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RESUMO 

As mudanças climáticas são comuns e recorrentes na história do planeta. Atualmente 

passamos por um período de aquecimento principalmente devido a ações antrópicas. Esse 

aquecimento já se encontra acima de 1oC em média se comparado ao começo do século XX 

e há tendência de aumentar entre 1 e 4oC segundo as projeções de modelos climáticos para 

o final desse século. Essas mudanças na temperatura tem um impacto direto no ciclo 

hidrológico e vale a pena buscar entender como o clima vai se comportar para que 

possamos nos preparar para o futuro.  

Esse trabalho procurou explorar especificamente os efeitos das mudanças climáticas 

sobre os recursos hídricos no continente sul-americano. Isso foi feito observando as 

projeções de modelos climáticos e usando esses dados como entrada em um modelo 

hidrológico. Especificamente utilizamos o modelo hidrológico MGB-SA para simular os 

impactos nas vazões. Já os dados de projeções climáticas foram obtidos através de 25 

modelos climáticos globais para se analisar médias de longo termo e dados do modelo 

climático regional Eta para se avaliar eventos extremos. Dessa forma, conseguimos analisar 

tanto as projeções para disponibilidade hídrica como para as vazões de cheia. 

Foi observado que as regiões centrais e ao norte da América do Sul, particularmente 

as bacias da margem direita do rio Amazonas, e do rio Orinoco, Tocantins e Paraguai tem 

projeções de diminuição de vazão. Apenas o sudeste do continente, mais especificamente a 

região da bacia do rio Uruguai, deve apresentar aumento de vazão média de longo termo. 

Também observamos que em maior parte as inundações em grandes rios estão projetadas 

para diminuir, muito devido à diminuição da umidade do solo antecedente ao evento do que 

necessariamente devido à redução de chuva extrema. 

 

 

Palavras-chave: Mudanças Climáticas.  Recursos Hídricos.  América do Sul. 
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ABSTRACT 

 

 

Climate change is common and recurrent in the world’s history. We are currently going 

through a warming period mainly due to human actions. This warming is already above 1oC 

on average when compared to the beginning of the twentieth century and there is a tendency 

to increase between 1 and 4oC according to the projections of climate models for the end of 

this century. These changes in temperature have a direct impact on the hydrological cycle 

and it is worthwhile try to understand how the climate will behave so that we can prepare for 

the future.  

This work sought to explore specifically the effects of climate change on water 

resources in South America. This was done by observing climate model projections and 

using these data as input to a hydrological model. Specifically, we used the MGB-SA 

hydrological model to simulate the impacts on river discharge. It was used climate 

projections from 25 global climate models to analyze long-term averages and from the 

regional climate model Eta to evaluate extreme events. Therefore, we were able to analyze 

both projections for water availability and flood discharge. 

It is expected that the central and northern regions of South America, particularly the 

basins of the right bank of the Amazon River, and the Orinoco, Tocantins, and Paraguay 

Rivers present reduced average discharge. Only on the Southeastern South America, more 

specifically around the Uruguay River basin, it is expected an increase in the long-term mean 

discharge. We also observed that flooding in large rivers is projected to decrease, much due 

to the decrease in soil moisture preceding the event than to the reduction in extreme rainfall. 

 

Keywords: Climate Change. Water Resources. South America.  



SUMÁRIO 
Resumo ........................................................................................................................... 3 

Abstract ........................................................................................................................... 4 

Introdução ....................................................................................................................... 7 

Organização da Tese ................................................................................................... 17 

Conclusões ................................................................................................................... 20 

Artigo 1 .......................................................................................................................... 22 

1. Introduction ..................................................................................................... 23 

2. Methodology.................................................................................................... 24 

2.1. Hydrological Model - MGB .......................................................................... 24 

2.2. GCM data .................................................................................................... 25 

2.3. Bias Correction ............................................................................................ 26 

2.4. Assessment (significance and quantiles) ................................................... 27 

3. Hydrology of South America ........................................................................... 28 

4. Impacts on Water Budget Variables ............................................................... 31 

5. Impacts on River Discharge ........................................................................... 34 

6. Impacts on the Continental Water Balance .................................................... 39 

7. Conclusions..................................................................................................... 40 

Acknowledgements ................................................................................................... 41 

References ................................................................................................................ 42 

Supporting information .............................................................................................. 46 

Artigo 2 .......................................................................................................................... 49 

1. Introduction ..................................................................................................... 50 

2. Methodology.................................................................................................... 52 

2.1. The Eta Regional Climate Model ................................................................ 53 

2.2. Gridded Precipitation Reference ................................................................. 53 

2.3. Statistic Distribution for Extreme Event ...................................................... 54 

2.4. IDF Curves .................................................................................................. 54 

2.5. Spatial and Temporal Scale Experiments .................................................. 57 

2.6. Hydrological Simulation............................................................................... 57 

3. Results ............................................................................................................ 58 

3.1. Extreme Precipitation of Short Duration ..................................................... 58 

3.2. Temporal and Spatial Scale Analysis ......................................................... 63 

3.3. Precipitation bias effects on Streamflow ..................................................... 67 

4. Conclusion ...................................................................................................... 72 

5. References ...................................................................................................... 73 

Artigo 3 .......................................................................................................................... 82 



6 
 

1. Introduction ..................................................................................................... 83 

2. Methodology.................................................................................................... 85 

2.1. The Hydrology of South America ................................................................ 85 

2.2. The MGB-SA Hydrological Model ............................................................... 87 

2.3. The Eta Regional Climate Model ................................................................ 87 

2.4. Bias Correction ............................................................................................ 88 

2.5. Characteristic Time (Flood Wave Travel Time) .......................................... 89 

3. Results and Discussion .................................................................................. 90 

3.1. Precipitation ................................................................................................. 90 

3.2. Soil Moisture ................................................................................................ 93 

3.3. Flood Discharge .......................................................................................... 95 

3.4. Flood Drivers Analysis ................................................................................ 98 

4. Conclusions................................................................................................... 100 

5. References .................................................................................................... 101 

 

 



7 
 

INTRODUÇÃO 

Prólogo 

Mudanças Climáticas. Um termo que, como vários outros, ganhou significados além do 

que suas palavras remontam. Fruto da criatividade humana e de sua capacidade de atribuir 

sentimentos a coisas abstratas, de desenrolar histórias a partir de um simples ponto. 

Quantas emoções e pensamentos nos suscitam desse termo? Quantos textos inteiros 

surgem em nossa mente ao se confrontar com apenas essas duas palavras. Incômodo e 

fantasioso para alguns; grandioso e catastrófico para outros.  

Peço perdão e um pouco de paciência caso o leitor disponha de conceitos avançados 

sobre o tema. Começarei abordando questões simples que talvez sejam óbvias, repetitivas e 

até entediantes aos leitores mais especializados. Além do mais, estarei conduzindo o texto 

sobre um ponto de vista particular, mas com toda a boa intenção de um pesquisador 

iniciante, ousado e com conhecimento limitado. Por si só, a defesa de uma tese é uma ação 

de ousadia. 

Solicito que esqueça por um curto período o sentido inflado – porém não 

necessariamente incorreto – existente e apague as histórias construídas ao longo deste 

século. A partir de um conceito mais limpo será mais fácil para o leitor deglutir as intenções 

dadas a essa Introdução. Ao longo do texto nós vamos construir nossas definições, nossas 

histórias e atribuir nossos significados. Não me repreenda ainda. O termo não vai se 

desligar do que o leitor já está acostumado. Embora esteja totalmente conectado às 

definições científicas, nosso termo terá o sabor particular desse trabalho. 

Clima e Sua Dinâmica 

Clima são as condições atmosféricas médias sobre uma área durante um determinado 

período. A Organização Meteorológica Mundial (WMO) adota um intervalo de 30 anos para 

se avaliar o clima e estabelecer um padrão de normais climatológicas (Arguez and Vose, 

2011). Essa avaliação é feita através de centenas de variáveis meteorológicas que incluem 

informações médias anuais e sazonais, além de registro de extremos, de temperatura, 

chuva, umidade e pressão atmosférica, velocidade e direção do vento etc. A cada vez que 

essa janela temporal muda, as normais climatológicas também se alteram. Logo 

compreende-se que o clima é naturalmente variável, então há motivo de tanta 

preocupação? 

De fato, existe uma grande dinâmica no clima terrestre em diversas escalas temporais. 

O período do Pleistoceno (últimos 2 milhões de anos) é composto por ciclos glaciais que 

duram cerca de 100 mil anos e apresentam uma variação térmica em torno de 7oC (Snyder, 

2016). Estima-se que o último período glacial se encerrou há 12 mil anos e deu lugar ao 

período interglacial no qual nos encontramos hoje, denominado Holoceno. Também existem 

períodos climáticos de menor duração, como as recentes “pequena era do gelo” (Little Ice 
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Age) e o “período quente medieval” (Medieval Warm Period) que abrangem poucos séculos 

e tendências de mudanças médias de temperatura em torno de 1oC (Nesje and Dahl, 2003).  

No entanto, atravessamos atualmente uma situação bem particular. Reconstruções da 

temperatura global indicam que os séculos mais quentes do Holoceno ocorreram por volta 

de 6.000 a 7.000 anos atrás (Kaufman et al., 2020a). Estima-se que a temperatura média de 

alguns séculos consecutivos desse período foi aproximadamente 1oC mais quente do que 

nos anos 1850 a 19001. Trazendo para os dias atuais, pesquisas demonstram que, em 

breve, podemos alcançar uma condição no mínimo parecida. O planeta vem esquentando 

de forma progressiva e sem perspectiva de estabilização. A temperatura média global teve 

uma taxa de crescimento de 0,08oC por década a partir de 1880, sendo que se mudarmos a 

referência inicial para 1980, essa taxa aumenta para 0,18oC por década (ver o “2020 Annual 

Climate Report” da NOAA disponível online). Os anos de 2011-2020 já apresentaram 

temperatura média cerca de 1,1oC mais alta que 1850-1900. E ainda por cima, as projeções 

climáticas indicam que a temperatura será entre 1,5oC e 4,8oC mais alta ao final do século 

XXI em comparação a esse mesmo período (1850-1900) (Tebaldi et al., 2021), dependendo 

das políticas adotadas para controle de emissões de gases de efeito estufa (GEE) e 

mitigação. Pode parecer um crescimento gradativo, porém num ponto de vista geológico, 

climatológico, ecológico etc. é uma mudança bastante abrupta. Considerando o alcance 

dessas projeções, é provável que estejamos compondo os séculos mais quentes desse 

Holoceno, em outras palavras, o período mais quente dos últimos 100 mil anos se incluirmos 

a última era glacial.  

Embora essa última sentença seja forte, existem grandes possibilidades disso se 

concretizar. Logo há motivos evidentes para que esse tema seja explorado e 

exaustivamente estudado pela comunidade científica. Não tenho intenção de alarmar o 

leitor, afinal esse aumento de temperatura dificilmente ameaçará a sobrevivência da espécie 

humana e pode até ser pouco impactante numa sociedade com grandes capacidades de 

adaptação. No entanto, temos no mínimo a obrigação de tentar entender o quão diferente 

será o clima para ficarmos cientes da urgência da situação, já que iremos enfrentar 

condições climáticas sem precedentes na história moderna. 

Não me alongarei aqui quanto à responsabilidade humana sobre o aquecimento 

global. Essa é uma questão muito extensa e já temos tópicos suficientes para nos ocupar. 

Existem diversos estudos que fazem essa conexão, comprovando a influência antrópica no 

clima (e.g. Bindoff et al., 2013; Gillett et al., 2021; Ribes et al., 2017; Schurer et al., 2018). 

Apresento a seguir apenas algumas observações que sustentam essa hipótese: i) existe 

uma grande correlação entre temperatura e concentração de GEE (principalmente CO2) na 

atmosfera; ii) as concentrações de CO2 atuais aumentaram em mais de 100 ppm desde o 

começo do século passado, o que equivale a um aumento de 33%; iii) e muito 

 
 

1 Geralmente tomado como referência pois é o período mais antigo com alta confiança nos registros 
de temperatura e que se deu no início da 2ª Revolução Industrial. 
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provavelmente (high confidence utilizando a nomenclatura e a referência do AR62) as 

concentrações atuais de CO2 na atmosfera são as maiores dos últimos 2 milhões de anos.  

Incertezas das Projeções 

Ao contrário do que a seção anterior deixa transparecer, o clima não é exclusivamente 

composto de temperatura. As demais variáveis meteorológicas também assumiram 

diferentes faixas de valores ao longo da história e também têm sofrido influências antrópicas 

(Carmichael et al., 2017; Scussolini et al., 2019). Em minha defesa, mencionei apenas 

temperatura por se tratar de um índice referência para o clima e que tem uma grande 

quantidade de registros e pesquisas relacionadas (Kaufman et al., 2020b; Smerdon and 

Pollack, 2016). Além disso, os impactos causados pelo desenvolvimento industrial são mais 

diretos sobre essa variável, o que a torna uma via mais simples para se abordar e 

contextualizar o problema. As séries históricas observadas, sua relação com a concentração 

de GEE na atmosfera e as projeções oriundas de modelos matemáticos constituem grandes 

indicativos do aquecimento global, porém são menos conclusivos quanto a outras variáveis 

como precipitação (Flato et al., 2013). Ou seja, ainda existe muita incerteza quanto às 

alterações esperadas para outras variáveis atmosféricas que não temperatura (Knutti and 

Sedláček, 2013). 

