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Abstract
We investigate the evolution of multicritical points under pressure and magnetic field in a
model described by two 5f bands (called α and β) that hybridize with a single itinerant
conduction band. The interaction is given by the direct Coulomb and the Hund’s rule exchange
terms. Three types of orderings are considered: two conventional spin density waves (SDWs)
and an exotic SDW, i.e., with no magnetic moment formation. The conventional SDWs phases,
are characterized by mβ

f > mα
f and mα

f > mβ
f , respectively, where mα

f and mβ
f are the intraband

staggered magnetizations. The exotic SDW, which has time reversal symmetry, is described by
a purely imaginary order parameter. This phase is related to a band mixing given by the
spin-flip part of the Hund’s rule exchange interaction. As result, without magnetic field, the
phase diagrams of temperature (T) versus pressure (given by the variation of the bandwidth
(W)) shows a sequence of phase transitions involving the three phases which gives rise to
multicritical points. The presence of the magnetic field (hz) has drastic effects on part of the
phase diagram and the location of the multicritical points.

Keywords: multicritical points, convencional and exotic SDW, 5-f electrons

(Some figures may appear in colour only in the online journal)

1. Introduction

The 5 f electron systems with their multiplicity of states of
matter, conventional and unconventional, competing for sta-
bility is a natural ground for the presence of classical and
quantum multicritical points. Recently, there have been several
observations in these systems that indicate classical tricritical
points (TCPs) as, for instance, USb2 [1], UN [2], UAu2Si2 [3]
and URu2Si2 [4] when a magnetic field is applied. An other
example is the presence of a classical bicritical point (BCP)
that appears in URu2Si2 when hydrostatic pressure is applied,
which is related to the competition between the puzzling hid-
den order and an antiferromagnetic phase [5]. The presence of

∗ Author to whom any correspondence should be addressed.

classical multicritical points allows a very interesting develop-
ment. They may eventually evolve, by varying some intensive
parameter, to become quantum ones [6] and thus, possibly,
exhibit behavior that deviates from the standard Fermi liquid
[7, 8]. Even so, the topic of classical multicritical points in
the physics of 5 f electron systems has not yet received due
attention.

The first question that may be asked is whether and which
Anderson-type model would be suitable to describe the phase
competition found in 5 f electron systems. Very recently, the
so called underscreened Anderson lattice model (UALM) has
been used to study multicritical points arising from competi-
tion between conventional itinerant antiferromagnetic phases
[9]. This model has two degenerate narrow 5 f bands (labeled
by χ = α, β), which are hybridized with a single itinerant
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conduction band. The interaction is composed of the Coulomb
and the Hund’s rule exchange interactions. This last term
makes the model manifestly spin-rotational invariant [10].
Indeed, the UALM has a close relationship with the under-
screened Kondo lattice model via a Schrieffer–Wolff transfor-
mation. This last model successfully described the coexistence
of ferromagnetism and Kondo effect observed in uranium and
neptunium compounds (see references [11, 12] and references
there in). Since the UALM can be considered a generalization
of the undrescreened Kondo lattice model, it might also be con-
sidered appropriate to describe some aspects of the 5 f electron
systems.

Our goal in this work is to show how classical multicritical
points can emerge from the competition between conventional
and unconventional spin density waves (SDWs) hosted in the
UALM. In fact, we refer to SDWs given by order parameters
(OPs) with odd or even parity under time reversal symme-
try. For the last case, we highlight the role of the Hund’s rule
exchange interaction in the UALM which gives a particular
type of mixing of the two 5 f bands, allowing the model to host
a phase that break spin-rotational and space-translational sym-
metry but does not the time reversal one. More precisely, this
exotic SDW, which does not involve magnetic moment forma-
tion, is specifically related to the spin-flip part of Hund’s rule
exchange interaction. We remark that this non-magnetic SDW
has been proposed to describe the hidden order in URu2Si2
[13]. From now on, we refer to this phase as an inter-orbital
spin density wave (IOSDW). In addition, there are two dis-
tinct intraband SDWs which can be stabilized with spin gap at
the same ordering wave vector [9, 13].

