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ABSTRACT

In precision medicine, the identification of biomarkers could help speed the diagnosis and

tailor the treatment to each patient increasing the quality of health care. Omics data, such

as microarray, generates high-dimensional data that has enabled the analysis of genes

expression profiles to extract candidate biomarkers. However, high-dimensional data re-

quires advanced computational methods for data analysis. In this work, we proposed a

homogeneous ensemble feature selection (EFS) strategy to identify candidate biomarkers

for breast cancer from multiple microarray datasets. We applied the state-of-the-art ran-

dom effect model from meta-analysis as a comparison method. We also compared five

feature selection (FS) methods as base selectors and four classification algorithms. Our

results showed that FS method variance is the most stable among other FS methods. We

showed that stability is higher within datasets than across datasets, indicating high sam-

ple heterogeneity among studies. The top 20 genes selected by variance showed the best

trade-off between the number of selected genes and performance. Our approach outper-

form meta-analysis in four out of six independent microarray studies evaluated. Support

Vector Machine classifier presented, in general, the best mean F1-Scores and K-Nearest

Neighbors classifier the best mean Recall values. We conclude that homogeneous EFS is

a promising methodology for candidate biomarkers identification, demonstrating stability

and predictive performance as good as the reference statistical method.

Keywords: Feature selection. microarray. biomarker. breast cancer.



Seleção de atributos com um ensemble homogêneo a partir de dados de

microarranjo para identificação de biomarcadores de câncer de mama

RESUMO

Na medicina de precisão, a identificação de biomarcadores pode ajudar a agilizar o diag-

nóstico e adequar o tratamento a cada paciente, aumentando a qualidade da assistência à

saúde. Dados ômicos, como os de microarranjo, geram dados de alta dimensionalidade

que permitem a análise de perfis de expressão gênica para extrair cadidatos a biomarca-

dores. No entanto, dados de alta dimensionalidade requerem métodos computacionais

avançados para análise de dados. Neste trabalho, propusemos uma estratégia de seleção

de atributos com um ensemble (EFS) homogêneo para identificar candidatos a biomar-

cadores para câncer de mama a partir de múltiplos dados de microarranjo. Aplicamos

o método de meta-análise random effect model como método de comparação. Também

comparamos cinco métodos de seleção de atributos (FS) como seletores base e quatro

algoritmos de classificação. Nossos resultados mostraram que o método de FS variância

é o mais estável entre os outros métodos de FS. Mostramos que a estabilidade é maior

dentro dos conjuntos de dados do que entre os conjuntos de dados, indicando alta hete-

rogeneidade entre os estudos. Os 20 genes mais informativos selecionados por variân-

cia apresentaram a melhor troca entre o número de genes selecionados e o desempenho.

Nossa abordagem superou a meta-análise em quatro dos seis estudos independentes de

microarranjo avaliados. O classificador Support Vector Machine apresentou, em geral, os

melhores valores médios de F1-Score e o classificador K-Nearest Neighbors os melhores

valores médios de recall. Concluímos que o EFS homogêneo apresentado é uma me-

todologia promissora para a identificação de candidatos a biomarcadores, demonstrando

estabilidade e desempenho preditivo tão bom quanto o método estatístico de referência.

Palavras-chave: seleção de atributos, microarranjo, biomarcadores, câncer de mama.
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1 INTRODUCTION

Cancer occurs when mutations in a cell replication process is not reverted, i.e., the

mutated cell does not die. The mutation is replicated and can form a benign or malignant

tumor, which can negatively affect the organism essential functions. External factors

such as the presence of radiation, ingestion of chemicals (smoke, alcohol, water or food

contaminants), viruses, bacteria, or parasites could cause cancer. Smoking, for example, is

the main reason for lung cancer cases, which has been diagnosed on over 2 million people

and killed 1.8 million in 2020, according to the World Health Organization (WHO)1.

Nearly 10 million deaths were caused by cancer in 2020, making the disease a leading

cause of death. Breast cancer was the most common type of cancer with 2.3 million cases

in 2020. There are many factors that could cause breast cancer. According to WHO,

female gender is the strongest risk factor. Less then 1% of breast cancer cases are found

in men. Family history and certain gene mutations could also increase the risk of breast

cancer.

The disease arises from tumor cells in the breast glandular tissue (FENG et al.,

2018). In the early stage, breast cancer causes no symptoms and does not harm the pa-

tient. However, the patient can have symptoms when tumor spreads to lymph nodes and

to other organs in further stages. These further stages are more complicated to treat and

could cause death. Therefore, one of the strategies to reduce breast cancer mortality is

early detection. Finding a lump or thickening in the breast through self-examination is an

evidence of breast cancer. In this case, breast cancer can be confirmed by a health practi-

tioner through imaging and biopsy. The former is the most common way to detect tumors

in the breast. Imaging could be followed by biopsy to confirm if the tumor is malignant

or benign. A positive diagnosis - when cancer is present - is treated with radiation and, in

more advanced cases, surgical removal of the breast.

WHO states that certain gene mutations indicate a greater risk of breast cancer

- BRCA1, BRCA2, and PALB-22. We go further in this work, aiming at identifying a

small group of genes that can explain the presence of breast cancer, called biomarkers. A

gene-level diagnosis could tailor the treatment to each patient reducing its side effects and

increasing its effectiveness. This process is called precision medicine. Precision medicine

has become feasible with the growth of digital medical records and high-throughput di-

agnosis devices (HODSON, 2016). High-throughput technologies have helped to un-

1<https://www.who.int/news-room/fact-sheets/detail/cancer>
2<https://www.who.int/news-room/fact-sheets/detail/breast-cancer>

https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/breast-cancer
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derstand diseases in a molecular level through the generation of genomic data, such as

large-scale profiling of gene expression (i.e., transcriptome) generated with microarray.

Other types of genomic data exist and they refer to molecular profiling data comprising

all genes, proteins, etc., for several patients grouped by disease or condition. However,

these recent technologies are expensive and genomic data analysis methods are not pre-

cise enough to confirm a diagnosis. Thus, a small group of biomarkers could also reduce

the cost of collecting genes’ information and increase performance in data analysis.

In medical research, data analysis helps to derive conclusions from medical data

creating evidence-based results. Meta-analysis is at the top of the hierarchy of clinical evi-

dence approaches (HAIDICH, 2010). According to the Haidich (2010), "outcomes from a

meta-analysis may include a more precise estimate of the effect of treatment or risk factor

for disease, or other outcomes, than any individual study contributing to the pooled analy-

sis". Therefore, meta-analysis is a state-of-the-art method for medical research, including

extracting hypotheses through omics data analyses. In biomarker identification, meta-

analysis groups the relevant genes from different studies according to statistical measures,

such as logFC and p-value, which indicate the degree to which a gene has altered expres-

sion among two conditions and its statistical significance. However, a simple statistical

method such as meta-analysis may not infer genes’ relevancy in high-dimensional data,

i.e., genomic data. Hence, the need for more advanced computational methods to identify

relevant candidate biomarkers and increase the quality of results.

Recently in literature, studies have applied machine learning feature selection

methods to increase the quality of results in dimensionality reduction for low-sample

high-dimensional datasets (KHAIRE; DHANALAKSHMI, 2019; BOLÓN-CANEDO;

SÁNCHEZ-MAROÑO; ALONSO-BETANZOS, 2016; BOLÓN-CANEDO et al., 2014;

HE; YU, 2010; YU; LIU, 2003). Mainly, ensemble feature selection (EFS) has been stud-

ied as an alternative approach due to its robustness compared to state-of-the-art feature

selection methods (PES, 2019; BOLÓN-CANEDO; ALONSO-BETANZOS, 2019; ALI

et al., 2018; Ben Brahim; LIMAM, 2017). Ensembles, in general, are a group of base

models each of which independent from each other. Ensemble principles comes from the

Wisdom of Crowds theory, which states that a group of diverse individuals are, on aver-

age, more correct than a single expert one (SUROWIECKI, 2005). EFS applies feature

selection methods - base selectors - to identify relevant features and reduce redundancy

in high-dimensional datasets.

Although many studies have reported increased stability through ensemble fea-
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ture selection application on high-dimensional datasets ,specially for homogeneous EFS

(ZHANG; JONASSEN, 2019; Ben Brahim; LIMAM, 2017; SEIJO-PARDO et al., 2017),

to our knowledge few studies have compared EFS approaches against meta-analysis. Lit-

erature still lacks a comprehensive comparison between these approaches for cancer dis-

ease, including for breast cancer. Homogeneous EFS have presented satisfactory results

(PES, 2019; BOLÓN-CANEDO; ALONSO-BETANZOS, 2019; SEIJO-PARDO et al.,

2017), including other types of cancer, in studies focused on biomarker identification

from microarray datasets. Among previously studied methods, homogenenous EFS have

increased stability while maintaining performance in several distinct scenarios.

In this work, our goal is to apply a homogeneous EFS to increase stability while

maintaining performance for breast cancer biomarker identification from a compendium

of microarray datasets. We compare the results with the state-of-the-art method, meta-

analysis. Our findings could help: (i) guide the design of a cheaper and faster diagnosis

approach; (ii) and, thus reduce the number of deaths caused by breast cancer; (iii) tailor

the treatment for each patient by using its genes’ profiles; (iv) guide the application of

ensemble feature selection as an alternative method to reduce dimensionality; and (v)

guide the choice of methods to deal with low-sample high-dimensional data analyses in

medical research. On the other hand, important questions still remain unanswered. As

an important health issue, we must address these important questions in future studies to

assure the quality and safety of our approach for practical usage.

