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Road bridge designs are based on technical standards, which, to date, consider dynamic loading as equivalent static loads.
Additionally, the few engineers who perform a dynamic analysis typically do not consider the effects of bridge-vehicle interaction
and also simplify the road’s irregularity profile. Moreover, often, even when a simplified dynamic analysis is carried out and shows
that there will be a high dynamic amplification factor (DAF), designers prefer to solve this problem by adopting high safety factors
and thereby oversizing the bridge, rather than using energy dissipation devices that would allow reducing the amplitude of
vibration. In this context, the present work proposes a complete methodology to minimize the dynamic response of road bridges
by optimizing multiple tuned mass dampers (MTMD), taking into account the bridge-vehicle interaction, the random profile of
pavement irregularities, and the uncertainties present in the coupled system and in the excitation. For illustrative purposes, the
coupled vibration problem of a regular truck traveling on a random road profile over a typical Brazilian bridge is analyzed. Three
different scenarios for the MTMD are considered. The proposed optimization problem is solved by employing the Whale
Optimization Algorithm (WOA). The results showed the excellent ability of the proposed methodology, reducing the bridge’s
DAF to acceptable values for all analyzed cases, considering or not the uncertainties present in the system. Furthermore, the results
obtained by the proposed methodology are compared with results obtained using classical tuned mass damper (TMD) design
methods, showing the best performance of the proposed optimization method. Thus, the proposed method can be employed to
optimize MTMD, improving bridge design.

1. Introduction

The design of road bridges is based on technical standards,
which generally consider the dynamic loads caused by ve-
hicle traffic as equivalent static loads. This assumption
simplifies the design, however, does not adequately repre-
sent reality. Thus, many discussions have taken place on how
to improve road bridge designs. In this context, some studies
that consider a basic dynamic analysis, adopting simplified
models of beams and/or vehicles, have emerged, as, for
instance, Inbanathan and Wieland [1] and Green and Cebon
[2]. However, there are not yet enough studies that take into

account the dynamic problem of bridge-vehicle interaction
and, at the same time, consider the random profile of
pavement irregularities, leading to a bridge-pavement-ve-
hicle coupled vibration problem.

Initially, the bridge-vehicle interaction problem was
considered only in railway bridges, in which Willis [3] was a
pioneer in this area, and only years later, this problem was
also studied in road bridges. Especially in the last
20-30 years, a growing number of studies on bridge-vehicle
interaction, both on railway bridges (e.g., Fryba [4]; Delgado
and Santos [5]; Xia et al. [6]; Zambrano et al. [7]; Salcher
et al. [8]; Gou et al. [9]) as well as on road bridges (e.g., Da
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Silva [10]; Law and Zho [11]; OBrien et al. [12]; Caprani et al.
[13]; Zhong et al. [14]; Ma et al. [15]; Pagnoncelli and Miguel
[16]; Fisli et al. [17]), have been conducted. An interesting
book is due to Obrien et al. [18].

However, even when a dynamic analysis is performed, as
described in the above papers, and it shows that the dynamic
amplification factor (DAF) is high and consequently large
vibration amplitudes will occur, even so, most engineers
prefer to use high safety factors, often oversizing the design,
instead of opting for solutions that increase the energy
dissipation capacity of the system, thereby reducing vibra-
tion amplitudes. Thus, studies on energy dissipation devices
are very important and can help to improve the design of
bridges.

Among passive energy dissipation devices, one of the
most widely used is the tuned mass damper (TMD). The use
of vibration absorbers began in 1909 when Hermann Frahm
proposed a kind of TMD. After that, especially nowadays, a
rapid increase in the development and application of passive
energy dissipation devices, such as viscous fluid dampers,
viscoelastic dampers, friction dampers, and metallic yield
dampers, has occurred (Soong and Dargush [19]). Today, the
use of passive dampers to control vibrations of buildings
subjected to earthquakes is very common. For example,
Miguel et al. [20-22] and Ontiveros-Pérez et al. [23] use
friction dampers, while Fadel Miguel et al. [24, 25], Vellar
et al. [26], Branddo and Miguel [27], Lee and Eun [28],
Rahmani and Konke [29], Kaveh et al. [30], and Khazaei
et al. [31] among others use TMD and multiple tuned mass
dampers (MTMD).

Concerning bridges and footbridges, Pakrashi et al. [32]
studied the incorporation of a TMD to control the vibration
response of a bridge and a quarter car vehicle model; Battista
and Pfeil [33] proposed the control of wind oscillations of
the Rio-Niterdi bridge through the installation of MTMD; Li
et al. [34] presented an application of MTMD in suppressing
crowd-induced vibration of a footbridge and also proposed
an optimization procedure to determine the optimal design
parameters of MTMD system; Varela and Battista [35] in-
vestigated, through experimental measurements, the effec-
tiveness of TMDs to control excessive vibration amplitudes
produced by humans walking on lightweight large span
composite floor deck structures; Mokrani et al. [36], via
numerical and experimental studies, analyzed a TMD with
two degrees of freedom (DOFs) that aimed to simulta-
neously mitigate a torsion and a bending mode of a sus-
pension bridge; Alhassan et al. [37] studied the effect of man-
induced vibrations on simply supported steel footbridges
with natural frequencies between 2 and 4Hz in Jordan.
These authors compared, via numerical simulation, the
response of the footbridge without and with installing TMD,
concluding that response was reduced after the installation
of the TMD; Xu et al. [38] and Dai et al. [39] proposed the
use of TMD to control the vortex-induced vibration in
bridges among others.

