 = C <∞, by the

hypotheses. Hence, the argument of Vogt and Linton that for any (l, l′, k, k′) ∈ Γc,

Cov(εl, εl′ε(k−1)θ+lθε(k′−1)θ+l′θ
) < CT−C3 for arbitrarily large C3 > 0 does not hold.
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4 NONPARAMETRIC ESTIMATION OF A SMOOTH TREND IN THE

PRESENCE OF A PERIODIC SEQUENCE: FINITE SAMPLE BEHAV-

IOR AND APPLICATIONS

Abstract. We investigate the �nite sample behavior of the estimators obtained by re-

versing the procedure of Vogt and Linton (2014). We suggest a plug-in type bandwidth

for the trend estimator. Our simulations showed a good performance for the suggested

bandwidth selector and a fairly robust behavior of the period estimator over di�erent

bandwidths. We complement the study with two applications: one in global temperature

data and the other in the estimation of the non-accelerating in�ation rate of unemploy-

ment.

Keywords: Nonparametric regression. Asymptotic analysis. Monte Carlo Simulation.

JEL Codes. C14; C15; C22.
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4.1 Introduction

Vogt and Linton (2014) proposed a three-step procedure to estimate a trend function

in the presence of a periodic sequence. In the previous section, we showed some asymp-

totic properties of the estimators derived by reversing their original estimation procedure.

Desirable large sample properties, such as (uniform) consistency and asymptotic normal-

ity was proved. In practice, we may be interested in assessing the �nite sample behaviour

of such estimators. As these estimators depend on a bandwidth choice, we must have a

suitable bandwidth selection criteria.

In the present section, we investigate the �nite sample behaviour of the estimators

involved in the reversed estimation procedure of Vogt and Linton (2014). A plug-in type

bandwidth is proposed in order to estimate the trend function, in the �rst step. Our

simulation exercise showed a good performance for the proposed bandwidth. Although

we do not provide an optimal bandwidth selection for the period estimator, we employ

a simulation exercise to evaluate the sensitivity of the estimator for di�erent bandwidth

choices having the plug-in bandwidth, used in the �rst step, as a baseline. The motivation

is simple: if the performance of the period estimator along di�erent bandwidths is roughly

the same as that obtained using the �rst-step's bandwidth, then we would not be far worse

o� by choosing the plug-in bandwidth again. In our simulation, the period estimator had

a robust behaviour along di�erent bandwidths.

To evaluate how the estimators behave for real data, we made two applications: one for

climatological data and the other for economic data. In the former, we used global temper-

ture anomalies data which is exactly the same as that in Vogt and Linton (2014). The lat-

ter application consists in providing central estimates for the australian non-accelerating

in�ation rate of unemployment by means of the reversed estimation procedure estudied

so far.

4.2 Bandwidth selection for the trend estimator

The local polynomial regression requires the choice of a bandwidth parameter. The

bandwidth selection is usually done by a cross-validation algorithm or a plug-in method

(see Wand and Jones, 1994; Fan and Gijbels, 1996). In this section we focus on a plug-in

type bandwidth based on minimizing the Mean Integrated Squared Error (MISE) for the

trend estimator ĝ, de�ned by (3.5) in Chapter 3.

Consider the model (3.1) of Chapter 3: for any T ∈ N, {Yt,T : t = 1, . . . , T} follows

Yt,T = g(t/T ) +m(t) + εt,T , t ∈ {1, . . . , T}, (4.1)

where g : [0, 1]→ R is a deterministic trend function, m is a θ0-periodic real sequence and

{εt,T}Tt=1 is a zero mean random sequence. Assume again that g and m are normalized so
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that
∑θ0

t=1m(t) = 0. In matrix form, YT = gT + mT + εT where YT = (Y1,T , . . . , YT,T )′,

gT = (g(1/T ), . . . , g(T/T ))′, mT = (m(1), . . . ,m(T ))′ and εT = (ε1,T , . . . , εT,T )′.

De�ne the naive local linear estimator for BT := (g(x), g′(x))′ as

B̂T (x) :=

[
ĝ(x)

ĝ′(x)

]
= (A′TWTAT )−1(A′TWTYT ) := S−1

T DT ,

where

AT =


1 (x1 − x)
...

...

1 (xT − x)

 , ST =

[
s0 s1

s1 s2

]
, WT =

1

T
diag(Kh(x1 − x), . . . , Kh(xT − x)),

DT = (d0, d1)′,

with

sk =
1

T

T∑
t=1

(xt − x)kKh(xt − x), k ∈ N,

dk =
1

T

T∑
t=1

(xt − x)kKh(xt − x)Yt,T , k ∈ N,

Kh(u) = K(u/h)/h and xi = i/T . For simplicity, the dependence of the matrices ST and

DT on x ∈ [0, 1] and the dependence of the design points on T were omitted.

Denote the covariance matrix of the errors εT by ΓT . The exact Mean Squared Error

(MSE) of the naive trend estimator in (3.5) is given by

MSE(x, h) = b2
T (x) + VT (x), (4.2)

where

bT (x) = e′1S
−1
T A′TWT (gT − A′TBT (x) +mT )

and

VT (x) = e′1S
−1
T A′TWTΓTWTATS

−1
T e1.

Following the ideas of Fan et al. (1996) and Fernández and Fernández (2001), we approx-

imate the bias by a 2nd order Taylor expansion,

bT (x) ≈ b∗T (x) = e′1S
−1
T

[
s2

s3

]
g
′′

T (x)/2 + e′1S
−1
T A′TWTmT . (4.3)

Given appropriate estimators for g
′′
, θ0, m and ΓT , an estimate M̂SE(x, h) of (4.2) is

obtined. De�ne the estimator for the Mean Integrated Squared Errors (MISE) by means



102

of right Riemann sums approximation:

M̂ISE(h) =

∫
M̂SE(x, h)dx ≈ 1

T

T∑
i=1

M̂SE(i/T, h). (4.4)

Then the plug-in bandwidth is selected from

hopt = arg min
h

1

T

T∑
i=1

M̂SE(i/T, h). (4.5)

Since the �rst θ̃ points of the periodic sequence estimator β̃ de�ned in (3.12) do not

necessarily sum zero, we heuristically propose the selector h∗opt which is the particular

case of (4.5) that uses β̃ − 1′
θ̃
β̃ as the estimator of mT .

In the next sections, the estimation procedures will be carried out with the Epanech-

nikov kernel.

4.2.1 Simulation: plug-in bandwidth performance

In this section we analyze the �nite sample performance of the proposed bandwidth

selector via a Monte Carlo experiment. The data generating process is the same as that

of Section 6 of Vogt and Linton (2014). Model (4.1) is simulated with

m(t) = sin
(2π

θ0

t+
3π

2

)
; g(u) = 2u2; εt = 0.45εt−1 + ηt,

θ0 = 60 and ηt
i.i.d.∼ N(0, σ2

η). To achieve strict stationarity, assume ε0 ∼ N(0, σ2
η/(1 −

0.452)). In a �rst step, we approximate the MISE between the trend function g and the

estimator ĝ,

MISE(h) = E

∫
(ĝ(x;h)− g(x))2dx, (4.6)

on a grid of equally spaced bandwidth values consisted of 300 points from 0.1 to 1,

by means of Riemann sums and through 500 Monte Carlo simulations. Obviously, the

function g in (4.6) is assumed to be known in order to make the computation feasible.

By minimizing the approximated MISE in h, we obtain a numerical approximation of

hmin = arg minhMISE(h). This is done for the sample sizes T ∈ {160, 250, 500} and for

the error variances σ2
η ∈ {0.2, 0.4, 0.6}.