Isso ocorre devido às deficiências das atuais ferramentas de previsão e à nossa 

limitada compreensão de processos físicos, que não permitem antever todas as 

consequências do aquecimento global. Os fenômenos atmosféricos são desenvolvidos por 

relações complexas e não-lineares entre variáveis que atravessam múltiplas escalas, 

formando um sistema extremamente caótico e apenas parcialmente compreendido (Xubin 

Zeng et al., 1993). Em seu famoso discurso no ano de 1972, Edward Lorenz deu um 

exemplo da alta sensibilidade do sistema atmosférico ao mencionar a possibilidade de um 

bater das asas de uma borboleta no Brasil causar um tornado no Texas (Ott, 2008). O caso 

denominado de Efeito Borboleta se tornou um dos exemplos mais citados da Teoria do 

Caos, inspirando até filmes hollywoodianos. Ou seja, estamos falando de um sistema 

incrivelmente sensível e que está sujeito a interferência humana. Logo se torna necessário 

procurar entender as consequências de se incluir uma nova variável nesse complexo 

conjunto de equações. Mas se atualmente nosso conhecimento e ferramentas são 

limitados, por que então nos damos ao trabalho de fazer projeções? 

Peço perdão ao leitor pois meus argumentos no parágrafo anterior acabaram 

misturando os conceitos de clima e tempo. Tempo são condições atmosféricas no instante e 

o clima, em um intervalo. Enquanto o tempo (weather) tem horizontes de previsão muito 

curtos (dias) por se tratar de componentes atmosféricos bastante dinâmicos, o clima 

 
 

2 Sixth Assessment Report – Sexto relatório do IPCC (Intergovernmental Panel on Climate Change) 
que faz um apanhado dos maiores avanços relacionados às mudanças climáticas. Consiste na maior 
referência existente sobre o assunto. 
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compreende horizontes de previsão maiores e incluem processos lentos que ocorrem na 

interação com os oceanos, terra e gelo (Toth and Buizza, 2018). Então, embora não 

sejamos capazes de prever eventos com grande antecedência (Slingo and Palmer, 2011; 

Smith, 2002), podemos ter uma estimativa do aumento ou diminuição da sua probabilidade 

de ocorrência e assim fazer projeções para o clima futuro. A modelagem é uma importante 

ferramenta para essas previsões, e que será abordada logo mais. 

Além disso, existem consequências simples e diretas de impactos antrópicos sobre o 

clima que são previstas em teoria. O próprio aumento de temperatura devido às emissões 

de GEE é um exemplo. A próxima seção exemplifica alguns desses impactos, dessa vez, 

sobre os recursos hídricos. 

Impactos Gerais sobre os Recursos Hídricos  

Várias hipóteses sustentam impactos diretos das mudanças climáticas sobre o ciclo 

hidrológico.  

Uma delas é que o aquecimento global deve contribuir com o aumento da quantidade 

de água na atmosfera, porém não necessariamente com um clima mais úmido (Feng and 

Zhang, 2015). As relações de Clausius-Clapeyron indicam que, a cada oC mais quente, a 

atmosfera é capaz de reter entre 6 e 7% mais vapor d’água. Dessa forma, entende-se que 

os eventos extremos de chuva serão mais intensos pois existe mais água disponível para 

precipitação em condições de saturação (Donat et al., 2016; Lenderink and Fowler, 2017; 

Myhre et al., 2019). Ao mesmo tempo, onde existe limitação de disponibilidade de água, a 

umidade relativa tende a diminuir com o aumento de temperatura (Byrne and O’Gorman, 

2016; Mendoza et al., 2021) fazendo com que as chuvas sejam menos frequentes apesar de 

haver uma maior quantidade de água na atmosfera.  

Um outro exemplo é o efeito do aquecimento global sobre a umidade do solo. O 

aumento de temperatura está fortalecendo o potencial de evaporação deixando o solo mais 

seco (Asadi Zarch et al., 2017; Samaniego et al., 2018). Isso tem consequências diretas na 

geração de escoamento e frequência de inundações (Sharma et al., 2018; Wasko et al., 

2020), além de aumentar o uso consumptivo da água por criar uma maior necessidade de 

irrigação para agricultura (Meza et al., 2020). 

Modelos Climáticos 

Entretanto existe uma heterogeneidade climática enorme no planeta e cada região 

será impactada de forma particular. Através de modelos climáticos podemos ter respostas 

em um campo espaço-temporal e alcançar projeções em diferentes cenários que são 

imprevisíveis apenas com teoria. Esses modelos constituem ferramentas matemáticas que 

calculam transferências de massa e calor na atmosfera e suas iterações com o oceano, 

terra e gelo (Flato et al., 2013). Atualmente a maioria dos modelos climáticos globais (MCG) 

também representam importante ciclos biogeoquímicos, como o ciclo do carbono e do 
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enxofre, constituindo o que chamamos de modelos do sistema terrestre (“Earth System 

Models”).  

Diversas instituições internacionais desenvolvem seu próprio MCG e fazem projeções 

de maneira independente. Logo se tornou conveniente padronizar as simulações dos MCG 

para possibilitar comparações de variáveis e cenários entre os diversos modelos. Isso foi 

alcançado graças ao “Coupled Model Intercomparison Project” (CMIP) coordenado pelo 

“World Climate Research Program” (WRCP3) (Eyring et al., 2016). Assim é possível avaliar 

as incertezas das projeções, entender defeitos e pontos fortes de cada MCG e contribuir 

com avanços consistentes nessas ferramentas. Ou seja, o CMIP nos permite entender onde 

temos mais segurança nas projeções climáticas e onde elas são ainda incertas e 

necessitam de melhorias.  

Atualmente nos encontramos na sexta fase do CMIP (CMIP6), que é relativo ao sexto 

relatório do IPCC4 (AR6). Para se ter uma ideia da quantidade de MCG sendo 

desenvolvidos, no atlas iterativo do AR6 (https://interactive-atlas.ipcc.ch/) são apresentados 

os resultados de um ensemble de 36 modelos do CMIP6 e 29 modelos do CMIP5. E essas 

ferramentas vêm sendo aprimoradas desde o CMIP3 (Flato et al., 2013). Atualmente a 

resolução horizontal dos MCG está entre 100 e 250 km, embora também tenham surgido 

projetos dentro do escopo do CMIP6 de estudar modelos globais de alta resolução 

(HighResMIP), com células de ao menos 50 x 50 km (Haarsma et al., 2016). 

De qualquer forma, os MCG ainda apresentam resoluções muito grosseiras para 

representar componentes mais detalhados da superfície como gradientes topográficos, 

corpos d’água, costa litorânea e áreas urbanas, que acabam impactando o clima regional 

(Feser et al., 2011; Giorgi, 2019). Sua resolução horizontal os torna de certa forma 

incompatíveis para estudos hidrológicos de média escala que são influenciados pela 

topografia local e cujo campo de precipitação é heterogêneo. Por isso, normalmente se 

adota ferramentas de downscaling dinâmico denominadas de modelos climáticos regionais 

(MCR) que são essenciais principalmente para investigações em bacias hidrográficas 

específicas (Teutschbein and Seibert, 2010). 

Os MCR são modelos matemáticos que tem uma resolução horizontal superior aos 

MCG (<20 km), porém abrangem um domínio menor (e.g. continentes). Os MCR utilizam 

dados de MCG como condição de contorno nas bordas do domínio, na temperatura dos 

oceanos e como condições iniciais (Chou et al., 2014b). Sua resolução permite representar 

fenômenos atmosféricos de mesoescala e até ventos induzidos por orografia (Antico et al., 

 
 

3 Programa sob a direção da World Meteorological Organization (WMO) responsável por coordenar as 
pesquisas climáticas, principalmente modelagem, incluindo projetos como o CMIP e o CORDEX. 
4 Intergovernmental Panel on Climate Change (IPCC) é uma organização criada pelas Nações Unidas 
em parceria com a WMO que define o estado da arte sobre mudanças climáticas dando suporte aos 
tomadores de decisões ao redor do mundo. 

https://interactive-atlas.ipcc.ch/
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2020), no entanto a resolução ainda não é suficiente para representar, por exemplo, chuvas 

convectivas explicitamente.  

É importante salientar que da mesma forma que existem esforços por MCG de alta 

resolução também existem iniciativas semelhantes para MCR. Esses estudos buscam 

alcançar modelos regionais com resoluções < 3 km e que permitam simular convecção de 

forma explícita (Prein et al., 2015). Logo podemos dizer que a comunidade científica se 

dedica ao desenvolvimento de modelos no limite da atual capacidade computacional, mas a 

todo momento fazendo pressão sobre essa barreira tecnológica e se preparando para 

conquistar maiores avanços.  

Portanto, gostaria de encerrar essa seção passando uma mensagem positiva. Já 

existem diversos sinais de mudança indicados pelos modelos, e esses sinais tendem a ficar 

cada vez mais nítidos pois temos uma grande expectativa de que essas ferramentas se 

tornem mais completas e precisas no futuro. A comunidade científica tem trabalhado 

bastante no desenvolvimento tanto de MCG quanto de MCR, e os testes e avaliações 

propostos dentro dos CMIPs tem se tornado cada vez mais abrangentes (Eyring et al., 

2016). 

Impactos nos Recursos Hídricos da América do Sul 

Quanto aos impactos das mudanças climáticas nos recursos hídricos, diversos 

trabalhos já foram desenvolvidos em bacias específicas da América do Sul e os modelos 

climáticos são as principais ferramentas metodológicas para isso. Borges de Amorim et al. 

(2020) faz um interessante compilado dos trabalhos que foram realizados para bacias 

hidrográficas brasileiras em uma plataforma online denominada YARA 

(https://www.labhidro.ufsc.br/yara/).  

No geral, os trabalhos normalmente utilizam dados de MCG ou MCR para alimentar 

um modelo hidrológico e detectar as mudanças através de comparações entre um período 

futuro e um período de base. Destaco aqui 3 trabalhos que acho relevante por se tratar de 

uma escala compatível com a que estamos abordando. Sorribas et al. (2016) estudaram a 

Bacia Amazônica e notou que os modelos projetam uma tendência de maior umidade no 

oeste da bacia, porém menores vazões ao leste, principalmente nos afluentes da margem 

direita do rio. Já Ribeiro Neto et al. (2016) avaliaram todas as bacias hidrográficas 

brasileiras – as  quais representam uma grande percentual das bacias sul-americanas – 

usando dados de MCR e concluiu que existirá uma diminuição geral da disponibilidade 

hídrica exceto no sul do país. Esses resultados também foram alcançados por da Silva et al. 

(2020) ao avaliar os impactos das mudanças climáticas sobre a Energia Natural Afluente no 

Sistema Interligado Nacional (SIN). 

Devo informar que nosso trabalho tem uma essência parecida. Nós fazemos 

simulações hidrológicas usando como forçantes tanto dados de MCR como de MCG. 

Porém, o estudo em questão tem várias particularidades que contribuem de maneira 
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significativa para o avanço do tema na América do Sul. Nós propusemos avaliar o continente 

sul-americano utilizando uma metodologia padrão que nos permite comparar os impactos de 

maneira sistemática em diferentes regiões do continente. Utilizamos também um modelo 

hidrológico construído e calibrado para a América  do Sul que apresentou resultados 

superiores a modelos hidrológicos globais (Vinicius A. Siqueira et al., 2018). Além disso, 

quando avaliamos os efeitos das mudanças climáticas sobre a disponibilidade hídrica na 

América do Sul, procuramos utilizar o maior número de MCG disponível (25), para podermos 

apresentar resultados considerando as incertezas associadas. E por fim, não apenas nos 

restringimos a observar as projeções de vazão, como também analisamos sua relação com 

outras variáveis hidrológicas como umidade do solo, precipitação e evapotranspiração, 

buscando explicar a causa dos sinais e tendências. 

Arrisco dizer que esse trabalho vai proporcionar uma visão completa e abrangente dos 

impactos das mudanças climáticas nos recursos hídricos na América do Sul, porém focando 

apenas em dados quantitativos e sem entrar em questões socioeconômicas e ecológicas. 

Sem mais delongas, os resultados dessas investigações e análises serão apresentados 

através de 3 artigos nas próximas seções. 
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ORGANIZAÇÃO DA TESE 

Essa tese está organizada em formato de artigos que foram escritos em inglês. Serão 

apresentados 3 manuscritos que já foram publicados, submetidos ou em processo de 

revisão interna que estão diretamente relacionados ao tema de “Impactos das Mudanças 

Climáticas nos Recursos Hídricos da América do Sul”. 

Primeiro gostaria de traçar os pontos comuns, as particularidades e a lógica por trás 

da sequência de apresentação. Todos os estudos foram construídos a partir da análise de 

resultados de modelos climáticos (destaca-se a precipitação) do CMIP5. Em seguida esses 

resultados foram usados como dados de entrada em um modelo hidrológico para poder 

simular o impacto das mudanças climáticas sobre os recursos hídricos (artigos 1 e 3), ou 

apenas para entender o efeito das incertezas das chuvas extremas na vazão (artigo 2). Em 

todas as situações o modelo hidrológico escolhido foi o Modelo de Grandes Bacias para 

América do Sul / MGB-SA (Vinicius A. Siqueira et al., 2018) que consiste numa ferramenta 

capaz de fornecer boas estimativas de vazão, armazenamento de água no solo e 

evaporação para o continente sul-americano. 

O objetivo do trabalho foi de avaliar tanto os impactos sobre mudanças médias de 

longo prazo como sobre eventos extremos. Como são informações distintas, esses assuntos 

foram estudados de forma separada. No artigo 1 avaliamos o balanço hídrico, destacando 

as mudanças médias nas bacias hidrográficas esperadas para o final do século. Assim, foi 

possível trabalhar com um número grande de modelos climáticos globais (25) que 

forneceram dados mensais dos quais removemos o viés e forçamos o modelo hidrológico. 

Já para analisar as projeções de eventos extremos (artigo 3) tivemos que utilizar dados 

diários numa resolução espacial mais alta através do modelo climático regional Eta, o que 

acabou reduzindo nosso leque de simulações (4). Antes de fazer essa avaliação de vazões 

de cheia, resolvemos testar a performance do Eta em simular chuvas extremas comparando 

com curvas IDFs em pontos e dados de chuva em grade. Assim pudemos entender as 

incertezas do modelo antes de entrar nas projeções. Esse estudo prévio resultou no artigo 

2. Figura 1 e a Tabela 1 trazem uma apresentação compacta da organização dos artigos.  
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Figura 1. Apresentação e organização dos artigos da tese caracterizados pelo nível de detalhamento 
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Tabela 1. Artigos da tese e o resumo de suas principais características metodológicas. 