Specificaly, we study here, within the mean field approxi-
mation, the competition between the IOSDW and the conven-
tional SDWs in phase diagrams where pressure and magnetic
field are applied simultaneously. For this purpose, we explore
a scenario where the instability of the paramagnetic phase
toward to conventional and non-conventional SDWs occurs at
the same nesting vector. Here, we assume that the applied pres-
sure changes the inter-atomic distances and, thereby, changes
the bandwidth (W). In fact, W is the only model parameter
to be changed in the present work. The hybridization remains
constant. Furthermore, the hybridization matrix elements are
�k-independent. As a consequence, one may transform the basis
of the 5 f states into a new basis in which a linear combination
of f orbitals hybridize and the remaining orthogonal states do
not. This can lead to a situation which breaks the symmetry
between the 5 f bands. In other words, when the bandwidth
W increases, the intra-band nesting may occur simultaneously
for both bands or one band may become depart from the per-
fect nesting condition. Finally, we consider that the conven-
tional SDWs has a Neel OP which is fixed by an Ising-like
anisotropy as found in some uranium compounds [14–16].
The magnetic field is applied longitudinally to the Ising-like
anisotropy.

Some consequences competition between the phases
described above can be ascertained in advance from general
arguments based on a Landau free-energy expansion with
more than one OP. The simplest case with two OPs which
have odd parity, their coupling should be linear in a Landau

free-energy expansion. Since there is no additional change in
symmetry between the two phases, there is a first-order transi-
tions between them ending at a critical end point [17]. Within
UALM, these SDWs are characterized by a staggered magne-
tization for each band (here calledα or β) given by mα

f and mβ
f .

The first SDW, called AF1, occurs when mβ
f > mα

f , while in the

other one, called AF2, when mα
f > mβ

f . Indeed, the prediction
of the existence of a critical end point has been confirmed in
the UALM [9]. In the case where IOSDW is also stabilized,
the coupling among OPs is more complicated since they have
distinct parity properties under time reversal symmetry [18].
Therefore, in terms of a Landau free energy expansion, the
competition among AF1, AF2 and IOSDW can lead to a BCP
or a tetracritical point [19]. For further variation of pressure
or field, the nesting condition may no longer be satisfied lead-
ing to the suppression of the ordered phases. This last phase
transition line can present a TCP [9].

Lastly, because of the asymmetry between the bands, we
remark that the simultaneous effects of pressure the magnetic
field on the phases AF1, AF2, IOSDW and, consequently on
the multicritical points, are closely connected with changes
in the electronic structure of the problem. Particularly, the
effects of the magnetic field on each of the phases can be
traced directly from changes in the quasiparticle dispersion
relations [20].

This paper is organized as follow: the UALM is presented in
the section 2. In the section subsequent, we derive the Green’s
functions and the free energy. Then, in section 4, we intro-
duce the OPs to describe the usual and the exotic phases that
appear in the problem. In section 5, we present the phase dia-
grams temperature vs pressure without and with magnetic field
as well as results the electronic structure. Section 6 is dedi-
cated to the multicritical points and their evolution under mag-
netic field. The conclusions and other remarks are found in
section 7.

2. Model

The UALM Hamiltonian consists of three terms

Ĥ = Ĥ f + Ĥd + Ĥ f d. (1)

The 5 f-electron term Ĥ f is split in two parts as

Ĥ f = Ĥ f,0 + Ĥ f,1 (2)

where the free part H0, f describes two degenerate narrow 5 f
bands as given below

Ĥ f,0 =
∑
�k,σ

∑
χ

Eχ
f (�k) f †χ�k,σ

f χ�k,σ
. (3)

The f †χ�k,σ
are the creation operators for electrons with spin

σ(=↑, ↓) at site i. The χ-bands (χ = α and β) in equation (3)
follow the intraband and interband nesting property Eχ

f (�k +
�Q) = −Eχ′

f (�k) where χ = χ′ or χ �= χ′. Eχ
f (�k) describes an

electron band dispersion relation and the vector �Q is a com-
mensurate momentum transfer in the first Brillouin zone.