The work is organized as follows. Chapter 2 explain biological (Section 2.1) and

computational (Section 2.2) methods and metrics applied. Chapter 3 presents previous

findings to guide our EFS design and experimental setup. Chapter 4 explains how data

were collected (Section 4.1) and processed (Section 4.2), the experimental pipeline, which

includes the EFS (Section 4.3) and meta-analysis (Section 4.4) design and its parameters

(Section 4.5). Finally, Chapters 5 and 6 presents our work’s findings, its discussion and

still unanswered questions.
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2 THEORETICAL BACKGROUND

There is a vast set of machine learning, feature selection and evaluation algorithms

in the literature (BREIMAN et al., 1984; HAYKIN, 1998; KENT, 1983; KUNCHEVA;

RODRÍGUEZ, 2018). In this work, the main object of study are the algorithms applied

to solve high dimensional problems, such as classification using microarray datasets. The

problem’s biological background will also be investigated in order to understand and bet-

ter interpret the final results. Therefore, the next sections are dedicated to review state-of-

the-art algorithms and biological concepts.

2.1 Biological Background

Literature commonly refers to biomarkers and meta-analysis to identify diagnos-

tic genes. However, these concepts must be reviewed to understand the comparison made

between state-of-the-art methods for biomarker identification and more advanced compu-

tational methods, such as feature selection. The next sections present essential biological

concepts that guides the theoretical assumptions in this work.

2.1.1 Precision Medicine and Biomarkers

Through advanced technological tools, precision medicine tailors health care test-

ing and medication to each patient according to its characteristics. Precision medicine

has become feasible with the growth of digital medical records and high-throughput diag-

nosis devices (HODSON, 2016). Since the first sequenced human genome, more recent

technologies - such as microarray (Section 2.1.2) - have helped to understand diseases in a

molecular level through the genomic data. As stated by Ginsburg and Phillips (2018), "the

inclusion of genomic data in a knowledge-generating health care system infrastructure is

a way to harness the full potential of that information to optimize patient care". Har-

nessing the knowledge of high-throughput medical data requires advanced computational

methods such as machine learning algorithms to identify molecular patterns in different

patients, and thus improve health care quality.

The importance of genomic data lies in the identification of biomarkers. Accord-

ing to a definition published by the U.S. Food and Drug Administration (FDA) and the
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National Institute of Health (NIH), biomarkers indicate, in a broad sense, a characteristic

in biological or pathogenic processes (FDA-NIH Biomarker Working Group and others,

2016). Among more specific definitions, however, in this work only diagnostic biomarker

is taken into account. A diagnostic biomarker indicates the presence or condition of a

disease. Therefore, these biomarkers can be used to identify the presence of cancer in

patients, and even guide the understanding of different types of cancer. In this sense,

biomarkers’ stability must be considered. As discussed by He and Yu (2010), stable

biomarkers refer to a set of markers representative of the study, i.e., it can be reproduced

in other sub-study as being diagnostic biomarkers. Biomarker stability on machine learn-

ing algorithms will be further discussed in the next sections.

2.1.2 Omics data

To understand omics data, some concepts must be explained. A DNA is a se-

quence of coding (genes) and non-coding segments. Genes are responsible for protein

production. The activity of a gene in a cell is called expression. Recent high-throughput

technologies - such as microarray - allows to extract genes’ expressions from a cell. A

human cell has around 20.000 genes, which means that microarray can extract 20.000 ex-

pressions simultaneously. Alternatively, expressions from different groups - pathological

and healthy, for example - can be measured and compared through mRNA microarray.

Figure 2.1 presents the process to collect genes’ expressions through a microarray chip.

As we can see, after processing the collected cells, the resulting biological matter is hy-

bridized onto a microarray chip. A microarray chip is represented by the black square

with colored circles, which are the probes used to identify specific genes. In this sense,

omics data refers to data extracted by these technologies. Gene expression profiles col-

lected in a large scale (i.e., for all genes) is called transcriptome and it can be used to infer

hypothesis about biomarkers. However, with high volume of data generated, large-scale

data analysis requires robust computational and statistical methods.

High-throughput technologies generate massive amounts of data. To organize

and make these data publicly available, the Gene Expression Omnibus (GEO) serves as

a repository of gene expression data, specially for DNA microarray (EDGAR; DOM-

RACHEV; LASH, 2002). Up to this day, GEO archives more than 4 million samples of

gene expression data divided by almost 150.000 series. A series defines the dataset from

an experiment and helps to organize data into several biological processes such as toxicol-
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Figure 2.1 – Gene expression extraction process from mRNA microarray.

Adapted from <https://microbenotes.com/dna-microarray>

ogy and metabolic processes. In this work, DNA microarray extracted from breast cancer

tumors and publicly available on GEO will be analyzed.

2.1.3 Transcriptome Meta-analysis

As the proposed methodology in this work, meta-analysis represents another vi-

able approach for biomarker identification. In a broad sense, meta-analysis groups several

studies to analyze jointly, adopting approaches to combine their statistics and improve

findings. In terms of genomics data, meta-analysis groups results from different studies

or series. Therefore, with this process, the same gene from different experiments can be

analyzed.

Meta-analysis is a two-step process. The first step of meta-analysis measures the

effect size - strength of a phenomenon - through differential expression analysis (DEA).

The DEA process applies a statistical test, such as Student’s t-test or LIMMA (RITCHIE

et al., 2015) for genomic data, to extract a log fold change (logFC) and a p-value for

each gene expression profile. The logFC is simply the difference between the average of

expressions of pathological cases and the average of expressions of control cases (pro-

vided that expression values are represented in a log2 scale). The p-value evaluates the

significance of change in expressions between the two groups (e.g., pathological and con-

trol). For different studies, there will be different logFC and p-value for the same gene.

Therefore, the second step of meta-analysis is to measure the significance of such genes

https://microbenotes.com/dna-microarray


18

for all samples in the study, aggregating statistics derived from each study. In this work,

Random Effect Model (REM) (DERSIMONIAN; KACKER, 2007) will be applied for

such purpose.

Meta-analysis presents different methodologies according to the problem domain,

such as rank combination, p-value combination, and effect size combination. In this work,

the focus will be on effect size combination due to its performance in meta-analysis for

microarray datasets. Methods based on effect size combination models the combined

difference of differential expression between pathological and control groups (TORO-

DOMÍNGUEZ et al., 2020). Specially REM which assumes different effect sizes between

studies, i.e., effect sizes follow a distribution. In this study, microarray data does follow a

distribution (Table 2.1) becoming suitable for REM in opposed to fixed effects model that

assumes common effect sizes. Although, as mentioned by Toro-Domínguez et al. (2020),

the difference between effect sizes must be subtle.

Table 2.1 – Example of the distribution of effect size values (logFC) for different studies.
Study ID (GSE) Gene 79608 Gene 22974 Gene 1308 Gene 9055
38959 −1.347 2.4753 −2.358 2.8467
42568 −0.039 1.6424 0.1014 2.5296
45827 0.1309 −0.061 0.1576 −0.295
53752 0.0046 −0.126 −0.068 −0.131
62944 −1.511 2.9949 −3.581 2.1556
70947 −0.330 1.5939 −0.282 1.5210
7904 −0.111 2.7816 −2.220 2.8474

2.2 Computational Background

Currently, the growing volume of data and the complexity of problems to be solved

has made it essential to apply algorithms for classification, prediction, and knowledge dis-

covery from data. This process is called Machine Learning (ML). A ML algorithm trains

a model that represents a hypothesis - or a function approximation - from past recorded

experiences (FACELI et al., 2011), i.e., a set of examples and their features. An example

xi, such as a cancer patient, is a vector of features x1i , x
2
i , ..., x

j
i (e.g., birth year, average

sleep time, body fat...) and a known target value yi which the trained model must learn

to predict. The application of a ML algorithm can vary according to the target value’s

class. Classification algorithms are applied when the target value - value to be predicted

from data - is categorical. For example, normal or tumor for cancer classification tasks.
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Regression algorithms are applied when the target value can be continuous, such as the

number of years a cancer patient will live. Furthermore, a ML algorithm can be classified

into supervised and unsupervised learning. The former knows the past experiences’ target

value while the latter does not have this information and must infer it.

2.2.1 Supervised Learning Algorithms

Regardless of algorithms’ classification, each machine learning algorithm has its

own inductive bias. In consequence, each algorithm learns from data differently, i.e.,

different algorithms could infer different hypotheses for the same problem. Usually, the

best algorithm to solve a specific problem is unknown. Considering the inductive bias

and literature reviews, however, a small set of algorithms could be selected as viable

candidates to solve the specified problem. In this sense, the most frequent algorithms

found in the literature for cancer classification problems were selected and are defined as

follows:

• Decision Tree (J48) classification algorithm learns decision rules inferred from

training data to predict a target variable. J48 is a C4.5 (BREIMAN et al., 1984) im-

plementation in Java (ARNOLD; GOSLING; HOLMES, 2005), which iteratively

selects the feature that best splits the subset (training data for the first iteration)

according to a homogeneity metric. An homogeneity metric measures the target

value’s homogeneity for a subset, such as information gain (see Section 2.2.2). For

J48 trees, the algorithm has two parameters: (i) confidence interval C, the mini-

mum gain from splitting a subset; and (ii) M , the minimum number of samples

in the leafs. When C or M are not satisfied, the algorithm stops. As a result, a

decision tree is returned in which each node represents a rule built with the most in-

formative feature selected and the leafs are the final target value (Figure 2.2a). The

decision boundary (Figure 2.2b) shows the algorithms limitations in terms of data

representation: J48’s decision boundaries are always parallel to features’ space.