Título (Inglês) Objetivo 
Modelos 

Climáticos 
Remoção 
de Viés 

Modelo 
Hidrológico 

Variáveis 
Analisadas 

Status 

1– Climate Change impacts on South 

American Water Balance from a 

continental-scale hydrological model 

driven by CMIP5 projections 
 

Avaliar projeções de 
mudanças médias nas 
bacias hidrográficas 

Ensemble de 
25 Modelos 
Globais 

Delta 
Change 

MGB-SA 

Evaporação 
Média, 
Precipitação 
Média, Vazão 
Média 

Publicado na revista 
“Climatic Change” 
(2020) 

2– Assessing long-term simulations of 

extreme precipitation from a regional 

climate model: A hydrological perspective 

in South America 
 

Avaliar a capacidade do 
Eta de representar 
eventos extremos 

Downscaling 
com o Eta de 
4 Modelos 
Globais 

Não se 
aplica  

MGB-SA  
Precipitação 
Extrema, Vazão 
de Cheia 

Submetido à revista 
“International 
Journal of 
Climatology” 

3– Assessing the Climate Change impacts 

on flood discharge in South America and 

the influence of its main drivers 
 

Avaliar projeções de 
mudanças sobre vazões 
de cheia 

Downscaling 
com o Eta de 
4 Modelos 
Globais 

Quantile 
Mapping 

MGB-SA 

Precipitação 
Extrema, 
Umidade do 
Solo, Vazão de 
Cheia 

Ainda em processo 
de revisão interna 
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CONCLUSÕES 

 

Embora tenham sido avaliados tópicos diferentes, os artigos foram ao mesmo tempo 

convergentes e complementares. Utilizando os dados de diferentes modelos climáticos globais e do 

Eta como entrada do MGB-SA, fomos capazes de analisar: art. 1) projeções de balanço hídrico no 

continente; art. 2) as incertezas dos dados climáticos (precipitação) e art. 3) projeções de vazões 

extremas. Isso foi feito de forma padronizada para todo o continente possibilitando comparações 

entre regiões e análises de incerteza. Observamos que os sinais e a distribuição espacial dos 

eventos extremos e de vazões médias de longo termo tiveram semelhanças, mas fizemos 

avaliações correspondentes a cada tipo de variável. As conclusões mais relevantes e os artigos 

referidos estão postos a seguir:  

1) O sudeste da América do Sul (e.g. bacia do rio Uruguai) é a única região do continente 

que apresenta projeções claras de aumento da vazão e maior umidade (o oeste da bacia 

Amazônica com menor evidência). Isso vale também para vazões de inundação com 

baixo tempo de retorno. Para vazões extremas de tempo de retorno mais alto, outras 

regiões também podem indicar um aumento. (art. 1 e 3) 

2) Bacias na região central do Brasil, margem direita do rio Amazonas, rio Orinoco, rio 

Tocantins-Araguaia e alto Paraguai (Pantanal) vão sofrer redução significativa na vazão. 

As projeções apontam para um alto impacto com sinais bem claros nessas bacias 

principalmente porque são regiões úmidas com alta disponibilidade de água para 

evaporação e ao mesmo tempo apresentam projeções de redução na chuva média anual. 

O impacto sobre vazões de cheia de baixo tempo de retorno é parecido. (art. 1 e 3) 

3) Para bacias com maior apelo socioeconômico como São Francisco, Magdalena, Parnaíba 

e alto Paraná, os sinais indicam uma diminuição da vazão média de longo-prazo, porém 

não tão claros como nas bacias do item anterior. A bacia do Paraná é uma região 

particular que perde o sinal negativo a jusante da foz do rio Iguaçu, onde começa a entrar 

numa região que se projeta maior umidade. (art. 1) 

4) As vazões mais extremas (tempo de retorno ≈ 20 anos) apresentaram sinais positivos em 

mais lugares do que as medianas das vazões máximas anuais (tempo de retorno de 2 

anos). Ou seja, existem locais em que os eventos mais extremos apresentam projeções 

de aumento enquanto vazões máximas anuais recorrentes tendem a diminuir (em torno 

de 10% dos casos). Isso é algo apontado na literatura, que os eventos mais extremos 

serão impactados de forma diferente. (art. 3) 

5) Espera-se que a umidade do solo diminua em quase toda a América do Sul, exceto no 

sudeste do continente que vai ficar mais úmido. Isso significa que o solo vai estar mais 

seco previamente a um evento de cheia. Detectamos que a influência da umidade do solo 
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antecedente deve ser maior que a influência da precipitação extrema quanto ao sinal dos 

eventos de inundação no futuro. (art. 3) 

6) Os resultados do cenário mais extremo (RCP8.5) possuem praticamente a mesma 

disposição espacial do cenário menos extremo (RCP4.5), porém com uma intensidade 

maior. (art. 1 e 3) 

7) O modelo climático regional Eta subestima as precipitações extremas de um dia de 

duração em praticamente todo o continente, exceto na costa oeste da Patagônia. Porém, 

quando se faz uma agregação temporal para média de 5 dias, por exemplo, esse erro é 

reduzido. Da mesma forma, os erros de vazão acabam diminuindo à medida que se 

aumenta o tamanho da bacia hidrográfica. (art. 2) 

É importante salientar que as conclusões relacionadas a eventos extremos se referem 

exclusivamente aos rios com área de drenagem maior que 1,000 km2, que são os rios simulados 

pelo modelo hidrológico. É discutido na literatura que os impactos das inundações sobre bacias 

pequenas são diferentes dos impactos sobre bacias grandes, as quais são exploradas nesse 

trabalho. Acredito que até o momento a escala que trabalhamos seja a mais adequada em relação 

aos dados de projeções climáticas, pois estes ainda apresentam muitas incertezas nas escalas 

menores, principalmente na representação de chuvas convectivas.  

Gostaria de ressaltar que esse trabalho foi capaz de cobrir de maneira sistemática mudanças 

médias de longo-termo e eventos de vazão extrema para o continente sul-americano. No entanto, o 

tema dos impactos sobre os recursos hídricos na América do Sul ainda não foi completamente 

esgotado. Nem de perto. Trabalhos futuros e de forma complementar são essenciais. Gostaríamos, 

mas não chegamos a avaliar os eventos extremos relacionados às secas. Sua duração, 

intensidade e o déficit hídrico na agricultura. Além disso, muito trabalho ainda pode ser realizado 

em menores escalas conforme ocorra o avanço na capacidade computacional e no 

desenvolvimento dos modelos climáticos para representar o microclima. É importante lembrar que 

nosso trabalho foi realizado no escopo do CMIP5, e atualmente já estamos na 6ª fase desse 

projeto. Logo a expectativa é que trabalhos posteriores apresentem previsões mais acuradas.  

Para concluir, destaco que, embora simulações e estudos futuros consigam atingir previsões 

mais confiáveis, é importante olhar para os resultados atuais e começar o planejamento para 

reduzir os impactos. As mudanças climáticas são uma realidade e devemos propor técnicas e 

alternativas viáveis para fornecer maior segurança à população. É necessário observar onde está 

previsto aumento das intensidades de cheias para evitar desastres recorrentes causados por 

inundações e fazer uma administração adequada do volume d’água observando seus múltiplos 

usos principalmente nas diversas bacias que apresentam uma diminuição da vazão média de longo 

termo. Por fim, gostaria de mencionar que a pesquisa dos impactos é apenas um primeiro passo 

rumo ao fortalecimento do tema diante dos tomadores de decisão. A importância desse assunto é 

indiscutível e a população deve ser devidamente orientada para lidar com o problema. 
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Abstract 

South America contributes around 30% of the global runoff to the oceans. As the regional 

economy and biodiversity extremely depend on its water resources, assessing the potential climate 

change impacts on the continental water balance is crucial to support water management planning. 

Here we evaluate the mean alterations on water budget variables and river discharge in South 

America by the end of this century testing two different GHG scenarios (RCP4.5 and RCP8.5). An 

ensemble composed by 25 Global Climate Models (GCM) from CMIP5 was used to force a 

continental-scale hydrologic-hydrodynamic model developed for that region. A negative signal with 

respect to changes on precipitation, evapotranspiration and runoff was observed on most of the 

continent. Major decreases in the annual mean discharge are expected on the Orinoco, Tocantins 

and Amazon basins, which would be around 8% - 14% at least (statistically significant - RCP4.5 and 

RCP8.5, respectively). Only the Uruguay Basin presented a positive trend on the mean discharge. 

 

Keywords: Water Resources, South America, Impacts, Climate Change  
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1. INTRODUCTION 

Climate models’ projections indicate temperature rise above 1.5 ºC by the end of this century 

and considerable changes on precipitation patterns around the globe (Flato et al., 2013). In South 

America, the mean precipitation is likely to increase in southeast and decrease in most areas 

between latitudes 5 to 20 degrees south (Chou et al., 2014). These climate trends will affect the 

occurrence of hydrological events (e.g. floods and droughts) and consequently socio-economic and 

environmental aspects in the continent (Reyer et al., 2017). Predicted water related impacts include 

reduction of long-term water supply due to glacier melts on tropical Andes (Chevallier et al., 2011; 

Vuille et al., 2018), drying on Andean Basins of subtropical (Vicuña et al., 2011) and Mediterranean 

(Bozkurt et al., 2018) climate types on Chile, decrease on hydroelectric production (Silveira et al., 

2017), modifications on biogeochemical properties of Amazon floodplains (Melack and Coe, 2012), 

increased flood risk on western Amazonia and southeast South America due to extreme events 

(Marengo et al., 2009) and increased desertification risks in Northeast Brazil (Marengo and 

Bernasconi, 2015). 

Climate projections are derived from Global Climate Models (GCM) driven by different 

scenarios of greenhouse gas (GHG) emissions. These outcomes provide atmospheric conditions to 

force hydrological models and consequently predict the climate change impact on water resources. 

The state-of-the-art GCMs are Land Surface Models which simulates not only the interaction 

between atmosphere, land, ocean and sea ice but also various biogeochemical processes as 

carbon, Sulphur and ozone cycles (Flato et al., 2013). However, GCMs are still limited by actual 

computational power (which defines modelling resolution), current physical understanding and 

mathematical/numerical representation of the Earth systems dynamics (Zhao et al. 2016), which 

reflects on model uncertainty (Flato et al., 2013). In order to increase climate projections 

performance and reliability, the World Climate Research Programme conducts the Coupled Models 

Intercomparison Project (CMIP) which involves a continuous and combined assessment and data 

availability of a broad set of GCMs (Eyring et al., 2016). 

GCM multimodel approaches are appropriate for impact studies as there are considerable 

uncertainties in climate projections, especially related to precipitation (Flato et al., 2013; Gulizia and 

Camilloni, 2015; Knutti and Sedláček, 2013; Torres and Marengo, 2013), and an ensemble of 

GCMs helps identify the magnitude of the uncertainties, increasing confidence where GCMs results 

converge. This is particularly important because precipitation is the main driver of hydrological 

models, and hydrological variables such as streamflow can be very sensitive to rainfall variations 

(Chiew 2006; Ribeiro Neto et al., 2016).  

In this context, several studies in South American basins have used hydrological models 

forced by outputs from GCM ensembles to evaluate climate change impacts (Adam et al., 2015; 

Bravo et al., 2014; Buytaert and Bievre, 2012; Guimberteau et al., 2017; Nóbrega et al., 2011; 

Siqueira Júnior et al., 2015; Sorribas et al., 2016a). However, independent studies on specific 

basins are often characterized by differences in the adopted methods (e.g. hydrological model 

selection, parameterization, bias-correction, downscaling), climatological data (i.e. number of 
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selected GCMs and different CMIP phases), scenario, and evaluation period, which hinders a 

comprehensive assessment of how the impacts on water resources vary across different regions 

and how reliable the projections are. 

At the same time, other studies have assessed the effects of climatic trends on a larger scale 

through global hydrological models – GHM (Arnell and Gosling, 2013; Koirala et al., 2014; Sperna 

Weiland et al., 2012). A broader perspective offered by GHMs is an alternative to easily identify the 

spatial distribution of climate change impacts at larger scales, permitting an integrated water 

resources planning at the continental level. However, GHM uncertainties could be as significant as 

GCM uncertainties (Guimberteau et al., 2017; Hagemann et al., 2013; Schewe et al., 2014), which 

leads to the adoption of a multimodel approach not only for GCMs but for GHMs as well, in order to 

increase confidence in the overall results. Ensembles composed by several GHMs and GCMs are 

being increasingly used to address the uncertainty in climate change related impacts, and some 

examples include the effects on runoff trends (Hagemann et al., 2013), flood hazard (Dankers et al., 

2014), water scarcity (Schewe et al., 2014) and streamflow extremes (Asadieh and Krakauer, 2017). 

More recently, attention has been given to the cross-scale comparison of global and regional 

hydrological modeling approaches. Despite the former may be useful to provide large-scale 

projections of climate change impacts, it lacks confidence when specific rivers or regions are of 

interest due to the absence of calibration and consequent poor performances in the historical period 

(Hattermann et al., 2017; Krysanova et al., 2018). Moreover, in large South American basins subject 

to extensive flat areas, it is also important to account for vertical processes in floodplains and its 

related hydrodynamics to achieve reasonable results (Vinícius A Siqueira et al., 2018), which are 

usually not represented by GHMs. 