In the second step, another 500 random samples are generated and the selector hopt
is computed for every sample. We perform Monte Carlo approximations once more to

calculate the expected value and the standard deviation of hopt as well as the MSE between

MISE(hopt) and MISE(hmin), denoted as ∆M(hopt), which will serve as an e�ciency

measurement. That is, ∆M(hopt) = E(MISE(hopt) −MISE(hmin))2. This exercise is

done for every choice of sample sizes and error variances mentioned in the �rst step and
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is replicated to the selector h∗opt.

Now, we describe the computation of the bandwidth hopt. With the help of the pilot

bandwidth, hpilot = 0.5, we estimate g, θ0 and m using the estimators ĝ, θ̃ and m̃ proposed

in Chapter 3. The exact procedure to estimate the period will be detailed in the next

section. With m̃ and ĝ in hand, we can calculate the residuals ε̂t = Yt−m̃(t)− ĝ(t/T ), t ∈
{1, . . . , T}, which will be used to estimate the covariance matrix ΓT of the �rst order

autoregressive errors. The natural estimator for ΓT has the structure

Γ̂T = σ̂2
ε



1 ρ̂ ρ̂2 · · · ρ̂T−1

ρ̂ 1 ρ̂ · · · ρ̂T−2

ρ̂2 ρ̂ 1 · · · ρ̂T−3

...
...

...
. . .

...

ρ̂T−1 ρ̂T−2 ρ̂T−3 · · · 1


. (4.7)

with

ρ̂ =

∑T
t=2 ε̂tε̂t−1∑T
t=1 ε̂t

and σ̂2
ε =

1

T

T∑
t=1

ε̂2t . (4.8)

In (4.7), σ̂2
ε and ρ̂

j are estimators for the variance and the j-order autocorrelation of {εt},
respectively. The integral of the functional derivative g

′′
is estimated by �tting a second

order polynomial to g, globally, through the parametric �t Yt−m̃(t) = α̂1(t/T )+α̂2(t/T )2

with α̂ being the generalized least squares estimate associated to the matrix (4.7). The

resulting estimator is de�ned by ĝ
′′

= 2α̂. Since ĝ
′′
(t/T ) = 2α̂ is constant for t ∈

{1, . . . , T}, we have
∫̂
g′′2 = (2α̂)2 by means of Riemann sum approximation. This simple

procedure (known as �Rule-of-thumb�) is somewhat crude but requires little programming.

The heuristic selector h∗opt is computed analogously except that periodic sequence m

is estimated via β̃ − 1′
θ̃
β̃.

Table 1 shows that hopt and h∗opt performed well, specially for the sample sizes 160

and 500. We can also see that their e�ciencies worsen as the error's variance gets bigger.

4.3 Sensitivity of the period estimator over bandwidths

In this section, we analyze the �nite sample behavior of the period estimator along a

set of di�erent bandwidth values using Monte Carlo experiments.

We follow the heuristic procedure proposed by Vogt and Linton (2014), for selecting

the regularization parameter of the period estimator. Consider the simple model without

trend

St,T = m(t) + εt,T , (4.9)

where {εt,T}Tt=1 have the same joint distribution as {ut}Tt=1 with {ut : t ∈ Z} being a

sequence of independent and identically distributed zero mean random variables which
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Table 1: Plug-in bandwidths

Mean St. Dev. ∆M × 106

hmin h∗opt hopt h∗opt hopt h∗opt hopt

T = 160
σ2
ε = 0.25 0.90 0.91 0.81 0.08 0.09 2.41 9.35
σ2
ε = 0.5 0.91 0.88 0.80 0.12 0.12 9.23 18.39
σ2
ε = 0.75 0.92 0.86 0.79 0.14 0.13 33.62 37.23

T = 250
σ2
ε = 0.25 0.58 0.64 0.64 0.16 0.15 1.68 1.69
σ2
ε = 0.5 0.58 0.68 0.69 0.16 0.16 2.77 2.48
σ2
ε = 0.75 0.59 0.69 0.70 0.18 0.17 5.62 5.27

T = 500
σ2
ε = 0.25 0.32 0.34 0.39 0.05 0.05 0.09 0.14
σ2
ε = 0.5 0.42 0.40 0.44 0.09 0.07 0.51 0.53
σ2
ε = 0.75 0.43 0.47 0.50 0.14 0.12 1.89 1.76

T = 800
σ2
ε = 0.25 0.28 0.31 0.36 0.03 0.03 0.00 0.08
σ2
ε = 0.5 0.34 0.35 0.40 0.04 0.04 0.11 0.30
σ2
ε = 0.75 0.35 0.38 0.43 0.07 0.06 0.46 0.62
* The table presents the expectation, standard deviation and the e�-
ciency measurement associated with each bandwidth selector. Here,
∆M(ĥ) = E(MISE(ĥ)−MISE(hmin))2.

also has �nite variance. As showed by Vogt and Linton (2014), when θ = rθ0 for some

integer r, it holds that E{RSS(rθ0)} + σ2rθ0 = E{RSS(θ0)} + σ2θ0. This suggests to

choose the penalization parameter λT larger than σ2 in order to avoid choosing multiples

of θ0. However, the penalization should not be too large otherwise the criterion function

Q at θ0, de�ned in (3.8), becomes larger than the criterion function at θ = 1. From this

heuristics, they proposed to choose the regularization parameter as

λT = σ2kT , (4.10)

where kT is a slowly divergent sequence and σ2 = E(u2) <∞. To meet the conditions of

Theorem 3.2, kT should grow slightly faster than T 1/4.

Given a bandwidth choice, let S̃ = (S̃1,T , . . . , S̃T,T )′ = Y − ĝ be the estimted data

obtained from the naive trend estimates and let β̌θ = (X ′θXθ)
−1X ′θS̃. Since σ

2 is unknown

in (4.10), it is replaced by the standard estimator

σ̌2 =

∑T
i=1 ε̌

2
t,T

T
(4.11)

where ε̌ = S̃ − m̌ with m̌ = β̌θ̌ and θ̌ = arg min1≤θ≤ΘT
‖S̃ − Xθβ̌θ‖. As noted by the

authors, although θ̌ is an inconsistent estimator of θ0, it equals rθ0 for some r ∈ N with
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probability approaching to one . Since multiples of θ0 are also periods of m, we could use

m̌ as a preliminary estimator of m in order to calculate the residuals.

The model used in the simulation exercise is exactly the same as that in Section 1.2. To

be comparable with the results of Vogt and Linton (2014), we perform 1000 simulations

for the sample sizes T = {160, 250, 500} and for σ2
η ∈ {0.2, 0.4, 0.6}. We choose three

di�erent bandwidths values based on hopt de�ned in the previous section: h1.5
opt, h

5/4
opt, h

0.5
opt

and hopt itself. The plug-in bandwidth hopt, for each case, is considered to be its expected

value, obtained in the simulation of Section 1.2 (which is presented in the third column

of Table 1). Note that h5/4
opt is a choice satisfying Theorem 3.2 since the bandwidth is

assumed to be Θ(T−1/4) and hopt is of order Θ(T−1/5), according to Appendix G.

The selection rule above for the penalization parameter does not take into account

the dependence structure of the autoregressive errors. As long as the correlation is not

too strong, σ2 should dominate the long-run variance justifying the use of the rule under

several dependent cases. Based on Appendix F, we use the rule

λT = σ2

(
1 + ρθ

1− ρθ

)
T 1/4, (4.12)

with the autocorrelation parameter being estimated by ρ̌ =
∑T

t=2 ε̌tε̌t−1/
∑T

t=1 ε̂t and the

variance σ2, by (4.11).

Table 2: Empirical probabilities that θ̃ = 60 and that 55 ≤ θ̃ ≤ 65.