• K-Nearest Neighbors (KNN) is an instance-based algorithm (AHA; KIBLER; AL-

BERT, 1991) that computes classification through a majority vote among the K

nearest neighbors of each new data point. In this sense, KNN does not train a

model. However, a representation of its decision boundaries is presented in Figure

2.3b. The classifier is commonly based on the Euclidean distance between the new
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Figure 2.2 – Decision Tree representation and its decision boundaries.
(a) Decision tree representation built with J48

for binary classification.
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(b) Decision Tree’s decision boundary for binary
classification.
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sample and the training samples. Therefore, for each new sample, KNN selects the

K nearest neighbors. The majority class between the selected neighbors is assigned

to the new sample. In the example presented in Figure 2.3a, a sample is wrongly

classified with K = 3. However, it should not be the case if K = 5. Note that if

K = 4, two neighbors could be from the tumor class and two could be from the

normal class. In this scenario, KNN randomly assigns a class to the new sample.

Figure 2.3 – K-Nearest Neighbors’ classification and its decision boundaries.

(a) Classification of a new sample with K = 3.
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(b) K-Nearest Neighbors’ decision boundary for
binary classification.
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• Neural Network (NNET) for classification uses a multi-layered perceptron algo-

rithm that trains a model using batch gradient descent (HAYKIN, 1998). A simple

neural network algorithm has four parameters: (i) n, the number of hidden layers;

(ii) m, the number of neurons for each layer; (iii) α, the learning rate for gradient

descent; and (iv) the activation function. Each input neuron represents a feature

for a given sample - X1 and X2 in Figure 2.4a. For training, a weight is assigned

for each connection between two neurons. Therefore, a neuron’s ai value is the

weighted sum of previous neurons directly connected to ai applied to an activation

function. The values are propagated toward the output layer where the prediction
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error is calculated. The error is applied on the weights update in the opposite direc-

tion using gradient descent. This process is called back-propagation. In a sample

classification, the model’s output is the predicted probability for each class. The

class with higher probability is selected. For binary classification, only the positive

class probability is enough since negative class probability can be inferred from the

other. In some cases, only the class label is returned. It is important to note that

a high α tends to underfit the model, high values of n and m tend to overfit the

model, a low α may take longer to converge to the optimal solution. Nevertheless,

the activation function is also important to model the data correctly. In this sense,

a fine tunning of parameters is required when training a neural network model. For

example, a linear decision boundary inferred by a model trained with n = 1, m = 3

and α = 0.1 (Figure 2.4b) has a satisfactory predictive performance.

Figure 2.4 – Neural Network’s classification and its decision boundaries.
(a) A Neural Network model representation with 3

hidden layers with (from left to right) 3, 5 and 3
neurons respectively.
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(b) Neural Network’s decision boundary for binary
classification.
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• Support Vector Machine (SVM) creates a hyper-plane or a set of hyper-planes that is

farthest from the nearest training samples. Thus, the hyper-plane is applied in clas-

sification problems by creating a functional margin based on the nearest samples

of any class (CORTES; VAPNIK, 1995). The training of a SVM model is posed

as an optimization problem in which it tries to maximize the hyper-plane distance

from training samples (objective function) restricted to avoid training samples be-

tween the hyper-plane’s margins. Due to the problem’s restrictions, SVM is very

sensitive to its parameters. The regularization parameter C inversely defines the

hyper-plane’s margin size, i.e., a larger C defines a smaller margin size in favor of

classification accuracy. In this work, a non-linear SVM with a radial kernel is ap-

plied. Non-linear SVM applies a kernel function in order to expand the input space

into a feature space. According to Cover (1965), a feature space is more likely to be
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linearly separable. Radial kernels takes a parameter σ which defines the kernel’s ra-

dius. With a smaller radius, the model is restricted to a small feature space and may

underfit. On the other hand, a kernel with a bigger radius may overfit the model.

Note the represented margins in Figure 2.5a in contrast with a less separable data

in Figure 2.5b. Both examples apply a radial kernel. The latter, however, has very

strict margins due to samples proximity to the hyper-plane (decision boundary).

Figure 2.5 – Support Vector Machine’s hyper-plane representation and its decision boundaries.
(a) Example of a hyper-plane learned from a SVM

model with a radial kernel.
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(b) Support Vector Machine’s decision boundary with
a radial kernel for binary classification.
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2.2.2 Feature Selection

Machine Learning models’ performance can be impacted by several factors. How-

ever, with the increase in the volume of data generated by recent high throughput tech-

nologies, such as microarray chips for gene expression measurement, studies have focused

on solving the curse of dimensionality. High-dimensional problems, i.e., when data have

a high number of features, can impact negatively on models’ performance. For exam-

ple, irrelevant features may skew the classification of a new data point in KNN models.

Redundant features may cause over-fitting, i.e., when the algorithm perfectly infers the

presented data points but fails to generalize the hypotheses. The curse of dimensionality

states that the number of possible examples increases exponentially with a new feature.

Several feature selection (FS) methods have been proposed to reduce dimension-

ality. Feature selection methods - base selectors in this work - are classified into two

categories: rankers and subsetters. A feature selection ranker outputs all features ordered

by a score. On the other hand, subsetters output a subset of the original features set. In

this study, we use rankers due to its output completeness and scoring which will be used

to aggregate all rankings. Among these two categories, feature selection methods are also
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classified between filters, wrappers, and embedded methods. Filters estimate - with statis-

tical methods - the features importance on separating the different classes. Usually, filters

output a score for each feature in order to create a feature ranking. In contrast, wrappers

use classification algorithms to select the best set of features. Despite their capability

to yield better results, wrappers are computationally more expensive than filters. On a

similar approach, embedded methods use features’ scores from classifiers, such as deci-

sion trees or support vector machines, to identify relevant features. In this case, feature

selection is embedded in the classifier - information gain in decision trees, for example.

Feature selection algorithms are also divided into univariate and multivariate approaches.

The former only considers one feature at a time for selection. The latter is able to use

values from other features to select just one.

In order to compare the final results with meta-analysis output, a full scored rank-

ing of features is required. Thus, the choice of base selectors must consider the form

of its outputs. Rankers feature selection methods assign each feature a score. The final

result is an ordered rank of features. Among rankers - embedded, wrappers and filters -

feature selection methods, filters present better trade-off between predictive and compu-

tational performance. Given more than 7.000 features, embedded and wrappers are not

able to perform in a timely manner. Therefore, for the purpose of this work, only ranker-

filter feature selection methods were selected. The most frequent ranker-filter methods

presented in the literature and applied on this work are the following:

• Information Gain (KENT, 1983) measures the correlation between two random

variables A and B given a prior entropy H(B) (Equation 2.1) and a conditional

entropy H(A|B) (Equation 2.2). Defined by Shannon (1948), entropy quantifies

the informative value of a variable, where p(a) is the probability that A = a. The

conditional entropy quantifies the informative value of a variable A given B, where

p(a, b) is the probability of A = a and B = b. Therefore, information gain I(A,B)

(Equation 2.3) estimates the contribution of B in the overall informative value of

A. In our case, I(Y,Gk) defines the target values’ information gain given a set of
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gene expressions.

H(A) = −
∑
a∈A

p(a) log2 p(a) (2.1)

H(A|B) = −
∑

a∈A,b∈B

p(a, b) log2
p(a, b)

p(b)
(2.2)

I(A,B) = H(A)−H(A|B) (2.3)

• φc (CRAMER, 1999) measures the correlation between two random variables A

and B based on the χ2 statistical test. Pearson (1900) defined the statistical hypoth-

esis test, χ2 (Equation 2.4), which assumes a normal distribution, where fij is the

observed frequency of (Ai, Bj), fi and fj are the observed frequencies ofAi andBj

respectively and eij =
fifj
n

is the expected frequency (equally distributed). In this

sense, Cramér’s V coefficient (φc) represents the squared mean correlation between

A and B (Equation 2.5).

χ2 =
r∑

i=1

s∑
j=1

(fij − eij)2

eij
(2.4)

φc =

√
χ2

n ·min(r − 1, s− 1)
(2.5)

• Symmetrical Uncertainty (THEIL, 1957) is a weighted average between the entropy

(Equation 2.1) of two random variables A and B and represents the prediction per-

centage of A given B, where I(A,B) is the information gain (Equation 2.3), defined

as follows:

U(A,B) = 2 · I(A,B)

H(A) +H(B)
(2.6)

• Minimum Redundancy Maximum Relevance (mRMR), defined by Hanchuan Peng,

Fuhui Long and Ding (2005), best scores variables with higher correlation to the

target value and lower correlation among other variables. For such, it takes the

information gain between the response variable A given B ∈ V , where V is the

set of variables, and subtract the pairwise information gain between other variables

and B. J(B) can be expressed as the relevance term minus the redundancy term

(Equation 2.7).

J(B) = I(A,B)− 1

| V |
∑

C∈V−{B}

I(B,C) (2.7)
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• Variance measures the spread of a variable’s values from its mean. As a statistical

summary function, variance can be expressed as the average squared distances of A

from its mean value µA (Equation 2.8).

S2(A) =
1

| A | −1
·
∑
a∈A

(a− µA)
2 (2.8)

2.2.3 Ensemble Learning Feature Selection

Each machine learning algorithm has its own limitations. For example, J48 deci-

sion boundaries are always parallel to features’ space, NNET and SVM are very sensitive

to different parameter values. Therefore, an ensemble attempts to reduce the individual

algorithms’ limitations by combining its models. Ensembles apply several algorithms so

that one supplements the weakness of the other. They are a hybrid solution to find an

optimal hypothesis.

In recent literature, ensemble feature selection (EFS) has been studied as a poten-

tial, more robust, solution to high-dimensional problems (PES, 2019; BOLÓN-CANEDO;

ALONSO-BETANZOS, 2019; ALI et al., 2018; Ben Brahim; LIMAM, 2017). In this

sense, ensemble feature selection on high-dimensional data can be used to increase sta-

bility on knowledge discovery. The idea is to use various base selectors and aggregate its

results aiming to obtain a more stable feature subset. In order to design an efficient en-

semble, Bolón-Canedo and Alonso-Betanzos (2019) mentioned five main decisions that

must be taken: (i) type of base selectors; (ii) number of base selectors; (iii) number and

size of different training sets; (iv) aggregation method and (v) threshold methods.

