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ABSTRACT

A huge volume of data is produced every day, from the information provided by social
networks (such as Facebook, Instagram, Whatsapp, etc) or that generated by sensors on
mobile devices, including Big Data applications like Google Searches. This deluge of
data requires ever more computational resources to process the information more quickly.
Although Cloud has grown rapidly in recent years, it still suffers from a lack of standard-
ization and management resources. The users who need to execute applications may not
know how to map their requirements to the available resources. This lack of knowledge
about the Cloud provider infrastructure leads either to overestimating or underestimat-
ing the required processing capacity for tasks. This complex scenario raises enormous
challenges for researchers of new systems and infrastructure kinds. On the other hand, it
provides several opportunities for the researcher to find solutions for Big Data Analytics.
This work establishes: i) a new platform called SMART which offers Big Data Analytics
in a Lambda architecture within a hybrid infrastructure; ii) presents a simulator called
BIGhybrid to be a toolkit for the study of Big Data Analytics in hybrid infrastructures.
Its goal is to enable the user achieves the nearest configuration for Big Data applica-
tions into deployment in real-world environments. In addition, defines data distribution
strategies in this complex scenario for reducing the risks of trouble caused by common
configuration mistakes; iii) evaluates the use of the Dispatcher module in the SMART
platform and iv) defines strategies for the use of Desktop Grid and Cloud Computing in a
geo-distributed environment within a hybrid infrastructure. The boundaries to produce an
acceptable quality of service (QoS) are presented. Such limits can be summarized as the
relation between volunteer hosts and stable nodes, the shape of data distribution, load bal-
ancing strategies and relation Φ to resource allocation. Although it can be carried out in
the real-world, an experimental evaluation on a large scale is only possible through sim-
ulation owing to the reproducibility and predictability of environmental features. These
experiments indicate a good performance of the SMART platform in low and high-scale
in simulated environments.

Keywords: Big Data, MapReduce, Hybrid Infrastructures, Distributed Systems, Cloud
Computing, Desktop Grid.





RESUMO

Processamento Big Data usando Infra-estruturas Híbridas como Computação em
Nuvem e Grade de Desktop

Um grande volume de dados é produzido todos os dias, desde informações fornecidas
por redes sociais (tais como Facebook, Instagram, Whatsapp, etc) ou geradas por sensores
em dispositivos móveis, até aplicações Big Data como a busca do Google. Esta inunda-
ção de dados requer cada vez mais recursos computacionais para processar informações
mais rapidamente. Embora Cloud tenha crescido rapidamente nos últimos anos, ela ainda
sofre com falta de padronização e gerenciamento de recursos adequados. Os usuários que
necessitam executar aplicações podem não saber como mapear seus requisitos de siste-
mas para os recursos disponíveis. Esta falta de conhecimento sobre a infraestrutura dos
provedores de nuvem leva a superestimar ou subestimar a capacidade de processamento
necessária para as tarefas. Este cenário complexo apresenta enormes desafios para os pes-
quisadores em termos de sistemas e tipos de infraestruturas. Por outro lado, ele oferece
várias oportunidades para o pesquisador encontrar soluções para a análise de Big Data.
Este trabalho estabelece: i) uma nova plataforma chamada SMART que oferece a análise
de Big Data em uma arquitetura Lambda sobre uma infraestrutura híbrida; ii) apresenta
um simulador chamado BIGhybrid para ser um conjunto de ferramentas para o estudo da
análise de Big Data em infraestruturas híbridas. Este permite que o usuário encontre as
configurações mais próxima para as aplicações Big Data na implantação em ambientes
reais. Ainda, define estratégias para a distribuição de dados neste cenário complexo para
reduzir os riscos de problemas causados por erros comuns de configurações; iii) avalia
o uso do módulo Despachante na plataforma SMART e iv) define estratégias para o uso
de Desktop Grid e computação em nuvem em um ambiente geo-distribuído em uma in-
fraestrutura híbrida. O objetivo é encontrar algumas das restrições a uma qualidade de
serviços (QoS) aceitável. Tais restrições estão relacionadas com a relação entre máquinas
voluntárias e nós estáveis, distribuição de dados, estratégias de balanceamento da carga
e assim por diante. Embora isto possa ser construído em um ambiente real, uma ava-
liação experimental em larga escala é somente possível através de simulação devido às
características de reprodutibilidade e previsibilidade de características ambientais. Os ex-
perimentos indicam um bom desempenho da plataforma SMART em baixa escala em um
ambiente real.

Keywords: Big Data, MapReduce, Infra-estrutura Híbrida, Sistemas Distribuídos, Comp-
tação em Nuvem, Grade de Desktop.
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1 INTRODUCTION

Mankind is producing an ever increasing amount of data. According to the Na-
tional Security Agency (NSA)1, by 2020 there will be around 40 Zettabytes (40,000,000
Petabytes) of data that will require processing of some sort. This volume of data requires
processing capabilities beyond those that the current IT infrastructure can provide. In ad-
dition, the data input can originate from different sources, such as social interaction, sci-
entific research, business activities and government decisions (DOAN; HALEVY; IVES,
2012), (CHEN; ZHANG, 2014). Social customs have changed since the Internet revolu-
tion in the 1990s, with the growth of mobile devices in the last 20 years and the social
network phenomenon of the last decade. Today, people are posting millions of photos
per day on Facebook or Instagram that are shared with other people or groups of friends.
Every day, billions of tweets are being exchanged on Twitter from mobile devices. The
number of smartphones and access to broadband has been increasing steadily both in
developed and emerging economies.

Although, Cloud Computing (Cloud) has grown rapidly in recent years, it still suffers
from a lack of standardization and the availability of homogeneous management resources
(TOOSI; CALHEIROS; BUYYA, 2014). Private clouds are used exclusively by a single
organization, that keeps careful control of its performance, reliability and security, but
might have low scalability for Big Data processing requirements. Public clouds have an
infrastructure that is based on a specific Service Level Agreement (SLA) which provides
services and quality assurance requirements with minimal resources in terms of process-
ing, storage and bandwidth.

The Cloud Service Provider (CSP) manages its own physical resources, and only
provides an abstraction layer for the user. This interface might vary depending on the
provider, but maintains properties like elasticity, insulation and flexibility (SAKR et al.,
2011). Hybrid clouds are a mix of the previous two systems and enable the cloud bursting
application deployment model, where the excess of processing from Private cloud is for-
warded to the Public cloud provider. Cloud providers can negotiate a special agreement
as a means of forming a Cloud federated system, where providers that operate with low
usage, might be able to lease a part of their resources to other federation member to avoid
wasting their idle computational resources (TOOSI; CALHEIROS; BUYYA, 2014).

MapReduce (MR) (DEAN; GHEMAWAT, 2010) is a programming framework pro-
posed by Google that is currently adopted by many large companies, and has been em-
ployed as a successful solution for data processing and analysis. Hadoop (WHITE, 2012)
is the most popular open-source implementation of MR. Cloud computing has increas-
ingly been used as a platform for business applications and data processing (PHAM et al.,

1The Next Wave, Vol. 20, No. 4, November 2014
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2015). Cloud providers offer Virtual Machines (VMs), storage, communication and queue
services to customers in a pay-as-you-go scheme. These resources are used for deploying
Hadoop clusters as the basis of Big Data analytic processing.

Since there is a wide range of data sources, the collected datasets have different noise
levels, redundancy and consistency (CHEN; MAO; LIU, 2014). Carrying out a Big Data
analysis is still an arduous task (ASSUNCAO et al., 2015). Moreover, until now, the soft-
ware infrastructure for Big Data has had features and tools that are insufficient to solve
real problems, especially for the analysis of real-time applications (CHEN; ZHANG,
2014). Thus, it is necessary to find new ways of processing Big Data which can exploit
idle computational resources and allow them to be combined with Cloud to add more
scalability.

The emerging systems are highly heterogeneous environments with variable struc-
tures, where resources can be added or removed if necessary (VASILE et al., 2015). Desk-
top Grid (DG) is a platform that has received a good deal of attention from the scientific
community because of its use in Big Data applications (LIN et al., 2010), (ANJOS et al.,
2012) and (TANG; HE; FEDAK, 2015). The concept of a hybrid infrastructure in this
Thesis can be defined as a mix of public or private Cloud with Desktop Grid, similar to
the environment explored by (TANG; HE; FEDAK, 2015), which will be detailed in the
next Chapters. This work explores these hybrid infrastructures to find the best alternatives
for heterogeneous resource allocation in Big Data systems. A new platform for the hybrid
infrastructures, called SMART, is proposed to enable the deployment of DG and Cloud.
Also, a simulator called BIGhybrid was designed on the basis of the features required for
this infrastructure. It is a toolkit for Big Data analytics. In addition, a set of strategies will
be defined and evaluated for the use of DG and Cloud in hybrid infrastructures.

1.1 Motivation

The way of conducting science has changed throughout the centuries in different
fields, such as, biology, physics, astronomy and meteorology (HEY; TANSLEY; TOLLE,
2009),(CHEN; ZHANG, 2014). In the 14th Century, science was based on observations
of physical phenomena and the precision of data was measured in terms of the size of the
visual field. Today, scientists observe the universe with sophisticated telescopes which
generate millions of images that need a lot of computation time for data analysis. For
instance, the Large Synoptic Survey Telescope (LSST) produces 15 Terabyte of raw data
per night (LSST, 2016). CERN’s Large Hadron Collider (LHC) project is capable of cap-
turing around 3 Petabyte of data per month. Collisions in the LHC have generated about
75 Petabyte of data in the past three years (CERN, 2016). In the recent past, finding in-
formation in large datasets was only possible through a relational database. The scientists
had to choose the right query to obtain the correct result. In Big Data, the queries can
include both structured, semi-structured or unstructured data, such as audio, video, web
pages, text and so on, and it can originate from multiple data sources. Multimedia, social
networks and Internet of Things (IoT) are collecting more and more information, which
means that Big Data will have a growing prospect of being able to create value for busi-
nesses and consumers (CHEN; MAO; LIU, 2014). The purpose of Big Data is to amass
a lot of data and find anomalies or patterns in it, so that value and significance can be
added. However, it is common to find multiple data in different places, since the cost of
data transfers for a single site is prohibitive owing to the limitations of size and bandwidth
(JAYALATH; STEPHEN; EUGSTER, 2014), (HEINTZ et al., 2014).
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The scientific community has proposed Cloud as an infrastructure for Big Data, with
permanent storage and management facilities in large-scale disordered datasets, as well
as Distributed File Systems (DFS) and NoSQL databases as a solution for data storage
(CHEN; MAO; LIU, 2014). However, the CSPs in Big Data analytic applications still
need to explore the issue of resource allocation in an effective manner so as to achieve
economies of scale and elasticity. In the study of (ASSUNCAO et al., 2015) the authors
state that it is possible to determine the main dependencies of five Big Data dimensions
(Volume, Velocity, Variety, Value and Veracity). Volume depends on a hardware infrastruc-
ture to achieve scalability and Value depends on how much Big Data must be creatively
and effectively exploited to improve efficiency and the quality needed to assign Veracity
to information. The amount of data in Variety might originate from different sources, such
as historical information, pictures, sensor information, satellite data and other structured
or unstructured sources.

Both the Cloud Service Providers - CSPs - (public and private) maintain a service level
based on the number of nines (99.999999....%) (MANSOURI; TOOSI; BUYYA, 2013);
this refers to how much time the services are available for users. The service providers
guarantee properties like flexibility, unlimited storage, system isolation guarantees and
elasticity. These characteristics hide the hardware features from the users. However, the
time and cost required for data transfers in Cloud, and the difficulty of maintaining a
distribution with a fine-grained control of the hardware features, are an open problem in
Big Data implementations (CHEN; ZHANG, 2014).

In addition to Cloud, several other types of infrastructure are able to support data-
intensive applications. DGs, for instance, have a large number of users around the world
who donate idle computing power to multiple projects (CÉRIN; FEDAK, 2012). DGs
have been applied in several domains such as bio-medicine, weather forecasting, and
natural disaster prediction. Merging DG with Cloud into hybrid infrastructures could
provide a more affordable means of data processing. Several initiatives have implemented
Big Data with Hadoop as a MR framework, for instance (LIN et al., 2010),(COSTA;
SILVA; DAHLIN, 2011) and (LU et al., 2012). However, although MR has been designed
to exploit the capabilities of commodity hardware, its use in a hybrid infrastructure is
a complex task because of the resource heterogeneity and its high churn rate. This is
usual for Desktop Grids but uncommon for Clouds. In addition, hybrid infrastructures are
environments which have geographically distributed resources (HEINTZ et al., 2014) in
heterogeneous platforms with mixing of Cloud, Grids and DG.

Before discussing the main goals and challenges of this Thesis, it is necessary to un-
derstand the nature of its adopted concept for hybrid environments. The virtual resources
of Cloud are shared with different users of the same physical hardware and this leads to
I/O competition when there are disk access and network traffic. In this context, although
the CSPs make every effort to ensure uniform resources for all the users, unfortunately, the
Cloud resources are in fact heterogeneous. On the other hand, DGs are heterogeneous re-
sources when the task is processed with exclusive hardware through a Free Time window.
Currently, the infrastructures provide limited or no assistance to the heterogeneous plat-
form in Big Data analytical systems, (as the Related Work section seeks to demonstrate).
However, a complex scenario like this can make several mistakes before an acceptable
platform is able to execute Big Data applications with accuracy. Thus, it is necessary to
build a minimal platform that can enable these different infrastructures to be merged and
to provide a simulation tool that allows repeatability, reproducibility, and stability for the
experiments conducted in these environments. These features are important to allow a set
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of strategies to be defined that can assure the best load balancing possible for the Big Data
applications and reduce the development time.

1.2 Problem Statement

The main goal of CSPs in public clouds is to show how to allocate all the free hard-
ware slots to obtain the best use of resources. In view of this, although there are system
isolation guarantees, an available resource can be shared with other users, when they are
accessing the same physical hardware. The competition for resources creates a natural de-
lay in the accesses to hardware which might lead to a poor performance and uncontrolled
bottlenecks, especially with regard to disk performance. This delay will depend on the
hardware features over which the user does not have any control in Cloud environments
(XAVIER et al., 2015). In Big Data applications, “disk competition” is expected to create
the “disk contention phenomenon”, which was first observed by (ZAHARIA et al., 2008).
The Cloud capabilities are organized by the providers to be as homogeneous as possible.
However, in fact, the environment becomes heterogeneous when user applications with
different execution profiles are carried out at the same time. Could cloud infrastructures
that provide configurations that are sufficient for the users have a fine-grained application
control ?

While in Cloud the capabilities are shared and stable, in DG the resources are dedi-
cated and volatile. Owing to volatility problems, the approach to DG environments must
involve of establishing a relation between stable and unstable nodes2 that will be the near-
est relation of 3 volatile nodes to 1 cloud node, that was demonstrated in the work of
(KONDO et al., 2009). We can ask ourselves if this is feasible in the context of Big Data.

However, these environments are complex and hard to manage and adjust, for in-
stance; the AWS (AMAZON, 2016) provides many instances where the user must choose
between several hardware properties, such as CPU, memory, storage and network capac-
ity. If on the one hand, it can be confusing for users without expertise, on the other hand,
it may provide insufficient information for an expert administrator. The use of a testbed
for evaluations is quite difficult owing to environmental factors and reproducibility prob-
lems. In DG, it is difficult to determine the exact instant that a node will have a shutdown,
although it is possible that there is a probabilistic behavior for these environments. Could
DG be a good alternative ? What are the conditions ?

Hence, it is necessary to achieve a balance between Cloud and DG when executing
Big Data applications, before seeking answers to questions like the following: How is it
possible to determine if a hybrid infrastructure is feasible? What are the main features
of hybrid environments? What are the best strategies for data split or task distribution
in a hybrid environment? How is it possible to ensure reproducibility when conducting
the experiments? What is the ideal relation between volatile and stable nodes in hybrid
infrastructures? Is it possible to exploit the low cost of DG environments for Big Data
applications? The main goal is to find answers to the questions regarding the feasibility of
adopting hybrid infrastructures for Big Data which impose acceptable constraints. These
questions are summarized in the following hypothesis:

The Big Data applications can be feasible for hybrid infrastructures, such as Cloud
and Desktop Grid, if a set of strategies are deployed for data and task distribution in
these environments.

2To simplify this issue, from now on, node and machine will have the same meaning.
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1.3 Thesis and Challenges

The computational resources available are too scarce to achieve trustworthy valida-
tions and there are several problems about carrying out reproducible experiments on a
large scale. Because of this, a simulator was developed with the aim of enabling Big Data
analytics on a large scale, based on a system shown in (ANTONIU et al., 2013) and after
being extended to a geographically-distributed environment. Some strategies were evalu-
ated for a hybrid infrastructure with a dispatcher layer (as discussed in Chapter 3). Three
approaches make it possible to find answers and also determine the best strategies (and
main restrictions) when implementing Big Data within hybrid infrastructures.

First, it is necessary to define minimal real-world functions that are required to re-
produce this environment. Second, it is necessary to simulate the environments with a
relative degree of accuracy, as well as compare the features of these environments with
real-world experiments on a scale that can ensure a reliable analysis. Third, the two
previous approaches can be combined, in a mechanism devised to produce the nearest
real-world environmental configuration on the basis of the simulations and thus achieve
the best execution time possible.

The environment simulation was the path chosen for finding answers to the questions
raised in this Thesis. Moreover, in another scenario, it might be possible to include this
simulation mechanism in the performance evaluation as a prediction tool for Big Data
in hybrid environments. The challenge of making an accurate simulator is a) how to
create a robust architecture for environment simulations through a careful study of the
properties and characteristics of the real-world systems, and b) how to make use of the
hardware setup from the Cloud and DGs to ensure the reproducibility of environment
behavior. These goals can be achieved with the BIGhybrid simulator built during this
work. BIGhybrid is a toolkit for MR simulation in hybrid environments where algorithms
and strategies can be analyzed for studying hybrid platforms.

The aim of the SMART platform (Small & Medium-sized Enterprise Data Analytics
in Real Time) is to set a platform for Big Data analysis which can be applied to a hybrid
infrastructure. In comparison with the characteristics of the other works in the literature,
this platform uses Cloud and DGs as its core infrastructure and is embedded in a Lambda
Architecture for Big Data processing in batch mode and real-time. The platform will
be evaluated with the BIGhybrid simulator through strategies which are defined for the
hybrid infrastructures that are adopted in Big Data analytics. The evaluated layers in
this work consists of the dispatcher (as a task scheduler and for data distribution) and
core engine to Big Data analytics (for homogeneous and volatile environments). Its main
purpose is to identify some operational constraints and to enable the Big Data analytics
for hybrid infrastructures. Thus, some strategies will be employed for the evaluation of
the Global Dispatcher in the SMART platform. The evaluation will make it possible to
analyze the use and feasibility of homogeneous and volatile environments in the SMART
platform in the context of Big Data applications. Its main purpose is to identify some
appropriate boundaries for deployment.

1.4 Contributions

The main contributions of this research work are as follows:

- To provide a hybrid infrastructure environment.
The desirable features for a hybrid infrastructure are generalized on the basis of the
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main characteristics of the BlobSeer-Hadoop (NICOLAE et al., 2010) and BitDew-
MapReduce (FEDAK; HE; CAPPELLO, 2009) environments. In addition, other
related hybrid systems are evaluated to form the hybrid environment considered
here.

- To provide a platform that can allow the deployment of Big Data analytics
within hybrid infrastructures.
The definition of the hybrid infrastructures enables a new platform to be designed
for Big Data analytics by means of a Lambda architecture. This platform forecasts
the execution of input data at the edges through a desktop grid environment.

- To create a simulator as an analytical tool of hybrid infrastructures and for
Big Data analytics.
A simulator was designed with the aim of being an analycal tool that could provide
consistent studies for the Big Data algorithms in hybrid environments. This tool en-
sures an environment that can be controlled for the reproducibility and repeatability
of the experiments.

- To find an accurate method of conducting an analysis of a hybrid infrastruc-
ture.
A statistical study on the simulator is carried out to determine the accuracy and pre-
cision of the results in comparison with simulated and real-world experiments. The
simulator can follow the execution traces of a real environment, such as volunteer
computing, and thus be able to reproduce the execution behavior of the real-world.

- To determine strategies for the use of hybrid infrastructures.
The strategies for data distribution and task allocation are important to ensure the
Dispatcher layer has a satisfactory performance in Big Data executions within a
hybrid infrastructure. These strategies will make it possible to identify some de-
ployment boundaries.

1.5 Thesis Structure

After this first Chapter which contains a brief introduction and contextualization of
this Thesis, the work is structured as follows:

Chapter 2 shows the concepts and the related work that are associated with this study.
The works are set out in Section 2.1 which shows the concepts and assumptions adopted.
In specific terms, the related work is structured in accordance with the following: Sec-
tion 2.2 sets out the main approaches adopted to solve problems in heterogeneous envi-
ronments with regard to Big Data. Section 2.3 describes some simulators for Big Data
systems and explains the need to make a new simulator for hybrid systems. Section 2.4
shows the several frameworks that were established for multiple Clouds and that formed
the basis of MapReduce. Section 2.5 shows the related work with the hybrid systems ap-
plied to Big Data. Section 2.6 summarizes the open-ended problems. Finally, Section 2.7
concludes with some final considerations.

Chapter 3 analyzes the main purpose of the hybrid infrastructure and establishes a
platform to support this implementation. This Chapter reflects a collaborative network.
Section 3.1 includes a brief introduction to this environment with a characterization for the
hybrid infrastructures. In addition, shows the desirable features of a hybrid infrastructure
for a Big Data environment. Section 3.2 examines SMART which is a hybrid platform
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for Big Data. It introduces a use case for the implementation of SMART-Sent: a hybrid
platform for Big Data that is integrated into IoT. Section 3.3 concludes with some final
considerations about the hybrid infrastructure.

Chapter 4 introduces the BIGHybrid simulator that has been designed to simulation
and evaluation of hybrid infrastructures. Section 4.1 describes the BIGHybrid Simulator
and its operational strategies. Section 4.2 explains the main features of the BIGhybrid
simulator. In addition, describes the volatility and mechanism for communication em-
ployed to reproduce the volatile environment in a Desktop Grid. Section 4.3 provides
a detailed evaluation of the BIGhybrid Simulator including a simulation of MapReduce
execution and its volatile behavior, with the operation of a failure tolerance mechanism.
This evaluation makes it possible to validate the behavior pattern using the Grid5000 en-
vironment in real-world experiments. Section 4.4 includes a statistical evaluation and
a study of the reproducibility of real-world experiments. Section 4.5 offers some final
considerations about the BIGHybrid simulator.

Chapter 5 assesses the use of Hybrid infrastructures like Desktop Grid and Cloud to
Big Data Analytics. Section 5.1 discuss about the strategies employed in the evaluation
of hybrid infrastructures. Section 5.2 introduces the methodology applied to the eval-
uation and includes some use case studies. Section 5.3 includes an examination of the
experiments and in Section 5.4 there is the analysis of the conclusions.

Finally, in Chapter 6 there are general conclusion, final considerations and future
works.
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2 BACKGROUND

The aim of this Chapter is to examine the perspective of concepts and infrastructure
initiatives for Big Data implementations in homogeneous and heterogeneous environ-
ments. Some of these initiatives lead to hybrid infrastructures in private and public Cloud.
However, it is very unusual to find an evaluation of hybrid environments which include a
Desktop Grid platform, in the context to Big Data and particularly that of Geo-distributed
environments. Thus, the strategies adopted for different Big Data platforms are summa-
rized and evaluated with regard to related work that is closer to that of the hybrid model
being considered. In addition, a comparison between the Big Data simulators is carried
out to demonstrate the need to make more complex tools for Big Data analytics in hybrid
environments.

2.1 General Concepts and Assumptions

This section outlines the main concepts of the MapReduce framework and other sys-
tems that have been used to create a Big Data ecosystem in hybrid infrastructures. The
related work demonstrates the attempts made by the scientific community to find a solu-
tion for data-intensive computing in different platforms.

The Big Data implementation systems are grouped in accordance with their workload
execution and include categories such as: batch, micro-batch, interactive, real-time, and
near real-time (WU; BUYYA; RAMAMOHANARAO, 2016). In the workload with batch
mode, the system knows both the data size and time execution. Thus, only an increase in
computational capacity is required to obtain a better performance. The interactive mode
explores datasets in a repeated manner while loading data of interest into memory over
multiple parallel operations across the machines. However, the current Cloud environ-
ments have shortcomings when this interactive process is carried out. This means that
new techniques should be developed to improve interactivity (ASSUNCAO et al., 2015).
Some environments require the processing of data streaming in real-time to make com-
plex decisions. Data pipes are treated at the moment of their arrival through real-time
workloads.

2.1.1 Hybrid infrastructures

The concept of a hybrid infrastructure is defined in (TOOSI; CALHEIROS; BUYYA,
2014) as being a partnership between private and public cloud providers, thus enabling
cloud burst. Cloud burst systems improve the executions in a private cloud when the
computational capacity is increased and these systems enable on-demand task migrations
from a private cloud to a public cloud. In this context, the environment maintains a mini-
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mal SLA, as defined earlier. In the work of (SHARMA; WOOD; DAS, 2013) the authors
consider a hybrid infrastructure to be an environment consisting of both native (i.e. only
the use of physical machines ) and virtualized clusters to exploit the benefits of both en-
vironments in Big Data applications.

The concept of a hybrid infrastructure in this Thesis can be defined as a mix of public
or private Cloud with Desktop Grid, similar to the environment explored by (TANG;
HE; FEDAK, 2015). The environment is based on a real-world experiment of two types
of middleware from distinct infrastructures inspired by the work of (ANTONIU et al.,
2013). Desktop Grids (ANDERSON, 2004) have been successfully employed in a wide
range of projects, because they are able to take advantage of a large number of resources
provided free of charge by volunteers. The resources are in fact heterogeneous in hybrid
infrastructures because several cloud providers have an SLA guarantee that represents
an average performance for hardware definitions which differ of those available to lease.
The resources represent the most homogeneous environment possible, although, in fact,
the resources have a heterogeneous behavior because they share virtual machines with
other users at the same time. The DG environment is heterogeneous and consists of both
stable and unstable nodes. A node turns unstable when a user requests the computational
resources to the execution of their applications.

The unstable nodes can use a storage cloud, that is used to avoid data loss when a
node shutdown occurs. The data is distributed geographically in different sites. The sites
perform the same function for each processing to the workers. However, in Big Data
analytic applications, it is necessary to combine each of the results from different sites, to
a single Reduce function so as to achieve a final result.

The concept of Multiple Cloud is related to the use of distinct Cloud providers (both
private and public), which also we adopt in this work. It should be noted that there is a
fine grain in a private cloud with regard to the specifications for the hardware available,
which is not present in public clouds. However, there is no guarantee that the resources
will not be shared with other distinct users and applications.

2.1.2 MapReduce

MapReduce is a programming framework that abstracts the complexity of parallel
applications. It is a batch processing system that partitions and scatters datasets across
hundreds or thousands of machines, bringing the computation and data as close to each
other as possible (WHITE, 2012). Figure 2.1, adapted from (WHITE, 2012), shows the
MapReduce data flow. The Map and Reduce phases are handled by the programmer,
whereas the Shuffle phase is created while the task is being carried out. The input data is
split into smaller pieces called chunks, that normally have a size of 64 MB. The data is
serialized and distributed across machines that form the Distributed File System (DFS).

When running an application, the master assigns tasks to workers and monitors the
progress of each task. The machine that is assigned a Map task, executes a Map func-
tion and emits key/value pairs as intermediate results that are temporarily stored in the
workers’ disks, like Map function in 2.1.1. The execution model creates a computational
barrier, which allows the tasks to be synchronized between the producers and consumers.
A Reduce task does not start its processing until all the Map tasks have been completed.
A hash function is applied to the intermediate data to determine which key will carry out
a Reduce task. The group of selected keys forms a partition. Each partition is transferred
to a single machine during the Shuffle phase, to execute the next phase. The shuffle is an
overlapping stage with the Map phase in the first wave and non-overlapping stage in the
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Figure 2.1: Model of the MapReduce data flowchart

last wave. Multiple waves increase the utilization of the disk I/O and reduce the perfor-
mance (KHAN et al., 2016). After a Reduce function has been applied to the data, a new
resulting key/value pair is issued, such as, Reduce function in Equation 2.1.1. Following
this, the results are stored in the distributed file system and made available to the users.

map ∶ (k1,v1) Ð→ list(k2,v2)
reduce ∶ (k2, list(v2)) Ð→ list(k3,v3)

(2.1.1)

MapReduce uses management systems for data replication and execution control. In
addition, it has a management architecture based on the master/worker model, while a
slave-to-slave data exchange requires a P2P model (WHITE, 2012). The worker is a node
that can run a Map or Reduce functions in the MapReduce environment. Owing this, the
scheduler launches a new task toward another node called speculative task during the last
execution wave. A machine is characterized as a straggler when its task in progress has
an above-average execution for the cluster. If a machine is characterized as a straggler
after the first task distribution, it will not be assigned new tasks in its free slots.

2.1.3 BlobSeer-Hadoop

BlobSeer is a DFS that manages a huge amount of data in a flat sequence of bytes
called BLOBs (Binary Large Objects). The data structure format allows a fine-grained
access control. The existing storage file system has limited throughput under heavy access
concurrency, for instance, the Hadoop file system (HDFS) does not support concurrent
writes for the same file, and the data cannot be overwritten or appended. An unbalance
workload is checked in the HDFS, when it receives new data from the incremental updates
(NICOLAE et al., 2010). BlobSeer maintains the most recent version of a particular file
in a Distributed Hash Table (DHT) to allow efficient concurrent access to metadata, which
enables the incremental updating of database files, and a high throughput with concurrent
reading, writing and updating of the data (ANTONIU et al., 2013). This is the main reason
for using another file system like BlobSeer.

This data structure is completely transparent for the Hadoop users. The fault-tolerance
mechanism is a simple data replication across the machines and enables the user to specify
the replication level needed. The classical execution of MapReduce on Hadoop was not
changed and explores data locality in a similar way to HDFS. In view of this, the BlobSeer
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was the best choice to implement the features of the incremental update, without having
to develop a new MapReduce framework for the Cloud implementation. The incremental
update is also necessary for data management in a hybrid infrastructure.

2.1.4 BitDew-MapReduce

BitDew was developed to enable data management in large-scale, dynamic, hetero-
geneous,volatile and highly distributed Grids (FEDAK; HE; CAPPELLO, 2009). It is a
middleware that exploits protocols like P2P, http, BitTorrent and ftp. The architecture is
decentralized and has independent services. These services control the behavior of the
data system, such as replication, fault-tolerance, data placement, incremental update, life-
time, protocols and event-driven programming facilities. BitDew-MapReduce (BitDew-
MR) (LU et al., 2012) is a MapReduce implementation adapted to a volatile environment,
that has already been combined with Cloud like a hybrid infrastructure (DELAMARE
et al., 2012) to improve performance and reduce costs through the bag-of-tasks applica-
tion.

The Data Catalog maintains a centralized and updated meta-data list for the whole
system. The BitDew-MR model includes both stable and volatile storage. Stable storage
is provided by stable machines or Cloud Storage like Dropbox and Google Drive, and
volatile storage consists of local disks of volatile nodes. The MapReduce implementation
is an API that controls the master and worker daemon programs. This MapReduce API
can handle the Map and Reduce functions through BitDew services.

Result checking is controlled through a majority voting mechanism (MOCA; SILAGHI;
FEDAK, 2011). In the Hadoop implementation when the network experiences unavail-
ability, a heartbeat mechanism signals to the master that the host is dead. However, in Bit-
Dew the network can be temporarily offline without experiencing any failure. The fault-
tolerance system needs a synchronization schema, as pointed out by (TANG; FEDAK,
2012), where transient and permanent failures can be handled. A barrier-free computation
is implemented to mitigate the host churn behavior (LU et al., 2012). The computation of
Reduce nodes starts as soon as the intermediate results are available.

These properties of BitDew-MR such as data placement, incremental update and fault-
tolerance mechanism, are important for implementing a hybrid infrastructure. In addition,
the computing power offered by the DG infrastructure is also of value to provide new
infrastructures, starting from the allocation of free resources.

2.2 Big Data in a Heterogeneous Environment

The MapReduce model was originally conceived for large homogeneous cluster envi-
ronments. As a result, some simplifications were adopted by the model with the aim of
optimizing the task distribution. However, these simplifications may entail system degra-
dation in heterogeneous environments. The work of (ZAHARIA et al., 2008) was the first
study to detect these problems. Their study points out that there are some concerns over
the simplification of the MapReduce model since this may lead to an excessive number of
speculative tasks. These issues were observed among the executions of different applica-
tions in large clusters with virtual environments, e.g. Amazon EC2 (AMAZON, 2016),
owing to the competition for applications that provide access to hardware. To overcome
this problem, the authors proposed LATE (Longest Approximate Time to End), a new task
scheduler. Although LATE does not completely avoid speculative tasks, it considerably
reduces performance degradation in heterogeneous environments. The results of an ex-
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perimental evaluation results show that, compared with the native Hadoop scheduler in
speculative mode, LATE achieves a gain ranging from 8.5% to 58%, depending on the
application and number of working machines.

Some works focus on adapting MapReduce algorithms to volatile and heterogeneous
environments. One of the first proposals was the MOON project (MapReduce On Oppor-
tunistic eNvironments) (LIN et al., 2010), a hybrid model for voluntary computing which
considers that the system consists of volatile and reliable non-volatile machines. This
approach was driven by the need to avoid the cost of data movement to and from the clouds
across the wide area networks (WAN). The authors argue that to maintain one machine
with an unavailability rate of 40%, eleven replicas are needed (1−0.411) to achieve an
availability rate of 99.99% for a single data block in HDFS.