2



J. Phys.: Condens. Matter 33 (2021) 295801 J Faúndez et al

The second term in equation (2) describes the local
Coulomb and Hund’s rule exchange interactions given as

Ĥ f,1 =

(
U

2 N

) ∑
�k,�k′ ,�q,σ,σ′,χ,χ′

f †,χ�k+�q,σ
f †,χ

′

�k′−�q,σ′
f χ

′

�k,σ′
f χ�k′,σ

+

(
J

2 N

) ∑
�k,�k′,�q,σ,σ′ ,χ,χ′

f †,χ�k+�q,σ
f †,χ

′
�k′−�q,σ′

f χ�k′,σ′ f χ
′

�k,σ
. (4)

The conduction electron term Ĥd is expressed as

Ĥd =
∑
�k,σ

εd(�k)d†
�k,σ

d�k,σ (5)

where ε(�k) describes the dispersion relation of conduction elec-
trons labeled by the Bloch wave vector �k. The last term in
equation (1) describes the on-site hybridization process in the
UAL model by

Ĥ f d =
∑
�k,σ

∑
χ=αβ

(
Vχ(�k) f †χ�k,σ

d�k,σ + V∗
χ(�k)d†

�k,σ
f χ�k,σ

)
. (6)

The applied magnetic field can be added to equation (1) is
given as

Ĥext = −
∑
�k

∑
σ=±

σ[H f
z f †�k,σ

f �k,σ + Hd
z d†

�k,σ
d�k,σ] (7)

with H f (d)
z = g f (d)μBhz. The value σ = 1 and −1 correspond

to the up and down spin projections, respectively.
In the present work, the 5f band energy Eχ

f (�k) = ε f + ε f (�k)

and the conduction one εd(�k) pertain to a cubic lattice, thus

εb(�k) = −2tb[cos(kxa) + cos(kya) + cos(kza)] (8)

in which b = f or d, and a is the lattice parameter.
We apply a mean field approximation to the fluctuations of

the f -electrons operators that produces two possible instabili-
ties of the normal-paramagnetic phase in the UAL model, i.e.,
the IOSDW and the itinerant antiferromagnetic phase. There-
fore, we consider the normalized operators below related to
each instability:

ẑχ
′χ

�q,σ =
1
N

∑
�k

f †,χ
′

�k+�q,σ
f χ�k,σ

(χ �= χ′) (9)

and

n̂χχ
�q,σ =

1
N

∑
�k

f †,χ�k+�q,σ
f χ�k,σ

. (10)

Thus, the interaction term of the Hamiltonian given in the
equation (4) is expanded in powers of

Δẑχχ
′

�q,σ = ẑχχ
′

�q,σ − zχχ
′

�q,σ (11)

and
Δn̂χχ�q,σ = n̂χχ

�q,σ − nχχ
�q,σ. (12)

Therefore, the IOSDW OP is given by the expectation value
zχ

′χ
�q,σ . The staggered magnetizations for each f-band, mα

f and mβ
f

are obtained from

mχ
f =

1
2

(nχχ
�Q,↑ − nχχ

�Q,↓). (13)

3. Green’s functions

We assume the intra-orbital SDWs and the IOSDW instabil-
ities occur at the same nesting vector �Q of the cubic lattice.
Therefore, for the expectations values in equation (11) and
(12), we make the ansatz:

zχ
′χ

�q,σ = zχ
′χ

�Q,σ
δ�q,�Q (14)

and
nχχ
�q,σ = nχχ

σ δ�q,0 + nχχ
�Qσ
δ�q,�Q. (15)

From now on, we follow closely references [9, 13]
choosing a basis set for the f orbitals as Vβ(�k) = 0 and
Vα(�k) = Vα. The temporal and spatial Fourier transform of the
single-electron f –f Green’s functions is completed with the
mixed f –d Green’s function equation of motion given a closed
set which can be solved within a matrix formalism. Thus, one
has

G�Q,σ(�k, �k′,ω) = (Υ�Q,σ(�k,ω))−1δ�Q(�k, �k′) (16)

with

G�Q,σ(�k, �k′,ω) =

⎛
⎜⎜⎜⎝

Gαχ′
f f,σ(�k, �k′,ω)

Gβχ′
f f,σ(�k, �k′,ω)

Gαχ′
f f,σ(�k + �Q, �k′,ω)

Gβχ′
f f,σ(�k + �Q, �k′,ω)

⎞
⎟⎟⎟⎠

and

δ�Q(�k, �k′) =

⎛
⎜⎜⎜⎝

δαχ
′
δ�k,�k′

δβχ
′
δ�k,�k′

δαχ
′
δ�k+�Q,�k′

δβχ
′
δ�k+�Q,�k′

⎞
⎟⎟⎟⎠ .

