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Abstract This work presents an optimal designmethodology for piezoelectricmaterial posi-
tioning in structures aiming at vibration measurements. The main objective is to find the
optimal location of piezoelectric sensors using a suitable topology optimization strategy. The
sensors location is determined by an optimization formulation that defines where the mate-
rial should have piezoelectric properties. The objective of the optimization is maximizing
observability, measured by means of the trace of the Gramian matrix. The control strategy
development is based on a truncated modal system model. A case study and its results are
presented and discussed, showing that the optimal placement of the piezoelectric sensors in
a cantilever beam can be suitably achieved through the proposed approach.
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1 Introduction

Structures equipped with actuators, sensors and control systems have been the subject of
study of many researches lately. These systems behave as intelligent structures (Gawronski
2004) and are widely studied due to the applications in the aerospace industries, but not least
important in fields such as automotive, bio-medical and robotics (Schwantz 2002). Usually,
the objective is to increase the dynamic performance using structures that have the ability of
self-monitoring and active control. Piezoelectric sensors/actuators are extensively used for
active control, since piezoelectric materials have suitable electromechanical properties, fast
response, easy manufacturing, low weight, large operating bandwidth and no generation of
magnetic field while converting electrical energy into mechanical energy (Gupta et al. 2010).
In this context, the application of advanced techniques to the study and improvement of the
existing projects is important. Thus, methods such as topology optimization contribute to
the search for concepts that satisfy some project requirements (Bendsoe and Sigmund 2013)
while decreasing costs. However, reducing the weight and changing the structure damping
can generate some problems, such as excessive vibration. So, it is interesting to use an active
control scheme, since a feedback system has the ability of reducing the output sensitivity
with respect to parameter changes.

This type of problemcanbe treated bymeans of the control strategy alongwith themechan-
ical modeling. Therefore, it is important to ensure that the mathematical model describes
accurately the electromechanical behavior of such structures (Tzou and Tseng 1990; Qi et al.
1997; Balamurugan and Narayanan 2002; Wang 2004). The performance of active control
systems depends on not only the control law, but also the number and appropriate location
of sensors and actuators. Donoso and Bellido (2009) distributed piezoelectric sensors in
circular plates with polar symmetry of the boundary conditions. The problem was treated
as a linear optimization method based on the sensors’ response, where the design variable
was a binary function used to model the polarization profile of the piezoelectric layer. Wang
et al. (2011) presented a study on the topology optimization of planar piezoelectric actuators
assembled by repetitive patterns where the objective was maximizing an output displace-
ment, and the constraints were the actuation energy and the material volume. Silveira et al.
(2015) developed a design methodology for actuator location, using topology optimization
for the controllability Gramian maximization and linear quadratic regulator (LQR) control
for vibration reduction. Kang et al. (2011) investigated the combined structural optimization
of two materials, considering the layout and distribution of the piezoelectric actuators by
maximization of the nodal displacement. A two-phase material model with penalization is
used in the topology optimization of the actuator elements. Other important publications can
be to found in Lee (2011), Alvelid (2008), Carbonari et al. (2007), Goncalves et al. (2016)
and Kumar and Narayanan (2008).

A suitable technique used to determine sensors’ optimal location in structures is based
on the observability measurements. In an important work in this field, Hać and Liu (1993)
employed the generalized Hankel matrix, a function of the system controllability and observ-
ability, to develop an approach that allows to determine sensor location based on a given rank
for the system observability matrix while satisfying modal test constraints. Gawronski and
Lim (1996) showed that the decomposition of the Hankel singular values of sensor/actuator
allows to evaluate each individual sensor and actuator in terms of the system controllability
and observability. According to Qiu et al. (2007), optimal sensor locations results in the
same problem structure of optimal actuator locations when we maximize the degree of con-
trollability/observability using the H2 norm. The optimization can also be performed via
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heuristics techniques, which are used to determine the optimal configuration of the actuators
and sensors. Xu et al. (2013) studied the integrated use of the number/position optimization
of the actuators and sensors, and the control parameters of the piezoelectric material in plates,
using genetic algorithm (GA). Zorić et al. (2013) studied the optimization of the piezoelectric
actuator/sensor size and location. The parameter optimization of the controller is performed
separately, using a fuzzy optimization strategy based on the particle swarm optimization in
which the criteria for optimal sizing and location of piezoelectric actuators and sensors are
written in terms of the eigenvalues of the controllability Gramian matrix.