P (θ̃ = 60) P (55 ≤ θ̃ ≤ 65)
T=160 T=250 T=500 T=800 T=160 T=250 T=500 T=800

Chosen bandwidth: h0.5
opt

σ2
ε =0.25 0.20 0.43 0.96 1.00 1.00 1.00 1.00 1.00
σ2
ε =0.5 0.16 0.27 0.85 1.00 0.97 0.98 1.00 1.00
σ2
ε =0.75 0.14 0.24 0.68 0.99 0.90 0.99 1.00 1.00

Chosen bandwidth: hopt
σ2
ε =0.25 0.21 0.43 0.96 1.00 1.00 0.99 1.00 1.00
σ2
ε =0.5 0.15 0.27 0.85 1.00 0.97 0.98 1.00 1.00
σ2
ε =0.75 0.13 0.25 0.68 0.99 0.90 0.99 1.00 1.00

Chosen bandwidth: h5/4
opt

σ2
ε =0.25 0.21 0.43 0.96 1.00 1.00 1.00 1.00 1.00
σ2
ε =0.5 0.15 0.25 0.85 1.00 0.96 0.98 1.00 1.00
σ2
ε =0.75 0.13 0.24 0.68 0.99 0.89 0.99 1.00 1.00

Chosen bandwidth: h1.5
opt

σ2
ε =0.25 0.19 0.41 0.95 1.00 1.00 0.99 1.00 1.00
σ2
ε =0.5 0.15 0.26 0.85 1.00 0.96 0.98 1.00 1.00
σ2
ε =0.75 0.14 0.23 0.67 0.99 0.88 0.99 1.00 1.00

Table 2 presents the empirical probabilities P (θ̃ = 60) and P (55 ≤ θ̃ ≤ 65) for di�erent

sample sizes, error variances and bandwidth choices. Overall, the period estimator θ̃ per-
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Figure 4.1: Yearly temperature anomalies.

formed fairly robust over di�erent bandwidths and with a good accuracy when compared

with the results of Vogt and Linton (2014).

Table 4 and Figures 4.9 - 4.10 in Appendix I present additional results for h∗opt and

for sample sizes which are in the 60-periodic orbit or 120, 140 and 160. In all cases, the

period estimator showed to be robust as well.

In the absence of a bandwidth selection rule for the period estimator θ̃, the robustness

over bandwidths is highly desirable. In this exercise, if one chooses the same bandwidth

hopt selected in the �rst step of our estimation procedure, his period estimator would be

almost as accurate as that obtained using other bandwidth choices considered above.

4.4 Applications

4.4.1 Global temperature anomalies

We illustrate the applicability of the proposed reversed three-step procedure to the

HadCrut31 data used in Vogt and Linton (2014). The data refers to the yearly global

mean temperature anomalies from 1850 to 2011. More speci�cally, these are temperature

deviations from the average of 1961-1990 measured in degree Celsius. As pointed by the

authors, the global mean temperature records suggest that there has been a signi�cant

upward trend in the temperatures (BLOOMFIELD, 1992; HANSEN et al., 2002) and some

existing researches indicate that the global temperature system possesses an oscillation

with period in the region between 60 and 70 years (SCHLESINGER; RAMANKUTTY,

1994; MAZZARELLA, 2007). Figure 4.1 depicts the data.

We �t the model (3.1) to the temperature data and estimate the trend function g,

the unknown period θ0 and the periodic sequence m, in this order. Since the period

estimator θ̃ shown to be robust to di�erent bandwidths in Section 4.3, we choose the

1The dataset have been developed by the Climatic Research Unit in conjunction with the Hadley
Centre. It can be accessed by the link: https://crudata.uea.ac.uk/cru/data/crutem3/HadCRUT3-gl.dat
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Figure 4.2: Autocorrelation and partial autocorrelation functions of the pilot residuals.

same bandwidth, h∗opt, in all steps of the estimation.

We employed the pilot bandwidth hp = 0.5 for the computation of the selector h∗opt. As

described in section 4.2, we need preliminary estimates g(p), θ
(p)
0 ,m(p) and Γ

(p)
T of g, θ0,m

and ΓT , respectively, to approximate the M̂ISE, and it is accomplished based on hp.

Then our reversed estimation procedure is used to obtain g(p), θ
(p)
0 and the centered m(p)

with the bandwidth hp, producing the residuals ε(p) = Y − g(p) −m(p).

Figure 4.2 depicts the autocorrelation and partial autocorrelation functions of ε(p)

from where we can conjecture that we are dealing with a �rst order moving average

error proccess. Inspecting various ARMA models we found that the lowest Bayesian

information criterion (BIC) is associated with the MA(1) model. Therefore, we estimate

the covariance matrix ΓT by

Γ̂T = σ̂2
η



1 + ρ̂2 ρ̂ 0 · · · 0

ρ̂ 1 + ρ̂2 ρ̂ · · · 0

0 ρ̂ 1 + ρ̂2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1 + ρ̂2


. (4.13)

with ρ̂ and σ̂2
η being the maximum likelihood estimates of the moving average coe�cient

and the variance of the innovations, respectively. Having all preliminary estimates in

hand, we approximate M̂ISE(h) and then perform a numerical minimization over h. We

obtained the minimum point h∗opt ≈ 0.43. By selecting this bandwidth, we perform our

estimation procedure again to obtain the �nal estimates ĝ, θ̃ and β̃. In assuming MA(1)

errors we highlight that the penalization rule becomes just λT = σ2T 1/4. This selection

rule for the penalization parameter was used to estimate both θ(p)
0 and θ̃.

Figure 4.3 (a) shows the values of the estimated trend ĝ. In particular, ĝ becomes

monotone increasing after the year of 1874, indicting a predominant upward trend within

the time interval under analysis. We found an oscillation with period 63 which is depicted
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Figure 4.3: Estimated values for the trend function, the period and the periodic se-
quence.

Figure 4.4: Residuals.

in Figure 4.3 (b) where we can see an evident downward spike in the criterion func-

tion. The estimated 63-periodic sequence is illustrated in Figure 4.3 (c). Therefore, the

estimated results are consistent with the evidences found in the climate change literature.

The estimated residuals ε̃ = Y − ĝ − β̃Xθ̃ are reported at Figure 4.4 as well as its

autocorrelation function. The residuals do not appear to have a strong trend or periodic

behavior. In addition, the autocorrelation function of the residuals do not appear to show

a strong dependence over time.

4.4.2 Australian non-accelerating in�ation rate of unemployment

The tradeo� between in�ation and unemployment has been investigated by many

economists, giving rise to some ideas that are now central in mainstream macroeconomics.

One of the most widely known economic concept is the Phillip's Curve (PHILLIPS, 1958)

which stablishes an inverse relationship between in�ation and unemployment. Phillips

(1958) found a relatively stable negative correlation between the rate of change in nominal

wages and the unemployment rate in United Kingdom. Later, Samuelson and Solow

(1960) showed a similar relationship in United States, but focusing in in�ation rates
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rather than in rates of change in nominal wages. They also championed that it could

be used as a policy tool (HALL; HART, 2012). Ideally, by determining the �scal and

monetary policy to change the aggregate demand, poliymakers would be able to choose

any pair of unemployment and in�ation rates on the Phillip's Curve.

Seminal works of Friedman (1968) and Phelps (1967, 1968) introduced the idea that

monetary attempts to keep the unemployment low at the cost of higher in�ation would

be just temporarily successful. When the in�ation expectations be adjusted to the new

rate of monetary growth, the unemployment rate comes back to its natural rate. Many

authors do consider the natural rate of unemployment and the non-accelerating in�ation

rate of unemployment (NAIRU) as synomyms (GORDON, 1997; STAIGER et al., 1997;

STIGLITZ, 1997; MANKIW, 1985; BALL; MANKIW, 2002), i.e., as the unemployment

rate consistent with stable (or non-accelerating) in�ation. In this section, both concepts

will be treated as equivalent.

