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ABSTRACT

Computer networks are under constant threat, even more when connected to the Internet.
To decrease the risk of invasions and downtime, security devices such as the packet filter are
deployed. As a first layer of security, the packet filter is responsible for blocking out unwanted
traffic at key network locations. The packets dropped or forwarded by the filter are defined by
a set of rules programmed by the network administrator. These rules are in the form of guarded
commands, each with a condition and a decision section.

As the number of services and networks grow, the number of rules tend to grow as well.
Beyond a certain threshold, the complexity of maintaining such a large and distributed set of rules
becomes a burden for the network administrator. Mistakes can be easily made, compromising
security.

This work develops the concept of “anomaly”, each representing a potential problem, a con-
tradiction or a superfluous rule in the rule set; i.e. a warning to the system administrator. There
are 7 types of anomalies divided in two groups: single filter anomalies and networked anomalies.
The single-filter anomalies warns the administrator about rules that contradict one another (the
“conflict” anomaly) or have no effect (“invisibility” and “redundancy”) in the analysed filter. The
networked anomalies, on the other hand, analyse the filters in the context of the network topol-
ogy and warn the administrator about filters that contradict one another (“disagreement”), filters
that block desired traffic (“blocking”), rules that have no effect on the given network topology
(“irrelevancy”) and routers that are enabling unwanted traffic (“leaking”). Each type of anomaly
is formally defined along with its algorithm.

The developed concepts were used to implement a tool — the Packet Filter Checker (PFC)
— that reads a description of the rules and network topology in a simple custom language and
reports all anomalies present. This tool is used to analyse and fix a fictional user case in several
iterations of changing requirements. This shows the tool and the anomalies in the target context:
where they help the network administrator.

Keywords: packet filter, firewall, security policy, policy conflict, rule coherence.



RESUMO

Redes de computadores estão sob constante ameaça, ainda mais quando conectadas à Inter-
net. Para reduzir o risco, dispositivos de segurança como o filtro de pacotes são usados. Uma
primeira camada de segurança, o filtro de pacotes é responsável pelo bloqueio do tráfego indese-
jado em posições chave da rede. Os pacotes que devem ser permitidos ou bloqueados pelo filtro
são definidos através de um conjunto de regras programadas pelo administrador da rede. Essas
regras tem duas partes: a seleção e a ação.

Conforme cresce a rede e o número de serviços, a quantidade de regras tende a aumentar.
Passado certo limite, a complexidade de manter uma quantidade grande de regras se torna um
fardo para o administrador. Isso aumenta a probabilidade de enganos que podem prejudicar a
segurança da rede.

Este trabalho desenvolve o conceito de “anomalia”, cada qual representa um problema em
potencial, uma contradição ou uma regra supérflua dentro do conjunto de regras; ou seja, cada
anomalia alerta o administrador da rede para determinada situação. Há 7 tipos de anomalias, que
podem ser divididos em dois grupos: anomalias de filtro único e anomalias em rede. As ano-
malias de filtro único alertam o administrador sobre regras que se contradizem (“bloqueio”) ou
que não possuem efeito no filtro (“invisibilidade” e “redundância”). As anomalias em rede, por
sua vez, alertam o administrador sobre filtros que se contradizem (“discordância”), filtros que
bloqueiam tráfego desejado (“bloqueio”), regras que não se aplicam a nenhum pacote que passe
pelo filtro onde estão (“irrelevância”) e roteadores que permitem a passagem de tráfego indese-
jado (“vazamento”). Cada um desses tipos de anomalia é definido formalmente e apresentado
junto com um algoritmo que a encontra.

As anomalias e seus algoritmos foram usados para implementar uma ferramenta, o Packet
Filter Checker (PFC), que lê as regras e a descrição da topologia da rede e cria um relatório com
todas as anomalias presentes. Este trabalho apresenta um caso de uso fictício que é analisado e
corrigido com base nos resultados apresentados pela ferramenta. O caso de uso é apresentado em
diversas iterações, cada uma representando alterações nos requisitos da rede. Este caso mostra a
ferramenta e os conceitos no contexto-alvo: na ajuda ao administrador da rede.

Palavras-chave: filtro de pacotes, firewall, política de segurança, conflito, coerência de regras.
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1 INTRODUCTION

Communication and interoperability between computers and other devices is of utmost im-
portance to individuals and corporations. Applications such as electronic commerce, electronic
mail, web browsing and others require the interconnection of computers to work. On the Internet
and on most private networks, this communication is performed using the Internet Protocol (IP).
This protocol provides the means to identify (IP address) and locate resources on the network.

Most of the data in an IP network is transported using two other protocols: the Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP provides a way to create
and identify error-free communication channels with delivery and ordering guaranteed between
two end systems. TCP is the transport protocol used in the Web, for instance. TCP enables many
users to access a service, and also a single user to access many instances of a service. UDP, on
the other hand, does not have the concept of communication channel. It allows a service to be
accessed by multiple users, but it does not guarantee delivery, order or correctness. That also
means that it has less overhead over the transported data.

Through the use of these protocols by others of higher level, the Internet provides all its
variety of services. And it is this large set of available services that makes the Internet hard to
secure.

It is risky to be connected to the Internet. This risk comes not only from vulnerabilities on
the software used to access the services (from operating systems to browsers), but also from
the software that provides the services. In addition to that, there are malicious users on the
network that are ready to exploit these vulnerabilities. To defend a network from these users,
many software and hardware solutions are developed and deployed.

A first layer of protection can be found in firewalls, which are devices that can be deployed
in key network locations to monitor and filter connections. Firewalls can be oriented to various
aspects: application, traffic, service, etc. A very common orientation, and the one this work deals
with, is the packet filter. The packet filter is a device used to control the data traffic between
“network zones” with different security requirements. This control is configured by the use
of rules. Each rule has two parts: the match and the target (WELTE; AYUSO, 2007). The
match selects which packets the rule should be applied to, and the target is the action to be
taken. The most common targets, which are available in every packet filter, are accept and deny.
“Accept” let the selected packets travel through the device, while “deny” makes the filter drop the
packets. Many filter implementations have other targets, to log or redirect packets, but “accept”
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and “deny” (and their equivalent) are the basic ones.
Even though filters are completely defined with such a simple unit (set of tuples match→target),

filters can become quite complex and difficult to understand as the number of rules increase. The
limitations in the semantics of matches and the complexity of the security policy are the main
reasons for the high number of rules. In addition, these rules can be spread along many security
devices, making the maintenance of the security policies and the network topology a difficult and
error-prone task.

In a single filter, errors come mostly from the order of the rules. When a packet arrives, the
filter searches the rule list from top to bottom until it finds a matching rule. If a new rule is placed
too low in the list, it might not match all the intended packets; if a new rule is placed to high,
it might match more packets than it should. Both situations can make the behaviour of the filter
diverge from the security policy.

For single filters, this work defines 3 types of anomalies - potential errors that can come from
the wrong ordering of the rules: the invisibility - when a rule never matches any packet; the
conflict - when the order between two rules is neither trivial nor irrelevant; and the redundancy -
when a rule can be removed without any impact on the filter. All these situations are undesired,
and all can be easily fixed by the addition, removal or target changing of the rules.

In a system with multiple networked filters there are situations that come from the interaction
of the rules of different filters. These situations form a whole new set of problems, as packets
from one point to the other may be filtered by different rule sets as nodes fail and even under
normal conditions. With the rules spread out between the filters, analysing and guaranteeing the
overall behaviour becomes very hard.

For networked filters, we provide four other types of anomalies - in this case, when different
paths in the network provide different accessibility for packets: the disagreement - when two
filters define different targets for directly connected networks; the block - when a filter deny
packets that should be accepted; the irrelevancy - when a filter has rules that deal with packets
that don’t pass through it; and the leak - when a set of routers provide a path for packets that
should be dropped.

This work provides, for each anomaly, detailed definitions, examples and algorithms. The
Packet Filter Checker (PFC) is the application developed that analyses networks and filters and
generates many of the figures in this work. PFC is also where the algorithms presented were
validated, and can thus find anomalies in filters that the user describes.

This work is organized as follows. In chapter 2, an introduction to computer networks and
protocols is presented along with packet filters. Chapter 3 explores existing works that deal
with rule coherence and positions this work among them. In chapter 4, the scheme used for the
verification of rules in an isolated packet filter is explained. Chapter 5 extends this scheme to
deal with a set of networked filters. Chapter 6 presents a case study and shows the use of the
application developed. At last, the conclusion is drawn, followed by the references.
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2 COMPUTER NETWORKS AND PACKET FILTERS

2.1 The Internet Protocol

The basic information on IP is taken from RFC791 (POSTEL, 1981a), even though a number
of RFC’s update the protocol (ALMQUIST, 1992; NICHOLS et al., 1998; RAMAKRISHNAN;
FLOYD; BLACK, 2001). These updates are not relevant for this work, as they deal mostly with
the field Type of Service that will not be used.

According to the OSI model (ZIMMERMANN, 1980), the purpose of the network layer is to
provide the means to exchange data units between two transport endpoints.

In practice, and according to RFC791, the scope of IP is to deliver a limited sequence of
bits (internet datagram) from a source to a destination in a system of interconnected networks.
The protocol has no flow control and does not guarantee datagram ordering, delivery or integrity.
What it provides is an abstraction over the links used by the source, destination and intermediate
nodes.

An IP datagram has two parts: the header and the payload. The header has the information
that is used by the protocol itself, while the payload has the data being transmitted.

The IP header has a field denominated Protocol that identifies the payload format. That is, it
indicates if the payload is an ICMP control message, a TCP packet or an UDP datagram, among
other options.

The other two important fields of the IP header are the Source Address and the Destination
Address. These fields have the IP address of the source and destination device, respectively.

2.1.1 IP addressing and routing

The IP address is four octets that identify a network interface. The address, with the excep-
tion of some ranges, has global scope. For a specific service to be available on the internet, the
host of the service must have an interface with a globally valid and unique IP address.

RFC791 specified that the number of nodes in a network was fixed and given by the class
of the IP address of the network. This approach was replaced by a hierarchical scheme, where
each network can be seen as a unique block from outside, and be divided internally as smaller
networks. This new approach is called Classless Inter-Domain Routing (CIDR) (REKHTER;
LI, 1993; FULLER et al., 1993). CIDR uses, in addition to the network address of the interface,
a network mask. This mask has also four octets and identifies which bits of the address define
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the network and which define the host. For instance: an address 205.100.27.2 with the mask
255.255.255.0 belongs to a device on the network 205.100.27.0. As network masks have all “on”
bits before the first “off” bit, they are usually represented by the number of “on” bits following
a slash in the interface address. This representation is called the network prefix of the network.
The network prefix of the example above is 205.100.27.2/24.

To get to its destination, an IP datagram that is not addressed to the local network must go
through a set of routers (BAKER, 1995). Routers are network devices that connect different net-
works and forward datagrams from one interface to the other based on the datagram’s destination
address. The decision process is called routing.

Routers know which networks their interfaces are connected to, and also about other routers
and their networks. This information can be provided statically by the network administrator or
obtained dynamically through the use of routing protocols, such as RIP (MALKIN, 1993) and
OSPF (MOY, 1998). It is also common to have a default route to use if a datagram is destined
to an unknown network, specially in the presence of a connection to the Internet.

All considerations made above are valid inside an autonomous system (AS) (HAWKINSON;
BATES, 1996). The macro structure of the Internet is composed by several autonomic systems
that represent different corporative and administrative domains. The requirements and imple-
mentation of inter-AS routing are different from those presented above.

2.1.2 ICMP

The Internet Control Message Protocol (POSTEL, 1981b) is used for the exchange of
control messages between two IP entities. These messages travel inside the payload of the IP
datagram, but are part of the protocol and not an upper layer.

An ICMP message is identified with the value 1 in the Protocol field of the IP header. After
the header, the type of message is identified by an octet, and the rest of the datagram contains
the body of the message. Some message types are more common than others, and some are even
obsolete (ZWICKY; COOPER; CHAPMAN, 2000). Some types available are:

echo request and echo reply These messages are used by utilities such as ping and traceroute.
An IP entity send an echo request with some data to another entity, that has to reply with
the same data.

destination unreachable Can be sent by a gateway upon discovering that the destination of an
IP datagram can’t be reached.

source quench Sent by a IP entity when it is receiving datagrams from a source too fast. Can
be described as a “please slow down” request.

time to live exceeded This message means that a datagram has exceeded its Time To Live (TTL).
Can signal routing problems, for instance.

parameter problem This message is sent to the source of an invalid datagram that had to be
discarded.
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redirect This message is sent to a host when a datagram should be sent through another path.
The datagram is also forwarded to the correct path.

router announcement and router selection Can be used to request and announce routers in a
network.

Even though ICMP messages are useful, they also represent a risk if allowed to flow freely
in a network.

Destination unreachable and time to live exceeded are used by traceroute and allow the dis-
covery of the topology of a network. Destination unreachable can be forged in such a way as to
close a connection between two hosts.

Redirect, router announcement and router selection are supposed to modify the routing table
of a host and can be used in a denial of service attack.

It is recommended (ZWICKY; COOPER; CHAPMAN, 2000) that administrators allow only
the ICMP messages that are used and deny all others. This policy denies also several ICMP
messages that are not cited above and that can be as dangerous.

2.2 UDP

RFC768 (POSTEL, 1980) defines the User Datagram Protocol (UDP) as a mean to ex-
change datagrams over IP.

As in other IP protocols, a UDP datagram has a header and a payload, that are both carried
inside the payload of the IP datagram. The header identifies the source and destination ports.

Source port is an optional UDP field. It can be used to indicate the port that should be used
for an answer.

The destination port, on the other hand, only has meaning when used with the destination
IP. Together, they identify the destination process that is supposed to receive the datagram.

UDP, by itself, does not define anything else. That means that there are no datagram arrival,
integrity or ordering guarantees.

UDP can be seen as IP plus ports, and it is usually used by the applications with transport
requirements different from those provided by TCP.