However, in addition to the use of energy dissipation
devices, as described in the last paragraph, it is also im-
portant to optimize these devices to achieve the best possible
performance with minimum cost. In this context, the most
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recent works, besides presenting the implementation of
vibration control devices, also present the optimization of
their parameters. Regarding footbridges and bridges, Miguel
et al. [40] proposed a method to optimize parameters and
positions of friction dampers in footbridges, Fadel Miguel
et al. [41] proposed a method for robust optimization of
parameters of TMDs in road bridges, and Wang et al. [42]
and Pipinato [43] proposed methods to optimize TMDs on
railway bridges, for example.

Thus, the present work aims to connect all the topics
discussed above, proposing a complete methodology for
dynamic analysis of road bridges, which takes into account
the interaction among vehicle-pavement-bridge-TMD, op-
timizing the parameters of a single TMD and MTMD, in
order to minimize the dynamic response of the bridge, thus
ensuring safety and comfort to users. Uncertainties present
in the bridge, vehicle, and pavement parameters are also
taken into account. So, this work aims to contribute with a
complete methodology of dynamic analysis and optimiza-
tion of TMD and MTMD to improve the design of road
bridges.

The present work is organized as follows: after this in-
troduction, Section 2 presents the problem formulation, in
which the random pavement roughness model, the vehicle
model, the bridge model, the TMD model, and the coupled
vehicle-pavement-bridge-TMD optimization problem are
described, Section 3 explains the Whale Optimization Al-
gorithm (WOA), Section 4 presents all the analyses of the
illustrative example, and Section 5 details the conclusions.

2. Problem Formulation

This section presents the theoretical background and the
essential equations for understanding and formulating the
problem.

2.1. Random Pavement Roughness Model. In order to model
the stochastic pavement irregularity profile, the ISO 8608
[44] standard is used, which proposes a method of road
profile representation through power spectral densities
(PSDs). According to ISO 8608 [44], the relation between the
vertical displacement PSD, G, (n), and the spatial frequency,
n, of a given road profile can be defined as

0

G,(n) =G, (n0)<nﬁ) , (1)

where G, (n,) is the reference vertical displacement PSD in
m?, n, is the reference spatial frequency in cycles/m, and w is
the PSD exponent. According to ISO 8608 [44], the spatial
frequency ranges from 0.011 to 2.83 cycles/m, the reference
spatial frequency is considered equal to 0.1 cycle/m, and the
PSD exponent is assumed to be equal to 2.

The values of the reference vertical displacement PSD,
G, (ny), vary depending on the degree of road roughness and
can be obtained from Table 1, adapted from ISO 8608 [44].
Thus, Table 1 shows the geometric mean of G,(n,) for
different classes of roads.
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TaBLE 1: Geometric mean of the reference PSD for each road class.
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After obtaining G, (n), the road vertical displacement
signal can be generated by the harmonic wave superposition
method proposed by Shinozuka and Jan [45] as

N
u;, (x) = 2G, (ny)An cos (2mmyx + 6,.), (2)
k; \2Ga (g (2mmx + 6)

where N is the number of intervals along the axis of the
wavenumber domain, An is the spatial frequency interval, x
is the position on the road, and 6 is an independent random
phase angle uniformly distributed between 0 and 27.

This random pavement roughness model was already
adopted by the authors in previous works, as, for instance, in
Fossati et al. [46] to optimize the suspension parameters of a
full vehicle model.

2.2. Vehicle Model. The vehicle used in this work is a regular
Brazilian truck, which is modeled as a five DOFs system, as
shown in Figure 1. The vehicle model consists of the sprung
mass (1), including the mass of the main body of the truck,
and three unsprung masses (m,,), which include the masses
of the suspension, wheels, and tires. I, is the mass moment of
inertia of the main body. The three unsprung masses are
connected to the sprung mass through springs and dampers,
which represent the dynamic properties of the suspensions
(ksand c;). In turn, these three unsprung masses are linked to
the ground again through springs and dampers, which
represent the dynamic properties of the tires (k, and ¢;). dy,
d,, and d; are the distances from the center of mass to the
rear/front axles and the 5 DOFs are the vertical displacement
of the sprung mass at the center of mass (u,), the pitch angle
of the sprung mass at the center of mass (6;), and the three
vertical displacements of the 3 unsprung masses (14,51, U0,
and u,,:3).

2.3. Bridge Model. The bridge used in this work is a typical
RC girder bridge without balances, regularly found in Brazil,
which is modeled as an Euler-Bernoulli beam, discretizing
the deck through the Finite Element Method. Initially, the
bridge’s mechanical properties are assumed to be constant
throughout its length; however, in the last analysis, to take
into account the uncertainties present in the system, Young’s
modulus, the density, and the damping ratio of the bridge
are considered as independent Gaussian random variables
with known mean and coeflicient of variation. Each node of

the beam has two DOFs, being the vertical displacement and
the rotation.

2.4. TMD Model. Each one of the tuned mass dampers is
modeled as a 1 DOF mass-spring-damper system which is
coupled to the bridge central nodes, as shown in Figure 2 for
only one TMD. The TMD mass (my,4) is assumed to be a
percentage fixed value of the total mass of the bridge, while
stiffness and damping constants (kg and cypng) are design
variables that are optimized to minimize the bridge dynamic
response.

Three different scenarios are evaluated, with 1, 2, and 3
TMDs, installed on the bridge central nodes, as shown in
Figure 3. For the 3 scenarios, the total mass of the TMDs is
set at the same percentage of the total mass of the bridge,
dividing the value equally among the TMDs.

2.5. Coupled Vehicle-Pavement-Bridge-TMD Optimization
Problem. The model of Figure 4 represents the coupled
mechanical-structural system.