The objective of this paper is to assess the impacts of climate change on South American 

water resources according to CMIP5 projections. We use a continental-scale, hydrologic-

hydrodynamic model specifically calibrated for South America to provide insights on where 

alterations of water budget variables and river discharge are expected, and how they compare to 

the uncertainties of projections. This article is organized in the following sections: i) Methodology – 

which contains descriptions of the hydrological model, climatological data, bias correction method 

and assessment approach; ii) a summary of the South America hydrology; iii) results and discussion 

about the main impacts of climate change on water resources which was divided as: impacts on 

precipitation, evapotranspiration and runoff, specific impacts on discharge and overall water balance 

on the continent. 

2. METHODOLOGY 

2.1. Hydrological Model - MGB 

The Modelo de Grandes Bacias – MGB (Paulo Rï¿½genes Monteiro Pontes et al., 2017) was 

selected for this study due to: (i) its capability to represent the main South America hydrological 

processes as it was developed through experiences in this region (Siqueira et al., 2018), (ii) its 
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performance demonstrated in previous validation studies and (iii) its successful application in 

several climate change studies in specific South American basins (Adam et al., 2015; Bravo et al., 

2014; Nóbrega et al., 2011; Sorribas et al., 2016a).  

The MGB is a conceptual, distributed hydrological model, in which the river basin is divided 

into unit-catchments following the terrain, and into Hydrological Response Units (HRU) defined by 

land use, land cover, geological features and soil types. The HRU classification was based on the 

soil and land use map for South America provided by Fan et al. (2015). The water balance is 

calculated on each HRU within a unit-catchment and evapotranspiration is calculated through the 

Penman-Monteith equation. The water stored on the soil layer heads to three different linear 

reservoirs per unit-catchment: surface, subsurface and groundwater reservoirs. The water flows to 

the surface reservoir following the ARNO model (Todini, 1996) while the subsurface and 

groundwater flows are respectively non-linearly and linearly related to the water storage in the soil 

layer. The water volume that heads to the river channel is proportional to the volume stored on each 

reservoir. The flow routing on the river channel is computed using a hydrodynamic model (Paulo 

Rï¿½genes Monteiro Pontes et al., 2017), accounting for inundation and infiltration from flooded 

areas into the unsaturated soil column in floodplains (Fleischmann et al., 2018). 

The MGB has been frequently used for assessing climate impacts in South American basins 

(Adam et al., 2015; Bravo et al., 2014; Nóbrega et al., 2011; Sorribas et al., 2016a). In a broader 

scale, Ribeiro Neto et al. (2016) used MGB to simulate climate change effect in the main Brazilian 

basins, although with no streamflow routing between cells. Here we used the same continental 

scale, hydrodynamic model setup from Siqueira et al. (2018), which was developed for South 

America region (hereafter named as MGB-SA) and enables to obtain discharges along the drainage 

networks in addition to runoff. MGB-SA has been manually calibrated by linking parameters to 

HRUs, large basins and geology/lithology maps instead of applying automatic calibration at specific 

gauge stations, aiming to reduce model overfitting (Siqueira et al., 2018). This model has been 

validated with hundreds of in situ gauges and compared favorably to GHMs with respect to river 

discharges (daily data KGE and NSE > 0.6 in 70% and 55% of the gauges, respectively). MGB-SA 

was also validated with terrestrial water storage from the Gravity Recovery and Climate Experiment 

(GRACE) and evapotranspiration from multiple datasets, which increases confidence to simulate 

general hydrological processes and consequently climate change impacts (Krysanova et al., 2018). 

Nonetheless the model does not include snowmelt processes and present unsatisfactory 

performances on arid regions, as discussed in the model development and validation (Siqueira et 

al., 2018). 

2.2. GCM data 

The GCM data used in this study is a subset of the CMIP5 multi-model ensemble snapshot of 

March 15, 2013, which was discussed on the IPCC Working Group I AR5 report. This dataset 

consists of monthly means of climate variables from 1850 to 2100. Our assessment was conducted 

considering two distinct periods of 20 years, baseline period (1986-2005) and future (2081-2100), 

and two different scenarios, RCP 4.5 and RCP 8.5. The scenarios are named after the radiative 
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forcing increment in W/m² by the end of the 21st century compared to the pre-industrial era, and 

those are specially related to GHG emissions policies. RCP 8.5 (Riahi et al., 2011) represents a 

scenario with no concern about GHG emissions on a highly industrial society, while the RCP 4.5 

represents a more moderate scenario (Thomson et al., 2011). 

We selected the GCMs that provide the prescribed MGB-SA input variables, simulation 

periods and GHG emission scenarios. The hydrological model MGB-SA requires as climate inputs: 

air surface temperature, relative humidity, wind speed, atmospheric pressure, income shortwave 

solar radiation (evapotranspiration variables) and precipitation. Except for rainfall data, climate 

variables used as input for MGB-SA were long-term monthly means. The 25 selected GCMs are 

listed in the supporting material. 

2.3. Bias Correction 

Raw GCM data are limited as input to hydrological models due to existing biases. Instead, 

climatological databases derived from system observations are taken as reference to reduce the 

GCM biases by means of bias correction methods (Christensen et al. 2008; Pierce et al. 2015; 

Teutschbein and Seibert 2012). Although discussions have arisen about the effectiveness of these 

methods and how they represent a new source of uncertainty (Ehret et al. 2012; Muerth et al. 2013; 

Zhao et al. 2017), bias correction is still necessary on hydrological modeling, since streamflow 

sensitivity to precipitation depends on the precipitation volume itself, i.e., a precipitation bias could 

cause an significantly higher bias on streamflow (variable runoff coefficient).  

The delta change method is simple and robust since the model projection is built over the 

current climate; however it ignores simulated climate dynamics as extreme events or number of wet 

days (Teutschbein and Seibert, 2012). As we are dealing with a continental scale and monthly 

means of climate variables from GCMs, specific events were ignored and only annual means were 

analyzed. The delta change method can be either additive or relative as described below: 

Relative: 𝑃𝑓
∗ = 𝑃𝑝

∗ × (
𝑃𝑓

𝑃𝑝
)   Additive: 𝑃𝑓

∗ = 𝑃𝑝
∗ + (𝑃𝑓 − 𝑃𝑝) 

where 𝑃𝑝 and 𝑃𝑓 are the simulated monthly means of GCM variables for the baseline and future 

periods, respectively; 𝑃𝑝
∗ is the observed variable value from a climatological database; 𝑃𝑓

∗ 

represents the bias-corrected variable for the future period. 

The relative delta change was used for precipitation while the additive method was used for 

the remaining climate variables. The climate model variables (𝑃𝑝 and 𝑃𝑓) refers to the 20-yr mean for 

each calendar month. As the water balance component of the MGB-SA is run with a daily time step, 

the daily precipitation of the climatological database (𝑃𝑝
∗) was multiplied by the 𝑃𝑓/𝑃𝑝 ratio of the 

respective month. However, some limiting conditions were imposed to the delta change method due 

to relative precipitation changes on very dry areas (described on the supporting information text).  
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The reference climatological databases used are: (i) the MSWEP v1.1 (Beck et al., 2017) daily 

precipitation dataset from 1990 to 2009 and (ii) the CRU Global Climate v.2 (New et al., 2002), 

which provides monthly means of the 1961-1990 period for the remaining climate variables needed 

to estimate evapotranspiration (see section 2.2). The delta change and MSWEP data were 

interpolated to the MGB-SA unit-catchments centroids using the inverse distance squared method, 

while the CRU data is interpolated using the nearest neighbor method. There are 33,749 unit-

catchments on the MGB-SA model, which gives an average of 4 km distance between the 

downstream and upstream unit-catchments centroid. The CRU and MSWEP databases have a 

spatial resolution of approximately 18 and 25 km respectively, while climate projections’ spatial 

resolution ranges from 100-300 km depending on the GCM. On heterogenous areas, e.g. the steep 

regions of the Andes Cordillera, climate can be substantially different within a GCM grid cell. In 

those regions, a downscaling approach based on delta change interpolation ignores the climate 

heterogeneity which is a clear limitation of the current method. 

 

2.4. Assessment (significance and quantiles) 

The MGB-SA was driven by bias corrected climate data of different GCMs, constituting an 

ensemble (25 simulations per scenario) of hydrological conditions, i.e., runoff, evapotranspiration 

and river discharge for the future period. This ensemble was compared with a model run of the 

baseline period (named hereafter as the reference simulation), which refers to the MGB-SA model 

forced with the climatological databases (MSWEP and CRU). 

The GCMs projections present high uncertainties which are transferred and even amplified on 

the impact models outputs. Thus, a statistical evaluation becomes necessary to adequately address 

uncertainties. It was assumed that each member of the ensemble is independent and compose a 

random sample of 25 individuals. 

The statistical relevance of the climate change projections was addressed by means of 

ensemble quartiles, ensemble agreement, coefficient of variation and a two-sample t-test. The 

coefficient of variation (CV) measure the future projections ensemble spread normalized by the 

ensemble mean. It was assumed that there is an agreement if 2/3 of the ensemble members 

present the same change signal, indicating either a drier or wetter condition for the future. 

The two-sample t-test evaluates to what extent the reference and future mean variables differ 

in a specific location using two samples of unknown and unequal variances. The sample 1 (𝑝) was 

composed by annual means of the reference simulation, to account the natural interannual 

variability (𝑛𝑝=18, warm-up period of 2 years), while the sample 2 (𝑓) was composed by the long 

period mean of each ensemble member (𝑛𝑓=25). We assumed a null hypothesis (𝐻𝑜) that the 

samples’ means are equal (𝑥𝑝̅̅ ̅ = 𝑥𝑓̅̅ ̅) within a 5% level of significance (𝛼). If test fails to reject 𝐻𝑜, 

then it is assumed that there is no significant change. However, if 𝐻𝑜 is rejected, then we quantify 

how much the sample 1 mean should increase/decrease (Δ𝑝) in order to avoid the null hypothesis 

rejection:  
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Δ𝑝 = 𝑥𝑓̅ − 𝑥𝑝̅   ±   |𝑍∗(𝛼, 𝑑)| [
𝑆𝑝

2

𝑛𝑝

+
𝑆𝑓

2

𝑛𝑓

]

1/2

 

where 𝑥𝑝̅̅ ̅ and 𝑥𝑓̅̅ ̅ represents sample 1 (reference/present) and sample 2 (future) means 

respectively; 𝑆 and 𝑛 are related to the sample standard deviation and number of individuals 

respectively. 𝑍∗ is the limiting test statistic value for no rejection of 𝐻𝑜, which is a function of the 

level of significance 𝛼 and the degrees of freedom (𝑑); and its term signal is positive if  𝑥𝑝̅̅ ̅ > 𝑥𝑓̅̅ ̅ and 

negative otherwise.  

That increase/decrease of 𝑥𝑝̅̅ ̅ on a relative basis (Δ𝑝 / 𝑥𝑝̅̅ ̅ ) is called significant change. This 

index was used further to indicate the minimum variation on 𝑥𝑝̅̅ ̅ to avoid the null hypothesis rejection 

within a 5% level of significance, i.e. how much a hydrological variable is likely to change at least.  

This statistic test is built on the assumption of randomly selected independent variables from a 

normal distribution. Although the different GCMs responses are not necessarily independent as they 

share similar physical and numerical features (Flato et al., 2013), the combination of the ensemble 

members outputs approximates to normality (supporting information). 

3. HYDROLOGY OF SOUTH AMERICA 

South America drains around 30% of the continental freshwater that reach the oceans (Clark 

et al., 2015a). Half of this water flows through the Amazon River (mean annual flow ≈ 200,000 

m³/s), whose basin occupies 1/3 of the continent area and has a significant environmental 

importance since it holds the world’s largest rainforest (land use and soil map can be seen in Fan et 

al. 2015). The Amazon Basin is formed by the steep regions of the tropical Andes on west, the 

Brazilian and Guyanese shields on east, and the Amazon plain, which occupies nearly half of the 

basin area. In the Amazon plain, the low slope causes backwater effects and floodplains to largely 

influence the river dynamics (Paiva et al. 2013). 
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Figure 1 - South American larger basins, hydrography estimated by flow direction maps from the Hydrosheds 
database, relief from SRTM DEM and regions classification for this article. 

We might also cite other important basins as the Orinoco, which is a tropical basin that 

occupies a third of the Paraná Basin area but has a higher annual mean discharge; or the São 

Francisco and Parnaíba Rivers, which cross the Brazilian Semiarid and are essential for regional 

subsistence. The South America basins larger than 200,000 km² are illustrated on Figure 1. 

The annual precipitation distribution along the South American continent on present days 

(MSWEP, 1990-2010) is shown on Figure 2.c. Low annual precipitation is observed on the south 

Andes, Patagonia and Brazilian Semiarid while a higher annual precipitation occurs on the Pampas 

and mainly surrounding the Equatorial line, especially on the west Amazon. This precipitation 

pattern over the continent reflects on aridity and consequently on the runoff coefficient, since runoff 

is highly related to soil moisture. 
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Figure 2 - Hydrological characteristics of South America. a. Elasticity of Streamflow which represents the 
relative sensibility of streamflow to precipitation; b. Elasticity of Evapotranspiration which represents the 

sensibility of evapotranspiration to precipitation; c. South America annual precipitation from the MSWEP 1.1 
database; d. Runoff Coefficient which indicates how much of the Precipitation volume flows through the 

surface; e. Aridity Index which measure the ratio between PET and annual Precipitation. 

The Aridity Index (AI) is given by the ratio between potential evapotranspiration (PET) and 

precipitation of a specific area. PET was calculated based on the open water Penman equation 

(Shuttleworth, 1993). The World Atlas Desertification (Middleton and Thomas, 1997) defines regions 

with AI above 5.0 as arid, AI between 2.0 and 5.0 as semi-arid, AI between 1.5 and 2.0 as dry 

subhumid and below 1.5 as humid. As climate change is expected to affect precipitation and 

evapotranspiration rates (e.g. through raise on temperature), this coefficient becomes a proxy of the 

climate change impacts on water resources although it does not necessarily indicates the runoff 

change signal (Yang et al., 2018). We might classify central-south Andes (latitude between 20º S 

and 35º S) and east Patagonia as arid regions, mainly due to a very low annual precipitation rather 

than PET intensity; the Brazilian Semiarid and part of the Gran Chaco as semi-arid regions; and the 

Pampas, Amazon and west Patagonia as humid areas. On the center of South America there is a 

transitional zone between the semi-arid and humid areas, mainly dominated by the biome called 

“Cerrado”, which is equivalent to the African Savanna. 