In the Phillip's Curve literature, the Friedman-Phelps framework can be expressed as

(BALL; MANKIW, 2002; BALL; MAZUMDER, 2019; FUHRER et al., 2009)

πt = πt−1 + α(u∗t − ut) + vt, α > 0, t ∈ {1, . . . , T} (4.14)

where πt is the in�ation rate, ut is the unemployment rate, u∗t is the NAIRU and vt is an

error term. Equation 4.14 is commonly called the accelerationist Phillip's Curve. It di�ers

from the basic Phillip's Curve mainly because it includes the (time-varying) NAIRU and

the lagged in�ation rate which is implicity assumed to be the expected in�ation rate at

the current time, Et(πt) = πt−1.

Equation 4.14 is equivalent to

∆πt
α

+ ut = u∗t +
vt
α

(4.15)

where ∆πt = πt − πt−1. Once α is known and observations of ∆πt and ut are given,

Ball and Mankiw (2002) suggested that u∗t could be estimated from (4.15) using standard

trend extraction tools. At a �rst step, they assumed u∗t constant to obtain an ordinary

least squares (OLS) estimate α̂ for the parameter α from model (4.14), and then use α̂ in

(4.15) to estimate u∗t as the trend of the Hodrick-Prescott (HP) �lter.

We will extend the approach of Ball and Mankiw (2002) in order to illustrate our

estimation procedure using australian data. Our aim is to provide central estimates for

the time-varying NAIRU2.

2The con�dence intervals for the local linear trend estimator has nothing to do with the standard
deviations of stochastic NAIRUs that often appear in the literature. While the former relates to estimation
errors, the latter relates to the variance assumed in the NAIRU's dynamics.
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Given T ∈ N, assume the observations {(∆πt,T , ut,T )}Tt=1 follow the model

∆πt,T = yt,T +m1(t) (4.16)

ut,T = xt,T +m2(t) (4.17)

yt,T = α(f(t/T )− xt,T ) + vt,T , (4.18)

for any t ∈ {1, . . . , T}, where m1,m2 are two unknown deterministic periodic sequences

with fundamental periods θ1, θ2 respectively, f is an unknown deterministic smooth func-

tion interpreted as the NAIRU and {vt,T} is a strictly stationary and strongly mixing

stochastic process3. Additionally, assume that
∑θ0

i=1m1(i)/α+m2(i) = 0 and denote the

fundamental period of m1/α + m2 by θ0. In particular, if both m1 and m2 have period

one (aperiodic), we rely on a model similar to (4.14). By our model, equation (4.18) is

equivalent to
∆πt,T
α

+ ut,T = f(t/T ) +mα(t) +
vt
α
, (4.19)

where mα = m1/α + m2. Given an initial estimate a(0) of α, we can obtain estimates

f (0), θ(0),m(0) of f, θ0,mα using our proposed method.

To gain �nite sample insights, suppose that f (0), θ(0) are given and the following re-

gression model is used to re-estimate α in (4.18),

∆πt,T = β(f (0)(t/T )− ut,T ) + vt,T (4.20)

for t ∈ {1, . . . , T}. Then we would be ignoring the seasonal term of ∆π resulting in a

biased least squares estimate (see Appendix H). If the seasonal term m2 is not orthogonal

to ∆π, then it also has to be taken into account in order to separate the partial e�ects of

xt,T and of m2. Therefore, one can suggest to use the model

∆πt,T = β(f (0)(t/T )− ut,T ) +
θ(0)∑
i=1

βiDi,t,T + vt,T (4.21)

where Di,t,T = I(t ∈ {1, . . . , T} : t = i+ kθ(0) for some k ∈ N), which is simply a periodic

dummy variable. If, say, θ0 = LCM(θ1, θ2)4, then ∆π and u are θ0-periodic, even though

it is not necessarily their least periods. It can be shown that the least squares estimate of

3Theorem 6 in Section 28.5 of Fristedt and Gray (1996) implies that a stationary proccess is strongly
mixing if and only if it is ergodic. Technically, we also need to ensure that data generating proccess of
(yt,T , xt,T ) satis�es E(xt,T vt,T ) = 0 and E(x2t,T ) < ∞, ∀1 ≤ i ≤ T, ∀T ∈ N, and is jointly stationary
ergodic to obtain consistent ordinary least squares estimates (see Proposition 2.1(a) of Hayashi, 2000).

4Although it holds in most cases, there are situations where it is false. For example, take α =
1,m1(t) = {(−1)t} and m2 = −m1 both periodic with least period equal to 2. Then m1/α + m2 =
{0, 0, . . . } which has least period 1. On the other hand, take α = 1,m1 = {1, 2, 3, 4, 1, 2, 3, 4, . . . } and
m2 = (0, 0,−2,−2, 0, 0,−2,−2, . . . ) both periodic sequences with least period 4. But m1/α + m2 =
{1, 2, 1, 2, . . . } which has period 2. These examples show that if our assumption fails, θ0 may not be a
(multiple) period of m1 or m2.
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β from (4.21) is the same to that of obtained using (4.20) but with ∆π and f (0)−u being

priorly θ(0)-deseasonalized (see Appendix H). From these facts, we can conclude that there

may be an excessive number of seasonal dummies in the model (4.21), if θ0 = LCM(θ1, θ2).

This implies a possible loss of e�ciency (see Appendix H).

We brie�y describe the NAIRU estimation from our model as follows:

(a) Calculate the OLS estimate a(0) of α from (4.18) assuming f constant;

(b) Given a(0), estimate f, θ0 using our proposed estimators f (0), θ(0) for the trend and

period, respectively, from (4.19);

(c) Given f (0), θ(0), estimate α by the OLS estimate β̂ obtained from (4.21);

(d) Given β̂, estimate f again using our proposed naive trend estimator f (�nal) from

(4.19).

Based on Ball and Mankiw (2002), we also estimate the time-varying NAIRU using

the HP �lter as follows

(a) Calculate the OLS estimate a(0) of α from (4.14) assuming u∗t constant;

(b) Given a(0), use the HP �lter estimate u(0)
t of u∗t from (4.15);

(c) Given u(0)
t , estimate α by the OLS estimate a(1) obtained from (4.14);

(d) Given a(1), estimate u∗t again using the HP �lter estimate u(HP)
t from (4.15).

According to the estimates of Reserve Bank of Australia (RBA), the NAIRU was

around 7 per cent in early 1980 and declined to around 6 per cent in 1985. It reached

a peak in the mid-1990s at around 7 per cent and, subsequently, declined more or less

steadly since then to around 5 per cent in early 2017 (CUSBERT et al., 2017).

We used annual data5 from 1968 to 2019 to provide australian NAIRU estimates for

the period 1980-2017. The estimation for the trend function and for the periodic sequence

are done in the same way as in section 4.4.1, with a pilot bandwith equal to 0.3. We report

that the bandwidth selection of h∗opt considered a MA(2) error proccess, and the value

h∗opt
∼= 0.24 was obtained.

A periodic sequence of period 13 was captured in the estimated time series ∆Πt,T/a
(0)+

ut,T . By observing the criterion function in Figure 4.6(a), the heuristicaly selected penal-

ization parameter λT , de�ned in (4.10), should perhaps be slightly increased. Nevertheless,

the downward spike at period 13 is evident, producing the periodic sequence illustrated

in Figure 4.6(b).

The �nal estimates for the time-varying NAIRU are presented in Figure 4.7. It shows

our proposed method estimates and the estimates of the method which uses the HP �lter.

We consider the Hodrick-Prescott's penalization parameters λ ∈ {10, 100, 400}, which are

usual for annual data (RAVN; UHLIG, 2002). One can see that our proposed method

5The in�ation data is the growth rate of OECD's CPI (total all items for Australia),
code CPALTT01AUA657N, retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/CPALTT01AUA657N. Unemployment rate data (aged 15
and over, all persons for Australia), code LRUNTTTTAUA156S, can be obtained in
https://fred.stlouisfed.org/series/LRUNTTTTAUA156S.
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produced fairly di�erent NAIRU estimates from that obtained through HP's estimates.