The authors had the aim of investigating the existence of a hybrid design which would
be able to provide a high degree of data availability in volatile environments. Their solu-
tion involves applying the LATE algorithm. Loss of data from the volatility machines is
overcome by replicating data in reliable machines. The data management of Hadoop has
been extended to the “dedicated” Data Node and the volatile Data Node. The approach
avoids putting replicas of chunks in volatile nodes. However, the number of reliable ma-
chines needed to replicate the data restrains scalability. In addition, a write request of a file
might be declined if all the dedicated Data Nodes are close to saturation. The approach
does not adapt the scheduling to the heterogeneous nature of the machines.

Other systems like the BOINC (ANDERSON, 2004), XtremWeb (FEDAK et al.,
2001) and BitDew (FEDAK; HE; CAPPELLO, 2008) systems are successful implemen-
tations of DG environments. BOINC and XtremWeb have a centralized infrastructure
for scheduling and management; in contrast, BitDew is an evolution of a distributed in-
frastructure designed for data management that supports well incremented updates and
fault-tolerance mechanisms. Previous work (ANJOS et al., 2010) has shown that data
redistribution based on the processing capacity of machines is suitable for the distribution
of workload tasks in these environments.

Heterogeneous-Aware Tiered Storage (HATS) aims to improve I/O performance in
Hadoop MR implementations (KRISH; ANWAR; BUTT, 2014). HATS performs data
placement in accordance with I/O throughput and device capacity. Each different device is
a HDFS instance in a DataNode. A DataNode with storage technologies that are different
from usual, has a different data size, depending on its performance features. The data
placement concept creates policies that take account of network proximity, tier-awareness
and hybrid approaches. Network proximity involves retrieving replicas from the nearest
rack to reduce network traffic. The tier-aware policy ensures that a node can store a single
replica even if the node has multiple HDFS instances and retrieves data from the fastest
available tier.

MRA++ (MapReduce with Adapted Algorithms for Heterogeneous Environments)
(ANJOS et al., 2015) introduced adapted MapReduce algorithms to heterogeneous en-
vironments with the aim of addressing the main problems originating from the simplifi-
cation of the MapReduce model. Thus, the developed algorithms allow the use of data-
intensive applications in large-scale environments with the use of the Internet.

The strategy adopted in this work is to examine three areas of the MapReduce imple-
mentation: grouping, data distribution and task scheduling. In MapReduce, the difference
in computational power between machines in a heterogeneous environment causes an
unbalanced load. The data is distributed in accordance with the heterogeneity of the ma-
chines to prevent a large increase of execution time. The machines are grouped according
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to their computational capabilities; then they receive both data and tasks based on their
own group. It does not need a history of executions as it creates a knowledge base of
execution times during the setup phase before the job is executed. This allows scheduler
configurations before the data splitting phase. The MRA++ scheduler also avoids sending
data to machines with low processing capability, which could be later characterized by
the system as stragglers.

2.3 Simulators for Big Data Systems

GroudSim, a Grid and Cloud simulation toolkit for scientific applications, was intro-
duced by (OSTERMANN et al., 2010). This simulator is based on a scalable simulation-
independent discrete-event and is used for scientific applications. Here it was employed
in an attempt to simulate two complex environments, like Grid and Cloud. GroudSim
provides support for traces used for capturing both hosts and event traces.

Stochastic distributions make it possible to run deterministic and non-deterministic
simulations. A failure rate model follows a stochastic distribution of failure properties like
the size of the failure, the duration of the failure and the Mean Time To Failure (MTTF)
for jobs and file transfers. However, it should be noted that the simulation architecture
is composed of a single thread. The infrastructures are only very simple synthetic enti-
ties and, for this reason, it is difficult to capture discrete executions. Unlike GroudSim,
BIGhybrid ( which is characterized in Section 4.1) allows possible complex simulations
including volatile environments.

CloudSim (CALHEIROS et al., 2011) is an extension of GridSim (SULISTIO et al.,
2008) for Cloud simulation. The simulator supports the modeling of large-scale Cloud
computing environments, including data centers, at a single physical computing node.
This means that Clouds, service brokers, provisioning, and allocation policies can be
modeled. The main features enable the creation and management of multiple, indepen-
dent, and virtualized services in a data center.

The simulation is based on Java and has a dedicated management interface for VMs,
memory, storage and bandwidth. A host can support multiple sets of VMs to simulate
applications based on Software-as-a-Service providers. The authors assume that provi-
sioned virtual machines are predictable and stable in their performance. There is an I/O
contention that has been checked in read/write storage devices and has an impact on the
performance (BUX; LESER, 2015). Although CloudSim can simulate Federated Cloud
with a Cloud Coordinator, the simulator is not compatible with data-intensive applica-
tions (CALHEIROS et al., 2011) as in the model of the MapReduce framework.

CSPs, which has different geographical locations in the Internet, have to coordinate
their load distribution across data centers. The study of (BUYYA; RANJAN; CAL-
HEIROS, 2010) introduces the InterCloud simulator as a possible architecture that ex-
tends CloudSim to the Cloud Federation infrastructures. The main problem is that the
service providers expect the users to choose the service that is nearest to their physical
location. Otherwise, the clients have difficulty in determining the best location for hosting
their services in advance, since a CSP may not know the origin of the consumers of their
services. As a result, the CSP may not be able to provide the quality of service contracted
in the locality if the customers originate from multiple geographical locations.

The InterCloud software architecture has a coordinator and brokers to locate resources
for clients. The functions of the coordinator include scheduling, resource allocation, dy-
namic monitoring and application composition, although this architecture does not take
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account of security mechanisms or a minimal SLA (KOHNE et al., 2014). In addition,
the broker is not prepared for data-intensive management.

Kohne et.al. introduce a simulation of Cloud Federation (KOHNE et al., 2014) to
reduce the complexity of the experiments called FederatedCloudSim. CSPs can use the
resources of other CSPs with the aim of improving resource optimization while respect-
ing the SLAs. The migration services must be executed automatically and a Service Level
Agreement - SLA - has to be negotiated in advance. The purpose of this is to study stan-
dard interfaces to exchange services and establish an orchestration framework that creates
and monitors distributed services based on SLAs. FederatedCloudSim is implemented
with the CloudSim discussed here.

The scheduling process has several levels and invokes the brokers. It may be dedicated
or employ a pass-through model. In the dedicated model, the tasks are executed by a
broker locally, and in the pass-through model the tasks are passed on to a remote CSP
member of the Cloud Federation. A special case is a virtual CSP that is outside the
federation and can accept jobs from customers. Otherwise, the services will be “best-
effort”and are described as Service Level Objectives - (SLO) in the SLA. Again, this
implementation is not designed for data-intensive management.

The AweSim simulator is defined in (TANG et al., 2014) and based on a network sim-
ulation framework that involves a fine-grained simulation for workflow computation and
data movement across multiple Clouds. The proposal attempts to overcome the problems
of provisioning and allocating resources for multiple Cloud scientific workflows that re-
quire task placement and data movement between distributed multi-domain computing
sites. AweSim is a client/server architecture. The implementation uses workload traces
from a production data analysis service and is thus similar to the BIGhybrid simulator
that adopts its behavior from traces in a real-world volatile environment.

The data-intensive approach avoids unnecessary data movements in the Workflow
simulator. A ratio is calculated for the most expensive computational task (Ec), as Ec =
Trun/Sin, where Trun is the runtime and Sin is the input data size. A historical “job” deter-
mines the average Ec that defines the most data-intensive task. The scheduling considers
the distance between the server and computing resources. The CSP may have a different
data size to adjust its distribution and explore the design of large-scale storage, network
architecture and distributed data. The authors assume that the computing resources are
homogeneous except for the network bandwidths for the data server; otherwise, the en-
vironment is different from the hybrid infrastructures where the workloads and resources
are heterogeneous.

DynamicCloudSim is an extension of the popular simulation CloudSim toolkit that is
used in the study of (BUX; LESER, 2015). The goal is to model the instability inherent in
computational Clouds and similar distributed infrastructures. This instability is demon-
strated in the study of (SCHAD; DITTRICH; QUIANÉ-RUIZ, 2010), where considerable
performance variations were found; these fell into two bands, depending on the selected
processor type. The simulator allocates resources to the VMs in terms of compute units,
similar to Amazon EC2. Furthermore, in contrast with CloudSim, DynamicCloudSim,
it does not assign new VMs to the host with the most available resources, but to a ran-
dom machine within the data center. The heterogeneity is simulated through this random
choice and represents permanent variance in the performance of VMs caused by differ-
ences in hardware. The stragglers (nodes with poor performance) are simulated through
coefficient parameters of performance.

Table 2.1 summarizes the main simulators and features used to simulate environments.
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The simulators can simulate Clouds and Federated Clouds although the Big Data support
is limited to the AweSim simulator, but without providing the simulation of failures or
trace support. A trace support is especially important to reproduce real behavior from
the real-world environment. The hybrid infrastructures are an opportunity for new studies
that still need to be carried out. This shows that there is an open space for the development
of hybrid systems simulators. This simulation is important for determining constraints in
complex environments, such as Cloud and DG. The BIGhybrid simulator, described in the
next Chapters, explores these open issues, in especial, the fact of do not have a simulator
to hybrid environments yet.

Table 2.1: Related work simulators
Simulated Features

Simulators Grid Cloud Federated
Cloud

Hybrid Big Data
Support

Failure
Support

Trace
Support

SLA
Support

GroudSim Yes Yes No No No Yes Yes No
CloudSim No Yes Yes No No No No No
InterCloud No Yes Yes No No No No No
Federated CloudSim No Yes Yes No No No No Yes
AweSim No Yes Yes No Yes No No No
Dynamic CloudSim No Yes Yes No No Yes No No

2.4 Multiple Clouds and Frameworks

Organizations are increasingly relying on an infrastructure from multiple providers as
a means of increasing fault tolerance and avoiding provider lock-in. When considering
multiple Clouds (hereafter also described as Multi-Cloud), application deployment be-
comes complex. A Multi-Cloud infrastructure contains various configuration choices and
can change its requirements and workloads dynamically at the time of execution. In view
of this, solutions are needed for the automatic configuration of complex cloud services at
different abstraction levels. In this context, multiple cloud infrastructures, like clouds in
heterogeneous environments, need different configuration levels, such as the operational
system, service containers and configuration capabilities (LE et al., 2014).

The allocation of resources from CSPs to users is carried out in terms of the execution
time, number of virtual machines, data transfer and size of data storage. The users must
map their computational resource needs before running their applications. This means
that, if there is a lack of knowledge on the part of users about the CSP infrastructure or
a real need for resource allocations, it can lead to an incorrect lease of CSP resources for
the users and a higher cost than expected. However, an optimal allocation is difficult to
achieve, and so strategies to obtain an approximation can be accepted (MASHAYEKHY;
NEJAD; GROSU, 2014).

In the study of (MANSOURI; TOOSI; BUYYA, 2013) a brokering algorithm was
employed for optimizing the storage availability and finding a placement of objects that
was suitable for the required Quality of Service (QoS). The algorithm takes account of the
cost of maintaining one object in a cloud provider, reduces the probability of failure and
improves the associated QoS with each service-level agreement (SLA) contracted with
a cloud provider. An object is a target data, without a particular size or defined type.
The data is split into chunks and the main goal is to find the optimal chunk placement
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depending on the user’s needs and financial means.
A large number of transfers of objects from one cloud storage provider to another,

takes up time and is often impossible during the execution time. An expected availability
represents M objects in each data center, and this determines the expected failure of the
object in each data center. The study evaluates two parameters to each cloud provider,
the failure probability and the cost per object. The objects are replicated in multiple sites
in accordance with these metrics. However, the proposed solution does not identify the
network overhead generated by a large number of data transfers. The total size can achieve
up to several exabytes, which can require a lot of time for these transfers.

SALSA (LE et al., 2014) is a framework for the orchestrated configuration of cloud
services through multiple CSPs. This framework provides a model for application con-
figurations and the deployment of different kinds of services. The information about the
configuration supports each level of cloud service such as application levels, deployment
relationships at multiples software stacks and the link between service units and config-
uration capabilities. The configuration capabilities are obtained from registered services
(cloud services and specifications of topology services ) or user specifications. SALSA

has a service unit orchestrator for multiple configuration services for each configuration
task group. Its purpose is to control the application deployments, movement of virtual in-
stances among different cloud providers and the deployment of an environment like VM,
library loads and support for multiple stack deployments of cloud.

The creation of VM is a separate process from other software levels. The configuration
capabilities can be obtained via a registry service or from user specifications, to determine
the relationship between the service units. A service orchestrator is generated for each
service unit enable it to handle the tasks. Meta Information contains abstract nodes with
generic types of service that implement the virtual nodes. SALSA adopts an approach
where each service unit orchestrator runs independently and interacts with a cloud service
orchestrator. Although the framework enables heterogeneous configurations, there is not
a mechanism to evaluate the performance or the workloads used to adapt the load-balance
in Cloud. The SALSA architecture, designed by (LE et al., 2014), is shown in Figure 2.2.

Figure 2.2: The Salsa architecture

The framework has a central configuration service that orchestrates the setup oper-
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ation through the local configuration layer in the VM. The information service keeps a
good deal of information about the Cloud infrastructure which is handled by a configu-
ration generator. The topology orchestration layer creates a dependency graph and sets a
configuration plan for a Cloud configuration system and the VMs are managed in this way.
The monitor layer keeps the status of both VMs and the Cloud elasticity but it is necessary
for the services to be already working before new service instances can be distributed.

HyMR (LORETI; CIAMPOLINI, 2015) is a framework for enabling an autonomic
cloud burst for clusters of virtual machines that execute MapReduce jobs over Multi-
Cloud. The authors implemented a Hybrid Infrastructure as a Service (HyIaaS) for the
VM instance (partitions management) in Multi-Cloud. HyIaaS implements an Open-
Stack1 extension. This partitioning is transparent to the users, since it allows them to
have access to all the VMs in the same way, regardless of their physical allocation. HyI-
aaS receives the deadline specifications of the users that are stored in a user-policy for
managing VM migrations. An external CSP will be responsible for receiving and launch-
ing the VMs across their Cloud Controller module.

A Logical Node monitors and analyses critical events from a physical machine. A
Logical Cloud makes spawning/migration decisions based on Logical Node information.
Figure 2.3 shows the HyMR architecture, where a HyIaaS orchestrates the application
executions. The HyMR runs on the Cloud Controller and maintains data consistency in a
part of HDFS. However, VM migrations have a poor performance when carrying out data
copying operations from the HDFS.

Figure 2.3: The HyMR architecture

2.4.1 MapReduce across Multiple Clouds

Twister (EKANAYAKE et al., 2010) supports direct intermediate data communica-
tion without saving the intermediate data in a local disk. This feature enables iterative
MapReduce computation with the use of a Publish/Subscribe middleware such as a Bro-
ker System. The Twister computation follows a MapReduce-Combine model, where the
Combine step is similar to Merge in MapReduce implementation. The Merge executes
after the Reduce phase and the last phase is combined in a single result. Twister starts a
daemon for each worker, to link a worker to a broker network for the purpose of receiving
data and carrying out tasks. A driver provides an API to convert calls from Twister’s API
to commands and messages for the workers.

1https://www.openstack.org/
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The Twister architecture has three functions: Twister Client Driver to guide the work-
ers computation, Twister Daemon that manages the cache memory for each worker and
Broker network. A master node maintains a broker server to allow intermediate data
transference between workers. A partition file keeps the meta-data with the location of
intermediate files for all the workers. The effectiveness of the cache memory is only
achieved with a stable node, i.e., without worker failures. For this reason, Twister imple-
ments a checkpoint of the computation state between interactions to enable a roll-back of
few interaction failures but the architecture does not use a Cloud infrastructure.

Twister4Azure is a distributed iterative MapReduce runtime for cloud developed with
the Azure Cloud Infrastructure service, without impairing the fault-tolerance, scalabil-
ity, MapReduce APIs and the data model (GUNARATHNE et al., 2013). The Microsoft
Azure platform implements a Microsoft Message Queue service - but without any guar-
antee of order or making all messages available for a single requests - and a Storage Blob
service - Page blobs that are optimized for random read/write and block Blobs that are
optimized for streaming. These services are based on the concept of an affinity group to
optimize communication between accounts and services. The message Queue service has
a scheduler function for Map and Reduce tasks (GUNARATHNE et al., 2013).

A MRRoles4Azure is a distributed MapReduce runtime that encapsulates Map and Re-
duce tasks within a message queue service to provide load balancing. The main role of
MRRoles4Azure is to carry out the scheduling and monitoring of the computation. Re-
execution and duplicate execution manage the task failure and slower execution respec-
tively. The architecture is decentralized to avoid a single failure point. The Merge task
introduced in (GUNARATHNE et al., 2013) is an extension of MapReduce for iterative
computation. The broadcast operation spreads the output data of the Merge task to the
next iteration. The data-flow is Map → Combine → Shuffle → Sort → Reduce → Merge
→ Broadcast. A data cache schema supports three level of data caching: (1) instance
storage which stores all the files in a local disk, since the input data blobs do not change
during the course of the computation; (2) direct caching in-memory ; and (3) memory-
mapped file. The memory caching uses the least recently used (LRU) cache algorithm.
It maintains a single instance of each data cache per worker-role and this enables a better
use of the cache.

The operations of the layer, called Map-Collective architecture, replace multiple stages
of the iterative MapReduce computation in all-to-all communication and the main API is
the MapReduce-MergeBroadcast (MR-MB) (GUNARATHNE; QIU; GANNON, 2014).
MR-MB provides dynamic data, including data broadcast for a list of key-value pairs such
as the following:

Map(<key>, <value>, list_of<key,value>dynamicData)
Reduce(<key>,list_of<value>, list_of<key,value>dynamicData)

Merge improves MapReduce programming and provides support for iterative pro-
gramming, which can be used for summarizing or aggregating the results of a single
MapReduce iteration. The broadcast operations send data from Merge to the next iteration
task. The MR-MB model implements the concept of Map-Collective with two communi-
cation primitives (Map-AllGather and Map-AllReduce). This concept is inspired by MPI
3.0 with collective communication primitives.

Map-Collective enables the applications to send data, as soon as Map has yielded its
result. This characteristic helps to mitigate the effects of heterogeneous tasks by ensuring
that there are no barriers in the multiple processing stages (this is also known as “barrier-
free”). Map-Collective can support fault-tolerance by relaunching the iterations in case
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of failures and only maintains the checkpoint obtained from the iteration results when the
iterations are relatively fine-grained.

Map-AllGather broadcasts the Map task outputs to all the nodes. Each node transmits
its results through a recipient, which Map-AllGater uses to send data to all the work-
ers, once the Map task has been completed. This abstraction is an iterative MapReduce
computation that eliminates the reduce, merge and broadcasting stages from the original
MapReduce framework. Map-AllReduce is a collective which combines a set of values is-
sued by all the workers and makes an aggregation of the results from the Map tasks. This
model replaces the Shuffle, Sort, Reduce, Merge and Broadcast stages from MR-MB.
Map-AllReduce implements a hierarchical method for reducing the number and size of
the intermediate data. It is similar to the Combine function in the Hadoop implementation
that leads to a reduction of intermediate keys in the Map phase.

These approaches show the need for a more fine-grained system of task management
and data distribution across Big Data applications. Businesses and governments arrange
their data in distributed cloud platforms for different reasons, such as, the need to maintain
the proximity of resources; data storage with organizations that share common goals;
and a desire to keep data replicas across regions for redundancy purposes. This data
information must be analyzed on a global scale.

One possible way to do this is to merge all the data in a single data center, and another
is to use a Multiple Clouds infrastructure to execute individual instances of MapReduce
across each dataset separately and then aggregate the results. The study of (JAYALATH;
STEPHEN; EUGSTER, 2014) suggests that this could be done by running jobs in a geo-
distributed operation. The authors introduce the G-MR, a Hadoop implementation based
on a geo-distributed dataset across multiple data centers. They state that, for instance,
it is possible to have multiple execution paths for carrying out a MapReduce job in this
scenario, although the performance may vary considerably for each path. Another prob-
lem is that popular MapReduce open sources, like Hadoop, do not support this feature.
In addition, most CSPs do not usually provide a bandwidth guarantee for large-scale data
transfers in execution time (ZHENG et al., 2014).

The G-MR has an algorithm called a Data Transformation Graph (DTG) which de-
termines an execution path for performing a job sequence for MapReduce. The problem
is how to decide which stage should derive partitions that must be moved and how to re-
duce costs by finding the best performance for MapReduce applications. Figure 2.4 shows
the architecture from G-MR, adapted from (JAYALATH; STEPHEN; EUGSTER, 2014).
The architecture consists of the following modules: a Group Manager, Job Manager,
Copy Manager and Aggregation. The Group Manager optimizes the execution path and
may instruct the Job Manager to copy data for a remote data center or aggregate multiple
sub-datasets. The Job Manager performs the jobs over Hadoop which is deployed in each
n data center. The Copy Manager is responsible for executing the data copy from one
data center to another. However, the total number of nodes in a single job graph is O(pn)
and can become huge when the number of p partitions grows. The Aggregation manager
maintains the integrity of the results. The model shows that this architecture is feasible
from the standpoint of data distribution and the integration of results.

The approach Write Once Read Many (WORM) is an accepted assumption for data
access in Big Data applications like MapReduce. The handiest manner for Big Data pro-
cessing across several data centers, is to use a data replication mechanism among differ-
ent CSPs. However, the variability in the high-performance required for cloud operations
leads to bottlenecks (IOSUP; YIGITBASI; EPEMA, 2011), (GROZEV; BUYYA, 2015).
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Figure 2.4: The G-MR architecture

Thus, the best strategy is to reduce data transfers.
The study of (TUDORAN et al., 2014) argues that there are two methods for model-

ing complex infrastructures. The analytical models use low-level details with workloads
and are characterized by their ability to predict the performance. This means the wealth
of detail is what will determine the best modeling. The sampling method is an active
approach which does not require any previous knowledge of the infrastructure. The infor-
mation about network bandwidth, topology and routing strategies is not available to the
users in public clouds. Because of this, the authors introduce a sample-based category for
modeling that monitors the environment with agents, called GEO-DMS. The agents carry
out the monitoring for data transfers and geographically-distributed data management
that is transferred across multiple clouds. The model registers the correlation between
performance (execution time) and cost effectiveness (finance), and imposes budgetary
constraints in the interests of safety.

The agents are implemented through VMs in each CSP where the applications are
running. The decision manager is concerned with how the transfer paths are established
between the source and destination. One way to achieve this is directly from the node to
the data center or by using multiple paths across intermediate data centers. The data trans-
fers are intra-site data replications that result from the presence of dedicated links among
the data centers of the same CSP. The scientific applications interact with an API to pro-
vide data transfers over a WAN. A monitor agent carries out environmental monitoring
and makes the measurements for the decision manager. The measurements include band-
width throughput between data centers, and the CPU load, I/O speed and memory status
of the VM nodes. The decision manager updates the weights of the paths periodically
with the aid of these measurements.

The data management efficiency is measured through a Transfer Time as in Equation
5.1.5, where “ψ” is the throughput between the sites and “n” is the number of nodes.
The amount of data to transfer (θ ) is related to the gain (g) of parallel transfers, and is
determined empirically as a value in the interval [0,1].

Tt =
θ

ψ
∗ 1

1+(n−1)∗g
(2.4.1)

The cost of a geographical transfer (Cgeo) has three components, shown in Equation
2.4.2. The first is related to data output (ρ) from one CSP to another. The others corre-
spond to lease costs of VMs and bandwidth. The parameter (η) represents the number
of VMs. Both the lease cost from VM and bandwidth for each data transfer will define
the cost of a geographical transfer. The machine performance (V mcpu) has an associated
intrusiveness bias that reflects the influence of one or other processor use (Icpu). The
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bandwidth intrusiveness (IBw) reflects the impact of different bandwidths. This intrusive-
ness bias depends on the allocation resources and reveals to what extent an infrastructure
is busy in each CSP. The network bandwidth (V mBw) represents the degree to which a
channel is free, and related to the data transfers (ϑ = θ

n ∗Tt).

Cgeo = η ∗(Tt ∗V mcpu∗ Icpu
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

VM lease cost

+ ϑ

V mBw
∗ IBw

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Bandwidth cost

)+ρ ∗θ (2.4.2)

In the study of (PALANISAMY; SINGH; LIU, 2015), the authors argue that the users
tend to choose resources based on their workload peak for MapReduce jobs in Cloud,
due to their expertise in the use of dedicated clusters. In contrast, the submitted jobs
are short, and have an average execution time of around 30 s. Despite this, the cloud
solutions can be improved by means of per-job and per-customer optimization, which
leads to a low utilization of cloud resources. These involved framework for cost-effective
resource management called CURA to automatically create the cluster configurations for
the MapReduce job. The aim is to optimize resource allocation to reduce the infrastructure
costs in the cloud data center.

The user submits a job and can either define its execution profile or create a job per-
formance modeling to make predictions of the job execution. CURA draws on this in-
formation to make decisions about scheduling and carry out performance predictions of
tasks based on the input data size, VM types, cluster size and parameters for the job. This
model implements its global resource allocations engine and is only used once when the
customer’s first job begins. The VM allocations will be maintained for the next jobs with
the same configurations, and after that the Hadoop’s instance is destroyed. This means
that, the initialization to the next execution is faster, although the data upload to HDFS is
still necessary.

The cost of cluster configuration (Ck,n) to run a ith job (Ji) in a specific instance type
(k) of a number of VMs (n) is defined in Equation 2.4.3. Where the number of physical
resources (Rk) of a VM has a determined number of physical resources (M) like CPU,
memory and disk . Additionally, if an execute prediction is also evaluated, an error for
the execution time (trun) need will be considered. This error can cause deviations when
predicting the execution time because there are multiple MapReduce jobs.

C(Ji,Ck,n) = trun(Ji,Ck,n)∗ n∗Rk

M
(2.4.3)

Thus, the end time of job (tend(Ji)) is similar to Equation 2.4.4, where Xk,n
i is a

Boolean variable that indicates if the scheduling uses the cluster configuration and∑k,n Xk,n
i =

1,∀i. The time to end must be completed until it is achieved in tdeadline(Ji). The way to
meet the scheduled deadline is to find a minimum cost for all the job executions, where
Overallcost =min∑k,n Xk,n

i ∗Cost(Ji,Ck,n).

tend(Ji) = tstart(Ji)+∑
k,n

Xk,n
i ∗ trun(Ji,Ck,n) (2.4.4)

The CURA scheduler must make future reservations for the VM pool resources to
avoid high latency when launching a new job. This can be achieved with a job prioritiza-
tion scheme which attempts to create a minimum of idle instances. The job is considered
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a priority job, if its overall cost is the cost of a higher usage of resources. CURA can bring
about a reconfiguration of the VM instances of a VM pool, with the aim of changing the
instance type from large to small or in contrast, on the basis of the workload analysis
(PALANISAMY; SINGH; LIU, 2015).

The approach used for the analytics of geo-distributed data is a centralized approach
that consumes a significant amount of bandwidth, and leads to a poor performance. In ad-
dition, this approach must consider new constraints, such as concerns about privacy. The
distributed execution is a strategy that pushes computations to local data centers and then
aggregates the intermediate result to do further processing. Thus, this execution method
can lead to low latency since it involves a distributed execution. However, in several ap-
proaches the constraints on data movement constraints are not taken into account (JI; LI,
2016).

2.5 Related Work closer in Hybrid Systems

Hybrid systems have been described in some scientific papers as a mixture of public
and private clouds. At the same time, this factor refers to the degree of availability in the
resource policies. Factors regarding the deployment of native and virtualized clusters are
evaluated in the work of (SHARMA; WOOD; DAS, 2013). In their analysis, the authors
argue that generic benchmarks show an overhead of 5% and 15% for computation and
I/O workloads respectively, when confronted with a non-virtualized system. In addition,
the level of overhead may vary depending on the workload, availability of resources and
programming of interactive jobs. The reduction of performance in virtualization systems
has led companies like Google and Facebook to use physical machines.

In a Hybrid Cloud environment, the data centers are interconnected by means of slow
links. The data is moved from the private to public Cloud when a new VM allocation is
necessary to improve a task performance. The data locality and data movement are a chal-
lenge for accelerating iterative MapReduce in Hybrid Clouds. Iterative applications reuse
invariant input data. Furthermore, since the extra resources represent an additional cost
for data movement a trade-off between performance gains and benefits must be evaluated.

These issues are evaluated in the work by (CLEMENTE-CASTELLÓ et al., 2015)
to address iterative MapReduce problems in a Hybrid IaaS Cloud environment. The au-
thors argue that improving the ability to take advantage of data locality in a hybrid Cloud
environment is critical. The aim of the strategy is to extend the original fault-tolerance
mechanism of HDFS and deploy data replicas from an on-premise VM in a private Cloud
to another allocated off-premise VM in a public Cloud as if it were an external rack over
the HDFS. The off-premise VM initializes without data and need re-balance the initial
data blocks with on-premise VM. A heuristic determines a re-balance factor from an I/O
intensive benchmark to approximate the application behavior for the duration of the re-
balancing. The scheduler waits for the off-premise VM to get a minimal replica number
to start the task distribution.

In the work of (TANG; HE; FEDAK, 2015) the authors implement a layer to create a
hybrid distributed file system (HybridDFS) under reliable data storage clusters in Cloud
and unreliable data storage in desktop grid. Each data chunk in volatile nodes has at least
one replica distributed for different volunteer PCs or cluster nodes. The volatile node
employs a fault-tolerance mechanism that will be specified in Subsection 4.2.1. This
means, it is possible to check the feasibility of using hybrid infrastructures such as Cloud
and DGs.
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The authors developed a Node Priority-Based Fair Scheduler (NPBFS) algorithm.
This means the node with greater computational capacity processes more tasks. The sys-
tem takes into account both data location and storage capacity, and the length of the task
queues is related to the computational capacity of each node. A weight coefficient indi-
cates the node priority for receiving a greater number of tasks.

There is an increasing need for a repeated analysis from Big Data in the Cloud with
streaming characteristics. Streaming and data-intensive applications are often not the
best profile for Cloud applications (TUDORAN et al., 2014). Streaming systems are
event-driven and their behavior differs from batch systems like MapReduce (ZAHARIA
et al., 2012). The MapReduce model lacks efficient support for real-time processing.
The traditional system that has been developed to process static databases like Hadoop
cannot provide a low latency response in real-time or streaming processing. The first
requirement for a heterogeneous cluster to achieve load balancing is information such as
that about the infrastructure, topology, and performance of their individual nodes. The
second is knowledge about computational factors, such as, incoming tasks and input data.
These requirements are more difficult to achieve in streaming than with batch workloads
because of the continuous data streams (RYCHLY; KODA; SMRZ, 2014).

Hadoop Streaming is a utility included in the Hadoop distribution in an attempt to en-
able streaming in the MapReduce model through two standard Unix interfaces for stream
processing, one stdin (input) and one stdout (output) (DING et al., 2011). These interfaces
have two “executables” (one mapper and one reducer) that use a Combiner function. The
Combiner is an implementation that enables a map output to run in memory. Pipe oper-
ations are created by the Unix system call to build a half-duplex communication channel
for an external executable file. A pipe call is invoked to establish a communication chan-
nel for each interface. When a new pipe is created, two file descriptors are obtained.
One of them is for reading and the other for writing. An inode identifies each pipe in
the local file system to temporarily store data. The communication channel may generate
system overhead and some critical fields of pipe can produce race conditions between the
read/write operations.

The strategies for implementing streaming in Cloud is discussed in the work of (TU-
DORAN et al., 2014). The authors evaluate applications like the Ocean Observatory
Initiative, where sensors send information that is collected by satellites for geo-spatial
computations. The study shows how communication in the Cloud can interfere with
computation. The approach uses persistent and ephemeral storage. In the first, called
Stream&Compute (SC), the data is sent directly to VM computation without storage per-
sistence. In the second, called Copy&Compute (CC), the data is first saved in an attached
storage, so that it can be conveyed to VM computation afterwards. The system processes
data similar to the BoT application. When the sensors produce new data, it is processed
against existing features as in a temporal process. This eliminates, the need for commu-
nications between processes, but adds a huge volume of data that must be streamed for
each worker.

The Stream&Compute provide a better response time, but when carried out on a large
scale, there is a network saturation that leads to a need for redistribution across different
CSPs. The Copy&Compute makes it easier to do repairs, when an unexpected stop occurs
to the VM. In contrast, the date is near to the computation. However, a high variability
in the remote copy phase causes a variation of around 20% in terms of data transfers
per seconds. Disc contention is observed in the Copy&Compute approach, when all the
workers are trying to access the data at the same time. The classic problem of CPU
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utilization vs. I/O has a significant impact on the data throughput owing to virtualization.
In the work of (VASILE et al., 2015) the authors propose a resource-aware hybrid

scheduling algorithm for batch jobs and workflows. The scheduler assigns tasks for
groups, in accordance with the resource distribution strategy of each cluster. The al-
gorithm considers a hierarchy of clusters to evaluate the lease resources. Heterogeneous
clusters consist of different public and private systems. The new workloads involve on-
demand provisioning. The study extends the CloudSim simulator (CALHEIROS et al.,
2011) to four scheduling strategies.

The authors have shown the HySARC2 architecture with three modules: monitoring
services, an analysis module, and a scheduling mechanism. The analysis module imple-
ments a delay which makes it necessary to wait for a node’s start-time without increasing
the makespan. A graph represents a weight for each path where the shortest possible time
is chosen for each task execution. The task without dependency is executed in the clus-
ters. A DAG is created for the tasks with dependencies according to their distances. The
distances are evaluated with a K-means algorithm and a ratio level between computation
and communication. The evaluation has a scale of 1000 tasks versus 1000 resources, and
10 VM instances, which is a low scalability for the Big Data environment.