The equations of motion of the coupled bridge-vehicle
problem can be expressed as

Mbvubv +vaubv+Kbvubv = Fbv’ (3)

where My, Cy,, and Ky, represent, respectively, the coupled
mass, damping, and stiffness matrices; /;, represents the
coupled displacement vector and a dot over a symbol means
differentiation in relation to time; F,, represents the cou-
pled force vector.

To solve this complex coupled problem, the coupled
mass, damping, and stiffness matrices should be assembled,
as explained, for instance, in a previous paper (Pagnoncelli
and Miguel [16]). It is important to note that the coupled
stiffness and damping matrices must be updated as the
vehicle moves along the bridge. Similarly, the excitation
force vector, which is given by the bridge-vehicle interaction,
also needs to be updated as the vehicle moves along the
bridge, as the random pavement irregularity is taken into
account within this vector.

Thus, the interaction force between bridge and vehicle
for the i™ tire is given by

Fbv_i = kt_i [uns_i - (ub_i + uir_i)]

. . . (4)
+ ¢y it = (b + 1hy )]

i=1,2o0r3,

where k, ; is the stiffness of the i'" tire, ¢, ; is the damping
coefficient of the i'™ tire, u,,_ ; is the vertical displacement of
the i™ unsprung mass, u,, ; is the vertical displacement of the
bridge under the i tire, u;, ; is the amplitude of the
pavement irregularity under the i tire, and a dot over a
symbol indicates differentiation with respect to time.
Additionally, it is important to take into account the

weight force given by

Pi = (ms,i + mnsJ)Q’ (5)
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Ficure 1: Vehicle model.
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FIGUure 2: TMD model coupled to the bridge.

where m; ; is the percentage of the sprung mass supported
by axle i, m,, ; is the /"™ unsprung mass, and g is the ac-
celeration of gravity equal to 9.81 m/s>.

As explained previously, the TMDs are installed on the
bridge central nodes, adding the TMD constants (k¢y,q and
Cima) in the corresponding DOFs of the bridge, while the
masses of the TMDs (#1,,q) are added to the mass matrix of
the bridge-vehicle coupled system, as depicted in Figure 2
that shows the coupled vehicle-bridge-TMD model.

After that, the dynamic analysis of the coupled problem
is carried out through the Newmark integration method,
emphasizing the maximum vertical displacement at the
bridge central node.

After assembly of the coupled problem, the optimization
procedure may be performed. The proposed optimization
process has as objective function the minimization of the
maximum vertical displacement at the center of the bridge
span (dmayx), having as design variables the stiffness (kyma)
and damping (cyna) constants of the TMDs, while the mass
of the MTMD (#11,4) is considered a percentage fixed value
of the total mass of the bridge (). The constraints are the
lower (kp,3) and upper (k) bounds of each TMD stiffness
constant and the lower (c™1) and upper (ci) bounds of
each TMD damping constant. By grouping the design
variables in vector V = [ky,4» Cunals it is possible to write
the proposed optimization problem as
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FIGURE 4: Coupled vehicle-pavement-bridge model.

Find: 7,

Minimize: d,,,

Subjected to: m,,, 4 = %my, (6)
min max
Kimd < Kima < Kimd>

min max
Ctmd SCimd S Ctmd-

This optimization problem may be solved through the
WOA summarized in the next section.

3. WOA

As described earlier, the optimization problem discussed in
this work is complex. Such problems may be nonconvex and,
therefore, must be solved through optimization methods
capable of dealing with such problems. Metaheuristic al-
gorithms are well suited for solving these optimization
problems (Miguel and Fadel Miguel [47] and Fadel Miguel
et al. [48]).

In this context, among the metaheuristic algorithms, the
nature-inspired metaheuristic optimization algorithm,
called WOA, recently proposed by Mirjalili and Lewis [49],

has proven to be very competitive, and, therefore, the WOA
is chosen to solve the optimization problem proposed in the
present work. Thus, a brief explanation about the WOA is
given in the following paragraphs, and more details can be
accessed in Mirjalili and Lewis [49].

The WOA is a nature-inspired metaheuristic optimi-
zation algorithm that imitates the social behavior of
humpback whales. It is based on the strategy of bubble-net
hunting. According to Mirjalili and Lewis [49], the main
difference between WOA and other optimization algorithms
proposed by these authors (particularly Gray Wolf Opti-
mizer (Mirjalili et al. [50])) is the simulated hunting be-
havior with random or the best search agent to chase the
prey and the use of a spiral to simulate the bubble-net
attacking mechanism of humpback whales.

The WOA included three operators to simulate: the
search for prey, encircling prey, and bubble-net foraging
behavior of humpback whales. Each step of the algorithm is
briefly explained in the next subsections.

3.1. Encircling Prey. In this step, the WOA defines which is
the best search agent and tries to update the positions of the



other agents in relation to this one, simulating the behavior
of humpback whales, which can identify the position of the
prey and encircle them. Mathematically, it is given by

D=C-X (j)-X() (7)
X(j+1)=X (j)-A- D, (8)
A=2d-7-3, 9)
C=2.7, (10)

- —*
where j is the current iteration, X is the position vector, X
— —

is the position vector of the best solution, A and C are
coefficient vectors, @ is linearly decreased from 2 to 0, and
7 is a random vector in [0, 1].