Furthermore, our estimates seem to be in line with those described by RBA (see Figure

4.12 in Appendix I), except for the beginning of the sample where we obtained values

around 6 per cent instead of 7 per cent. However our aim is not to hit the exact values

estimated from RBA since their model treat the NAIRU as stochastic and many other

variables are considered as well as its lagged values. As mentioned by Setter�eld et al.

(1992) for the case of Canada, the NAIRU estimates are sensitive to model speci�cation

and the de�nition of variables.

Figure 4.5: Unemployment rates and �rst di�erences of the in�ation rates .

Figure 4.6: Estimated period and associated periodic sequence.
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Figure 4.7: NAIRU estimates.
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Appendix F - Penalization parameter selection

In this section, we clarify the penalization parameter selection employed in our simu-

lations and derive the asymptotic plug-in bandwidth for the naive trend estimator ĝ.

To motivate formula (4.12) for selecting the penalization parameter, consider the

model (4.9) with {ut} being a weakly stationary autoregressive error proccess of order

1. By denoting RSS(θ) as the residual sum of squares associated with the least squares

estimator based on the period θ, Vogt and Linton (2014) in page 8 of their supplementary

material, showed that

RSS(θ)

T
=

1

T

T∑
t=1

ε2t,T −
θ∑
s=1

1

T

(
1

Kθ
s,T

T∑
t,t′=1

Is(t)Is(t
′)εt,T εt′,T

)
,

where Is(t) = I(t = kθ+s for some k ∈ N) with I being the indicator function. Therefore

E

[
RSS(θ)

T

]
= σ2

u −
θ∑
s=1

1

T

(
1

Kθ
s,T

Kθ
s,T∑

k,k′=1

Cov(us+(k−1)θ, us+(k′−1)θ)

)
,

where σ2
u is the variance of the proccess. Now, let c : Z → R be the autocorrelation

function, and observe that

1

Kθ
s,T

Kθ
s,T∑

k,k′=1

Cov(us+(k−1)θ, us+(k′−1)θ) =
σ2
u

Kθ
s,T

Kθ
s,T∑

k,k′=1

c(θ|k − k′|)

= σ2
u

[
c(0) +

2

Kθ
s,T

Kθ
s,T∑
k=1

Kθ
s,T∑

k′=k+1

c(θ|k − k′|)
]

= σ2
u

[
c(0) +

2

Kθ
s,T

Kθ
s,T−1∑
d=1

(Kθ
s,T − d)c(dθ)

]

= σ2
u

[
c(0) + 2

Kθ
s,T−1∑
d=1

c(dθ)− 2

Kθ
s,T

Kθ
s,T−1∑
d=1

dc(dθ)

]
.

Also, note that
∑∞

d=1|c(dθ)| ≤ ∞, by the stationarity assumption6. Let ε > 0 be arbitrary.

Then there exists Tε ∈ N such that for every Kθ
s,T ≥ Kθ

s,Tε
we have

∑
Kθ
s,T≤d
|c(dθ)| < ε.

Therefore, for any T > Tε,

1

Kθ
s,T

Kθ
s,T−1∑
d=1

|dc(dθ)| ≤ 1

Kθ
s,T

[ Kθ
s,Tε
−1∑

d=1

|dc(dθ)|+
∑

Kθ
s,Tε
≤d≤Kθ

s,T

|dc(dθ)|
]

6Precisely,
∑∞
d=1|c(dθ)| = |φθ|/(1− |φθ|) where φ is the autoregressive coe�cient of {ut}.
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≤ 1

Kθ
s,T

[ Kθ
s,Tε
−1∑

d=1

|dc(dθ)|+
∑

Kθ
s,Tε
≤d≤Kθ

s,T

Kθ
s,T |c(dθ)|

]

≤ 1

Kθ
s,T

Kθ
s,Tε
−1∑

d=1

|dc(dθ)|+
∑

Kθ
s,Tε
≤d

|c(dθ)|

<
1

Kθ
s,T

Kθ
s,Tε
−1∑

d=1

|dc(dθ)|+ ε.

By taking limits on both sides, we have 1/Kθ
s,T

∑Kθ
s,T−1

d=1 |dc(dθ)| → 0, since ε > 0 is

arbitrary. Thus

1

Kθ
s,T

Kθ
s,T∑

k,k′=1

Cov(us+(k−1)θ, us+(k′−1)θ)
a
≈ σ2

u

[
c(0) + 2

∞∑
d=1

c(dθ)

]
= σ2

u

[
1 + 2

∞∑
d=1

φdθ
]

= σ2
u

1 + φθ

1− φθ
.

With these observations, we obtain that

E

[
RSS(θ)

T

]
= σ2

u −
θ∑
s=1

1

T

(
σ2
u

1 + φθ

1− φθ
+ o(1)

)
= σ2

u − σ2
u

θ

T

1 + φθ

1− φθ
+ o

(
1

T

)

Hence,

E[RSS(θ0)] + θ0σ
2
u

1 + φθ0

1− φθ0
a
≈ E[RSS(rθ0)] + rθ0σ

2
u

1 + φrθ0

1− φrθ0

where σ2
u = σ2/(1 − φ2) with σ2 being the variance of the error of the autoregressive

proccess. Thus,

E[RSS(θ0)] + θ0λT
1 + φθ0

1− φθ0
a
≈ E[RSS(rθ0)] + σ2

u

(
rθ0

1 + φrθ0

1− φrθ0
− θ0

1 + φθ0

1− φθ0

)
+ θ0λT

1 + φθ0

1− φθ0

≤ E[RSS(rθ0)] + rθ0λT
1 + φrθ0

1− φrθ0

if λT ≥ σ2
u. This reasoning justi�es the use of (4.12), when T is large enough. Clearly,

similar arguments can be used to justify this type of selection for general stationary

ARMA(p,q) proccesses.
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Appendix G - Asymptotic plug-in bandwidth

Next, we derive an asymptotic plug-in method to select the bandwidth for the trend

estimator ĝ. We strengthen the assumptions on the model (4.1) by requiring that the

error process is strictly stationary: for any T , {εt,T}Tt=1 have the same joint distribution

as {ut}Tt=1 with {ut : t ∈ Z} being a strictly stationary stochastic process. Furthermore,

assume

(B1) The covariance structure of the process {εt,T} satis�es Cov(εi,T , εi+k,T ) = σ2
ε c(k), |k| =

0, 1, . . . , ∀T ∈ N, and
∑∞

k=1 k|c(k)| <∞;

(B2) The bandwidth sequence hn := h satis�es h > 0, h→ 0 and Th2 →∞;

(B3) g is second continuously di�erentiable on [0, 1];

(B4) The kernel function K is symmetric around zero, Lipschitz continuous and di�eren-

tiable in its compact support.

Note that Conditions 1 and 2 imply B17. Without loss of generality, we assume

suppK = [−1, 1] and
∫
K(u)du = 1.

De�ne the term

d∗k =
1

T

T∑
t=1

(xt − x)kKh(xt − x)εt,T , k ∈ {0, 1}. (4.22)

From Proposition 1 and 2 of Fernández and Fernández (2001) or Theorem 1 of Hart

(1991), we have the following results.

Proposition 4.1. Let x ∈ (h, 1− h). Under B2 and B4, we have

lim
T→∞

h−jsj = µj, ∀j ∈ {0, 1, 2, 3}, (4.23)

where µj =
∫
ujK(u)du. In particular, limT→∞H

−1STH
−1 = S, where H = diag(1, h)

and the 2 × 2 matrices ST and S are given by (ST )i,j = si+j−2 and (S)i,j = µi+j−2,

respectively. Furthermore, if B1, B2 and B4 hold, then

lim
T→∞

ThCov(h−id∗i , h
−jd∗j) = vj+ic(ε), ∀i, j ∈ {0, 1}, (4.24)

where vl =
∫
ulK2(u)du and c(ε) = σ2

ε [c(0) + 2
∑∞

l=1 c(l)]. Equivalently,

lim
T→∞

ThE(H−1D∗TD
∗′
TH

−1) = D̃c(ε)

in matrix form, where D̃ = (d∗0, d
∗
1)′ and D̃ = (v0, v1)′.