2.3 TCP

The Transmission Control Protocol (TCP), defined in RFC793 (POSTEL, 1981c), provides
a reliable communication channel between two processes in different hosts in a networked envi-
ronment. TCP is connection oriented, and corresponds to the transport layer of the OSI model.
The reliability of the channel implies that the data will arrive at its destination in the same order
it was sent, without loss or duplication.

For the scope of this work, there are three fields of interest in the TCP header:

source port Identifies the sending process.

destination port Identifies the destination process.
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Client Server

SYN=1, ACK=0

SYN=0, ACK=1

SYN=1, ACK=1

SYN=0, ACK=1
d a t a

Figure 2.1: Starting a TCP connection

flags Flags are used in special packets, to establish a connection, for instance. The flags will be
explained later on.

A single connection is identified globally by the set { destinationIP , destinationport, sourceIP ,
sourceport }. That is the reason a host can access the service in several instances, as long as its
source port is unique. TCP is bidirectional, requiring no extra connection for answers.

The most used TCP flags and their meaning (ZWICKY; COOPER; CHAPMAN, 2000):

ACK Acknowledgement. Should be “no” in every packed of a connection except the first one.

RST Reset. Aborts a connection.

SYN Synchronize. Used in connection establishment to synchronize the sequence numbers.

FIN Finish. Used when gracefully closing a connection.

Figure 2.1 shows that the first packet exchanged in the establishment of a TCP connection
has the ACK flag off. That makes it easy to block connection initiation.
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The RST flag is used to abort a connection. A packet with this flag on can be sent from
any side at any moment when a problem is detected in the connection or an unexpected packet
arrives. RST is sent, for example, when a connection start request is made to a port with no
process attached.

The SYN flag makes it possible to check if a port has a process without completely estab-
lishing a connection. This is called half open port scan (HEMNI, 2006), and is performed by
sending a packet with the SYN flag on and then checking the answer. If it is a packet with the
RST flag, there is no process; if it is a packet with ACK on, then, there is one. As most sys-
tems do not log connections that are not fully open, it is possible to scan the processes of a host
without alerting the system administrator.

Similar techniques can be used to discover the operating system of a host (VASKOVICH,
2008), as different implementations of IP behave slightly different in the presence of unusual
datagrams.

Even though it is impossible to eliminate all threats with packet filters, they can be at least
reduced. For instance, it is possible to block invalid packets in the filter, preventing some OS
scan methods.

Another important use of packet filters is of centralizing and protecting against security fail-
ures in services that can be open by default or without the user’s knowledge. Some operating
systems have services on by default to make the user’s life easier, even though that creates attack
vectors. With packet filters, it is possible to prevent access to services that are not explicitly
offered according to the security policy.

2.4 Packet filters

As mentioned, the packet filter is the component of a firewall responsible for blocking unde-
sired datagrams. Packet filters are usually placed between networks in order to control the flow
of data between zones with different accessibility requirements. In this aspect, they also act as
routers.

A packet filter is an entity uniquely defined by:

• The IP address and network prefix length of its interfaces;

• The set of rules of the filter.

There are several models for the exact format of the rules, but every model studied shared a
common subset:

• Every rule has two parts, one responsible for the selection of datagrams (match) and other
that defines the action to be taken for the datagrams (target);

• The set of rules is analysed in a sequence by the filter for every packet, until a rule selects
the packet and defines the action to be taken;

• The selection is made based on the fields of the header of IP, TCP, UDP, and ICMP;
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• At least two targets are always implemented: one that allows the datagram to be forwarded
(accept) and another that drops the datagram (deny).

From this common core, implementations develop different extensions for both the match
and the target.

2.4.1 Match

The part of a rule that selects a packet is called match. The match uses one of the relations of
exact comparison, prefix comparison, or range comparison of the fields of a header with a spec-
ified parameter (BABOESCU; VARGHESE, 2003; SRINIVASAN et al., 1998). These types of
comparisons are mentioned in order of growing generality. That means that an exact compari-
son can be represented by a prefix comparison, and a prefix comparison can be represented by a
range comparison, with no addition of rules.

The fields used are generally the flags of the headers of the protocols, the source and desti-
nation addresses, and the source and destination ports. Specifically, the flags are more properly
selected with an exact comparison; the addresses with a prefix comparison; and the ports with a
range comparison.

Meanwhile, the majority of works limit the semantics of the match in order to simplify the
implementation or provide better performance. There are works (EPPSTEIN; MUTHUKRISH-
NAN, 2001; SU, 2000; HARI; SURI; PARULKAR, 2000) that take only the source and destina-
tion addresses. Some (EPPSTEIN; MUTHUKRISHNAN, 2001; SU, 2000) do it in order to be
able to use 2D geometric structures to improve match performance.

In Woo (WOO, 2000), we see an algorithm that focuses on the prefix comparison of the
source and destination addresses. Later, the authors extend this algorithm to match on five fields:
source and destination addresses, source and destination ports and protocol.

Baboescu and Varghese (BABOESCU; VARGHESE, 2003), on the other hand, developed an
algorithm for the detection of conflicts on two fields based on prefixes, and then extended it to
five fields. Baboescu’s work approached each field as a set of bits that can be matched by prefix.

Most of the aforementioned works tackle the problem of efficient and fast selection of data-
grams and packets. Only a few of them deal with conflicts in the rules. Taylor has published a
survey (TAYLOR, 2005) where the mentioned works can be seen in context.

2.4.2 Target

The target of a rule is the action that the filter takes when a datagram is selected by the
rule. Most packet filter implementations have a variety of targets available. Those targets can be
classified in two groups: terminating and non-terminating. Terminating targets are those that stop
rule traversal when the corresponding rule matches, i.e. deny. Non-terminating targets are those
that can be performed with no disturbance to rule traversal, i.e. log. Linux’s iptables (WELTE;
AYUSO, 2007) is a packet filter implementation with several terminating and non-terminating
targets.

Even with this target variety, most of the academic works studied (EPPSTEIN; MUTHUKR-
ISHNAN, 2001; SU, 2000; HARI; SURI; PARULKAR, 2000; EPPSTEIN; MUTHUKRISH-
NAN, 2001; SU, 2000) deal only with the accept and deny targets, both terminating. That can
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be justified by the fact that these two targets are the ones that provide filtering, and are thus the
most important ones. They are also the ones that implement the behaviour of the filter for an
external observer. As these two targets are symmetrically opposites, their relation defines what
is a conflict in a set of rules.

2.4.3 Stateless and stateful filters

Packet filters can be classified in two groups: stateless and stateful.
Stateless filters are those that have no notion of connection state, and provide match features

based only on the fields of a datagram.
Stateful filters, on the other hand, keep track of connection state and allow the user to make

rules based on it. With stateful filters, it is possible to allow connections to be started in only one
direction without matching on TCP flags explicitly. Stateful filters also tend to have a reduced
number of rules, as it is not necessary to inset rules to match both flow directions: there is usually
a rule that accepts traffic from already initiated connections, and the rest of the rules deal only
with which connections can be initiated.

As a disadvantage, stateful packet filters have a greater overhead in memory, as every connec-
tion state must be kept, and inferior performance when compared to the corresponding stateless
filter (ZWICKY; COOPER; CHAPMAN, 2000).
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3 EXISTING WORKS IN PACKET FILTER COHERENCE

Existing works related to packet filter coherence will be presented in this chapter.
The works were split in groups according to their approach and focus:

• rule pair analysis: works that use the relation between two rules and their order inside the
filter to check their consistency;

• data structures: works that improve the performance of packet classification with some
novel structure that is also used to check the consistency of rules;

• conflict resolution: works that not only present the definition of “conflict” as a sort of
consistency problem, but also suggest resolution procedures;

• application-oriented: works that present applications that are complete implementation of
some coherence scheme.

3.1 Rule pair analysis

Conflicts in the set of rules of packet filters can be defined by the relation between the rules
of the filters, when analysed in pairs. That is the approach used by Al-Shaer and Hamed (AL-
SHAER; HAMED, 2003a), their work is considered as a reference throughout this work.

3.1.1 Relations

Rx and Ry being two rules with fields {protocol, sourceIP , sourceport, destinationIP ,
destinationport }, the relation between Rx and Ry can be one of:

disjoint If every field of Rx is completely disjoint in respect to the corresponding field of Ry. In
other words: if the intersection of their fields is the empty set.

equal If every field of Rx is equal to the corresponding field of Ry.

inclusive If every field of Rx is equal or a subset of the corresponding field of Ry and the two
rules are not equal.

Rx is said to be a subset of Ry, while Ry is said to be a superset of Rx.
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partially disjoint If at least one field of Rx is a subset or a superset or equal to the corresponding
field of Ry and there is at least one field of the two rules that is disjoint.

correlated If there is a field in Rx that is a subset or equal to the corresponding field of Ry and
the other fields are a superset of the corresponding fields of Ry.

These relations are exclusive and complete. That means that for each pair of rules, there is
always one, and only one, of those relations that apply (AL-SHAER; HAMED, 2002).

3.1.2 Anomalies

Anomalies are potential problems. A filter will work when anomalies are present, but it
probably won’t have the intended behaviour, or could have the same behaviour with a smaller set
of rules.

This behaviour is not determined solely by the set of rules with their fields, but also by
the order in which they are traversed by the filter. According to some models, the rule order
defines an implicit priority that only appears when the filter is taken as a whole. As the network
administrator does not define the order of rules explicitly, it is not considered a safe information.

From the relation between the rules and their order, the following anomalies are defined
(AL-SHAER; HAMED, 2004a):

Shadowing If a rule Rx is a subset of a rule Ry that is checked before, then Rx will never select
any packets.

This shows a rule that is unnecessary or in the wrong position.

Correlation When two rules with different targets are correlated. This shows a conflict where a
change in the order of the two rules would result in a different filter behaviour.

Generalization When a rule Rx is a superset of a rule Ry that is checked before but with a
different action. This makes Ry an exception of Rx. If the order of the two rules were
exchanged, a shadowing anomaly would be reported.

Even though Al-Shaer and Hamed make this an anomaly, it can be quite common in a
correct filter.

Redundancy When the removal of a rule would not cause any change on the filter’s behaviour.

That means that Rx is a subset of Ry and they have the same target.

The anomalies of redundancy and shadowing represent real errors in rule configuration. On
the other hand, correlation and generalization can occur in a correct filter, and are only anomalies
because the behaviour of the filter is defined by the implicit rule order. That’s why they are
reported, so that the system administrator can confirm the order of the rules.
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3.1.3 Criticism to rule pair analysis

Comparing every rule to every other rule is an approach that has some issues.
The worst issue is the lack of vision of the effect of the rules combined. It is possible to create

a filter where a rule is not shadowed by any isolated rule, but is shadowed by a group of them.
This lack of vision will result in false negatives.

Another big problem is the definition of the generalization and correlation anomalies. They
can be present in a correct filter, and there is no way to prevent them from being reported. This
leads to false positives, as there is no way to design an anomaly-free filter for some intended
behaviour.

Another issue is the constant complexity, which always lies in O(r2), where r is the number
of rules. That happens because every pair of rules must have its relation discovered in order to
find the anomalies. That is a waste in a filter where all rules are disjoint, for example.

Even with these issues, Al-Shaer and Hamed’s work is very important and its definition of
rule relation and anomalies is used as the base for the evaluation of other works.

3.2 Data structures

In this section, works that deal mostly with different data structures and check some sort of
coherence on the rules of a packet filter are exposed.

3.2.1 Tries and bit vectors

A trie is a tree in which the key of every node is given by its position in the tree (KNUTH,
1998).

Tries have their search time proportional to the size of the key instead of proportional to the
number of entries. As such, tries can have faster lookup times than binary search trees. They
also help with the problem of longest prefix matching. An example of trie can be seen in figure
3.1.

Tries are used on the problem of packet classification, mainly as part of a bigger structure,
such as grid-of-tries (SRINIVASAN et al., 1998), set prunnning trees (SRINIVASAN et al.,
1998), extended grid-of-tries (BABOESCU; SINGH; VARGHESE, 2003), bit-vector (LAKSH-
MAN; STILIADIS, 1998) or aggregate bit vector (BABOESCU; VARGHESE, 2001).

On the field of rule conflicts, tries are used in by Baboescu and Varghese (BABOESCU;
VARGHESE, 2003) and Hari, Suri and Parulkar (HARI; SURI; PARULKAR, 2000).

Baboescu and Varghese (BABOESCU; VARGHESE, 2003) use bit vectors to find conflicts
fast. The proposal of the article is to find every rule that has a potential conflict with a rule being
added. Their work builds a trie for each field where each leaf has a bitmap of the rules that have
either an exact equivalence or a prefix equivalence with the key. This structure is called a bit
vector (example in table 3.1 and figure 3.2). To find potential conflicts with a new rule, every
field traverse its corresponding trie, and the intersection of the bitmaps found for each field shows
potentially conflicting rules.

Even though Baboescu’s scheme finds potential conflicts between an old rules and a new
one, it does not define what is supposed to happen with the conflicts found. The article does not
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Figure 3.1: Example of trie for keys {000, 001, 010, 011, 100, 101, 110, 111 }.
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Table 3.1: Table with a bit-vector example.
Rule Field1 Field2

R0 000000* 111001*
R1 1001* 0000101*
R2 10110* 111*
R3 1111* 0000100*
R4 00000100* 100010*
R5 10111* 000000*
R6 10* 1111*
R7 0001010* *
R8 000111* 100011*
R9 000000* 111*
R10 * *

mention rule order or even targets, and leaves this work to the system administrator.

3.2.2 Geometric structures

Some works (EPPSTEIN; MUTHUKRISHNAN, 2001; SU, 2000) use a geometric approach
to tackle the problem of packet classification and conflict detection.

To enable that, those works reduce the packet to two fields, source and destination address,
and use them as axis in a plane. This transforms the rules into rectangles in this plane, and the
problem of packet classification becomes the problem of locating the highest-priority rectangle
(rule) in the plane that contains the point (packet).

Eppstein and Muthukrishnan (EPPSTEIN; MUTHUKRISHNAN, 2001) use this approach
also to detect conflicts. In this article, every rule has an explicit priority. A conflict arises when
two rules with different targets and the same priority have an intersection in that is not inside
another rectangle with higher priority.