The matrix Υ�Q,σ(�k,ω) is defined below

Υ�Q,σ(�k,ω) = ωI −
(
Λσ(�k,ω) −Φ−�Q,σ

−Φ†
−�Q,σ

Λσ(�k + �Q,ω)

)
(17)

where I is the unit matrix,

Λσ(�k,ω) =

(
Eα

fσ(�k) − ξα(�k,ω) 0
0 Eβ

fσ(�k) − ξβ(�k,ω)

)
(18)

and

Φ−�Q,σ =

(
−φαα

−�Q,σ
−κβα

−�Q,σ

−καβ

−�Q,σ
−φββ

−�Q,σ

)
. (19)

In the matrixΛσ(�k,ω), the mean field dispersion relation Ẽχ
f (�k)

is given by

3
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Figure 1. The phase diagram for J/U versus W for T = 0. The red
point represents a triple point. There is no triple point in the inset
(see discussion in the text).

Eχ
fσ(�k) = Eχ

f (�k) − σH f
z

+
∑
χ′

(
Unχ′χ′

−σ + (U − J)nχ′χ′
σ (1 − δχ,χ′)

)
.

(20)

One also has

ξχ(�k,ω) =
|Vχ|2

ω − εdσ(�k)
[δχα + (1 − δχβ)] (21)

with εdσ(�k) = ε(�k) − σHd
z . The gaps κχ′χ

−�Q,σ
and φχχ

−�Q,σ
in the

matrix Σ�Q,σ are given as

κχ′χ
−�Q,σ

= Jzχ
′χ

�Q,−σ
− (U − J)zχ

′χ
�Q,σ

(22)

and

φχχ

−�Qσ
=

∑
χ′

(Unχ′χ′
�Q,−σ

+ (U − J)nχ′χ′
�Q,σ

(1 − δχ,χ′)). (23)

4. OPs and free energy

In this section, we discuss the OPs for the competing conven-
tional and unconventional SDWs.

The IOSDW OP is given by the expectation value
of the non-Hermitian operator given in equation (9).
Thus :

zαβ−�Q,σ
=

1
N

∑
�k,σ

∫
C

dω
2πi

f (ω)Gβα
f,σ(�k,�k + �Q,ω), (24) Figure 2. Behavior of the OPs as function of W for different values

of J/U at T = 0.
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Figure 3. Phase diagram of T versus W . The continuous line
represents a second order transition while the dotted line is a
first-order transition. The two green points are BCPs and the red
point is a TCP.

where f(ω) is the Fermi function and Gβα
f,σ(�k,�k + �Q,ω)

is given in equation (A.1). The integration contour closes the
real axis and does not include the poles of the Fermi–Dirac
distribution. We can re-write equation (24) as

zαβ−�Q,σ
= κβα

−�Q,σ
X1σ(�Q) + φαα

−�Qσ
φββ

−�Qσ
X2σ(�Q) (25)

where

X1σ(�Q) =
1
N

∑
�k

∫
C

dω
2πi

f (ω)

×
gα
σ(�k,ω)gβ

σ(�k + �Q,ω) − |κβα

−�Q,σ
|2

D�Qσ(�k,ω)
(26)

and

X2σ(�Q, σ) =
1
N

∑
�k

∫
C

dω
2πi

f (ω)

D�Qσ(�k,ω)
(27)

with D�Qσ(�k,ω) defined in equation (A.4). Moreover,

gχ
σ(ω,�k) = (ω − Eχ

fσ(�k) − ξχ(�k,ω)) (28)

where ξ(�k,ω) is given in equation (21). From equations (22)
and (25), one can see that zβα−�Q,σ

and zβα−�Q,−σ
are coupled by

the Hund’s rule exchange interaction. Actually, the IOSDW
solution implies that zβα−�Q,σ

= −zβα−�Q,−σ
. Therefore, for IOSDW

to be time reversal invariant, which is the reason for its non-
magnetic character, the OP needs to be a purely imaginary
quantity [13, 20].