3.2. Bubble-Net Attacking Method (Exploitation Phase).
In this step, the exploitation phase is carried out, modeling
the bubble-net behavior of humpback whales. For this, two
approaches are applied:

(i) Shrinking encircling mechanism

The Valu_e) of @ is decreased, so X is also decreased.
Thatis, A is a random value in the interval [;a, al,in
which a is decreased from 2 to 0. Adjusting A in [-1,
1], the search agent’s new position can be defined
anywhere between the original agent position and
the current best agent position.
(ii) Spiral updating position

This approach initially calculates the distance be-
tween the humpback whale and the prey. Thus, in
order to imitate the movement of humpback whales,
a spiral equation is created between the position of
whale and prey. Additionally, humpback whales are
known to swim around their prey within a shrinking
circle and along a spiral-shaped path. To model this
simultaneous behavior, it is assumed that there is a
50% probability of choosing between the shrinking
encircling mechanism or the spiral model to update
the whale position. Mathematically, this behavior is

given by
—* - =
X (j))-A-D, if p<0.5,
?(j+l): . () . it p
) . .
D -e”- cos(2nl)+ X (j), if p=0.5,
(11)

where D' = [X (j)- X (j)l, which gives the dis-
tance of the /™ whale to the prey, s is a constant for
defining the shape of the logarithmic spiral, [ is a
random number in [-1, 1], and p is a random
number in [0, 1].

3.3. Search for Prey (Exploration Phase). In this step, the
exploration phase is carried out, adopting the same approach
based on the variation of the vector A used in the previous
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step. Again, this step is also based on the behavior of
humpback whales, which randomly search according to the
location of each other. Thus, the random values of A are
assumed to be greater than 1 or less than -1 to force the
search agent to move far away from a reference whale.
Unlike the exploitation phase, in this step, the position of a
search agent is updated according to a randomly chosen
search agent. This approach and |A|>1 highlight explo-
ration and allow the WOA to carry out a global search.
Mathematically, it is given by

- =2 = -

D =|C X g - X}, (12)

rand —

X(j+1) =X~ A. D, (13)
where ?()rand is a random position vector.

The pseudocode of the WOA is summarized in Figure 5.
Finally, for more details about the WOA, the reader is re-

ferred to Mirjalili and Lewis [49].

4. Illustrative Example

In order to illustrate the proposed method for optimal
MTMD design aiming to minimize the dynamic response of
road bridges taking into account the bridge-vehicle inter-
action and random pavement irregularity, a typical truck
traveling on a common bridge in Brazil is simulated in this
section.

The next subsections present simulations of the bridge,
vehicle, and pavement irregularities, as well as the scenarios
considered for the MTMD and the results of the coupled
problem. Initially, uncertainties are not considered; how-
ever, after that, a robust optimization is proposed, taking
into account the uncertainties present in the bridge pa-
rameters, in the vehicle velocity, and also in the pavement
roughness. All simulations are performed in Matlab soft-
ware, using subroutines developed by the authors.

4.1. Bridge Simulation. A typical RC girder bridge without
balances, regularly found in Brazil, is simulated. The bridge
is modeled as a 2D simply supported beam, discretized into
34 finite elements of 50 cm each, totalizing 17 meters long
(35 nodes). The bridge has a “double T” cross section, as
shown in Figure 6, with an area of 3.6 m” and a moment of
inertia equal to 1.068 m*. The RC has Young’s modulus of
30 GPa and a density of 2450 kg/m”.

Thus, the first three natural frequencies of the bridge,
obtained by solving the eigenvalue problem, are 10.359,
41.438, and 93.235 Hz. The damping matrix is supposed to be
proportional to the stiffness matrix. A damping ratio of 3.0%
is assumed for the first mode.

4.2. Vehicle Simulation. A regular nonsymmetrical three-
axle truck in Brazil is simulated (Figure 1). As shown in
Figure 1, the truck is modeled as a 5 DOFs system with the
following properties: sprung mass and rotational inertia
equal to m,=10000kg and I,=35000 kgm?, respectively;
unsprung masses equal to m, =530kg, m,s, =530kg, and
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Initialize the whales population Xi (i=1, 2, ..., n)
Calculate the fitness of each search agent
X* = the best search agent
while (j < maximum number of iterations)
for each search agent
Update g, A, C, |, and p
ifl (p <0.5)
if2 (|A| < 1)
Update the position of the current search agent (equation (8))
elseif2 (|A| = 1)
Select a random search agent (X,,,4)
Update the position of the current search agent (equation (13))

end if2
else ifl (p > 0.5)

Update the position of the current search (equation (11))

end ifl
end for

Check if any search agent goes beyond the search space and amend it

Calculate the fitness of each search agent

Update X* if there is a better solution
j=j+1

end while

return X*

FIGURE 5: Pseudocode of the WOA, adapted from Mirjalili and Lewis [49].
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FIGURE 6: Bridge cross section (dimensions in meters).

M3 = 320 kg; suspension stiffness and damping coefficients
equal to k, =585kN/m, kg, =585kN/m, kg =432kN/m,
¢ =6KkNs/m, ¢, =6kNs/m, and ci3=3kNs/m; and tire
stiffness and damping coeflicients equal to k;; = 1680 kN/m,
ki, =1680 kN/m, k;3 = 840 kN/m, ¢;; = 1 kNs/m, ¢,, =1 kNs/m,
and ¢;; =1kNs/m. The axle positions are not symmetrical,
being d; =2.5m, d, =1.0 m, and d; =4.0 m. Additionally, the
axles support different portions of the sprung mass, being
mg =0.73/2 * mg, mg;=0.73/2 * mg, and mg=0.27 * my.

Thus, the natural frequencies of the truck are 1.671,
2.354, 10.138, 10.409, and 10.482 Hz. Initially, it is assumed
that the truck crosses the bridge with a constant velocity of
90 km/h (25 m/s), which is the maximum permitted velocity
for trucks on most Brazilian roads.

