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Although the spectral properties of random graphs have been a long-standing focus of network theory,
the properties of right eigenvectors of directed graphs have so far eluded an exact analytic treatment. We
present a general theory for the statistics of the right eigenvector components in directed random graphs
with a prescribed degree distribution and with randomly weighted links. We obtain exact analytic
expressions for the inverse participation ratio and show that right eigenvectors of directed random graphs
with a small average degree are localized. Remarkably, if the fourth moment of the degree distribution is
finite, then the critical mean degree of the localization transition is independent of the degree fluctuations,
which is different from localization in undirected graphs that is governed by degree fluctuations. We also
show that in the high connectivity limit the distribution of the right eigenvector components is solely
determined by the degree distribution. For delocalized eigenvectors, we recover in this limit the universal
results from standard random matrix theory that are independent of the degree distribution, while for
localized eigenvectors the eigenvector distribution depends on the degree distribution.
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Introduction.—Complex systems, such as neural
networks [1–3], ecosystems [4], gene regulatory networks
[5–7], social networks [8,9], and the World Wide Web
[10,11] are described by large, directed graphs. Therefore,
there is much interest in understanding how the topology of
directed graphs impacts the dynamics of processes and
algorithms on them.
Much insight in the dynamical processes on graphs is

gained from the spectral properties of the adjacency matrix
that represents the network. This is because the linearized
dynamics of a complex system in the vicinity of a fixed
point is determined by the spectral properties of the
adjacency matrix [12,13]. As a consequence, spectral
analysis of the adjacency matrix has proven to be important
in the study of neural networks [14–18], ecosystems
[19–21], gene regulatory networks [22,23], and disease
spreading [24–28]. In these systems, the eigenvectors of
the adjacency matrix determine the dynamical modes
evoked by external perturbations. In addition, right eigen-
vectors of adjacency matrices of directed graphs are used in
algorithms for node centrality [29–31], community detec-
tion [32–34], and matrix completion [35].
In disordered systems, eigenvectors localize when the

strength of the disorder is large enough [36,37]. Localized
eigenvectors occupy a few vertices, whereas delocalized
eigenvectors are extended over the whole system. The
transition from a delocalized to a localized state leads to a
qualitative change in the dynamics of processes and

algorithms. For example, the localization transition implies
a metal-insulator phase transition in solid state physics
[36,37], a transition from an algorithmic successful to a
failure phase in spectral algorithms [31,35,38], and a transi-
tion from a regime where the linear dynamics of a large
complex system is governed by a finite number of vertices to
a regime where the dynamics is governed by a finite fraction
of all vertices. In the context of disease spreading, eigenvector
localization implies that the fraction of infected vertices is
very small right above the epidemic threshold [25].
For undirected random graphs, the localization of

eigenvectors of the adjacency matrix has been well studied
[25,26,36,37,39–49]. The eigenvector of the largest eigen-
value is localized if the maximal degree of the graph is
larger than a certain value. Hence, degree fluctuations are
crucial for the localization of eigenvectors in undirected
graphs.
For directed random graphs, the statistical properties and

the localization of eigenvectors have been studied for
one-dimensional chains, such as the Hatano-Nelson model
[50–52] and its extensions to biological systems [53,54],
and a diluted Ginibre ensemble [55]. However, the locali-
zation of eigenvectors in directed random graphs that
model complex systems, such as the World Wide Web
or neural networks, have not been studied so far.
In this Letter, we make a significant step forward by

developing an exact theory for the statistical properties of
the right (or left) eigenvectors of directed random graphs
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with a prescribed degree distribution and random cou-
plings. We derive exact analytic expressions for the inverse
participation ratio and for the critical point of the locali-
zation-delocalization transition. Surprisingly, when the
moments of the degree distribution are finite, the critical
point of the localization-delocalization transition is inde-
pendent of the degree distribution. Moreover, the right
eigenvectors are localized if the degree distribution has a
diverging fourth moment. We also show that in the high
connectivity limit the statistics of the components of right
eigenvectors are only determined by the degree distribu-
tion. In this limit, we obtain distinct universality classes
that depend on an exponent that quantifies the degree
fluctuations.
Model setup.—We consider random matrices A of