The real staggered magnetizations with Ising anisotropy
mχ

f (χ = α and β) (see equation (13)) are obtained from the

Green’s function Gχχ
f,σ(�k,�k + �Q,ω) given in equations (A.2)

and (A.3). Therefore, the α and β-band staggered magnetiza-
tions are expressed as:

mχ
f =

∑
σ

σ[φχχ

−�Qσ
X3σ(�Q) + |κβα

−�Q,σ
|2φχ′χ′

−�Qσ
X2σ(�Q)] (29)

Figure 4. Behavior of the OPs as function of W for different values
of T at hz = 0.

where χ �= χ′, σ = ↑, ↓ corresponds to +− and

X3σ(�Q) =
1
N

∑
�k

∫
C

dω
2πi

f (ω)

×
(gχ′

σ (�k,ω)gχ′
σ (�k + �Q,ω) − (φχ′χ′

−�Qσ
)2)

D�Qσ(�k,ω)
. (30)

In equations (26), (27) and (30), Dσ(�k, �Q,ω) = 0 (see
equation (A.4)) gives Ei,σ(�k) which are the quasi-particle

5
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Figure 5. Phase diagram T under W for several values of hz. The
continuous line (black color) shows a second order transition while
the discontinuous lines show a first-order transition.

dispersion relations that depend on the gaps φαα
−�Q,σ

, κβα

−�Q,σ
and

φββ

−�Q,σ
.

Within the Hartree–Fock approximation the total free
energy is given by

f t = Ω(T,μ) + μNt + f HO
HF + f AF

HF (31)

where μ is the chemical potential, Nt = nα + nβ + nd (nd is
the average occupation number of conduction electrons). Also

Ω(T,μ) = −kBT
1
N

∑
�k

∑
j

ln(1 + ε
−(E j,σ−μ+Hz)

kBT ), (32)

Figure 6. Phase diagram T under hz for different W values.

here N is the total number of sites of the lattice. The remaining
term is

f HO
HF = −N

∑
σ

∑
χ �=χ′

zχχ
′

�Q,σ
κχχ′
�Q,σ

(33)

with σ = ↑, ↓. The term f AF
HF is given by

f AF
HF = N(U[(mα

f )2 + (mβ
f )2] − 2Jmα

f mβ
f ). (34)

5. Results

The numerical calculations are performed with the nesting vec-
tor �Q = (π/a, π/a, π/a) and assuming Vα(�k) = Vα and 〈nα

f 〉+
〈nβ

f 〉+ 〈nd〉 = 1.609, where 〈nd〉 is the average occupation of
the conduction electrons. The occupation is chosen to enhance
the PM phase instability and does not refer to any specific real
5 f system.

We have also chosen the following parameters: (i) the tight-
binding parameters are td = Wd/6, t f = Wd/20, Vα = 1/10
eV and W f/Wd = 0.3 where 2Wd( f) is the width of the con-
duction (5 f ) band in order to be close to reference [9]. From
now on, Wd = W. Our results are qualitatively robust to the
numerical choice of parameters given above. The situation is
more complicated when it comes to choosing the J/U ratio.
This point will be discussed below.

5.1. Phases diagram without magnetic field

The phases diagrams are constructed from the coupled
equations for mα

f , mβ
f , zβα−�Q,σ

and zβα−�Q,−σ
(see equations (25) and

(29)) which must be solved self-consistently. In terms of OPs,
AF1 and AF2 appears when mβ

f > mα
f and mα

f > mβ
f , respec-

tively. Both phases have zβα−�Q,σ
= zβα−�Q,−σ

= 0. The IOSDW

phase has zβα−�Q,σ
= −zβα−�Q,−σ

�= 0 with mα
f = mβ

f = 0. The loca-
tions of the first order transition lines are obtained using the
free energy given in equations (31)–(34).

6
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Figure 7. Quasiparticle dispersion relations for: (a) W = 1.00, (b) W = 1.04, (c) W = 1.08, (d) W = 1.14 in the absence of the magnetic
field hz = 0 T in the high symmetry direction (0, 0, 0)–(1, 1, 1). The dashed red line indicates the position of the Fermi energy while the
black and the blue lines show the α and β bands, respectively.