4.3. Random Pavement Roughness Simulation. Following the
procedure described in Section 2.1, a random road irregu-
larity profile is generated. Road class C (Table 1) of ISO 8608
[44] is adopted, as it is the most common on Brazilian roads.
For illustration purposes, Figure 7 shows a typical roughness

of the pavement for road class C, generated by the procedure
described in Section 2.1.

4.4. TMD Scenarios. To improve the bridge design by re-
ducing the DAF, an optimization process is proposed, in
which the objective function is to minimize the maximum
vertical displacement of the central node of the bridge, while
the design variables are the properties of the TMDs, that is,
their stiffness and damping constants.

For this purpose, three different scenarios for MTMD
installation are proposed. The first scenario is to consider a
single TMD installed on the bridge central node (node 18),
as shown in Figure 3(a). In this scenario, the TMD mass is
assumed as 3% of the total mass of the bridge; that is, the
TMD mass is fixed as 4498.2 kg. The lower and upper bounds
of the design variables (TMD stiftness and damping con-
stants) for the optimization process are [0, 300000] kN/m
and [0, 300] kNs/m, respectively.

The second scenario is considering two TMDs installed
on the bridge central nodes, with a distance of 3 m between
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FIGURE 7: Sample of irregularity amplitude for road class C.

the two TMDs (nodes 15 and 21), as shown in Figure 3(b).
The MTMD total mass is assumed as 3% of the total mass of
the bridge; that is, each one of the two TMDs has a mass of
2249.1 kg (1.5% of the total mass of the bridge each one); that
is, the total mass of TMDs is the same as in scenario 1
(4498.2kg). The lower and upper bounds of the design
variables (TMD stiffness and damping constants) for the
optimization process are [0, 150000] kN/m and [0, 150] kNs/m,
respectively.

Finally, the third scenario is considering three TMDs
installed on the bridge central, with a distance of 1.5 m
between each of the TMDs (nodes 15, 18, and 21), as shown
in Figure 3(c). The MTMD total mass is again assumed as 3%
of the total mass of the bridge; that is, each one of the three
TMDs has a mass of 1499.4kg (1% of the total mass of the
bridge each one); that is, the total mass of TMDs is the same
as in scenarios 1 and 2 (4498.2kg). The lower and upper
bounds of the design variables (TMD stiffness and damping
constants) for the optimization process are [0, 100000] kN/m
and [0, 100] kNs/m, respectively.

4.5. Results of the Coupled Vehicle-Pavement-Bridge-TMD
Problem. To solve the dynamic coupled vehicle-pavement-
bridge-TMD problem, the authors implemented the New-
mark method, with a time step equal to 2 e-3s. It is im-
portant to point out that the coupled stiffness and damping
matrices must be updated as the vehicle moves along the
bridge, as well as the force vector imposed by the pavement
irregularity.

To solve the optimization problem (equation (6)), the au-
thors implemented the WOA, described in Section 3, with 100
search agents and 300 iterations, totalizing 30000 evaluations.

Initially, to compare results, a static analysis is also carried
out. For this purpose, it is assumed that the vehicle crosses the
bridge considering only its own weight, distributed on each axle
as specified previously in Section 4.2 (27% of the weight for the
front axle and 36.5% for each one of the two rear axles). As with
dynamic analysis, the coupled (bridge-vehicle) stiffness matrix
is updated as the vehicle moves along the bridge.

Thus, the black curve of Figure 8 shows the maximum
static vertical displacement for each one of the 35 nodes of
the bridge. As expected, it can be seen in Figure 8 that the
maximum displacement occurs at the central node of the
bridge (node 18) and its value is 0.3132 mm. The black curve
of Figure 9 shows the static vertical displacement at the
bridge central node (node 18), as the vehicle moves along the
bridge.

Next, a dynamic analysis is carried out, considering
initially that there are no TMDs installed on the bridge.

Thus, the red curve of Figure 8 shows the maximum dynamic
vertical displacement for each node of the bridge without
TMD, while the dynamic vertical displacement at the bridge
central node (node 18), as the vehicle moves along the
bridge, is shown in the red curve of Figure 9.

As can be seen in the red curves of Figures 8 and 9, the
maximum dynamic vertical displacement without TMD is
0.5710 mm, which means a DAF of 1.823, which is higher
than that recommended by technical standards. For ex-
ample, the Brazilian standard ABNT NBR 7187 [51] allows
assimilating dynamic loads to static loads simply by mul-
tiplying the latter by the impact coefficient given by the
following equation:

¢ = 1.4 - 0.007¢, (14)
where ¢ is the factor that should multiply the static loads and
¢ is the span length in meters.

Thus, for the road bridge under consideration, the im-
pact factor calculated through equation (14) is 1.281. That is,
the DAF obtained in this case by the dynamic analysis of the
coupled problem is 1.823 (82.3%), while the impact factor
recommended by the standard is only 1.281 (28.1%).

To reduce the DAF, the installation and optimization of
MTMD are proposed. As described in Section 4.4, three
different scenarios are evaluated. Table 2 summarizes the
results obtained after MTMD optimization. Figure 8 shows
the maximum vertical displacement for each node of the
bridge, for each one of the five cases analyzed, while Figure 9
illustrates the vertical displacement at the bridge central
node (node 18), as the vehicle moves along the bridge, for
static case (black curve), dynamic without TMD (red curve),
with 1 TMD (magenta curve), with 2 TMDs (green curve),
and with 3 TMDs (blue curve).