The long-term mean discharge sensitivity to precipitation changes can be analyzed in terms of 

elasticity (Chiew, 2006). The rainfall elasticity of streamflow is given by the ratio between the relative 
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change of streamflow (evapotranspiration) and precipitation (𝜖 = Δ𝑄(%)/Δ𝑃(%)). It shows how 

much a change on annual precipitation could affect the mean discharge/ evapotranspiration. Due to 

the non-linearity relation between rainfall and streamflow, the elasticity coefficient becomes a fair 

sensitivity indicator only for small changes in precipitation. The discharge and evapotranspiration 

sensitivity to rainfall was estimated by forcing the hydrological model with precipitation values 20% 

higher/lower. The elasticity of streamflow is mostly related to the runoff coefficient, as higher values 

occurs on dry regions as discussed on previous studies (Chiew, 2006; Ribeiro Neto et al., 2016). 

However, a low elasticity can be noticed on the right-bank tributaries of the Paraguay River (Gran 

Chaco) and a high elasticity is observed on the humid Xingu Basin, which indicates high sensibility 

to precipitation changes. 

4. IMPACTS ON WATER BUDGET VARIABLES 

Precipitation, evapotranspiration, runoff and AI projections were evaluated in terms of the 

difference between mean annual values of the reference simulation and the 20-yr ensemble mean 

of the future projections (Figure 3). The precipitation data refers directly to the bias corrected data 

from the GCM ensemble, while evapotranspiration and runoff are outputs of the hydrological model. 
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Figure 3 – Projected impacts on water budget components in South America (in terms of mean values). It is 
presented relative changes (mean and statistically significant) of precipitation, evapotranspiration and runoff, 
and absolute changes on aridity index and temperature in both scenarios (RCPs 4.5 and 8.5). The Coefficient 

of Variation (CV) is related to the projection’s ensemble (it is not applicable to temperature, because of 
ocasional 0 mean values if considering the Celsius scale and larger mean values compared to standard 

deviation if its on Kelvin scale).  
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It can be seen two main regions of precipitation/runoff reduction: north to northeast and 

southwest of South America which embraces mainly the Amazon, Tocantins and Orinoco Basins 

and west Patagonia. Precipitation increase is mostly observed on the southeast and northwest of 

the continent which corresponds to the north Andes and the Pampas, although with almost any 

statistically significant change in runoff. 

The overall results of both RCP4.5 and RCP8.5 scenarios were similar. Equal spatial patterns 

and change signals are identified among the scenarios, however with different intensities. As 

expected, the RCP8.5 scenario is likely to cause higher impacts. These results are particularly 

interesting because it suggests a direct relation between GHG concentrations and climate change 

impacts, at least on a mean annual basis (i.e. higher GHG concentrations implies on higher impacts 

with same sign at the same areas).  

The highest emission scenario is likely to cause a higher impact but is also more uncertain. 

The coefficient of variation of the ensemble projections on the RCP8.5 scenario is consistently 

higher than RCP4.5, which implies on a larger uncertainty (figure 3). However, the statistical tests 

show that the RCP8.5 scenario is still associated to higher statistically significant impacts. 

Figure 3 shows a direct relation between changes on precipitation and evapotranspiration. 

Lower precipitation volumes reduce the soil moisture, and consequently, the evapotranspiration 

rate. As the opposite is also true, changes on evapotranspiration and precipitation often have the 

same signal. This pattern is detected on most of the continent except in some parts of the Amazon. 

The Amazon Basin is very humid as 14% of the basin area consists of wetlands (Hess et al., 2015), 

thus precipitation anomalies do not limit the amount of water available for evapotranspiration (less 

sensitive to rainfall, as shown on Figure 2.b) and changes in other climatological variables as 

temperature becomes predominant in this process. As the mean temperature is likely to increase 

across the continent (Chou et al., 2014; Marengo et al., 2012), evapotranspiration rate in the 

Amazon would follow the temperature change signal while annual mean precipitation is expected to 

reduce. 

Peculiarly on the Brazilian Semiarid, which includes the Parnaíba Basin and part of the São 

Francisco Basin, a negative change signal on the mean precipitation is observed together with a 

positive signal on the mean runoff. These results were mainly consequence of the rainfall elasticity, 

which ranges from 4 to 10 in that region (Ribeiro Neto et al., 2016). High elasticity on the Brazilian 

Semiarid (Figure 2.a) means that a small variation on precipitation causes a large variation on the 

streamflow. Actually a few ensemble members projected highly positive precipitation anomalies that 

pushed up the mean runoff, thus amplifying the ensemble spread. This means that the normal 

distribution assumption is not adequate on the Brazilian Semiarid since the runoff mean of the GCM 

ensemble is significantly different from the runoff median. Although a significant change signal of 

the runoff could not be predicted with the present methodology and current GCM data, the AI 

indicates that the Brazilian Semiarid is likely to become larger and dryer on the RCP 8.5 scenario. 

These results agree with Marengo and Bernasconi (2015), who used a Regional Climate Model to 

estimate projections of the arid region expansion on the Northeast Brazil. 
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Climate change on the Andes Cordillera is clearly divided in two regions. On the Tropical 

Andes the change signal is positive and from the latitude 18º S of the Andes Cordillera to Patagonia 

it is predicted a negative trend. However, only on Patagonia the runoff change signal was 

statistically significant. It is important to remark that there are high uncertainties due to the 

misrepresentation of snow melting by the hydrological model, which is an important hydrological 

feature on Patagonian and Andean basins.  

Despite of the high impacts indicated by the GCM ensemble mean runoff across the continent, 

only on few basins they were statistically significant. It is expected a negative signal of precipitation 

and runoff on the Orinoco, Tocantins and South Amazon (Tapajós, Xingu, Madeira and Purus) 

basins. The combination of precipitation decrease and evapotranspiration increase leads to an 

intense climate change effect on the South Amazon, where it is estimated the higher impacts – at 

least 20% of runoff reduction on the Tapajós and Xingu basins. Only on a small region placed 

between the Uruguay basin and the Atlantic coast (southeast South America) it is expected a 

statistically significant increase in annual precipitation and runoff. 

Negative trends in the east Amazon and Patagonia and positive trends in southeast South 

America and Tropical Andes have been announced for a while (Marengo et al., 2009; Milly et al., 

2005). The mean changes results are similar to studies with no bias-correction (Koirala et al., 2014), 

studies that used the Eta regional climate model (Chou et al., 2014b) on South America (Ribeiro 

Neto et al., 2016) and GCM data from CMIP3 (Arnell and Gosling, 2013). However some disagree 

especially about the Amazon Basin change signal (Guimberteau et al., 2017; Hagemann et al., 

2013; Sperna Weiland et al., 2012) and even about the wetting trend in the southeastern South 

America (Schewe et al., 2014). This paper described to which extent the results from CMIP5 GCMs 

agree and the change signal was clear especially on the South Amazon. 

5. IMPACTS ON RIVER DISCHARGE 

Future anomalies in river discharge are presented in Figure 4 and Table 1. Similar to the other 

hydrological variables, the discharge projections of both GHG scenarios present the same change 

signal, with higher impacts related to the RCP8.5 scenario. 

From north to south, a significant negative trend is observed on the Orinoco, Tocantins, 

Paraguay Rivers and on all Southern tributaries of the Amazon. On the Orinoco Basin, reduced 

discharges are expected mainly downstream. The mean annual discharge at Ciudad Guayana is 

likely to decrease in 14% (9%) at least on the RCP8.5 (RCP4.5) scenario, which is equivalent to 

nearly 5.000 m³/s. Climate change impact in the Tocantins River is similar to the Orinoco River in 

relative terms. Higher changes are expected on the west side of the basin, mainly in the Araguaia 

River. On the Paraguay Basin, main discharge variation is likely to occur upstream, on Pantanal. 

These results are different from Bravo et al. (2014) findings that presented an equal probability of 

positive and negative trends, although using the same hydrological model. It is worth mentioning 

that waters flowing from river channels to the floodplains are considered in the vertical water 

balance of this current MGB-SA model (i.e., evapotranspiration and infiltration, the latter specifically 
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in Pantanal) (Siqueira et al., 2018) while Bravo et al. (2014) used the HEC-RAS (Brunner, 2010) 

hydrodynamic model as a routing component disconnected to the MGB. This physical 

representation has a considerable impact on the Paraguay Basin discharges due to the amount of 

floodplains areas. At Asunción, it is expected a mean discharge reduction of 6% and a decrease of 

15% on the 30-days minimum on the RCP8.5 scenario. 

 

Figure 4 - Expected relative discharge anomalies (%) due to climate change. Top: Mean changes on annual 
discharge. Bottom: Significant changes on the mean discharge.  

The most significant impact is likely to take place in the Amazon Basin. Over 18 % (34%) of 

discharge reduction is expected on the Tapajós and Xingu basins for the RCP4.5 (RCP8.5) 

scenario. Considerable impacts are also expected on the Madeira and Purus basins. The overall 

negative trend over the Amazon Basin, especially on the southeast, affects the Amazon River mean 

discharge, which is likely to decrease in at least 8% (15%) on the RCP4.5 (RCP8.5) scenario. A 
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discharge reduction of 8% does not seem excessive; however, it is equivalent to nearly 17,000 m³/s 

while the annual mean discharge of the Paraná Basin is around 24,000 m³/s.  

The results on the Amazon Basin are very similar to those obtained by Sorribas et al. (2016), 

who found a moderate discharge decrease on the Negro, Purus and Madeira Rivers (over 5%) and 

a considerable reduction on the Tapajós (over 20%) and Xingu Rivers (over 50%) on the RCP8.5 

scenario. However, changes were only statistically significant on the Xingu River, which is probably 

due to the small sample of GCM (5) to support their results. The authors also indicated a statistically 

significant and moderate discharge increase on the West Amazon (Tropical Andes), while our 

projections indicate only a slight increase on the maximum discharge. 

 

Figure 5 – Agreement of GCM ensemble members on precipitation/discharge change signal. Agree means 
that at least 2/3 of the ensemble members indicate same signal. 

The Uruguay Basin was the only large basin (over 200,000 km²) that presented a positive 

trend, although statistical significance was only detected on the RCP8.5 scenario. Near to the river 

mouth, significant discharge change was negligible (1% - Table 1), although the GCM ensemble 

members clearly agree on a positive signal (Figure 5). 
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Table 1 - Climate change impact on specific locations of South America. 𝑨 – drainage area; 𝑸 – current mean discharge; 𝜟𝑸 – ensenble mean discharge 

change; 𝒔𝒈𝜟𝑸 – signicant mean change. 

 

 

River Location 
A 

(10³ km²) 

Q 

(10³ m3/s) 

RCP 4.5 RCP 8.5 

𝚫Q (%) sg𝚫Q (%) 

Quartiles 

(10³ m3/s) 𝚫Q (%) sg𝚫Q (%) 

Quartiles 

(10³ m3/s) 

1st 3rd 1st 3rd 

Magdalena Barranquilla 261 7.7 -5 0 6.6 8.3 -11 0 5.3 7.7 

Orinoco Ciudad Guayana 927 34.6 -16 -9 26.9 31.8 -25 -14 18.7 32.5 

Araguaia River mouth 387 6.5 -21 -11 4.4 5.9 -34 -19 3.2 5.2 

Tocantins Imperatriz 302 5.1 -16 -5 3.5 5.2 -26 -8 2.6 4.3 

Tocantins River mouth 774 14.5 -19 -8 10.2 13.3 -30 -14 7.3 12.1 

Parnaíba Teresina 291 0.7 -13 0 0.5 0.7 -12 0 0.4 0.6 

São Francisco Petrolina / Juazeiro 521 3.2 -10 0 2.6 3.3 -11 0 2.2 3.3 

Uruguay River mouth 267 6.7 11 0 6.5 8.3 20 1 6.5 9.4 

Paraná Foz do Iguaçu 911 15.7 -3 0 13.6 17.3 -6 0 11.9 18 

Paraná Rosário 2540 23.2 -3 0 20.1 25.2 -6 0 18 24.5 

Paraguay Asunción 907 4 -8 0 3.3 4.1 -17 -6 2.7 3.7 

Solimões Iquitos 745 27.9 -4 0 25.8 28.4 -1 0 25.3 30.5 

Purus River mouth 379 11.5 -22 -13 8.3 10.2 -38 -29 5.6 8.6 

Negro Manaus 716 35 -10 -2 30 33.3 -13 -2 24.1 36.2 

Solimões Manaus 2222 94.8 -9 -3 84.3 93.3 -12 -5 76.2 93.3 

Madeira Porto Velho 982 16.3 -14 -8 13 15 -26 -18 9.9 13.7 

Tapajós Santarém 496 15.7 -27 -18 9.3 13.4 -46 -34 5.1 10.5 

Xingu River mouth 515 14.6 -40 -25 4.5 11.2 -58 -41 1.4 7.3 

Amazonas Macapá 5927 206.6 -15 -8 164.8 191.5 -22 -15 131.3 189.4 



38 
 

No significant change was observed on the mean discharge of São Francisco and 

Parnaíba basins (Brazilian Semiarid). As previously discussed, the high rainfall elasticity of 

streamflow leads to a large spread of the discharge ensemble which directly affects the 

statistical significance. However, the ensemble quartiles under both scenarios indicate a 

negative trend, especially on the Parnaíba Basin (Figure 6). Also the ensemble members 

agree on a negative trend on the Brazilian Semiarid (Figure 5), which is consistent to the 

current literature (Asadieh & Krakauer, 2017; Marengo & Bernasconi, 2015; Ribeiro Neto et 

al., 2016). 