In figure 1, the phase diagram J/U vs the bandwidth W
at T = 0 is shown. For J = 0, there is a complete decou-
pling between zβα−�Q,σ

and zβα−�Q,−σ
as well as mα

f and mβ
f (see

equations (25) and (29)). Although the AF1 and AF2 phases
appear for certain W ranges, the IOSDW phase does not exist
for any W . When J/U is finite but very small, the OPs re-
couple weakly. As a consequence, besides phases AF1 and AF2

the IOSDW phase begin to appear within a very small range
of W . As J/U increases, the width of the PM region within the
phase diagram decreases. This behavior is accentuated until
for a certain J/U threshold, the PM phase disappears com-
pletely. This situation generates a PM dome, where above it
there is a direct transition AF1 → IOSDW→ AF2. In figure 2
is shown the behavior of the OPs illustrating the evolution of
the phase diagram in figure 1. It should be noted that for J = 0
(see figure 2(a)) the intermediate PM solution is more stable,
although, mβ

f > mα
f = 0. We remark that the presence of multi-

critical points in finite T phase diagrams is entirely dependent
on direct transitions between phases AF1, IOSDW and AF2

at T = 0. Therefore, for finite T diagrams, we will choose val-
ues of J/U where the direct transition AF1 → IOSDW→ AF2

appears at T = 0.
Figure 3 displays the phase diagram T vs W for J = U/5

with U = 0.165 eV. When the temperature is lowered, there
are a second-order phase transitions from PM to any of phases
AF1, AF2 or IOSDW. Moreover, when W increases at lower
T , the two magnetic phases AF1 and AF2, i.e., phases with
time reversal symmetry breaking, are separated by the non-
magnetic IOSDW phases. It appears the phase transitions
sequence AF1 → IOSDW → AF2, with first order line tran-
sitions separating the phases. To complete the sequence of

phase transitions, there is a first order transition AF2 → PM.
Figure 4 shows the behavior of the POs as a function of
the bandwidth W for several finite temperature values. The
behavior of the POs shown in this figure illustrates the phase
evolution in the phase diagram shown in figure 3. In the tran-
sition AF1 → IOSDW both mβ

f and mα
f (with mβ

f > mα
f ) col-

lapse and the IOSDW becomes finite. In the transition IOSDW
→ AF2 the opposite happens. The IOSDW OP collapses and
mβ

f and mα
f are abruptly finite. But now with mβ

f < mα
f . Note

that for T = 25 K, there is only a second order transition
AF1 → PM.

5.2. Phase diagrams with magnetic field

In figure 5, the T vs W phase diagrams are shown with increas-
ing values of hz. The first significant effect is the lowering
the critical temperatures corresponding to the three transi-
tions PM → AF1, PM → IOSDW and PM → AF2. This
lowering of critical temperatures is more pronounced for the
IOSDW and AF2 phases. Also, the locations of the first order
lines in the phase transitions AF1 → IOSDW → AF2 and
AF2 → PM are displaced to larger values of the W. These two
effects compose what we will call from now on, flattening of
phases. As consequence, there is a slight enlargement in the
phase diagram of the AF1 region at the expense of IOSDW
one. The IOSDW and AF2 regions also enlarge slight at the
expense of AF2 and PM ones, respectively. We emphasize
that there is a different size of these effects for each of the
phases. Therefore, the AF2 phases are subjected to the most
flattening.

In figure 6, we fix the values of W in such way that we
can evaluate the evolution of phases AF1, IOSDW and AF2

7
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Figure 8. Quasiparticles dispersion relations at T = 0 for two distinct values of hz. The purple and green lines represent the spin up (σ = 1)
and spin down (σ = −1), respectively. Results are shown for the three phases AF1 (a), IOSDW (b) and AF2 (c).

when hz is varied. We find that the three phases are completely
suppressed above a certain value of hz. However, there is a dif-
ference in the value of the suppression value of hz for each
phase, i. e., the IOSDW and AF2 phases have almost the same
suppression hz value while for AF1, the value is clearly smaller.
Interestingly, our results indicate the same process of flattening
observed in the T vs W surface occurs in the T vs hz one. Again,
the IOSDW and AF2 phases are more affected by process
than AF1.

5.3. Quasiparticles dispersion relations

The quasiparticle dispersion relations Eχ
i,σ(�k) for the bands α

and β are obtained from Dσ(�k,ω) = 0 (see appendix A). In
absence of hz, the evolution of Eχ

i,σ(�k) for different W at T = 0
K is shown in figure 7. The case of the AF1 phase is shown in
figure 7(a)). Here, the double arrows indicate approximately
the locus of the β and α gaps. Notice that the Fermi energy
crosses both α and β gaps. However, as an effect of the Vα

hybridization, the α band crosses the Fermi energy near the
gap, giving a semi-metallic character for the AF1 phase. In
other words, the semi-metallicity refers to the situation where
Fermi surface is reconstructed in only one of the bands. The
same semi-metallic character is observed in the band structure
of the IOSDW phase shown in figure 7(b). In contrast, the band
structure for the AF2 (see figure 7(c)) phase indicates a metallic
character.