Based on these references, this work proposes the development of a topology optimiza-
tion methodology for the distribution of piezoelectric sensors aiming at the observability
Gramian maximization. Two material phases are considered in the topology optimization:
an elastic isotropic material forms the structural part and a piezoelectric material composes
the active part (sensors). The application of this kind of methodology is important, since the
convenient location of transducers improve the performance of the control system (Kumar
and Narayanan 2008). In this work, an electromechanical finite element is employed for the
numerical modeling of the structure dynamics considering the piezoelectric effects. Then,
the observability Gramian is derived for this kind of structure in the context of optimal con-
trol. The topology optimization formulation in presented, and the sensitivities are derived
analytically. Finally, some numerical results are presented and discussed.

2 Finite element formulation

In this work, a smart structure is modeled as a three-dimensional solid subject to infinitesimal
strains. The piezoelectric material used as actuators and sensors is modeled by the following
constitutive equations (Moheimani and Fleming 2006):

T = [cE ]S − [e]TE, (1)

D = [e]S − [εS]E, (2)

where T and S are the mechanical stress and infinitesimal strain vectors, respectively; E and
D are the electric field and electric displacement vectors; [cE ], [e] and [εS] are elastic, piezo-
electric coupling and dielectric coefficients, respectively. The piezoelectric matrix represents
the coupling between the mechanical and electrical fields.

The Hamilton principle can be used to derive the finite element equations for piezoelectric
structures.Using this approach, the global balance equations that govern an electromechanical
system can be written as follows:

Muu ü + Cuu u̇ + Kuuu + Kuφφ = f, (3)

KT
uφu + Kφφφ = q, (4)

whereu is the structural displacement,φ the electric potential,Muu the structuralmassmatrix,
Cuu the structural damping matrix, Kuu the structural stiffness matrix, Kuφ the piezoelectric
coupling matrix, Kφφ the dielectric capacitance matrix, f the vector of external force and q
the vector of electrical charge.

The electrical degrees of freedom can be classified as potential electrode φp, grounded
electrode φg, and internal degrees of freedom φi. The voltage of the grounded electrodes
can be eliminated and the internal degrees of freedom can be rewritten by means of a static
condensation as:

Muu ü + Cuu u̇ + Huuu + Hupφp = f, (5)

HT
upu + Hppφp = q, (6)
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where Huu is the condensed global stiffness matrix, Hup the condensed global piezoelectric
coupling matrix, and Hpp the condensed global dielectric capacitance matrix. More details
related to the static condensation procedure can be found in Becker et al. (2006).

3 Control model

The electric degrees of freedom are considered as active and known, i.e., as inputs for the
actuator in the control system. Assuming short-circuit configuration, both electrodes are
grounded and, therefore, the electrical charges qp generated by the structural deformation is:

qp = HT
upu. (7)

To reduce the computational cost, a truncated model is adopted, i.e., only some vibration
modes are used to represent the structural behavior. It is well known, however, that deriving
the control system using reduced models can cause problems in practical applications. It can
lead to spillover instabilities: excitation of residual modes by the control actuation which
results in problems in the system observation and pollute the sensor output. Nevertheless,
one can assume that the lower order modes are the most excited and have more significance
for the system. A truncated modal matrix Ψ is generated by transforming the generalized
coordinates u into modal coordinates η, where the displacement vector can be approximated
by the superposition of them first modes, according to u = Ψ η. With this transformation, the
system order is reduced to the number of modes that represent the model instead the number
of finite element degrees of freedom.