This definition of conflict, and the fact that it is found without comparing pairs of rules
makes this approach free of false positives and negatives. There are no false positives because it
is always possible to get rid of the conflict in a filter by defining a rule with higher priority; there
are no false negatives because the requirement of explicit priorities makes the conflict real.

Even though Eppstein’s work requires a lot of restrictions on the definition of rules – only
two fields and an explicit priority – it presents interesting results when compared to Al-Shaer and
Hamed’s.

3.3 Conflict resolution

Hari, Suri and Parulkar (HARI; SURI; PARULKAR, 2000) also develop an algorithm for fast
conflict detection and suggest the resolution of these conflicts with rule addition.

The article assumes the rules have no priority, implicit or explicit. When there is a packet
that two rules match, the one that is more specific should be used. A conflict is reported only if
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Figure 3.2: Bit-vector of the rules in 3.1

there is a tie. The conflict is then resolved by adding a rule that is more specific to the conflicting
region.

Even though the article does not use any trie or geometric structure, it limits the fields in a
packet to two in a first moment, and later extends the algorithm to five. The article also requires
that the fields match only by prefix and not by arbitrary ranges.

3.4 Applications

Various works (MAYER; WOOL; ZISKIND, 2000; AL-SHAER; HAMED, 2003a; BAR-
TAL et al., 2004; MAYER; WOOL; ZISKIND, 2006) develop applications that help the network
administrator in checking the coherence of the rules of a packet filter. In this section these appli-
cations will be explored.

3.4.1 Firewall Policy Advisor

The Firewall Policy Advisor (FPA) (AL-SHAER; HAMED, 2003a), is an application with
a graphical interface that discovers the relation between rules and shows the anomalies found.
Anomalies were already discussed in 3.1.2, and need no further explanation.

The interface, by itself, allows rule entry and shows them in a tree structure defined in the
same article. The anomalies are updated in real time and shown in the same window where the
rules are edited, making it very easy to fix the rule set.

Al-Shaer’s work analyses only isolated filters, and checks the rules by pairs.
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3.4.2 Fang and Firewall Analyser

Mayer, Wool and Ziskind (MAYER; WOOL; ZISKIND, 2000) present Fang (Firewall ANal-
ysis enGine): a graphical interface for permission query on a set of filters. The application must
be configured with the network topology and filter rules. It provides answers to queries like
“which services of host A can be accessed from host B”, or “which hosts can access service C
of host D”.

Mayer’s work is the first reference that tries to ease the administration of a set of filters in
opposition to a single one. Its engine is built from a graph algorithm that processes the network
topology and from a rule simulator that gives the answer to the queries made by the user.

Fang’s greatest weakness is that it is only a query interface (MAYER; WOOL; ZISKIND,
2006). The researchers found out that users really don’t know what to ask to check the security
and efficiency of the set of rules.

For this reason, another application was developed: the Firewall Analiser (FA). FA requires
from the user only the data input, and instead of providing a query interface, FA provides a report
full of details about which service can be accessed from which host. FA also knows which zone
is “external” (the Internet), and has a database of services. A big list of open services is expected
to alert the network administrator about a misconfigured filter.

The presented applications can be divided in two groups: the ones that check rule coherence
in an abstract form (FPA) and the ones that help the network administrator understand and check
the functionality of a filter (Fang, FA). Only one application dealt with a set of filters (FA), and
it did not check the set of rules for anomalies. That is, then, an open problem.
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4 ISOLATED FILTER VERIFICATION

4.1 Introduction

After studying the existing packet filter1 and coherence checkers, we can say that there is still
room for improvement. In this chapter, a new checker for isolated packet filters is developed,
along with a new set of anomalies. The goal is to improve on Al-Shaer and Hamed’s approach,
providing a more robust checker that deals with the rule set as a whole.

We begin by gathering the requirements and desirable features of the checker. The second
step is to model datagrams, rules and filters. The model is based on sets, as that provides a
familiar and flexible semantics for the whole system. The definition of what characterizes an
anomaly follows. An anomaly is supposed to be anything “suspicious” in the filter, and that will
be formally defined. As a last step, this chapter shows the algorithms and other artifacts involved.

4.2 Requirements

The system for the analysis of distributed filters that will be shown in a later chapter is an
extension of the one shown in this chapter.

The analysis based on pairs of rules is to be avoided, as it limits the view of anomalies by not
considering the effects of the rules combined. It also leads to a combinatory explosion if more
than one filter is analysed.

The filter checker takes only the rules of the filter as input. Its output are the anomalies found,
showing the rules involved and other available information.

The checker must present a complete report, and require no further analysis by the network
administrator (in opposition to (MAYER; WOOL; ZISKIND, 2000)). It must be possible to
eliminate false positives by the addition of rules (as in (HARI; SURI; PARULKAR, 2000), in
opposition to (AL-SHAER; HAMED, 2003a)). It must consider at least five fields (protocol,
source and destination addresses and ports) instead of two (as it is in (EPPSTEIN; MUTHUKR-
ISHNAN, 2001; SU, 2000)), and should be extensible to more fields.

Anomalies should report probable mistakes by the system administrator. According to Al-
Shaer and Hamed (AL-SHAER; HAMED, 2003a), most mistakes come from the wrong posi-

1A more correct term would be datagram filter, as the device acts also on IP and UDP datagrams and not only
on TCP packets.
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tioning of rules in the filter. So, the most suspicious property of a rule is its position, its implicit
priority. Every time the position of a rule is neither irrelevant nor trivial, an anomaly must be
reported.

Anomalies must also be reported when there are rules that have no effect on the filter, i.e. a
rule could be removed and the behaviour of the filter would not change. That means that the rule
is either superseded by another or that its target is wrong and the behaviour of the filter is not the
one expected.

Other than that, rules are taken to be right, and it is not possible to report further probable
errors with only the rules as input.

4.3 Model for datagrams, fields and rules

The model developed is based on sets, with a representation through ranges.

The fields of an IP datagram to be considered are: the source and destination addresses, the
source and destination ports and the protocol. Every datagram is then represented as a 5-tuple,
with a numeric value for each field. For the effects of analysis, every packed is uniquely and
completely represented by the combination of these fields:

datagram =



protocol ∈ Protocols

sourceaddress ∈ Addresses

sourceport ∈ Ports

destinationaddress ∈ Addresses

destinationport ∈ Ports

The Cartesian product of these fields forms the datagram space:

Datagram = Protocol × Addresses× Ports× Addresses× Ports

Each field domain is isomorphic to a contiguous subset of the natural numbers. Protocols are
in the range [0− 2], each number representing one of ICMP, UDP or TCP. Ports are in the range
[0− 65536].

A region is a subset of the datagram space that can be represented by a single range for each
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field. Each range is represented by its start and end values:

region =



protocol start ∈ Protocols

protocol end ∈ Protocols

sourceaddress start ∈ Addresses

sourceaddress end ∈ Addresses

sourceport start ∈ Ports

sourceport end ∈ Ports

destinationaddress start ∈ Addresses

destinationaddress end ∈ Addresses

destinationport start ∈ Ports

destinationport end ∈ Ports

As the ranges have the semantics of a set, the concepts of relations, operations and properties
already present in set theory (DEVLIN, 1993) are readily available:

• Relations, given two ranges X and Y :

– ∀x ∈ X, ∀y ∈ Y : x ∈ Y, y ∈ X ⇒ X = Y , two ranges are equal if their elements
are the same.

– ∀x ∈ X, ∃y ∈ Y : x ∈ Y, y /∈ X ⇒ X ⊂ Y, Y ⊃ X , a range is a superset of another
if it has all the elements of the other and at least one more. The latter is said to be a
subset of the former.

– ∀x ∈ X : ∃x ∈ Y, X 6⊂ Y, X 6⊃ Y, X 6= Y ⇒ X4Y , if two sets have some
elements in common and both have some unique elements in respect to the other,
they are correlated.

– ∀x ∈ X, ∀y ∈ Y : ¬∃x ∈ Y,¬∃y ∈ X ⇒ X ./ Y , if two sets have no elements in
common, they are disjoints.

These relations are sufficient and necessary to describe every possible relation between
two ranges.

Proof: the relation between a value and an arbitrary range can be only ∈ or 6∈. If elements
x 6∈ Y are considered as being or not in X , elements y 6∈ X considered as being or not in
Y , and elements e that can be both in X and in Y , every possible relation can be mapped
and seen in table 4.1. Figure 4.1 shows all relations, while figure 4.2 shows all possible
transitions.

• binary operations:

– intersection, ∩: from two ranges, creates a third that has only the elements that are
in both ranges. This operation is not defined for disjoint ranges.
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Table 4.1: Table of every possible relation between two ranges.
X = {X} X = {X, e} X = {e}

Y = {Y } ./ ./ ./
Y = {Y, e} ./ 4 ⊂
Y = {e} ./ ⊃ =

Table 4.2: Number of elements of the result of an operation by relation of operands for ranges.
Relation max | ∪ | max | − |

A = 1 0
B ⊂ 1 0
C ⊃ with a common extreme 1 1
D ⊃ with different extremes 1 2
E 4 1 1
F ./ 2 1

– union, ∪: given two ranges, returns a set of ranges that has all elements present in
them. The operation prevents repetition of elements in the ranges returned.

– difference, −: given two ranges, it creates the set of ranges that has all the elements
in the first range that are not present in the second range.

The number of elements of the set of ranges generated by the operations of union and
difference can be seen in table 4.2. Example of range operations are shown in table 4.3.

• properties: every range has a modulus (|R|) that is equal to the number of elements in it.

Ranges are represented as closed intervals containing the extremes, therefore it is not possible
to represent a range with no elements. Operations that would return an empty range raise an error
instead.

Regions are used to represent a restricted set of datagrams. A regionset is a set of regions,
and is used to represent an arbitrary subset of datagrams.

regionset ⊂ Datagramas

Table 4.3: Example of range operations.
Example ∩ ∪ −

A [1− 10], [1− 10] [1− 10] {[1− 10]} ∅
B [3− 7], [1− 10] [3− 7] {[1− 10]} ∅
C [1− 10], [4− 10] [4− 10] {[1− 10]} {[1− 3]}
D [1− 10], [4− 7] [4− 7] {[1− 10]} {[1− 3], [8− 10]}
E [1− 7], [5− 10] [5− 7] {[1− 10]} {[1− 4]}
F [1− 4], [7− 10] N/A {[1− 4], [7− 10]} {[1− 4]}
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Figure 4.1: All possible set relations.
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Disjoint
X = { x }
Y={y}

Disjoint
X = { x , e }

Y={y}X U {e}

Disjoint
X = { x }

Y={y ,e}

Y U {e}

Disjoint
X = { e }
Y={y}X - {x}

Correlated
X = { x , e }
Y={y ,e}

Y U {e}

Disjoint
X = { x }
Y = { e }

Y - {y}

X U {e}

Subse t
X = { e }

Y={y ,e}

Y U {e}

Supe r se t
X = { x , e }

Y = { e }
X U {e}

X - {x}

Y - {y}

Equal
X = { e }
Y = { e }

Y - {y}

X - {x}

Figure 4.2: Every relation transition possible between X and Y . The direction of an edge can be
inverted by inverting the operation.

Table 4.4: Relations and the maximum number of elements of the operations that create region-
sets, in terms of the number n of fields.

Relation max | ∪ | max | − |
= 1 0
⊂ 1 0
⊃ 1 2n
4 2n + 1 1
./ 2 1

regionset =


region1 ∈ Regions

region2 ∈ Regions

region3 ∈ Regions

...

As regions have the same semantics of sets, the relations, operations and properties that were
discussed for ranges also apply. Operations that map to a set of ranges here map to a regionset,
with the number of elements according to table 4.4.

The next entity that needs definition is the rule. A rule maps a region to an action, that can
be either accept to let the datagrams pass, or deny to drop them. The region of a rule is called the
match of the rule.

rule =

{
match ∈ Regionsets

action ∈ {accept, deny}

A filter, for the isolated checker, is a set of rules that define actions to every datagram in the
domain:

filter =
{

function : Datagrams→ {accept, deny}

4.3.1 Features of the model

The model based on sets has the following positive features:
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Table 4.5: Example of a filter and its equivalents.
Region Equivalent filter
Universe src = 10.0.1.0/24, ACCEPT

src = 10.0.2.0/24, ACCEPT
src = 0.0.0.0/0, DENY

src ∈ 10.0.1.0/24 src = 10.0.1.0/24, ACCEPT
src = 0.0.0.0/0, DENY

src ∈ 10.0.2.0/24 src = 10.0.2.0/24, ACCEPT
src = 0.0.0.0/0, DENY

Other src = 0.0.0.0/0, DENY

expressive As commented in 2.4.1, ranges are the most expressive representation for a field
(others are exact match and prefix). The only restrictions imposed is that the values of the
field must have total order and be bounded.

And by having the semantic of sets, the power of the relations and operations of set theory
is readily available.

compact The representation of rules with regions keeps compactness in the presence of the set
semantics. Every rule can be represented as a single region, even though the algorithms
may use operations that multiply the number of regions present in memory.

extensible Although this work has a well-defined and limited the number of fields, the semantics
and n-tuple behavior allows this number to be easily increased, without adding any special
support.

4.4 Equivalent filters

When a subset of the universe of datagrams is considered, it is possible to eliminate the rules
that do not apply to any datagram in the subset. The equivalent filter has exactly the same
behaviour of the original filter for that subset.

By using equivalent filters, it is possible to analyse the rules of a filter in the context of their
interaction. That makes it feasible to increase the number of rules being considered and to define
anomalies in a broader view when compared to pair analysis.

The order of the rules in an equivalent filter is the same found in the original filter. So, the
rule that defines the target for a datagram in the subset considered is the first rule of the equivalent
filter that matches the datagram.

4.5 Anomalies

An anomaly is an evidence that the properties of consistency and minimalism do not hold.
Both properties are highly desirable in packet filters, as the first prevents some kinds of mistakes
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Table 4.6: R (greater priority) and S potential anomalies as a function of their relation.
Relation Targets Potential anomaly
R = S any Invisibility
R ⊂ S same Redundancy
R ⊂ S different -
R ⊃ S any Invisibility
R4S same -
R4S different Conflict
R ./ S any -

and the second potentially improves filter performance. These properties guide the development
of the specific anomalies.