7Using the ratio test, we have (k + 1)ak+1/(kak) → a < 1 as k → ∞, if 0 < a < 1. Then, from
Davydov's inequality,

∑∞
k=1 k|σ2

ε c(k)| ≤ C
∑∞
k=1 ka

k < ∞, if Conditions 1 and 2 holds. Since the
variance is �nite,

∑∞
k=1 k|c(k)| ≤ ∞.
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Consider the notations of section 4.2 and Proposition 4.1 and de�ne µ = (µ2, µ3)′.

Theorem 4.1. Under B1-B4, for any x ∈ (h, 1− h), the asymptotic expressions for the

bias and the variance of B̂T (x) are, respectively,

Bias(B̂T (x))
a
≈ h2g

′′
(x)

2
S−1µ,

Var(B̂T (x))
a
≈ 1

Th
c(ε)S−1D̃S−1.

Proof. We start with the derivation of the bias. Write

E[B̂T (x)] = S−1
T A′TWT (g +m) := G+M,

where g = (g(x1), . . . , g(xT ))′ and m = (m(1), . . . ,m(T ))′, with xi = i/T , omitting the

dependence of both G and M on x and T . The 2nd-order Taylor expansion of g about

x is given by

g =


g(x) + (x1 − x)g′(x) + (x1 − x)2g

′′
(x)/2 + o((x1 − x)2)

...

g(x) + (xT − x)g′(x) + (xT − x)2g
′′
(x)/2 + o((xT − x)2)



= ATBT (x) + g
′′
(x)/2


(x1 − x)2

...

(xT − x)2

+ o




(x1 − x)2

...

(xT − x)2


 .

Then, recalling that ST = A′TWTAT ,

G = B(x) +
g
′′
(x)

2
S−1
T A′TWT


(x1 − x)2

...

(xT − x)2

+ o(1)S−1
T A′TWT


(x1 − x)2

...

(xT − x)2


= B(x) + S−1

T

(
g
′′
(x)

2

[
s2

s3

]
+ o

(
h2

h3

))
. (4.25)

De�ne E = {i ∈ {1, . . . , θ0} : Kθ0
i,T = bT/θ0c}. Turning to the term M , we have

e′1A
′
TWTm =

1

T

T∑
t=1

Kh(xt − x)m(t) =
1

T

θ0∑
t=1

m(t)

K
θ0
t,T∑

k=1

Kh(xt+(k−1)θ0 − x)

=
1

T

θ0∑
t=1

m(t)Kθ0
t,T

{∫ 1

0

Kh(u− x)du+O(1/(Th))

}
=

1

T

{∫ 1

−1

K(w)dw +O(1/(Th))

}[∑
t∈E

m(t)Kθ0
t,T +

∑
t∈Ec

m(t)Kθ0
t,T

]
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=
1

T

{∫ 1

−1

K(w)dw︸ ︷︷ ︸
=1

+O(1/(Th))

}∑
t∈Ec

m(t)︸ ︷︷ ︸
=O(1)

=
1

T

∑
t∈Ec

m(t) +O(1/(T 2h)) := M1 +O(1/(T 2h)),

using condition B4 and Lemmas 3.4 and 3.10 of Chapter 3. Similarly,

e′2A
′
TWTm =

1

T

T∑
t=1

Kh(xt − x)(xt − x)m(t)

=
h

T

{∫ 1

−1

K(w)wdw︸ ︷︷ ︸
=0

+O(1/(Th))

}∑
t∈Ec

m(t)︸ ︷︷ ︸
=O(1)

= O(1/T 2).

Therefore,

M = S−1
T

([
M1

0

]
+O

(
(T 2h)−1

(T 2h)−1

))
. (4.26)

Hence, from equations (4.25) and (4.26),

E[B̂T (x)] = B(x) + S−1
T

(
g
′′
(x)

2

[
s2

s3

]
+

[
M1

0

]
+O

(
(T 2h)−1

(T 2h)−1

)
+ o

(
h2

h3

))

On the other hand, we have

S−1
T D∗T = B̂(x)− E[B̂(x)].

Then,

B̂T (x)−B(x) = S−1
T D∗T +S−1

T

(
g
′′
(x)

2

[
s2

s3

]
+

[
M1

0

]
+O

(
(T 2h)−1

(T 2h)−1

)
+ o

(
h2

h3

))
.

This equation is convenient since it decomposes B̂T (x) − B(x) into a bias part and a

stochastic part. From Proposition 4.1,

HE[B̂T (x)−B(x)] = HS−1
T

(
g
′′
(x)

2

[
h2µ2 + o(h2)

o(h3)

]
+

[
M1

0

]

+O

(
(T 2h)−1

(T 2h)−1

)
+ o

(
h2

h3

))

=
h2g

′′
(x)

2
HS−1

T H

[
µ2

0

]
+HS−1

T HH−1

[
M1

0

]
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+O((T 2h)−1)HS−1
T HH−1

[
1

1

]
+ o(h2)HS−1

T H

[
1

1

]
a
≈ h2g

′′
(x)

2
S−1

[
µ2

0

]
+ S−1H−1

[
M1

0

]

+ S−1

(
o

(
h2

h2

)
+O

(
(T 2h)−1

(T 2h)−1

))

=
h2g

′′
(x)

2
S−1µ+

[
M1

0

]
+ S−1o

(
h2

h2

)
a
≈ h2g

′′
(x)

2
S−1µ,

since M1 = O(1/T ) = o(h2) by B2. On the other hand,

Var(HB̂T (x)) = E(HS−1
T D∗TD

∗′
T S
−1′

T H) = E(HS−1
T HH−1D∗TD

∗′
TH

−1HS−1′

T H)

a
≈ 1

Th
c(ε)S−1D̃S−1.

Corollary 4.1.1. Under B1-B4, for any x ∈ (h, 1 − h), the asymptotic Mean Squared

Error (MSE) of the trend estimator ĝ(x) satis�es

MSE(ĝ(x), h) := MSE(x, h)
a
≈ h4g

′′2(x)µ2
2

4
+
c(ε)v0

Th
. (4.27)

Theorem 4.1 implies that if h converges to zero slow enough, i.e., 1/T = o(h2), then

the asymptotic bias is the same as that for the model assuming the periodic component

is known. When h2 is allowed to converge to zero faster than 1/T , i.e., Th2 = o(1), then

the local asymptotic bias is dominated by the periodic component M1 = O(1/T ). In

this case, the bias-variance trade-o� disappears, and the smaller h is chosen, the greater

the asymptotic MSE will be. It corroborates with the intuition that h should not be

chosen too small when estimating the trend of model (4.1) in the presence of the periodic

sequence.