Ensembles can be classified into two main categories: homogeneous (Figure 2.6a)

and heterogeneous (Figure 2.6b). The former uses different feature selection algorithms

as base selectors. In this way, the ensemble perturbation comes from function-based ap-

proach. The latter is built with several instances of the same base selector. In contrast,

the perturbation comes from data-based approaches such as bootstrap (EFRON; TIBSHI-

RANI, 1994). In machine learning, bootstrap is a method to resample data. Given a

dataset with n samples, the method randomly selects n samples from the original dataset

with replacement, which means the new dataset - also called bag - will probably have

duplicated samples. The process can be repeated to generate more bags. In this way,

bootstrap inserts heterogeneity between bags (data perturbation) which is essential for
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homogeneous ensembles.

Heterogeneous ensembles frees the user from choosing the base selector. Accord-

ing to Saha, Sarkar and Mitra (2009), Zhang and Jonassen (2019), heterogeneous en-

sembles can maintain or improve accuracy in comparison with state-of-the-art methods.

On the other hand, homogeneous ensembles increase stability while maintaining accu-

racy when compared to other approaches (PES, 2019; PES; DESSÌ; ANGIONI, 2017;

ZHANG; JONASSEN, 2019; SEIJO-PARDO et al., 2017).

Figure 2.6 – Types of ensemble exemplified by feature selection ensembles.
(a) Homogeneous ensemble in which all base selectors are the same and

perturbation comes from data sampling or variation.

Data

Data perturbation

Feature Selection X Feature Selection X Feature Selection X Feature Selection X... 

(b) Heterogeneous ensemble. Perturbation comes from the different base
selectors.

Data

Feature Selection A Feature Selection B Feature Selection C Feature Selection Z... 

Multiple results from ensembles can be aggregated through a vast range of algo-

rithms. From statistical methods, such as mean, to social choice functions like Borda

Count (RECAMONDE-MENDOZA; BAZZAN, 2016). The mean method, for example,

uses the feature selectors’ scores as defined in Equation 2.9. On the other hand, methods

such as Borda Count takes into account the position of a feature in the ranking. Therefore,

with different approaches, the choice of the aggregation method can impact ensemble’s

final performance. In Seijo-Pardo et al. (2017), the authors experimented on 7 datasets

with different statistical aggregation methods – minimum, median, mean, Geometric

Mean, Stuart (AERTS et al., 2006) and Robust Rank Aggregation (KOLDE et al., 2012)

- in order to study its behavior across several scenarios. The authors concluded that "[...]

the choice of the aggregation method can impact the final results for microarray datasets".

As presented by Seijo-Pardo et al. (2017), the best aggregation method for microarray
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datasets is mean and it is defined as follows:

meani(s
1
i , s

2
i , ..., s

n
i ) =

1

n

n∑
j=1

sji (2.9)

In Equation 2.9, the score of a feature i is calculated given n scores ski from n base

selectors rankings. The final ranking is computed by ordering features’ mean score.

In order to select the best subset of features given an aggregated ranking, threshold

methods use final scores to find the most relevant features. The study in Seijo-Pardo et al.

(2017) also reported results for different threshold methods such as Fisher ratio, log2(n),

10%, 25% and 50%. For microarray datasets, 25% and 50% of features with higher scores

presented better results in comparison with other methods. However, the authors con-

cluded that "although satisfactory average test error results were obtained for the 50%

threshold, it might not be a very suitable threshold for large dimensionality datasets". This

is due to feature redundancy among relevant ones, according to Khaire and Dhanalakshmi

(2019), He and Yu (2010). As mentioned by Liu, Liu and Zhang (2010), highly correlated

features to its classes and uncorrelated to other features can reduce redundancy. However,

according to Ali et al. (2018), in order to select the optimal subset of features, a domain

expert is still required.

2.2.4 Sampling Methods

Unbalanced datasets pose a challenge in ensemble evaluation. For microarray

datasets, where positive labels represent the majority of samples, few negative samples be-

long to stratified training and validation sets. Therefore, models’ performance is wrongly

interpreted. Over- and under-sampling methods try to solve the unbalance problem by lev-

eling the number of positive and negative samples. Under-sampling randomly removes

samples from the majority class. Another approach, which avoids sample removal and

for that more suitable for low-sample datasets, can be found at Chawla et al. (2002). The

synthetic minority over-sampling technique (SMOTE). Figure 2.7 visually represents how

SMOTE works. For each sample s in the minority class - normal, SMOTE selects its k

nearest neighbors through Euclidean distance and randomly generate synthetic samples

between two existing and closest neighbors (Figures 2.7b and 2.7c). The over-sampling

method tries to balance the dataset by generating new samples for the minority class.

However, the minority class can become the majority one by repeating SMOTE over the
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Figure 2.7 – Visual representation of how the synthetic minority over-sampling technique
(SMOTE) works.
(a) Original dataset.
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(b) SMOTE with k = 1.
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(c) SMOTE with k = 2.

6.5

7.0

7.5

8.0

6.3 6.5 6.7

X1

X
2

Class Normal Tumor

(d) SMOTE with k = 1 repeated.
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(e) SMOTE with k = 2 repeated.
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original dataset, as shown in Figures 2.7d and 2.7e.

2.2.5 Predictive Power Evaluation

In Kuncheva and Rodríguez (2018), the authors presented an evaluation proto-

col that avoids data leakage on selecting features and evaluating the model on very low-

sample-size data. The ideas of Kuncheva and Rodríguez (2018) are essential on ensemble

design considering data partition on training and validation sets and the application of
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over-sampling methods to balance the datasets. The authors proposed a variation of cross-

validation method which considers the feature selection step. As an evaluation method,

cross-validation divides data into k folds each of which is an equally distributed - also

known as stratified - and disjointed portion of the data. For every one of the k itera-

tions, k − 1 folds are used for training the classifier and the remaining one is used for

model evaluation (Figure 2.8). A variation of k-fold cross-validation - called leave-one-

out cross-validation (LOOCV) - leaves one sample for evaluation and the rest for training.

Kuncheva and Rodríguez (2018) method introduces, prior to the training step, a feature

selection using the same training portion of the k-fold cross-validation.

Figure 2.8 – 5-fold cross validation. For each iteration, a fold is selected for testing and the rest is
selected for training.

Train Test Train Train Train

Train Train Test Train Train

Train Train Train Test Train

Train Train Train Train Test

Dataset

1st iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

Fold 1

Train Train Train TrainTest

Fold 2 Fold 3 Fold 4 Fold 5

In each iteration of k-fold cross-validation process, the model is evaluated by the

testing set. The model’s predictions generates a confusion matrix (Table 2.2). For binary

classification, a confusion matrix M2×2 presents four main terms, defined as follows:

• True positive (TP ) defines the number of samples labeled with and predicted as

belonging to class the positive class.

• False positive (FP ) defines the sum of instances whose prediction was positive but

their true label is the negative class.

• False negative (FN ) defines the sum of instances labeled as positive but predicted

as negative.

• True negative (TN ) defines the sum of instances labeled with and predicted as

belonging to the negative class.

From the confusion matrix, we can derive the metrics for measuring a model’s
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Table 2.2 – Layout of a binary class confusion matrix.
XXXXXXXXXXXXPredicted

Labeled
Positive Negative

Positive TP FP
Negative FN TN

performance. Each metric will guide the choice of the best classifier according to the

model’s purpose. For microarray problems in which the model’s predict the presence of

cancer, it is important to reduce the false negative results, i.e., when the model predicts

negative for cancer but the sample is positive. In this way, we need to focus on maximizing

recall, which is indirectly proportional to false negative errors. Recall and other metrics

are defined and applied in this work as follows:

• Precision or positive predicted value defines the ratio of true positive predictions

over all positive predictions. Thus:

Precision =
TP

TP + FP
(2.10)

• Recall, sensitivity or true positive rate defines the ratio of true positive predictions

over all samples labeled as positive. Recall value is defined as:

Recall =
TP

TP + FN
(2.11)

• F1-Score (F1) defines the harmonic mean between precision and recall. Thus:

F1 = 2 · Precision ·Recall
Precision+Recall

(2.12)

2.2.6 Stability Evaluation

Besides predictive performance metrics, feature selection stability is equally im-

portant. In knowledge discovery applications, stability represents the selected features’

quality and, therefore, the knowledge itself. Stability can also be defined as the robust-

ness of a feature selection algorithm in face of perturbations in data. Usually, in high

dimensional datasets, feature selection methods find more than one optimal subset - low

stability - due to features’ redundancy which leads to a decrease in the overall quality of

the results. Recent research (PES, 2019; ZHANG; JONASSEN, 2019; ALI et al., 2018)
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have proposed the use of ensemble feature selection to deal with stability on high dimen-

sional datasets. In particular, homogeneous EFS has been applied to improve stability due

to its intrinsic characteristics. Homogeneous EFS explores the different visions - by data

perturbation - from the same feature selection algorithm that has shown an increase stabil-

ity, mainly on high dimensional datasets (ABEEL et al., 2009; PES; DESSÌ; ANGIONI,

2017).

He and Yu (2010) have shown three causes of instability. In the classic ML

pipeline, a feature selection process directly precedes the model training. Thus, the lack of

a validation step before training often leads to unstable results. The validation - between

feature selection and model training - makes it possible to discover multiple optimal sub-

sets of features that is possibly causing instability. This can happen when the dataset

has several redundant features. Finally, specially for microarray datasets, the low-sample

high-dimensional data can cause instability in feature selection due to the lack of more

information for each feature.