A next generation data processing engine has been created that is based on Lambda
Architecture (WU; BUYYA; RAMAMOHANARAO, 2016). This architecture makes it
possible to build Big Data systems as layers that satisfy the properties of a subset such
as: having an internal code optimization; executing iterative algorithms; being able to
achieve immutability and re-computation within the Big Data core system; getting low
latency readings and updates without impairing the robustness of the system; having high
scalability; and others (MARZ; WARREN, 2015). The architecture has three layers: the
batch layer, serving layer and speed layer. The speed layer is related to the stream appli-
cation where the data analytics involve real-time processing. The batch layer represents
applications with a defined size of datasets without real-time constraints. The serving
layer is a pre-processing in memory of immutable datasets and provides a speedup to an
on-the-fly query analysis of both batch and stream environments. The user queries are
expected to gather information about the batch view and real-time view that is similar to
that of the merge abstraction. Figure 2.5 shows this architecture, adapted from (MARZ;
WARREN, 2015).

Figure 2.5: The Lambda architecture

The Apache Flink, previously called Stratosphere, is a data analytic framework that
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follows the Lambda Architecture and enables the extraction, analysis and integration of
heterogeneous datasets (ALEXANDROV et al., 2014). Flink has a flexible pipeline that
enables several map-reduce and extended functions like Map, MapPartion, Reduce, Ag-
gregate, Join and Iterative. It has two APIs, one for DataSet and other for DataStream
respectively deployed on process batch and stream applications which constitute a hybrid
programming environment. The core is a dataflow in a distributed streaming that does not
store data but converts it into optimized binary formats, after their reading. It is extensi-
ble for traditional data warehousing queries such as textual data queries and information
integration in a Table API library. The implementation supports iterative programs that
allow an execution graph analysis and statistical applications inside the data processing
engine. The architecture includes different deploying modes, such as local (in a single
JVM), cluster (standalone and Hadoop-YARN environment) and Cloud computing (EC2
and GCE). Flink supports Java, Scala and Python programming languages (CHAUHAN
et al., 2015).

The stack is built on top of each layer, and raises the abstraction level of the program
that they accept. Figure 2.6 shows the main Flink architecture. An API layer implements
multiple APIs that create DAG operators for its programs. Each API has to provide utili-
ties (serializers, comparators) that describe the interaction between its data types and the
runtime. All the programming APIs are translated to an intermediate program represen-
tation that is compiled and optimized via a cost-based optimizer.

Flink Common API and Optimizer layer takes programs in the form of operator DAGs.
The operators are specific (e.g., Map, Join, Filter, Reduce, FlatMap, MapPartition, Re-
duceGroup, Aggregate, Union, Cross, etc) and the data is in nonuniform type. The con-
crete types and their interaction with the runtime are specified by the higher layers. The
Flink Runtime layer receives a program in the form of a JobGraph. A Job Graph is a
generic parallel data flow with arbitrary tasks that consume and produce data streams. The
runtime is designed to perform very well both in setups with abundant memory and in se-
tups where memory is scarce. Job Graph is responsible for hardware resource allocations
to run the job from a resource manager, scheduling the job’s tasks, execution monitoring,
managing the data flows between the tasks, and recovery failures (ALEXANDROV et al.,
2014).

The Cloud-ware scheduling system (GHAFARIAN; JAVADI, 2015) has been pro-
posed as a form of a data-intensive workflow scheduling in a hybrid infrastructure like
VC systems and Cloud resources, and is employed as a means of keeping to a set dead-
line. The system has two phases: the first divides the workflow into sub-workflows to
reduce the dependency of the data on the sub-workflows. The second phase schedules
these sub-workflows to the VC on the basis of resource proximity and load balancing in
accordance with the Queue Theory. If there is a probability that the deadline will not be
met with VC resources, these workflows are re-scheduled to Cloud resources to find the
set deadline. The system classifies the resources in accordance with a decision tree that
has the following five attributes: CPU speed, RAM size, hard disc space, an operational
system and a processor model.

The algorithm proposed assumes that each task has an estimated duration time and
there is information about the deadline, the QoS constraints, minimum CPU speed, and
minimum size of RAM or hard disc. Thus, each workflow has a fixed deadline. Since
the workflow is a DAG, the partitioning into sub-workflows is computed as the sum of
estimated execution times for their tasks. The authors defined that the communication
delay can be computed by Equation 2.5.1, where Sp is a service time for each connection
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Figure 2.6: The Flink architecture

between two resources based on the store & forward flow control mechanism. The αnet
is the network latency, βnet is the inverse of bandwidth and F is the volume data transfer.
The σ2

p and λp are a variance and inter-arrival rate of traffic respectively, at source peer’s
queue.
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Cirus (PHAM et al., 2016) is a framework for Ubilytics which is a type of Big Data
analytics applied to IoT. This provides a platform to both deploying and configuring the
Ubilytics infrastructure in a Hybrid Cloud environment. The deployment supports het-
erogeneous environments based on brokers (IoT Edge). The IoT Edge tier is deployed
through gateways in mobile and static sensors. The sensors and smartphones are imple-
mented as a platform as a Service (PaaS) for IoT real-time applications. Figure 2.7, which
is adapted from (PHAM et al., 2016), shows the architectural components.

The reconfiguration management is implemented by Roboconf, which dynamically
adjusts the infrastructure to a throughput that is in accordance with the messages of the
sensor. The Big Data computation is conducted through workloads in batch and real-time
(using the Hadoop and Spark or Storm frameworks respectively). The platform has a
Lambda architecture, although the batch processing layer has not been implemented in
the prototype. Two different brokers are used to implement a message gateway and QoS
properties, such as fault-tolerance, high-availability, elasticity, deterministic delivery time
and other factors. The Mosquitto and RabbitMQ are brokers which offer support to the
Message Queue Telemetry Transport (MQTT) protocol. Mosquitto is utilized to integrate
IoT sensors and RabbitMQ into other cases. The monitoring layer runs the analysis and
scaling to make decisions based on variations of the environment that can enable elasticity.
A DSL-based plug-in layer provides a description of an abstraction component for Big
Data applications in accordance with the use of the sensors.
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Figure 2.7: The Cirus architecture

2.6 Open-ended Problems and Related Work in Big Data Analysis

Tables 2.2 summarizes the main techniques and strategies used for the deploy of Big
Data analysis. The relation of the related works refers to particular implementations,
and only some works are generic systems like SALSA, Twister, BitDew-MR, Flink and
CURA. Then, we will compare the strategies deployed on these Infrastructures that can
be used for the solution of hybrid infrastructure in this work. An assessment of this sam-
pling of related work found that 53% are Cloud or Multi-Cloud implementations, and
11% adopt a geo-distributed approach. Only two works employ the Hybrid Infrastructure
as a Cloud and DG, but in these works one is an assessment of the distributed storage
and the other is a scheduling algorithm. In addition, data and task distribution in a Big
Data context are not examined. Thus, the study of hybrid platforms together with a “con-
straint analysis” are a way to find new solutions for Big Data analytic implementations.
The main strategies adopted for the implementations were to evaluate the environment
capacity, such as the device capacity like CPU, memory, and computational capacity to
estimate the lower deployment cost for the user. 74% of the studies are using one or an-
other approach, but only 16% include both, and the data replication strategy is the most
widely used.

The network overhead is a problem because it reduces a chance to make use of Geo-
distributed infrastructures, although the strategies adopted to reduce the number of the
data transfers is not yet a policy that has been adopted in this cases. On the other hand, the
implementation of groups with similar computational capacity is a strategy used by 21%
of the studied implementations. The cost evaluation of the CSPs is the used strategy in
67% of implementations in Multi-Cloud environments. Only SALSA, Brokering, Twister
and Cirus have implemented a broker system. The first of these orchestrates the stages of
the execution phase in a systematic way; the second manages data storage and removes
a single point of failure; the third creates a communication channel where the nodes can
find the intermediate keys produced by Map; and the fourth uses the Roboconf as a simple
orchestration mechanism to instantiate Vms.
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Table 2.2: Frameworks and techniques for Big Data analysis
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(EKANAYAKE et al., 2010) Twister x x x x x
(MANSOURI; TOOSI; BUYYA, 2013) Brokering Alg. x x x x
(GUNARATHNE et al., 2013) Twister4Azure x x x x x x
(LE et al., 2014) SALSA x x x
(JAYALATH; STEPHEN; EUGSTER, 2014) G-MR x x x x x
(TUDORAN et al., 2014) GEO-DMS x x x x x x x
(PALANISAMY; SINGH; LIU, 2015) CURA x x

H
et

er
og

en
eo

us

(LIN et al., 2010) Moon x x x x x x
(LU et al., 2012) BitDew-MR x x x x x x x
(KRISH; ANWAR; BUTT, 2014) HATS x x x x x x
(ANJOS et al., 2015) MRA++ x x x x x

H
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(DING et al., 2011) Hadoop Streaming x x x
(TUDORAN et al., 2014) SC-CC x x x
(ALEXANDROV et al., 2014) FLINK x x x x x x x x x
(CLEMENTE-CASTELLÓ et al., 2015) Hybrid IaaS Cloud x x x
(TANG; HE; FEDAK, 2015) HybridDFS x x x x x x x x x x x
(VASILE et al., 2015) HySARC2 x x x
(GHAFARIAN; JAVADI, 2015) Cloud-aware x x x x x x x x
(PHAM et al., 2016) Cirus x x x x x x x

The work of (TUDORAN et al., 2014) employs agents to collect information hardware
from CSPs, but the problem remains of how it is possible to avoid excessive VM launch-
ing and thus reduce unnecessary allocation costs. In G-MR (JAYALATH; STEPHEN;
EUGSTER, 2014) the performance can be very different for each execution path, thus
there is still a problem of how to avoid massive data transfers if the CSPs cannot provide
bandwidth guarantees. The implementation of Twister (EKANAYAKE et al., 2010) em-
ploys Combiner techniques to improve the task executions in Cluster, but it is not clear
what the behavior of the broker systems in Cloud or Multi-clouds would be like. On the
other hand, if Twister4Azure (GUNARATHNE et al., 2013) provides dynamic data with
a Message Queue Infrastructure, it is not clear how it will behave when it has a finer
grain for task management and data distribution. If MRA++ (ANJOS et al., 2015) could
explore data distribution and tasks in accordance with its computational capabilities, it
would be possible to employ this technique to improve the performance of the hybrid
systems. However, if an iterative MapReduce environment (CLEMENTE-CASTELLÓ
et al., 2015) extends the fault-tolerance mechanism of HDFS, how can one avoid data
movements with iterative MapReduce in a Hybrid Cloud environment ?

The (PHAM et al., 2016) is the implementation that is the most closely related to
our work regarding orchestration and publisher/subscriber mechanisms, although it is not
clear how Hadoop (together with the other implementation layers) can provide a consis-
tent architecture in an interactive manner. However, there is not yet any consensus of
opinion about the allocation of resources in Cloud and there is no concern about the fact
that there is I/O competition when multiple users are allocated for VMs using the same
hardware.



52

Although there have been several works that address this issue, there are still many
open problems about Big Data in Cloud environments. In addition, the Geo-distributed
environment is not explored yet in hybrid systems. The combination of DG resource
allocation with Cloud environments for data-intensive applications is a possible line of
inquiry, that could be explored so that the available resources could be freely exploited.
This Thesis will explore this possibility and define what are the reasonable constraints for
the development of a hybrid platform to achieve this goal.

2.7 Final Considerations

This Chapter has shown the concepts and solutions of Big Data implementations in
different environments, such as heterogeneous Cluster, Cloud and Multi-Cloud and hy-
brid infrastructures. In addition, the main open problems were discussed. The analysis of
related work demonstrates that there are open-ended problems applied to Big Data. How-
ever, as these problems open up a broad spectrum, this Thesis will be confined to create
a tool for analyzing a hybrid infrastructure through the BIGhybrid simulator; define a
hybrid infrastructure architecture that is made possible through of the SMART platform,
and establish strategies for the use of these environments.
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3 SMART: A HYBRID INFRASTRUCTURE ARCHITECTURE

This Chapter shows the features of hybrid infrastructures by examining a geograph-
ically distributed model. Thus, the desirable features are displayed that are needed to
achieve the definition of purpose of a minimal hybrid platform for Big Data analytics
called SMART. The platform represents the cooperative scientific effort of several re-
search laboratories for the building of a system like a hierarchical and modular infras-
tructure to provide a Big Data system through a lambda architecture within a hybrid in-
frastructure. In this context, our contribution is related to the specification of the several
modules and the development a prototype to demonstrate the feasibility of this platform
which we discussed in this work. Also, SMART platform provides a robust infrastructure
for IoT applications through the Big Data analytics, which forms the SMART-Sent plat-
form with the implementation of the sensors and where several students are working in
different modules to make this work feasible.

3.1 Hybrid Infrastructure Characterization

The starter point of the SMART platform was the work of (ANTONIU et al., 2013).
However, this initial model does not include the concepts of the dispatcher and aggre-
gation modules, which are introduced like a contribution in this architecture. Also, the
hybrid infrastructures characterization is needed for behaviour definition, which it is ex-
hibited in this Section. The SMART platform, in Section 3.2, was born as a hybrid plat-
form for Big Data analytics, thus the processing core is formed by the engines called
Flink Apache and BitDew-MapReduce. These engines enable the Lambda architecture
and desktop grid respectively to Big Data processing. The characterization this hybrid
environment is the basis for the design in layers of SMART, which is extended as a use
case for smart cities in the SMART-Sent specification in the following Sections.

Big Data applications can be implemented in several ways. Scattered data can be
found in DNA research studies, where researchers need to investigate different databases,
such as those in protein structure analysis. These applications seek a genetic mapping
that requires a pre-existing reference genome to be employed for the read alignment of
a gene (ZOU et al., 2014). Thus, the data processing is characterized by its ability to
compare input data with different databases. This processing consists of several phases
of search-merge-reduce, where the data are given an incremental update (MCKENNA
et al., 2010). The solutions proposed in this work for the hybrid infrastructure consider
this heterogeneous scenario and initially are based on the scope of the MapReduce ANR
project1.

1National Research Agency (ANR), ARPEGE 2010 call. Project number: ANR-10-SEGI-001
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Some researchers (JAYALATH; STEPHEN; EUGSTER, 2014), (TUDORAN et al.,
2014), (KRISH; ANWAR; BUTT, 2014) and (JI; LI, 2016) have put forward Hadoop
implementation based on a geo-distributed dataset in multiple data centers. The authors
state that, for instance, it is possible to have multiple execution paths for carrying out a
MapReduce job in this scenario, and the performance can carry out a great deal. However,
a popular MapReduce open source, like Hadoop, does not support this feature naturally,
and the major Cloud Service Providers (CSPs) do not usually provide a bandwidth guar-
antee (ZHENG et al., 2014).

Figure 3.1 illustrates the scenario where dispersal data is used. Each locality is con-
nected through slow links, where data transfers may not have a negligible cost. The data
is scattered in the clusters. All the intermediate results must be combined to produce a
single return for a Big Data analysis. These problems can be overcome by means of a
hybrid infrastructure if there is a file system that supports the incremental updates and
highly concurrent data sharing, for instance, in a BlobSeer deployment. A possible solu-
tion involves integrating a distributed file system like the HDFS with the use of a Cloud
environment; otherwise, DGs are a large-scale infrastructure with specific characteristics
in terms of volatility, reliability, connectivity, security and storage space. Both architec-
tures are suitable for large-scale parallel processing. Finally, more complex combinations
can be envisaged for platforms resulting from the use of multiple Clouds through an ex-
tension to a DG (ANTONIU et al., 2013).

Figure 3.1: Geographically distributed data

3.1.1 Overview of the Hybrid Infrastructure Model

Different Cloud infrastructures have their own configuration parameters, and the avail-
ability and performance of offered resources can change dynamically due to several fac-
tors, including the degree of over-commitment that a provider employs. In this con-
text, solutions are needed for the automatic configuration of complex cloud services.
The Cloud infrastructure comprising heterogeneous hardware environments may need the
specifications of configuration parameters at several levels such as the operating systems,
service containers and network capabilities (LE et al., 2014). The users who need to exe-
cute applications may not know how to map their requirements to the available resources,
this lack of knowledge about the cloud provider infrastructure will lead either to overes-
timating or underestimating the required capacity; both are equally bad and can lead to a
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waste of resources.
A hybrid infrastructure, where there are many cloud providers with heterogeneous

environments and configurations, often needs to use an orchestrator to manage the results
and data input from users. The orchestrator must be decentralized (LE et al., 2014) to
improve the data distribution in the network. This infrastructure enables the use of highly
heterogeneous machines. Several scenarios and data strategies are possible when there is
the need of the use of a public cloud for extending the capacity of a private cloud or a
DG. The set scale of data distribution strategies that can be applicable to a given scenario
depends on also the available bandwidth. In the case of the hybrid Big Data engine, which
has two distinct DFS implementations, it may be necessary to handle data distribution in
two scenarios, namely low and high-bandwidth.

With basis on previous work carried out in MR for hybrid environments (DELA-
MARE et al., 2012), (ANJOS; FEDAK; GEYER, 2014), Figure 3.2 illustrates the solution
proposed here to a hybrid system model which depicts a Global Dispatcher and Global
Aggregator. This concept that can be used as an infrastructure for services that uses mul-
tiple data abstractions. The Global Dispatcher located outside the cloud is a layer that
handles task assignments and the management of user-provided data. The layer decou-
ples the data storage system and manages policies for the splitting and distributing data in
accordance with each system. These policies are defined in this work on the subsection
5.1. The working principle is similar to a publish/subscribe service in which the layer acts
as a data producer that is afterwards consumed by workers (ANJOS; FEDAK; GEYER,
2014). The Global Aggregator obtains data output from both systems and merges them
to obtain the final data set.

Figure 3.2: Hybrid infrastructure from a high-level view

The Global Dispatcher handles task assignments and input data from users. It is
a centralized data-driven subsystem that manages remote data localization, policies for
split and distribution of data, in accordance with the needs of each system. The working
principle is similar to the publish/subscribe service where the system obtains data and
publishes the computing results. This approach is simple, but risks causing a network
bottleneck.

Global Aggregator receives all the key/values of Reduce, and the keys with the same
index in each system are joined to the last Reduce function to obtain a consistent result.
However, the iterative MR computations, that are undertaken by the Global Aggregator,
are not supported by an original MR model. It is not an easy task to combine all the
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Reduces from heterogeneous platforms, although it is possible to establish a new stage
for MR (EKANAYAKE; PALLICKARA; FOX, 2008). One approach is to use the MapIt-
erativeReduce (DOBRE; XHAFA, 2014) which creates an Aggregator to collect all the
outputs of the Reduce tasks and combines them into a single result. At the end of each
iteration, the reducer checks to find out whether or not it is the last, otherwise, according
to (TUDORAN; COSTAN; ANTONIU, 2012), this schema might be ineffective for large
workloads. The best choice is to produce a local aggregation of the keys, for instance,
with a Combiner function to avoid unnecessary data transfers.

3.1.2 Desirable Features of the Hybrid Infrastructure for a Big Data Environment

The hybrid infrastructure uses an orchestrator to manage the results and data input for
users. This must be decentralized to improve the data distribution in the network. In the
particular case of Cloud and DG, fault-tolerance mechanisms adopt different policies to
detect faults. A more specialized system is applied to DG due to its node volatility. It is
important to define the main features of the hybrid infrastructures.

Table 3.1 summarizes the main architectural features of BlobSeer-Hadoop, BitDew-
MR and the Hybrid MR environment. The hybrid infrastructure enables highly heteroge-
neous machines, with stable and volatile storage to avoid data loss. The extent to which a
set of data-distribution strategies is applicable to a given scenario depends on how much
bandwidth is available. Two independent DFS implementations are required to handle
data distribution in two scenarios, namely low-bandwidth and high-bandwidth. The ap-
plication profile is optimized for all file sizes in hybrid infrastructures, as the systems
are independent and thus the different data sizes can be handled at the same time. The
bandwidth and computational capacity of machines influence the initial assumptions for
defining a straggler machine and because of this, each system must be treated in a different
way.

3.2 SMART: A Hybrid Platform for Big Data

This work examines a model with various data sources, ranging from wireless sen-
sor nodes to user interaction information in open environments, such as social networks,
opendata information and other. The datasets consist of large corporate databases to
broadcast media, where there is a clear need for standardization. The idea has evolved
into a hybrid Big Data platform for applications processing in different domains. A “co-
operation project” has been set up to achieve this vast domain. Several research institutes
are involved, including the following:

- Inria, LIP, ENS Lyon, French, Ph.D Gilles Fedak;

- Universitat Politècnica de Catalunya, Spain, Ph.D Felix Freitag;

- Technische Universitat Berlin, Germany, Ph.D Volker Markl;

- JohnMoores University, Liverpool, England, Ph.D Rubem Pereira and Paul Fergus;

- University of Brasilia, Brazil, Ph.D João Paulo da Costa;

- Federal University of Rio Grande do Sul, Brazil, Ph.D Edison Pignaton;

- Belarusian State University, Belarus, Ph.D Tatiana Galibus;
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Table 3.1: Comparison between the MR systems
Characteristics BlobSeer-Hadoop BitDew-MR Hybrid-MapReduce
Heterogeneity Moderate High High

Network High Bandwidth Low Bandwidth with distrib-
uted cache

Hybrid Bandwidth

Architecture Decentralized Decentralized Decentralized

Storage Distributed Remote (Cloud Storage) +
local

Distributed, Remote Cloud
Storage and local

Management Master/Slave Master/Slave Hierarchical Orchestrator

Metadata Distributed by DHT Centralized on Data Catalog Distributed DHT/Data Catalog

App profile Any Low Communication in
Shuffle phase

Optimized for all file sizes

File system API Posix Tuple Space model Hybrid (Posix + Tuple Sace)

Data locality Yes (One Rack only) Yes ( Affinity by node) Implemented according to each
platform

Chunk size Fixed - 64MB Fixed - 32MB According each platform

Host model Stable Stable and Volatile Stable and Volatile

FT mechanism Data and Task Replication Data Replication and tran-
sient failure support

Data and Task Replication, and
transient failure support

Load balance Strong Dynamic Soft Soft

Computation Hadoop Compatilble Barrier-free Hybrid

Semantics of data con-
currency

Multiple write, version up-
date

Single write Single write

Straggler management Average execution task Machine computational ca-
pacity

Hybrid

Storage Elasticity High High High

MapReduce Semantic More Compliance (Limited) Restricted Restrict

- Danube University Krems, Austria, Ph.D Thomas J. Lampoltshammer and Gabriela
V. Pereira

This project aims at simplifying the deployment of Big Data services by SME. SMART,
that was defined in the work of (ANJOS et al., 2015), takes advantage of the Cloud,
multi-cloud and hybrid infrastructures to provide support for an SME service operation,
and does not need to aggregate data in a single data center for Big Data analysis. It pro-
vides a secure and flexible cloud-based system that is capable of providing different types
of services that can be combined to address the specific needs of multiple application
domains. The approach for SMART is similar in high level to the work of (KRISH; AN-
WAR; BUTT, 2014)regarding the use of Orchestrator and publish/subscribe mechanisms.
The data placement concept is to seek network proximity by retrieving replicas from the
nearest rack to reduce network traffic. Our mission, in this project, is to define a model
that enables hybrid infrastructures to be used in Big Data analysis, which is materialized
in the Hybrid Infrastructure Model.

3.2.1 SMART Platform

The defining layers in a functional hierarchy are needed to build a platform for the
SMART architecture. Figure 3.3 shows six modules: Global Collector, Global Dispatcher,
Storage, Core Engine, Global Aggregator and Central Monitoring. The Core Engine must
support the hybrid systems, i.e., enable streaming and batch computations at the same
time. Thus, the Flink framework is an important system that is worth considering. The
BitDew-MR is another framework which can improve computational performance, with
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the use of VC in a hybrid infrastructure. SMART allows computational resources to be
taken from Cloud/Multi-Cloud, and Multi-Grid environments.

A Client User API provides an easy method for users to submit their applications and
indicate the data sources. The Client UI is a security interface that provides a single-user
identification through an encrypted key. A key which is keep by the users is employed in
the Encryption-Decryption Engine to ensure the data is safe. The storage safety model is
detailed in Annex B.1.

The Global Collector layer handles the management and coordination of the sensing
modules. It is responsible for obtaining data from several sources and maintaining the
data integrity mechanisms. The data integrity mechanisms filter possible noises in the
hardware devices. The data is collected and serialized under a standard TCP/IP, which
forms the communication stack for the Global Dispatcher.

Figure 3.3: Smart platform

In the Global Dispatcher, the data is decoupled from the lower layers in the message
queue mechanism like Apache Kafka (ZHANG, 2015). Data is put in a FIFO queue so
that it can be distributed to machines in accordance the availability of their resources
in both Cloud/Multi-Cloud and Grid/Multi-Grid environments. The optimization layer
analyzes the volume of input data and employs the Decision Engine to make decisions
about scheduling tasks and data through distinct environments. A simulation process
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implements an execution time prediction that will be used by the Decision Engine to
improve the accuracy of the scheduling mechanism. The user deploying module enables
unsafe and encrypted data localization by the external server. The user must provide a
key storage localization and the data path across the network before definitively attaching
the data. In this way, the users must define the binding between the data stream and
data source with the aid of the programming code. The storage-and-forward and pass-
through protocols are implemented inside this layer according to the data source. The
data transport endures a little delay and can be reallocated to Cloud or Desktop Grid.
An orchestrator module like Zookeeper (WHITE, 2012) maintains distributed queues, the
data structures coordination, and protocols among groups of peers. This module avoids a
single point of failure and their participants do not need to know one another.

The intermediate results are processed in the Core Engine. These results will be se-
rialized by the Global Aggregator what must carry out the data consolidation. The Data
Integration module supports network overlays to build a pathway for operations among
workers which need to execute an aggregation mathematical function of the similar keys
in a Big Data application. The last phase of the data processing is designed to generate an
iterative execution and provide the results of the consolidation. A Communication API is
necessary to integrate the workers into a virtual network of data computation. The Aggre-
gator API is a module that orchestrates the results of the aggregation and maintains the
safety data mechanism for the end-users. The users submit their applications on End-User
Interface and monitors the results in the Central Monitoring layer.

3.2.2 SMART-Sent: A Hybrid Platform for Big Data Integrated with IoT

As a use case, the SMART with Sensor Technology - SMART-Sent Platform - has
been designed on the basis of two other systems: the SMART platform and the Urbosenti
platform (ROLIM et al., 2015). The scenario involves the third digital technological rev-
olution, the IoT (DUQUENNOY; GRIMAUD; VANDEWALLE, 2009). The evolution
of mobile devices has enabled a high degree of Internet connectivity. The new range of
Internet-connected devices available today in other scenarios, such as smart cities, can
result in a better management of device resources, public infrastructure, transport, among
other factors. The number of so called smart devices connected to the Internet is ap-
proaching 25 billion and they range from home sensors employed to automate daily home
tasks to wearable devices such as smart watches.

The technologies developed within the scope of the SMART-Sent, are aimed at im-
proving the functionality of IoT by improving the frameworks and mechanisms used for
the analysis of data generated by connected devices. This can lead to important devel-
opments by introducing a plethora of new services by companies that can provide them
more easily, as well as the integration of new methods for analyzing data, and managing
the available Cloud infrastructure. In a similar way, this project seeks to integrate stream
processing and optimized cloud features for Apache Flink. Other functions can be added,
thus creating an “ecosystem” that allows practitioners and researchers to mutually ben-
efit and make a contribution by devising new algorithms for data summarizing, curation,
storage and analysis.

Figure 3.4 illustrates an architecture from a high-level view. A SMART-Sent Platform
includes different sensor types, such as, social networks (Twitter, Facebook, LinkedIn,
etc), crowdsourcing (online users with smartphone or tablet which send information to
a central information collector) and sensor devices (sensors in smart cities). These sen-
sors collect information about events in real-time (streaming processing). The streaming
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processing has several data sources including small sensors spread across cities. The
sensing devices send their information to the nearest desktop. A data collector applica-
tion, deployed in each desktop, conveys the information from the sensors to the Global
Dispatcher. Datasets with related information (in batch processing) and streaming pro-
cessing (originated from sensors) are combined in Big Data analysis. Public or private
agents receive compiled information which allows them to take action on the basis of
defined thresholds in a central monitoring system.

Figure 3.4: SMART-Sent architecture from a high-level view

Resource elasticity - the capacity to add/remove resources allocated to a service to
match its workload - is one of the key selling points of cloud computing. As appealing
as this feature may seem, it is hardly a result of magic. Providers often make available
a much larger number of resources than what their clients demand, to maintain the il-
lusion that the cloud is unlimited. Spare capacity that is not allocated to customers at
the normal renting cost is provided at a discount price. However, studies of (NEJAD;
MASHAYEKHY; GROSU, 2015) attempting to deconstruct the price of Amazon Spot
Instances argue that the spot price is a result of random processes and does not reflect de-
mand, a fact that leads researchers to believe that Amazon’s infrastructure is considerably
larger than what their customers in fact utilize. Hence, methods for handling elasticity
in a more responsive manner from a cloud provider’s perspective as well as from that of
the customers’ are essential to allow a more efficient use of the IT infrastructure. The
SMART-sent platform can assist in the study of algorithms and offer new mechanisms for
a complex event analysis.

3.2.3 The SMART-Sent Platform

There is a perfect link between the SMART and Urbosenti platforms, because from
the high-level perspective of SMART, the Collector is a service to acquire information,
whereas from the standpoint of a Urbosenti, Big Data analytics is a service infrastructure.
Figure 3.5 shows the SMART Platform architecture. The Global Collector now represents
a hierarchical infrastructure. A module, called Runtime tools, manages and monitors the
information collector. Logs and performance indicators comply with the policy enforce-
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ment to achieve SLA specifications. The SOA Registry module defines standards commu-
nication protocols like XML, Avro, and JSON that will be used for obtaining data from
sensors. Data from a Universal Description, Discovery, and Integration UDDI manages
the life-cycle and service discovery. A Profiling module controls the sensing modules
and system users to manage access control and discovery information. The Security API
maintains an interface with a security module to ensure data security.

Figure 3.5: SMART-Sent platform

The Analytic Services layer enables data to be sent for Cloud and provides controls to
access the Big Data analytics services through the SMART API. This API connects with
the communication layer to provide a safe transmission channel. The Repository Services
maintain all the available services so that they can carry out their functions properly. The
services can be defined as follows: Social Services are responsible for crowdsourcing
information; Concern Services manage security and privacy matters related to the users;
Data Services is responsible for manipulating filters that eliminate noise from hardware
devices and generate clean data for higher layers; Task Services coordinate the task of
obtaining data from sensors, and interacting with other modules in this layer; Sensing
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Services allows the interaction of several sensors types, through open standards running
in the Data Services and Concern Services modules.

The Sensing Component layer is combined with mobile devices and fixed sensors and
scattered across the different localities. They collect “intentional” information when the
users are interacting with their devices or without an intention when an application ob-
tains data directly from the environment. The Microkernel module is a core installed in
each device to manage the basic services. The functions are structured as follows: De-
vice provides information about a particular feature, such as the device name, Ip address,
localization, and position, interfaces and sensors kinds, etc; Communication is related to
TCP/IP standard protocols, such as IEEE 802.11 b/g/n, IEEE 802.3, GPRS/EDGE/3G,
Bluetooth, etc; Events interface obtains a device status, the position changes of devices
and traces of movements; Data handles storage operations and data retrieve.

The events obtained from Microkernel are available in components such as the follow-
ing sensing modules. The Concern module manages the privacy, encryption and safety
associated with an entity; The Localization component stores geolocation, points of inter-
est (POI) and Location Based Services (LBS); The User module handles personal datasets
like social network profiles and user preferences; The Resource module discovers avail-
able resources in the neighborhood and monitors the local resources; The Adaptation
module controls devices and the behavior of applications. Basic policies are defined to
forecast the device response for some of the defined thresholds; and the Context module
is a mechanism to support reasoning, knowledge and discovery within a specific context.

However, it should be stressed that building a complex system such as SMART-Sent
is an arduous task. The first stage of project development consists of defining a test
environment where it would be possible reduce the fault risk. This environment must
make it possible to evaluate the best strategies for data distribution and task allocation,
and hence make it feasible to establish the platform for Big Data executions. As a result,
the BIGhybrid simulator as a tool can help to analyze strategies for Big data in hybrid
environments and must allow the SMART-Sent platform to be built with a reasonable
performance.

3.3 Final Considerations

The challenges of developing hybrid infrastructures involve factors such as synchro-
nization management, load balance control and achieving as low a rate of data transfer-
ence as possible between the different sites, owing to the fact that CSPs do not provide
bandwidth with a guarantee for data transfer in execution time, in their SLA agreements.
In addition, managing hybrid infrastructures is a complex task since each CSP has few
resource management tools available to the users. On the other hand, the users also have
little expertise in the task of allocating computational resources in accordance with the
needs of their applications. Thus, it is essential to offer tools that can provide the user
with a wider choice of resources and make it easier to achieve an efficient fine-grain en-
vironment without the need for a knowledge of the available resources of CSP.

In this context, simulators can be added to the system architecture as an efficient tool
for providing an interface that is easy for users, without losing a minimum degree of
granularity. The BIGhybrid simulator shown in the next Chapter enables users to have a
practical interface and a powerful tool for resource allocation which can be built into the
SMART-Sent platform.

The SMART-Sent architecture represents an international attempt to bring about coop-
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eration that is the result of researchers working together to find solutions for the develop-
ment of the Big Data implementations for small and medium-sized companies. However,
this platform is only a preliminary study and as it is still in its early stages, some further
changes might be added in the future.