Figure 8 displays Eχ
i,σ(�k) with increasing hz. Due to the

spin dependence, σ = ±1, the number of bands is doubled.
The semi-metallic nature of the AF1 phase, figure 8(a), and
the metallic nature of the AF2 phase, figure 8(c), are main-
tained despite the increase in the hz. On the other hand, in the
IOSDW phase, figure 8(b), the increasing of the hz leads the
system to a purely itinerant state (semi-metallic → metallic).
In general, as the hz increases, the system enhances its itinerant
electronic character, redistributing the Fermi surface, mainly
due to the evolution from semi-metallic → metallic character
of the IOSDW phase.

8
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Figure 9. Evolution of the bicriticals points and TCP when hz

increases.

6. Multicritical points

The sequence of first and second order phase transitions, that
place the non-magnetic IOSDW phase between the AF1 and
AF2 phases shown in figure 3 gives rise to two BCPs. The
BCP1 is the meeting point of the second order transitions
PM → AF1 and PM → IOSDW with the first order one
AF1 → IOSDW. While the second BCP BCP2 involve AF2

instead of AF1. Moreover, there is also a TCP in the transition
AF2 → PM.

The locations of BCP1, BCP2 and TCP in figures 5(a)–(d))
when hz increases, reflects the process of flattening of the
phases mentioned above. The effects of such process in the
location of these multicritical points can be seen in the details
in figure 9. The mentioned process appears in the shift of the
positions of the multicritical points in W as hz increases. It can
be seen that the BCP1 is less shifted as compared to the BCP2

and the TCP. On the other hand, the displacement of the TCP
is even more pronounced than that of BCP2.

In figure 6, the phase transition lines feature three TCPs,
TCP1, TCP2 and TCP3 which are related to the transition lines
AF1 → PM, IOSDW → PM and AF2 → PM, respectively.
The process of flattening of the phases AF1, IOSDW and AF2

appears clearly in the ordering in T and hz of each of the TCP’s
since TTCP1 > TTCP2 > TTCP3 while hzTCP1

< hzTCP2
< h zTCP3

.

7. Conclusion

This work has described, within a mean field approximation,
the emergence of multicritical points coming from the com-
petition among phases with OPs which have distinct parity
properties (odd or even) under time reversal symmetry. We
have used the UALM [13]. This model, suitable do describe 5 f
electron systems, has two narrow bands, labeled by α and β,
hybridized with a single wide conduction band. The interaction
is given by the direct Columb and Hund’s rule exchange terms.
We obtain three distinct types of long-range order: (i) two con-
ventional SDWs (AF1 and AF2) and, (ii) the non-magnetic

IOSDW. This exotic phase is described by a purely imaginary
OP that mixes the α and β bands. The conventional SDWs are
described by the real staggered magnetization of each band
mα

f and mβ
f , where AF1 and AF2 are defined by mβ

f > mα
f and

mα
f > mβ

f , respectively. It is worth mentioning that the exis-
tence of a non-magnetic SDW has been suggested in other
context such as iron superconductors [21].

The competition among phases takes place with the vari-
ation of the W (mimicking the pressure variation) and hz.
In the absence of hz, the phase diagram T vs W dis-
plays at low T a sequence of first order phase transitions
AF1 → IOSDW → AF2. We also found two BCP. The first
one, called BCP1, is the intersection of the second order line
transitions PM→ AF1 and PM→ IOSDW with the first order
one AF1 → IOSDW. For the second BCP, called BCP2, AF1

is replaced by AF2. Lastly, there is a TCP in the transition
AF2 → PM. The location of the BCPs indicates that their exis-
tence is a direct result of the distinct parity property under time
reversal symmetry of the phases AF1, AF2 and IOSDW. This is
in agreement with general arguments based on a Landau free
energy expansion.