As can be seen in Figures 8 and 9 and Table 2, the DAF
reduced from 82.3% to 3.2%, 4.5%, and 4.0% for scenarios 1,
2, and 3, respectively, after MTMD optimization, taking the
DAF values below the limit imposed by standards such as the
ABNT NBR 7187 [51].

In addition to the three proposed scenarios having
considerably reduced the maximum vertical displacement
and consequently the DAF, it is interesting to note that the
three scenarios (with 1, 2, and 3 TMDs) presented very
similar results, showing that any of the three solutions can be
adopted by the designer. Scenario 1, with a single TMD, may
be more convenient; however, in certain situations, the use
of 2 or more TMDs may be necessary, especially when more
than one frequency needs to be controlled or when the
individual mass of each TMD needs to be reduced.

Figure 10 shows the convergence curves for the three
scenarios analyzed.
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FIGURE 8: Maximum vertical displacement for each node of the bridge, for static case (black curve), dynamic without TMD (red curve), with
1 TMD (magenta curve), with 2 TMDs (green curve), and with 3 TMDs (blue curve).

Vertical displacement (m)
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FIGURE 9: Vertical displacement at the bridge central node (node 18), as the vehicle moves along the bridge, for static case (black curve),
dynamic without TMD (red curve), with 1 TMD (magenta curve), with 2 TMDs (green curve), and with 3 TMDs (blue curve).

4.6. Comparison of the Results Obtained by the Proposed
Method with the Results Obtained by a Classical Genetic
Algorithm. To prove again the effectiveness of the proposed
method, this subsection shows a comparison of the results
obtained by the proposed method with the results obtained
employing a classical Genetic Algorithm (GA).

To carry out a fair comparison, the parameters employed
for the GA are the same as those of the WOA, that is, a
population of 100 individuals and 300 iterations, totalizing
30000 evaluations. The results obtained with the GA are
shown in Table 3.

Looking at Table 3, it is possible to notice that the results
obtained with the GA are similar to the results obtained with
the WOA, also showing slightly superior performance of the
results obtained with the proposed method. Another

important advantage of the proposed method is in relation
to the computational time, which is less than that of the GA.
In an Intel Core i7-9700, CPU 3.00 GHz, and RAM 16.0 GB,
the computational time for the WOA was 535.32 seconds
(almost 9 minutes), while employing the GA, this compu-
tational time increased to 583.93 seconds (almost 10 min-
utes), that is, an increase of 9.08%.

4.7. Comparison of the Results Obtained by the Proposed
Method with the Results Obtained by Traditional TMD Design
Methods. To demonstrate the effectiveness of the proposed
method in another way, the optimal solution is compared
with solutions obtained by traditional TMD design methods,
due to Den Hartog [52] and Warburton [53].
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TaBLE 2: Results of the proposed optimization procedure.

Shock and Vibration

Scenario

TMD mass (kg)

TMD optimized parameters

k (N/m); ¢ (Ns/m)

Maximum vertical displacement (mm) Dynamic amplification factor

Memds = 1499.4

Ctmd2 = 10.5451
Kinas = 8160046.61
Cumds = 11.9033

Static case — — 0.3132 —
Without TMD — — 0.5710 1.823
B ka1 = 24508942.28
1 Mima1 = 4498.2 cos = 10,0574 0.3231 1.032
M1y = 2249.1 Kemd1 = 12210049.58
Comd1 = 13.4143
2 0.3272 1.045
22491 kemds = 12196121.07
tmd2 = : Comda = 14.9268
_ kemar = 8138925.96
Mimar = 1499.4 Comay = 12,1952
3 Mimd2 = 1499.4 Kimaz = 8163326.22 0.3257 1.040

0.42
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Ficure 10: Continued.
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Figure 10: Convergence curves for (a) scenario 1, (b) scenario 2, and (c) scenario 3.

TaBLE 3: Results obtained with the GA.

TMD optimized parameters

Scenario  TMD mass (kg) k (N/m); ¢ (Ns/m) Maximum vertical displacement (mm)  Dynamic amplification factor
~ Kynay = 24461515.78
1 Mimay = 4498.2 555349 0.3242 1.035
e = 22491 Kumar = 13073406.38
2 €umar = 31.9801 0.3358 1.072
22401 Kinaz = 12001929.32 : :
Mmadz = 4535 Comdo = 22.1855
~ Kimay = 7990745.97
Mimay = 1499.4 Comar = 16.6866
~ Kz = 8846387.21
3 Mmdz = 1499.4 Cony = 17.3647 0.3326 1.062
~ Kimas = 8109517.58
Mimas = 1499.4 Cimds = 51,1554
Den Hartog [52] developed closed-form expressions for 1 i
the design of TMD parameters to minimize the steady-state Jun = 1+ '
response of an undamped single degree of freedom (SDOF) " (16)
main mass subjected to harmonic excitation. These ex- ’ (1= (r4)
pressions are given as Coum uL uL

1
ftun - m’
(15)
¢ = 3r,,
g (1+7,)

where f,, is the optimum frequency ratio, {,,, is the op-
timum damping ratio, and r,, is the mass ratio equal to
Mimad/ Mg, in which Mg, is the main mass (the structure
mass).