Currently, other two new Ph.D. students are conducting their Thesis which with basis
on the SMART Platform, as well as Master’s Degree students and four undergraduates
are working on issues involving this platform. Two Master’s Degree students at Belarus
University are working on the security model for Big Data related to the SMART-Sent
Platform. These activities illustrate the significance of this development.
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4 SIMULATION OF HYBRID INFRASTRUCTURES

The use of real-world testbeds to evaluate MR applications is difficult since there is
a lack of reproducibility in the experimental conditions for DG and fine-tuning of the
Cloud software stacks is complex. This Chapter presents the BIGhybrid simulator, which
is a simulation tool for hybrid infrastructures related to Cloud and Desktop Grid environ-
ments. The features of the simulator are defined carefully with the aim of reproducing the
most important characteristics of environments that conduct executions similar to those
found in the behavior of the real-world. The development of the BIGhydrid simulator as
an analytical tool for hybrid infrastructures and Big Data analysis is a relevant contribu-
tion for this Thesis.

4.1 BIGhybrid Simulator for SMART Architecture

BIGhybrid is a toolkit for MR simulation in hybrid environments. It has the focus
on Cloud and DG and is validated employing real-world experiments. The simulator it-
self is based on the SimGrid framework (CASANOVA et al., 2014). The main purpose
of this Chapter is to demonstrate that the BIGhybrid simulator has features that allow
it to carry out accurate simulations and that it is able to simulate the execution behav-
ior of two types of middleware for two distinct infrastructures: BitDew-MR (FEDAK;
HE; CAPPELLO, 2008; MOCA; SILAGHI; FEDAK, 2011) for Desktop Grid Comput-
ing and Hadoop-Blobseer (NICOLAE et al., 2010) for Cloud computing (called as Cloud-
BlobSeer). BIGhybrid has several desirable features: a) it is built on top of SimGrid with
two different simulators - MapReduce over SimGrid (MRSG), a validated Hadoop sim-
ulator (KOLBERG et al., 2013), and MapReduce Adapted Algorithms to Heterogeneous
Environments (MRA++), a simulator used for heterogeneous environments (ANJOS et al.,
2015); b) it has a trace toolkit that can assist in analysis and graphically shows the task
executions; c) it is a trace-based simulator that is able to process real-world resource avail-
ability traces to implement realistic fault-tolerance scenarios. Some traces can be found
on a website called Failure Trace Archive (FTA), which is a centralized public repository
of resource availability traces for various parallel and distributed systems (KONDO et al.,
2010); and d) its modular design allows for further extension.

BIGhybrid can be used for evaluating scheduling strategies for MR applications in hy-
brid infrastructures. We believe that this kind of tool is of great value to researchers and
practitioners who are working on big data applications and scheduling. For validation pur-
poses, the experiments are executed over Grid5000 (INRIA; CNRS, 2016). Grid5000 is
an experimental testbed, supported by INRIA, CNRS, RENATER and several universities
in France. The experiments demonstrate that there is a similarity between the simulations
of BIGhybrid and those of the MapReduce real experiments, which can serve to validate
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the simulator. BIGhybrid enables the study of variations and patterns for the deployment
of the dispatcher and aggregation modules on the SMART platform.

4.1.1 Model of the BIGhybrid Simulator

The idea behind the BIGhybrid simulator is to optimize hybrid infrastructure environ-
ments such as Cloud services with the available resources of a DG system. BIGhybrid is
modular and built on top of the SimGrid framework (CASANOVA et al., 2014). SimGrid
is a simulation-based framework for evaluating clusters, Clouds, grid and P2P (peer-to-
peer) algorithms and heuristics. SimGrid is responsible for the simulation of all the net-
work communication and task processing in our implementation. Unlike other simulators,
BIGhybrid has two independent systems. This enables it to use different configurations
for DFS, schedulers, input/output data size, number of workers, homogeneous and hetero-
geneous environments, as well as combining two different platforms, and making use of
parallel simulation into two environments. In view of this, it is possible to set up several
types of network and architecture platforms with simple modifications in the BIGhybrid
simulator, which can lead to a more generic hybrid infrastructure.

The BIGhydrid simulator generates traces from each system to allow an individual or
collective analysis to be conducted within the same time frame. The simulator enables
several strategies to be investigated to determine the best data distribution and resource
allocation of MR applications in hybrid infrastructures, and thus address the bottleneck
issues. The BIGhybrid simulator will allow finding the best strategies for using hybrid
infrastructure.

BIGhybrid is built on two components described in previous work: MRSG which sim-
ulates Cloud-BlobSeer with Hadoop; and MRA++ which simulates BitDew-MR. Figure
4.1 illustrates the architecture of BIGhybrid, which comprises four main components: in-
put data management (Global Dispather), the Cloud-BlobSeer module, the BitDew-MR
module and an integration module for results (Global Aggregator). SimGrid simulates
the platform, network and CPU computation on nodes. The communication between
BIGhybrid and SimGrid is achieved through the use of MSG, one of the many application
programming interfaces provided by SimGrid.

MapReduce has three main phases: 1) The Map phase reads the data from the distrib-
uted file system and calls on the user map function to emit (key, value) pairs as interme-
diate results; 2) In the Shuffle phase, the map nodes sort their output keys into partitions,
that are then “pulled” by the Reduce nodes. This means that each reduce task will pro-
cess the keys that belong to a specific partition. When all the data transfers have been
completed, the Reduce nodes carry out the task of merging the data pulled from the map
nodes; 3) Finally, the Reduce phase calls the user’s reduce function and writes the output
back into the DFS. These phases are simulated in the Cloud-BlobSeer and BitDew-MR
simulations. More specific details about the MRSG simulator and MRA++ can be found
in (KOLBERG et al., 2013) and (ANJOS et al., 2015).

A user can specify an input function for each system, as well as for individual Map and
Reduce functions. With BIGhybrid it is possible to build platforms for real infrastructures
through the platform description of configurations and real environments that use the FTA.
This means that the BIGhybrid simulator can provide up to 256 settings of configurations
in the same simulator, i.e., 2n setups with 8 different modules. In addition, it is possible
to make adjustments to several kinds of strategies and configurations between the two
environments, to find the best load balance without data loss.
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Figure 4.1: Architecture of the simulation

4.1.2 Cloud-BlobSeer Simulation Module

The Cloud-BlobSeer module reproduces the behavior of the MR framework and in-
vokes SimGrid operations whenever a network transfer or processing task must- be per-
formed. This simulation follows the Hadoop implementation, with a heartbeat mechanism
to control the task execution. The architecture of Cloud-BlobSeer comprises the follow-
ing modules: API of input users code, DFS, MapReduce functions, master (Jobtracker)
and slaves (Tasktracker).

The DFS is implemented as a matrix that maps chunks to nodes. The master node
knows where each chunk is “placed”, as it occurs in the real implementation. Moreover,
each chunk can be linked to more than one node, which allows a simulation of chunk
replicas. The Cloud-BlobSeer simulation implements the node distribution in a single
rack. The next version of BIGhybrid will use the storage simulation API of SimGrid,
on Disk Emulation Module, to simulate the storage behavior. As at the time writing,
disk simulation is specified as an I/O cost in the configuration file in the User API. The
behavior of virtual machine is simulated as an additional task cost and implements disk
contention. Disk contention represents an additional computational cost where a user is
sharing the same hardware resources with another virtual machine.

4.1.3 BitDew-MapReduce Simulation Module

The implementation of MapReduce in BitDew is mainly targeted to the DG systems
(LU et al., 2012) and employs mechanisms to alleviate the impact of host churn. The
implementation relies on master and worker daemon programs. A MR API on top of
BitDew-MR handles the Map and Reduce functions through BitDew-MR services. The
data locality of Hadoop MR was implemented as a data attribute to support the separa-
tion of the input data distribution from the execution process. With the Hadoop imple-
mentation, when the network experiences unavailability, a heartbeat interval signals to
the master that the host is dead, whereas in BitDew the network might be temporarily
offline without undergoing any failure. The fault-tolerance mechanism (FTM) needs a
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synchronization schema, as pointed out by (TANG; FEDAK, 2012), where transient and
permanent failures can be handled. A barrier-free computation is implemented in the
BitDew-MR simulation (as can be seen in Section 4.3).

BIGhybrid implements speculative tasks to create compatibility with the implemen-
tation of the MapReduce framework. The speculative task is launched at the execution
end for both Map and Reduce phases to accelerate the executions of stragglers. The task
scheduling is implemented through a task scheduling module in each simulator, which
follows the locality principle described earlier. Hence, when the master node receives a
heartbeat from a worker, and has checked the available slots for map processing, it will
attempt to schedule a task in accordance with the following criteria:

1. An unassigned task that processes a chunk stored locally in the worker;

2. An unassigned task that is stored in another worker;

3. A speculative task that processes a local chunk;

4. A speculative task with non-local input.

A Reduce task does not have a locality and its input is spread among the workers that
processed the Map tasks. For this reason, when assigning Reduce tasks, the scheduler dis-
tinguishes between unassigned and speculative tasks. In both the Map and Reduce phases,
a speculative task is scheduled when all the regular tasks have already been processed or
assigned to other workers.

4.2 Features of the BIGhybrid Simulator

The BIGhybrid simulator was developed to achieve an accurate simulation and main-
tain features compatible with Cloud-BlobSeer and BitDew-MR for a real hybrid envi-
ronment. The Cloud-BlobSeer simulates Cloud environment, and BitDew-MR simulates
Desktop Grid environment in the hybrid environment. The main features of the simula-
tor are summarized in Table 4.1. In especial, the computational semantics follows the
Hadoop-MapReduce compatibility in Cloud, and the semantic of the Barrier-free compu-
tation contends the Desktop Grid.

In BIGhybrid, the Global Dispatcher can be either manual or automatic. In the manual
version, the user defines a function for data distribution and a job configuration. These
configurations can explore the number of Map and Reduce tasks, input data, data size,
chunk size and so on. In automatic release, an Orchestrator deals with user queries and
distributes tasks to the systems. A Global Storage is used to maintain user-related data,
so that the Orchestrator can initialize a new task, if necessary.

The results of the Global Aggregator module are implemented as a single Reduce
task after the last current Reduce task has been completed. The processing results are
tracked and saved in a file for future analysis. A toolkit for the system execution analysis
was implemented to assist in creating both homogeneous and heterogeneous platforms,
and make execution traces based on visualization traces supported by SimGrid. This
toolkit enables users to analyze the whole execution system and change the strategies
when needed. The traces can be individual, as well as for all the simulations in the system.
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Table 4.1: BIGhybrid simulator features
Characteristics Cloud simulation Desktop Grid simulation
Behavior Simulated or through trace re-

producing
Simulated or through trace re-
producing

Hardware platforms Based on SimGrid Based on SimGrid

Chunk-size Defined by user Defined by user

Computational Semantics Hadoop-MapReduce Com-
patible

Barrier-free computation

Data distribution Data locality Data locality according to the
computational capacity of the
machines

Environment Homogeneous or Heteroge-
neous

Homogeneous, Heteroge-
neous and Volatile

DFS Simulated by Matrix Simulated by Matrix

Fault-Tolerance Mechanism Data and Task Replication Data, Task Replication and
Host Failure Recovery

Traces and Logs Generation Yes Yes

Storage Simulated by cost or disk em-
ulation

Simulated by cost or disk em-
ulation

Straggler management Average execution task Machine computational ca-
pacity

Synchronization schema Heartbeat by time stamp Heartbeat by time stamp and
Failure of Time-out Period

Virtualization Support Disk contention No

Network Flat-Three, Ethernet, Token-
Ring, P2P, Hierarchical and
Non-Hierarchical

Flat-Three, Ethernet, Token-
Ring, P2P, Hierarchical and
Non-Hierarchical

4.2.1 Details of the Volatility Module and Communication Mechanism

The volatility control module implements the FTM, which is an environment de-
signed to recover data and the task node failures. Figure 4.2, adapted from (TANG;
FEDAK, 2012), shows the BitDew-MR synchronization schema that was implemented
in the BIGhybrid simulator for failure detection. The node updates an alivetime variable
at each synchronization interval. The synchronization interval is a period when the node
synchronizes its state with the master. If the node goes offline, the status of the alive-
time variable will be changed to unconnected and a failure will be detected. A period of
failure-timeout is the time that the master waits to change the node status from online to
offline.

This is necessary because in the DG environment, several hosts are behind firewalls
and slow links that can cause a lack of momentaneous connection without the node having
a shutdown. This is defined by the user in the configuration file of the simulator as a
waiting time that begins with the last valid heartbeat. As each node is able to begin its
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own processing in an undefined time, each node has its own period of failure-timeout.
The master waits for a transient period during which it does not take any recovery action
and does not send any new data or tasks to this node. When the transient period achieves
a period of failure-timeout, the alivetime status becomes offline. At this moment, the
system emits a backup task from the replicas in the FTM and removes the node from the
database to avoid management overhead.

Figure 4.2: BitDew-MR synchronization schema

The communication occurs through a message exchange mechanism of SimGrid Mail-
box API. Short messages (SMS) are sent by the BIGhybrid simulator to task control and
data transfers in a full-duplex communication channel. Each node initializes the worker,
heartbeat and mailbox processes.

Figure 4.3 shows the main communication schema between the master and workers.
When a worker starts, it sends a message to become registered on master and receives
an identification called “wid”. This SMS registration supplies information about the pro-
cessor types/characteristics and local disk size of the worker. After this, the master de-
termines the computational capacity of the nodes and how much data will be sent by the
Data Transfer service, after the data has been distributed to each of them. The main com-
munication mechanism is the heartbeat, which has a global time defined by the number
of nodes.

After the node has received both the data and tasks, it begins the processing and the
heartbeat goes to sleep until the next synchronization interval. When the heartbeat is
turned on, the node sends a SMS_STATUS to the master which gives information about
the progress of the task or conclusion of the execution. If the master does not receive a
heartbeat, it calculates the period value of failure-timeout and wait, and during this period
it does not send anything to the worker. If the worker sends a heartbeat before the waiting
time has been completed, the period value of failure-timeout is reinitialized. On the other
hand, if the master detects a failure, it triggers a FTM.

The FTM discovers which tasks have been completed by the worker shutdown, and
finds a data replication to relaunch the task for another free node. The replication mech-
anism updates the data replication factor. The status of the worker is upgraded in the
database and its “wid” is removed from the database. FTM is an important mechanism
that is implemented in BIGhybrid and simulates real-world desktop grid environments.
This behavior is demonstrated in Section 4.3.

The BIGhybrid simulator also implements a “slow beginner”. This means that if a
node begins late, any task failure and data from the node failure, will be launched for this
node to be executed. This behavior is checked in BitDew-MR if the failure occurs when
the data is still being distributed. Otherwise, if the job executions have already begun, the
node does not receive any data or task.
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Figure 4.3: Communication schema

4.2.2 Related Work vs. BIGhybrid Features

Related work discussed in previous Sections and summarized in Table 4.2 shows that
there is a long way to go to find solutions for Cloud and multiple Cloud environments.
This illustrates the need to develop new tools to investigate such hybrid infrastructures.
The BIGhybrid simulator makes it possible to study complex environments like hybrid
environments and obtain more fine-grained runtime. The hardware infrastructure is mod-
eled like real-world machines and the node behavior can be determined from real-world
traces. These traces have origin from the resource availability in volatile environments
and are obtained from the FTA website. The BIGhybrid simulator approach allows us to
analyze generic data-intensive applications with MapReduce through traces of real exe-
cutions (as in (CHEN et al., 2011), as demonstrated in Section 4.3).

Table 4.2: BIGhybrid vs. related work simulators
Simulated Features

Simulators Grid Cloud Federated
Cloud

Hybrid Big Data
Support

Failure
Support

Trace
Support

SLA
Support

GroudSim Yes Yes No No No Yes Yes No
CloudSim No Yes Yes No No No No No
InterCloud No Yes Yes No No No No No
Federated CloudSim No Yes Yes No No No No Yes
AweSim No Yes Yes No Yes No No No
Dynamic CloudSim No Yes Yes No No Yes No No
BIGhybrid No Yes No Yes Yes Yes Yes No
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4.3 Evaluation of the BIGhybrid Simulator

This section describes the environment setup and results of the evaluation so that
the features and scalability of the simulator can be demonstrated. The experiments are
separated into the execution time profile and behavior execution. The execution time
profile shows how similar the simulation execution is to the real execution times and the
behavior execution shows which features are reproduced in the simulator.The executions
are repeated 30 times for each experiment in real-world experiments and a calculation is
made of the means, standard deviation and coefficient of variation. Since the BIGhybrid is
a deterministic simulator, its measurements are compared through a statistical evaluation
based on the results of real-world experiments.

4.3.1 The Environmental Setup

Four environments have been considered. The first experiment has three different
clusters in a simulated environment. One cluster simulates a homogeneous environment
and has a 5-node cluster of 1 CPU with 2 cores each, 5.54 GFlops of processing capacity
and 1 Gbps network. Two other clusters simulate the heterogeneous environment where
one contains 5 heterogeneous machines with 1 CPU of 2 cores each and a network of 10
Mbps, and another contains 15 heterogeneous machines with 1 CPU of 2 cores each and
a network of 10 Mbps, with 20% of volatile nodes. The machines in a heterogeneous
environment have a processing capacity ranging from 4.76 GFlops to 6.89 GFlops, where
this processing capacity is determined by a log-normal distribution according to (JAVADI
et al., 2011). The second experiment is formed of clusters from the Grid5000 environ-
ment. This grid is an experimental testbed, carried out under the INRIA ALADDIN de-
velopment plan with support from CNRS, RENATER and several universities in France.
The experiments were divided into two environments: First, there was a homogeneous
environment formed of clusters (as described in Table 4.3) with a 1 Gbps network. Sec-
ond, there was a heterogeneous environment formed of machines (as described in Table
4.4).

Table 4.3: Grid5000 environment for homogeneous experiments
Site # Host Properties (# Processor,# Cores, RAM, HDD) Performance

(GFlops)
Sophia 16 2 x Intel Xeon E5520 @ 2.27 GHz, 4, 32GB, 557GB 55.46
Reims 32 2 x AMD Opteron 6164 HE @ 1.7 GHz, 12, 47GB, 232GB 121.30
Grenoble 64 2 x CPUs Intel Xeon E5520 @ 2.27 GHz, 4, 23GB, 119GB 55.45
Nancy 128 1 x Intel Xeon X3440 @ 2.53 GHz, 4, 16GB, 298GB 31.01

Table 4.4: Grid5000 environment for heterogeneous experiments
Site # Host Properties (# Processor,# Cores, RAM, HDD) Performance

(GFlops)
Sophia 30 2 x AMD Opteron 2218 @ 2.6 GHz, 2, 4 GB , 232 GB 16.80
Sophia 22 2 x Intel Xeon E5520 @ 2.27 GHz,4, 32 GB, 557 GB 55.46
Total 52 50 workers and 2 BitDew-MR servers

The third experiment involves a cluster of 2,000 nodes and each node has 1 processor
Intel Xeon X3440 @ 2.53 GHz, 4, 16 GB and a network of 1 Gbps. This configuration
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represents a characterization of MR applications devised by Chen (CHEN et al., 2011)
which was drawn on to define the large-scale setup. Chen examined the MR traces of two
production environments from Yahoo and Facebook. The Yahoo traces were obtained
from a 2,000 node cluster and contained 30,000 jobs spanning a period of over 3 weeks.
The cluster was used to run applications that require batch, interactive and semi-streaming
computations. For the purposes of this work, only “aggregate, fast job” applications
characterized by Chen are considered. Table 4.5 shows the details of these applications,
including the number of Jobs, input average data size for each Job, Map time and Reduce
time. This Job has 568 GB of input and 9,088 tasks with an execution time of 322.64
seconds from Map and 703.32 seconds from Reduce.

Table 4.5: Yahoo traces ( 2,000 machines cluster )
# Jobs Input Shuffle Output Map

Time
Reduce
Time

Label

838 568GB 76GB 3.9GB 270,376 589,385 Aggregate, fast job
91 206GB 1.5TB 133MB 983,998 1,425,941 Expand and aggregate jobs

1,330 36GB 15GB 4GB 15,021 13,614 Data transformation

The operational system is Debian Wheezy-x64 with Hadoop 1.2 for homogeneous
environments and Debian Wheezy-x64 with BitDew-MR 0.2.2 and Java SUN 1.6 for
heterogeneous environments. The simulator is BIGhybrid version 1.0 - Build 3.11 with
SimGrid 3.11.1 and is available in https://github.com/Julio-Anjos/Bighybrid.

4.3.2 Study of a Simulated MapReduce Execution

In this experiment, an attempt is made to evaluate if the BIGhybrid simulator is able to
simulate the main features of two existing MapReduce runtime execution environments,
namely, Cloud-BlobSeer and BitDew-MR. The experiment consists of the simulation of
a MR execution using Cloud-BlobSeer and BitDew-MR in two different infrastructures,
in homogeneous and heterogeneous clusters respectively. In this experiment, we seek
to obtain the execution profile of the MR execution, i.e. the number of concurrent task
executions during the Map and Reduce phases, and the number of data transfers during
the Shuffle phase. The homogeneous environment was used to process 2GB of data, 5
mappers, 5 reducers and chunk size of 64 MB, while the heterogeneous environment was
used to process 1.1 GB of data, 5 mappers, 5 reducers and chunk size of 16 MB.

Figure 4.4 and Figure 4.5 show the MR execution profile simulated by the BIGhybrid
simulator. In Figure 4.4, the red, white and blue colors represent the Map, Shuffle and
Reduce phases respectively. The execution time in the x-axis is measured in seconds, and
the number of concurrent tasks for Map, Reduce and Shuffle in the y-axis are measured
in units. Figure 4.4.a shows an execution of the Cloud-BlobSeer @ homogeneous envi-
ronment. The Map tasks produce intermediary keys that are sent to the reducers during
the Shuffle phase, and the Reduce tasks begin once the Map tasks have been completed.
The Map tasks are restricted to 10 concurrent tasks (two tasks per node). The Shuffle
begins after 5% of the Map tasks have been completed. The number of Reduce tasks is
restricted to concurrent Reduce tasks, in this case 5 tasks. The Reduce phase begins after
all the Map tasks have been completed. This shows the correct execution of the barrier
implementation. This is a synchronization barrier between the Map and Reduce phase,
in exactly the same way as was described in the execution of MR framework in Chapter
2. The BitDew-MR execution @ heterogeneous environment is shown in Figure 4.4.b.
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The Reduce phase shows that the tasks start as soon as the machines have some data to
process. This provides evidence that the barrier-free behavior that was implemented in
the BitDew-MR can be reproduced. It should be noted that, as the link is 10 Mbps, the
data transfers take longer to complete during the Shuffle phase.

(a) Cloud-BlobSeer @ homogeneous environ-
ment

(b) BitDew-MR @ heterogeneous environment

Figure 4.4: MapReduce execution profile simulated by BIGhybrid simulator

Figure 4.5 shows the MapReduce execution time in a hybrid environment simulated
by a BIGhybrid simulator. The red, green and blue colors represent the Map, Shuffle and
Reduce phases respectively. The execution time in the x-axis is measured in seconds, and
the number of concurrent tasks for Map, Reduce and Shuffle in y-axis are measured in
units. This shows a parallel execution of the MR execution in a Hybrid environment from
the previous experiment. Map tasks have a restricted number of concurrent tasks for each
system. The chart shows that Reduce tasks begin the data prefetching earlier in the hybrid
infrastructure.

Figure 4.5: MapReduce execution profile in a hybrid environment simulated by a BIGhy-
brid simulator
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4.3.3 Volatile Behavior and Failure Tolerance Mechanism

In this experiment, an attempt is made to evaluate if the BIGhybrid simulator is able
to simulate accurately the Failure Tolerance Mechanism described in the BitDew-MR
environment, in Section 4.2.1. The experiment consists of the simulation of the MR
execution in a BitDew-MR @ heterogeneous and volatile environment. Fifteen machines
were used to process 8GB of data, 120 maps, 30 reduces, with a chunk size of 64 MB,
and 20% of these machines are volatile nodes. Figure 4.6 shows the time period when the
node is on-line or off-line. This is a real volatile behavior of Boinc traces, with volatile
behavior displayed by three hosts (A, B and C), represented in the y-axis. The x-axis
shows the time period in seconds when a host is on-line, in the gray box, and when it is
off-line without a box.

The experiment consists of Host A and B (MRA_Host 1 and MRA_Host 2 respec-
tively). Host A and B begin the execution and then stop during a time period, and Host
C (MRA_Host 3) begins a late execution. BIGhybrid obtains these traces from a trace
file and reproduces the volatile behavior, by comparing the average execution time with
the trace profile. The users can define three variables related to a volatile environment in
the configured files. One is mra_dfs_replication which defines the replication factor for
the data; the other is perc_num_volatile_node which is related to the number of volatile
nodes (as a percentage) and determines how many nodes that have a volatile behavior
will be read from the traces file; and finally there is failure-timeout which determines the
period of failure-timeout for the FTM as shown in Section 4.2.1. This time-out is defined
in terms of n heartbeat periods.

Figure 4.6: Time periods where a node is on-line in a volatile environment

Figure 4.7 shows the logs of the BIGhybrid simulator where this behavior is repro-
duced in the execution time. The MRA_Host 1 stops during a synchronization interval
and the last valid heartbeat is considered to be the beginning of the period of failure-
timeout, which in this case is 15 seconds and then the FTM system begins the failure
recovery process. MRA_Host 2 stops before the synchronization interval when the next
heartbeat detects the failure and, after the period of failure-timeout, the system begins the
FTM recovery for Map and Reduce tasks. The BIGhybrid simulator also detects late nodes
(those that begin the execution time after the other nodes); for instance, in MRA_Host 3,
this host is available for execution. After that, it is necessary to move the data from the
replica as a map_task 107 and 115 or to do a prefetching as in the case of reduce_task 0.

On the basis of these experiments, we concluded that the BIGhybrid simulator is able
to simulate a MR execution accurately; in particular, it was confirmed that two distinct
barrier and barrier-free features are correctly executed. As well as this, there was a
failure recovery of the FTM in volatile environments.
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Figure 4.7: Logs of BIGhybrid simulator in execution time

4.3.4 Study of the Behavior Profile in the Grid5000 Environment

In this experiment, our aim is to evaluate if the BIGhybrid simulator is able to simu-
late the MapReduce execution from Cloud-BlobSeer accurately in real environments with
different workloads. The experiment consists of the execution in a homogeneous envi-
ronment on Grid5000. In the case of Cloud-BlobSeer execution @ homogeneous envi-
ronments, the experiment has 16, 32, 64 and 128 nodes, and the configuration of clusters
is described in Table 4.3. In conducting this experiment, we seek to obtain the execution
profile of the MR execution that is related to different workloads during the Job, i.e. the
amount of time required for the execution of both the Map and Reduce phases.

The workload includes 9 GB - 141 chunks, 18 GB - 302 chunks, 36 GB - 571 chunks
and 72 GB - 1143 chunks. Each Map processes 64 MB of data and produces an output
of 42.85% of input data. The number of mappers and reducers is equal to the number
of cluster nodes. The application is a function that calculates the average time when the
nodes are free to execute a task. These times are available in a log file. The Map function
reads the id, from each line of the input data. This id represents a node identification,
which is related to the execution time. If the time is longer than 300 seconds, an interme-
diate key will be emitted with id/time. In the Reduce function, the average for each id is
calculated and a new key id/average is emitted. Each experiment was executed 30 times
and the result gave an average time. In the case of the BIGhybrid simulator, it is neces-
sary to carry out a calibration procedure. This calibration is necessary to determine the
simulation parameters, such as, task costs and network configuration, to create a platform
with the same machine configuration as Grid5000, define the job configuration and so on.
After this calibration, the number of machines needed to run the experiments is changed.

Figure 4.8 shows the Cloud-BlobSeer execution time in accordance with the number
of nodes in the homogeneous environment. Figure 4.8.a shows the execution in Grid5000
and Figure 4.8.b shows the execution in a BIGhybrid simulator. The green, red, blue and
black colors represent the workloads of 9GB, 18GB, 36GB and 72GB respectively. The
execution time in the y-axis is measured in seconds, and the number of nodes in the x-axis
is measured in units.

The BIGhybrid simulation has a similar execution time profile and a tendency to dis-
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(a) G5000 environment (b) BIGhybrid simulator

Figure 4.8: Cloud-BlobSeer execution time based on the number of nodes in the homo-
geneous environment

play the same behavior in the inclination curve for the Job. The execution on Grid5000,
in Figure 4.8.a, has a standard deviation of 8.8% with a workload of 72 GB (more details
are given in the statistical evaluation section - Section 4.4 -) that produces the highest data
dispersion. The BIGhybrid simulation, in Figure 4.8.b, shows a simulation variation of
≊ 4% for 72 and ≊ 5% for 64 nodes, when compared with the Grid5000 execution, as a
result of this data dispersion. This variation is a measure of absolute error in percentage
terms (MAPE) and is calculated as MAPE = 1

n∑ ∣µ−X
µ

∣∗100, where X is the measure of
simulation, µ is average of the measures and n is the sample size. This variation occurs
because the simulation is an approximation of a real-world execution. This is acceptable
when it is compared with the execution time in the Grid5000 environment (Figure 4.8.a).
A statistical analysis is conducted in the next section that is based on these experiments.

In the next experiments, our aim is to evaluate if the BIGhybrid simulator is able to
simulate the different phases of MapReduce execution accurately by means of Cloud-
BlobSeer and BitDew-MR, in real environments with different workloads. The experi-
ment involves executing two different applications in different infrastructures in homoge-
neous and heterogeneous environments in Grid5000. When conducting this experiment, it
was necessary to evaluate if the execution time for Map and Reduce phases, (and the total
execution time for the Job) requires the same amount of time as the Grid5000 and BIGhy-
brid simulator and take account of homogeneous and heterogeneous environments. The
Cloud-BlobSeer execution @ homogeneous environments uses 32 nodes and the cluster
configuration is described in Table 4.3. In the BitDew-MR execution @ heterogeneous
environments 50 nodes as used for the workers and 2 nodes for the BitDew-MR services;
this cluster is described in Table 4.4. The workload is 9 GB - 141 chunks, 18 GB - 302
chunks, 36 GB - 571 chunks and 72 GB - 1143 chunks, and the chunk size is of 64 MB for
Cloud-BlobSeer. In BitDew-MR the workload is 3 GB - 192 chunks, 13 GB - 768 chunks,
26 GB -1536 chunks, and the chunk size is of 16 MB. The application for Cloud-BlobSeer
was described in the previous experiment. The application in BitDew-MR execution is
wordcount. Wordcount is a popular micro-benchmark that is widely used in the commu-
nity, contained in the Hadoop distribution (HUANG et al., 2010). Each experiment was
executed 30 times and the result is an average time.

Figure 4.9 and Figure 4.10 show the Cloud-BlobSeer and BitDew-MR execution times
respectively. The green, red and blue colors represent the Map and Reduce phases and Job
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respectively. The execution time in the y-axis is measured in seconds and the workload
in the x-axis is measured in gigabytes (GB). Figure 4.9 shows the average execution time
for Map, Reduce and Job executions for Cloud-BlobSeer @ homogeneous environments.

(a) G5000 environments - 32 nodes (b) BIGhybrid simulator - 32 nodes

Figure 4.9: Cloud-BlobSeer execution time @ homogeneous environments

Figure 4.9.b shows the simulation carried out by the Cloud-BlobSeer in BIGhybrid
simulator. The behavior simulated is similar, but has a slight distortion in the Reduce
phase execution that generates a MAPE of 0.58% in the worst case scenario. The distor-
tion has little effect because the Map execution time is more significant than the Reduce
execution time. The Job has ≊ 54 s @ 9 GB and ≊ 267 @ 72 GB, with a MAPE of 0.44%
and 0.24% respectively. The Map phase has a greater weight in terms of number of tasks
in the Job time, than the Reduce phase and, as a result, the distortion of Reduce time ex-
ecution is reduced for the total time required for Job. The execution time is a reasonable
approximation, if we consider the Job total time.

Figure 4.10 shows the execution time for the Map, Reduce and Job executions for
BitDew-MR @ heterogeneous environment. Figure 4.10.a shows the average execution
in Grid5000. The BitDew-MR execution processes the Combine function, that involves
processing similar keys in the Map phase before the data is sent to the next phase. It is
not possible to determine if a data partition will have more or fewer keys to join in the
Combine function. The simulator has the highest execution time for the Map function to
simulate this additional work, but it is not an approximation that is easy to define. The
execution profile shows that the Map spends more execution time on this application and
Figure 4.10.b shows that BitDew-MR simulation follows the same procedure and has a
relative degree of precision in the BIGhybrid simulator. Job has ≊ 353 s @ 3 GB and ≊
1754 @ 26 GB, with MAPE of 0.58% and 3.59% respectively; more details about Reduce
are shown in Table 4.8, in Section 4.4. The Map phase has a greater weight in terms of
task number and execution time (in the Job time), than the Reduce phase and because of
this the Job total time is close to the Map time.