In this work, the stability validation step calculates the Kuncheva Index (Equa-

tion 2.14) defined by Kuncheva (2007). The Kuncheva index is the average of pairwise

inconsistency indexes between a set of subsets of features S = {S1, S2, S3, ..., SN}. An

inconsistency index, according to Kuncheva (2007), increases proportionally to the inter-

section’s cardinality r = |A∩B| between two subsets A and B with the same cardinality

|A| = |B| = k. The maximum value 1 is achieved when A = B, and the minimum value

is limited to −1. Equation 2.13 mathematically defines the inconsistency index where

A,B ⊂ X and |X| = n. The author also defines a threshold for high and low stability.

The stability can be considered high when I(S) ≥ 0.5, and low otherwise.

I(A,B) =
rn− k2

k(n− k)
(2.13)

I(S) = 2

N(N − 1)

N−1∑
i=1

N∑
j=1

I(Si, Sj) (2.14)
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3 RELATED WORK

Analysis on microarray datasets can lead to erroneous conclusions. As explained

by Ang et al. (2016), when dealing with microarray data we should consider several prob-

lematic factors. Technical errors on data collection are the start point. Factors such as type

and quantity of reagents used, handling of data collection equipment, results discretiza-

tion, data mislabeling can generate erroneous results. Furthermore, a large number of

gene expression can cause over-fitting even after a feature selection, which connotes the

difficulty of differentiating relevant and redundant gene expressions. According to He and

Yu (2010), due to redundancy, there are many gene subsets that can explain the presence

of cancer - biomarkers. Hence, the importance of feature selection design considering

stability.

The authors in Khaire and Dhanalakshmi (2019) investigated the stability of fea-

ture selection methods. Stability measures indicates feature selection output’s robustness

given data perturbation across several runs. According to He and Yu (2010), Khaire and

Dhanalakshmi (2019), highly correlated features usually lead to unstable outputs when

applying state-of-the-art feature selection methods, which means the methods can iden-

tify more than one optimal feature set in high-dimensional data due to feature redundancy.

In this sense, Pes (2019) evaluated stability on ensemble-based feature selection methods

across several domains, including biomedical data. Pes (2019) demonstrated through

extensive experimentation that homogeneous ensemble-based approaches lead to a sig-

nificant gain in stability.

In an earlier study, Pes, Dessì and Angioni (2017) exploited the performance and

stability of homogeneous ensembles applied to high-dimensional genomics data. In ev-

ery case, the ensemble approach outperformed other methods. The authors were able

to achieve a high accuracy with 3% of selected features and an stability increase with

homogeneous ensembles compared to other methods. The study in Abeel et al. (2009)

corroborates with Pes, Dessì and Angioni (2017) by using homogeneous ensembles on

microarray datasets to increase stability. As in the former study, the authors reported bet-

ter stability results for all datasets. In order to balance stability and predictive accuracy,

however, Zhang and Jonassen (2019) proposed a hybrid ensemble approach which uses

homogeneous and heterogeneous ensembles. The authors presented both high predictive

accuracy and stability. On another study in which results corroborate with the latter, Saha,

Sarkar and Mitra (2009) compared the robustness of feature selection methods either in-
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dividually or as ensembles. Using Spearman correlation coefficient, ensembles yielded

higher robustness than individual methods for all microarray datasets.

In Yu and Liu (2003), the authors proposed a fast correlation-based filter which

can identify relevant and redundant features efficiently. The method achieved an average

accuracy of 95.06% with 14 features selected among 650 total using C4.5. Similarly, Ali

et al. (2018) presented an univariate ensemble-based feature selection method which can

identify relevant features among redundant ones. The author reported higher predictive

accuracy than state-of-the-art methods. The authors in Ben Brahim and Limam (2013)

explored the reliability assessment based on an aggregation technique in which classifica-

tion performance of features subsets determines features’ confidence to assess reliability.

According to the study, the ensemble-based method using KNN achieved 85.5% of F-

Measure and outperformed other methods on breast cancer dataset.

The study in Das, Das and Ghosh (2017) proposed an ensemble of bi-objective ge-

netic algorithm in which a stochastic search (through the genetic algorithm) is performed

on a feature selection algorithm for subsets of data. The proposed method outperformed

other methods for high-dimensional datasets. In Seijo-Pardo et al. (2017), the authors

used 7 datasets with different feature selection methods in order to improve training time

and increase accuracy. The best results presented for microarray datasets used homoge-

neous ensemble with SVM-RFE with mean as aggregation method. Among conclusions,

the authors state that "[...] an ensemble approach would seem to be the most reliable

approach to feature selection".

As consequence, the studies using microarray datasets evaluate performance either

using single feature selection methods or ensembles. The authors in Bolón-Canedo et al.

(2014) reviewed the performance of state-of-the-art feature selection methods across sev-

eral domains of microarray - breast cancer, prostate, brain, colon, ovarian. With mMRM

method and the top 10 genes selected, the authors achieved 100% recall for breast cancer

dataset. However, the authors concluded that, in general, performance depends on the

feature selection method, on the classifier and, mainly, on the problem domain. On an-

other approach, Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos (2012) designed

an ensemble in which for each base selector’s output a classifier was trained. The final

predictions were combined by majority voting. The heterogeneous ensemble approach

yielded a stability index of 0.229 for breast cancer data and a predictive error of 28.11%.

Using the same ensemble design, Liu, Liu and Zhang (2010) achieved an error of 3.09%.

However, in the latter, the authors grouped genes using information theory in which a
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gene is relevant if it is correlated to classes and not to other selected genes. The ensemble

selects one gene for each group of highly correlated genes in order to reduce redundancy.

The authors also reported increase in stability compared to other methods.

On another approach, presented by Sharifi et al. (2018), a decision tree combined

with meta-analysis were able to identify four biological markers with 83% accuracy. On

the other hand, Alejandro et al. (2018) cross-validated the results of genes selected from

ensemble feature selection algorithms with meta-analysis results and data from literature.

The authors were able to identify 100 genes that could explain 29 types of cancer. In

every case, Alejandro et al. (2018) reported accuracy higher than 90%.

Table 3.1 summarizes the main results found in the literature. Since the reported

performance metric varies among studies, we only included works that have reported

either AUC score or accuracy for the performance of the EFS approach. We note that

works that explore homogeneous ensemble feature selection use sampling methods from

the same dataset to generate data perturbation. In contrast, as we will explain in Chapter 4,

in our approach data perturbation comes from different datasets and the sampling method

bootstrap.

Table 3.1 – Main studies considering AUC score, accuracy (ACC) and the Kuncheva index (KI).
Reference Method AUC ACC KI
Zhang and Jonassen (2019) Hybrid EFS 99% - -
Alejandro et al. (2018) Hybrid EFS - 92% -
Ali et al. (2018) Heterogeneous EFS - 73% -
Das, Das and Ghosh (2017) Homogeneous EFS - 92% -
Pes, Dessì and Angioni (2017) Homogeneous EFS 90% - 0.96
Ben Brahim and Limam (2013) Heterogeneous EFS 84% - -
Liu, Liu and Zhang (2010) Hybrid EFS - 97% -
Abeel et al. (2009) Homogeneous EFS 96% - 0.72
Saha, Sarkar and Mitra (2009) Homogeneous EFS - 96% -
Yu and Liu (2003) Heterogeneous EFS - 89% -
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4 METHODOLOGY

Based on results found in the literature, we have designed a pipeline to evaluate

the performance of both ensemble feature selection and meta-analysis methods. Data col-

lection (Section 4.1) was executed manually to safely insure the data integrity and source.

Data pre-processing (Section 4.2) was a simple process to gather and to standardize all

common genes between the datasets. The EFS and meta-analysis design and evaluation

steps (Sections 4.3 and 4.4) were implemented and executed in R Language (R Core

Team, 2020) using several R packages1. The next sections will detail each step of the

evaluation process.

4.1 Data collection

There is a large volume of microarray datasets publicly available in databases such

as Gene Expression Omnibus (GEO) (EDGAR; DOMRACHEV; LASH, 2002; BAR-

RETT et al., 2012). In this work, we searched the GEO repository for datasets related to

breast cancer, selecting those that presented both control and tumor samples and a good

number of samples per group. We also restricted our search for Affymetrix or Agilent mi-

croarray platforms, for which pre-processing protocols are better established. All breast

cancer microarrays were included, except those that included cancer patients receiving

some kind of medical treatment.

In our search, 13 datasets were considered eligible for our study. Due to limita-

tions in the evaluation process, only datasets containing more than 10 samples in each

class were selected as training datasets defined as T = {T1, T2, T3, ..., T7} (Table 4.1).

The remaining datasets were assign for evaluation defined as E = {E1, E2, E3, ..., E6}

(Table 4.2). In this case, let D ∈ T ∪ E be a set of samples, each one as a tuple

(x, y)i = (xi1, x
i
2, x

i
3, ..., x

i
m, yi) where xik is the kth gene expression for sample i and

yi ∈ {normal, tumor} is the target value. Also, let Gk = [x1k, x
2
k, x

3
k, ..., x

n
k ] be the kth

gene’s expression values and Y = [y1, y2, y3, ..., yn] the target values for each sample.