Hence, the Asymptotic Mean Integrated Squared Error (AMISE) is

AMISE(h) =
h4
∫
g
′′2µ2

2

4
+
c(ε)v0

Th
. (4.28)

Given good estimators for the integral of the functional g
′′2 and for c(ε), say

∫
ĝ
′′2 and

ĉ(ε), it makes sense to select h as the minimizer of formula (4.28) which is

has =
( v0

µ2
2

ĉ(ε)∫
ĝ′′2T

)1/5

. (4.29)
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Appendix H - Some e�ects of periodic sequences on least squares estimates

To make the arguments as simple as possible, suppose that the random sample (y, x)

has x as deterministic. Although similar conclusions are obtained with stochastic x by

imposing another set of classical least squares conditions (see Hayashi, 2000). Here we

clarify the known consequences of omitting relevant variables or including super�uous

variables as well as the equivalence between the least squares estimates obtained by a

periodic adjustment within the regression model and that obtained using priorly periodic

adjusted variables. Assume that the regression model is

y = xα +Dβ + ε (4.30)

where y is a T -vector of dependent variables, x is a T × d matrix of "�xed" regressors,

D := Dθ = (Iθ, Iθ, . . . )
′ is a T × θ matrix of periodic dummies with Iθ being the θ × θ

identity matrix and ε is a T -vector of errors. In this appendix, we always assume that the

true model ful�lls the Gauss-Markov conditions, thus resulting in a best linear unbiased

estimator (BLUE). However, the estimated model is

u = xα + ε. (4.31)

Since the least squares (LS) estimate is α̂ = (x′x)−1x′y, equation (4.30) implies

α̂ = α + (x′x)−1x′(Dβ + ε).

We immediately see that α̂ is biased and the bias term is given by (x′x)−1x′Dβ.

Now assume that the model is given by

y = xα + ε,

but the estimated model is

y = xα +Dβ + ε.

Let M = [x D] be the n× (d+ k) augmented matrix. The solution for the least squares

problem of the estimated model is

(α̂, β̂)′ = (M ′M)−1M ′y =

[(
x′

D′

)(
x D

)]−1 [
x′y

D′y

]

=

[
x′x x′D

D′x D′D

]−1 [
x′y

D′y

]
:=

[
A B

C E

]−1 [
x′y

D′y

]
,
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and then

α̂ =
[

(A−BE−1C)−1 −(A−BE−1C)−1BE−1
] [ x′y

D′y

]
= (A−BE−1C)−1(x′y −BE−1D′y)

= (x′x− x′D(D′D)−1D′x)−1(x′y − x′D(D′D)−1D′y).

The projection matrix Π = D(D′D)−1D′ was already studied in Lemma 3.5, where we

found that

Π =


K K · · ·
K K
...

. . .


T×T

with K = diag(1/Kθ
1,T , . . . , 1/K

θ
θ,T ) and Kθ

i,T = b(T − i)/θc + 1. The annihilator-like

matrix M = IT − Π acts as a periodic adjustment matrix since it subtracts from any

T -vector its θ-periodic means. Using the technical notation as that of Chapter 2, we can

explicitly obtain that the i-th coordinate of My is given by yi− 1/Kθ
wθ,i,T

∑Kθ
wθ,i,T

t=1 yt with

wθ,i = i−b(i−1)/θc, where one can see the interpretation ofM as a periodic (or seasonal)

adjustment matrix. Hence

α̂ = (x′Mx)−1x′My. (4.32)

Since the true model is y = xα + ε, we have from (4.32) that

α̂ = α + (x′Mx)−1x′Mε, (4.33)

revealing an unbiased estimator. It is well known that the covariance matrix of the BLUE

estimator a for the true model is σ2
ε (x
′x)−1. By Lemma 3.1(i), M is symmetric and

idempotent. Then the covariance matrix of α̂ is given by

E[(α̂− α)(α̂− α)′] = E[(x′Mx)−1(x′Mεε′Mx)(xMx′)−1] = σ2
ε (x
′Mx)−1.

A general relative e�ciency analysis can be made by introducing the following partial

order relation: we say that two Hermitian matrices A and B with equal dimensions satisfy

A � B if A−B is positive semi-de�nite.

Claim 6. Let A and B be two real, symmetric and positive de�nite T × T matrices. The

matrix A−B is positive semi-de�nite if, and only if, B−1 −A−1 is positive semi-de�nite.

Proof of claim: By the positive de�niteness hypothesis, there exist unique square root

matrices A1/2 and B1/2 with inverse matrices A−1/2 and B−1/2, respectively. It holds

that A � B ⇐⇒ B−1/2AB−1/2 � I ⇐⇒ λinf ≥ 1, where λinf is the in�mum of

the spectrum of B−1/2AB−1/2. To see this, let M = B−1/2AB−1/2 − I and let v be an
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eigenvector corresponding to a eigenvalue λ, and observe that 〈Mv, v〉 = 〈v, v〉(λ−1) ≥ 0.

Further, since B−1/2AB−1/2 = (B−1/2A1/2)(A1/2B−1/2) and commuting matrices share the

same eigenvalue spectrum, we must have A1/2B−1A1/2 � I ⇐⇒ B−1 � A−1.

�

By setting A = (x′Mx)−1 and B = (x′x)−1, we see that A and B are positive de�nite

since x′x and (Mx)′(Mx) are positive semi-de�nite and invertible. Also B−1 − A−1 =

x′Πx = (Πx)′(Πx) is positive semi-de�nite. By the above claim, a is more e�cient that α̂

in the sense than σ2
ε (x
′Mx)−1−σ2

ε (x
′x)−1 is positive semi-de�nite, unless Πx = 0 (that is,

x′D = 0). Using the relation �, we arrived with the conclusion that the only case where

both estimators are equally e�cient is when x is uncorrelated with D.

One �nal observation is that equation (4.32) implies the equivalence between the least

squares estimate of model

y = xα +Dβ + ε

and the least squares estimate obtained from a model that uses seasonal adjusted variables

My = Mxα + ε,

by the symmetry and idempotency of M .
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Appendix I - Additional reports

Table 3 shows the performance of the asymptotic plug-in has for the simulation exercise

of Section 4.2.1. The asymptotic selector performs poorly when compared to hopt and h∗opt,

specially for the smaller sample sizes T ∈ {160, 250}. This suggests that the bias part of
the MISE(h) of ĝ is highly a�ected by the periodic component m, discouranging the use

of asymptotic plug-in rules for small samples.

Table 3: Asymptotic plug-in bandwidth performance

Mean St. Dev. ∆M × 105

hmin has has has

T = 160
σ2 = 0.25 0.90 0.33 0.08 586.47
σ2 = 0.5 0.91 0.41 0.35 383.14
σ2 = 0.75 0.92 0.43 0.19 364.77

T = 250
σ2 = 0.25 0.58 0.30 0.04 16.87
σ2 = 0.5 0.58 0.35 0.11 7.33
σ2 = 0.75 0.59 0.38 0.11 7.84

T = 500
σ2 = 0.25 0.32 0.26 0.02 0.19
σ2 = 0.5 0.42 0.30 0.03 0.14
σ2 = 0.75 0.43 0.33 0.05 0.14

T = 800
σ2 = 0.25 0.28 0.24 0.01 0.02
σ2 = 0.5 0.34 0.28 0.02 0.01
σ2 = 0.75 0.35 0.30 0.03 0.02
* The table presents the expectation, standard deviation
and the e�ciency measurement associated with each
bandwidth selector. Here, ∆M(ĥ) = E(MISE(ĥ) −
MISE(hmin))2.

Table 4 shows the sensitiveness of θ̃ over di�erent bandwidth values, which are powers

of h∗opt and has. Eventhough the behavior of has is distinct from the other selectors, the

accuracy of the period estimator θ̃ remained roughly unchanged for all selected bandwidths

and for each pair (σ2
ε , T ). Tables 4 and 2 o�er a strong evidence that the estimator θ̃ is

robust with respect to bandwidth choices, for the considered model.

Figure 4.8 presents the results of the simulation exercise of Section 4.2.1 for the sample

sizes 120, 140, 160, 240, 260, 280, 420, 440 and 460. The expected values of the bandwidth

selector has are �atter than that of hopt and h∗opt. This is due to the absence of the

periodic component in the asymptotic MISE de�ned in (4.28). On the other hand, the

exact MSE, de�ned in (4.2), depends directly on m. It implies that the integrated bias

carries the 60-periodic behavior of m, which in turn produces the oscillatory behavior on

the means of hopt and h∗opt depicted in Figure 4.8. As can be seen from the plots of the
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Table 4: Sensitivity of θ̃ based on h∗opt and has.