dimension n × n with elements

Aij ¼ JijCij; i; j ∈ f1; 2;…; ng; ð1Þ

where Cij ∈ f0; 1g are the entries of the adjacency matrix
C of a simple and directed random graph with a prescribed
degree distribution

pKin;Koutðk;lÞ ¼ pKinðkÞpKoutðlÞ ð2Þ
of in degrees Kin and out degrees Kout. We set Cij ¼ 1
when there exists a directed link pointing from i to j,
such that the out degree (in degree) of the ith node is
Kout

i ¼ P
n
j¼1 Cij (Kin

i ¼ P
n
j¼1 Cji). The Jij are real valued,

independent, and identically distributed random variables
drawn from a distribution pJðxÞ.
Random graph models with undirected edges and a

prescribed degree distribution are surveyed in Ref. [56].
Here we consider their extension to the directed case.
Directed random graphs with a prescribed degree distribu-
tion [57–62] model the World Wide Web [10,11] and neural
networks [1,3,63]. In this model, the in degrees and out
degrees are drawn from Eq. (2) subject to the constraintP

n
j¼1K

in
j ¼ P

n
j¼1K

out
j , and subsequently nodes are ran-

domly connected according to the given degree sequences.
Hence, given a sequence of degrees, random graphs are
drawn uniformly from the set of simple and directed graphs.
This model provides the ideal setting to explore the influence
of network topology on the spectral properties of A.
In what follows, brackets h·i denote the average with

respect to the distribution of A. In particular, we use

c ¼ hKouti ð3Þ
for the mean out degree, and we denote the variance of a
random variable X by varðXÞ ¼ hX2i − hXi2.
Spectra of infinitely large matrices A.—The spectrum of

A has been studied in Refs. [64–67]. For n → ∞ and c > 1,
directed random graphs have a giant strongly connected
component [68] and the spectral distribution ρAðλÞ ¼
n−1

P
n
j¼1 δ½λ − λjðAÞ� of the eigenvalues fλjðAÞgnj¼1 is

supported on a disk of radius jλbj ¼
ffiffiffiffiffiffiffiffiffiffiffi
chJ2i

p
centered at the

origin of the complex plane. In addition, if

c > cgap ¼
hJ2i
hJi2 ; ð4Þ

then there exists an eigenvalue outlier located at
λisol ¼ chJi that is separated from the boundary λb by a
finite gap. Figure 1 shows the eigenvalues for an example of
a directed random graph, where one clearly identifies the
outlier λisol and the boundary λb of ρAðλÞ for n → ∞.
Distribution of the right eigenvector components.—A

right eigenvector R⃗ðλÞ associated to an eigenvalue λ of A
satisfies

AR⃗ðλÞ ¼ λR⃗ðλÞ; ð5Þ
and the distribution of the entries of R⃗ðλÞ reads

pRðrjλÞ ¼ lim
n→∞

1

n

Xn
i¼1

δ½r − RiðλÞ�: ð6Þ

If λ is an outlier (λ ¼ λisol) or λ is located at the boundary of
the spectrum (λ ¼ λb), then pRðrjλÞ fulfills [65–67]

pRðrjλÞ ¼
X∞
k¼0

pKoutðkÞ
Z �Yk

j¼1

dxjd2rjpJðxjÞpRðrjjλÞ
�

× δ

�
r −

1

λ

Xk
j¼1

xjrj

�
; ð7Þ

where d2r≡ dRer dImr. Equation (7) is exact for infinitely
large and directed random graphs with a prescribed
degree distribution, because they are locally treelike. In
fact, the solutions of Eq. (7) are well corroborated
by direct diagonalizations of large adjacency matrices
[65–67]. The analytic results presented below follow from
Eq. (7).