In a single filter, each anomaly represents a rule with no effect or a case where the order of
the rules is neither irrelevant nor trivial.

The order of two rules is irrelevant if they are disjoint. The analysis based on equivalent
filters avoids this case, as disjoint rules will never appear together in an equivalent filter.

On the other hand, the order of two rules is only trivial if the region of one rule is a subset of
the region of the other. Every other relation makes the ordering ambiguous. If the order of two
rules is trivial and they exchange places, an anomaly is reported (invisibility), as one of the rules
has no effect.

This leads to three possible combination of rules (table 4.6):

• A rule that is a subset of another and has less priority: anomaly, the first rule can be
removed or is in the wrong position;

• Two rules are correlated: if their targets are the same, no anomaly. If their targets are
different, then their intersecting region must have a rule contained in both of them that
defines the target and has a trivial order in respect to the previous rules. Otherwise, there
is a conflict in the region, as any priority change will lead to a change in the target, and the
priority is not trivial.

• A rule that is a subset of another, has greater priority and same target: anomaly, as the
removal of this rule won’t change the target for any datagram.

4.5.1 Invisibility

The first anomaly, invisibility, shows the rules that do not define the target for any datagram
because of their priority. For all datagrams that these rules select, there is a rule with greater
priority that already defined the datagram’s target. The invisible rules are either out-of-place or
completely unnecessary.

Invisible rules are not considered for the analysis of further anomalies, and so this anomaly
must be the first one to be checked.

Figure 4.3 shows four diagrams with invisible rules. Each diagram represents a filter with
only one field where each square represents a single field value, and each line represents a rule.
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Figure 4.3: Invisible rules are not used.

Figure 4.4: Conflicting rules have no obvious order.

The red rules have the deny target, and the green ones have the accept target. The rules with the
highest priority are on top.

Formally:

∃ rule1 ∈ Filter

¬∃ datagrama ∈ Datagramas

rule(Filter, datagram) = rule1

⇒ Invisible(rule1)

Example:

• Filter F:
Default from any to any → Deny
Invisible from 10.0.0.0/24 to any → Accept

PFC output (irrelevancy is another anomaly that will be presented later):

F:
Invisible rule Invisible

Irrelevant rule Invisible in filter F

4.5.2 Conflict

The conflict arises when two rules define different targets for a set of datagrams and their
order is not trivial. If the priority of the rules were exchanged, the behavior of the filter would
change. The diagrams in figure 4.4 show two cases of conflicting rules for filters with a single
field.

Even though conflicts can happen in correct filters, they rises an anomaly, and require a
specific rule with greater priority to define the target for the set of datagrams pointed (figure 4.5).

With the third rule in place, the order of the two previous rules is irrelevant, and the order of
the third is trivial.
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Figure 4.5: Conflicts can be fixed by adding a third rule with higher priority.

Formally:

∃ datagrama ∈ Datagramas

∃ rule1 ∈ Filter

∃ rule2 ∈ Filter

datagram ∈ match(rule1)

datagram ∈ match(rule2)

action(rule1) 6= action(rule2)

¬∃rule3 ∈ Filter

datagram ∈ match(rule3)

match(rule3) ⊂ match(rule1)

match(rule3) ⊂ match(rule2)

⇒ Conflict(rule1, rule2)

Example:

• Filter F:
r1 from 10.0.0.1/32 to 10.1.0.0/24 → Deny
r2 from 10.0.0.0/24 to 10.1.0.5/32 → Accept

PFC output:

F:
Conflict rule r1 rule r2

at [src 10.0.0.1/32 dst 10.1.0.5/32]

Fix:

• Filter F:
r0 from 10.0.0.1/32 to 10.1.0.5/32 → Accept
r1 from 10.0.0.1/32 to 10.1.0.0/24 → Deny
r2 from 10.0.0.0/24 to 10.1.0.5/32 → Accept

Checker output:

No anomalies or errors found
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Figure 4.6: Redundant rules are not needed.

4.5.3 Redundancy

The redundancy points rules that, even selecting datagrams because of their priority, could
be safely removed without causing any change in the behaviour of the filter. The diagrams in
figure 4.6 show two examples.

The redundant rules are either not really necessary or have the wrong target. Changing their
priority won’t make rule necessary, but can make the rule invisible.

When taken together, the absence of conflicts verifies the consistency of a filter, while the
absence of invisibilities and redundancies guarantees minimalism – that is, that all the rules are
necessary.

Formally:

¬∃ datagrama ∈ Datagramas

∃ rule1 ∈ Filter

action(Filter, datagram) 6= action(Filter − rule1, datagram)

⇒ Redundant(rule1)

Example:

• Filter F:
Redundant from 10.0.0.0/24 to any → Deny
Default from any to any → Deny

PFC output:

F:
Redundant rule Redundant

4.6 Algorithms

This section shows the algorithms for finding the set of equivalent filters and the anomalies.
The anomalies are further detailed, as to the process that is necessary to find them.

4.6.1 Equivalent filter set construction

For the construction of the equivalent filters, a tree of rules is used. Every inner node of this
tree stores a rule, and the edges are identified as “in” and “out”. Every leaf holds a list of regions.
An example tree with 3 rules can be seen in figure 4.7.

The construction of the tree is incremental. The algorithm 1 details the process.
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Filter

Default

rule3

in ou t

rule2

in

rule2

ou t

in

rule1

ou t in

rule1

ou t

in ou t in ou t

Figure 4.7: Example of a tree of rules.
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After the tree is built, the equivalent filters are found by traversing the tree, storing the nodes
where the edge taken was “in” and taking them only when the final leaf had at least one region.
The details can be seen in the algorithm 2.

Algorithm 1 Tree of rules construction
1: function CREATETREE({rules})
2: tree← leaf(total region)
3: for all rule in rules do
4: tree← INSERTRULE(tree, rule)
5: end for
6: return tree
7: end function
8:
9: function INSERTRULE(node, rule)

10: if node is leaf then
11: regions∩ ← node ∩ rule
12: regions− ← node− rule

13: node← inner


rule← rule
in← leaf(regions∩)
out← leaf(regions−)

14: else . Node is inner
15: if exists rules ∩ node then
16: nodein ← INSERTRULE(nodein, rule)
17: end if
18: if |node− rule| > 0 then
19: nodeout ← INSERTRULE(nodeout, rule)
20: end if
21: end if
22: return node
23: end function

4.6.1.1 Complexity, worst case

To calculate the complexity in memory and space for the worst case, the first step is to calcu-
late the maximum number of equivalent filters. Then, the necessary tree of rules for this condition
can be visualised. The complexity of such tree is calculated based on the number of inner nodes,
leaves and number of regions stored on the leaves. The total complexity of the construction of
the equivalent filters can then be calculated based on that figure.

The theoretical maximum number of equivalent filters generated from a filter with n rules is
the sum of every possible combination of rules. Mathematically:

Nequivalent filters =
r∑

i=1

(
r
i

)
(4.1)
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Algorithm 2 Equivalent filter set construction
1: function BUILDEQUIVALENTFILTERSET({rules})
2: tree← CREATETREE({rules})
3: return BUILDINNERNODE(tree)
4: end function
5:
6: function BUILDINNERNODE(node)
7: filter ← ∅
8: if nodein is leaf then
9: if |nodein| > 0 then

10: filter ← filter ∪ {{noderule}}
11: end if
12: else . nodein is inner
13: for all filterchild in BUILDINNERNODE(nodein) do
14: filter ← filter ∪ (filterchild + noderule)
15: end for
16: end if
17: if nodeout is leaf then
18: if |nodeout| > 0 then
19: filter ← filter ∪ {∅}
20: end if
21: else . nodeout is inner
22: filter ← filter∪ BUILDINNERNODE(nodeout)
23: end if
24: return filter
25: end function
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Table 4.7: Example of worst case with 4 rules, numbered from 1 to 4.
# rules # eq. filters eq. filters

1 4 {1}, {2}, {3}, {4}
2 6 {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}
3 4 {1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {2, 3, 4}
4 1 {1, 2, 3, 4}∑

15

1

2

in

2

ou t

3

in

3

ou t

3

in

3

ou t

4

in

4

ou t

4

in

4

ou t

4

in

4

ou t

4

in

4

ou t

in in ou t ou t in in ou t ou t in in ou t ou t in in ou t ou t

Figure 4.8: Tree of the worst case with 4 rules.

Using the binomial theorem (KNUTH, 1997):

(x + y)r =
r∑

i=0

(
r
i

)
xiyr−i (4.2)

Replacing x = y = 1 in 4.2 and removing the element with i = 0 (eliminates the empty
filter), the maximum number of equivalent filters becomes:

Nequivalent filters =
r∑

i=1

(
r
i

)
− 1 = 2r − 1 (4.3)

Statement 4.6.1. The maximum number of equivalent filters for a filter with r rules is 2r − 1 in
the worst case.

This hypothetical filter would generate a tree of rules with each rules appearing in and out of
every previous rules. Every rule would be correlated to every other rule.

As such, the addition of a new rule of index i generates 2i new nodes on the tree at level i. At
every new rule, the number of nodes on the tree doubles. An example case with 4 rules is shown
in table 4.7, with a graphical representation in figure 4.8.

Ninner nodes = 2r − 1
Nleaves = 2r

Nnodes = Ninner nodes + Nleaves = 2r+1 − 1
(4.4)
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The number of stored regions in a leaf depends on the path taken. Every time an “in” edge is
taken, an intersection is made and the number of regions is kept. On the other hand, every time
an “out” edge is taken, the number of regions is increased, as a subtraction is performed.

Algorithm 3 Subtraction of two regions
1: function SUBTRACTRANGE(region1, region2)
2: if region1 and region2 are disjoint then
3: return region1
4: else
5: range1← region1[1]
6: range2← region2[1]
7: if range1 ∩ range2 = range1 then
8: return range1 : d|d← SUBTRACTRANGE(region1[2..], region2[2..])
9: else

10: cuts← d : region1[2..]|d← SUBTRACTRANGE(range1, range2)
11: intersec ← (range1 ∩ range2) : d|d ← SUBTRAC-

TRANGE(region1[2..], region2[2..])
12: return cuts ∪ intersec
13: end if
14: end if
15: end function

The worst case of a subtraction (algorithm 3) is when the second region is a subset from the
first, with no shared limits. In this case, two cuts are made, for the parts of the first range that
are not intersected. This dimension is then taken apart and the process repeated. This leads to
statement 4.6.2.

Statement 4.6.2. In a subtraction of two regions, the maximum number of regions generated is
the number of fields considered doubled: |A−B| = 2c.

This leads to the fact that the leaf that is “out” of every rule will have at most (2c)r regions,
and the leaf “in” every rule will have only one region in the worst case.

There is also a combination here, as the exponent over 2c will appear
(

r
i

)
times, for

0 < i < r.
The total number of regions in the leaves becomes:

Nregions on leaves =
r∑

i=0

(
r
i

)
(2c)i (4.5)

Replacing y = 1 and x = 2c in the binomial theorem (equation 4.2) gives:

Nregions on leaves = (2c + 1)r =
r∑

i=0

(
r
i

)
(2c)i (4.6)
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Equations 4.4 and 4.6 are summarized in statement 4.6.3.

Statement 4.6.3. The total number of inner nodes in the tree of rules is 2r − 1, with at most 2r

leaves, summing up to 2r+1 − 1 nodes in the worst case.
The total number of regions in the leaves of the tree of rules is (2c + 1)r in the worst case.

They make the set of all the disjoint regions for the filter where different rules apply.

To add a new rule in the tree it is necessary to process all nodes and all regions of all leaves.
To get the complexity of such process, it is necessary to multiply the number of nodes and regions
by the number of rules (2c + 1 > 2 given):

complexitytime = r(2r − 1 + (2c + 1)r) ∈ O(r(2c + 1)r) (4.7)

The memory is in the order of the size of the tree (nodes plus regions) and the depth of the
tree to hold the stack:

complexityspace = (2c + 1)r + 2r+1 ∈ O((2c + 1)r) (4.8)

To build the equivalent filter set from the tree, the complexity in time is the number of nodes,
and in space is the size of the resulting set plus the depth of the tree (stack). This leads to the
statement 4.6.4.

Statement 4.6.4. . The set of equivalent filter construction complexity is O(r(2c)r) in time and
O((2c + 1)r) in space.

4.6.1.2 Complexity, average case

The worst case analysed happens when every rule is correlated with every other, and none is
invisible. That is unreal for the following reasons:

• The IP addresses are usually defined through network masks, and that makes it impossible
to define two correlated ranges of addresses.

• Rules that use ports usually do not use ranges.

With that in mind, it is worth doing an analysis of an “average case”, that considers the worst
case when the relation of correlation is not allowed, thus yielding a more realistic result. This
case happens when all rules are nested and none is invisible. Depending on the targets of the
rules, this filter may even have no anomalies. This case suggests the addition of rules in the
opposite order that they are defined in the filter, as that prevents the duplication of rules, as every
rule added will be “in” every previous rule. An example of a simple average case filter can be
seen in figure 4.9.

The number of inner nodes of the tree is r + 1, and the number of leaves is also r + 1. So,
the total number of nodes is 2r + 2.

From statement 4.6.2, it is known that the number of regions created in the subtraction of two
regions is 2c. In this case, every leaf has only one “out” edge, and that is in the last edge. This
way, the total number of regions in the leaves is 2cr + 1.
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4
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in ou t

1
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Figure 4.9: Tree of rules of the average case with 4 rules.

Statement 4.6.5. The number of equivalent filters for the average case is equal to the number of
rules.

Again, to add a new rule it is necessary to process every previous rule. The complexity of
such operation is in the order of r multiplied by the number of rules to add, that is, r2.

In memory, the complexity is the size of the tree (r +1 internal nodes plus 2cr +1 regions on
the leaves) and the stack. The stack has the size in the order of the number r of rules in the tree.

Statement 4.6.6. The construction of the set of equivalent filters has complexity O(r2) on time
and O(r) on space for the average case.