As a result of these experiments, we estimated that the BIGhybrid simulator is able to
simulate the different phases of MapReduce execution from Cloud-BlobSeer and BitDew-
MR. In Section 4.4, the experiments of Figure 4.8 and Figure 4.10, Cloud-BlobSeer and
BitDew-MR executions, respectively, are analyzed from a statistical perspective.
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(a) G5000 environments - 50 hosts (b) BIGhybrid Simulator - 50 hosts

Figure 4.10: BitDew-MR execution time @ heterogeneous environments

4.4 Statistical Evaluation of the BIGhybrid Simulator

In this experiment, our aim is to evaluate the accuracy of the BIGhybrid simulator
for the Cloud-BlobSeer execution. Table 4.6 shows the Cloud-BlobSeer execution time
in accordance with the number of nodes in the homogeneous environment (as shown in
Figure 4.8), which is described in the previous section. The measurements in the table
are based on the Grid5000 and BIGhybrid experiments. These measurements are grouped
in accordance with the node numbers, execution type and the workloads of 9GB, 18GB,
36GB and 72GB. First, in the Grid5000 execution, the average (µ) is the mean of the mea-

sured results in Grid5000. The standard deviation (σ ) of these measures is σ =
√
∑(x−µ)2

n ,
where x is the measure and n is the sample size. The coefficient of variation (CV) is the ra-
tio of standard deviation to the average (in percentage terms). This value is a standardized
measurement for analyzing the average dispersion of all measures together. The value is
calculated as CV = σ

µ
∗100. The Tval is a confidence interval for the standard deviation

measures, in this case equal to 95%. Second, in the BIGhybrid execution, the measure for
the simulation is printed in DUT (Device under test). The mean absolute percentage error
(MAPE) is calculated as MAPE = 1

n∑ ∣µ−X
µ

∣∗100, where X is the measure of simulation
and MAPE is an accurate measurement that indicates how near a sample is to the average;
if the value is low, it indicates a good degree of accuracy (MAKRIDAKIS, 1978).

The BIGhybrid execution measurements (DUT) for the Blobseer-Hadoop simulation
shows a MAPE measure of 4.92% in the worst case scenario, which is very acceptable. A
slight distortion (with 64 and 128 nodes and 72GB workload) is shown by a higher MAPE
variation. One reason for this is network contention that is caused by the network being
shared with other users, but this is a common resource share, as in the Internet. Otherwise,
the simulator does not capture this variation. Better MAPE results are obtained in BIGhy-
brid experiments when the real-world experiments have a low standard deviation. This
is because when there are only a few machines, there are more tasks to execute locally
and the execution has less data movement. The BIGhybrid is a deterministic simulator
and simulates a data locality feature that is reflected in lower variations for MAPE. Most
executions of the BIGhybrid simulator are carried out within the standard deviation con-
fidence interval of 95%. Hence, the results of the BIGhybrid simulator have a good rate
of accuracy for executions of Blobseer-Hadoop in homogeneous environments.

It is necessary to evaluate if the simulations have a similar distribution to that found in
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Table 4.6: Cloud-BlobSeer execution in a homogeneous environment
Grid5000 measures BIGhybrid

measures

# Nodes # Input µ σ CV(%) Tval DUT MAPE(%)

16

9GB 52.05 0.82557 1.59612 51.66 - 52.44 52.15 0.19

18GB 83.55 1.09904 1.31543 83.04 - 84.06 83.41 0.16

36GB 160.55 1.93241 1.20361 159.65 - 161.45 160.77 0.17

72GB 310.85 1.53125 0.49260 310.13 - 311.57 310.36 0.16

32

9GB 53.9 0.32544 0.61037 53.77 - 54.03 54.14 0.44

18GB 84.23 0.86389 1.02559 83.90 - 84.56 84.80 0.67

36GB 141.64 3.42900 2.42085 140.26 - 143.03 142.47 0.59

72GB 267.67 2.68093 1.00159 266.58 - 268.75 267.01 0.24

64

9GB 32.83 2.98771 9.10130 40.81 - 42.58 31.65 3.59

18GB 41.69 2.18752 5.24664 40.81 - 42.58 41.51 0.43

36GB 62.39 4.45377 7.13804 60.70 - 64.09 60.97 2.27

72GB 99.49 1.52223 1.53000 98.83 - 100.15 104.39 4.92

128

9GB 36.98 4.63255 12.53275 35.22 - 38.74 38.49 4.08

18GB 37.95 2.87843 7.58405 36.64 - 39.26 37.33 1.63

36GB 54. 5.80187 10.74092 51.51 - 56.52 54.78 1.41

72GB 85.39 8.87972 10.39907 81.55 - 89.23 81.79 4.22

a real-world execution. This relation between the Grid5000 and BIGhybrid experiments is
analyzed in accordance with the correlation coefficient (Corrx,y) (JAIN, 1991). The Corrx,y
is calculated by the Pearson Method, as in Equation 4.4.1, where “x” is the BIGhybrid
measure, “y” is the Grid5000 measure and “n” is the number of measures. The confidence
interval ( Tval) for this analysis is equal to 95%. This coefficient is calculated on the basis
of the Equation 4.4.1 and in Table 4.6, and the results are set out in Table 4.7. Figure 4.11
shows the dispersion chart based on the results from Table 4.7.

r = n∑xy−(∑x ⋅∑y)√
[n∑x2−(∑x)2][n∑y2−(∑y)2]

(4.4.1)

The measures of standard deviation and coefficient of variation, in Table 4.6, demon-
strate that there is a little dispersion around the average. This is proved by the fact that
there is a high correlation coefficient between the Grid5000 execution and the BIGhy-
brid simulation, in Table 4.7 (near to 99%). The analysis of dispersion (in the diagram)
for 16, 32, 64 and 128 nodes, in Figure 4.11, shows a positive correlation. The red line
represents the linear regression which is obtained from the calculation of the correlation.
On the basis of these observations, it can be concluded that the BIGhybrid simulations
achieve a good approximation to the MapReduce executions in hybrid environments for
the Blobseer-Hadoop execution. This means that the BIGhybrid simulation can be used
to simulate a hybrid environment and evaluate the likely behavior of the nodes in these
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environments.

Table 4.7: Grid5000 vs BIGhybrid - correlation coefficient for Blobseer-Hadoop
# Nodes Corrx,y Tval

16 0.9999981 0.9999064 - 1.0000000

32 0.9979155 0.9000929 - 0.9999586

64 0.9989227 0.9471165 - 0.9999786

128 0.9983309 0.9192125 - 0.9999669

Figure 4.11: Dispersion chart - Grid5000 vs. BIGhybrid - to Blobseer-Hadoop

In the next analysis, our aim is to measure the accuracy of the BIGhybrid simulator
for the BitDew-MR execution. The experiment was described in the previous section.
The data in Figure4.10 for the BitDew-MR @ heterogeneous environment are set out
in Table 4.8. The Table is formed with the aid of Grid5000 and BIGhybrid measures.
These measures are grouped in accordance with their “function type” and workload input.
The mean (µ) is the average of the measured results in the Grid5000 execution. The
standard deviation (σ ), coefficient of variation (CV), confidence interval Tval and the mean
are evaluated in accordance with the Map, Reduce and Job executions. The BIGhybrid
execution is the DUT measure and for each measure, it is linked to a mean absolute
percentage error (MAPE), that is calculated as described earlier.

The execution in a real-world environment has a high dispersion rate for the Reduce
function. It is related to the size of data transfers from intermediate data. This size
depends on the generated partitions in the Map phase that can change as a result of the
input data received. The bandwidth fluctuation is another factor to consider, because it
has a bearing on time data transfers. However, the execution time takes up more that 80%
of the Map function, and as a result, the dispersion effect is reduced. The DUT values
within the standard deviation confidence interval show that the BIGhybrid simulation has
a good degree of accuracy. The MAPE measure of 4.96% in the worst case scenario is
very acceptable too, and the measures for Map have a maximum of 3.81%.
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Table 4.8: BitDew-MR execution in the heterogeneous environment
Grid5000 measures BIGhybrid

measures

# Nodes # Input µ σ CV(%) Tval DUT MAPE(%)

3GB
MAP 316.12 1.59708 0.50521 314.98 - 317.26 316.00 0.04

REDUCE 39.48 3.02096 7.65188 37.32 - 41.64 37.52 4.96

JOB 355.60 3.42085 0.96199 353.15 - 358.05 353.52 0.58

13GB
MAP 937.65 7.77135 0.82881 932.09 - 943.21 940.23 0.28

REDUCE 41.39 2.80335 6.77301 39.38 - 43.39 42.30 2.20

JOB 979.04 7.82037 0.79878 973.45 - 984.63 982.53 0.05

26GB
MAP 1,646.06 5.19790 0.31578 1,642.34 - 1,649.78 1,708.80 3.81

REDUCE 47.35 4.80769 10.15352 43.91 - 50.79 45.44 4.03

JOB 1,693.41 7.60722 0.44922 1,687.97 - 1,698.85 1,754.24 3.59

The correlation coefficient between the Grid5000 and BIGhybrid executions for BitDew-
MR @ heterogeneous environment is 99.9% for the Job. The dispersion chart in Figure
4.12 shows that the dispersion has a positive correlation. The red line represents the linear
regression which is obtained from the calculation of the correlation. The chart demon-
strates that the values are near this line which suggests there is a good approximation to
the simulation.

(a) Map Function - 50 hosts (b) Job Function - 50 hosts

Figure 4.12: Dispersion chart - Grid5000 vs. BIGhybrid to BitDew-MR

The statistical evaluation for Cloud-BlobSeer and BitDew-MR simulations provides
a simulation with a relative degree of accuracy. The mean absolute percentage error (≊
5% in the worst case scenario for heterogeneous and homogeneous environments) shows
that the simulator can be an efficient evaluative instrument for hybrid infrastructures. The
high correlation coefficient between the Grid5000 execution and the BIGhybrid simula-
tion (around 99%) indicates that the real-world behavior is reproduced by the BIGhybrid
simulator. It can thus be concluded that the simulator has a reproducible capability and is
able to achieve a relative degree of accuracy in real-world experiments.



83

4.4.1 A Study of the Reproducibility of Real Experiments

In this experiment, our aim is to evaluate if the BIGhybrid simulator is able to repro-
duce the results obtained from the synthetic applications from real-world experiments.
The experiment consists of simulating Cloud-BlobSeer from data collected from homo-
geneous executions carried out in a Yahoo cluster. In conducting this experiment, it was
necessary to obtain the execution time for the Map and Reduce phases and to compare this
with the times from Table 4.5 that consider a homogeneous environment in Cloud applica-
tions. With regard to the Cloud-BlobSeer execution @ homogeneous environments, 2000
nodes were used (as described in Section 4.3.1). The “aggregated fast job” applications
characterized by Chen were taken into account. The workload has 568 GB of input and
9,088 tasks, and each Job has an execution time of 322.64 seconds from Map and 703.32
seconds from Reduce. The number of mappers is 2,000 and that of reducers is 1,000.

Figure 4.13 shows the Bighydrid simulation of the MapReduce execution from 2000
hosts @ Yahoo traces. The red, blue and green colors represent Map, Reduce and Shuffle
phases respectively. In the y-axis, the number of concurrent tasks is measured in units
and the time of the x-axis is measured in seconds. The number of Map and Reduce tasks
is restricted to two task per node, i.e., 4,000 tasks for the Map phase and 2,000 tasks for
the Reduce phase. The execution time is 305.13 s for the Map phase and 673.32 s for the
Reduce phase, and the simulation error is ≊ 5% with regard to one Job in Table 4.5. This
error is a calculation of ERROR= ∣ϑ−X

ϑ
∣∗100, where ϑ is the execution time of aggregated

fast job executions and X is the measured time of the simulator.

Figure 4.13: Simulation of MapReduce execution from 2000 hosts @ Yahoo traces

As a result of this experiment, we concluded that the BIGhybrid simulator is able
to reproduce experiments from synthetic applications of real-world experiments. This
shows the scalability of the simulator, its reproducible capabilities and its suitability for
investigative research into new strategies based on a hybrid infrastructure.

4.5 Final Considerations

The rapid increase in the amount of data currently being produced will stretch the
current infrastructure to its limits. Merging Cloud and DG into a hybrid infrastructure
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might be a feasible low-cost alternative to simply using Cloud environments as a result of
the cost-free DG resources available.

The characteristics of a hybrid infrastructure were introduced and the feasibility of
integrating Cloud and DG was demonstrated by carrying out simulations to define the
best strategies for the implementation. The experiments evaluated three different stud-
ies. In the study of the simulated MapReduce execution, the experiments showed that
the BIGhybrid simulator is able to simulate a MR execution accurately. It was found
that two distinct barrier and barrier-free features were correctly executed. As well as
this, the implementation of the failure recovery behavior of the fault tolerance mecha-
nism was carried out in volatile environments. In the study of the behavior profile in the
Grid5000 environment, it was shown that the BIGhybrid simulator is able to simulate the
different phases of the MapReduce execution from BlobSeer-Hadoop and BitDew-MR
when this is compared with real environments and different workloads. In the study of
the reproducibility of the real-world experiments, the BIGhybrid simulator is able to re-
produce experiments involving synthetic applications from real-world experiments. This
demonstrates the scalability of the simulator, its reproducible capability and its suitability
for investigative research into new strategies to evaluate the implementation of a hybrid
infrastructure with MapReduce applications.

The experiments and statistical evaluation proved that the simulator has a reproducible
capability based on real-world experiments and provides evidence that the validation goals
have been achieved. This means that, the BIGhybrid simulator makes it possible to eval-
uate MapReduce strategies that involve the adoption of hybrid infrastructures. It also
suggests that it is possible to overcome problems through the adoption of determined
strategies with a relative degree of accuracy. It is necessary to conduct further exper-
iments to define what strategies are required for the adoption of hybrid infrastructures
with the results obtained from real-world systems.
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5 EVALUATION AND RESULTS

The adaptation of an existing MR framework or the development of new software for
hybrid infrastructures raises some research questions: how to adopt efficient strategies for
data splitting and distribution, how to keep communication between the infrastructures
to a minimum, and how to deal with failures, sabotage, and data privacy. This Chapter
shows the strategies that will be adopted for the deploying of SMART platform and their
modules, in particular, the Global Dispatcher. Also, there will be an analysis of the use
and feasibility of homogeneous and volatile environments in the SMART platform in the
context of Big Data applications. The strategies, such as load balance control, resource
allocation, volatile node range, cost model and bandwidth between nodes can establish
some borders for use of hybrid environments.

5.1 Strategies for the Use and Evaluation of Hybrid Infrastructures

This Section sets out strategies for the use of the hybrid infrastructures that have a
conceptual basis and emerged from “Related Work” which can be adapted to the context
of a hybrid infrastructure. These strategies are evaluated in Section 5.3. The hybrid infras-
tructures have several features that are related to distinct resources. The user must launch
its applications in an infrastructure where herself must choose the best resources from
among two or more computational environments. In our case, for the hybrid infrastruc-
ture, the user must choose an amount of resources for Cloud and Volunteer Computing
(VC).

A CSP offers resources that represent VM instances (i) of a hardware HV M(i), where
i ∈V M. Each VM represents a set of heterogeneous resources that are related to a number
of CPU cores, memory, and storage. Each resource, called rc, represents a VM and the
total of the available resources represent a vector R̂c(nr) = {rc1,rc2, ...,rcn} where nr is
the number of available resources, i.e., nr = [1,2, ...,n] resources. The resource allocation
defines the computational capacity in Flops/s of the machines set. The resources are ho-
mogeneous in user point view because the CSP enables only access to the virtual instances
of machines. However, the hardware of the CSPs can be heterogeneous and the user, in
general, does not have knowledge. Therefore, an allocated resource may have low perfor-
mance compared with a single hardware component, when two or more users are running
their applications on virtual machines over the same leased hardware. In the SMART, the
user can allocate resources from different CSPs. As each resource can have an abstract
specification different, the user will be able to know which resource is faster, through sim-
ulation environment, before choosing the resource. The performance can have a different
time execution rate for each VM, called ρ , that is caused by the hardware contention. Its
value can be between an interval of (0,1). Thus, the resource allocation (AV m ⊆ R̂c) of a
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user (u) in Cloud is related to the Equation 5.1.1, where n ≤ nr.

AV m(u) =
n
∑
i=1

(1−ρi)rci (5.1.1)

In VC, a donor offers a hardware Hl(t) that will be dedicated to the processing of tasks
for an unspecified time period (t), where the number of offers to a volunteer resource pool
are defined by l = [1,2,3, ....,m] resources. Any free hardware is related to heterogeneous
resources that represent a number of CPU cores, memory, and storage available within a
time period. The pool is a set of stable and unstable nodes. The volunteer resources are
a vector R̂v(Hl(t)) = {h1t1,h2t2, ...,hmtk} where tk is the time availability in each machine
for the users utilize a free hardware resource in the resource pool. The user cannot define
an availability time for a resource because this issue is internally handled for the user
by a fault-tolerance mechanism of the platform in a transparent way. However, the user
can define a variable ξ which determines the number of unstable nodes in the pool. The
variable ξ can vary between an interval (0,1). The VC maintains connections through
the Internet. In addition, data transference will depend on the bandwidth βl between these
nodes and the total bandwidth βch available on the CSP channel. The allocation of VC
resources (AVC ⊆ R̂v) of a user (u) is represented by Equation 5.1.2.

AVC(u) =
m
∑
k=1

(1−ξ)hk (5.1.2)

The performance model has a component that represents the Cloud Allocation with
stable VMs and a VC allocation that depends on a rate corresponding to ξ that defines the
unstable nodes ratio and can be influenced by the available bandwidth ratio. This model
shows the effects of the job execution on the data-intensive applications. The best choice
of platform characteristics and data distribution in accordance with the environment are
crucial factors that are required to reduce these effects. Thus, the performance of an
allocation P(Au) of a user u is defined in accordance with Equation 5.1.3.

P(Au) =
n
∑
i=1

(1−ρi)rci

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Cloud allocation

+
m
∑
k=1

(1−ξ)hk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
VC allocation

(5.1.3)

The bandwidth affects the performance of data transference in each node over the
VC environments. Javadi (JAVADI; ZHANG; TAUFER, 2014) has validated a bandwidth
modeling for characterizing the correlation between upload and download in Big Data
applications based on the Internet through Equation 5.1.4. The model regards the jobs
as the incoming requests. Each host provides a service with a variable service time and
the model makes it possible to analyze the bandwidth requirements for the Big Data ap-
plications for a hybrid infrastructure. The values for indexes a and b of Equation 5.1.4
were defined by Javadi in Table 5.1 and refer to job runtime with a normal distribution of
µ = 1.2hs and σ = 0.9hs. These parameters are related to mean time of jobs. However,
this equation must take account of the bandwidth saturation.

f (t) = aebt (5.1.4)
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The Big Data algorithms, in SMART implementation, evaluate the bandwidth avail-
able for each host in the heterogeneous environments. Thus, when the scheduler instan-
tiates a task, it identifies if is better to move data from one host to another faster for
improving performance. Because of this, the cluster configurations can move more or
fewer data with the same hardware configuration.

Table 5.1: Parameters for the fitted exponential model
Model a b
Mean download 5.698 0.493e−3

Mean upload 0.1955 0.404e−3

A hybrid infrastructure scenario in this work consists of five key components: work-
ers, orchestrators, dispatcher, aggregators and CSPs. Figure 5.1 represents these com-
ponents and a data flow for this scenario. The workers are grouped according to their
computational capacity to integrate a DG that provides a pool of computational resources
for a user in a private mode. This private mode means that no other user can employ
the allocated resources until the user himself releases them to the resource pool. A CSP
offers their cloud resources to users that must be allocated in accordance with an SLA.
An orchestrator (built in the dispatcher module) receives data which is assigned as user
tasks and transformed into a “job”. Then, the dispatcher creates partitions of data and
tasks based on computational capacities and assigns them to DG and Cloud. In a hybrid
environment, each system processes its own data by grouping the intermediate data in a
last Reduce phase within the Cloud to produce a single result in the aggregation stage.
The Shuffle occurs in parallel with the Map phase. This begins when the Map tasks that
have been completed achieve at least 5% (a Hadoop standard), assuming that the Reduce
execution begins after all the Map tasks have been finished in the case of Cloud.

Figure 5.1: An example of the data flows in the hybrid environment

The time Tt (in Equation 5.1.5) of a MapReduce job in a hybrid environment (inspired
on the equations of (OHNAGA; AIDA; ABDUL-RAHMAN, 2015) and (KHAN et al.,
2016)) consists of maximum value between the execution time in Cloud (Tc) and DG (Td)
added to the time of the data integration (called Ti). The time Ti includes the transfers
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of intermediate data (Tε ) from the DG to Cloud through an Internet link, and the time of
the additional Reduce phase to produce a single Reduce. Our consideration is different
from other approaches because it includes the integration time to produce a single and
consistent result to Big Data processing.

Tt =max(Tc,Td)+Ti (5.1.5)

The user submits a job (J) that will execute a workload across a set of selected re-
sources (S) from the all available resources in Cloud and DG (R) (where S ⊆ R). When
occurs a job launch pending tasks the system scheduling allocates one free slot per time
in each machine under all resource pool, then after will allocate the other pending tasks
in one free slot in each machine and so on. This process originates execution waves (w j)
which are limited to the maximum number of allocated resources since the workload is
larger than the available computation. These waves are rounds of successive executions
G = {1,2,3,4,5, ...,n} that continue until all the n tasks have been completed. The ex-
ecution waves are defined as follows w j ⊆ G ⊆ J. The concurrent tasks define execution
spaces, called slots, in each machine and the number of free slots determines the amount
of parallel work. As discussed previously, the Shuffle phase occurs concurrently with
Map phase if there is more than one execution wave. Thus, the time spent to data transfer
(called TS) must be reduced of the max time of the last Map phase in the last wave. There-
fore, the sum of the max time for the Map and Reduce phase in each wave are added to
the TS time.

Equation 5.1.5 summarizes these times on the basis of Equation 5.1.6 to 5.1.10 , where
“τ” represents the number of the free slots for Map (M) or Reduce (R) in Cloud (c) or
DG (d). Each machine processes an input data size (WM in Bytes) in all the free slots in
the Map phase. This number of free slots is related to the core features of CPU for the
whole cluster. In addition, the Combiner function (like in Hadoop) does a preprocessing
of intermediate keys, in the memory of the worker, before sending the data to the next
stage. The Shuffle time (TS) is related to the network bandwidth (Bl) between workers
and the weight (Ki) of the Map output size. A computational capacity function (called
fCcap) for each machine (Wi) is based on features, such as CPU, core number, memory and
workload measured in Flops/Bytes. In our case, the function fCcap is an empirical value
measured as a computational cost for the Map and Reduce tasks in the simulator.

Tc =
AV m

∑
i=1

max
wi∈J

(WM(i)
τc

fCcap(i))
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
maxMap time

+TSc +
AV m

∑
i=1

max
wi∈J

(WR(i)
τc

fCcap(i))
−1
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max Reduce time

(5.1.6)

TSc = ∫
tlw

tlw−1

Ki

Blaebt dt −max
lw∈J

(WM(i)
τc

fCcap(i))
−1
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maxMap time in the last wave

(5.1.7)

Td =
AVC

∑
i=1

max
wi∈J

(WM(i)
τd

fCcap(i))
−1
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maxMap time

+TSd +
AVC

∑
i=1

max
wi∈J

(WR(i)
τd

fCcap(i))
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
max Reduce time

(5.1.8)
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TSd = ∫
tlw

tlw−1

Ki

Blaebt dt −max
lw∈J

(WM(i)
τd

fCcap(i))
−1
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maxMap time in the last wave

(5.1.9)

Ti =
T Rc

k
τRcηRc

R(k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Tε

+
l
∑
i=1

Ki

Blaebt (5.1.10)

The strategy of data distribution, in the Global Dispatcher module from SMART ar-
chitecture, seeks to maximize the use of the DG resources, at the same time that minimizes
the Cloud allocation resources without increasing the execution time in comparison with
a single Cloud implementation. The data-split will consider the execution waves in the
dispatcher to achieve this aim.

There are three types of storage technology (Ephemeral, Persistent and Cloud storage)
that are linked to the allocation cost of a VM in Cloud (TUDORAN et al., 2014). The
storage cost is only built into the VM in the Ephemeral storage, where the data only
persist during the lifetime of the instances. Persistent storage is a network-attached device
in block-level, where the data lifetime is independent of a VM instance and can be reused.
The Cloud storage is a BLOB with a higher price and offers a service level as redundancy
and privileged access time.

The Cloud resources model incurs a cost caused by the leasing of the number of
instances found in Equation 2.4.3 (PALANISAMY; SINGH; LIU, 2015). Thus, the cost
of submitting a job in Cloud (Ji,Ck,n) is defined as in Equation 5.1.11, where the index
k represents the instance type (a price characteristic) and i is the job identification. The
index β represents the total number of allocated resources. This cost depends on time
duration (tr) of (Ji,Ck,n) job related to the resources number (called n), and the price of
the lease of a VM instance (Rci) in a determined number of physical resources (Mci) like
CPU, memory and disk. On the other hand, the VC is free-cost. Thus, the strategy cost
minimizes the Cloud allocation without increase the time execution improves the relation
cost-benefit.

C(Ji,Ck,n) = tr ∗(Ji,Ck,n)∗
β

∑
m=1

n∗Rcm

Mcm

(5.1.11)

Without generalization loss, each machine represents a single VM deployed on each
experiment. The disk type consists of a temporary storage in each VM, and additional
costs like I/O contention on disks were not computed in these experiments. Thus, the cost
model of Equation 5.1.11 can be simplified as follows, in Equation 5.1.12.

C(Ji,Ck,n) = tr ∗(Ji,Ck,n)∗
β

∑
m=1

n∗Rcm (5.1.12)

The work of (KONDO et al., 2009) discovered that the ratio of volunteer nodes needed
to achieve the computing power of a small EC2 instance is about 2.83 active volunteer
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hosts to 1. Thus, if they wish to achieve the best resource allocation for Desktop Grid
volunteer and Cloud scenarios, the users must choose the resources on the basis of with
data size, task numbers, low cost, the lowest possible time execution, minimizing data
transference between sites, and minimizing the effects of parameters ρ and ξ . However,
it is a hard task for users to conform to the definitions of these configurations.

Therefore, the BIGhybrid simulator can become a powerful tool to establish strategies
for hybrid infrastructures. Table 5.2 summarizes the main strategies (on the basis of pre-
vious information) that allow the use of VC and Cloud in data-intensive applications in a
realistic setting minimizing data transference.

Table 5.2: Strategies and targets
Parameters Strategies Targets
Volunteer hosts Investigate a minimal

ξ possible
Finding a relation between execution time
and volatile nodes.

Cloud resources Investigate the re-
source distribution

Finding a relation between the number of
Cloud and VC resources.

I/O interference Define an optimal ρ Search for a relation between performance
and interference in hybrid infrastructures.

Channel communication Investigate data size Conducting an analysis of bandwidth be-
tween nodes vs. Equation 5.1.4 to define a
chunk size.

Data load balance Evaluate the P(Au) Finding a relation of data distribution re-
lated to the number of Cloud and VC re-
sources.

Cost model Evaluate the (Ji,Ck,n) Seeking a relationship between Cloud and
VC resource number, and cost model in
Equation 5.1.12.

These strategies make it possible to find thresholds that make SMART platform fea-
sible for using in hybrid infrastructures in a data-intensive scenario. These thresholds
are based on the evaluation of parameters, such as the number of volunteer hosts, load
balance control and cost model, in the context of Big Data synthetic applications. How-
ever, the evaluation of I/O interference was not possible to execute at this moment due
modifications on disk structure of the BIGhybrid simulator, which was not implemented
yet.

5.2 Methodology employed to Evaluation

This Section has the aims of defining the methodology used in the experiments and
justify the setup definitions. The strategies in Table 5.2 were evaluated through an anal-
ysis of the workloads produced in the work of (CHEN et al., 2011) and (CHEN, 2012)
which are summarized in Table 5.4. These workloads are real-world executions that have
their origin in Big Data applications of enterprises like Yahoo and Facebook. The YH and
FB clusters have 2,000 and 3,000 machines respectively. Although the job types at Face-
book can change significantly from one year to another, the purpose of this scenario is to
approach real-world environments. The simulation parameters are divided in two groups:
one to homogeneous environment and other to heterogeneous environment summarized
in Table 5.3.

The first calibration phase is conducted with the aim of defining some simulation pa-
rameters, such as the computational costs of Map and Reduce functions. The hardware
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Table 5.3: Simulation Parameters
Homogeneous Heterogeneous
# Hosts # Hosts
Bandwidth Bandwidth
Network Latency Network Latency
# Reduces # Reduces
Chunk size Chunk size
# Replicas # Replicas
# Map slots # Map slots
# Reduce slots # Reduce slots
% Intermediate data % Intermediate data
Map task_cost Map task_cost
Reduce task_cost Reduce task_cost

# volatile_node
failure_timeout_period

configuration is based on the epoch of Yanpei working. On the basis of these clusters char-
acteristics, the simulation was conducted in the homogeneous environment. The Shuffle
size indicates the network overhead of the data transference between the Map and Reduce
phases. After this, the parameters are extended to form the hybrid infrastructure under the
BIGhybrid simulator. A similar technique was adopted in the work of (ROCHA; SEN-
GER, 2013). The parameters of Table 5.2 will make it possible to find the constraints to
validate these strategies.

A brief evaluation of input data in Table 5.4 demonstrates two possible scenarios. The
workload of clusters YH2 and FB1 has a low-density of chunks per host, equal to 1.6
chunks/host and 1.2 chunks/host respectively, which suggest an inefficient cluster use.
On the other hand, the workload of YH-1 has a density of 4.6 chunks/host, indicating a
good cluster utilization. The little data output on YH-2 and FB-1 clusters demonstrates a
high computational cost of Reduce phase. The experiments evaluate these two scenarios,
in particular, the YH-1 cluster.

Table 5.4: Workload characterization for Big Data applications
Cluster Input Shuffle Output Map Time (s) Reduce Time (s) Label
YH-1 568GB 76GB 3.9GB 270.376 589.385 Aggregate, fast job
YH-2 206GB 1.5TB 133MB 983.998 1,425.941 Expand and aggregate jobs
FB-1 230GB 8.8GB 491MB 104.338 66.760 Aggregate, fast

Around 1,800 experiments of simulation were conducted in Nancy, Grenoble, Sophia
and Rennes on Grid’5000 clusters with aims to find compatible patterns for low and high
scale in hybrid environments. In addition, the Global Dispatcher layer was also evaluated
on the basis of real-world experiments in a geo-distributed scenario. This experiments
were conducted within the Cloud Azure infrastructure at three sites located in West US,
North Europe, and East Japan, with one, two and three nodes respectively in each lo-
cation. The environment is composed by external data sources, Global Dispatcher and
one Big Data engine (Apache Flink). The Global Dispatcher system, in real-world ex-
periments, is composed of elements, such one message queue service (Kafka) and one
coordinating service or orchestrating system (Zookeeper). The experiment is structured
in all the uncoupled systems.
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5.2.1 Use Case Study

The use scenarios reflect how the devices interact with the systems. The uncoupled
system is introduced in Figure 5.2. The data is collected through the orchestrators and can
be geo-distributed in an uncoupled scenario. The different data sources are formed in an
unstructured way as text (in the Twitter applications), photos (in the Facebook applica-
tions), signals (provided by sensors), social networks or other kinds of information. The
sensor information must be pre-processed before it can be sent to the orchestrator, so as
to avoid environmental noises.

Figure 5.2: The uncoupled scenario for the SMART platform.

The orchestrator system is composed of one or more servers in each locality within
a distributed system. In this context, the Zookeeper system maintains a fault tolerance
mechanism. The message brokers receive the data in the form of topics that are immedi-
ately forwarded to the Core engine on two CSPs, in a storage-forward policy. The Dis-
patcher can swap the data destination to the Desktop Grid environment, for instance, or
add more one CPS to the system based on the workload. In this scenario, all the systems
are uncoupled from each other. Also, the dataset can be spread over several locations.
This approach is adopted to avoid lengthy transfers of data between sites and allows the
load balance. However, can be a management overhead. For instance, an application to
avoid the market manipulation on the Stock Exchange with several users producing in-
teractive data. In this example, the sensors are connectors like Twitter, Facebook, and
real-time applications in the Stock Exchange which provide the latest price of the stock
trading. The historical stock prices of the Stock Exchange are evaluated with information
about sensors by means of a Big Data applications and analytics.

Most of the applications shown in the “Related Work” Section follow the coupled sys-
tem model. Figure 5.3 shows this scenario. The model is hard to configure for new CSPs,
for instance in the Dispatcher layer, although the SMART architecture can enable more
complex executions due to the distributed nature of Zookeeper. On the other hand, another
orchestrator can be implemented to provide a processing of Big Data within Desktop Grid
environment before the message broker service.

The semi-coupled scenario is shown in Figure 5.4. This scenario has the advantage of
avoiding slow links to data transfers between the orchestrators and message brokers. In
addition, also it is possible to replicate the Dispatcher layer in several instances in other
CSPs. The semi-coupled scenario represents a hybrid platform that can enable new VM
launches in other CSPs to provide further computational capacity, as well as to allow the
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Figure 5.3: The coupled scenario for the SMART platform.

DG to be used like a Big Data processing engine. The semi-coupled scenario enables
to evaluate Big Data in a distributed system environment in a hybrid platform. This last
scenario will be simulated with the BIGhybrid to evaluate its constraints and also, the
latency effect will be examined in an experiment in the Cloud Azure.

Figure 5.4: The semi-coupled scenario for the SMART platform.

5.3 Results

This Section shows the evaluations for finding behavior patterns to deploy on hybrid
environments in low, medium and high scale and establishing the strategies of: a) A re-
lation between execution time and volatile nodes; b) A relation to resource distribution
in Cloud and DG; c) Investigating data size in function of available bandwidth; d) Deter-
mining a relationship between the load balance and number of machines; e) Evaluating
the cost related to Cloud and DG. The conducted experiments are real-world in Cloud
and aims to observe a behavior of real-time applications in an uncoupled scenario and
simulated tests reproducing workloads from Big Data applications in a semi-coupled sce-
nario.
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5.3.1 Experiments in Real-time Execution to Dispatcher Evaluation

This experiment evaluates the uncoupled scenario deployed in the Microsoft Azure
a CSP. Figure 5.5 illustrates the environment which is composed of three sites in a geo-
distributed configuration. The sites are located in the West US (site A), North Europe (site
B), and the East Japan (site C). The machines are of the Standard_A10 type and this is
equivalent to Intel Xeon E5-2670 8 cores @ 2.6 GHz - 56 GB Ram DDR3 -1600 MHz.
The inter-site bandwidth is 203 Mbps from site A-to-B and 83 Mbps from site B-to-C.
The environment represents several users sending Tweets to the Message Broker (Apache
Kafka) through Zookeeper. The data source producers are represented as near-real-time
data streams. The data is arranged in a workload size of 100 to 100,000 messages of
2KB each. All the workload groups are transmitted 100,000 times when reproducing a
Big Data environment. The experiment has 20 repetitions to each workload, with a total
execution time of 12 hours.