We note that there is a large heterogeneity among different datasets in terms of

patients’ tumor characteristics. For instance, some datasets (e.g., GSE38959, GSE53752)

include patients with a triple negative tumor, which are those tested negative for the three

most common type of receptors in cancer, i.e., hormone epidermal growth factor receptor

1List of packages: <https://github.com/btrevizan/biomarker_id/blob/master/requirements.R>

https://github.com/btrevizan/biomarker_id/blob/master/requirements.R
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Table 4.1 – Datasets used for training.
Number of samples

Dataset Features Tumor Normal Total Tumor/Total Ratio
T1 GSE38959 19.750 30 13 43 0.70
T2 GSE42568 20.471 98 17 115 0.85
T3 GSE45827 20.917 122 36 158 0.77
T4 GSE53752 18.318 46 21 67 0.69
T5 GSE62944 23.368 1119 113 1232 0.91
T6 GSE70947 32.577 148 148 296 0.50
T7 GSE7904 20.896 42 18 60 0.70

Table 4.2 – Datasets used for evaluating the trained model.
Number of samples

Dataset Features Tumor Normal Total Tumor/Total Ratio
E1 GSE10797 12.182 27 5 32 0.84
E2 GSE22820 30.484 74 10 84 0.88
E3 GSE26304 31.013 109 6 115 0.95
E4 GSE57297 36.337 25 7 32 0.78
E5 GSE61304 18.663 57 4 61 0.93
E6 GSE71053 20.896 6 12 18 0.33

2 (HER-2), estrogen receptors (ER), and progesterone receptors (PR), and can be more

aggressive. Others include patients with both ER positive and negative (e.g., GSE42568)

or with various tumor subtypes (e.g., GSE45827). Also, dataset GSE62944 contains com-

bined data for several types of cancer screened by The Cancer Genome Atlas (TCGA)2,

from which we analyzed only samples related to breast cancer. The datasets heterogeneity

certainly poses challenges to data analysis, nonetheless, as we are interested in identifying

general breast cancer candidate biomarkers rather than subtype-specific ones, we deem

suitable to include datasets with different tumor subtypes.

4.2 Data Pre-processing

Microarray data pre-processing is important to adjust the effects on data from

technical and experimental variations and allow samples from the same study to be com-

parable to each other. There are well established bioinformatics protocols to perform gene

expression data pre-processing and prepare them for statistical or computational analyses.

Here, we adopted standard pre-processing pipelines for Affymetrix and Agilent platforms,

as reported in Bueno and Recamonde-Mendoza (2020)3. In summary, for Affymetrix

2<https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga>
3We thank Rodrigo Haas Bueno for his support with microarray data pre-processing.

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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studies, data quality analysis was performed with the arrayQualityMetrics package for

R, followed by normalization with the Robust Multi-array Average (RMA) algorithm

(IRIZARRY et al., 2003) through the oligo R package (CARVALHO; IRIZARRY, 2010).

To model and to correct possible batch efects (source of variation mainly due to tech-

nical heterogeneity), the surrogate variable analysis (SVA) correction algorithm (LEEK;

STOREY, 2007) was applied to data. Agilent studies were first assessed for data qual-

ity using the evaluation of MA-plots, background intensities boxplots, and PCA, as rec-

ommended by Limma user’s guide. Pre-processing of expression values was performed

using the limma R package (RITCHIE et al., 2015), applying background correction and

between-array normalization using the quantile method. Probe to gene symbol annota-

tion was performed using tables provided by the manufacturer or by the Bioconductor

repository.

In microarray datasets, a gene may be identified by many ways depending on the

reference identifier adopted. In order to avoid redundancy on gene identification for later

comparison of gene sets, its symbols were mapped to its intrinsic Entrez ID - a unique

gene identifier - using the R package biomaRt (DURINCK et al., 2005; DURINCK et al.,

2009). Furthermore, the resulting genes not belonging to any other dataset were removed

so as to create a unique set of common genes resulting in 7.897 genes in all datasets. An

example of a dataset is presented in Figure 4.1 in which the rows represent the patients,

the columns represent the genes, the values are the gene expressions and the last column

is the target value (class). To present readable results in Figures and Tables, we represent

the genes using their Official Symbol provided by HUGO Gene Nomenclature Committee

(HGNC)4.

Figure 4.1 – Dataset example after pre-processing.

4HUGO Gene Nomenclature Committee (HGNC): <https://www.genenames.org>

https://www.genenames.org
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4.3 Ensemble Feature Selection Design

For each training dataset Ti ∈ T , we create an ensemble whose design is presented

in Figure 4.2. As every dataset has a very limited number of samples, to generate stratified

folds for cross-validation and to avoid using training samples for testing, we split the data

into two - 60% for training and 40% for validation - stratified subsets. The training subset

is resampled to perturb data for N bags. N is also the number of base selectors, one for

each bag. We apply sampling through SMOTE to balance the class distribution in each

bag. Otherwise, bootstrap wouldn’t have the same effect for data perturbation once the

samples in the minority class would be very similar due to over sampling and it wouldn’t

preserve the class distribution. According to Schubach et al. (2017), applying a sampling

method in this step of the ensemble increases performance. Each base selector outputs a

full ranking of scored genes. The set of rankings is aggregated by arithmetic mean defined

in Equation 2.9. An ensemble feature selection outputs three objects: (i) local stability by

Kuncheva Index (Equation 2.14) for the set of rankings; (ii) final aggregated ranking, also

called as local ranking Li; and (iii) local performance metrics (defined in Section 2.2.5)

for the top K genes using 5-fold cross-validation, where K is the ranking threshold.

However, an ensemble feature selection output only measures performance based

on data presented for a classifier, i.e., Ti. Our interest lies in the stability and perfor-

mance across several studies. To evaluate the ensembles’ global stability, we applied the

Kuncheva Index to the local rankings Li for i = {1, 2, 3..., 7} generated (Figure 4.3). The

set of local rankings L is aggregated into a global ranking by arithmetic mean (Equation

2.9). We train a classifier using the global rank’s top K genes and the datasets Ti ∈ T as

training data. To asses the model, we calculate the performance metrics presented in Sec-

tion 2.2.5 using the test datasets Ei ∈ E (Section 4.1) never applied for training to avoid

data leakage. Finally, we have the global stability, global ranking and global performance

metrics to compare the EFS model to other methods.

4.4 Meta-analysis

As one of ours goals in this work is to compare EFS with state-of-the-art meta-

analysis, Figure 4.4 shows the same evaluation pipeline for EFS models. However, instead

of the local ranking for a dataset Ti, meta-analysis calculates the effect size for each

gene through differential expression analysis. The global ranking is generated by the
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Figure 4.2 – Ensemble Feature Selection pipeline.
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Figure 4.3 – Ensemble Feature Selection evaluation pipeline.
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meta-analysis method called Random Effect Model (REM) defined in Section 4.4. In this

way, we assure a fair comparison between EFS and REM by applying the same data and
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executing the same evaluation procedure for both methods.

Figure 4.4 – Meta-analysis evaluation pipeline.
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4.5 Experimental Setup

As discussed, there are many parameters to take into account. For every exper-

iment, however, we fix the number of folds in k-fold cross-validation to 5, the training

set size to 60% of the data and the aggregation method to mean. The classifiers’ spe-

cific parameters were automatically optimized by the train function implemented in the

caret package in R (KUHN, 2008). For this work purpose, we experiment with every

remaining parameter combination to have a broad view of its impact in stability and per-

formance. Sampling methods and threshold, for example, could impact performance and

stability. On the other hand, we expect that the number of bags impacts stability, but not

performance. And, the main object of study, feature selection algorithms could have a

decisive impact on stability, while classifiers could have on performance. Therefore, we

experiment every combination of the following parameters and its possible values:
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• Number of top genes selected: 5, 10, 15, 20, 25, 30, 50 75, 100, 150, 200, 250,

500

• Number of bags: 5, 10 ,25, 50, 100

• Sampling method: SMOTE, down sampling, no sampling

• Classifier: SVM, J48, KNN, NNET

• Base selector: information gain, chi squared (φc), symmetrical uncertainty, mRMR,

variance
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5 RESULTS

To ease our analyses, we divide this chapter into sections dedicated to only one

object of investigation. Furthermore, we adopted a top-down approach in which we begin

the analysis with an overview of the results and we end it with the most granular level. The

boxplots present a series of results considering all parameter values. When we specify

a parameter, the others are included with all its possible values. Section 5.1 presents

the stability results to identify the set of parameters that increases stability. Section 5.2

presents the classifiers’ predictive performance leading to Section 5.3 to compared the

presented results with meta-analysis. Finally, Section 5.4 analyze the selected genes’

biological functions.

5.1 Stability analysis

High stability for biomarker identification in ensemble feature selection methods

means the most informative genes for one study are also the most informative for another,

i.e., it reflects the quality and robustness of the selected genes across the studies. The ideal

scenario is a stability close to 1, indicating that almost all the same genes were selected by

feature selection methods across different studies. The bigger the subset of selected genes,

the higher the stability. Figure 5.1 shows the expected behavior for global stabilities,

i.e., stability increases with the number of selected genes. Note that global stabilities, in

general, are very low, which indicates that genes among each subset evaluated (top X

genes selected) show a considerable level of divergence. These differences observed for

distinct studies may be due to the molecular characteristics embedded in dataset used for

feature selection (FS), as well as to distinct FS methods and classifiers adopted in the

methodology. On the other hand, we can see a slight increase in stability for the top 5

genes. Therefore, local ensembles are most agreeing in ranking top positions.

As seen in Figure 5.1, outliers outperform - in terms of stability - for every thresh-

old. Breaking by base selectors, however, it is clear that variance presents an overall

higher stability in comparison to other base selectors (Figure 5.2a), which explains the

mentioned outliers. Figure 5.2b corroborates to establish variance as a robust method for

biomarker identification in microarray datasets and shows the impact of sampling methods

over stability. As the number of bags (Figure 5.3), sampling methods have insignificant

impact in the overall global stability. Therefore, stability is mainly impacted by the se-
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Figure 5.1 – Stability for different number of genes selected from the global ranking.
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lected genes’ subset size and the base selector bias. Since we want to selected a minimum

set of informative genes - the biomarkers - high stability lies in the choice of the base

selector.