4.6.2 Invisibility

The analysis of invisibility is simple. The checker collects every rule on top of every equiv-
alent filter, and each rule appearing on the original filter and not appearing in the collection is
marked as invisible. Algorithm 4 details the process.

Using a binary tree as the data structure for sets (O(log2 n) insertion and O(log2 n) search),
the order of the second loop becomes insignificant and the complexity is dominated by the first.

Statement 4.6.7. The algorithm of invisibility analysis has, for the worst case, O(Nequivalent filters log2 r)
in time and O(r) in space. This happens when there are no invisible rules.

The worst case for invisibility analysis is very common, in contrast with the worst case for
equivalent filters. This must be the first analysis performed, as its output are used as inputs for
the following.

4.6.3 Conflict

For the conflict analysis, it is enough to check the rule on top of every equivalent filter against
the ones below it. That is the same as checking every rule against the rules that have lower
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Algorithm 4 Invisibility analysis
1: function INVISIBILITYANOMALY(originalF ilter, equivalentF ilters)
2: visible← ∅
3: invisible← ∅
4: for all filter in equivalentF ilters do
5: visible← visible ∪ {filter[0]}
6: end for
7: for all rule in originalF ilter do
8: if rule 6∈ visible then
9: invisible← invisible ∪ {rule}

10: end if
11: end for
12: return invisible
13: end function

priority, are not completely disjoint and do not have a rule as a subset defining the target for a
conflicting region. Details can be seen in algorithm 5.

The external loop of the algorithm is run for every equivalent filter. The inner loop can be
run at most r − 1 times. The maximum number of conflicts in a filter is the number of pairs of
rules:

Nconflicts =

(
r
2

)
=

r(r − 1)

2
∈ O(r2) (4.9)

Taking the implementation of the set conflicts as a chained list that has O(1) for union (holds
a pointer to the last element), the complexity of the algorithm in time becomes O(Nequivalent filters(r−
1)). If a post-processing is done to avoid duplicate results, this post-processing will dominate
and the algorithm will be O(c log2 c) = O(r2 log2 r) in time. In space, the algorithm holds only
the set of results, and as such as complexity O(r).

4.6.4 Redundancy

The redundancy is the last anomaly to be checked. Like the invisibility anomaly, the first step
is to find the rules that are necessary in the filter. Any rule that is not necessary is reported as
redundant.

For every equivalent filter, the first rule is tested. It is put in the necessary set if its removal
changes the target of the equivalent filter or generates a conflict.

After all equivalent filters are processed, the rules that are not necessary raise redundancies.
The details can be seen in algorithm 6.
This algorithm makes, for every equivalent filter, either an analysis of conflicts or the process-

ing of the filter rules. Both have the same complexity, so the algorithm has O(Nequivalent filters(r−
1)) in time. In space, the algorithm holds the set of defining rules for each filter. That can be,
potentially, the whole filter. That results in O(Nequivalent filtersr) in space.
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Algorithm 5 Conflict analysis
1: function CONFLICTANOMALY(equivalentF ilters, invisibles)
2: conflicts← ∅
3: for all filter in equivalentF ilters do
4: filter ← filter − invisibles
5: conflicts← conflicts ∪ EQUIVALENTFILTERCONFLICTS(filter)
6: end for
7: return conflicts
8: end function
9:

10: function EQUIVALENTFILTERCONFLICTS(filter)
11: conflicts← ∅
12: top← filter[0]
13: for all rule in filter[1..] do
14: if toptarget 6= ruletarget ∧ top 6⊂ rule then
15: conflicts← conflicts ∪ {(top, rule)}
16: end if
17: end for
18: return conflicts
19: end function
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Algorithm 6 Redundancy analysis
1: function REDUNDANCYANOMALY(allRules, equivalentF ilters, invisibles)
2: necessary ← ∅
3: for all filter in equivalentF ilters do
4: filter ← filter − invisibles
5: if RULETOPISNECESSARY(filter) then
6: necessary ← necessary ∪ {filter[0]}
7: end if
8: end for
9: redundant← ∅

10: for all rule in allRules do
11: if rule 6∈ necessary then
12: redundant← redundant ∪ {rule}
13: end if
14: end for
15: return redundant
16: end function
17:
18: function RULETOPISNECESSARY(filter)
19: if filter[0]target 6= filter[1]target then
20: return TRUE

21: end if
22: if |EQUIVALENTFILTERCONFLICTS(filter[1..])| > 0 then
23: return TRUE

24: end if
25: return FALSE

26: end function
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5 DISTRIBUTED FILTERS VERIFICATION

5.1 Introduction

This chapter shows the distributed component of PFC. As the chapter that described the
isolated analysis, it is structured as follows: first the requirements are gathered, then the model
is developed along with the definition of anomalies and, at last, the algorithms are presented.

5.2 Requirements

The distributed checker is an extension of the isolated checker, and can use data provided by
it, such as the tree of rules.

To avoid redundancies, the distributed checker verifies only anomalies that are related in
some way to the network topology; the other anomalies are supposed to be reported by the
isolated checker. This filter sees the filters as “flat”: it does not consider the relations of the rules
inside a single filter, nor their order, only their effect as it appears to an external viewer.

As input, this checker gets the set of filters with their rules and the network topology, along
with all the information that the isolated checker can provide. As output, it provides the report
of anomalies. Anomalies are designed to show the administrator the rules that either contradict
a rule in another filter or are unnecessary, verifying consistency and minimalism.

The algorithms should, whenever possible, avoid costs that are a function of the number of
networks, trying to keep them bound by the number of routing elements in the system. The
rationale for this is that the number of routers tend to grow at a lower rate than the number of
networks, as they have a direct monetary cost.

5.3 Model

For the distributed model, three new entities are considered:

networks The word network is used to describe the atomic entity represented by a network
prefix that exists on the system.
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A network can be either inner when it connects two routers, or terminal otherwise.

network =

{
address ∈ Addresses

prefix length ∈ [0− 32]

plain routers Plain routers are devices with no filter capabilities that connect two or more net-
works. They are modeled as a set of interfaces. Each interface is composed of an IP
address and the connected network.

interface =

{
address ∈ Addresses

network ∈ Networks

router =


interface1 ∈ Interfaces

interface2 ∈ Interfaces

interface3 ∈ Interfaces

...

filters are routers that forward packets selectively. Filters are programmed with rules and checked
for anomalies, while plain routers are not. For the distributed checker, filters also have the
set of interfaces in their model.

filter =



function : Datagrams→ {accept, deny}
interface1 ∈ Interfaces

interface2 ∈ Interfaces

interface3 ∈ Interfaces

...

routers are used to connect networks. They can be either filters or plain routers.

routers = plain router ∨ filter

The system as a whole can be seen as a graph in which the networks (nodes) are connected
by routers (edges). Cycles in this graph are possible, and happen when the network provides
alternative routes. This is usually done by the administrator to have redundancy and/or load
balancing. Any path can be used by a packet in the presence of failures, and for this reason,
every path between two networks is a possible path.

The region algebra of the previous chapter is used as the base for the algorithms presented
here.
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Figure 5.1: Example network
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Figure 5.2: Graph of the network in figure 5.1 with networks as nodes and routers as edges

5.4 Network graph

As presented above, a system of networks can be seen as a graph where the nodes are the
networks and the edges are the routers.

On the other hand, the number of routers tend to be much smaller than the number of net-
works, for the reasons mentioned in section 5.2. And as a router can have many terminal networks
attached to it, this approach leads to a graph that has more edges and nodes than necessary. Figure
5.1 shows an example network, while figure 5.2 shows the resulting graph of this approach.

To avert this situation, the model used builds the graph with routers as nodes, and the con-
necting networks as edges. Terminal networks are attached to the node of the router they are
connected. Figure 5.3 shows the result of this improved approach.

The number of terminal networks is expected to be greater than the number of inner networks.
This expectation is reasonable from a security point of view, as it is desirable to isolate users and
facilities in terminal networks.

If the number of terminal networks is greater than the number of inner networks, the number
of paths in the graph can be expected to be less than the number of pairs of networks, as the
number of paths depend only on the number of inner networks, while the number of pairs of
networks grows also with the number of terminal networks. These assumptions influence some

Router  1
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10 .1 .0 .0 /24
10 .1 .1 .0 /24
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Figure 5.3: Graph of the network in figure 5.1 with routers as nodes and inner networks as edges
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Table 5.1: Summary of the properties provided by the absence of each anomaly:
Consistency Minimalism

Isolated conflict invisibility, redundancy
Distributed disagreement, block, leak irrelevancy

choices about the algorithm structure, and are summarized in equation 5.1 below.

|routers| � |inner nets| < |terminal nets| ⇒ |paths| < |nets|2 (5.1)

5.5 Accessibility profile

A packet travels the network graph through the routers from its source network to its desti-
nation network. Each packet can be either forwarded or dropped by each filter, depending on the
fields of the packet. Every pair of networks has, then, an accessibility profile for each filter, that
shows the results of the filter for each packet that goes from the first network to the second. In
other words, it is the equivalent filter that considers the region where the source address is the
first network and the destination address is the second network.

The accessibility profile is the main tool used to check the filters for inter-filter consistency,
as every path between two networks must present the same resulting accessibility profile. Even
though the “accept” regions of the resulting accessibility profile of a path must be “accept” in
every filter traversed, the “deny” regions can be defined by any filter of the path. Nevertheless,
it is more convenient to have all the intended deny regions for a network in the nearest filter,
as that makes the configuration more local, more resilient to topology changes and avoids rule
duplication.

For that reason, the correct accessibility profile is assumed to be the one lifted from the first
filter found by traversing the graph from one network to the other, as the first filter is the one that
should have all the accept and deny regions configured correctly.

5.6 Anomalies

The first step of the distributed checker is to find all the isolated anomalies of all filters. Each
conflict found is then checked to see if their match is inside a single interface. If it is, the conflict
anomaly is dropped. This is only possible in the distributed setting because knowledge of the
topology is needed.

After that, the distributed anomalies are found. Each anomaly is explained next.

5.6.1 Disagreement anomaly

When a packet travels from one network to the other, it goes through one or more filters. The
first filter the packet finds is considered the provider of the correct accessibility profile.

But, if the network is not a terminal network connected to a filter, it may be possible that there
are multiple filters that could be the first filter for a packet, as there can be more than one path
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connecting the two networks. This happens not only with inner networks, but also with terminal
networks connected to routers.

If the accessibility profiles lifted from each of the first filters are not equal, the correct profile
for the two networks cannot be determined, and a disagreement anomaly is reported.

A disagreement anomaly is also reported if the correct accessibility profile is not present in
the last filter that a packet can find. This design decision was made because there are rules that
make more sense when coded in the last filter.

Formally:

∃ path1 ∈ Paths

∃ path2 ∈ Paths

path1 6= path2

sourceaddress(path1) = sourceaddress(path2)

destinationaddress(path1) = destinationaddress(path2)

∃ datagram ∈ Datagrams

sourceaddress(datagram) = sourceaddress(path1)

destinationaddress(datagram) = destinationaddress(path1)

action(filter1(path1), datagram) 6= action(filter1(path2), datagram)

⇒ Disagreement(datagram, filter1(path1), filter1(path2))

action(filter1(path1), datagram) 6= action(filtern(path1), datagram)

⇒ Disagreement(datagram, filter1(path1), filtern(path1))

Example:

• Filter F1: r1 from 10.0.0.0/24 to 10.1.0.0/24 → Accept

• Filter F2: r2 from 10.0.0.0/24 to 10.1.0.0/24 → Deny

PFC output:

Disagreement
of filter F1, rule r1
with filter F2, rule r2
at [src 10.0.0.0/24 dst 10.1.0.0/24]

Figure 5.4 shows the network topology of this example. Figure 5.5 shows a graphical repre-
sentation of the global accessibility profile.
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Figure 5.4: Topology of the disagreement example.
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Figure 5.6: Topology of the blocking example.

5.6.2 Blocking anomaly

The accessibility profile is composed by the accept and deny regions of all addresses inside
both network prefixes and ports.

The absence of disagreements guarantees that all the “accept” regions are accepted by every
filter that can be the first or last filter to be found by a packet traveling from one network to the
other. But, in order for a packet to effectively reach the destination network, the other filters in
the path must also accept its passage.

So, if an intermediate filter blocks a subregion of an accept region found in the correct acces-
sibility profile, a blocking anomaly is reported.

Formally:

∃ path ∈ Paths

∃ filter ∈ path

∃ datagram ∈ Datagrams

sourceaddress(datagram) = sourceaddress(path)

destinationaddress(datagram) = destinationaddress(path)

action(filter1(path), datagram) = accept ∧ action(filter, datagram) = deny

⇒ Block(datagram, filter)

Example:

• Filter F1: r1 from 10.0.0.0/24 to 10.1.0.0/24 → Accept

• Filter F2: default from any to any → Deny

• Filter F3: r3 from 10.0.0.0/24 to 10.1.0.0/24 → Accept

PFC output:

Block in filter F2
at [src 10.0.0.0/24 dst 10.1.0.0/24]

Figure 5.6 shows the network topology of this example.
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5.6.3 Leaking anomaly

To accept a packet, all filters in the path must accept it. On the other hand, to deny a packet,
a single denial is enough. If the correct accessibility profile denies a packet and there are no
disagreements, then it is guaranteed that the packet is denied by the first filter it encounters.

In fact, that only happens if there is no path where all connections are provided by plain
routers. If there is one, then this path provides a filter-free way for packets that should not be
accepted according to the correct accessibility profile.

For this reason, if there is a blocked region in the accessibility profile and if there is also a
path made only by plain routers for any network in the region, a leaking anomaly is reported.

Formally:

∃ path1 ∈ Paths

∃ path2 ∈ Paths

path1 6= path2

sourceaddress(path1) = sourceaddress(path2)

destinationaddress(path1) = destinationaddress(path2)

∃ datagram ∈ Datagrams

sourceaddress(datagram) = sourceaddress(path1)

destinationaddress(datagram) = destinationaddress(path1)

action(filter1(path1, datagram) = deny ∧ ¬∃ filter ∈ path2

⇒ Leak(datagram, path)

Example:

• Filter F1: r1 from 10.0.0.0/24 to 10.1.0.0/24 → Deny

PFC output:

Leak between {10.0.0.0/24} and {10.1.0.0/24} in path [router R1]

Figure 5.7 shows the network topology of this example.