Similarly, Warburton [53] also developed simple ex-
pressions for optimum TMD parameters for SDOF main
system under harmonic and white noise random excitations.
These expressions for white noise random excitation are
given as

N4+ r,) (- (r2))

Thus, through the values of f,,, and (,,, obtained in
equation (15) or (16), the TMD design parameters (k;y,q and
Cimd) €an be calculated as

2 2
ktmd = mtmdwstrftun’

(17)
Ctmd = zctunmtmdftunwstr’

where wy, is the natural frequency of the structure.
Finally, it is important to note that the expressions
proposed by Den Hartog [52] and Warburton [53] are for
SDOF systems. Thus, as the system under consideration is
MDOF, the methodology proposed by Rana and Soong [54]
is implemented to allow the use of equations (15) to (17) for
MDOF systems. Basically, this methodology consists of
normalizing the first mode shape to 1 at the TMD location.
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Shock and Vibration

Vertical displacement (m)

0 0.1 0.2 0.3 0.4 0.5

—— Without TMD: d,,,, = 0.5710mm

—— With 1 TMD Opt: d,p,,, = 0.3231 mm

0.6 0.7 0.8 0.9 1 1.1 1.2

Time (s)
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—— With 1 TMD W: d,, = 0.5034mm
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FIGURE 11: Vertical displacement at the bridge central node (node 18), as the vehicle moves along the bridge, for dynamic cases: without
TMD (red curve), with 1 TMD optimized by the proposed method (magenta curve), with 1 TMD designed by Den Hartog’s method (gray
curve), and with 1 TMD designed by Warburton’s method (cyan curve).

So, the structure mass is assumed to be the modal mass
correspondent to the fundamental frequency.

Thus, using the methodology proposed by Rana and Soong
[54] and applying equations (15) to (17), the following pa-
rameters are found for the TMD: kg pp = 1.6961 X 10*kN/m
and ¢yma pu =80.485kNs/m (equation (15), Den Hartog’s
method [52]) and kyng w=1.6452 x 10*kN/m and cimg w =
65.221 kNs/m (equation (16), Warburton’s method [53]). After
obtaining the TMD parameters, the dynamic analysis is per-
formed and the results are shown in Figure 11.

As can be seen in Figure 11, the maximum vertical dis-
placement obtained with Den Hartog’s method (dy.x=
0.4894 mm) and with Warburton’s method (d,,, = 0.5034 mm)
is more than 50% greater than the maximum vertical dis-
placement obtained with the proposed optimization method-
ology  (dmax=0.3231mm), highlighting the superior
performance of the proposed method.

The DAF obtained employing the proposed optimization
method is 1.032, that is, less than the limit recommended by
the ABNT NBR 7187 [51] standard, which is 1.281 (equation
(14)). However, the DAFs obtained employing the Den
Hartog and the Warburton methods are 1.563 and 1.607,
respectively, that is, both above the limit of 1.281 recom-
mended by the standard.

4.8. Analysis with a Different Truck Velocity. Initially, in the
previous subsections, it was assumed that the truck crosses
the bridge with a constant velocity of 90 km/h, which is the
maximum permitted velocity for trucks on most Brazilian
roads. Now, to assess the influence of the truck velocity, in
this subsection, this velocity is reduced to 50 km/h, keeping
all other parameters unchanged.

However, as the truck velocity is lower, the time for the
vehicle to cross the bridge is higher and, consequently, the
total analysis time, as well as the computational time, is also

higher. For these analyses, the computational time was
approximately 11.5 minutes.

Thus, applying the proposed methodology with the
WOA, the results shown in Figures 12 and 13 and in Table 4
are obtained.

As can be seen in Figures 12 and 13 and Table 4, the
maximum vertical displacement at the center of the bridge
(node 18) and consequently the DAF are higher in relation
to the case of the truck velocity of 90 km/h, even for the case
without TMD, in which the DAF increased from 1.823 to
1.924.

After installing the optimized MTMD, with a total mass
of 3% of the structure’s mass, the DAF was reduced from
1.924 to 1.429 (for scenario 1) and 1.235 (for scenarios 2 and
3). Even scenario 1 leading to a reduction of 25.7% in the
DAF, this scenario has not yet been able to lead the DAF
below the limit recommended by the ABNT NBR 7187 [51]
standard, which is 1.281. Scenarios 2 and 3, on the other
hand, reduced the DAF by 35.8%, leading it to a value below
the limit recommended by the ABNT NBR 7187 [51]
standard.

Thus, in this case, a single TMD with a mass of 3% of the
bridge’s mass is not enough to meet the standard criteria.
Therefore, the designer must choose scenario 2 (with 2
TMDs with a mass of 1.5% of the bridge’s mass each) or
scenario 3 (with 3 TMDs with a mass of 1% of the bridge’s
mass each). Alternatively, the designer can increase the mass
of a single TMD (scenario 1) and assess whether the DAF
would be reduced enough.

4.9. Robust Optimization of MTMD. Finally, in order to take
into account the uncertainties present in the coupled bridge-
vehicle system and also in the pavement roughness and
consequently increase the robustness of the MTMD control,
some input parameters are considered as random variables.
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FIGURE 12: Maximum vertical displacement for each node of the bridge, for static case (black curve), dynamic without TMD (red curve),
with 1 TMD (magenta curve), with 2 TMDs (green curve), and with 3 TMDs (blue curve), for a truck velocity of 50 km/h.

Vertical displacement (m)
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FIGURE 13: Vertical displacement at the bridge central node (node 18), as the vehicle moves along the bridge, for static case (black curve),
dynamic without TMD (red curve), with 1 TMD (magenta curve), with 2 TMDs (green curve), and with 3 TMDs (blue curve), for a truck

velocity of 50 km/h.