FIG. 1. Eigenvalues of three realizations (circles, triangles, and
squares) of the adjacency matrix A of directed random graphs
with n ¼ 500 [see Eq. (1)]. The in degrees and out degrees follow
a Poisson distribution with average c ¼ 5. The weights Jij are
drawn from a Gaussian distribution pJ with mean and variance
equal to 1.
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Inverse participation ratio.—The localization of R⃗ðλÞ
can be characterized in terms of the inverse participation
ratio (IPR) [44,69,70]

IðλÞ≡ lim
n→∞

n
P

n
i¼1 jRiðλÞj4

ðPn
i¼1 jRiðλÞj2Þ2

¼ hjRðλÞj4i
hjRðλÞj2i2 ; ð8Þ

where we have used that I is self-averaging [71]. The IPR
is finite if R⃗ðλÞ is delocalized, whereas IðλÞ diverges if
R⃗ðλÞ is localized on a finite number of nodes.
From Eq. (7), we derive in the Supplemental Material

[71] exact expressions for the IPR when λ ¼ λisol or λ ¼ λb.
We find that

IðλbÞ ¼
ðγ þ 1Þ½hðKoutÞ2i − c�
cðc − hJ4i=hJ2i2Þ ; ð9Þ

where γ ¼ 2 when λb ∈ R and γ ¼ 1 when λb ∉ R.
Analogously, the IPR at λ ¼ λisol reads

IðλisolÞ ¼
3β1hJ2i2

ðc4hJi4 − chJ4iÞ þ
β3ðc2hJi2 − chJ2iÞ2
β21ðc4hJi4 − chJ4iÞ

þ 12β1hJ3ihJ2iðc2hJi2 − chJ2iÞ
ðc4hJi4 − chJ4iÞðc3hJi3 − chJ3iÞ

þ 4β2hJ3iðc2hJi2 − chJ2iÞ2
β1ðc4hJi4 − chJ4iÞðc3hJi3 − chJ3iÞ

þ 6β2hJ2iðc2hJi2 − chJ2iÞ
β1ðc4hJi4 − chJ4iÞ ; ð10Þ

where

βl ≡
X∞

k¼lþ1

pKoutðkÞ k!
ðk − l − 1Þ! ; l ¼ 1; 2; 3: ð11Þ

Figure 2 illustrates Eqs. (9) and (10) as a function of c for
a Gaussian distribution pJ and three different out degree
distributions: Poisson, exponential, and Borel distribution
(see Supplemental Material [71]). All moments of these
degree distributions are finite and each pKout is parametrized
only by c. Figure 2 shows that the IPR is finite if c is large
enough and it diverges for small c, which demonstrates the
existence of a delocalization-localization phase transition in
directed random graphs.
The localization phase transition.—There are two mech-

anisms for localization, one governed by fluctuations of Jij,
and a second one governed by degree fluctuations.
The first mechanism is illustrated in Fig. 2 and it holds

for arbitrary pKout with a finite fourth moment. In this case,
the right eigenvectors associated to λ ¼ λb and λ ¼ λisol are
localized when c is smaller than

cb ¼
hJ4i
hJ2i2 and c3isol ¼

hJ4i
hJi4 ; ð12Þ

respectively. Thus, the critical points for the localization
transitions only depend on the lower moments of pJ and
they are independent of pKout . When pJðxÞ ¼ δðx − 1Þ, we
obtain cb ¼ cisol ¼ 1 and the delocalization-localization
transition is governed by the percolation transition for the
strongly connected component [68]. According to Eq. (10),
a localization transition at c�isol ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hJ3i=hJi3

p
is, in prin-

ciple, possible, but we could not find an example of pJ for
which c�isol > cisol and c�isol > cgap.
Figure 3 shows the phase diagram when pJ is a Gaussian

distribution with mean μ and variance σ2. In this case, cgap,
cb, and cisol only depend on σ=μ. A few generic properties
of eigenvector localization in directed random graphs,
which also hold for non-Gaussian pJ, are illustrated in
Fig. 3. First, R⃗ðλisolÞ is delocalized when hJ2i3 > hJ4ihJi2
because cgap > cisol. Second, the transition lines fulfill

FIG. 2. The IPR IðλÞ of right eigenvectors associated with λisol
[panel (a)] and λb ∉ R [panel (b)]. Equations (9) and (10)
(different line styles) are shown as a function of the average
degree c for different out degree distributions: Poisson, expo-
nential, and Borel (see Supplemental Material [71]). The weights
Jij are drawn from a Gaussian distribution pJ with first and
second moments indicated on each panel. The symbols are
obtained from the numerical solutions of Eq. (7) using the
population dynamics algorithm [43,66], while direct diagonal-
ization results for IðλÞ are presented in the Supplemental
Material [71]. The error bars are the standard deviation of the
IPR for 10 independent runs of population dynamics. The results
for the Borel distribution are rescaled as IðλisolÞ → IðλisolÞ=c in
panel (a).