5.6.4 Irrelevancy anomaly

The irrelevancy anomaly is reported for every rule that is not necessary in a given network
topology. It is checked by keeping a set of rules that are candidates to irrelevancy, and removing
from the set the rules that are found to be relevant.

Relevant rules are the rules that either appear on the correct accessibility profile or that pre-
vent the blocking anomaly in an intermediate filter. That means that after checking for disagree-
ments and blocks, all relevant rules are already removed from the candidate set. Therefore, after
these verifications, all rules left in the candidate set are reported as irrelevant.
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Figure 5.7: Topology of the leaking example.
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Figure 5.8: Topology of the irrelevancy example.

That implies that a rule that only blocks packets that are already blocked is irrelevant, as is a
rule that accepts packets that are blocked.

Formally:

∃ path ∈ Paths

∃ filter ∈ path

∃ rule ∈ filter

∀ datagram ∈ Datagrams

sourceaddress(datagram) = sourceaddress(path)

destinationaddress(datagram) = destinationaddress(path)

action(filter, datagram) = action((filter − rule), datagram)

⇒ Irrelevant(rule)

Example:

• Filter F1:
r1 from 10.0.0.0/24 to 10.1.0.0/24 → Accept
default from any to any → Deny

PFC output:

Irrelevant rule r1 in filter F1



58

Disagreement

Blocking

Leaking

Irrelevancy

Figure 5.9: Hierarchy of the distributed anomalies

Figure 5.8 shows the network topology of this example.
It is interesting to note that there is a hierarchy of distributed anomalies. If there is a dis-

agreement anomaly, the correct accessibility profile is undefined and the other anomalies can’t
be checked. If there is a blocking anomaly, the irrelevancy checking will not be complete and
can give false positives.

5.7 Algorithms

The main loop of the algorithm iterates on all possible unique paths that can be found in the
graph.

Statement 5.7.1. The maximum number of paths happens when every router is connected to
every other router by a dedicated network. By using the binomial theorem, we have that the
maximum number of paths is |Paths| = 2|Routers|.

The longest path has all the routers, and thus length |Routers|.

Statement 5.7.2. Every router being connected with every other is also the condition where the
maximum number of inner networks is found: |Networksinner| = |Routers|(|Routers| − 1)

The condition required by these theoretical values is not likely to happen in practice for a
system with a high number of routers, as every new router added to the network would require a
connection to every other, and router ports are limited.

On the other hand, even though the number of terminal networks is bounded by the number
of router ports, this bound is an external factor and changes as the router market changes. So,
in this work, the maximum number of terminal networks is not assumed to be bounded by the
number of routers, it is only assumed to be much greater than it.

With that in mind, there is a matter of balance to be decided. The algorithm has to analyse
all paths as well as every pair of networks. This raises two options:

• iterate on all pairs of networks; for each pair, find all connecting paths;

• iterate on all paths; for each path, store information for every network connected by the
path.
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Equation 5.1 says that the number of paths is expected to be less than the number of pairs
of networks. This leads to the choice to favor the second option, that sacrifices memory to save
time. The algorithm, then:

1. builds the list of paths;

2. for all paths, lifts the accessibility profile for every connected network, checks disagree-
ments and blocks and remove the used rules from the irrelevant candidates list;

3. all rules left in the list of irrelevant candidates are reported as irrelevant;

4. for all paths made only by plain routers, uses the global accessibility profile lifted from the
second step to check for leaks.

Details on every step and their cost are presented next.

5.7.1 List of paths construction

The algorithm used to build the list of paths is a simple depth-first traversal for each node.
No optimization reduces the order of this algorithm.

From (CORMEN et al., 2001), the cost of depth-first traversal is O(|V | × |E|). As the model
has the routers as vertices and the inner networks as edges, and knowing that the maximum
number of inner networks is O(|Routers|2) from statement 5.7.2, statement 5.7.3 summarizes
the cost of the process.

Statement 5.7.3. The cost of building the list of paths is the product of the number of nodes
multiplied by the cost of the depth-first traversal:

cost(DFT) ∈ O(|Routers| × |V | × |E|) = O(|Routers| × |Routers| × |Routers|2)
cost(DFT) ∈ O(|Routers|4)

5.7.2 Disagreements, blocks and leaks

After building the list of paths, the first three anomalies can be checked.
Algorithms 7, 8, 9 and 10 form a high-level representation of the checking. The algorithms

lack features such as proper report of anomalies with the rules involved, skipping of already
reported anomalies and language-specific optimizations.

5.7.2.1 Complexity

The cost of building the profile (algorithm 8) unfortunately depends on the number of net-
works attached to the router, and that is unavoidable. The profile has all the intersecting regions
of the first filter’s rule with the networks present in the first router as source and the networks
present in the last routers as destination.

It is known from statement 4.6.3 that the maximum number of disjoints regions in a filter is
(2c + 1)r in the worst case. It is enough to take the intersection from each network with each
of these regions. Therefore, the number of regions in the correct accessibility profile for a single
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path is in O(|networks in first router| × |networks in last router| × (2c + 1)r) in the worst case,
where r is the number of rules in the first filter.

If every router has the same number of ports and the ports are all in use (worst case), then
the number of networks in each router is the same number n. Theorem 5.7.4 summarizes the
conclusion reached with this assumption:

Statement 5.7.4. The number of region in the correct accessibility profile for each path is in

O
(
n2 × (2c + 1)r

)
That is also the time and space cost of building the profile.

The cost of checking one path is in O(|routers in path| × profile size of path). In the worst
case, every router is connected to every other, and the number of routers in each path is equal to
the number of routers, leading to statement 5.7.5:

Statement 5.7.5. The cost of checking one path is, in the worst case

O
(
|Routers| × n2 × (2c + 1)r

)
The process has no space requirements of its own, though, requiring only the profile to be

present.

Another implication of having every router connected to every other router is that the number
of paths is in O

(
2|Routers|

)
. Joining this fact with statements 5.7.1, 5.7.4, and 5.7.5 we get to

statement 5.7.6:

Statement 5.7.6. The cost in time of checking all paths can be determined to be, in the worst
case:

O
(
|Routers| × 2|Routers|n2(2c + 1)r

)
The cost in memory is the cost of the list of paths plus the cost of one profile, and that is

O
(
2|Routers| + n2(2c + 1)r

)
.

The cost in memory will be dominated by the second parcel most of the time, as the tendency
is to have a few routers with many rules and networks because of the monetary cost of routers.

5.7.3 Irrelevancies

As all relevant rules are removed from the list of candidates while checking disagreements
and blocks, the irrelevancy checks in fact only reports the rules that are still in the list. This has
minimal memory and time cost, if the number of irrelevant rules are small.

The absence of irrelevant rules testify the minimality of the rules in the filters.
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Algorithm 7 Find distributed anomalies
1: function CHECKDISTRIBUTEDANOMALIES

2: paths←list of paths
3: profileglobal ← ∅
4: rulesleak candidates ← all rules of all filters
5: for all path in paths do
6: BUILDPROFILEPATH(path)
7: end for
8: for all rule in rulesleak candidates do
9: Report irrelevant rule

10: end for
11: for all path in paths do
12: FINDLEAKSINPATH(paths)
13: end for
14: end function

Algorithm 8 Building the profile for a path
1: function BUILDPROFILEFORPATH(path)
2: routerfirst ← first router of path
3: routerlast ← last router of path
4: filterfirst ← first filter of path
5: filterlast ← last filter of path
6: for all network1 in routerfirst do
7: for all network2 in routerlast do
8: networks← (network1, network2)
9: Remove all rules in filterfirst ∩ networks from rulesleak candidates

10: Remove all rules in filterlast ∩ networks from rulesleak candidates

11: profile← profileglobal ∩ networks
12: if profile = ∅ then
13: profile← filterfirst ∩ networks
14: profileglobal ← profileglobal ∪ profile
15: end if
16: BUILDPROFILEFORPATHNETWORKS(path, networks, profile)
17: end for
18: end for
19: end function
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Algorithm 9 Builds the profile for a pair of networks
1: function BUILDPROFILEFORPATHNETWORKS(path, networks, profile)
2: for all filter in { first and last filters of path } do
3: if filter ∩ networks 6= profile then
4: Report disagreement
5: end if
6: end for
7: for all profileregion in profile do
8: if target of profileregion is accept then
9: for all filter in path do

10: filterregion ← filter ∩ profileregion

11: Remove all rules in filterregion from rulesleak candidates

12: if target of filterregion is not accept then
13: Report block
14: end if
15: end for
16: end if
17: end for
18: end function

Algorithm 10 Leak finding
1: function FINDLEAKSINPATH(path, profile)
2: if all routers of path are plain then
3: if there is a deny region in profile then
4: Report leak
5: end if
6: end if
7: end function
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5.8 The Internet

There is a special case in the filter analysis that corresponds to the internet.
When the system administrator defines a network interface of a router as connected to the in-

ternet, the checker does two things: first, it considers every network that is not present anywhere
else in the topology as connected to that interface. Secondly, even if there are many internet
connections, the checker does not consider any path that has such interface as an edge. That
is justified by the fact that the network administrator will probably never have internal packets
travel from one edge of his network to the other using an external connection. The internet is
modelled as a network interface that is connected to every network that is not present in the
system.

These considerations are not present in the shown algorithms because they are made mostly
as a pre-processing stage and as a verification in the list of paths construction, that is also not
shown.
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6 ASSERTIONS

6.1 Introduction

Up to this point, PFC is able to detect contradictions and other problems in an algebraic way,
considering the set of rules implemented and the current network topology.

It is interesting to provide a mechanism to perform a functional verification of the filter, that
is, to test if the filter in fact conforms to its specification.

This is done with assertions.

6.2 Requirements

The set of assertions will also be provided as input to PFC, in addition to the set of rules and
the network topology.

Assertions will be simple verifications of the overall filter behaviour. They are checked after
the algebraic verifications, and their violation is reported with the anomalies.

6.3 Model

Each assertion has the same format of a rule, being composed of a match and a target.

assertion =

{
match ∈ Regionsets

action ∈ {accept, deny}

Unlike rules, though, assertions must be globally true, all of them, simultaneously. Assertions
must hold in the global accessibility profile, as that guarantees that assertions hold globally when
there are no anomalies.

6.4 Errors

As assertions are not part of the implemented topology, they do not generate anomalies, but
assertions errors.

Assertions are first checked among themselves. As all assertions must hold globally, the error
of contradiction is reported for assertions that contradict one another.
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If an assertion does not hold, an assertion violation error is reported.

6.5 Algorithm

Assertion verification is performed the same way rule disagreement is checked. See algorithm
9 for the high-level reference.

6.6 Conclusion

Assertions are a simple mechanism for filter conformance checking.
They can also help evaluate the impact of a specification change, help with its implementation

and help in regression testing.
Assertions can be compared to unit testing for packet filter configuration.
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7 CASE STUDY

(KNUTH, 1997)

7.1 Introduction

A case study is presented in this chapter.
The case study is an artificial example. As the most interesting and non-obvious problems of

a network arise in the presence of changes, the case study is divided in iterations. Each iteration
changes the network and the requirements before implementing a naïve solution that will be
checked with PFC and then fixed.

Assertions are used along a security policy to verify the implementation’s conformance.

7.2 Case 1: single filter

Misc. Inc. started out as a small company. At the beginning, we had only a small handful of
computers connected to a switch. As the company grew, security became an issue. After a virus
wiped out our customer’s information, the company decided to specialize roles, split the network
and develop a security policy.

The network got divided by functionality and access requirements. Servers were put in two
networks: one for the IT servers (mail, file, proxy, web server) and one for the main servers.
Users were put in a third network. The topology can be seen in figure 7.1.

The security policy stated that:

• every network has access to the mail server (IT);

• internet web access is filtered by a proxy (IT) that can access the internet;

• the web server (IT) can be accessed from the internet;

• the other servers should not be able to initiate connections;

• users have complete access to the main servers and the file server;

• users can only access the internet through the proxy.
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SingleF

Users
10 .0 .0 .0 /24MainS

10 .1 .0 .0 /24

ITS
10 .1 .1 .0 /24

In te rne t

Figure 7.1: Topology of case 1

7.2.1 Naïve solution

The IP address allocation follows. Networks have their first letter capitalized; server networks
and hosts end in an S; filters end in F and routers in R.

Users 10.0.0.0/24
MainS 10.1.0.0/24
ITS 10.1.1.0/24
Internal 10.0.0.0/8
All 0.0.0.0/0
webS 10.1.1.2
mailS 10.1.1.3
fileS 10.1.1.4
proxyS 10.1.1.4

The direct translation of the security policy results in the following description:

• Filter SingleF:

Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
NoProxy2Internal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
ProxyA from 10.1.1.4/32 to any → Accept
NoServer from MainS to any → Deny
Users2Main from Users to MainS → Accept
Users2File from Users to 10.1.1.4/32 → Accept
Users2Proxy from Users to 10.1.1.4/32:3180 → Accept
Default from any to any → Deny
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Figure 7.2: Profile of the naïve solution of case 1

Figure 7.2 shows the profile of the filter, figure 7.3 shows the tree of rules.
PFC found the following anomalies:

SingleF:
Invisible rule Users2Proxy
Conflict rule Web rule NoServer

at [src 10.1.0.0/24 dst 10.1.1.2/32:80]
Conflict rule Mail rule NoServer

at [src 10.1.0.0/24 dst 10.1.1.3/32:23]
Redundant rule NoServer

Irrelevant rule Users2Proxy in filter SingleF

It is easy to see that the invisibility of rule Users2Proxy and its consequent irrelevancy is
due to the fact that the file server and proxy server are the same physical machine, and the more
general rule (Users2File) comes first in the filter.

On the other hand, the conflicts with the NoServer rule happen because the rules Mail
and Web allow the main servers to connect to the mail and web servers, and that is against the
security policy.