The control system can be described in terms of themodal coordinates; thenwe can rewrite
Eq. (5) as:

η̈ + 2ZΩη = −Ψ THupφp + Ψ Tf (8)

and Eq. (6), considering the electrical charge qp as the control system output y, as:

y = HT
upΨ η, (9)

where Ω is the diagonal matrix of natural frequencies and Z is the diagonal matrix of modal
damping for them modes. To obtain the state-space model, the state vector is initially defined
in terms of the truncated model displacements and velocities x = {η η̇}T. Thus, the open-
loop system is given by first-order differential equation expressed in terms of the state variable
vector as:

ẋ = Ax + Bφφp + Buf (10)

y = Cx, (11)

where f and φp are the mechanical and electrical input vectors, respectively; the system
matrix is given by A, the mechanical and electrical input matrix are given by Bu and Bφ ,
respectively, and C is the output matrix:

A =
⎡
⎣

0 I
−Ω2 −2ZΩ

,

⎤
⎦ Bu =

[
0

Ψ T

]
(12)

Bφ =
[

0
−Ψ THup

]
C =

[
HT

upΨ 0
,

]
(13)

where I and 0 are the identity and null matrices, respectively.
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It is important to remark that this methodology does not take into account parametric
uncertainties that can appear in real applications. Usually, the mathematical models do not
accurately represent the real dynamics and, therefore, the control system cannot operate as
designed due to the presence of parametric errors (Peruzzi et al. 2016). More details related
to nonlinear response analysis can be found in Marcelo Tusset et al. (2016) and Pereira et al.
(2017).

3.1 Observability Gramian matrix

The controllability and observability concepts are particularly important in the state-space
control system design. It provides information about the dynamic system, being the base for
the study of control and estimation of the system variables. The observability measures the
ability of a sensor configuration to provide the required information to estimate the system
states (Preumont 2011).

A system is considered observable if any statex(t0) can be determined from the observation
of y(t) during a finite time interval t0 ≤ t ≤ t1. The system is completely observable if every
state transition affects each one of the output elements (Gawronski 2004). Considering a
system with n states, the observability matrix O is given by:

O = [
CT ATCT . . . (AT)n−1CT

]
. (14)

The system (A, C) is completely observable if the matrix O has full rank. Since the system
is dual, the pair (A, C) is observable if (AT, CT) is controllable (Preumont 2011). The appli-
cation of the observability concept presents some drawbacks. The binary nature states that
the answer is always qualitative, i.e., the system is controllable or not. An alternative is the
formulation by means of the Gramian matrix, since it can be used to define a quantitative
measure of the observability (Gawronski 2004). Through the duality between the observ-
ability and controllability, it is known that the system is observable if the pair (AT, CT) is
controllable. Thus, the system is observable if the observability Gramian

Wo =
∫ ∞

0
exp

(
ATτ

)
CTC exp (Aτ) dτ (15)

is positive definite (Preumont 2011). Alternatively, the observabilityGramian can be obtained
by the Lyapunov equation. Therefore, if A is stable asymptotically, Wo is defined as:

ATWo + WoA + CTC = 0. (16)

According to Preumont (2011), the observability Gramian Wo reflects the ability of a non-
zero state vector of initial conditions in affecting the system output.

4 Topology optimization

The optimization is defined as a set of procedures aiming tominimize ormaximize a function,
while obeying a set of constraints. In particular, the topology optimization aims to find the
material distribution in a fixed domain. The location and size optimization of piezoelectric
material in a structure was studied in several works (Kumar and Narayanan 2008; Lin et al.
2011; Wang et al. 2011; Xu et al. 2013). This work proposes a topology optimization design
for piezoelectric material location in a structure, following an objective function written as
the trace of the observability Gramian. The choice of measuring observability by the trace
of the Gramian is justified by the fact that the Gramian matrix is diagonally dominant. Thus,
the optimization problem is written as:
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max
ρ

f = trace (Wo) , (17)

subject to

⎧⎪⎪⎨
⎪⎪⎩

0 < ρi ≤ 1

Vs
V

≤ Cs

, (18)

where ρi is the i-th component of the design variable vector with i = 1, 2, . . . ne, ne is the
number of design variable (number of finite elements), and the second constraint limits the
total volume of piezoelectric material Vs following a threshold Cs.