 

Figure 6 - Discharge climatology of some South American large basins under the RCP8.5 scenario. 
The black line refers to the reference period discharge and the grey swath refers to the GCM 

ensemble interquartile range. 

On the Paraná and Magdalena basins there is a negative trend although not 

statistically significant. The GCM models show an agreement only on the downstream 

Magdalena under the RCP8.5 scenario. Nóbrega et al. (2011), Adam et al. (2015) and 

Ribeiro Neto et al. (2016) have used a fewer number of climate models and have pointed out 

the uncertainty related to discharge projections on the Paraná Basin. Our results indicate a 
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slight negative trend on the Paraná Basin mainly due to the Paraguay Basin. The 

precipitation agreement indicates that the Paraná Basin is a transitional region; where the 

upstream area is projected to become dryer while the downstream, wetter.  

Discharge changes on basins in the south of the continent, are not addressed as the 

MGB-SA presented an unsatisfactory performance on that area (Vinícius A Siqueira et al., 

2018). Snowmelt is an important hydrological process in basins of Patagonia and those 

draining the Central Andes of Argentina. In addition to snowmelt, consumptive water use 

plays a significant role, for example, on the Desaguadero River Basin water balance 

(Scarpati et al., 2014), but neither of them are considered in the MGB-SA. By studying 

models in a global scale, Schewe et al. (2013) and Dankers et al. (2013) have shown that 

uncertainties related to hydrological modelling is higher than climate modelling in the south of 

the continent. This paper results indicate a negative trend on basins of the south of the 

continent due to GCMs precipitation and aridity index projections, but discharge 

quantification or relative changes estimate with current assumptions and modelling choices is 

not trustworthy. 

6. IMPACTS ON THE CONTINENTAL WATER BALANCE 

Figure 7 presents how the continent water balance is likely to change on the RCP4.5 

and RCP8.5 scenarios by the end of this century. 

Like the previous analyses, projections on the continental water balance are more 

uncertain under the RCP8.5 scenario as the ensemble interquartile range of the RCP4.5 

scenario is narrower compared with the former. Basically, the 3rd quartile of discharge 

projections is similar among the scenarios, but the 1st quartile under RCP8.5 presents lower 

values, which implies on a drier condition. 

 

Figure 7 – Water balance over the South American continent. The darker lines represent precipitation, 
evapotranspiration and discharge annual means of the reference simulation and the colored swath 
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refers to the interquartile range of the ensemble projections under climate change for the end of the 
21st century. 

It is clear that the climate projections indicate a drier continent by the end of this 

century. On wet periods (December to March) mean precipitation is unlikely to change, but 

less average rainfall amounts are expected on dry periods (June to September). Actually, it 

seems that the dry period will be extended to include October as well. In addition, as 

temperature is likely to increase in South America, evapotranspiration is expected to be 

higher in the wet periods especially on the RCP8.5 scenario. 

The combination of precipitation decrease and evapotranspiration increase is 

responsible for major changes on the expected river discharge. The total amount of water 

flowing to the oceans is likely to be equally reduced along the year. The ensemble median 

discharge under the RCP8.5 scenario is in average 0.3 mm/day lower compared with the 

reference simulation. In that condition, 1,800 km³ less water is likely to reach the ocean every 

year, which correspond to 15% of South American current fluxes to the ocean and it is 

equivalent to the annual amount of freshwater drained from the Australian continent (Global 

Runoff Data Centre (GRDC), 2014). 

A lag between the peaks of precipitation and discharge is also noticed. This lag refers 

to the “time of concentration” of the continental waters, which is about 4 months in average. 

On the other hand, evapotranspiration response to precipitation is almost immediate. It is 

important to remark that the “continental hydrograph” is largely influenced by the Amazon 

Basin as it drains half of the continent freshwaters. Thus, a discharge decrease of the same 

magnitude as the Amazon River was already expected.   

7. CONCLUSIONS 

Climate change impacts on South American water resources were estimated by a 

continental hydrological-hydrodynamic model forced with an ensemble of bias corrected 

GCM data under two scenarios: RCP4.5 and RCP8.5. We conducted a comparison between 

mean values of the reference (1986-2005) and future (2081-2100) periods, which means that 

specific events were not addressed in this study. 

It was assessed the expected alterations in water budget and river discharges across 

the continent, and to what extent these impacts are statistically significant. It is important to 

clarify that the significant change does not represent the expected variation of hydrological 

variables; neither areas that the mean change were not statistically significant are unlikely to 

be impacted. The significant change refers to the minimum variation of a hydrological 

variable in order to not reject the hypothesis that the reference and future period have same 

means. 

Results shown no significance regarding discharge alterations in large basins such as 

the Parnaíba, São Francisco, Paraná and Magdalena. On the other hand, positive trends are 
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expected on the Tropical Andes and southeast South America, although only at the Uruguay 

Basin the runoff increase was significant. On the Uruguay River, the mean discharge is 

expected to increase in 20% under the RCP8.5, but only an increase of 1% on mean 

discharge was statistically significant. 

Negative trends were found to be much more expressive. Runoff is expected to 

decrease in most of the South American large basins. Under the RCP8.5 scenario, the 

Orinoco, Tocantins and Madeira basins are likely to present at least a moderate discharge 

decrease (10% - 20%) while on the Tapajós, Xingu and Purus basins, water resources are 

expected to be highly impacted (over 29% of discharge reduction at least). On the RCP4.5 

scenario, the same change signal is expected but with a lower impact.  

It was assumed that GCMs projections are right to some extent and the ensemble 

mean and median would be an acceptable indicative of what would be the climate in the 

future. However, poor understanding on some land surface processes (e.g. cloud feedback, 

Zhao et al. 2016) and shared representation of physical and numerical aspects among 

different GCMs (Flato et al., 2013) may lead to common errors that affect the change signals, 

as well as the randomness and independence assumptions of the statistical analysis. 

In addition, the modelling options and bias-correction approach brought different 

sources of uncertainty to the results. For example, there is a high climate variability on Andes 

with the horizontal distance, and interpolating coarse GCM grid cells might not be the most 

accurate alternative. Also, the MGB-SA does not represent snowmelt processes neither 

consider water consumptive uses, which are very important for discharge estimate on snow 

melting dependent basins (e.g. east Patagonian basins) and on semi-arid regions, 

respectively. Land use alterations were not evaluated, which is an important aspect 

considering current pressure on mineral extraction and agriculture expansion over Amazon 

(Guimberteau et al., 2017; Siqueira Júnior et al., 2015), for example.  

In conclusion, the majority of GCM projections predict similar climate change impacts 

on many South American basins as the Amazon, Tocantins and Uruguay basins, despite of 

recognized modeling limitations. This information should be considered by decision makers 

on planning hydroelectric power plants, supply reservoirs or agricultural expansion. 

Upcoming enhancements from CMIP phase 6 combined to a multi hydrological model and 

bias correction approaches are paths of improvements on projections robustness and 

uncertainty understanding. 
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SUPPORTING INFORMATION 

List of the CMIP5 GCMs that included all inputs required by MGB on both scenarios 

(RCP 4.5 and 8.5) at the snapshot of March 15, 2013. The required MGB inputs are: air 

surface temperature, relative humidity, wind speed, atmospheric pressure, income shortwave 

solar radiation (evapotranspiration variables) and precipitation. 

Model Institution Country 

Resolution* 
(degrees) 

Longitude Latitude 

ACCESS1.0 Commonwealth Scientific and Industrial Research 
Organisation/Bureau of Meteorology (CSIRO-BOM) 

Australia 
1.25 1.875 

ACCESS1.3 1.25 1.875 

BCC-CSM1.1 
Beijing Climate Center (BCC) 

China 

2.7906 2.8125 

BCC-CSM1.1 (m) 1.1215 1.125 

BNU-ESM Beijing Normal University (BNU) 2.7906 2.8125 

CanESM2 Canadian Centre for Climate Modelling and Analysis (CCCma) Canada 2.7906 2.8125 

CNRM-CM5 
Centre National de Recherches Météorologiques (CNRM-

CERFACS) 
France 1.4008 1.40625 

CSIRO-Mk3-6-0 
Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) 
Australia 1.8653 1.875 

GFDL-CM3 

Geophysical Fluid Dynamics Laboratory (GFDL) 

USA 

2 2.5 

GFDL-ESM2G 2.0225 2.5 

GFDL-ESM2M 2.0225 2.5 

GISS-E2-H 
NASA Goddard Institute for Space Studies (NASA-GISS) 

2 2.5 

GISS-E2-R 2 2.5 

HadGEM2-CC 
Met Office Hadley Centre (MOHC) 

United 
Kingdom 

1.25 1.875 

HadGEM2-ES 1.25 1.875 

HadGEM2-AO 
MOHC + National Institute of Meteorological Research, Korea 

Meteorological Administration (NIMR-KMA) 

UK + 
South 
Korea 

1.25 1.875 

INM-CM4 
Russian Academy of Sciences, Institute of Numerical 

Mathematics (INM) 
Russia 1.5 2 

IPSL-CM5A-LR 

Institut Pierre Simon Laplace (IPSL) France 

1.8947 3.75 

IPSL-CM5A-MR 1.2676 2.5 

IPSL-CM5B-LR 1.8947 3.75 

MIROC-ESM-CHEM Atmosphere and Ocean Research Institute (The University of 
Tokyo), National Institute for Environmental Studies, and Japan 

Agency for Marine-Earth Science and Technology (MIROC) Japan 

2.7906 2.8125 

MIROC-ESM 2.7906 2.8125 

MIROC5 1.4008 1.40625 

MRI-CGCM3 Meteorological Research Institute (MRI) 1.12148 1.125 

NorESM1-M 
Bjerknes Centre for Climate Research, Norwegian 

Meteorological Institute (NCC) 
Norway 1.8947 2.5 

 

BIAS CORRECTION 

A relative delta change method was used to correct supposed bias errors of GCM 

simulated precipitation. This method was conducted as follow: 

𝑃𝑓
∗ = 𝑃𝑝

∗ × (
𝑃𝑓

𝑃𝑝
) 

where 𝑝 and 𝑓 subscripts indicates reference and future periods respectively; 𝑃𝑝 and 𝑃𝑓 

represents monthly means of accumulated precipitation estimated by GCMs; 𝑃𝑝
∗ is the 

MSWEP daily precipitation and 𝑃𝑓
∗ is the “unbiased” daily precipitation of the future period.  
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This method is simple and robust for most situations. However, on very dry areas as 

the Dry Andes (e.g. Atacama Desert), the relative change ratio (𝑃𝑓/𝑃𝑝) can be too large 

although it only means few millimeters increase on absolute value. For example, GCM 

simulations could estimate a mean accumulated precipitation of 0.05 mm for June on the 

reference period and 1.00 mm for the same month in the future period, which implies on a 

change ration of 20. This situation was frequently found among the GCM outcomes (Figure 

8) and it can significantly compromises impact studies as a reference rain event (𝑃𝑝
∗) of 10 

mm would imply on a 200 mm event for a bias corrected future period (𝑃𝑓
∗). 

 

Figure 8 – Delta change ratio related to the accumulated precipitation of a specific GCM grid point. 
The dashed area marks the region selected for an additive delta change method. 

It can be confirmed on Figure 8 that the highest delta change ratios are found on the 

driest months/areas. To work around this issue, it was proposed a monthly accumulated 

precipitation threshold of 15 mm as shown on Figure 8. When the accumulated precipitation 

in the reference period (𝑃𝑝) was under 15 mm, and if the change ratio was larger than 1 (𝑃𝑓 >

𝑃𝑝), the delta change bias correction would be no longer relative, but additive: 

𝑃𝑓
∗∗ = 𝑃𝑝

∗∗ + (𝑃𝑓 − 𝑃𝑝) 

As 𝑃𝑓 and 𝑃𝑝 represents the accumulated precipitation of a specific month, the rain 

increment (𝑃𝑓 − 𝑃𝑝) was added to the first rainy day of the month (𝑃𝑝
∗∗) or the last day of the 

month if no precipitation was registered. 

ASSESSMENT 

The two-sample t-test, used in this study for a significance assessment, requires 

independent and normally distributed variables, which cannot be inferred about GCMs 

outputs as they share many numerical features and modelling approaches. However, the 
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combination of 25 GCM along the South American continent approximated to a normal 

distribution as can be observed below. 

The South American MGB is composed by 33,479 unit-catchments. For the statistical 

test, two samples are needed: the Sample 1 refers to annual variability of the reference 

period (𝑛𝑝=18) and the Sample 2 refers to the period mean of each ensemble member 

(𝑛𝑓=25). As the samples size are small (𝑛 = 18 and 25), they easily pass on normality tests 

as Kolmogorov-Smirnov. Therefore, we evaluated normality with standardized samples of all 

unit-catchments combined. On standardization, each individual is subtracted by the sample 

mean and divided by the sample standard deviation. The figure bellow presents the 

approximated distribution formed by the standardized samples: 

 

Figure 9 - Standardized samples histogram. The black line represents the standard normal 
distribution. The X-axis refers to the standardized value and the Y-axis represents its respective 

probability. 