At last, the redundancy of rule NoServer is pointed out because its effect is already pro-
vided by the Default rule.
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Mail
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in ou t
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Figure 7.3: Tree of rules of the naïve solution of case 1
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In the next section a proper solution is developed.

7.2.2 Proper solution

A simple fix for the problems found in the naïve solution is to remove the rules Users2Proxy
and NoServer. Even though the first rule may be safely removed, the second rule points to a
real conflict between what was implemented and the security policy.

A better approach is to transform both rules into assertions, as they are both correct and must
be globally valid: the first rule is invisible only because the file server and the proxy server are
accessed through the same IP address; the second rule is really redundant, but verifies the filter
implementation.

After converting both rules to assertions, the assertion NoServer fails. To fix that, three
rules are implemented: NoServer2Mail and NoServer2Web, to prevent all servers from
accessing the mail and web server and to prevent the proxy server from accessing the main
server. The output of PFC is then:

No anomalies or errors found

It’s interesting to note that the isolated analysis of this filter would point out that the rule
NoProxy2Server conflicts with the rules Mail and Web. However, these conflicts are filtered
out as the conflicting datagrams are all within a single interface and would not go through the
filter.

The final rule set is:

• Filter SingleF:

NoServer2Mail from MainS to 10.1.1.3/32:23 → Deny
NoServer2Web from MainS to 10.1.1.2/32:80 → Deny
Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
NoProxy2Internal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
ProxyA from 10.1.1.4/32 to any → Accept
Users2Main from Users to MainS → Accept
Users2File from Users to 10.1.1.4/32 → Accept
Default from any to any → Deny

• Assertions:
Users2Proxy from Users to 10.1.1.4/32:3180 → Accept
NoServer from MainS to any → Deny

Figure 7.4 show the profile of this solution. The tree of rules of the proper solution ca be seen
in figure 7.5.

7.3 Case 2: Multiple filters

That solution has worked very well until we had a critical failure on a component that had to
be replaced. As we were in a position where network downtime was very expensive, we decided
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Figure 7.4: Profile of the proper solution of case 1
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Figure 7.6: Topology of case 2

that the best course of action was to increase redundancy and to buy 3 filters. Those would be
placed in a security-minded arrangement, with a replacement priority; that is, if the internal filter
failed, it would be replaced with the internet filter while the faulty filter was fixed. The new
topology can be seen in figure 7.6.

7.3.1 Naïve solution

To make a safe transition, the IT department decided to replicate the old filter’s rules in all
filters and remove the rules that were related to networks not directly connected. They also
noticed that assertions were a good thing and coded some more. The initial setup can be seen
below:

• Filter InternetF:

Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
NoProxy2Internal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
ProxyA from 10.1.1.4/32 to any → Accept
Default from any to any → Deny

• Filter ITUsersF:

Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
NoProxy2Internal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
ProxyA from 10.1.1.4/32 to any → Accept
Users2File from Users to 10.1.1.4/32 → Accept
Default from any to any → Deny
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• Filter InternalF:

NoServer2Mail from MainS to 10.1.1.3/32:23 → Deny
NoServer2Web from MainS to 10.1.1.2/32:80 → Deny
Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
NoProxy2Internal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
ProxyA from 10.1.1.4/32 to any → Accept
Users2Main from Users to MainS → Accept
Users2File from Users to 10.1.1.4/32 → Accept
Default from any to any → Deny

• Assertions:

Users2Proxy from Users to 10.1.1.4/32:3180 → Accept
Users2MainS from Users to MainS → Accept
Users2Mail from Users to 10.1.1.2/32:80 → Accept
Users2Web from Users to 10.1.1.3/32:23 → Accept
Users2File from Users to 10.1.1.4/32 → Accept
NoMailStart from 10.1.1.3/32 to any → Deny
NoWebStart from 10.1.1.2/32 to any → Deny
NoFileStart from 10.1.1.4/32 to any → Deny
NoProxyInternal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
NoServerStart from MainS to any → Deny

PFC found the following problems:

Disagreement
of filter InternalF, rule NoServer2Mail
with filter ITUsersF, rule Mail
at [src 10.1.0.0/24 dst 10.1.1.3/32:23]

Disagreement
of filter InternalF, rule NoServer2Web
with filter ITUsersF, rule Web
at [src 10.1.0.0/24 dst 10.1.1.2/32:80]

Irrelevant rule ProxyA in filter ITUsersF
Irrelevant rule Mail in filter InternalF
Irrelevant rule Web in filter InternalF
Irrelevant rule ProxyA in filter InternalF
Irrelevant rule Users2File in filter InternalF
Assertion NoFileStart violated at

[src 10.1.1.4/32]

Although the solution implements the desired behaviour, it is nowhere near minimal, and has
some other issues.

The first problems are the disagreements. They are reported because even though ITUsersF
is not connected to MainS, it must agree with InternalF on whether the mail and web servers
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Figure 7.7: Profile of the naïve solution of case 2
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can connect to the main servers. To fix it, we add NoServer2Mail and NoServer2Web to
ITUsersF.

Following the disagreements, some irrelevant rules are pointed out. It is safe to remove the
corresponding rules.

The last problem is the assertion failure. It happens because, as in the single filter case, the
proxy and the file server are the same PC. This time it is better to split them for the sake of
security than remove the assertion.

7.3.2 Proper solution

After removing the irrelevant rules, the following result is generated:

ITUsersF:
Redundant rule NoProxy2Internal

InternalF:
Redundant rule NoServer2Mail
Redundant rule NoServer2Web
Redundant rule NoProxy2Internal

Assertion Users2Proxy violated at
[src 10.0.0.0/24 dst 10.1.1.4/32:3180]

Besides the redundant rules, the failed assertions shows that now that the file server and proxy
are not on the same machine, an explicit rule for the proxy is needed. We remove the redundant
rules, and add the proxy rule to get:

No anomalies or errors found

The profile is displayed in figure 7.8. It is easy to see that the profile is equivalent to the final
profile of the single filter case (figure 7.4), except for the proxy/file server split.

The final setup is below:

• Filter InternetF:

Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
NoProxy2Internal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
ProxyA from 10.1.1.4/32 to any → Accept
Default from any to any → Deny

• Filter ITUsersF:

NoServer2Mail from MainS to 10.1.1.3/32:23 → Deny
NoServer2Web from MainS to 10.1.1.2/32:80 → Deny
Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
Users2Proxy from Users to 10.1.1.4/32:3180 → Accept
Users2File from Users to 10.1.1.5/32 → Accept
Default from any to any → Deny
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Figure 7.8: Profile of the proper solution of case 2
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Figure 7.9: Topology of case 3

• Filter InternalF:
Users2Main from Users to MainS → Accept
Default from any to any → Deny

• Assertions:

Users2Proxy from Users to 10.1.1.4/32:3180 → Accept
Users2MainS from Users to MainS → Accept
Users2Mail from Users to 10.1.1.2/32:80 → Accept
Users2Web from Users to 10.1.1.3/32:23 → Accept
Users2File from Users to 10.1.1.5/32 → Accept
NoMailStart from 10.1.1.3/32 to any → Deny
NoWebStart from 10.1.1.2/32 to any → Deny
NoFileStart from 10.1.1.5/32 to any → Deny
NoProxyInternal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
NoServerStart from MainS to any → Deny

By increasing the number of filters with a carefully thought topology, we have not only
increased security but also decreased the complexity of each filter, making maintenance easier.

7.4 Case 3: Even more redundancy

Even though the current setup allows a filter to fail without compromising the whole network,
it was decided that even more redundancy was desired. The extreme filters InternetF and
InternalF were then connected, and a router between Users and MainS was deployed. The
resulting topology can be seen in figure 7.9.

This setup prevents the loss of connectivity between Users and the internet when the filter
ITUsersF fails and between Users and MainS when the filter InternalF fails.
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7.4.1 Naïve solution

Keeping the current rule set generates the profile in figure 7.10. PFC reports:

Disagreement
of filter ITUsersF, rule Default
with filter InternetF, rule ProxyA
at [src 10.1.1.4/32 dst 0.0.0.0-9.255.255.255,

src 10.1.1.4/32 dst 11.0.0.0-192.167.255.255,
src 10.1.1.4/32 dst 192.168.0.0/24,
src 10.1.1.4/32 dst 192.168.1.0-255.255.255.255]

Disagreement
of filter InternalF, rule Default
with filter ITUsersF, rule Mail
at [src 10.0.0.0/24 dst 10.1.1.3/32:23,

src 192.168.0.0/24 dst 10.1.1.3/32:23]
Disagreement

of filter InternalF, rule Default
with filter ITUsersF, rule Users2File
at [src 10.0.0.0/24 dst 10.1.1.5/32]

Disagreement
of filter InternalF, rule Default
with filter ITUsersF, rule Users2Proxy
at [src 10.0.0.0/24 dst 10.1.1.4/32:3180]

Disagreement
of filter InternalF, rule Default
with filter ITUsersF, rule Web
at [src 10.0.0.0/24 dst 10.1.1.2/32:80,

src 192.168.0.0/24 dst 10.1.1.2/32:80]
Disagreement

of filter InternalF, rule Default
with filter InternetF, rule Mail
at [src 10.0.0.0/24 dst 10.1.1.3/32:23,

src 10.1.0.0/24 dst 10.1.1.3/32:23,
src 192.168.0.0/24 dst 10.1.1.3/32:23]

Disagreement
of filter InternalF, rule Default
with filter InternetF, rule Web
at [src 10.0.0.0/24 dst 10.1.1.2/32:80,

src 10.1.0.0/24 dst 10.1.1.2/32:80,
src 192.168.0.0/24 dst 10.1.1.2/32:80]

Disagreement
of filter InternalF, rule Users2Main
with filter ITUsersF, rule Default
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at [src 10.0.0.0/24 dst 10.1.0.0/24]
Block in filter InternalF

at [src 0.0.0.0-9.255.255.255 dst 10.1.1.2/32:80,
src 0.0.0.0-9.255.255.255 dst 10.1.1.3/32:23,
src 10.0.1.0-10.0.255.255 dst 10.1.1.2/32:80,
src 10.0.1.0-10.0.255.255 dst 10.1.1.3/32:23,
src 10.1.2.0-192.167.255.255 dst 10.1.1.2/32:80,
src 10.1.2.0-192.167.255.255 dst 10.1.1.3/32:23,
src 192.168.1.0-255.255.255.255 dst 10.1.1.2/32:80,
src 192.168.1.0-255.255.255.255 dst 10.1.1.3/32:23]

Leak between MainS and Users in path [router InternalR]
Assertion Users2Proxy violated at

[src 10.0.0.0/24 dst 10.1.1.4/32:3180]
Assertion Users2Mail violated at

[src 10.0.0.0/24 dst 10.1.1.2/32:80]
Assertion Users2Web violated at

[src 10.0.0.0/24 dst 10.1.1.3/32:23]
Assertion Users2File violated at

[src 10.0.0.0/24 dst 10.1.1.5/32]

Now that InternalF is connected to InternetF, they must agree on the profile of the IT
servers network. The last 7 disagreements are reported because of this. The other disagreement
is reported because ITUsersF does not allow the proxy to access the internet. With the new
connection, that is a possible path, and will be used if the port of InternetF that connects it
to ITS fails.

Moving on to the blocks, it is easy to see that they are reported because the filters do now
allow the traffic that previously would not go through them: InternalF must support IT and
internet traffic; ITUsersF and InternetF must support the traffic to MainS.

On the other hand, the leak reported was caused by the presence of a router in parallel with
InternalF. That filter did not allow traffic from the servers into the user network, but the
router does. The only solution in this case is to replace the router with a filter or eliminate the
router completely. We will do the former.

At last, the assertion problem was caused by the disagreements, that prevent proper assertion
evaluation.

7.4.2 Proper solution

Now, there is so much redundancy, that almost every path is a possible one. The best
course of action is to replicate the rules of the single filter case in every filter, including the
new InternalF2 which replaced InternalR. That makes PFC give us:

Assertion Users2Proxy violated at
[src 10.0.0.0/24 dst 10.1.1.4/32:3180]
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Figure 7.10: Profile of the naïve solution of case 3
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That, of course, happened because the IP address of the proxy was changed in case 2. Adding
the rule Users2Proxy to every filter, we get from PFC:

No anomalies or errors found

The profile can be seen in figure 7.11, the topology is in figure 7.12, while the complete setup
is below.

• Filter InternetF:

NoServer2Mail from MainS to 10.1.1.3/32:23 → Deny
NoServer2Web from MainS to 10.1.1.2/32:80 → Deny
Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
NoProxy2Internal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
ProxyA from 10.1.1.4/32 to any → Accept
Users2Main from Users to MainS → Accept
Users2File from Users to 10.1.1.5/32 → Accept
Users2Proxy from Users to 10.1.1.4/32:3180 → Accept
Default from any to any → Deny

• Filter ITUsersF:

NoServer2Mail from MainS to 10.1.1.3/32:23 → Deny
NoServer2Web from MainS to 10.1.1.2/32:80 → Deny
Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
NoProxy2Internal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
ProxyA from 10.1.1.4/32 to any → Accept
Users2Main from Users to MainS → Accept
Users2File from Users to 10.1.1.5/32 → Accept
Users2Proxy from Users to 10.1.1.4/32:3180 → Accept
Default from any to any → Deny

• Filter InternalF:

NoServer2Mail from MainS to 10.1.1.3/32:23 → Deny
NoServer2Web from MainS to 10.1.1.2/32:80 → Deny
Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
NoProxy2Internal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
ProxyA from 10.1.1.4/32 to any → Accept
Users2Main from Users to MainS → Accept
Users2File from Users to 10.1.1.5/32 → Accept
Users2Proxy from Users to 10.1.1.4/32:3180 → Accept
Default from any to any → Deny
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• Filter InternalF2:

NoServer2Mail from MainS to 10.1.1.3/32:23 → Deny
NoServer2Web from MainS to 10.1.1.2/32:80 → Deny
Mail from any to 10.1.1.3/32:23 → Accept
Web from any to 10.1.1.2/32:80 → Accept
NoProxy2Internal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
ProxyA from 10.1.1.4/32 to any → Accept
Users2Main from Users to MainS → Accept
Users2File from Users to 10.1.1.5/32 → Accept
Users2Proxy from Users to 10.1.1.4/32:3180 → Accept
Default from any to any → Deny

• Assertions:

Users2Proxy from Users to 10.1.1.4/32:3180 → Accept
Users2MainS from Users to MainS → Accept
Users2Mail from Users to 10.1.1.2/32:80 → Accept
Users2Web from Users to 10.1.1.3/32:23 → Accept
Users2File from Users to 10.1.1.5/32 → Accept
NoMailStart from 10.1.1.3/32 to any → Deny
NoWebStart from 10.1.1.2/32 to any → Deny
NoFileStart from 10.1.1.5/32 to any → Deny
NoProxyInternal from 10.1.1.4/32 to 10.0.0.0/8 → Deny
NoServerStart from MainS to any → Deny
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Figure 7.11: Profile of the proper solution of case 3
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CONCLUSION

This master thesis presents the results of a research and work on coherence in packer filters. It
also documents the design and demonstrates PFC, the Packet Filter Checker that was developed.