4.1 Material model

Thematerial model for topology optimization considers two solid phases: one is the isotropic
elastic material and the other is the piezoelectric material. Therefore, the material model for
the optimization problem with optimal location of piezoelectric material is given by:

[
cE

]
= ρ p1

[
cEpzt

]
+ (

1 − ρ p1) [
cEelas

]
, (19)

[e] = ρ p2 [
epzt

]
, (20)[

εS
]

= ρ p2
[
εSpzt

]
, (21)

γ = ργpzt + (1 − ρ) γelas, (22)

where the effective properties of the interpolated material are: the elastic properties
[
cE

]
, the

dielectric properties
[
εS

]
, the piezoelectric coupling properties [e], and the specific weight γ .[

cEelas
]
and

[
cEpzt

]
are the elastic properties of elastic and piezoelectric material, respectively;[

εSpzt

]
and

[
epzt

]
define the properties of dielectric and electromechanical coupling of the

piezoelectricmaterial, respectively;γelas andγpzt refer to the specificweight for eachmaterial.
Additionally,ρ is the design variable for sensor location defined in each finite element; p1 and
p2 are penalization exponents that define a nonlinear mapping of the properties of the multi-
phasematerial with respect to the design variable. Themain justification of the penalization is
the reduction of areas with intermediate mixtures of the two phases. Following this material
model, one can observe that when ρ = 1 the obtained properties define a piezoelectric
material, while ρ = 0 yields to an isotropic elastic material.

4.2 Sensitivity analysis

The derivative of the objective function or constraint with respect to the variable is called
sensitivity analysis, and it allows the use of first-order optimization algorithms, which are
usually more efficient than algorithms without derivative. This is an important step in the
solution procedure, because it indicates the direction of search in the solution space. For the
particular choice of objective function and constraints, it is possible to derive analytically the
sensitivities.

The sensitivities of the material model with respect to the i-th design variable are given
by:

∂
[
cE

]

∂ρ
= p1ρ p1−1

([
cEpzt

]
−

[
cEelas

])
, (23)
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∂ [e]
∂ρ

= p2ρ p2−1 [
epzt

]
, (24)

∂
[
εS

]
∂ρ

= p2ρ p2−1
[
εSpzt

]
, (25)

∂γ

∂ρ
= γpzt − γelas, (26)

where all terms have been already defined.
The observability Gramian sensitivity with respect to the design variables can be obtained

from the differentiation of the Lyapunov equation (16):

AT ∂Wo

∂ρ
+ ∂Wo

∂ρ
A +

(
∂AT

∂ρ
Wo + Wo

∂A
∂ρ

+ ∂CT

∂ρ
C + ∂C

∂ρ
CT

)
= 0. (27)

If the four last terms of Eq. (27) are known, then the observability Gramian sensitivity
∂Wo/∂ρ is obtained solving a new Lyapunov equation. The sensitivities of the parameters
in state-space A and C can be evaluated by:

∂AT

∂ρ
=

⎡
⎢⎣

0 I

− ∂Ω2

∂ρ
−2Z ∂Ω

∂ρ

⎤
⎥⎦ ∂C

∂ρ
=

[
∂HT

up
∂ρ

Ψ + HT
up

∂Ψ
∂ρ

0,

]
(28)

where the term ∂HT
up/∂ρ is required. This term was obtained from the static condensation of

the stiffness matrix:
HT

up =
(

Kup − KuiK
−1
i i Ki p

)
To. (29)

Therefore, this sensitivity is given by:

∂HT
up

∂ρ
= ∂Kup

∂ρ
To −

(
∂Kui

∂ρ
K−1

i i Ki p + Kui
∂K−1

i i

∂ρ
Ki p + KuiK

−1
i i

∂Ki p

∂ρ

)
To, (30)

where To is the explicit transformation matrix (see Becker et al. 2006), Kup and Kui refer
to the portions of the coupling matrix Kuφ with potential and internal electrical degrees of
freedom, respectively. Thus, they can be obtained from the assembly of the matrices from
each finite element:

∂Ke
uφ

∂ρ
=

∫
Ωe

BT
u

∂ [e]
∂ρ

T

Bφ dΩe. (31)

Bu is a matrix that relates displacements and strains, Bφ is a matrix that relates electric field
and voltage, and Ωe is the element volume.