Figure 5.5: Application of a Sentiment Analysis

The application processes the sentiment analysis for tweets by means of a Natural
Language Processing (NLP) technique. The Big Data engine receives a stream of tweets
in JSON format where each event contains a relevance rate, an ID for the tweet identity, a
language, and a message. The analysis is a sentence based on a positive or negative word
that can be found a priori in a dictionary; afterward it will be decided whether a rating is
favorable or not, and this solves the user’s query.

Figure 5.6 presents the data generation to Cloud experiment.The data generation is
equivalent to 30 machines that produce data streams simultaneously without interruption.
The workloads are created first in little scale from 10 to 1,000 messages of 2KB each
with 50 messages offset and immediately dispatched to Kafka. After, several message
groups are created with workloads from 1,000 to 100,000 messages of 2KB with 1,000
messages offset. The first generation runs in memory and the second is a process where
firstly it writes message blocks to disk and after sends the files on an RPC process for
Kafka. The concurrent tweet messages in the x-axis are measured in message unit, and
the execution time in the y-axis is measured in milliseconds. The line green indicates the
tendency curve in a 2nd order polynomial function. The red line represents the measured
standard deviation.

The structure of the data generation produces data bursts, i.e., periods with a massive
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Figure 5.6: Data Generation to Cloud Experiments

transfer of data which can generate system overloads and others with little or without
data traffic. This process is very common in applications like Twitter which occur in the
interval of events like football games or events where there is a very high agglomeration
of people. The generation manner has direct influence in the data processing by Big Data
engines. If the data production is changed for a batch process of events with more data
in higher time intervals, this problem that will be observed in the next experiments is
minimized. However, the user could have a slow time to receive their answers until for
nearest neighbors.

Figure 5.7 shows the results from the experiments with one machine in the A site,
one machine in the B site and three machines in the C site. The experiment demonstrates
the influence of the workload in each processing stage. The concurrent messages in the
x-axis are measured in message unit, and the execution time in the y-axis is measured in
milliseconds. The line green indicates the tendency curve. The red line represents the
measured standard deviation.

The spent time for the data send from the source to broker (Kafka) and from the Kafka
to the Flink, respectively, Figure 5.7.a and Figure 5.7.c, are equivalents as a result of large
bandwidth inter-site available. The impact of the Dispatcher execution, in Figure 5.7.b,
is lower than the Flink’s processing, except those executions of smaller blocks. The data
generation in Batch Generation module, in comparison between Figure 5.6 and Figure
5.7, does not impact in the communication channel because there are low latency and high
bandwidth to data transfers. However, the size of input data affects the time execution in
both process of Kafka and Flink that indicates the best performance when the size of input
data has a larger block. The problem was previously discussed and represents a bottleneck
that can be minimized but not avoided. This execution is a low-scale experiment, but the
tendency for the data input also will be observed in large scale on the next Sections.
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(a) The Data Send from the Source to Broker (b) Time of Kafka’s processing

(c) The Data Send from the Broker to Flink (d) Time of Flink’s processing

Figure 5.7: Workflow of Processing in a Hybrid Infrastructure

5.3.2 Experiments with the Hybrid Environments Simulation

This subsection describes an experimental environment setup to validate strategies in
hybrid environments in a semi-coupled scenario. The experiments involve conducting
discrete-event simulations on the environment of Grid’5000 in four sites (Sophia, Nancy,
Rennes and Grenoble). The clusters located in Sophia and Grenoble, has 64 hosts and 50
hosts respectively, with 2 Intel Xeon E5520 processors of 2.27 GHz, with 4 cores, 24 GB
of RAM, 119 GB of local disk and 1 Gbps network. The clusters in Nancy and Rennes
have 40 and 70 hosts respectively, each one with 2 processor Intel Xeon E5-2630 v3 of
2.4 GHz, with 8 cores, 126 GB of RAM, 298 GB of local disk and 10 Gbps network. The
simulations are deployed on each machine with a particular configuration with the aim of
reducing the execution time from experiments. The evaluation of strategies for the use of
hybrid environments in Big Data is divided into low-scale, middle-scale and high-scale
experiments.

The MapReduce execution occurs in waves like in Figure 5.8. The example has 5
machines to process a MapReduce application with 20 chunks and 5 Reduces in the end.
The concurrent tasks in the y-axis are represented in unities and the x-axis, on the top of
Figure 5.8, measures execution time in seconds. The concept of available resources (R)
is defined as the number of machines multiplied by the number of slots for one execution
of the MapReduce tasks. Thus, a second wave begins if the first wave allocates all free
computational resources. On the other hand, the lower time unity for a Map phase is
equivalent to the execution time of one wave. These observations are very useful for
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the analysis of resource distribution because the number of waves is independent of the
execution time.

Figure 5.8: Waves in MapReduce Executions

The total resources RT c are the sum of Vm instances (V mc) multiplied by Map free
slots of a machine (τMc). However, the MapReduce scheduling first uses the first free slot
of all machines and then distributes tasks for the other free slots forming an execution
wave. Equation 5.3.1 introduces the relation Φ that is the result of total workload in
Cloud (Wc) (equivalent to chunk numbers) divided by the available resources in Cloud
(Rc). When ΦC = 1, then all resources are busy, and there is a full execution wave.

ΦC = Wc

Rc
,where Rc =

M
∑

i
V mc(i) and Rc ⊆ RT c (5.3.1)

For finding the best data distribution, we must take half of the machines to Cloud and
DG. The job in hybrid systems has two executions and to achieve a good load balance the
relation ΦCh in Cloud must be balanced to relation ΦDG. The best strategy is to use the
Equation 5.3.1 to find the load balancing. Equations 5.3.2 and 5.3.3 reflect the relation
Φ in Cloud hybrid and DG, where CkCh and CkDG are the chunk size on Cloud hybrid
and DG respectively, and Ckc the chunk size on single execution in Cloud. Finally, the
best load balance there is when if verify the Equation 5.3.4, this relation defines the data
distribution related to the number of Cloud and VC resources which is the goal of data
load balance strategy.

ΦCh =
CkCh

Ckc
∗ WCh

∑M
i V mc(i)

(5.3.2)

ΦDG = CkDG

Ckc
∗ WDG

∑M
i MDG(i)

(5.3.3)

ΦCh ≤ΦC ⇐⇒ΦDG ≤ΦC (5.3.4)
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The computational capacity of processors in the simulated experiments is equivalent
to an Intel Xeon E5506 - 2 Cores, 4M Cache, 2.13 GHz ≈ 5 GFlops (BICAK, 2017)
and the computational capacity in Volatility environment represents a distributed value
between 4 to 6 GFlops, for all experiments. The configuration is similar that we found
on Yahoo and Facebook by evaluation of Yanpei (CHEN, 2012). To analysis effect, the
computational consumption is cpu64 = 416 GFlops, cpu32 = 208 GFlops and cpu16 = 104
GFlops for a 64, 32 and 16 MB chunk size respectively. The network, workload and the
machines numbers vary according to each experiment. The amount of the Reduce tasks is
equal to two times the machine number.

Initially, it is important to define an input workload. The experiments are available
according to two environments: one has more tasks than resources available (T > R) such
as the FB-1 and YH-2 clusters, in the Yanpei evaluation, and other has more resources
than tasks (R > T ) as the YH-1 cluster.

The first experiment in Figure 5.9 represents an execution in low-scale of a Hybrid
environment, the aim is to obtain the best utilization of Cloud and distributing the most
number of chunks on the DG adjusting the chunk size when necessary. The concurrent
task execution in the y-axis is measured in seconds, and the number of the machines for
Cloud and DG (Cloud/DG) in the x-axis is measured in units. The line red indicates
the time execution of 200 tasks (chunk size 64 MB) on 128 machines in a single Cloud
deploying, equivalent to 503 seconds (therefore, with basis on earlier concept of available
resources, the environment has R > T ). The chunk size and input data are described in
the graphic to each execution for Cloud (C) and DG. Each execution is indicated with a
character on top of the chart and represents a job in Hybrid environment where the first
execution is in the Cloud and after on the DG. The networking for Cloud is 1 Gbps and to
DG is 10 Mbps.

Figure 5.9: Low Scale - 128 Machines - 10 Mbps - Resources > Tasks
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This execution environment has more resources than tasks (R > T ) and the time is
limited to 1.5 waves or a maximum of 2 waves. The time of Cloud job in D is longer
than C in function to missing of task parallelism. On the other hand, the unbalanced data
distribution results in more execution time like in E and F. The profile execution of DG
in Figures 5.9 (A) and (D) are the same because the change of 128 MB chunk size occurs
in Cloud and not in DG. Then, the strategy for this case is to use the greater amount of
resources possible, like in the executions A, B and C of Figure 5.9. However, as R > T is
limited to 1.5 wave, we can only establish a inferior limit ΦC = 1 to make sense the next
considerations.

Figure 5.10 presents the impact of volatility on performance where R > T . The letters
(a), (b) and (c) correspond to executions A, B and C of Figure 5.9 respectively. The y-axis
measures the time of concurrent tasks in seconds and the x-axis represents the percentage
of volatile machines. The first execution on the left, for all Figures, is the implementation
without volatility for comparison purposes which is the basis of the volatility increment
made in offsets of 5% until 35%. The experiments show the behavior of the task execu-
tions considering 10 Mbps bandwidth.

(a) 64 Machines - Chunk 64 MB (b) 64 Machines - Chunk 32 MB

(c) 64 Machines - Chunk 16 MB

Figure 5.10: Impact of Volatility on Performance - 10 Mbps - Resources > Tasks

This experiment demonstrates a relative resiliency of hybrid infrastructure with the
volatile environment, but this can be an outcome of low-scale of machines and a small
number of tasks compared with available resources. However, the experiment scale pro-
duces a little message exchanges between nodes due to having more resources than tasks
and does not enable a definitive conclusion about this problem. This factor will be exam-
ined in the next experiments. On the other hand, experiment (d) demonstrates the problem
described before about missing of task parallelism with the size task increase.

In this scenario, the best choice is to distribute data with the using of all slots in the
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machines in Cloud which will maximize the use of resources and define a maximum
number of DG machines to achieve the best execution in one wave. This means, chase
the Φ lower limit.

The next experiment has more tasks than resources (T > R) with workload of 512
tasks (chunk size 64 MB) and 128 machines. The hardware and task configurations are
the same that the earlier experiment. The aim this experiment is to consolidate the ob-
servations to the relation of data distribution between Cloud and DG. Figure 5.11 shows
eight executions named from A to H on top of chart. The chunk size and input data are
described in the graphic to each execution for Cloud (C) and DG. The line red indicates
the time for a single Cloud deploying, equivalent to 1,232 seconds. The concurrent task
execution in the y-axis is measured in seconds, and the number of the machines for Cloud
and DG (Cloud/DG) in the x-axis is measured in units. The networking for Cloud is 1
Gbps and to DG is 10 Mbps.

The experiment of Figure 5.11 shows that data distribution for this scenario achieves
the best load balancing when the Equation 5.3.4 is verified. Table 5.5 demonstrates that
for this case when T > R is possible to establish a superior limit for the relation Φ for
Cloud and DG which is independent of the time execution and has a value of Φ ≤ ΦC.
This, relationship for the resource distribution can be summarized in Equation 5.3.5. This
relation enables to define the machine number in a hybrid environment through an execu-
tion simulation on Cloud and then to set the data distribution for the hybrid environment.

1 ≤Φ ≤ΦC (5.3.5)

Figure 5.11: Low Scale - 128 Machines - 10 Mbps - Tasks > Resources

This relationship can be considered consistent, not only in low-scale but also in high-
scale as will be demonstrated in the next experiments. However, this analysis was con-
ducted with the nodes without the volatility effect. Because of this, the value of Φ can be
lower than the superior limit in some cases. The executions A, B, C and E of Figure 5.11
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Table 5.5: The relationship Φ for data distribution in hybrid environments
Relation/Experiment Cloud A B C D E F G H
ΦCh/ΦDG 4/4 4/4 4/4 3.83/4.5 4/4 3.13/6.63 2.91/7.25 2/10
ΦC 4

have a performance acceptable in this case. If the relation ΦCh would have a lower than
ΦC the number of machines in Cloud into the hybrid environment would be near from
max number of hosts in a single Cloud execution and the using of DG will not produce a
financial economy.

Figure 5.12 demonstrates the impact of volatility on performance where T > R. The
letters (a), (b), (c) and (d) correspond to executions A, B, C and E of Figure 5.11 respec-
tively. The y-axis measures the time in seconds and the x-axis represents the percentage
of volatile machines. The first execution on the left, for all Figures, is the implementation
without volatility for comparison purposes which is the basis of the volatility increment
made in offsets of 5% until 35%. The experiments show the behavior of the task execu-
tions with networking of 10 Mbps bandwidth. The execution E has the same execution
time from C in this case The line red represents the execution time of 1,232 seconds in a
single Cloud.

(a) 64 Machines - Chunk 64 MB (b) 64 Machines - Chunk 32 MB

(c) 64 Machines - Chunk 16 MB

Figure 5.12: Impact of Volatility on Performance - 10 Mbps - Tasks > Resources

The impact of volatility is sensitive for tasks with a chunk size from 16 to 64 MB
due to the overhead of data copy when a machine has a shutdown. The low bandwidth of
the network affects the data transfers considerably. The experiments suggest an operation
flexibility in volatile environments when 20% to 25% of machines have a shutdown with-
out important performance degradation. The chunk size for this scenario is 32 MB and 16
MB respectively.
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However, losing 1/4 of machines in DG can produce a high latency in a slow Internet
link. The DG environments can be until relatively stable in some scenarios but do not
have a behavior predictable easily. Other consideration, it is to evaluate the strategy of
the mechanism for improving performance in Big Data in hybrid infrastructure, discussed
earlier. In a volatile environment, the machines can have an overhead with data copy
to rebuild replicas that this mechanism could experiment long timeout periods, wich can
take the FTM to consider false-negative in the execution behavior.

The next experiment reproduces the hardware configuration earlier of 128 machines
with R > T , but in a network of 100 Mbps. The aim is to identify behavior changes related
to bandwidth in this scenario. Figure 5.13 presents this experiment. In the y-axis the
concurrent task execution is measured in seconds, and the number of the machines for
Cloud and DG (Cloud/DG) in the x-axis is measured in units. The line red indicates
the time execution of 200 tasks (chunk size 64 MB) on 128 machines in a single Cloud
deploying, equivalent to 503 seconds. The chunk size and input data are described in
the graphic to each execution for Cloud (C) and DG. Each execution is indicated with a
character on top of the chart and represents a job in Hybrid environment where the first
execution is in the Cloud and after on the DG. The networking for Cloud is 1 Gbps and to
DG is 100 Mbps.

The results of Figure 5.13 suggest a similar behavior of executions in comparison with
a low-bandwidth scenario. The executions A, B, C and D present the best performance in
this case. This performance is related to the phenomenon of data locality which presents
little data movement in Map phase. Thus, the bandwidth can modify the profile execution
time only during Shuffle phase when occurs the data movement of intermediate pairs.
However, this behavior changes in the presence of volatility due to data transfers for
preserving the number of replicas in HDFS when occurs a node shutdown.

Figure 5.13: Low Scale - 128 Machines - 100 Mbps - Resources > Tasks

The next experiment demonstrates the profile changes in the function of a larger band-
width in comparison with the experiment of Figure 5.10. Figure 5.14 shows the executions
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in letters (a), (b) and (c) that correspond to executions with the best performance in Figure
5.13 respectively. The evaluation of execution D is not considered due to reasons exposed
earlier. In the y-axis, the time of concurrent tasks is measures in seconds and the x-axis
represents the percentage of volatile machines. The first execution on the left, for all
Figures, represents the implementation without volatility for comparison purposes. The
experiments show the behavior of the task executions considering 100 Mbps bandwidth.
The line red represents the execution time of 503 seconds in a single execution in Cloud.

(a) 64 Machines - Chunk 64 MB (b) 64 Machines - Chunk 32 MB

(c) 64 Machines - Chunk 16 MB

Figure 5.14: Impact of Volatility on Performance - 100 Mbps - Resources > Tasks

In fact, the impact of volatility in Figure 5.14 indicates be small with 100 Mbps. The
data copies needed to establish the replica relation is faster in fast links than slow links
what contributes to the best performance. Thus, the configurations of the hybrid environ-
ment with chunks of 64 MB, 32 MB and 16 MB are similar. However, in these experi-
ments, there are few tasks in comparison with resources, and with the greater bandwidth,
the problem is hidden. On the other hand, the environment with more resources than task
is familiar in Cloud, because the CSPs need to have free computational resources to allo-
cate their available resources for the user and to occupy the most hardware possible. The
best strategy is the user allocate the exact slot of resources by its Job.

To complete our analysis in low-scale, also is necessary evaluate the environment with
T > R in a networking of 100 Mbps. Thus, the next experiment evaluate the execution in
low-scale of a Hybrid environment, to confirm the strategies to obtain the best utilization
of Cloud and distributing the most number of chunks on the DG. Figure 5.15 represents an
execution in low-scale of a Hybrid environment, with a workload of 512 tasks with chunk
size 64MB and 128 machines. Remembering, the hardware configuration is equivalent to
an Intel Xeon E5506 - 2 Cores, 4M Cache, 2.13 GHz ≈ 5 GFlops and the computational
capacity in Volatility environment represents a distributed value between 4 to 6 GFlops,
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for all experiments. The computational consumption is cpu64 = 416 GFlops, cpu32 = 208
GFlops and cpu16 = 104 GFlops for a 64, 32 and 16 MB chunk size respectively.

The concurrent task execution in the y-axis is measured in seconds, and the number of
the machines for Cloud and DG (Cloud/DG) in the x-axis is measured in units. The line
red indicates the time execution in a single Cloud deploying, equivalent to 1,232 seconds.
The chunk size and input data are described in Figure to each execution for Cloud (C) and
DG. Each execution is indicated with a character on top of the chart and represents a job
in Hybrid environment where the first execution is in the Cloud and after on the DG. The
networking for Cloud is 1 Gbps and to DG is 100 Mbps.

It is important to observe that executions in Figure 5.15 follows the same execution
profile from Figure 5.11. The evaluation of relative distance between the greater time
of the best performance results in 10 Mbps is 18,74%, and 100 Mbps is 26,49%. Thus,
we can imagine that improving the bandwidth from 10Mbps to 100Mbps must produce
a performance gain near to 8% for the same application in this scenario. The result per-
formance is also due to the data is ready to be consumed in the local disks in the Map
phase. However, the approach of reducing the chunks from 64 MB to 16 MB to improve
the executions with small bandwidth can not be sufficient to hybrid environments with
high bandwidth. The next experiment with the use of volatility justifies these comments.

Figure 5.15: Low Scale - 128 Machines - 100 Mbps - Tasks > Resources

The next experiment in Figure 5.16 has aim of analyzing the impact of volatility in a
hybrid environment, considering (T >R) in a 100 Mbps links. The execution is with basis
on experiment earlier. The letters (a), (b) and (c) correspond to the best executions A, B
and C of Figure 5.15 respectively. The execution of letter D is the same than the letter A
in function of change chunk size from 64MB to 128 MB occurs only in Cloud. The y-axis
measures the time of concurrent execution tasks in seconds and the x-axis represents the
percentage of volatile machines. The first execution on the left side refers to deploying
without volatility.
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Figure 5.16 shows an impact significant of volatility under this setup. The experiments
(a) and (b) with 64 MB and 32 MB chunk size, respectively, accept from 5% to 25% of
volatile machines. However, the (c) experiment with a 16 MB chunk size demonstrates to
be unfeasible in this scenario. The data transfers increase with volatility and the recurrent
execution of Reduce phase, harms further the performance of the all job.

Until this moment, it is possible to determine some other limits for Big Data execu-
tion in hybrid environments. The first strategy to the relation between execution time and
volatile nodes points to value 5% < ξ < 25%, in agreement with these initial observations
of the volatility on low-scale. The chunk size found to meet the requirements of chan-
nel communication is 32 MB and 64 MB, also considering the low-scale environment.
Finally, the experiments suggest that the behavior profile of a workload in low-scale can
be affected by the volatility presence and not by bandwidth which the environment is
executed.

(a) 64 Machines - Chunk 64 MB (b) 64 Machines - Chunk 32 MB

(c) 64 Machines - Chunk 16 MB

Figure 5.16: Impact of Volatility on Performance - 100 Mbps - Tasks > Resources

The next experiments are executed in medium-scale, which are nearest from academic
environments. This experiments have aim to analysis the efficacy of data distribution re-
lation and identifying the bandwidth impact in all hybrid infrastructure environment. The
hardware configuration is equivalent to an Intel Xeon E5506 - 2 Cores, 4M Cache, 2.13
GHz ≈ 5 GFlops and the computational capacity in Volatility environment represents a
distributed value between 4 to 6 GFlops, for all experiments. The computational con-
sumption is cpu64 = 416 Gigaflops/Byte, cpu32 = 208 Gigaflops/Byte and cpu16 = 104
Gigaflops/Byte for a 64, 32 and 16 chunk size respectively. The single execution in Cloud
processes 4608 chunks of 64 MB with 512 machines in 1,618 seconds. The bandwidth
varies of 10 Mbps, 50 Mbps, 100 Mbps, 150 Mbps, 300 Mbps and 1 Gbps with latencies
captured of the real-world environment. The bandwidth of 1 Gbps is considered only in
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Cloud environment. Observes that a 1 Gbps bandwidth is possible, in this moment, only
in Cloud.

In the first experiment, the number of the machines is divided into the half, 256 ma-
chines to Cloud and 256 machines to DG. The total tasks are equally divided in the half,
2,304 to the Cloud and DG. The job execution time in Cloud is equal to 1,616 seconds,
in a network of 1 Gbps bandwidth, with a chunk size of 64 MB, for all executions. The
Figure 5.17 presents the time results for the DG job execution. The color blue, green and
yellow represent the executions with a chunk size of 64 MB, 32 MB, and 16 MB respec-
tively. The red line represents the time execution for a single execution in Cloud equal
to 1,618 seconds. The y-axis, on the left, measures the concurrent tasks in seconds. The
y-axis, on the right, measures the DG workload in units for each execution with different
chunk size. The workload is of 2,304, 4,608 and 9,216 chunks and has a chunk size of 64
MB, 32 MB, and 16 MB respectively. The x-axis measures the bandwidth. The aims is to
verify if a single data division will be sufficient to data split, in a (T > R) scenario.

Figure 5.17: Medium-scale experiment - 256/256 machines (C/DG) - Tasks > Resources

It is possible notices that no execution achieved the time expected. The performance
is worst than a single implementation in Cloud with all hosts. Thus, distributed the data
and machines in half is not a good strategy to distribution data in a hybrid infrastructure,
independently of bandwidth. Also, the experiment demonstrates that split the input in
lower chunk sizes than 32 MB, like 16 MB can produce a terrible performance in this
scenario. The drastic increase in the time execution instead of a job time decrease has as
basis the false supposition of that the division of machines and data by the half (distrib-
uted in Cloud and DG) could represent a decreasing at half time in hybrid environments.
In fact, this possibility is incorrect because, in the hybrid infrastructures, we must also
consider the heterogeneity and volatility factors. However, this scenario can be evaluated
in the other manner for understanding what occurs in fact with chunk size related to the
bandwidth variation.

Figure 5.18 evaluates the impact of bandwidth with the basis in the normalization of
job executions along these experiments in medium-scale. The aim is to identify patterns
in the job execution related to the bandwidth and the chunk size. The y-axis measures
the time of parallel tasks in a DG environment with normalized value in units for each
execution with different chunk size. The x-axis measures the bandwidth.
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The impact is linear and descending with a small inclination in the time from range
10 Mbps to 150 Mbps (in other words, increase 15 times) produces a decrease of 10% in
the execution time. Similar behavior occurs from range 10 Mbps to 300 Mbps (in other
words, increase 30 times) with a decrease 15% to 30% for the chunk size of 64 and 32
MB respectively. Although this results can seem fascinating, it in fact not sufficient for
producing a improve to the job execution time as demonstrates the Figure 5.16. This
means that the bandwidth is not the main factor to decrease the job time, but other factors
like amount of machines, data distributions, number of volatile nodes, and so on. Thus,
an approach based only on the control of chunk size to reduce the time of job execution
can not obtain the desired results.

Figure 5.18: Impact of Bandwidth in a Job Execution

The previous experiments demonstrate that is needed the use of a technique for data
distribution in hybrid environments. The next analysis is based in the earlier experiment
of Figure 5.17 for 64 MB and 32 MB chunk size. The aims are to consolidate the ear-
lier observations in low-scale and demonstrates that the using of Φ relation is a feasible
strategy for the setup of machines and data distribution in hybrid environments.

Figure 5.19 presents the time execution of a job in a hybrid environment with a chunk
size of 64 MB and 32 MB to a volatile environment with 256 machines. The Cloud job
has the same runtime time of 1,618 seconds. The y-axis measures the concurrent tasks
in a DG environment in seconds for each execution with different chunk size. The x-axis
measures the bandwidth. The application processes a workload of 2304 and 4608 chunks
with 64 MB and 32 MB chunk size, respectively.

It is possible to identify that the data distribution has a lower time than 1,618 seconds
when the machine numbers are 461 and 922 (in the executions with a chunk size of 64
MB and 32 MB, respectively). The Φ relation produces a beneficial effect of decreasing
the data transfers between machines from 39.1% to 57.14% in the worst and best case,
respectively. The data transference decrease added to bandwidth impact produces the
result needed to provide a proper load balancing to become feasible the use of hybrid
infrastructure. These results demonstrate that the DG executes a greater number of local
tasks with the relation Φ than without it and, thus, minimizes the data transfers in all the
system.
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Figure 5.19: Data Distribution Relation

Figure 5.20 presents several DG job executions the aim verify behavior in high-scale.
The executions run 64 MB chunk size. Table 5.6 shows the number of machines and
workloads. The experiment in a single Cloud runs in 901 seconds on 2000 machines and
a workload of 9088 chunks. The red line in the Figure 5.20 indicates the time of this
execution in high-scale. The y-axis measures the parallel tasks in a DG environment in
seconds for each execution and the x-axis measures the bandwidth. The different jobs are
represented with colors indicates in the caption. The different jobs are represented with
colors indicated in the caption of the Figure, and each Job shows their Φ relation to Cloud
and DG respectively. The ΦDG DG relation is preserved according to estimation earlier.

The experiment in high scale demonstrates behavior different from operations of
medium and low-scale. This behavior is related to a large number of machines in the
network and administrative overhead to manage the data transference over the Internet.
The execution is possible in some cases from 50 MB to 300 MB bandwidth, but the best
performance occurs with 300 MB bandwidth. However, a thorough cost analysis can
determine other data distributions where the border line from cloud execution may be ex-
ceeded without the loss of the solution quality. The results indicate a cost decrease from
10% to 50% in the worst case and the best case respectively, in comparison with a single
Cloud execution.

Table 5.6: Relation workload vs. number of machines
Relation (ΦCh/ΦDG) #Chunks (C/DG) Machine (C/GD)
DG_JOB (4.04/4.54) 7270/1818 1800/400
DG_JOB (4.03/2) 7270/1818 1800/909
DG_JOB (3.88/2) 7000/2088 1800/1044
DG_JOB (3.88/1.91) 7000/2088 1800/1800
DG_JOB (3.88/1.02) 7000/2088 1800/2044
DG_JOB (2.97/2) 5000/4088 1680/2044
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Figure 5.20: Simulation in High-Scale

This scenario demonstrates that a little workload variability can produce behavior
changes in DG environment. Thus, hybrid environments with high workloads have the
necessity of orchestrators to control of data transference and the task synchronization
what justify our approach in the SMART Platform.

5.4 Discussion and Conclusions

This Chapter has shown real-world experiments and simulation experiments. These
analyses evaluate two distinct scenarios, one uncoupled scenario deployed in the Mir-
cosoft Azure and another semi-coupled scenario in hybrid environments with BIGhybrid
simulator. The first evaluates only the execution of Dispatcher module in an application
similar to the Twitter scenario. The second also evaluates the strategies to deploy of hy-
brid environments in Big Data analytics through of a synthetic application from Yahoo
Cluster. Both scenarios represent Big Data applications in geographically distributed en-
vironments.

The works (JAYALATH; STEPHEN; EUGSTER, 2014) and (TUDORAN et al., 2014)
are a Cloud-to-Cloud deployment, both provide support to the data transfers to reduce
time execution in MapReduce jobs. The first focus on the cost of performance and the
second observes I/O throughput and the environment capacity. In contrast, our work
proposes a solution in a hybrid approach to applications real-time and batch. Also, it
designs a platform in the Lambda architecture for solving this problem and implements
built-in mechanisms to avoid data moving without needed.

The workflow of processing in a hybrid infrastructure for applications of the senti-
ment analysis show the opportunities to improve the execution of the Big Data engines in
function of the found bottlenecks. Tudoran et.al. (TUDORAN et al., 2014) discusses that
there is a potential to overlap computation and communication of messages and short-
ness of the time to compute a group of events in stream processing. The authors propose
strategies such as Stream&Compute (SC) and Copy&Compute (CC) which were deployed
in our experiment. However, they did not work well for this scenario, as can be seen in
the Figure 5.7. A possible strategy is to create a dynamic scheduler to provide execution
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priority and avoid the delay in the task flow.
The results of the simulated experiments establish strategies for using hybrid infras-

tructures based on behavior patterns of job executions in Cloud and DG described in
Table 5.7. The strategies are a set of parameters and recommendations which can help
in the setup of hybrid environments geographically distributed. The parameters indicate
relations between execution time and volatile nodes to determine the number of unstable
machines. It establishes a method for determining the resource allocation to Cloud and
DG in hybrid environments. They point out ways to data distributing related to the number
of Cloud and DG resources to produce a load balance. Also, the parameters establish the
best chunk size in agreement with bandwidth of the communication channel and provide
a method to find the best cost/benefit for a lower price of Cloud resources.

Table 5.7: Strategies and Achieved Aims
Parameters Strategies Aim
Volunteer hosts 5% < ξ < 25% Achieved
Cloud resources ΦCh = CkCh

Ckc
∗ WCh

∑M
i V mc(i) Achieved

DG resources ΦDG = CkDG
Ckc

∗ WDG

∑M
i MDG(i) Achieved

Relation Φ between Cloud and DG 1 ≤Φ ≤ΦC Achieved
Channel communication Chunk size 32 MB to 64 MB Achieved
Data load balance ΦCh ≤ΦC ⇐⇒ΦDG ≤ΦC Achieved
Cost model C(Ji,Ck,n) = tr ∗(Ji,Ck,n)∗∑β

m=1 n∗Rcm Need evaluation
I/O interference Defining an optimal ρ Open

The results point out that the hybrid environments show an operation continuity in an
environment with until 25% of unstable nodes in the worst case without lost performance
and with a replica number of 3 replicas which is the Hadoop standard. In contrast, the
work of Lin (LIN et al., 2010) argues that one machine with an unavailability rate of 40%
must have eleven replicas to achieve an availability rate of 99.99% for a single data block
in HDFS. The experiments point a significant performance loss with rates 35% of node
instability. Thus, with an unavailability rate of 40%, the hybrid environment could not
operate well.

An optimal allocation is difficult to achieve, and so strategies to obtain an approxima-
tion can be accepted as argues Mashayekhy et.al. (MASHAYEKHY; NEJAD; GROSU,
2014). The parameters ΦCh and ΦDG to find Cloud and DG resources establish a num-
ber of machines adequated to achieve acceptable performance. Also, these settings help
inexperienced users to locate the number of Cloud and DG machines without a previous
knowledge of the CSP infrastructure, which can be considered a significant contribution
of Thesis.

Several authors like Mansouri et.al. (MANSOURI; TOOSI; BUYYA, 2013), Tudoran
et.al. (TUDORAN et al., 2014), Balaji et.al. (PALANISAMY; SINGH; LIU, 2015) and
others argue that the users tend to choose resources based on their workload peak, and the
systems must find the optimal chunk placement depending on the user’s needs. In con-
trast, the relation Φ between Cloud and DG can help the users to find resources adjusted
to their workloads. Also, the recommendation of chunk size in channel communication
can contribute to avoiding excessive data movement in Big Data applications over hybrid
infrastructures.

The relation among workload, number of machines and load balance can be consid-
ered a significant contribution for providing data load balance and decreasing the data
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transfers between machines from 39.1% to 57.14% in the worst and best case, respec-
tively. These values are compatible with the work of Tudoran et.al. (TUDORAN et al.,
2014) which achieved a decreasing of 50% with a relative error from 10% to 15%. The
relation where 1 ≤Φ ≤ΦC is particularly stable in all scales and also independent of band-
width.

The reduction of chunk size can produce a little performance increase in Cloud with a
1 Gbps bandwidth. However, a decrease in the chunk size from 64MB to 16 MB generates
a performance loss from 18.37% to 34.16% for executions with 300 Mbps and 50 Mbps
respectively. These results demonstrate that data reduction results in a different behavior
compared to a hybrid environment with the homogeneous environment. Thus, with the
base on this results, the best chunk size for medium and high-scale is 64MB and on low-
scale also is possible to use 32MB chunk sizes.