It can be seen in the Figure 9 that the samples distribution highly approximates to a 

normal distribution. Thus, it was assumed that the two-sample t test could be used to provide 

reasonable estimates about climate projections uncertainty. When the distribution was 

notably different from the normal distribution, it was discussed on the manuscript, e.g. on the 

Brazilian Semi-arid. Nevertheless, it was used other approaches to assess uncertainty 

(ensemble quantiles and agreement) that have supported significance conclusions.  
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Abstract 

Global and Regional Climate Models (GCM and RCM respectively) are the current 

mathematical tools used to project alterations on precipitation regimes given different 

greenhouse gases emissions scenarios. However, these models have specific resolutions, 

physical equations and numerical approaches that provide a diverse set of performances 

across different regions and spatial-temporal scales. In South America, most hydrological 

impact studies have used the Eta RCM to yield precipitation projections without a proper 

uncertainty analysis. It is important to acknowledge its uncertainties prior to any hydrological 

assessment to adequately support climate change investigations and related water decision 

making. Here we evaluate the extreme precipitation generated by the Eta RCM driven by 4 

different GCMs. It is investigated Eta biases across different temporal (3 hours to 5 days) 

and spatial scales (0.2 to 1.0 degrees) and how those errors affect river streamflow 

simulations of various spatial scales. It is used local IDF curves and a gridded precipitation 

dataset (MSWEP) as references for Eta assessment. In general, Eta underestimates sub-

daily extreme precipitation across South America, regardless of the driven GCM. Eta 

presented high spatial dependence for extreme events of 1-day duration compared to 

MSWEP, which might indicate a poor representation of short-scale processes. However, the 

relative errors reduce with temporal and spatial aggregation. For example, the average bias 

of extreme precipitation decreases 8.4 percentage points from 1-day to 5-days duration. The 

negative biases observed for precipitation (≈20%) are propagated to the flood discharges 

(≈40%); and these errors reduce with the drainage area. In general, there are greater biases 

in extreme discharges for small basins, but these errors considerably reduce for basins 

larger than 30,000 km² (≈ 25%). Those results indicate that the RCM biases are scale 

dependent, and the uncertainties of hydrological impact studies should be adequately 

addressed considering the size of the respective basin. 
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1. INTRODUCTION 

Observed trends point towards higher frequency of extreme events, indicating wetter 

conditions on the southeastern South America and western Amazon and increase of 

warming nights consistently through the continent (Ávila et al., 2016; Marengo et al., 2010; 

Skansi et al., 2013; Valverde and Marengo, 2014). An increased frequency of extreme rainy 

events is often unwelcome since those are associated with natural disasters such as flooding 

and landslides (Debortoli et al., 2017). Other alterations in climatic features, either in space 

or intensity, are expected due to the continuous growth of greenhouse gases concentration 

in the atmosphere (Stocker et al., 2013). Identifying extreme precipitation trends and 

understanding climate projections is essential to guide management decisions, such as 

urban, coastal, and fluvial infra-structure projects, water resources planning (Iglesias and 

Garrote, 2015; Mortazavi-Naeini et al., 2015; Neumann et al., 2015).  

Global climate models (GCM) are the most common tools used to simulate future 

climate given different scenarios of greenhouse gases (GHG) emissions and mitigation 

policies (Hirabayashi et al., 2013; Milly et al., 2005). GCMs are numerical models that 

calculate Earth’s energy and mass balance, simulate the interaction between ocean, 

atmosphere, land surface and sea ice, estimate heat and water exchange horizontally and 

vertically. These models provide precipitation projections that can be used to infer about 

future water availability and flood risks on continental scales (Brêda et al., 2020; Hirabayashi 

et al., 2021; Lehner et al., 2006). However, GCMs are limited by current computational 

power, which often constrain the grid spatial resolution from 0.5 to 2 degrees horizontally 

(Bador et al., 2020; Flato et al., 2013; Haarsma et al., 2016). Such a coarse resolution 

precludes the representation of local landscape features such as topography gradient, inland 

water bodies, urban areas, etc. Thus, downscaling approaches become alternatives to 

improve regional phenomena representation.  

Dynamical downscaling refers to Regional Climate Models (RCM) which calculates 

mass and energy balance on a finer resolution compared to GCMs. RCMs are applied to a 

limited domain, e.g. continents (Giorgi et al., 2009), using GMCs outputs as initial and lateral 

boundary conditions – process called nesting. RCMs generally add value to GCM 

simulations (Falco et al., 2019; Llopart et al., 2020) as they provide a more accurate 

representation of orographically induced wind systems (Antico et al., 2020), medium scale 

temperature fields and mesoscale weather phenomena (Feser et al., 2011; Giorgi, 2019) 

becoming an important tool for regional hydrological impact assessment (Lee et al., 2019; 

Teutschbein and Seibert, 2010). However, there is still room for improvement in regional 

climate modelling. Current RCMs grid resolution (around 10 km horizontal grid spacing) is 

not sufficient to reproduce cumulus convection explicitly, using parametrization schemes 

instead (Arakawa, 2004; Prein et al., 2015). These parametrization schemes are among the 

greatest sources of uncertainties in climate modeling (Sherwood et al., 2014), especially for 

extreme precipitation (Fosser et al., 2014; Prein et al., 2013). In addition, RCMs inherit 
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GCMs errors to some extent from lateral boundary forcing. Thus, RCMs become valuable 

tools for regional impact studies of climate change, but their uncertainties should be 

adequately acknowledged a priori. 

The Eta model (Mesinger et al., 2012) is one of the most used RCM for studies in 

South America (Chou et al., 2014a, 2000; Pesquero et al., 2010). Its formulation scheme 

includes the 𝜂 vertical coordinate (Mesinger, 1984) that enables fairly accurate calculation of 

horizontal gradients around very steep topography regions such as the Andes Cordillera. 

Today, there are coordinated Eta simulations for climate research in South America nested in 

4 different GCMs with a horizontal resolution of 20 km (Chou et al., 2014a, 2014b), although 

a more local version (5 km) has been applied for Southeast Brazil (Lyra et al., 2018). The 

output from this model has been frequently used to project hydrological impacts from climate 

projections (Lima et al., 2014; Oliveira et al., 2015; Ribeiro Neto et al., 2016; Santos et al., 

2019) even in relatively small drainage basins (<5,000 km2) (Alvarenga et al., 2016; Andrade 

et al., 2020; de Oliveira et al., 2019), but studies testing how well Eta represents precipitation 

regime focusing on hydrological purposes are rare.  

Chou et al. (2014b) evaluated precipitation through long-term monthly and seasonal 

means discussing average results mostly over 3 large regions in Brazil – North, Northeast 

and Central-South (area of at least 1,5 million km2). The authors observed negative bias on 

the North region during summer and overestimation of monthly extreme values compared to 

CRU TS 3.1 database (New et al., 2002). Later, Almagro et al. (2020) also investigated Eta 

long-term monthly and seasonal mean precipitation over the six Brazilian main biomes 

(Amazon, Atlantic Forest, Pantanal, Caatinga, Pampas and Cerrado) and compared against 

a high resolution grid of observed precipitation (Xavier et al., 2016). On the other hand, 

Dereczynski et al. (2020) and Avila-Diaz et al. (2020) investigated daily extreme precipitation 

indices. The former noted that Eta simulated trends do not considerably agree with 

observation data since there are mixed trend signals and no statistical significance on most 

gauge stations. The latter observed that Eta consistently underestimate extreme precipitation 

compared to the precipitation dataset yielded by Xavier et al. (2016). These studies have 

investigated climatic variables simulated by Eta performing their analysis on cell size or over 

large regions and extreme events or annual/seasonal averages, however a cross-scale 

assessment exploring the effects on drainage basins is essential to understand how the 

climate model biases impact the river streamflow. 

Precipitation is by far the most important input variable for water-related impact studies 

(Biemans et al., 2009; Chiew, 2006), therefore a consistent data analysis should be 

conducted prior to any hydrological projection. There are considerable uncertainties 

regarding precipitation on global climate modeling (Flato et al., 2013; Knutti and Sedláček, 

2013), as in South America (Gulizia and Camilloni, 2015; Llopart et al., 2020), and these 

uncertainties are larger than those yielded by hydrological modelling specially for high flow 

extremes (Meresa and Romanowicz, 2017; Vetter et al., 2017). However, projections from 

climate models have been used indiscriminately for impact studies in this continent without 



52 
 

adequately addressing their respective uncertainties (Borges de Amorim and Chaffe, 2019). 

In addition, the spatial and temporal scale of hydrological applications (drainage basin scale) 

and climate modeling assessments (large climatological regions) do not always match and 

some studies have reached unreliable results while projecting local extreme precipitation 

(e.g. Fontolan et al. 2019).  

Due to the Clausius-Clapeyron relation climate specialists claim that sub-daily raining 

events will become more intense (Barbero et al., 2018; Fowler et al., 2021b). The increase in 

extreme precipitation is already being observed worldwide (Fischer and Knutti, 2016; 

Papalexiou and Montanari, 2019; Sun et al., 2021) although an inverse trend is observed for 

temperatures above 24oC (Lenderink and Fowler, 2017; Westra et al., 2014). This theoretical 

effect is straight-forward and considerably important for small and urban catchments. It has 

become a consensus on the scientific community that if a model does not have a 

considerably high-resolution (grid spacing lower than 5 km) or there is no adequate 

convective physical representation (e.g. superparametrization), short scale extreme 

precipitation is not well reproduced (Fowler et al., 2021a; Gervais et al., 2014; Knist et al., 

2020; Kooperman et al., 2016). However, even GCMs can simulate extreme precipitation of 

larger areas with errors similar to the uncertainty of global precipitation datasets (Bador et al., 

2020). Thus, understanding to what scale a RCM as Eta can represent adequately extreme 

rainfall for different sizes of watersheds is crucial to support hydrological studies on 

projections of flood frequency change.  

Thus, the objective of this paper is to access Eta simulation of extreme precipitation in 

South America and to which scale it is reliable for hydrological simulations of flood discharge. 

We (1) first analyzed how well the regional model Eta, nested in four different GCMs, can 

represent local scale extreme precipitation of short duration (3 hours to 1 day) through 

Intensity-Duration-Frequency (IDF) curves. Secondly, (2) the Eta outputs are compared to a 

relatively high-resolution precipitation dataset and they were submitted to spatial (0.2 to 1 

degree) and temporal (1 to 5 days) aggregations to understand how the Eta RCM accuracy 

varies with different scales. Finally, (3) it is simulated the discharge response to these 

precipitation time series using a continental hydrological model to investigate how the 

precipitation biases impact on simulating extreme flooding events across small (1,000 km2) 

to large (>100,000 km2) river basins.  

2. METHODOLOGY 

This study focuses on understanding the uncertainties related to extreme precipitation 

simulated by the Eta RCM and its effect on river flood discharge.  It is composed by three 

main subjects of analysis: (1) the simulated extreme precipitation of short duration compared 

with IDF curves built from in situ gauges; (2) the simulated extreme precipitation compared 

with a gridded dataset testing different spatial and temporal scales; and (3) the discharge 

estimates from a hydrological model forced with Eta precipitation dataset. In this section, we 

briefly describe the Eta model (section 2.1), the gridded precipitation dataset used as 
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reference (section 2.2), and the procedure to fit an extreme value distribution to the 

precipitation data (section 2.3). Then, we provide details on the local IDF curves (section 

2.4), we comment about the spatial and temporal scales of the analyses (section 2.5), and 

finally, we describe the hydrological model used to estimate flood discharge (section 2.6). 

2.1. The Eta Regional Climate Model 

Eta is an RCM developed by INPE (Brazilian National Institute for Space Research) to 

simulate mesoscale atmospheric conditions (Chou et al., 2012; Pesquero et al., 2010). This 

model is named after the vertical coordinate 𝜂 which is a quasi-horizontal surface and 

prevents pressure-gradient force errors in areas of steep topography (Mesinger et al., 2012). 

The Eta RCM has its origins on numerical weather predictions and has been used for climate 

projections since Chou et al. (2012) and Marengo et al. (2012). 

Here,  we used results from Eta nested simulations within four GCMs from CMIP5 

(Coupled Model Intercomparison Project phase 5): BESM (Brazilian Earth System Model - 

Nobre et al., 2013), HadGEM2-ES (Hadley Centre Global Environmental Model - Collins et 

al., 2011), CanESM2 (Canadian Earth System Model - Chylek et al., 2011) and MIROC5 

(Model for Interdisciplinary Research On Climate - Watanabe et al., 2010).  

The current Eta version for climate research in South America was set up with 38 

vertical levels, horizontal spatial resolution of 20 km and output at 3-hourly temporal 

intervals. The simulations were taken in two different periods following the CMIP5 protocol: 

the historical reference period (1961-2005) and the future period (2006-2100). We only 

assessed the historical reference period comparing it with observed data. Climate data from 

these simulations are available online at https://projeta.cptec.inpe.br/ and have being used 

frequently for hydrological assessments in South America, especially in Brazil (de Oliveira et 

al., 2017; Oliveira et al., 2015; Ribeiro Neto et al., 2016; Santos et al., 2019). Thus, it is 

essential to understand how well Eta represents precipitation in different temporal and spatial 

scales to adequately project the climate change impacts on drainage basins.  

2.2. Gridded Precipitation Reference 

The precipitation dataset used as reference is the Multi-Source Weight-Ensemble 

Precipitation – MSWEP version 2.2 (Beck et al., 2019). This gridded dataset is based on 

multiple precipitation products from different sources: gauge stations, satellite, and 

reanalysis. The daily gauge observations are used to determine the merging weights of the 

satellite and reanalysis products and for temporal mismatch correction while the monthly 

gauge-based precipitation products are applied for long-term climatological corrections. In 

addition, MSWEP uses some river discharge measurements to correct precipitation 

systematic underestimation due to gauge-undercatch and orographic effects. 

MSWEP version 2.2 is a 3-hourly time resolution and 0.1o spatial resolution dataset. 

This product is available online at http://www.gloh2o.org/ and provides precipitation data for 

continents and ocean from 1979 to 2017. In this study we used the 1-day time resolution 
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product upscaled to 0.2 degrees to match the Eta grid resolution for South America. MSWEP 

was selected as a reference as it is built from multiple products of precipitation and 

presented a satisfactory performance compared to other global precipitation datasets (Sun et 

al., 2018). 