FIG. 3. Phase diagram for the localization of right eigenvectors
associated to λisol and λb. The distribution pJ is Gaussian with
mean μ and standard deviation σ.
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cgap < cisol < cb for hJ2i3 < hJ4ihJi2. Lastly, the critical
transitions cgap, cisol, and cgap intersect in a common point
because c3isol ¼ cbc2gap.
The second mechanism for localization is due to large

degree fluctuations. From Eqs. (9) and (10), it follows
that IðλbÞ → ∞ if hðKoutÞ2i → ∞ and IðλisolÞ → ∞ if
hðKoutÞ4i → ∞, independently of pJ. Hence, localization
of R⃗ðλbÞ and R⃗ðλisolÞ also occurs in graphs with power-law
degree distributions. In the sequel, we show that degree-
based localization persists in the high connectivity limit.
Localization and universality in the high connectivity

limit.—In Fig. 2, IðλÞ flows to different asymptotic values
for c ≫ 1. To explore the localization and universality of
eigenvectors in the high connectivity limit c → ∞, we
analyze the moments of the distribution pR. Since hRðλisolÞi
is finite, we characterize the limit c → ∞ of pRðrjλisolÞ
through the relative variance

Rc ¼
var½RðλisolÞ�
hRðλisolÞi2

: ð13Þ

On the other hand, since hRðλbÞi ¼ 0, we characterize the
limit c → ∞ of pRðrjλbÞ through the kurtosis

Kc ¼
hðReRðλbÞÞ4i
hðReRðλbÞÞ2i2

¼ ð4 − γÞ
2

IðλbÞ; ð14Þ

where we used the fact that odd moments of pRðrjλbÞ are
zero [71]. Setting c → ∞ in Eqs. (13) and (14), we obtain
[71]

R∞ ¼ lim
c→∞

var½Kout�
c2

; ð15Þ

K∞ ¼ 3

�
1þ lim

c→∞

var½Kout�
c2

�
; ð16Þ

which indicates that the limit c → ∞ of pR is determined
by the degree distribution. We see that, in general, pRðrjλbÞ
and pRðrjλisolÞ are not Gaussian in the high connectiv-
ity limit.
With the purpose of classifying the universal behavior of

pR for c → ∞, let us consider degree distributions that
satisfy

var½Kout� ¼ Bcαðc ≫ 1Þ; ð17Þ

where α and B depend on the specific choice of pKoutðkÞ.
Equation (17) holds for different examples of degree
distributions, including those in Fig. 2. Plugging this ansatz
for var½Kout� in Eqs. (15) and (16), we obtain three
universality classes for limc→∞ pRðrjλÞ, which are deter-
minedby the exponentα that controls thedegree fluctuations.
The results for the universality classes are summarized in
Table I. In terms of R∞ and K∞, we find that for α ≤ 2 the

eigenvectors R⃗ðλbÞ and R⃗ðλisolÞ are delocalized in the limit
c → ∞, whereas for α > 2 these eigenvectors are localized
due to large degree fluctuations.
The eigenvector distributions in the high connectivity

limit.—The results in Table I indicate that pRðrjλÞ is
universal for c → ∞. Below we present explicit expressions
for pRðrjλÞ when c → ∞. Henceforth we set hjRj2i ¼ 1
without losing generality.
The characteristic function of pRðrjλÞ is given by [71]

gRðu; vjλÞ ¼
X∞
k¼0

pKoutðkÞek lnFðu;vjλÞ; ð18Þ

where

Fðu; vjλÞ ¼
Z

dxpJðxÞ
Z

d2rpRðrjλÞexp−
xzr
2λþxz�r�

2λ� ; ð19Þ

and z ¼ uþ iv. The symbol ð…Þ� denotes complex con-
jugation. If λ ∈ R, the eigenvector components are real and
Fðu; vjλÞ is independent of v.
Setting λ ¼ λisol or λ ¼ λb in Eq. (19), we can expand