The use of uncoupled and semi-coupled scenarios enable to generalize this architec-
ture design to a vast spectrum of Big Data implementations with data dispersal around the
different sites, in particular, to geographically distributed datasets. These results represent
a significant contribution for deployment of hybrid infrastructures in Big Data Analytics
applications. The environment simulation was the path chosen for finding answers to the
questions raised in this Thesis. However, some strategies as cost model and I/O interfer-
ence need a careful study still in function of the high specificity of the theme. The cost
model was implemented as part of the algorithm to data distribution in the Dispatcher
module, as will be shown below, but needs of a particular evaluation. Thus, the conduct-
ing of this evaluation enables to consider achieved the aims of find strategies to make
feasible the using of Big Data analytics applications in hybrid infrastructures.

5.4.1 Dispatcher Algorithm

This subsection presents the algorithm used in the previous experiments for the re-
source allocation in the Dispatcher module, with adaptations to the estimate of the reduc-
tion rating of cost. The reduction rating is a value range of (1,0] which is a user estimation
in percentage. The user needs to provide information about their application, the chunk
size and an initial estimate of the number of machines in Cloud. A minimal reference of
hardware is needed, such as the number of slots that can be related with the thread num-
ber in a processor and a little execution of MapReduce with same chunks to determine the
task cost of Map and Reduce phases, necessary to setup of simulator.

The Algorithm 5.4.1 computes the number of workers to Cloud and DG, and provide
the amount of data for each environment with the base on an initial estimate of cost
reduction provided by the user. This process can be automatized for the Dispatcher to
collect information over different CSPs, seek the best price and then, to offer a lower cost
for the user.

In comparison with the works of (OHNAGA; AIDA; ABDUL-RAHMAN, 2015) and
(KHAN et al., 2016) which need of time reference for all executions in Dispatcher-
Resources Algorithm this information is not necessary to determine the number of ma-
chines and workers in a hybrid environment. Thus, the users can evaluate a possible con-
figuration before allocating any resource. Also, as the BIGhybrid simulator can provide a
previous execution for adjusting the parameters, the user do not need to do an allocation
in Cloud to test their configuration. This tool is an important characteristic of our work.
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Algorithm 5.4.1 Dispatcher-Resources Algorithm - Pseudo-code
Require: E ← reduction rating ▷ reduction rating in %
Require: S← free-slots number ▷ Machine free-slots
Require: Din← Input size in MB ▷ Data input
Require: CC ←Chunk size in MB ▷ Chunk size to Cloud execution
Require: CDG←Chunk size in MB ▷ Chunk size to DG execution
Require: HC ←Host estimation ▷ User host estimation in Cloud
Require: CS = 64 ▷ Standard Chunk size
Require: Setup Phase of simulator
Require: Get BIGhybrid parameters in Calibration Phase

1: DT = ⌈Din
CC

⌉
2: Ue = 1−E
3: Φ = DT

HC
4: if ⌊Φ⌋ == 1 then
5: WC = ⌈DT∗Ue

Φ
⌉ ▷ update number of workers in Cloud

6: WDG = ⌈DT
Φ
−WC⌉ ▷ update number of workers in DG

7: else
8: ΦC = ⌊Φ∗Ue∗ CC

CS
⌋

9: ΦDG = ⌊ΦC ∗Ue∗ CC
CDG

⌋
10: DC = ⌈DT ∗Ue⌉ ▷ Data in Cloud
11: DDG = ⌈DT −DC⌉ ▷ Data in DG
12: WC = ⌈DC

ΦC
⌉ ▷ update number of workers in Cloud

13: WDG = ⌈ DG
ΦDG

⌉ ▷ update number of workers in DG
14: return
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5.5 Comparison between SMART Platform and Related Work

Table 5.8 shows the SMART in comparison with Related Work. The platform enables
the use of geographically distributed environments in hybrid infrastructures with Lambda
architecture support. The main strategies considers cost, failure recovery, handles network
overheads, distribute data for environment capacities, preserves replication mechanisms,
minimizes data transfers, provide an orchestrator system, has buit-in a group strategy to
data and task distribution and enable barrier-free.

These features are added to strategies to data distribution and definition of the number
of machines from the system. The SMART platform definition provides a robust solu-
tion to the hybrid infrastructure specified in this Thesis. The Dispatcher algorithm helps
users, without a previous knowledge of hardware infrastructure, to define the number of
machines and data distribution. This property is an important competitive differential in
comparison with the other works.

The BIGhybrid simulator use enables to the users an easy design of the hybrid infras-
tructures and a visualization of execution with little initial information for the simulation
deploying. Thus, this avoids definition mistakes due to user inexperience and false pre-
misses to data and resource allocations on the infrastructure.

Table 5.8: SMART versus Related Work
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(EKANAYAKE et al., 2010) Twister x x x x x
(MANSOURI; TOOSI; BUYYA, 2013) Brokering Alg. x x x x
(GUNARATHNE et al., 2013) Twister4Azure x x x x x x
(LE et al., 2014) SALSA x x x
(JAYALATH; STEPHEN; EUGSTER, 2014) G-MR x x x x x
(TUDORAN et al., 2014) GEO-DMS x x x x x x x
(PALANISAMY; SINGH; LIU, 2015) CURA x x

H
et
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us

(LIN et al., 2010) Moon x x x x x x
(LU et al., 2012) BitDew-MR x x x x x x x
(KRISH; ANWAR; BUTT, 2014) HATS x x x x x x
(ANJOS et al., 2015) MRA++ x x x x x

H
yb

ri
d

Sy
st

em

(DING et al., 2011) Hadoop Streaming x x x
(TUDORAN et al., 2014) SC-CC x x x
(ALEXANDROV et al., 2014) FLINK x x x x x x x x x
(CLEMENTE-CASTELLÓ et al., 2015) Hybrid IaaS Cloud x x x
(TANG; HE; FEDAK, 2015) HybridDFS x x x x x x x x x x x
(VASILE et al., 2015) HySARC2 x x x
(GHAFARIAN; JAVADI, 2015) Cloud-aware x x x x x x x x
(PHAM et al., 2016) Cirus x x x x x x x
(Anjos, 2017) SMART x x x x x x x x x x x x x x

5.6 Final Considerations

This Chapter enabled to evaluate the strategies for the using of hybrid infrastructures.
In particular, the Dispatcher module was evaluated in a real world experiment wich con-
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siders the SMART architecture. The results allow concluding that it is feasible to execute
the Big Data analytics in hybrid infrastructures such as Cloud and Desktop Grid.

The strategies create to deployment in hybrid infrastructures are particularly com-
pelling due to producing a load balance between the Cloud and DG environments oriented
for reduction the data transfers without performance loss. Thus, with basis on the results
of these experiments from this Chapter, it is possible to assume that these strategies enable
to deploy the SMART platform in a hybrid infrastructure.
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6 CONCLUSION AND FUTURE WORK

A huge volume of data is produced every day, from the information provided by social
networks (such as Facebook, Instagram, Whatsapp, etc) or that generated by sensors on
mobile devices, including Big Data applications like Google Searches. This deluge of
data requires ever more computational resources to process the information more quickly.

This work establishes: i) a new platform called SMART which offers Big Data Analyt-
ics in a Lambda architecture within a hybrid infrastructure; ii) a simulator called BIGhy-
brid to be a toolkit for the study of Big Data Analytics in hybrid infrastructures. Its goal
is to enable the user achieve the nearest configuration for Big Data applications into de-
ployment in real-world environments; iii) evaluates the use of the Dispatcher module in
the SMART platform and iv) defines strategies for the use of Desktop Grid and Cloud
Computing in a geo-distributed environment within a hybrid infrastructure. In addition,
to find the best data distribution strategies in this complex scenario for reducing the risks
of trouble caused by common configuration mistakes.

In this chapter, there is a summary of the contributions made in previous chapters, as
well as partner relationship developed in this work and the publications as result of Thesis
development. Finally, our future works.

6.1 Contributions

The main contributions can be summarized as:
a) To provide a platform that can allow the deployment of Big Data analytics

within hybrid infrastructures
A hybrid infrastructure environment was well defined. Then, the specifications gave

origin to a new platform called SMART (Small & Medium-sized Enterprise Data Analyt-
ics in Real Time). The platform enables the Big Data analytics in a hybrid infrastructure.
In comparison with other frameworks, this platform uses Cloud and DGs as its basic
infrastructure and is embedded in a Lambda architecture for Big Data processing. The
deploying approach is to use a geographically distributed system.

This platform is composed of several modules which depict a Global Dispatcher and
Global Aggregator. This concept enables the use as an infrastructure for services that uses
multiple data abstractions. The Global Dispatcher located outside the cloud is a layer that
handles task assignments and the management of user-provided data. The layer decouples
the data storage system and manages policies for the splitting and distributing data in
accordance with each system. The working principle is similar to a publish/subscribe
service in which the layer acts as a data producer that is afterwards consumed by workers.
The Global Aggregator obtains data output from both systems and merges them to obtain
the final data set.
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b) To create a simulator as an analytical tool of hybrid infrastructures and for
Big Data analytics

BIGhybrid is a toolkit for MR simulation in hybrid environments with a focus on
Cloud and DG which was validated by means of real-world experiments. It can be used
for evaluating scheduling strategies for MR applications in hybrid infrastructures. The
idea behind the BIGhybrid simulator is to optimize hybrid infrastructure environments
such as Cloud services with the available resources of a DG system. BIGhybrid is modular
and built on top of the SimGrid framework.

The BIGhydrid simulator generates traces from each system to allow an individual or
collective analysis to be conducted within the same time frame. The simulator enables
several strategies to the data distribution and resource allocation of MR applications in
hybrid infrastructures. In BIGhybrid, the Global Dispatcher can be either manual or au-
tomatic. In the manual version, the user defines a function for data distribution and a
job configuration. These configurations explore the number of Map and Reduce tasks,
input data, data size, chunk size and so on. The results of the Global Aggregator mod-
ule are implemented as a single Reduce task after the last current Reduce task has been
completed.

The statistical evaluations of the BIGhydrid simulator indicate a simulation with a
relative degree of accuracy. The mean absolute percentage error (≊ 5% in the worst case
scenario for heterogeneous and homogeneous environments) shows that the simulator can
be an efficient evaluative instrument for hybrid infrastructures.

c) To determine strategies for the use of hybrid infrastructures
The experiments are conducted in real-world and simulated environments. The real-

world in Cloud had the aim to observe a behavior of real-time applications in an uncoupled
scenario. The simulated environment had the goal of reproducing workloads from Big
Data applications in a semi-coupled scenario.

The evaluations found behavior patterns which enable the deploy on hybrid environ-
ments in low, medium and high scale and establish a set of the strategies such as: i) The
relation between execution time and the number of volatile nodes; ii) The relation of re-
source distribution in Cloud and DG; iii) The relation Φ between Cloud and DG; iv) The
relation of data size in function of available bandwidth; v) The relationship between the
load balance and number machines; vi) The cost related to Cloud and DG and vii) I/O
interference. The results are summarized in Table 6.1.

Table 6.1: Strategies and Achieved Aims
Parameters Strategies Aim
Volunteer hosts 5% < ξ < 25% Achieved
Cloud resources ΦCh = CkCh

Ckc
∗ WCh

∑M
i V mc(i) Achieved

DG resources ΦDG = CkDG
Ckc

∗ WDG

∑M
i MDG(i) Achieved

Relation Φ between Cloud and DG 1 ≤Φ ≤ΦC Achieved
Channel communication Chunk size 32 MB to 64 MB Achieved
Data load balance ΦCh ≤ΦC ⇐⇒ΦDG ≤ΦC Achieved
Cost model C(Ji,Ck,n) = tr ∗(Ji,Ck,n)∗∑β

m=1 n∗Rcm Need evaluation
I/O interference Defining an optimal ρ Open

The results point out that the hybrid environments show an operation continuity in an
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environment with until 25% of unstable nodes in the worst case without lost performance
and with a replica number of 3 replicas which is the Hadoop standard.

The parameters ΦCh and ΦDG to find Cloud and DG resources establish a number
of machines adequated to achieve acceptable performance. Also, these settings help in-
experienced users to locate the number of Cloud and DG machines without a previous
knowledge of the CSP infrastructure, which can be considered a significant contribution
of Thesis. The relation Φ between Cloud and DG can help the users to find resources
adjusted to their workloads. Also, the recommendation of chunk size in channel com-
munication can contribute to avoiding excessive data movement in Big Data applications
over hybrid infrastructures.

The relation among workload, number of machines and load balance can be consid-
ered a significant contribution for providing data load balance and decreasing the data
transfers between machines from 39.1% to 57.14% in the worst and best case, respec-
tively. These values are compatible with works of literature.

The reduction of chunk size can produce a little performance increase in Cloud with a
1 Gbps bandwidth. However, a decrease in the chunk size from 64MB to 16 MB generates
a performance loss from 18.37% to 34.16% for executions with 300 Mbps and 50 Mbps
respectively. These results demonstrate that data reduction results in a different behavior
compared to a hybrid environment with the homogeneous environment. Thus, with the
base on this results, the best chunk size for medium and high-scale is 64MB and on low-
scale also is possible to use 32MB chunk sizes.

The use of uncoupled and semi-coupled scenarios enable to generalize this architec-
ture design to a vast spectrum of Big Data implementations with data dispersal around the
different sites, in particular, to geographically distributed datasets. These results represent
a significant contribution for deployment of hybrid infrastructures in Big Data Analytics
applications. The results indicate a cost decrease from 10% to 50% in the worst case and
the best case respectively, in comparison with a single Cloud execution. However, some
strategies as cost model and I/O interference need a careful study still in function of the
high specificity of the theme.

d) To find an accurate method of conducting an analysis of a hybrid infrastruc-
ture

An algorithm was implemented from the experiments to define the method of com-
putation for the resource allocation in the Dispatcher module. Also, this algorithm has
adaptations to estimate the cost in hybrid environments. However, the cost model needs
a careful evaluation. The inexperienced users to locate the number of Cloud and DG
machines without a previous knowledge of the CSP infrastructure.

The evaluations in the real-world experiments and simulated environment showed that
using the hybrid infrastructures in Big Data applications can be feasible. The workflow
of processing in a hybrid infrastructure for applications of the sentiment analysis show the
opportunities to improve the execution of the Big Data engines in function of the found
bottlenecks.

6.2 International Partners

Another contribution made is to establish a link between research groups that stimulate
the cooperation and the development of a research network that is involved with similar
problems.
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This work can examine a model with various data sources, ranging from wireless
sensor nodes to user interaction information in open environments, such as social net-
works, opendata information and other. The datasets consist of large corporate databases
to broadcast media, where there is a clear need for standardization. The idea has evolved
into a hybrid Big Data platform for applications processing in different domains. Because
of this, some institutions have demonstrated interest in the SMART Platform. Thus, a
“cooperation project” has been set up to achieve this vast domain. Several research insti-
tutes are involved, are summarized in able 6.2. It provides a list of the main researchers
who are involved in work about the SMART platform.

Table 6.2: Collaborations
Institution Group Locality Researcher
INRIA/ENS Lyon LIP Lyon, France PhD. Gilles Fedak
INRIA/ENS Lyon LIP Lyon, France PhD. Marcos Dias Assunção
TUB DIMA Germany PhD. Volker Markl
JohnMoores University Liverpool, England PhD. Rubem Pereira
UnB LASP Brasilia, Brazil PhD. João Paulo da Costa
UFRGS Rio Grande do Sul, Brazil PhD. Edison Pignaton
Belarusian State University Minsk, Belarus PhD. Tatiana Galibus
Danube University Krems Austria PhD. Thomas J. Lampoltshammer
Chinese Academy of Sciences CNIC Beijing, China PhD. Haiwu HE

6.3 Publications

The publications of this Thesis are:
Journal:
Anjos, Julio C.S., Carrera, Iván, Kolberg, Wagner, Tibola, Andre Luis, Arantes, Luciana B., Geyer,

Claudio R., MRA++: Scheduling and Data Placement on MapReduce for Heterogeneous Environments,
Future Generation Computer Systems Vol.42(0), 22–35, jan 2015

Anjos, Julio C. S., Fedak, Gilles, Geyer, Claudio F. R.: BIGhybrid: a simulator for MapReduce
applications in hybrid distributed infrastructures validated with the Grid5000 experimental platform,
Concurrency and Computation: Practice and Experience 28(8), 2416–2439, June 2016, cpe.3665

Events:
Anjos, Julio C. S., Fedak, Gilles, Geyer, Claudio F.R.: BIGhybrid – A Toolkit for Simulating MapRe-

duce in Hybrid Infrastructures, Computer Architecture and High Performance Computing Workshop
(SBAC-PADW), 2014 International Symposium on, UPMC - University Pierre et Marie Curie, 132–137,
Oct 2014

Simonet, Anthony, Anjos, Julio, Fedak, Gilles, He, Haiwu, Tang, Bing, Lu, Lu, Jin, Hai, Shi, Xuan-
hua, Moca, Mircea, Silaghi, Gheorghe, Cheich, Asma Ben, Abbes, Heithem: D3-MapReduce: Towards
MapReduce for Distributed and Dynamic Data Sets, International Conference on Big Data Intelligence
and Computing (DataCom 2015), 1 edition, IEEE, 20–30, Dec 2015

Anjos, Julio Cesar Santos, Filho, Bruno Reckziegel, Barros, Junior F., Schemmer, Raffael B., Geyer,
Claudio, Matte, Ursula: Genetic Mapping of Diseases through Big Data Techniques, Proceedings of the
17th International Conference on Enterprise Information Systems, 279–286, 2015

Anjos, Julio C. S., Assuncao, Marcos D., Bez, Jean, Geyer, Claudio F. R., de Freitas, Edison Pig-
naton, Carissimi, Alexandre, Costa, João Paulo C. L., Fedak, Gilles, Freitag, Felix, Markl, Volker, Fer-
gus, Paul, Pereira, Rubem: SMART: An Application Framework for Real Time Big Data Analysis on
Heterogeneous Cloud Environments, Computer and Information Technology; Ubiquitous Computing and
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Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing
(CIT/IUCC/ DASC/PICOM), 2015 IEEE International Conference on, 199–206, Oct 2015

Galibus, Tatiana, Anjos, Julio C.S., de Freitas, Edison Pignaton, Geyer, Cláudio F. Resin, Fedak, Gilles,
Jr., Rafael Timóteo de Sousa, Costa, João Paulo C. L., Pereira, Rubem, Fergus, Paul, Zaleski, Anton, Vissi,
Herman, Markl, Volker: Security Framework for Distributed Data Processing, International Conference
on Pattern Recognition and Information Processing (PRIP’16), Belarusian State University, 13th edition,
October 2016

da Silva, Veith Alexandre, dos, Anjos Julio C.S., Pignaton, de Freitas Edison, J., Lampoltsham-
mer Thomas, F., Geyer Claudio: Strategies for Big Data Analytics through Lambda Architectures in
Volatile Environments, IFAC-PapersOnLine 49(30), 114–119, 2016, 4th IFAC -Symposium on Telematics
Applications TA- 2016 Porto Alegre, Brasil, 6—9 November 2016

6.4 Future Works

Several activities are needed to build the SMART platform in a real environment.
First, it is necessary to conclude the cost model evaluations and the I/O interference of the
strategies defined in this Thesis. The algorithms to Global Aggregator need to be defined
and implemented. The Global Dispatcher stage need to be implemented and adjusted
with the Global Collector and the Big Data Engines.

In particular, a possible strategy to apply on the Dispatcher module is to create a
dynamic scheduler to provide an execution priority and avoid the delay in the task flow as
shown earlier. The mechanism of decision engine can have some strategies of this Thesis
deployed as a decision heuristic. The security module can have its algorithms studied for
an increase of performance. First studies are in the Annex.

In the Global Collector module, the repository services need to be integrated with the
SMART API and create a REST interface to sensing communication in low level. One
study of information quality provided by sensors must enable the use of data from these
devices grouped on zones in urban sensing to use with Big Data analysis in Smart Cities
applications. This study is important for future project submissions with some partners.

The central monitoring and the end user interface must be specified by a multidisci-
plinary team, including designers and graphic computation specialists. Finally, the storage
mechanism must be evaluated to include I/O interference and an evaluation of container
techniques. Currently, we are writing an article to a Journal about the Thesis conclusions.
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Annex 1 Resource Allocation

A.1 Resource Allocation in Cloud Computing

The problem of heterogeneous resource allocation in Cloud can be defined as follows.
If different users require similar resources from a CSP, and each user needs to meet het-
erogeneous demands, the system must decide which is the best resource assignment to
one or another user. For example, one user might need CPU-intensive applications with
a small data size, whereas another might need I/O-intensive applications with a Big Data
size. The CSP can only provide one machine with two VMs for each user, or when the
users with heterogeneous needs share a similar computer resource. What are the guaran-
tees that the behavior of one application will not influence another in the Cloud ? On the
other hand, the risk of the Cloud model only requires VMs so that it can have a provision-
ing based on demand and this creates an inefficient allocation of resources that results in
higher costs for the cloud provider (PALANISAMY; SINGH; LIU, 2015).

The problem of multiple resource allocation has been generalized in (GHODSI et al.,
2011) and is treated as a concept where each user receives a share of the resources propor-
tional to its weight. Ghodsi proposes the Dominant Resource Fairness (DFR) algorithm,
a generalization of the max-min fairness algorithm for multiple heterogeneous resource
types, shown in Algorithm A.1.1. Each user receives resources based on a user’s domi-
nant share, that is the maximum share that the user has been allocated from any resource.
The algorithm maximizes the minimum allocation received by a user of the system. This
algorithm is implemented by the resource manager in the MESOS platform (HINDMAN
et al., 2011), which has multiple cluster computing frameworks, such as Hadoop and MPI.
The scheduling decision has an O(log n) time for n users, although the current implemen-
tation is a single cluster within a heterogeneous workloads environment. This algorithm
has four properties for implementing a fair allocation policy:

1. Sharing incentive: Each n user should not be able to allocate more than 1
n tasks

from all the resources in a cluster.

2. Strategy-proofness: A user cannot inflate her allocation by requests for more re-
sources than necessary.

3. Envy-freeness: A user should not prefer the allocation of another user.

4. Pareto efficiency: The resource allocations are proportional. An increase in the user
allocation implies a decrease of another user.

The DFR algorithm shares resources based on the user’s dominant share (si). In this
case, the user job does not have a weight related to prioritization of execution. A weight
vector Ŵi = (ŵi,1, ....,ŵi,m) is needed to define a prioritization, where the user’s dominant
share is defined as si =maxm

j=1{ui, j/wi, j}.
The study of the problem of multiple resource allocation in Cloud computing systems

with heterogeneous servers is shown in the work of (WANG; LI; LIANG, 2014). Wang
proposes the Dominant Resource Fairness for the Heterogeneous servers (DFRH) algo-
rithm that is an extension of the DFR algorithm. The resources are pooled for they can
support to a lot of heterogeneous servers. DFRH seeks an allocation that equalizes the
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Algorithm A.1.1 DFR Algorithm - Pseudo-code
Require: R = r1, ....,rm ▷ total available resources (CPU, memory)
Require: C = c1, ....,cm ▷ consumed resources, Initially = 0
Require: si, i ∈ (1, ...,n) ▷ user i’s dominant shares, Initially = 0
Require: Û = (ûi,1, ...., ûi,m) ▷ resources given to user i, Initially = 0

1: pick user i with lowest dominant share si
2: Di←Ð demand of user i’s next task
3: if C+Di ≤ R then
4: Ĉ =C+Di ▷ update consumed vector
5: Ûi =Ui+Di ▷ update i’s allocation vector
6: si =maxm

j=1{ui, j/r j}
7: else
8: return ▷ cluster full

total value of every user’s global dominant share in the entire Cloud resource pool. Cur-
rently, data centers are facilities built with servers from processors of different generations
and heterogeneous resource groups of machines (with different types of processor, disk
technologies and memory size). An algorithm pseudo-code is shown in Algorithm A.1.2.
Dir is the total amount of resources for each user i, and Dir > 0,∀i,r ∈ R. The resource r∗i
is called global dominant resource if Equation A.1.1

r∗i ∈ r∈R
argmaxDir (A.1.1)

is true, i.e., r∗i is the most heavily requested computational resource, required by user i
over the entire resource pool from the available hardware resources m. The allocation A
is feasible if no server resource request is more than its total available resources. For each
user i, the allocation Ail must be a Nil(Ail) = minr∈R{Ailr

Dir
}. DFRH algorithm that is suit-

able for this environment where the users request a range of resources in heterogeneous
profiles and workloads. The main problem of this model is that it does not define how
the bandwidth problem can be handled among the multiple CSPs. The solution does not
define any operation for Big Data environments in Cloud.

In the DFR, the allocations only depend on the total amount of pooled resources while
in DFRH the resources are grouped among a large number of heterogeneous servers.The
DFRH algorithm creates a user’s global dominant share that is the maximum ratio of any
resources from the user that has been allocated in the resource pool (in all the servers).
The properties of DRFH allocations are defined below, and these are reduced to a single
server as in the case of the DFR algorithm and are shown in (WANG; LI; LIANG, 2014):

1. Sharing incentive: The users can at least execute the number of scheduled tasks,
when the entire pooled is already partitioned.

2. Group Strategy-proofness: A user cannot inflate her allocation by collaborating
with other users to create misreports and request more resources than necessary.

3. Envy-freeness: A user should not prefer the allocation of another user.

4. Pareto optimality: The resource allocation of a user does not improve until at least
another user has released a resource allocation.
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Algorithm A.1.2 DFRH Algorithm - Pseudo-code
Require: R = {1, ...,k} ▷ set of available resources (CPU, memory, storage,...)
Require: S = {s1, ...,sm} ▷ set of heterogeneous servers.
Require: ĉl = (ĉl1, ..., ĉlm)T ▷ resource capacity vector of server l ∈ S
Require: r∗i ▷ user i’s dominant resource, Initially = 0
Require: Û = {1, ....,n} ▷ set of Cloud users
Require: D̂i = (Di1, ....,Din)T ▷ resource demand vector
Require: Âil = (Ail1, ....,Ailm)T ▷ resource allocation vector

1: if cl +Di ≤ R then
2: Âil = cil + D̂i ▷ user i’s allocation vector
3: while Ailr ≤ clr do
4: ∑i∈U Ailr,∀l ∈ S,r ∈ R
5: else
6: return ▷ cluster full

A mechanism called FAWKES is a proposed scheduling system for the provision of
dynamic resources with multiple MapReduce instances (GHIT et al., 2014). This mech-
anism decides how and which resources must be allocated across multiple MapReduce
frameworks. The FAWKES receives calls to activate a MapReduce-cluster (MR-cluster)
or to execute a MapReduce-job (MR-job). These requests are serviced in multiple queues
with a FIFO policy. The main goal of this system is to have the load-balance from re-
sources across all the active MR-clusters. The data locality model is relaxed to allow the
replica reallocation. The goal is to allow data management and avoid data loss when a
node is moved away from the MR-cluster. However, the node removed from the MR-
cluster should only store a small amount of data to enable it to be reconfigured more
rapidly.

The MR-cluster can improve the capacity with transient or transient-core nodes. The
transient nodes are instantiated without local data, but can read and write data from or to
the transient-core nodes. The transient-core requires data to process but it can write to
its local disk. Thus, the FAWKES can improve the size of the MR-cluster without moving
data. The model does not follow a discrete approach in time like the DRF and DRFH
algorithms, but employs a temporal discrimination model represented by Di to determine
to what extent the system is balanced at each t moment, as in Equation A.1.2, where t1
and t2 represent the moments from the interval [t1,t2] of requests for the deployment and
removal of the MR-cluster. The proportion ci(t) of resources is shared on the basis of
weight wi(t) at moment t. The weight mechanism of the MR-cluster is an average value
of samples yi collected during a time interval, defined by Equation A.1.3, where n is the
number of active clusters.

Di(t1,t2) = ∫
t2

t1
(ci(t)−wi(t))dt (A.1.2)

wi(t) =
yi(t)

∑n
k=1 yk(t)

(A.1.3)

A time interval updates the weights in each MR-cluster. The instant preemption and
delayed preemption are two possible ways of shrinking when a node is removed from
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an activated MR-cluster. In the delayed preemption a data movement is needed to the
transient-core nodes before the task migrations. The weights will determine on-demand
policies for the job, data and tasks. These policies manage the access to processor (P),
disk (D) and a combination of these two resources, as in Equation A.1.4, where uP

i and
uD

i resources are standardized to P and D. The ψ ∈ (0,1) reflect the relative importance
of these two resources:

ui(t) =ψ ⋅uP
i +(1−ψ) ⋅uD

i (A.1.4)

CSPs allocate resources either statically, without taking account of the demands of
the users or dynamically when evaluating the current users’ demands. However, owing to
variations in user workloads, the dynamic provision is a more efficient resource utilization
mode, although it is harder to achieve optimal values. The studies of (MASHAYEKHY;
NEJAD; GROSU, 2014) and (NEJAD; MASHAYEKHY; GROSU, 2015) propose a means
of solving the dynamic provision problems with multiple resource types according to the
requests of users.

The Polynomial-Time Approximation Scheme (PTAS) is a mechanism to facilitate
Cloud resource provisioning based on users’ on-demand requests and the availability of
resources proposed in the study of (MASHAYEKHY; NEJAD; GROSU, 2014). The goal
is to find an allocation of resources for the users, by maximizing the social welfare, where
the social welfare is a metric of users’ evaluations. This mechanism solves problems of
provision of VM instances and resource allocation in the presence of multiple types of
heterogeneous resources. The PTAS determines a near-optimal allocation while satisfy-
ing the strategy-proofness property and allowing a dynamic provisioning of VMs without
requiring a VM pre-provisioning. They also take account of the problem of VM provi-
sioning and allocation in Clouds and regard it as a relationship between price versus the
user allocations. Each user first declares a request based on bundles and makes bids from
different CSPs, and on the basis of these requests, the CSP determines the allocation of
resources.

However, this relationship is one of conflict since the users want the highest number of
resources at the lowest price, whereas the CSP would like to receive the highest price with
the lowest number of allocated resources for one user. This problem can be solved with
an algorithm called DP-VMPAC which is based on a dynamic programming approach,
as shown in Algorithm A.1.3. The algorithm has two inputs, a user requests vector (θ̂ )
and a resource capacity vector (Ĉ = {Ĉ1, ....,ĈR}). As output, the algorithm has an optimal
social welfare (V∗), which is the VM value with the highest user aggregation expressed
in Equation A.1.5, and optimal allocation of VM instances for the user (x∗).

V =∑
i∈U

vi(Si)xi (A.1.5)

Where vi(Si) = bi represents the maximum price that the user is willing to pay for
using the requested bundle bi and xi, i ∈U are decision about the variables is defined as:

xi =
⎧⎪⎪⎨⎪⎪⎩

1 if bundle Si is allocated to user i,
0 otherwise

(A.1.6)

The algorithm begin by determining the amount of each resources (âir) of a specific
type (wmr) for a given user (i). DP-VMPAC algorithm solves the VM allocation problem
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Algorithm A.1.3 DP-VMPAC Algorithm - Pseudo-code
Require: Input: θ̂ = {θ̂1, ...., θ̂N} ▷ vector of requests (bundle, bids).
Require: Input: Ĉ = {Ĉ1, ....,ĈR} ▷ vector of resources.

1: Ŝi = (k̂i1, ..., k̂im) ▷ VM instances vector, where kim is the VM number requested.
2: for all i ∈U do
3: for all r ∈ R do
4: âir =∑m∈V M K̂imwmr, where K̂im ∈ Ŝi
5: Âi = (âi1, ...., âiR) ▷ Amount of all resources types requested by user.
6: if â1r ≤Cr,∀r ∈ R then
7: V(1,Ĉ) = b̂1
8: Ĉ =C− Â1
9: else

10: V(1,Ĉ) = 0
11: for all j = 1, ....,N do
12: V( j,Ĉ) =max{V( j−1,Ĉ),V( j−1,Ĉ− Â j)+ b̂ j}
13: V∗ =V(N,Ĉ)
14: Find x∗ looking backward at V( j,Ĉ)
15: Output: V∗,x∗

in time O(N(Cmax)R), where R = {1, ...,M} represents the different resource types and the
value Cmax = maxr∈R{Cr} represents the maximum resource capacities, for N users. The
Vickrey-Clark-Groves mechanism (VCG) determines a payment function, that is called
DP-VMPAC and is designed to find the allocation and a social welfare without any in-
tervention by the user. A function is a VCG mechanism if: Â is an optimal allocation
function and the provision of payment is defined in Equation A.1.7.

Pi(θ̂) = ∑
j∈U∖{i}

v j(A j(θ̂−i))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
optimal social welfare

− ∑
j∈U∖{i}

v j(A j(θ̂))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
all user valiations except for user i

(A.1.7)

This execution is prohibitive for large instances of VMPAC, because the problem is
NP-hard. Therefore there is not a fully polynomial time approximation scheme (FPTAS)
(MASHAYEKHY; NEJAD; GROSU, 2014). To solve this maximization problem the
authors introduce a strategy-proof PTAS mechanism, where for all instances of I with
associated error ε > 0, a solution S is found that satisfies the equation S(i) = (1−ε)S∗(I),
where S∗(I) is an optimal value of I. The algorithm called PTAS-ALLOC, is shown in
Algorithm A.1.4, and has three inputs: the vector of user requests θ̂i = (Ŝi, b̂i), the vector
of capacities Ĉ and an integer q, where q ≤N. To solve the problem, the authors consider a
subset V( j, d̂ ), where j is the first remaining user with the available capacity d̂. V( j, d̂ ) is
the optimal value to solve the problem, if the resource allocation for the jth user increases
the value of V( j−1, d̂ ), in this case, the bundle is allocated to the jth user. The maximum
value is V( j−1, d̂ ) and V( j−1, d̂ − Ã j)+ b̂ j results in an optimal value of V( j, d̂ ), as in
Equation A.1.8, where Ã j is the vector of the rounded size from requested resources of
user j. However, when q is equal to the user’s numbers, the algorithm degenerates into an
exhaustive search (MASHAYEKHY; NEJAD; GROSU, 2014).