P (θ̃ = 60) P (55 ≤ θ̃ ≤ 65)
T=160 T=250 T=500 T=800 T=160 T=250 T=500 T=800

Chosen bandwidth: h∗0.5opt

σ2
ε =0.25 0.20 0.43 0.96 1.00 1.00 1.00 1.00 1.00
σ2
ε =0.5 0.16 0.27 0.85 1.00 0.97 0.98 1.00 1.00
σ2
ε =0.75 0.14 0.24 0.67 0.99 0.90 0.99 1.00 1.00

Chosen bandwidth: h∗opt
σ2
ε =0.25 0.20 0.43 0.96 1.00 1.00 0.99 1.00 1.00
σ2
ε =0.5 0.16 0.26 0.85 1.00 0.97 0.98 1.00 1.00
σ2
ε =0.75 0.14 0.25 0.68 0.99 0.90 0.99 1.00 1.00

Chosen bandwidth: h∗5/4opt

σ2
ε =0.25 0.20 0.43 0.96 1.00 1.00 1.00 1.00 1.00
σ2
ε =0.5 0.16 0.26 0.85 1.00 0.97 0.98 1.00 1.00
σ2
ε =0.75 0.14 0.24 0.68 0.99 0.90 0.99 1.00 1.00

Chosen bandwidth: h∗1.5opt

σ2
ε =0.25 0.20 0.41 0.95 1.00 1.00 0.99 1.00 1.00
σ2
ε =0.5 0.15 0.26 0.85 1.00 0.96 0.98 1.00 1.00
σ2
ε =0.75 0.13 0.23 0.67 0.99 0.89 0.99 1.00 1.00

Chosen bandwidth: h0.5
as

σ2
ε =0.25 0.19 0.44 0.96 1.00 1.00 0.99 1.00 1.00
σ2
ε =0.5 0.15 0.27 0.85 1.00 0.96 0.98 1.00 1.00
σ2
ε =0.75 0.13 0.25 0.68 0.99 0.89 0.99 1.00 1.00

Chosen bandwidth: has
σ2
ε =0.25 0.12 0.40 0.95 1.00 0.95 0.99 1.00 1.00
σ2
ε =0.5 0.12 0.25 0.86 1.00 0.90 0.98 1.00 1.00
σ2
ε =0.75 0.12 0.24 0.68 0.99 0.83 0.99 1.00 1.00

Chosen bandwidth: h5/4
as

σ2
ε =0.25 0.09 0.39 0.95 1.00 0.87 0.99 1.00 1.00
σ2
ε =0.5 0.11 0.23 0.84 1.00 0.82 0.98 1.00 1.00
σ2
ε =0.75 0.08 0.23 0.67 0.99 0.73 0.99 1.00 1.00

Chosen bandwidth: h1.5
as

σ2
ε =0.25 0.08 0.34 0.94 1.00 0.77 0.99 1.00 1.00
σ2
ε =0.5 0.08 0.20 0.85 1.00 0.63 0.98 1.00 1.00
σ2
ε =0.75 0.07 0.23 0.67 0.99 0.55 0.99 1.00 1.00

approximated MISE's minimum point, hmin, this periodic behavior should be captured by

any reasonable bandwidth selector for ĝ when the sample is relatively small.

The simulation exercise of Section 4.3 is extended to the same samples sizes as in

Figure 4.8, and the results are presented in Figures 4.9, 4.10 and 4.11 for bandwidth

variations with respect to h∗opt, hopt and has, respectively. Note that Figures 4.9 and 4.10

are almost the same. More importantly, regardless of whether the chosen base is h∗opt or

hopt, the accuracy of θ̃ does not change too much along the expoents 0.5, 1, 1.25 and 1.5,

for each pair (σ2
ε , T ). This property does not hold when the sample size is small (120, 140
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Figure 4.8: Bandwidth selection performance for the trend estimator ĝ

and 160) and the chosen base is has, as can be seen in Figure 4.11.

Figure 4.12 reproduces the NAIRU estimates of Cusbert et al. (2017).

Table 5 presents the OLS outputs of step (c) of the estimation schemes described in

Section 4.4.2. Model 1 is given by (4.21) where the regressor gap consists in the di�erence

between the NAIRU and the unemployment rate, and Xi is the i-th column of the 52×13

dummy matrix X = [I13 I13 . . . ]′ with I13 being the 13 × 13 identity matrix. Models

2, 3 and 4 relate to estimates of equation (4.14) when u∗t is previously estimated by HP

�lter using penalization parameters 10, 100 and 400, respectively.
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Figure 4.9: Bandwidth sensitiveness of θ̃ based on h∗opt

Figure 4.10: Bandwidth sensitiveness of θ̃ based on hopt
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Figure 4.11: Bandwidth sensitiveness of θ̃ based on has

Figure 4.12: Quarterly NAIRU estimates from RBA.

Note: reprinted from Cusbert et al. (2017).



131

Table 5: Least squares regression outputs.

Model 1 Model 2 Model 3 Model 4

gap 0.36∗ 0.51∗∗∗ 0.51∗∗∗ 0.47∗∗

(0.13) (0.10) (0.14) (0.15)
X1 −0.78

(0.85)
X2 1.66

(0.85)
X3 −1.26

(0.85)
X4 −1.08

(0.85)
X5 0.93

(0.84)
X6 1.04

(0.85)
X7 2.30∗∗

(0.85)
X8 −0.29

(0.85)
X9 −1.05

(0.85)
X10 −0.44

(0.84)
X11 −1.82∗

(0.85)
X12 0.08

(0.85)
X13 0.83

(0.85)

R2 0.49 0.34 0.20 0.16
Adj. R2 0.30 0.33 0.19 0.15
Num. obs. 52 52 52 52
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05



5 CONCLUDING REMARKS

The �rst essay of this thesis develops uniform consistency results for the local linear

estimator under mixing conditions in order to be directly applied in the next essays.

The weak and strong uniform convergence rates were provided for general kernel averages

from which we obtained the uniform rates for the local linear estimator. We restricted our

attention to equally-spaced design points of the form xt,T = t/T, t ∈ {1, . . . , T}, T ∈ N.
The convergences were stablished uniformly over [0, 1] under arithmetically strong mixing

conditions. The kernel function was restricted to be compactly supported and Lipschitz

continuous, and inlcudes the popular Epanechnikov kernel. The uniform convergence in

probability was provided without imposing stationarity while the almost sure uniform

convergence was proved only for the stationary case.

The second essay is the main study of this thesis. We investigated the asymptotic

properties of the estimators obtained by reversing the three-step procedure of Vogt and

Linton (2014), for time series modelled as the sum of a periodic and a trend deterministic

components plus a stochastic error process. In the �rst step, the trend function is esti-

mated; given the trend estimate, an estimate of the period is provided in the second step;

the last step consists in estimating the periodic sequence. The weak uniform convergence

rates of the estimators of the trend function and the periodic sequence were provided.

The asymptotic normality for the trend estimator was also stablished. Furthermore, it

was shown that the period estimator is consistent.

The third essay exploits the bandwidth selection problem and the �nite sample per-

formance of the period estimator studied in the second essay. A plug-in type bandwidth

is proposed in order to estimate the trend function and a simulation exercise showed good

performance for the proposed bandwidth. We also employed another simulation where

the period estimator behaved robustly in response to di�erent bandwidth choices. As a

complement, two applications applications were made: one for climatological data and

the other for economic data. In the former, we used global temperture anomalies data

which is exactly the same as that in Vogt and Linton (2014). The latter application

consists in providing central estimates for the australian non-accelerating in�ation rate of

unemployment by means of the reversed estimation procedure.
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