From chapter 1 to chapter 3, a research of the environment is made. Concepts of how the
network operates and existing work in packet filter coherence are presented. It is shown that
there is room for improvement, as the existing works on algebraic verification of isolated filters
have some limitations, and there is no checker for multiple filters.

In chapter 4, the first contribution is made: a new algebraic checker for isolated filters. By
using a more robust model based on sets and different models for rule relation and anomalies,
the checker is not susceptible to the problems of false positives and negatives that could be found
in previous works. The model and the design of the anomalies are based on the assumption that
the order of rules is the main source of errors in a filter. So, every time the order of the rules is
plain wrong (a rule is never used), trivial (inversion would result in a wrong order), or irrelevant
(inversion would not change the filter), an anomaly is reported. Even though the administrator
may have to add rules that do nothing to the behaviour to the filter only to clear conflicts, an
anomaly-free filter is much easier to maintain: the administrator can change the order of the rules
without fearing a change in the behaviour of the filter, and new rules rise anomalies indicating
the rules they interfere with when placed ambiguously.

In chapter 5, the algebraic checker for distributed filters is presented. This checker is the main
contribution of this work. By using the set algebra of the previous chapter and a model of how
the filters should behave, a set of distributed anomalies was developed, and the isolated checker
extended into a distributed one. Once again, we base the anomalies on a single assumption:
that every possible path for each datagram inside the network must present the same behaviour.
That is a reasonable assumption, as the network should not accept more types of datagrams from
a point to another when a filter is too loaded or fails. As with the isolated filter design, the
administrator may have to add rules in some filters to clear all anomalies, but an anomaly-free
network is easier to maintain and change – each new rule that needs to be in further filters will
lead to an anomaly.

Chapter 6 tackles functional verification of distributed filters with assertions. The idea is
simple, but very useful: the verification of some properties of the resulting accessibility profile.
By using assertions, the administrator can code the expected behaviour of the filter in a higher
level, and let PFC check if the implementation conforms. The value of this idea demonstrated on
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the next chapter, the case study.
The case study is made of a series of iterations on one fictional company. In each iteration,

the requirements of the network are changed along with its topology. Even though the security
policy doesn’t change, it was possible to demonstrate every anomaly.

The examples of the case study as well as the examples of anomalies in the previous chap-
ters were all analysed with PFC. PFC was also used to generate the figures of the profiles and
the representations of the examples. For the figures of the topologies, PFC generated an out-
put suitable for use with Graphviz (ELLSON; GANSNER, 2008). PFC was developed using
Haskell (JONES, 2003), a purely functional programming language with non-strict semantics.
Haskell made a difference in the development of the algebraic analyses with its strong, static
polymorphic types. On the library front, Parsec (LEIJEN; MEIJER, 2001) provided an easy-
to-use parser combinator and QuickCheck (CLAESSEN; HUGHES, 2000) was used to create
automatic property tests.

It is in the interest of the network administrator to clear its network of all anomalies, as their
absence testify the consistency (conflict; disagreement, blocking, and leaking) and minimalism
(invisibility, redundancy; irrelevancy) of the setup. There is one issue, though: the administrator
might have to add unnecessary rules to filters only to get them anomaly-free. That can be the case
when there are conflicts and disagreements, as these anomalies are report situations of ambiguity
where PFC cannot determine the administrator’s intention. A possible solution for this issue
could be a better integration of the rule checker with the assertion checker: only report conflicts
and disagreements when there is no assertion to define the desired behaviour for the analysed
region, and take the target of the assertion as the correct one for the rest of the analyses.

Another lesser issue that might arise is the tool’s reliance on the uniqueness of IP addresses.
The internal representation of the model, and even the syntax of the network description file
depend on it. That is an issue as it blocks the support for address translation (NAT). But as it is
unusual for a company to have more than one translated network, this issue might not have an
impact.

These issues aside, we have achieved our goal: the development and implementation of an
algebraic checker for rules in single and networked filters. To our knowledge, there is no other
algebraic rule checker that supports networked filter, that is a contribution to the field by itself.
Other than that, our single-filter checker has two properties that are found in no other: every
anomaly reported can be eliminated by the addition or removal of rules (no persistent false pos-
itives) and the rules are analysed in their context, as there are some problems that can only be
detected that way. Our tests and the case study show that the solution developed is robust and
presents comprehensible information for all the anomalies, and can potentially help the network
administrator setup and maintain a secure network.
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APÊNDICE A RESUMO DOS PRINCIPAIS RESULTADOS

A.1 Introdução

Este capítulo apresenta um resumo deste trabalho, com foco nos resultados obtidos, em por-
tuguês.

O trabalho em si começa pela apresentação da modelo usado para a análise das regras de
um filtro de pacotes. A partir desse modelo, é desenvolvido o conceito de anomalia isolada,
que se trata de uma incoerência nas regras de um filtro. Até este ponto, o presente trabalho se
assemelha com o trabalho de Al-Shaer e Hamed (AL-SHAER; HAMED, 2002, 2003a, 2004a,
2003b, 2004b). Em seguida, é apresentado o modelo desenvolvido para redes de computadores
com filtros e roteadores. Com este modelo, são definidas as anomalias distribuídas, e esta é a
principal contribuição deste trabalho. As anomalias distribuídas são as incoerências encontradas
entre regras de filtros diferentes e outras incoerências da própria topologia da rede. Depois disso
as asserções são apresentadas, que nada mais são do que testes de tráfego feitos sobre o modelo
da rede. Em seguida é feito um estudo de caso e o trabalho é finalizado.

Segue um resumo dos principais pontos do trabalho.

A.2 Anomalias isoladas

O modelo de filtro de pacotes desenvolvido considera o filtro como uma função matemática
cuja entrada é um datagrama IP e cuja saída é uma ação de duas disponíveis: aceite ou descarte.
O filtro é programado pelo administrador da rede através de regras, cada uma fazendo o mapea-
mento de um conjunto de datagramas para uma ação. As regras são avaliadas sempre na mesma
ordem, e a primeira que possuir o datagrama recebido em seu conjunto define a ação a ser tomada
para esse.

Trabalhos anteriores (AL-SHAER; HAMED, 2003a) indicam que a maior parte dos erros na
configuração de filtros vem da ordenação das regras. Por isso, cada caso no qual a ordenação re-
lativa de duas regras em um filtro não é nem trivial nem irrelevante vai gerar uma anomalia. Além
disso, o desempenho de um filtro é inversamente proporcional ao número de regras presente, e
por isso vamos também gerar anomalias para regras desnecessárias.

A partir da relação entre os conjuntos de datagramas das regras (sub-conjunto, super-conjunto,
igualdade ou disjunção), da sua ordem no filtro e da sua ação, as anomalias isoladas são definidas:
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• Invisibilidade: quando todos os datagramas selecionados por uma regra já foram selecio-
nados por regras anteriores - ou seja, a regra nunca vai selecionar nenhum datagrama na
posição atual.

• Conflito: quando o conjunto de datagramas selecionados por duas regras com ações dife-
rentes possui uma interseção não-vazia, a regra na posição superior não é um subconjunto
da regra inferior, e essa interseção não está totalmente contida em uma terceira regra supe-
rior a ambas. Nessas condições, a troca da ordem dessas duas regras não geraria nenhuma
anomalia e o comportamento do filtro seria alterado. Para efeito de comparação: se a regra
superior for um subconjunto da regra inferior, a troca da ordem vai gerar uma anomalia de
invisibilidade.

• Redundância: quando uma regra, mesmo selecionando pacotes devido à sua posição, po-
deria ser removida sem alteração no comportamento do filtro. Isso indica que todos os
pacotes selecionados pela regra redundante são selecionados também por regras inferio-
res com a mesma ação. Normalmente, a regra é desnecessária mesmo ou há uma ação
incorreta em alguma regra.

A anomalia de conflito aponta ambiguidades na ordenação das regras, enquanto que as ano-
malias de invisibilidade e redundância apontam regras desnecessárias. Em um filtro sem ano-
malias, qualquer troca na ordem de duas regras vai ou gerar uma anomalia ou não ter efeito no
comportamento do filtro. Isso facilita muito a manutenção dessas regras pelo administrador de
rede, que pode otimizar o filtro passando as regras mais importantes para o topo sem medo dos
potenciais efeitos colaterais.

Com relação aos trabalhos de Al-Shaer e Hamed, que também definem anomalias para re-
gras em filtros isolados, podemos apontar os seguintes pontos como vantagens das anomalias do
presente trabalho:

• Visão das regras no contexto geral: a análise das regras é feita dentro do contexto do filtro,
e não duas-a-duas. Com isso, não são apontadas anomalias que não aparecem no resultado
do filtro. Por exemplo: se um conflito diz respeito a datagramas que são todos selecionados
por uma regra superior as duas regras conflitantes, ele não é reportado. Isso evita falsos
positivos.

• Possibilidade de remoção de todas as anomalias: as anomalias foram projetadas de forma
a permitir sua remoção através da inserção, remoção e alteração da ordem das regras e
de sua ação. Com isso, é possível “corrigir” qualquer filtro. No trabalho de Al-Shaer e
Hamed, algumas anomalias são inerentes ao comportamento desejado para o filtro.

A.3 Anomalias distribuídas

Para a análise das anomalias distribuídas, é necessário ter a topologia completa da rede, além
das regras de cada filtro. A rede é modelada como um grafo, no qual os nós são os filtros e
roteadores, e as arestas são as redes que os ligam. Cada datagrama possui uma origem e um
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destino dentro deste grafo, mas muitas vezes há vários caminhos intermediários possíveis. Neste
trabalho, consideramos que todos os caminhos devem apresentar as mesmas permissões para o
datagrama: ou a passagem é permitida em todos os caminhos ou proibida. Com isso, a rede se
torna mais robusta à falhas, já que a falha de um filtro não vai impedir um acesso que antes era
possível ou pior, permitir um acesso anteriormente proibido. Anomalias distribuídas são, por
isso, casos nos quais a permissão para determinados datagramas difere dependendo do caminho
que este tomar:

• Discordância: quando o filtro mais próximo de uma rede possui uma ação para determi-
nados datagramas que difere da ação do filtro mais próximo da rede de destino desses
datagramas. Não há como saber qual dos dois filtros possui a ação correta, que deve ser
verificada pelo administrador. Se mais de um filtro puder ser o primeiro (ou último) para
determinados datagramas, todos estes filtros devem também concordar.

• Bloqueio: quando o filtro mais próximo da rede de origem e o filtro mais próximo da rede
de destino de determinados datagramas concordam que estes devem ser aceitos, mas um
filtro intermediário os descarta. Provavelmente a ação incorreta é a deste filtro intermediá-
rio.

• Vazamento: quando o filtro mais próximo da rede de origem e o filtro mais próximo da
rede de destino de determinados datagramas concordam que estes devem ser descartados,
mas há um caminho alternativo comporto apenas por roteadores - que são modelados como
filtros que não descartam nenhum datagrama. Neste caso, alguns datagramas podem passar
dependendo das condições da rede, por isso o “vazamento.”

• Irrelevância: dada a topologia da rede, só um conjunto limitado de datagramas vai passar
por cada filtro. A irrelevância aponta regras que selecionam apenas datagramas que estão
fora desse conjunto, e que são, por isso, desnecessárias. O contraste com a redundância
aparece no fato da irrelevância usar o conhecimento da topologia da rede para analisar as
regras.

As anomalias distribuídas, assim como as isoladas, sempre podem ser eliminadas através
da manipulação das regras. Uma rede livre de anomalias garante que não haverá alteração na
acessibilidade na presença de falhas ou tráfego intenso. Manter a rede sem anomalias também
facilita a manutenção, já que a alteração de um filtro vai gerar anomalias que apontam para todos
os outros filtros que precisam ser alterados para que a rede fique consistente novamente.

O modelo e a definição das anomalias distribuídas é a principal contribuição do presente
trabalho. Até o momento, não havia nenhum outro trabalho na literatura que analisasse de forma
algébrica as regras de uma rede inteira com diversos filtros.

A.4 Asserções e o protótipo PFC

As anomalias verificam a consistência e o minimalismo da rede e das regras dos filtros de
pacotes. Contudo, elas não garantem que o comportamento implementado é o desejado.
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Asserções são um mecanismo simples que podem ser usado para verificar o comportamento
da rede. Possuem a mesma sintaxe de uma regra: um conjunto de pacotes e uma ação. Con-
tudo, as asserções são verificadas sobre o comportamento global da rede. Ou seja, depois de
todas anomalias reportadas, é reportado um erro para cada asserção que não corresponder ao
implementado. Dessa forma, o administrador da rede pode implementar “testes de unidade” do
comportamento da rede e ter mais garantias ainda quando precisar fazer uma manutenção.

Para verificar as asserções e as anomalias, foi criado um protótipo que implementa os algo-
ritmos desenvolvidos. O Packet Filter Checker (PFC) recebe a topologia da rede e as regras de
cada filtro, e gera um relatório com todas as anomalias e erros de asserção encontrados. O PFC
tem também a capacidade de gerar diversos outros artefatos, como os gráficos usados no decorrer
deste trabalho. Seu uso pode ser observado melhor no capítulo 7, que demonstra o caso de uso.