Fðu; vjλÞ for c ≫ 1 up to order Oð1=cÞ if α ≤ 2 (see
Table I). This approach does not work for α > 2, because
the moments of pR can diverge in this regime. Thus,
performing this expansion for α ≤ 2 and substituting
the resulting expression for Fðu; vjλÞ in Eq. (18), we
obtain [71]

gRðu;vjλbÞ¼
X∞
k¼0

pKoutðkÞexp
�
−
γk
4c

ðu2þð2−γÞv2Þ
�
; ð20Þ

gRðu; vjλisolÞ ¼
X∞
k¼0

pKoutðkÞ exp
�
−

iuk

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bcα−2 þ 1

p
�
: ð21Þ

Remarkably, the characteristic functions for c → ∞ are
fully specified by pKout and they are independent of pJ.
For degree distributions where limc→∞ var½Kout�=c2 ¼ 0

(α < 2), we can set pKoutðkÞ ¼ δk;c in Eqs. (20) and (21),
leading to [71]

pRðrjλbÞ ¼
1

π
e−jrj2ðλb ∉ RÞ; ð22Þ

TABLE I. The relative variance Rc of R⃗ðλisolÞ and the kurtosis
Kc of R⃗ðλbÞ in the high connectivity limit c → ∞ [see Eqs. (15)
and (16)], together with an example of the out degree distribution
pKout in each regime of α [see Eq. (17)].

α < 2 α ¼ 2 α > 2

R∞ 0 B ∞
K∞ 3 3ð1þ BÞ ∞
Example Poisson Exponential Borel
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pRðrjλisolÞ ¼ δ½ImðrÞ�δ½ReðrÞ − 1�: ð23Þ

Equation (22) yields the well-known Porter-Thomas
distribution for the eigenvector components of Gaussian
random matrices [77,78]. Thus, standard results from
random matrix theory are recovered when α < 2.
If pKout is an exponential distribution, where α ¼ 2, we

obtain in the limit c → ∞ [71]

pRðrjλbÞ ¼
2

π
K0ð2jrjÞ ðλb ∉ RÞ; ð24Þ

pRðrjλisolÞ ¼
ffiffiffi
2

p
δ½ImðrÞ�Θ½ReðrÞ�e−

ffiffi
2

p
ReðrÞ; ð25Þ

where ΘðxÞ is the Heaviside step function and K0ðxÞ is a
modified Bessel function of the second kind [79].
Figure 4 illustrates the shape of the distributions pR
given by Eqs. (22)–(25), and compares them with
numerical solutions of Eq. (7) for c ¼ 100. The derivation
of Eqs. (22)–(25) is explained in the Supplemental
Material [71].
Conclusions.—We have shed light on the relationship

between graph topology and the localization of right
eigenvectors in directed random graphs. If the moments
of the out degree distribution pKout are finite, then right
eigenvectors at the edge of the spectrum are localized below
a critical mean out degree. It is striking that the critical
points for the localization transitions are universal, in the
sense they only depend on the lower moments of
the distribution pJ of the edge weights, regardless of
the network topology. Therefore, localization in directed
random graphs is fundamentally different from localization
in undirected graphs, for which degree fluctuations are

important [25,42–44,46,47,80,81]. Indeed, the eigenvector
associated with the largest eigenvalue of the adjacency
matrix of an undirected random graph is localized if the
maximal degree is large enough [25]. Degree-based locali-
zation is also possible for directed random graphs, but then
pKout requires a divergent fourth moment.
In the high connectivity limit, the distribution pR of

the right eigenvector components is determined by the
graph topology, independently of pJ. If the out degree
fluctuations are small enough, then eigenvectors are
delocalized and pR is given by the same universal dis-
tribution as in the case of Gaussian random matrices
[77,78]. On the other hand, if the out degree fluctuations
are large enough, then eigenvectors are localized and
the distribution pR depends on pKout . More generally, these
results indicate that Gaussian random matrix theory
describes well the spectral properties of high connectivity
graphs only when the degree fluctuations are sufficiently
small [82].
For future work, it would be interesting to explore the

implications of eigenvector localization for the dynamics
of neural networks [53,54] and ecosystems [20,83], to
compare the theoretical predictions for the IPR with
empirical values in real-world networks [26,84], and to
study eigenvector localization of Laplacians of directed
graphs [85–87].
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sions. F. L. M. thanks the LondonMathematical Laboratory
and CNPq/Brazil for financial support.
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