Figure 5.2 – Variance outperforms other base selector methods independently of other
parameters.
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(b) Stability by sampling method break by base
selector.
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The global stabilities presented is at the top in the range of 1 to−1 from Kuncheva

index. According to Kuncheva (2007), stability is considered high when above 0.5. How-

ever, Figure 5.4 shows higher stabilities results when compared locally within different

datasets. In GEO, different datasets are collected from distinct studies and show var-

ied patients and tumor characteristics, which may explain our finding of local stabilities

higher than global stabilities. In this work, we will not address the biological implications
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Figure 5.3 – Stability for different number of bags regardless of base selector.
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of different sources of data, but this could be interesting to investigate in future analyses.

We can see that, once again, variance clearly achieves higher stabilities than other

base selectors. Furthermore, the GSE62944 dataset presents higher stability for every

base selector in comparison with other datasets. We could hypothesize that a positive

correlation exists between the number of samples and stability since the dataset has 1.232

samples while the other datasets have 123 ± 86 samples on average. However, this as-

sumption needs to be validated in further experiments.

Figure 5.4 – Local stability for training datasets break by base selector.
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5.2 Predictive performance analysis

Classifiers predictive performance can also guide the identification of biomark-

ers. We can hypothesize that the most informative genes will yield a better performance

in classification. However, several other parameters could also impact performance. As

Figure 5.5 shows, the number of genes selected and base selectors don’t impact perfor-

mance significantly. We can see a slight increase on performance until 50 genes are

selected. However, in general, the top 5 genes already presented high F1-Score values

(Figure 5.5a). Among the base selectors, variance presented results with less variability,

which corroborates with the stability results. Therefore, we will focus our next analysis

on results presented by variance as base selector and the top 20 genes as threshold.

Figure 5.5 – Both threshold and base selector have no impact on performance.
(a)
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In general, the ensemble learning feature selection method presented satisfactory

performance. Figure 5.6c shows that there is an insignificant difference between the high-

est median results within test datasets. On recall (5.6b), we can see higher variance in

results while on precision (5.6a) we see less variable results. This effect could be caused

by a disproportionately smaller number of negative samples compared to the number of

positive samples making recall more sensitive to prediction variations. Nonetheless, F1-

Score results mostly vary between different test datasets due to the heterogeneity between

them (different studies).

Table 5.1 shows the performance summary. There are no unique classifier able to

perform satisfactorily for every test dataset. However, the mean absolute error (MAE),

which is the mean difference between the highest performance and the other perfor-

mances, in most cases is less than 0.1. For example, MAE for GSE10797 is [(0.963 −

0.928) + (0.963 − 0.925) + (0.963 − 0.924)]/3 ≈ 0.04. MAE can be seen as a relative

measure of how much better the best classifier is among the others. Note that when SVM
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Figure 5.6 – Classification performance across test datasets using variance and the top 20 genes.
(a) Precision.
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(b) Recall.
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(c) F1-Score.
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- with σ = 0.04 and C = 1 - outperform other classifiers within test datasets, its MAE is

higher compared to the other cases. In this way, generally, SVM would be the best choice.

On the other hand, in terms of recall, KNN - with K = 5 - seems to be a more robust
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choice (Table 5.2). Due to KNN inductive bias, we can raise the hypothesis that the genes

selected by variance clustered well true samples reducing false negative predictions.

Table 5.1 – Classifiers’ mean F1-Score by test dataset for variance and the top 20 genes. Bold
values indicate the highest performance achieved for a dataset.

Classifier
Dataset SVM J48 KNN NNET MAE
GSE10797 0.92± 0.01 0.92± 0.03 0.96 ± 0.02 0.92± 0.02 0.04
GSE22820 0.72± 0.28 0.87± 0.05 0.88 ± 0.05 0.85± 0.16 0.06
GSE26304 0.86± 0.12 0.88 ± 0.14 0.77± 0.07 0.84± 0.22 0.05
GSE57297 0.93 ± 0.04 0.79± 0.10 0.89± 0.03 0.77± 0.18 0.11
GSE61304 0.96 ± 0.03 0.84± 0.09 0.84± 0.09 0.94± 0.04 0.08
GSE71053 0.76 ± 0.06 0.53± 0.14 0.68± 0.07 0.62± 0.17 0.15

Table 5.2 – Classifiers’ mean Recall by test dataset for variance and the top 20 genes. Bold
values indicate the highest performance achieved for a dataset.

Classifier
Dataset SVM J48 KNN NNET MAE
GSE10797 1.00 ± 0.00 0.96± 0.04 1.00 ± 0.00 0.96± 0.02 0.03
GSE22820 0.71± 0.37 0.87± 0.10 0.89 ± 0.09 0.86± 0.23 0.08
GSE26304 0.54± 0.43 0.85 ± 0.22 0.65± 0.10 0.81± 0.28 0.18
GSE57297 0.89 ± 0.09 0.78± 0.20 0.89 ± 0.08 0.72± 0.25 0.14
GSE61304 0.92 ± 0.06 0.76± 0.16 0.74± 0.14 0.90± 0.06 0.12
GSE71053 0.62± 0.07 0.57± 0.29 0.75 ± 0.16 0.50± 0.16 0.19

An interesting case happens with GSE26304 in which J48 classifier - withC = 0.5

and M = 3 - presents both the highest F1-Score and recall among other classifiers. To

investigate the difference in performance, we plot the model’s representation in Figure

5.7. The most informative genes - the ones in and near the root - are not even in the top

6 genes selected by variance. We can see that the gene LEP - the tree’s root - is at the

ranking’s 9th position. J48 also performs satisfactorily for other cases, which makes the

classifier an important candidate to understand genes’ informative power in a dataset due

to its easy interpretation.

5.3 EFS versus Meta-analysis

To validate the proposed EFS method, we compared it with results generated by

one of the state-of-the-art methods for candidate biomarkers identification - meta-analysis

of transcriptome data. It is important to analyze their differences in performance to un-

derstand the scenarios in which one method outperform the other. For Figure 5.8, the EFS
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Figure 5.7 – J48 model trained with the top 20 genes selected by variance. Rules’ values are
expressed in log2 scale.
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results were generated by variance and both methods applied the top 20 genes. The clas-

sifiers were able to perform satisfactorily for different sets of genes - one for each method.

However, we can see a slightly better performance for EFS. Within each test dataset, it is

clear that EFS methodology outperform meta-analysis in most cases (Figure 5.9).

Table 5.3 summarizes the performance of the both methods which corroborates

with the presented results. Note that, for GSE613040 and GSE71053, EFS outperform

meta-analysis by 0.331 and 0.139, respectively. However, the interesting case lies on

GSE26304. As mentioned, J48 performed satisfactorily for GSE26304. We saw that

the classifier was not applying the top genes in the model. Instead, J48 identifies genes

at middle positions in the ranking as being the most informative. Due to heterogeneity

between the rankings and the datasets, GSE26304 case must be further investigated.

Both methods presented satisfactory performance. The biggest difference in per-

formance was found between the test datasets. Meta-analysis presented a high perfor-

mance for GSE26304. However, in four out of the six test datasets, EFS outperforms the

state-of-the-art method. When comparing the top 20 ranking generated by EFS and meta-

analysis, a curious finding is that the overlap among them is very low. Only one gene

was common to both rankings, namely S100A7. Gene S100A7 is also present in the J48

trained model (Figure 5.7) for GSE26304, which highlights its informative power to this
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Figure 5.8 – Classifier general performance comparison between EFS and meta-analysis.
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Figure 5.9 – Comparison of EFS and meta-analysis performance within test datasets regardless of
classifier.
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specific study. According to literature, S100A7 is highly expressed in breast cancer and

may play a role in early tumor progression (EMBERLEY; MURPHY; WATSON, 2004).

The high correlation among genes may justify to some extent the low overlap - a factor
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Table 5.3 – Methods’ mean F1-Score by test dataset for variance and the top 20 genes regardless
of classifier. Bold values indicate the highest performance achieved for a dataset.

Method
Dataset EFS Meta-analysis MAE
GSE10797 0.94 ± 0.02 0.87± 0.05 0.079
GSE22820 0.88 ± 0.07 0.83± 0.16 0.048
GSE26304 0.83± 0.13 0.95 ± 0.01 0.120
GSE57297 0.82± 0.13 0.92 ± 0.06 0.098
GSE61304 0.88 ± 0.07 0.55± 0.11 0.331
GSE71053 0.70 ± 0.10 0.56± 0.18 0.139

that should be further investigated. Among the top 5 genes found by our approach, we

identified TFF1, SCGB1D2, SCGB2A2, and PIP with previous relation with breast cancer

according to Genecards database1. A more in-depth analysis of the genes selected by the

EFS approach, including the investigation of their biological role, may be useful for better

understanding their possible relation with breast cancer.

Table 5.4 – Top 20 genes found by EFS and meta-analysis ordered by ranking position (#). Bold
values indicates matched IDs.

Gene Symbol
# EFS Meta-analysis
1 SCGB2A2 CXCL10
2 PIP S100A7
3 SCGB1D2 FMOD
4 TFF1 POP1
5 LTF OXA1L
6 ADIPOQ ILK
7 KRT14 IGF1
8 GABRP MX1
9 LEP MOAP1
10 KRT15 APOD
11 CPB1 BTG1
12 AGR2 ASPM
13 DHRS2 KIF14
14 LPL CHML
15 S100A7 OAS2
16 S100P CKS2
17 CALML5 MYL9
18 CIDEC AHCYL1
19 PCOLCE2 SCO2
20 FOSB BARD1

1https://www.genecards.org/
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5.4 Functional analysis of most informative genes

To interpret the rankings produced by our EFS approach and the meta-analysis

method in terms of biological plausibility, we performed a functional enrichment analysis

of results. In Bioinformatics, functional enrichment analyses are carried out to investigate

the functional role of a set of genes of interest and extract hypotheses about their relation

with the condition under study. These methods aim at detecting pathways or functions

over-represented (i.e., significantly associated) in the set of genes relative to what is ex-

pected by chance using common statistical tests. For ranked list of genes, the Gene Set

Enrichment Analysis (GSEA) is particularly suitable, since it aims at determining whether

genes participating in a given biological pathway tend to occur towards the top (or bottom)

of the ranked list, suggesting that this pathway is correlated with the disease or condition

investigated (SUBRAMANIAN et al., 2005). Therefore, it is not necessary to filter the

ranking by using a specific threshold such as the top K genes.