The derivative of K−1
i i is given by:

∂K−1
i i

∂ρ
= −K−1

i i
∂Ki i

∂ρ
K−1

i i . (32)

Finally, the derivatives of Ki i and Ki p are obtained from the assembly of the dielectric
capacitance matrices from each element:

∂Ke
φφ

∂ρ
=

∫
Ωe

BT
φ

∂
[
εS

]
∂ρ

Bφ dΩe. (33)

The sensitivities for the vibration modes and natural frequencies are omitted. See for
instance Wu et al. (2007).
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4.3 Optimization procedure

In this section, we present the numerical implementation proposed in this study. A flowchart
of the optimization algorithm is presented in Fig. 1.

After loading the required data, the modal analysis is performed using a solid FE model
implemented considering the formulation of a eight-node brick element.

The optimal design variables are calculated by means of linear programming (LP) algo-
rithm. This algorithm requires the objective and constraint functions to be linear. Otherwise,
they can be expressed by a Taylor series expansion truncated at the linear term. Therefore,
additional side constraints (also called moving limits) should be considered for the design
variables, since this approximation is only acceptable for an arbitrarily small neighborhood.

The convergence criteria take into account the values of design variables for the current
(k) and previous iterations, as follows:

max
{∣∣∣ρ(k) − ρ(k−1)

∣∣∣
}

≤ tρ, (34)

where tρ is a tolerance parameter.

5 Numerical examples

The optimization procedure was implemented in MATLAB. A cantilever beam with dimen-
sions 600 mm × 150 mm × 20 mm (Fig. 2) was analyzed. This structure was modeled
using 1800 eight-node brick isoparametric elements with one electrical and three mechanical
degrees of freedom per node.

For this example, the choice of materials was aluminum for the structural part and PZT5A
for piezoelectric sensing. The piezoelectric material polarization is considered in the z-
direction for easier manufacturing, since the electrodes are placed in the lateral faces, and,
therefore, it works in the d31 mode. The constitutive properties of the elastic material (alu-
minum) and the piezoelectric material (PZT5A) are presented in Table 1. These constants
were obtained from Mecchi et al. (2004) and Rubio et al. (2009).

The piezoelectric sensor location was designed for models with one, two, and six indepen-
dents electrodes, as presented in Fig. 3. In this figure, red areas represent the electrodes and
yellow areas represent isolation between the electrodes, where the piezoelectric properties
were neglected. As the number of electrodes increases, more independent system outputs
are available and the controller performance can be improved. The greater the number of
independent sensors, the more can the vibration modes be reconstructed. This work analyzed
cases with models truncated in the first, second, and forth vibration mode, resulting in nine
different cases.

Based on Vasques and Rodrigues (2006), the following values for the first modal damping
ratioswere used for the control analysis: 1.71, 0.72, 0.42, and 0.41%. For simplicity sake, only
two-dimensional cases are considered; thus, the degrees of freedom in the z-direction in the
central xy-plane are restricted. The methodology does not require this simplification, which
was placed to reduce the computational effort. For the optimization project, the piezoelectric
volume constraint was equal to 5%. The design variables are set initially in the feasible
range of ρ = 0.04 for all elements. The stopping criterion is a minimum number of 10
iterations or a change lesser than 2% in the design variables between successive iterations.
Cubic penalization exponents were used in the material model.
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Load data 
(mesh, boundary conditions, 

optimization parameters)

Create the FE model. 
Solve modal problem.

Calculate the state-space
parameteres

(eqs. 12 and 13).

Solve the Lyapunov eq. to 
obtain the observability 

Gramian (eq. 16).

Compute the sensitivities
(eqs. 23 to 33).