V( j, d̂) =max{V( j−1, d̂ ),V( j−1, d̂− Ã j)+ b̂ j} (A.1.8)
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Algorithm A.1.4 PTAS-ALLOC Algorithm - Pseudo-code
Require: Input: θ̂ = {θ̂1, ...., θ̂N} ▷ vector of requests (bundle, bids).
Require: Input: Ĉ = {Ĉ1, ....,ĈR} ▷ vector of resources.
Require: Input: q

1: V = −∞
2: for all Û ⊆U ∶ ∣Û ∣ ≤ q do
3: x̂ = 0
4: V̂ = 0
5: sumr = 0,∀r ∈ R
6: for all i ∈ Û do
7: x̂ = 1
8: V̂ = V̂ + b̂i
9: for all r ∈ R do

10: sumr = sumr +∑m∈V M K̂imwmrx̂i
11: if Cr ≥ sumr,∀ ∈ R then
12: Û =U hatU
13: q̂ = ∣hatU ∣
14: for all r ∈ R do
15: dr =Cr −∑i∈U∑m∈V M K̂imwmrx̂i
16: d = (d1, ...,dR)
17: for all i ∈U do
18: for all r ∈ R do
19: âir =∑m∈V M K̂imwmr
20: âir = ⌈âirN2/dr⌉dr/N2

21: Ã = (ãi1, ...., ãR)
22: {DP to find(Ṽ , x̃) for (Ũ ,d) }
23: d = d
24: if dr ⩾ ã1r,∀r ∈ R then
25: V(1,d) = b̂1
26: d̂ = d− Ãi
27: else
28: V(1,d) = 0
29: for all j = 2, ...,N − q̂ do
30: V( j,d) =max{V( j−1, d̂),V( j−1, d̂− Ã j)+ b̂ j}
31: Ṽ =V(N − q̂,d)
32: Find x̃ by looking backward at V( j, d̂ )
33: if V < (V̂ +Ṽ) then
34: V = V̂ +Ṽ
35: x = x̂+ x̃
36: Output: V,x
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In the study of (NEJAD; MASHAYEKHY; GROSU, 2015) the problem for dynamic
provisioning is viewed as a multiple-unit combinatorial auction. The goal is to design
greedy mechanisms that determine the resource allocation problem in the presence of mul-
tiple types of resources (i.e. CPU, memory and storage). Each user has a personal value
and a personal resource type linked to her request. The approach is strategy-proofness
and the authors determine an approximation ratio of the proposed mechanisms, where
there are very many guarantees for the obtained solutions. The mechanisms are truthfully
greedy, although greedy algorithms do not necessarily satisfy properties required to guar-
antee truthfulness. The user request N resource types in a set U of users, that is denoted
by θ̂i = (Ŝi, b̂i). The allocation and payments depend on declarations of user resource
types. The allocation function finds a subset A(θ̂) ⊆U for winning users, where Ai is the
allocated resource to user i. A user valuation vi from an allocated resource of a bundle bi
is defined in Equation A.1.9.

vi(Ai) =
⎧⎪⎪⎨⎪⎪⎩

bi if Si ⊆ Ai,

0 otherwise
(A.1.9)

The bundle of VM instances requested by a single-minded user is the minimum amount
of resources that the user need to run her applications. The utility function is ui(θ) =
vi(Ai(θ))−Pi(θ), where Pi(θ) is the payment made by the leased resources of the CSP.
The mechanism calculates the value of Pi(θ) on the basis of a payment rule P. The users
declare different types of resources θ̂i = (Ŝi, b̂i) and receive the resource θi = (Si,bi) from
the CSP.

A user maximizes her resources due to truthful reporting regardless of other user re-
ports. The authors implement a preference relation ⪰ to create a strategy-proof, as follows:
θ̂ ′i ⪰ θ̂i if b̂′i ≥ b̂i and Ŝi =< k̂i1, k̂i2, . . . , k̂iM >, Ŝ′i =< k̂′i1, k̂

′
i2, . . . , k̂

′
iM > such that

∑m∈V M k̂′imwmr ≤∑m∈V M k̂imwmr,∀r ∈ R. The resources θ̂ ′i are preferred than θ̂i if the user
requests fewer resources in her current bundle b̂′i or submits a higher bid. The Amazon
uses an approach called spot market, but only allows requests to individual VM instances
and not to bundles of VM instances, as in this study (NEJAD; MASHAYEKHY; GROSU,
2015).

The authors propose the VCG-based truthful optimal mechanism, where the mecha-
nism M = (A,P) is a VCG mechanism if A maximizes the social welfare, and the payment
P is defined by Equation A.1.10 as:

Pi(θ̂) = ∑
j∈A(θ̂−i)

b̂ j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
optimal social welfare

− ∑
j∈A(θ̂− j≠i)

b̂ j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
all users validations

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
except those where user i had participated

(A.1.10)

The G-VMPAC-ALLOC, shown in Algorithm A.1.5, defines a general density metric
to determine how scarce a resource is, as defined in Equation A.1.11. This metric will
identify users with high service demands. The factor âir represents the total resources of
type r which the user i has requested. It is defined by ∑m∈V m k̂imwmr. The fr is a factor
that characterizes the scarcity of resource r.
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di =
b̂i√

∑R
r=1 fr âir

,∀i ∈U (A.1.11)

The authors argue that the fr can assume three different values:

1. G-VMPAC-I-ALLOC: when fr = 1,∀r ∈ R, it may not work well where the VM
instances are highly heterogeneous.

2. G-VMPAC-II-ALLOC: when fr = 1
Cr
,∀r ∈ R, this indicates that it has more idle

resources than requests.

3. G-VMPAC-III-ALLOC: when fr = ∑
N
i=1 âir−Cr

∑N
i=1 âir

, ∀r ∈ R. This reflects the scarcity of
resources, i.e., users with high demands of resources have lower fr and are less
likely to receive their requested bundles.

Algorithm A.1.5 G-VMPAC-ALLOC Algorithm - Pseudo-code
Require: Input: θ̂ = {θ̂1, ...., θ̂N} ▷ vector of requests (bundle, bids).
Require: Input: Ĉ = {Ĉ1, ....,ĈR} ▷ vector of resources.

1: V = 0
2: x←Ð 0
3: Ĉ =C
4: for all r ∈ R do
5: fr ←Ð 1, for G-VMPAC-I-ALLOC; or
6: fr ←Ð 1

Cr
, for G-VMPAC-II-ALLOC; or

7: fr ←Ð ∑
N
i=1 âir−Cr

∑N
i=1 âir

, for G-VMPAC-III-ALLOC

8: for all i ∈U do
9: di = b̂i√

∑R
r=1 fr âir

10: Sort U in decreasing order of di
11: for all i ∈ Û do
12: flag ←Ð TRUE
13: for all r ∈ R do
14: C̃r = Ĉr −∑m∈V M K̂imwmr
15: if C̃r < 0 then
16: flag ←Ð FALSE
17: break;
18: if flag = TRUE then
19: V =V + b̂i
20: xi = 1
21: Ĉ = C̃
22: Output: V,x
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Annex 2 Data Privacy in Multiple Clouds

The data of the organizations might involve both sensitive and non-sensitive informa-
tion. The computation of this profile should not be carried out in the public cloud without
a safe environment. Many users and businesses hesitate to keep confidential data in a CSP
because of data integrity and security problems, as described by Zhang (ZHANG et al.,
2014). The study of Zhang entails conducting a secure search of distributed keywords
across multiple clouds. The aim is to provide a secure search service for encrypted cloud
data. This approach has two schemes: the first scheme is a cross-store, i.e. all file slices,
keywords and keys are encrypted (this provides efficiency and anonymity for data own-
ers). The second scheme involves constructing a distribution strategy for both keyword
and files (this sets out the search and security requirements). These schemes are combined
with Shamir’s secret scheme to improve the distributed search system, where, all the files
and keywords for different CSPs are encrypted with different secret keys.

In the cross-store, each file is encrypted through an encryption key before it is distrib-
uted to N cloud servers or for some server in a particular CSP. The user has one particular
secret key Hs(kw, j) that will be used to encrypt a file segment Ci, j = (Fi, j)Hs(K f , j). The
file distribution is generated from random file slices (Fi,1,Fi,2, . . . ,Fi,N−1) with the same
length. Each file Fi carries out an exclusive OR operation ⊕ and Fi,N = Fi,1⊕Fi,2⊕ . . .⊕
Fi,N−1⊕Fi. Then the secret keys (k f , j, kw, j) and file slices (Fi,N) are cross-stored among
these CSPs. The authorized user retrieves the file slices and the secret keys when he wants
to access the data directly.

In the distribution strategy, a secret key is used to encrypt the files and a secret key
matrix shows the order of iterative encryption in the file slices. The file distribution is
stored in three stages: a) Each file is encrypted and partitioned into N file slices. b) The
system creates an iterative encryption matrix M with the file slices that are stored with
the user. c) The encrypted file is distributed over CSPs without the providers knowing
the secret matrix. When an authorized user wants to execute a security search, he issues
a trapdoor to CSPs to retrieve the encrypted file slices. Following this, these file slices
are decrypted and the original file is reconstructed. The trapdoor is an encrypted key-
word without previous information from the destination. The computational complexity
is O((N!)T ), where N is the number of CSPs and T is the number of iterative encryption
rounds.

Hybrid clouds uses local resources to process a determined number of workloads.
When these resources dry up in a “have-tail consume”, more availability is needed in a
public cloud, and issues like security and privacy become a problem, as shown in the study
of (ZHANG; CHANG; YAP, 2014). A safe computational approach to hybrid cloud is to
separate sensitive from non-sensitive data. The authors introduce a framework to MapRe-
duce for secure computing with mixed-sensitivity data in hybrid cloud called Tagged-
MapReduce. The data receives sensitive or non-sensitive flags and the key/value pair has
an equivalent tag.

The goal is to prevent sensitive data from leaving private cloud. The programmers can
decide where the computation will be executed. As a result, the input data and the inter-
mediate keys can be moved from a private cloud to a public cloud without compromising
security. The Map and Reduce phases produce {key/value; tag} pairs when a sensitive
input data is received. The scheduling of both HDFS and Jobtracker will identify the tag.
The function of the tag is to indicate the execution path for the system. The scheduler em-
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ploys all the intermediate results for private cloud to carry out the reduction, even though
the intermediate transfers might overload the private servers and generate a high volume
of data from clouds (whether public or private).

The study of (CHEIKH; ABBES; FEDAK, 2014) adopts an approach which involves
breaking data down into meaningless chunks and spreading them in a hybrid environment.
Meaningless data is obsolete and useless information, which if accessed by a malicious
worker cannot be used to reconstruct the original information. The aim is to improve
data privacy, through a combination of trusted and mistrusted infrastructures, like private
and public Clouds. The authors implemented the Information Dispersal Algorithm (IDA),
where after breaking and data scattering, each machine that seeks to access the original
data, has to contact other machines to get some missing chunks to reconstruct the infor-
mation. If m chunks are employed to reconstruct the data, m−1 chunks are deployed in a
hybrid cloud infrastructure like public cloud and desktop grid, the remaining chunks are
sent to a private cloud.

The scheme follows four phases: a) First, the input data is split to generate n chunks.
A header maintains the positions of the rows and columns of a key matrix in a vector.
The key vector indicates the ith row of the matrix and a body stores the data produced.
b) Second, the master sends these incomplete chunks to the mapper machines and waits
for the next phase of the processing. c) Third, each mapper randomly chooses its friends
from among all the mappers to receive their m−1 chunks and calculates an inverse matrix
needed to retrieve the complete data. d) Fourth, a combining phase rebuilds the original
chunk in memory. After this, the chunks are processed. The authors argue that the prepa-
ration phase can take a long time to complete. Hence, this approach might have a low
performance with high workloads.

B.1 Overview of the SMART Safety Model

This model was proposed by the Belarus team in the context of the SMART platform.
The proposed approach to secure Big Data systems in Cloud is an evolution of a cloud-
based access control and privacy protection infrastructure which is currently implemented
in a protected enterprise Cloud storage - Storgrid (BV, 2016). This infrastructure is the
core of the protected environment in the Cloud and has heterogeneous devices and an
attribute access-based policy. Thus, it is suitable for the SMART cloud-based architecture
and corresponding Big Data processing services. The proposed security infrastructure
includes the following components (as illustrated in Figure B.1).

Figure B.1: Security infrastructure and components

Encryption server manages all the certified authentication (CA) and encryption oper-
ations and grants the user access to the data storage. This server can store the encryption
keys and/or connect to a separate Key Storage server.
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File storage is secure in the sense that some of the files specified by the domain ad-
ministrator are stored, encrypted and have restricted access. Due to the fact that the file
storage data is partially stored in the cloud, i.e., externally, it is recommended this external
part of the file storage is completely encrypted.

The Client UI can connect to the Encryption server and ask for permission to access
the file storage to view/edit/upload specific files or folders.

All the components of the proposed system support the high-level cryptographic func-
tions, including different types of encryption, timestamp verification and hashing. To
improve efficiency, a hybrid encryption system is set up which combines both symmetric
and attribute-based encryption. This configuration ensures the privacy of the users without
compromising the overall encryption time. In addition, the basic ABE (BETHENCOURT;
SAHAI; WATERS, 2007), (GOYAL et al., 2006) approach was modified to improve the
configuration parameters and increase the speed of the encryption, for the purpose of
setting up the validation period from user key and more sophisticated attributes corre-
sponding to both the file shares and user groups. The basic functionality of the security
components can be briefly described as follows:

File storage: The bulk data in the protected file storage is encrypted with the appro-
priate block cypher (AES, Blowfish, IDEA, Serpent). The key to the encrypted data is
stored in the key storage and has an expiry period to provide better protection. Once the
portion of data is sent to the client, it is decrypted by the server and re-encrypted with
another single-use session key.

Key storage: The symmetric keys for the data in the file storage are kept in a sep-
arate storage system. The protection of the key storage is implemented by means of a
secure authentication method, i.e., two-factor authentication. Additionally, the following
methods are employed to increase the security of the sensitive data:

a. Setting up the key expiry period;

b. Using separate keys for the different files;

c. Using a secret sharing mechanism for key storage with the most sensitive data.

Encryption server: The most important cryptography services are run by the En-
cryption server. This server generates the user keys and connects to the client UI, i.e., a
separate user of the system and decides whether access to the specific dataset should be
granted to this user. In addition, the server runs the key renewal routines, stores the user
public keys and attributes/audits the data.

Client UI: Client UI connects to the encryption server and checks the expiry pe-
riod of the user keys (in case it has been configured) and permits the device user to
view/edit/upload the data. Client UI stores the user keys for the ABE encryption and
the single-use symmetric session keys which serve to restrict access to the downloaded
files. The symmetric keys are encrypted with the ABE keys. The client allows the whole
system to work in a heterogeneous environment as it supports different platforms and
operating systems.

The described modular infrastructure allows different components to be set up sepa-
rately and the security system to be configured for specific needs. The integration of the
security infrastructure into the Big Data environment is possible because of its flexibility
and scalable architecture. The main purpose of the proposed security infrastructure is
to ensure the setup of the access control in the cloud-based protected environment. The
access control mechanism performs the following tasks:
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1. Authentication of users in the cloud system: The initial authentication is performed
by the user password and email id. A hierarchical authentication system for highly
sensitive data is implemented to increase security. This involves a more sophisti-
cated two-factor authentication, as well as the password and access to e-mail; the
possession of a specific device is checked too. This can be used by the government
services or services that have the highly sensitive data.

2. Provision of access control functions and protection of data from unauthorized ac-
cess: once the user has been authenticated, he/she can obtain access to the functions
of the storage and then upload or download the data. The CA services are run by
the encryption server. The server generates and distributes the user keys and keeps
the group attributes along with the file sharing ids. Access control only allows data
to be securely distributed and shown to the user (or accepted by the user)if he/she
is permitted to view/edit it. This protection is ensured by a special version of ABE
which is used with the implementation of both possible policies: key policy – KP,
and ciphertext policy – CP, to support the attributes of the groups of users as well
as the attributes of the file shares. This algorithm is developed specifically for the
“access structure” of the proposed cloud architecture.

3. Protection of user data privacy: Once the user wishes to access a separate file that is
downloaded on the user’s device, the client uses his/her ABE key after performing
the authentication to decrypt the symmetric session key and open the file.

B.1.1 Security Infrastructure of the SMART Cloud-Based Processing Service

The SMART architecture and the proposed hybrid CA system are combined by sep-
arating the functions of the encryption server, i.e., the protection services that work once
the data has been uploaded (authentication, CA, encryption). This must run before the
data is sent to the Global Aggregator from the protection services that operate when the
data is downloaded, and must be set up after the data passes the Global Dispatcher (CA,
decryption, key refreshment). The encrypted cloud storage is also separated. The whole
“ecosystem” is shown in Figure B.2.

Figure B.2: Components of the security infrastructure and their interactions
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This integration model makes it possible to implement the required level of secu-
rity and user privacy in all types of government and corporate organizations and services
(like health services) using the SMART infrastructure. The modular design of the im-
plementation ensures protection of user privacy and controls access to sensitive data in
the heterogeneous environment via the Client UI which is developed for a wide range of
operational systems and platforms. Security is globally supervised with the aid of the
Encryption server and separate key storage. Additionally, this architecture can be eas-
ily extended so that more sophisticated methods can be used for ensuring data and key
protection, i.e., secret sharing or complex attribute policies.



144



145

Annex 3 Principais Ideias da Tese e Trabalhos Futuros

Um enorme volume de dados é produzido todos os dias, a partir das informações
fornecidas por redes sociais (tais como o Facebook, Instagram, Whatsapp, etc) ou gerados
por sensores e dispositivos móveis, incluindo aplicações de Big Data, como as pesquisas
no Google. Esse dilúvio de dados (também conhecido como data deluge requer cada vez
mais recursos computacionais para processar as informações mais rapidamente.

Este trabalho estabelece: i) uma nova plataforma chamada SMART que oferece análise
de Big Data em uma arquitetura Lambda sob uma infraestrutura híbrida; ii) um simulador
chamado BIGhybrid destinado a ser um kit de ferramentas para o estudo de análise de Big
Data em uma infraestrutura híbrida. Seu objetivo é permitir que o usuário possa encon-
trar a configuração mais próxima do real para a implantação de Big Data em ambientes
híbridos; iii) avalia o uso do módulo Dispatcher na plataforma SMART e iv) define es-
tratégias para o uso de grades de estações de trabalho Desktop Grid (DG) e computação
em Cloud Cloud Computing (Cloud) em um ambiente geograficamente distribuído em
uma infraestrutura híbrida. Além disso, busca encontrar as melhores estratégias de dis-
tribuição de dados neste cenário complexo para reduzir os riscos de problemas causados
por erros de configuração comuns neste ambiente.

Neste capítulo, há um resumo das principais ideias e contribuições apresentadas nos
capítulos anteriores, também apresenta as parcerias desenvolvidas durante este trabalho
e as publicações como resultado do desenvolvimento da tese. Finalmente, os trabalhos
futuros.

C.1 Contribuições

As principais contribuições podem ser resumidas como:
a) Fornecer uma plataforma que pode permitir a implantação da análise de Big

Data em infraestruturas híbridas
Um ambiente de infraestrutura híbrida foi estabelecido. Em seguida, as especificações

deram origem a uma nova plataforma chamada SMART (um acrônimo para análose de
dados em tempo real para pequenas e médias empresas do inglês Small & Medium-sized
Enterprise Data Analytics in Real Time). A plataforma permite a análise de Big Data em
uma infraestrutura híbrida. Em comparação com outros frameworks, esta plataforma usa
Cloud e DG, como sua infraestrutura básica e é incorporada em uma arquitetura Lambda
para o processamento de Big Data. A abordagem de implantação segue a utilização de
um sistema geograficamente distribuído .

Esta plataforma é composta de vários módulos que descrevem um Dispatcher Global
e u Global Aggregator. Este conceito permite o uso de uma infraestrutura de serviços
que usa várias abstrações de dados. O Dispatcher Global localizado fora da Cloud é uma
camada que lida com atribuições e tarefas e o gerenciamento de dados fornecidos pelo
usuário. A camada dissocia o sistema de armazenamento de dados e gerencia políticas
para a divisão e distribuição dos dados, de acordo com cada sistema.

O princípio de funcionamento é semelhante a um serviço de publicação/assinatura
(publish/subscriber), no qual a camada de publicação age como um produtor de dados
que depois é consumido pelos trabalhadores. O Global Aggregator ou agregador global,
obtém a saída de dados de ambos os sistemas e mescla as saídas para obter o conjunto de
dados final.
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b) Criar um simulador como uma ferramenta analítica de infraestrutura híbrida
e para análise de Big Data

BIGhybrid é um conjunto de ferramentas para simulação de MapReduce em ambientes
híbridos, como Cloud e DG, que foi validado por meio de experimentos reais. Ele pode
ser usado para avaliar estratégias de escalonamento para aplicações MapReduce em infra-
estruturas híbridas. A ideia por trás do simulador BIGhybrid é de otimizar ambientes
de infra-estrutura híbridas com recursos disponíveis de um sistema DG. BIGhybrid é
construído sobre o framework SimGrid (um simulador de propósito geral, construído em
Grenoble/Franca) em uma estrutura modular.

O simulador de BIGhydrid gera traços de cada sistema para permitir uma análise
individual ou coletiva a ser realizado dentro da mesma execução. O simulador permite
alterar várias estratégias para a alocação de recursos e distribuição dados de aplicações
MapReduce em infraestruturas híbridas. No BIGhybrid, o Global Dispatcher pode ser
manual ou automático. Na versão manual, o usuário define uma função para distribuição
de dados e uma configuração de trabalho. Essas configurações exploraram o número de
tarefas Map e Reduce, dados de entrada, a carga de trabalho, divisão de dados e assim por
diante.

Os resultados do módulo Global Aggregator são implementados como uma única
tarefa de Reduce após a última fase de Reduce ser concluída. As avaliações estatísticas do
simulador BIGhydrid indicam uma simulação com um relativo grau de precisão. O erro
médio percentual absoluto de 5%, (na pior das hipóteses para ambientes heterogêneos e
homogêneos) mostra que o simulador pode ser um instrumento eficiente para a avaliação
de infraestruturas híbridas.

c) Determinar estratégias de utilização de infraestruturas híbridas
Os experimentos são realizados em ambientes reais e simulados. O experimentos reais

em Cloud tem o objetivo de observar o comportamento de aplicações em tempo real em
um cenário de desacoplado. O ambiente simulado tem o objetivo de reproduzir as cargas
de trabalho de aplicações Big Data em um cenários semi-acoplados. As avaliações encon-
traram padrões de comportamento que permitem a implantação em ambientes híbridos em
baixa, média e alta escala, e estabelecer um conjunto de estratégias, tais como: i) a relação
entre o tempo de execução e o número de nós de voláteis; ii) a relação da distribuição de
recursos em Cloud e DG; iii) a relação entre o número de máquinas de Cloud e DG; iv)
a relação do tamanho dos dados em função da largura de banda disponível; v) a relação
entre o balanceamento de carga e o número de máquinas; vi) o custo relacionado com a
Cloud e o DG e o vii) a interferência I/O. Os resultados estão sumarizados na Tabela C.1.

Table C.1: Estratégias e Objetivos Atingidos
Parâmetros Estratégias Objetivos
Nós Voluntários 5% < ξ < 25% Atingido
Recursos de Cloud ΦCh = CkCh

Ckc
∗ WCh

∑M
i V mc(i) Atingido

Recursos de DG ΦDG = CkDG
Ckc

∗ WDG

∑M
i MDG(i) Atingido

Relação Φ entre Cloud e DG 1 ≤Φ ≤ΦC Atingido
Canal de Comunicação Tamanho de Chunk 32 MB a 64 MB Atingido
Balancemaento de carga ΦCh ≤ΦC ⇐⇒ΦDG ≤ΦC Atingido
Modelo de Custo C(Ji,Ck,n) = tr ∗(Ji,Ck,n)∗∑β

m=1 n∗Rcm Necessita avaliação
interferência de I/O Definir um valor para ρ Em aberto

Os resultados apontam que os ambientes híbridos mostram uma continuidade de op-
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eração em um ambiente com até 25% de nós instáveis na pior das hipóteses, sem perder
desempenho e com um número de 3 réplicas, a qual é o padrão do Hadoop. Os parâmet-
ros de ΦCh e ΦDG para encontrar recursos em Cloud e DG estabelecem um número de
máquinas adequadas para atingir um desempenho aceitável. Além disso, essas configu-
rações ajudam usuários inexperientes a localizar o número de máquinas Cloud e DG sem
um conhecimento prévio da infraestrutura de provedor de Cloud, o que pode ser consid-
erado uma contribuição significativa nesta Tese. A relação Φ entre a Cloud e a DG pode
ajudar os usuários a encontrar recursos ajustados para suas cargas de trabalho. Também,
a recomendação de tamanho de bloco na comunicação de canal pode contribuir para evi-
tar a movimentação excessiva de dados em aplicações Big Data sobre as infraestruturas
híbridas.

A relação entre a carga de trabalho, número de máquinas e balanceamento de carga
pode ser considerada uma contribuição significativa para fornecer balanceamento de carga
de dados e diminuir as transferências de dados entre máquinas de 39,1% para 57,14%
no melhor e pior caso, respectivamente. Estes valores são compatíveis com obras da
literatura.

A redução de tamanho de bloco pode produzir um pequeno aumento de desempenho
em Cloud com uma largura de banda de 1 Gbps. No entanto, uma diminuição do tamanho
de bloco de 64 MB para 16 MB gera uma perda de desempenho de 18.37% a 34.16%
para execuções com 300 Mbps e 50 Mbps respectivamente. Estes resultados demonstram
que a redução de dados resulta em um comportamento diferente em comparação entre
um ambiente híbrido e um ambiente homogêneo. Assim, com base nestes resultados, o
melhor tamanho de bloco para média e alta escala é de 64 MB e, em baixa escala, também
é possível usar tamanhos de bloco de até 32 MB.

O uso de cenários semi-acoplados e desacoplados permitem generalizar este projeto
de arquitetura para um vasto espectro de implementações de Big Data com dados disper-
sos em torno de diferentes locais, em particular, para dados geograficamente distribuídos.
Estes resultados representam uma contribuição significativa para a implantação de in-
fraestruturas de híbridas em aplicações de Big Data. Os resultados indicam uma redução
do curso de 10% a 50% no pior caso e no melhor caso respectivamente, em comparação
com somente uma execução em Cloud. No entanto, algumas estratégias como o modelo
de custo e interferência de I/O precisam de um estudo cuidadoso ainda em função da alta
especificidade do tema.

d) Encontrar um método preciso para realizar uma análise de uma infraestru-
tura híbrida

Um algoritmo foi implementado a partir dos experimentos para definir um método de
cálculo para a alocação de recursos no módulo Dispatcher. Além disso, esse algoritmo
tem adaptações para estimar o custo em ambientes híbridos. No entanto, o modelo de
custo precisa de uma avaliação cuidadosa. Os usuários inexperientes podem alocar o
número de máquinas para Cloud e DG sem um conhecimento prévio da infraestrutura do
provedor de Cloud.

As avaliações no ambiente simulado e experimentos reais mostraram que usar in-
fraestruturas híbridas em aplicações de Big Data pode ser viável. O fluxo de trabalho de
processamento em uma infraestrutura híbrida para aplicações da análise de sentimento
mostram as oportunidades para melhorar a execução dos motores de Big Data em função
dos gargalos encontrados.
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C.2 Comparação entre a plataforma SMART e trabalhos relaciona-
dos

Tabela C.2 mostra o SMART em comparação com trabalhos relacionados. A plataforma
permite o uso de ambientes geograficamente distribuídos em infraestruturas híbrida com
suporte a arquitetura Lambda. As principais estratégias considera o custo, recuperação
de falhas, rede de alças despesas gerais, distribuir dados para capacidades de ambiente,
preserva os mecanismos de replicação, minimiza a transferência dedados, fornecer um
sistema orchestrator, tem buit-in uma estratégia de grupo a distribuição de dados e tarefas
e habilitar sem barreiras. Esses recursos são adicionados às estratégias para distribuição
dedados e definição do número de máquinas do sistema. Os usuários inexperientes para
localizar nuvem e DG máquinas sem um conhecimento prévio da infra-estrutura do CSP.

Table C.2: Frameworks e técnicas de análise de Big Data
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(EKANAYAKE et al., 2010) Twister x x x x x
(MANSOURI; TOOSI; BUYYA, 2013) Brokering Alg. x x x x
(GUNARATHNE et al., 2013) Twister4Azure x x x x x x
(LE et al., 2014) SALSA x x x
(JAYALATH; STEPHEN; EUGSTER, 2014) G-MR x x x x x
(TUDORAN et al., 2014) GEO-DMS x x x x x x x
(PALANISAMY; SINGH; LIU, 2015) CURA x x

H
et

er
og

ên
eo (LIN et al., 2010) Moon x x x x x x

(LU et al., 2012) BitDew-MR x x x x x x x
(KRISH; ANWAR; BUTT, 2014) HATS x x x x x x
(ANJOS et al., 2015) MRA++ x x x x x

Si
st

em
as

H
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ri
do

s

(DING et al., 2011) Hadoop Streaming x x x
(TUDORAN et al., 2014) SC-CC x x x
(ALEXANDROV et al., 2014) FLINK x x x x x x x x x
(CLEMENTE-CASTELLÓ et al., 2015) Hybrid IaaS Cloud x x x
(TANG; HE; FEDAK, 2015) HybridDFS x x x x x x x x x x x
(VASILE et al., 2015) HySARC2 x x x
(GHAFARIAN; JAVADI, 2015) Cloud-aware x x x x x x x x
(PHAM et al., 2016) Cirus x x x x x x x
(Anjos, 2017) SMART x x x x x x x x x x x x x x

C.3 Parcerias Internacionais

Outra contribuição foi estabelecer uma ligação entre grupos de pesquisa que estim-
ulam a cooperação e o desenvolvimento de uma rede de pesquisa com pesquisadores
envolvidos com problemas semelhantes. Este trabalho pode examinar um modelo com
várias fontes de dados, variando de sensores sem fio com informações de interação de
usuário em ambientes abertos, tais como redes sociais, informações de open data e out-
ros. Os conjuntos de dados consistem de bases de dados de grandes corporações até
mídias de difusão, onde há uma clara necessidade de normalização. A ideia vem evoluído
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para uma plataforma de Big Data híbrida para o processamento de aplicações em difer-
entes domínios. Por causa disso, algumas instituições têm demonstrado interesse na
plataforma SMART. Assim, um "projeto de cooperação" foi criado para alcançar este
vasto domínio. Vários instituições envolvidos na pesquisa, estão resumidas em na Tabela
C.3. Ela fornece uma lista dos principais pesquisadores que estão envolvidos no trabalho
sobre a plataforma SMART.

Table C.3: Colaborações
instituições Grupos Localidade Pesquisador
INRIA/ENS Lyon LIP Lyon, France PhD. Gilles Fedak
INRIA/ENS Lyon LIP Lyon, France PhD. Marcos Dias Assunção
TUB DIMA Germany PhD. Volker Markl
JohnMoores University Liverpool, England PhD. Rubem Pereira
UnB LASP Brasilia, Brazil PhD. João Paulo da Costa
UFRGS Rio Grande do Sul, Brazil PhD. Edison Pignaton
Belarusian State University Minsk, Belarus PhD. Tatiana Galibus
Danube University Krems Austria PhD. Thomas J. Lampoltshammer
Chinese Academy of Sciences CNIC Beijing, China PhD. Haiwu HE
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C.5 Trabalhos futuros

Diversas atividades são necessários para construir a plataforma SMART em um am-
biente real. Em primeiro lugar, é necessário concluir as avaliações do modelo de custos e
de interferência de I/O definido nesta tese. Os algoritmos para o Global Aggregator pre-
cisam ser definidos e implementado. O Global Dispatcher precisa ser implementado e
então ajustar com o Global Collector e os motores grandes de dados. Em particular, uma
possível estratégia para aplicar no módulo Dispatcher é criar um escalonador dinâmico
para fornecer uma prioridade de execução e evitar o atraso no fluxo de tarefa como é
apresentado anteriormente.

O mecanismo de tomada de decisão pode ter algumas estratégias desenvolvidas nesta
Tese como uma heurística de decisão por exemplo. O módulo de segurança pode ter seus
algoritmos estudados para um aumento de desempenho. Os primeiros estudos estão nos
anexos. No módulo Global Collector, os serviços de repositório precisam ser integrados
com a API do SMART e criar uma interface REST para a comunicação de sensores em
baixo nível. Um estudo da qualidade das informações fornecida pelos sensores deve per-
mitir o uso de dados de destes dispositivos agrupadas em zonas em sensoriamento urbana
para usar com a análise Big Data em aplicações de cidades inteligentes. Este estudo é
importante para a apresentação do projeto futuro com alguns parceiros.

A central de monitoramento e a interface de usuário final devem ser especificadas por
uma equipe multidisciplinar, incluindo designers especialistas em computação gráfica.
Finalmente, o mecanismo de armazenamento deve ser avaliado para incluir a interferência
de I/O e uma avaliação de técnicas de container. Atualmente, estamos escrevendo um
artigo para uma revista sobre as conclusões da tese.