When hz is turned on, there are important changes in the
IOSDW phase and more markedly in the AF2 one. These two
phases flatten out which means that they stabilize at lower T
but with higher W values as compared to the situation with-
out hz. This is reflected in the location of BCP2 and TCP. The
evolution of their locations with the field shows the tendency
for these multicritical points to disappear because of the flat-
tening process of AF2 and IOSDW. The different behavior of
the phases when applying hz is related to the very nature of
each one. Phase AF1 is semimetallic since the Fermi surface
constructs in only one of the bands. In contrast, the phase AF2

is totally metallic. These two phases retain the same nature
when the hz is applied. Nevertheless, the IOSDW phase change
its nature when the field is applied. While one of the bands
always has a Fermi surface, the other band has a totally con-
structed Fermi surface. The gradual change from semimetallic
to metallic is the ultimate cause that leads the IOSDW phase to
have the flattening process more accentuated than AF1 phase,
although not as much as the AF2 one.

To conclude, although our results refer to a specific model,
we believe that the evolution of multicritical points with W
and hz as described here may be more general. For instance,
motivated by the concept of adiabatic continuity [22], one may
suggest the possibility that the present problem with three POs
(two of them reals and one purely imaginary) can be described
in a unified way in a single PO. That would be similar to the
interesting proposal made by Haule and Kotliar that a com-
plex PO accounts for the behavior of URu2Si2 under W and hz

[23]. In such scenario, it would be necessary to re-interpret
the multicritical points. We are currently investigating this
possibility.
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Appendix A. Green functions

The Green functions necessary to obtain the IOSDW and
AF OPs can be obtained directly from the equation (16).
Therefore, Gβα

f,σ(�k,�k + �Q,ω) is given as

Gβα
f,σ(�k,�k + �Q,ω) = D−1

σ (�k, �Q,ω) ×
[
|κβα

−�Q,σ
|3

+ |φαα
−�Q,σ

‖κβα

−�Q,σ
‖φββ

−�Q,σ
|
]

− (ω − Eβ
f,σ(�k + �Q))|κβα

−�Q,σ
|

× (ω − Eα
f,σ(�k + �Q) − ξα(�k + �Q)).

(A.1)

While Gαα
f,σ(�k,�k + �Q,ω) and Gββ

f,σ(�k,�k + �Q,ω) are:

Gαα
f,σ(�k,�k + �Qω) = D−1

σ (�k, �Q,ω) ×
[
|φββ

−�Q,σ
|2|φαα

−�Q,σ
|

− (ω − Eβ
f,σ(�k + �Q))|φαα

−�Q,σ
|

× (ω − Eβ
f,σ(�k)) − |κβα

−�Q,σ
|2|φββ

−�Q,σ
|
]
(A.2)

and

Gββ
f,σ(�k,�k + �Q,ω) = D−1

σ (�k, �Q,ω)

×
[
|φαα

−�Q,σ
|2|φββ

−�Q,σ
| − (ω − Eα

f,σ(�k) − ξα(�k))|φββ

−�Q,σ
|

− (ω − Eα
f,σ(�k + �Q) − ξα(�k + �Q))|κβα

−�Q,σ
|2|φαα

−�Q,σ
|
]
.

(A.3)

The term Dσ(�k, �Q,ω) in equations (A.1)–(A.3) is explicitly
given as:

Dσ(�k, �Q,ω) =
[
(ω − Eα

fσ(�k) − ξα(�k))(ω − Eβ
fσ(�k))

× (ω − Eα
fσ(�k + �Q) − ξα(�k + �Q))

×
(
ω − Eβ

fσ(�k + �Q)
]
− |καβ

−�Q,σ
|2
(
ω − Eα

fσ(�k)

− ξα(�k)
)

(ω − Eβ
fσ(�k + �Q)) − |κβα

�Q,σ
|2

× (ω − Eβ
fσ(�k))(ω − Eα

fσ(�k + �Q) − ξα(�k + �Q))

− (φββ

−�Q,σ
)2(ω − Eα

fσ(�k) − ξα(�k))
(
ω − Eα

fσ

(�k + �Q) − ξα(�k + �Q)
)
− (φαα

−�Q,σ
)2(ω − Eβ

fσ(�k))

× (ω − Eβ
fσ(�k + �Q)) + (φαα

−�Q,σ
)2(φββ

−�Q,σ
)2

− (φαα
−�Q,σ

)(φββ

−�Q,σ
)(|κβα

�Q,σ
|2 + |καβ

−�Q,σ
|2)

+ |κβα
�Q,σ

|2|καβ

−�Q,σ
|2. (A.4)
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