For the bridge, the random variables are Young’s
modulus, the density, and the damping ratio, supposed to
have a normal distribution with the mean values given in
Section 4.1 (30 GPa, 2450 kg/m3 , and 3.0%) and coefficients
of variation of 10%, 10%, and 20%, respectively. For the
vehicle, the random variable is the velocity, supposed to have
a uniform distribution between 50 and 90 km/h, and for the
pavement, in addition to the random phase angle with a
uniform distribution between 0 and 27, the degree of
roughness for class C, G;(#n,), is also supposed to be a
random variable with normal distribution with the mean

value given in Table 1 (256 x107°m’) and coefficient of
variation equal to 20%.

Therefore, in each run of the computational routine, the
bridge, the vehicle velocity, and the pavement present dif-
ferent parameters. Since the response of the coupled system
depends on these random variables, it becomes random
itself. Thus, the objective function of the robust optimization
problem is to minimize the mean of the maximum vertical
displacement at the center of the bridge span (mean(dy,y))-

The WOA is used to perform this robust optimization
problem, considering 100 search agents and 200
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TaBLE 4: Results of the proposed optimization procedure for 50 km/h.

TMD optimized parameters

Scenario k (N/m); ¢ (Ns/m)

TMD mass (kg) Maximum vertical displacement (mm) Dynamic amplification factor

Static case — — 0.3132 —
Without TMD — — 0.6026 1.924
B kmar =21198202.49
1 Mimd1 = 4498.2 Congy = 56064.90 0.4477 1.429
m ~20491 kimar = 6730864.37
2 e ' funds = 1516.19 0.3867 1235
m ~22491 kimaz =11187204.86 ’ ’
tmd2 AT Cundz = 202.916
_ kimar = 4598993.93
Minar = 14994 Comar = 1122.01
3 Mimd2 = 1499.4 k";tdz; 292255()Ai3;1i17 0.3867 1.235
_ kmas =7598713.09
Minds = 14994 Cimas = 168.309
TaBLE 5: Results of the proposed optimization procedure taking uncertainties into account.
Scenario TMD mass (kg) TMD optimized parameters  Mean maximum vertical Mean dynamic amplification factor

k (N/m); ¢ (Ns/m)

displacement (mm)

Static case — — 0.3172 —
Without TMD - - 0.6234 1.965
- Kemar = 31019373.55
Munar = 4498.2 Coma1 = 24816.94
3 Mymds = 4498.2 Fimaz =16894861.26 0.3967 1.251

Cumda = 5887.50
Kumas = 22234302.01

Mimas = 4498.2 Comds = 2579.55

Convergence curve-robust optimization
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0.45
0.44
0.43
0.42
0.41
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FiGure 14: Convergence curve for the robust optimization.

iterations, and the sample size is 50. For this analysis, the
computational time is approximately 6hours. In this
subsection, for optimization under uncertainties, in ad-
dition to the static case and the dynamic case without
TMD, only scenario 3 is simulated. The results are shown
in Table 5.

As can be seen in Table 5, after installing the optimized
MTMD, the mean maximum vertical displacement was

reduced by 36.37% and the DAF reduced from 1.965 to
1.251, leading it to a value below the limit recommended by
the ABNT NBR 7187 [51] standard. In this way, the effec-
tiveness of the proposed methodology is proven again, even
in the presence of uncertainties, showing that the meth-
odology is robust.

The convergence curve for this robust optimization
problem is shown in Figure 14.
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5. Conclusions

The design of road bridges is based on technical standards,
which, until today, consider the dynamic loads caused by
vehicle traffic as equivalent static loads. However, it is al-
ready agreed in the academic community that this design
procedure should be improved. Thus, preliminary works
began to consider simplified dynamic analyses, disregarding
the interaction between structure and vehicles and/or not
considering the pavement randomness and/or the system
uncertainties, for example. Moreover, even in the cases in
which dynamic analyses show that there will be a large DAF,
many designers still choose to oversize the structure rather
than using energy dissipation devices.

In this context, the present work developed a complete
methodology for dynamic analysis of road bridges, including
a proposal for optimization of an energy dissipation system.
The proposed methodology takes into account bridge-vehicle
interaction and pavement randomness and may also consider
uncertainties present in the bridge, vehicle, and pavement
parameters, as well as proposing a method for optimizing
MTMD. For this, the WOA was employed, which is char-
acterized by being a simple structure algorithm and easily
adaptable to complex optimization problems, even when
dealing with multimodal and/or nonconvex problems.

For illustrative purposes, the complex coupled vibration
problem of a regular truck traveling on a random road
profile over a typical Brazilian bridge was analyzed. Three
different scenarios for the MTMD were considered, aiming
to minimize the dynamic response of the bridge. Initially,
uncertainties were not taken into account; nevertheless, two
different truck velocities were assessed. The results showed
the excellent ability of the proposed method, reducing the
DAF of the bridge to values below the limit recommended by
the standards.

The comparison of the results obtained using the pro-
posed method with the results obtained using the classical
GA showed that the proposed method presented slightly
superior performance, both in terms of DAFs and in terms of
computational time.

To demonstrate the effectiveness of the proposed method
in another way, the optimal solution for 1 TMD was
compared with solutions obtained by traditional TMD
design methods. The results showed that the maximum
vertical displacement obtained with the Den Hartog and
Warburton methods was about 50% greater than the
maximum vertical displacement obtained with the proposed
optimization methodology, highlighting the superior per-
formance of the proposed method.

Finally, to evaluate the performance of the proposed
methodology in the presence of uncertainties, a robust
optimization was carried out, which proved the robustness
and effectiveness of the proposed methodology also in
optimization problems under uncertainty. Again, the DAF
was reduced to acceptable values.

Thus, the methodology proposed in this paper to per-
form a complete dynamic analysis of bridges, including the
optimization of MTMD, can be employed to improve bridge
design, ensuring safety and comfort to users.
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