Calculate the optimal design 
variables using 
LP algorithm.

Verify the 
convergence.

Update the moving limits
for the next LP iteration.

Save Results.

Yes

No

Fig. 1 Flowchart for the optimization process
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Fig. 2 Three-dimensional cantilever beam

Table 1 Piezoelectric material
properties Elastic constant (1010 N/m2)

c11 12.10

c12 7.54

c13 7.52

c33 11.10

c44 2.11

c66 2.26

Piezoelectric constant (C/m2)

e31 − 5.4

e33 15.8

e51 12.3

Dielectric constant (F/m)

ε0 8.85 × 10−12

ε11/ε0 916

ε33/ε0 830

Density 7750 (kg/m3)

Fig. 3 Configuration of the potential electrodes: a one electrode, b two electrodes, and c six electrodes
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Fig. 4 Optimal topologies for piezoelectric material distribution for the first vibration mode. a One electrode,
b two electrodes, and c six electrodes

Fig. 5 Optimal topologies for piezoelectric material distribution for the second vibration mode. a One elec-
trode, b two electrodes, and c six electrodes

5.1 Piezoelectric sensor location

The optimal topologies obtained from distribution of piezoelectric material for the first in-
plane vibration mode are presented in the Fig. 4.

The optimal distribution of piezoelectric material for the second vibration mode and the
cases with 1, 2, and 6 electrodes, respectively, are presented in Fig. 5.

The optimal distributions of piezoelectric material for the fourth vibration mode are pre-
sented in Fig. 6.

These results show that sensor location is related to the sensitivity of each analyzed mode.
The convergence of the objective function is important to determine the optimization behavior
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Fig. 6 Optimal topologies for piezoelectric material distribution for the fourth vibration mode. a One elec-
trode, b two electrodes, and c six electrodes

Fig. 7 Objective function
convergence for the first vibration
mode with one electrode
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Fig. 8 Objective function
convergence for the second
vibration mode with two
electrodes
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Fig. 9 Objective function
convergence for the fourth
vibration mode with one
electrode
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Fig. 10 Objective function
convergence for the fourth
vibration mode with six
electrodes
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Fig. 11 Output signal for the
first vibration mode with one
electrode
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through the iterations. It is important to remark that the initial values of the design variable
are equal for all cases. However, the objective function values are dissimilar due to distinct
number of modes and electrodes for each case. The selected convergence histories are shown
to demonstrate the convergence behavior of the optimization process. Figure 7 presents the
objective function convergence history for the first vibration mode using one electrode, Fig. 8
shows this information for the second mode with one electrode, Fig. 9 the fourth mode with
two electrodes, and Fig. 10 the fourth mode with six electrodes.
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Fig. 12 Output signal for the
first vibration mode with two
electrodes
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Fig. 13 Output signal for the
second vibration mode with one
electrode
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Fig. 14 Output signal for the
fourth vibration mode with two
electrodes
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5.2 Sensor output signal

The output signals demonstrate significant improvement when compared with the starting
point of the optimization process. Sensor signals were calculated considering the dynamic
model described by the state-space equations (10) and (11), assuming an unit impulsive
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load on the free-end of the cantilever beam. Figure 11 presents the output signal for the first
vibration mode using one electrode. Figure 12 presents the output signal for the first vibration
mode using two electrodes, while Fig. 13 shows this information for the second mode with
one electrode, and Fig. 14 the fourth mode with two electrodes.

6 Conclusions

This work presented an optimum-based methodology for piezoelectric sensor location in
structures by means of the observability Gramian. The results obtained by the application of
this proposed formulation show that, through the maximization of the trace of observabil-
ity Gramian, it was possible to increase the observability of the studied dynamic systems,
improving the output signal sensor. When a larger number of vibration modes need to be
reconstructed, a greater number of independent electrodes are required. The numerical results,
presented in terms of the optimized topologies, objective function converges and output sig-
nals, also indicate that the number of electrodes used in the domain influences significantly
the sensors location. The methodology is general and can be applied to mechanical structures
with other materials and geometries.
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