Table 5.5 – KEGG pathways enriched (FDR < 0.05) for the ranking generated by our EFS
approach. NES: normalized enrichment score. setSize: number of genes in the ranking that were

associated with a given pathway.
ID Description setSize NES pvalue FDR

hsa04061 Viral protein interaction with cytokine and cytokine receptor 70 1.635 9.9990e-05 0.0048
hsa04151 PI3K-Akt signaling pathway 264 1.342 9.9990e-05 0.0048
hsa04512 ECM-receptor interaction 71 1.642 9.9990e-05 0.0048
hsa04657 IL-17 signaling pathway 69 1.681 9.9990e-05 0.0048
hsa03320 PPAR signaling pathway 54 1.800 1e-04 0.0048
hsa04974 Protein digestion and absorption 64 1.650 1e-04 0.0048
hsa05150 Staphylococcus aureus infection 42 1.823 0.0001 0.0048
hsa04060 Cytokine-cytokine receptor interaction 189 1.409 0.0001 0.0075
hsa04915 Estrogen signaling pathway 101 1.532 0.0001 0.0075
hsa04610 Complement and coagulation cascades 61 1.579 4e-04 0.0135
hsa00982 Drug metabolism - cytochrome P450 40 1.636 0.0008 0.0245
hsa05144 Malaria 41 1.607 0.0014 0.0394
hsa00350 Tyrosine metabolism 30 1.649 0.0016 0.0417

Table 5.6 – KEGG pathways enriched (FDR < 0.05) for the ranking generated by the REM
meta-analysis method. NES: normalized enrichment score. setSize: number of genes in the

ranking that were associated with a given pathway.
ID Description setSize NES p-value FDR

hsa04110 Cell cycle 99 1.540 9.9990e-05 0.0170
hsa03030 DNA replication 28 1.971 0.0001 0.0170
hsa03410 Base excision repair 28 1.782 0.0002 0.0226

To run this analysis, we used the R package clusterProfiler (YU et al., 2012)

and the functional annotations (i.e., gene sets) provided by the KEGG Pathway database

(KANEHISA; GOTO, 2000). The function gseKEGG was adopted, considering pathways
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composed of three to 800 genes. The function computes an enrichment score (ES), which

reflects the degree to which the genes in a gene set are over-represented at the provided

ranking, either in top or bottom of it. The normalized enrichment score (NES) is an adjust-

ment of the ES to account for differences in the gene set sizes, allowing a comparison of

results across gene sets. We ran 10.000 permutations to assess the statistical significance

of the ES and used the False Discovery Rate (FDR) method to adjust p-values for multi-

ple hypothesis testing. Pathways with an adjusted p-value FDR < 0.05 were considered

statistically significant in our functional enrichment analysis.

Results for this analysis are shown in Tables 5.5 and 5.6 for EFS and REM rank-

ings, respectively. A total of 13 pathways were enriched for the EFS ranking, whereas

three were found significantly associated with the meta-analysis ranking. An interesting

finding is that there is no overlap between the pathways enriched in the rankings produced

by the two methods. Moreover, in both rankings we can observe pathways that have been

previously implicated in cancer. Regarding results obtained for the analysis of EFS rank-

ing, we observed the enrichment of the PI3K-Akt signaling pathway, involved in growth,

proliferation, survival, motility, metabolism, and immune response regulation, and also

in cancer cell resistance to antitumor therapies (ORTEGA et al., 2020). We also found

the signaling pathway by interleukin-17 (IL-17), a family of proinflammatory cytokines

with both pro and antitumor effects depending on the conditions (FABRE et al., 2018),

significantly associated with this ranking. In Bai et al. (2019), authors also observed the

enrichment of the PPAR signaling pathway, ECM-receptor interactuion, IL-17 signaling

pathway, Complement and coagulation cascades, and Tyrosine metabolism in their list of

differentially expressed genes derived from three breast cancer gene expression datasets.

Regarding the meta-analysis ranking, the three pathways enriched are related to

DNA damage and repair, and to cell cycle. The cell cycle pathway is essential for cell

growth, proliferation, and reproduction. Deregulation of the cell cycle is a common fea-

ture of cancer, enabling limitless cell division and promoting increased susceptibility to

the accumulation of additional genetic alterations (MALUMBRES; BARBACID, 2009).

In addition, defects in DNA damage and repair machinery are an underlying cause for the

development and progression of several types of cancer, including breast cancer. Interest-

ingly, the two most studies genes in breast cancer, BRCA1 and BRCA2, whose mutations

are known to predispose to breast and ovarian cancer, transcriptionally regulate some

genes involved in DNA repair and cell cycle (YOSHIDA; MIKI, 2004).

The visualization of the GSEA results is provided in Figure 5.10 for the EFS rank-
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ing and in Figure 5.11 for the meta-analysis ranking, considering two selected pathways

among the most enriched ones.

Figure 5.10 – Significantly enriched pathways in the EFS-based ranking according to the GSEA
analysis using KEGG as the annotation database. For both pathways, many genes concentrated in

the top of the ranking have participation in the given biological process.
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Figure 5.11 – Significantly enriched KEGG pathways in the ranking extracted with the
meta-analysis approach according to the GSEA analysis.
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The PI3K-Akt and IL-17 signaling pathways show a maximum deviation of the

enrichment score from zero (indicated by the red dashed line) before the top 2000 genes.

We may also visually note the larger number of genes involved in the PI3K-Akt signal-

ing pathway, as indicated by the rug plot in the bottom of the plots showing the running

enrichment score. In the cell cycle and DNA replication pathways over-represented in

the meta-analysis ranking (Figure 5.11), we note that although more genes are involved
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in cell cycle, the maximum running score for DNA replication is found at a higher posi-

tion of the ranking. This indicates that genes involved in DNA replication tend to have

higher relevance according to the criterion adopted by the REM meta-analysis method to

consider genes more informative for breast cancer detection.
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6 CONCLUSIONS

Genomics has been an increasing field of study in the last decades. From bi-

ological processes to pathological ones, genomics helps to understand the implications

of diseases and treatments in a gene level. The human cell holds approximately 20.000

genes. In this sense, high-throughput technologies, such as microarray, have been applied

to extract the expression profiles from each one of the 20.000 genes. The set of expression

profiles constitutes a high-dimensional dataset. To extract information, and consequently

knowledge, from data, advanced computational algorithms are required since state-of-

the-art methods no longer perform satisfactorily under these conditions. Feature selection

and, mainly, ensemble feature selection approaches have been studied as an alternative

tool for knowledge discovery in high-dimensional datasets. EFS has been applied to iden-

tify biomarkers in microarray datasets. In this work, we apply an homogeneous EFS to

increase stability while maintaining performance in breast cancer biomarker identifica-

tion. We compare the results with the state-of-the-art method, meta-analysis.

Across all datasets, homogeneous EFS achieved stabilities higher than 0.3 in a

range of −1 to 1. Locally, within each dataset, EFS achieved stabilities close to 1, mainly

for EFS based on variance feature selection method. Stability findings evidence the het-

erogeneity between the datasets. Nonetheless, globally and locally, homogeneous EFS

based on variance clearly achieved the highest stabilities. Specially for the top 5 genes,

variance achieved a global stability close to 0.4 which indicates EFS agrees on the five

most informative genes across all datasets.

While stability reflects the quality of selected genes, performance is equally im-

portant to assure genes’ informative power. Throughout the experiments, we show that

the threshold and the type of base selector have no significant impact on performance. On

the other hand, SVM outperform other classifiers in most cases in terms of F1-Score for

the top 20 genes selected by variance. To increase recall, however, KNN showed better

results among the classifiers. We also compared the EFS performance to meta-analysis

results. Overall, homogeneous EFS outperfom meta-analysis. In GSE61304, for example,

the difference in performance was, on average, 0.331 for F1-Score.

Interestingly, for both rankings we found a strong enrichment of pathways pre-

viously implicated in cancer pathogenesis, although more terms were retrieved for the

EFS-based ranking. Moreover, no overlap was found among terms enriched for the EFS

and meta-analysis rankings. The lack of overlap among over-represented pathways for
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the rankings derived from distinct analytical strategies may suggest that the EFS-based

method proposed in our work reveals complementary mechanisms to the traditional meta-

analysis regarding the molecular basis of breast cancer. In other words, each approach

may be sensitive to detect distinct types of molecular alterations, which may help eluci-

dating different faces of cancer development or progression. Further exploration of these

results is needed to better understand their differences and how they could be jointly ex-

plored in the search for candidate cancer biomarkers.

Despite our promising results, important questions still remain unanswered. Are

there biological implications within each dataset that can explain the difference in stability

and performance between them? Does variance as base selector cluster tumor cases better

so KNN is able to increase recall? Are there significant difference between EFS and meta-

analysis top 20 genes? Does feature selection methods were able to reduce redundancy

between the top genes? Could genes be grouped in order to reduce redundancy? As an

important health issue, we must address these important questions in future studies to

assure the quality and safety of our approach for practical usage.
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