2.3. Statistic Distribution for Extreme Event 

Eta and MSWEP precipitation data were adjusted to a statistical distribution in order to 

compare extreme events with equivalent probability of occurrence. However, the climate 

model, the gridded dataset and the local IDF curves were built with precipitation data from 

different periods. Thus, we assumed stationarity to enable a direct comparison between 

MSWEP (1979-2017), Eta (1961-2005), and local IDF curves (section 2.4). Although the 

stationarity assumption is properly questionable (Milly et al., 2008) and it is a good practice to 

compare data of common periods (1979-2005), using the complete MSWEP and Eta 

datasets raises the length of the data series in about 30%, considerably increasing the data 

sample for curve fitting. The main aspects of fitting Eta and MSWEP data into an extreme 

value distribution is described below. 

We selected maximum precipitation values for each hydrological year and each grid 

cell of Eta and MSWEP datasets. This process was performed for different intervals of 

precipitation - from 3 hours to 5 days. Then we fitted Gumbel distributions (Generalized 

Extreme Value – GEV distribution Type-1) to the data through the Method of Moments 

(Naghettini, 2017): 

𝑃[𝑌 ≤ 𝑦] = exp(− 𝑒𝑥𝑝(−𝛼(𝑦 − 𝜇))) 

𝛼 = 1.2862 𝑠               𝜇 = 𝑥̅ − 0.451 𝑠 

where 𝑥̅ is the average of the maximum precipitations of a respective cell, 𝑠 is the standard 

deviation of this sample, 𝑦 is a specific precipitation event and 𝑃 is the probability of 𝑦 not 

being exceeded in a random year. The Return Period (RP) is given by the inverse of this 

probability (1/𝑃). 

2.4. IDF Curves 

Intensity-Duration-Frequency curves are empirical curves fitted to an observed series 

of a rain gauge station that estimate the intensity of a precipitation event based on its 

duration, which usually has minutes or hours magnitude, and its frequency, given by a return 

period (Naghettini, 2017). These curves are frequently used in the design of urban drainage 

and small catchment fluvial structures.  

We gathered IDF curves based on automatic ground based rain gauges from 74 cities 

across South America, more specifically in Argentina (Catalini, 2018), Colombia (IDEAM, 

2017), Chile (Ministerio de Vivienda y Urbanismo, 1996), Paraguay (Cuevas and Rolón, 

2010), Bolivia (Martinez et al., 2009), Ecuador (INAMHI, 2019) and Brazil (Bertoni and Tucci, 
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1993; Castro et al., 2011; Distrito Federal, 2009; Fendrich, 1998; Fragoso Jr, 2004; Oliveira 

et al., 2005; Silva et al., 2013; Silveira et al., 2000; Zahed and Marcellini, 1995). 

Then, we compared the gauge based IDF curves to extreme precipitation values 

obtained from Gumbel distributions fitted to Eta and MSWEP data.  

To accomplish direct comparisons between Eta/MSWEP adjusted curves and observed 

IDF curves, two specific adaptations were necessary. Firstly, Eta recorded total precipitation 

within 3-hours intervals while the IDF curves are continuous curves which yields rainfall 

intensity for any duration given its return period. Fixed time measurements may not capture 

the full intensity of a rainfall event since it may be split between two consecutive recording 

intervals. Secondly, IDFs normally represent point rainfalls related to a specific gauge station 

while the Eta model is discretized into 0.2o x 0.2o cells, which characterizes an average 

rainfall within a relatively large area compared to a rain gauge. As rainfall is barely uniform in 

space, the intensity of an extreme precipitation on a specific location is generally higher than 

the average intensity of a larger area for the same return period (Sivapalan and Blöschl, 

1998; Skaugen, 1997). Thus, two correction factors were applied to make a proper 

comparison between Eta simulations and observed IDF curves: 

i. True-to-Fixed Interval Ratio Factor (TFIR) 

Rainfall measurements are often taken in a fixed time interval, for example, from 8:00 

am to 8:00 am of the following day. Thus, if a 24-hour extreme event starts around midday, it 

would intersect two fixed intervals and, consequently, its intensity would be underestimated. 

On the other hand, fixed intervals of one hour could almost completely capture this event.  

Thus, an estimated extreme rainfall is often multiplied by a coefficient that is based on 

the relation between the duration of the event and the interval of measurement, namely 

TFIR. One of the most used methods to estimate TFIR was presented on Weiss (1964): 

𝑇𝐹𝐼𝑅 =
𝑛

𝑛 − 0.125
 

where 𝑛 is the number of intervals that contain the event. For example, if a rain gauge 

provides rainfall data every 3 hours and the rainy event is 12 hours long, 𝑛 would be 4. As 

Eta has a 3-hour resolution, if we want to analyze an event of 3 hours long, 𝑛 would be 1 and 

the TFIR would be 1.143. There so, TFIR approximates to one the longer the duration of the 

event compared to the measurement interval. Weiss method is one of the few analytical 

methods for estimating TFIR (Yoo et al., 2015). 

ii. Areal Reduction Factor (ARF) 

IDF curves are generally based on data from automatic gages, with catching surface of 

less than 1 m², while they are used to estimate design storms at the catchment scale. 

However extreme events are not spatially uniform, and the precipitation intensity tends to 
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reduce with area. Thus, in order to adequately estimate design storms and optimize hydraulic 

projects, IDFs are multiplied by a reduction coefficient named ARF.  ARF is a multiplication 

factor, between 1 and 0, that relates a point rainfall to a mean areal rainfall.  

However, the estimation of ARF is not as straight-forward as TFIR. ARF strongly 

depends on the nature of the precipitation event (Allen and DeGaetano, 2005; Breinl et al., 

2020; Skaugen, 1997). In South America, there are diverse climate regions and rainy 

patterns and few studies have explored ARF estimation, e.g. cities of Porto Alegre (Silveira, 

2001), Belo Horizonte (Santos and Naghettini, 2003) and Mendoza (Fernández et al., 1999). 

Investigating, developing, or adopting a single ARF estimation approach for South America 

seems currently unfeasible specially with the limited precipitation data available. In addition, 

the ARF can assume a large range of values which depend on the method used to estimate 

it (Silveira, 2001; Svensson and Jones, 2010; Wright et al., 2014). In the literature there are 

ARF lower than 0.5 for a 3-hour duration event covering a 400 km² area, mainly through 

methods based on radar estimates which give precise storm centers of rainfall events (Kim et 

al., 2019; Wright et al., 2014). However, most commonly used analytical methods (Lebel and 

Laborde, 1988; Sivapalan and Blöschl, 1998; Weather Bureau, 1958) are more conservative, 

reaching ARFs around 0.8 for a similar precipitation event – 3-hours duration and a 400 km² 

area (Silveira, 2001; Wright et al., 2014). 

Due to the high uncertainties regarding ARF estimates, we assumed a range of 

possible IDF curves related to the same area of an Eta cell (≈ 400 km²). It is proposed 

intensity boundaries that are given by the observed IDF curve multiplied by the following 

ARFs: 0.5 (0.85) for a 3-hours event and 0.7 (0.95) for a 24-hours event for the inferior 

(superior) limit (Figure 10). The ARF curve from 3 hours to 1 day is based on Lebel and 

Laborde (1988) apud Silveira (2001): 

𝐴𝑅𝐹 = 1 −
√𝐴

𝑎 𝑡𝑛
                    =>                    ln(𝐴)/2 − ln(1 − 𝐴𝑅𝐹) = ln(𝑎) + 𝑛 ln (𝑡) 

where 𝐴 is the catchment/cell area, 𝑡 is the event duration and 𝑎 and 𝑛 are parameters. As it 

was assumed values of ARF for 3 hours and 1 day, it is possible to directly calculate these 

parameters solving a system of 2 linear equations and 2 variables. So, 𝑎 is equal to 11.17 

(8.58) and 𝑛 is equal to 0.2457 (0.5283) for the inferior (superior) limit, 𝐴 in km2 and 𝑡 in 

minutes.  
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Figure 10. Schematic of the limits of point IDF (orange) expanded to an area size after the ARF 
multiplication (gray) and a IDF of a specific Eta cell (blue) for a generic return-period. 

 

2.5. Spatial and Temporal Scale Experiments 

In addition to the analysis of short-duration local events (< 1 day), we evaluated how 

extreme precipitation simulated by the Eta model compare with MSWEP at different spatial 

and temporal scales in South America. The original cell size of 0.2o x 0.2o were aggregated 

from west to east up to 1.0o x 1.0o. We further evaluated precipitation extreme events of 1- 

and 5-day duration and annual mean precipitation. Aggregated cells from Eta and MSWEP 

were directly compared using the nearest neighbor method through the absolute and relative 

difference between cells and the correlation of the precipitation grid. 

2.6. Hydrological Simulation 

We generated river discharge time series trough the MGB hydrological model (Paulo 

Rógenes Monteiro Pontes et al., 2017) using both Eta and MSWEP rainfall data as input.  

The MGB, Portuguese acronym for Large Basins Model, have been consistently 

applied for hydrological assessments in South America for climate change projections (Adam 

et al., 2015; Bravo et al., 2014; Jati et al., 2020; Ribeiro Neto et al., 2016; Sorribas et al., 

2016b; Vergasta et al., 2021). In this study, it is used a continental scale version of this 

model which was developed for South America by Siqueira et al. (2018), named MGB-SA. 

As the MGB-SA performed well on multiple hydrological components (e.g. streamflow, 
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evapotranspiration, water storage anomalies, etc.), the model reliability in simulating the 

environmental system increased, being used for several purposes such as streamflow 

forecast (Siqueira et al., 2020), climate change projections (Brêda et al., 2020) and 

sediments production and transport (Fagundes et al., 2020).  

Precipitation data from MSWEP and Eta was used to force the MGB-SA model which 

yielded daily discharge series for catchments larger than 1,000 km2. South American 

catchments located south of 50o S were ignored since this region fall out of the Eta domain.  

We obtained the daily values of river discharge at over 30,000 river reaches in South 

America, from year 1961 to 2005 for MGB simulations forced by Eta precipitation, and from 

year 1979 to 2015 for MGB simulations forced by MSWEP precipitation. From this daily time 

series, we obtained the annual maximum values, and based on those we estimated the 50%, 

10% and 1% exceedance probability in a given year (i.e. return periods of 2, 10 and 100 

years respectively) by applying the Gumbel distribution. Then Eta and MSWEP relative 

differences of discharge and precipitation were compared in terms of catchment drainage 

area, enabling spatial and temporal scale analysis. 

3. RESULTS 

3.1. Extreme Precipitation of Short Duration  

Eta simulations from the historical period (1961-2005) are assessed and compared to 

local IDF curves from 74 cities across South America. An extreme value distribution was 

fitted to the Eta precipitation data of different durations (< 1 day) in order to identify events of 

a defined probability of occurrence. It is evaluated the Eta simulations nested in 4 GCMs, so-

called here as Eta-BESM, Eta-CanESM2, Eta-HadGEM2-ES, and Eta-MIROC5 runs and the 

MSWEP database. 

Figure 11 shows a comparison between maximum precipitations of 2-year and 100-

year return period and 3-hours duration from Eta model (Figure 11a) and from rain gauges 

based IDF curves (Figure 11b). The color legend range of the IDF curves is different from the 

one used for Eta because the formers are associated to specific gauge stations while the 

latter are composed by 400 km² gridded cells, thus it was chosen an appropriate map legend 

to facilitate visualization. Eta model results show three regions of high precipitation in South 

America, for both 2- and 100-year return periods. The first is the equatorial western Amazon 

region, where 2 year (100 year) maximum precipitation values reach 12 mm (22 mm). The 

second is Paraguay, Uruguay, Northern Argentina, and Southern Brazil, east of the Andes, 

between 20 and 40 S. The third is along the western slope of the Southern Andes, in Chile, 

from 25 S to about 50 S. All the three high precipitation regions in South America are 

common features of the Eta model, regardless of the driven GCM.  

The IDF curves obtained from ground-based rain gauges (Figure 11b) on the other 

hand, reveal a less clear pattern of spatial variability. A clear pattern, however, can be seen 
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along the western slope of the Southern Andes, in Chile, from 25 S to about 50 S, where 

gauge based IDF curves show 2-year maximum precipitation values that are clearly lower 

than in most of the other locations in South America. Gauge based IDF curves also do not 

show the contrast between eastern and western equatorial zone, that is seen in Eta results. 

Gauge based IDF curves do also not show the high precipitation region over Paraguay, 

Uruguay, Northern Argentina, and Southern Brazil. Also, it was observed from the IDF curves 

relatively high precipitation intensities on the northeast Atlantic coast, while the Eta 

simulations indicated lower indices. 

 

Figure 11. Rainfall intensity related to a 3-hour event. a) Eta cell average and return period of 2 (top) 
and 100 (bottom) years; b) local point IDFs and return period of 2 years; c) local point IDFs and return 

period of 100 years. 
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The spatial pattern of extreme daily precipitation intensities from Eta, displayed in 

Figure 12 , resembles to what is demonstrated in Figure 11 (3-hours duration). Except that 

the precipitation of 100-year return period on the western Amazon is average and the 

precipitation intensity along the Pacific coast of Chile, from 30S to 50S, became more 

pronounced. However, neither MSWEP nor the IDF curves presented such a high 

precipitation intensity on the Chilean coast compared to the rest of the continent. The Eta 

model overestimate the average summer (DJF) and winter (JJA) rainfall on this region (Chou 

et al., 2014b), which might have effects on the extreme precipitation indices. The MSWEP 

dataset has the same cell resolution as Eta and yielded considerably higher rainfall 

intensities, even in the northeastern Brazil (around 10S / 40W) and northern Andes Cordillera 

(above the Equator line). 
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Figure 12. Rainfall intensity related to a 1-day event. a) Eta cell average and return period of 2 (top) 
and 100 (bottom) years; b) MSWEP cell average and return period of 2 (left) and 100 (right) years; c) 

local point IDFs and return period of 2 (left) and 100 (right) years. 

The extreme precipitation of the Eta/ MSWEP cells were compared to the limits of the 

local IDF curves defined by the ARF coefficients (section 2.4, Figure 10). Overall, the Eta 

model underestimate short-scale extreme precipitation throughout the continent, except on 

the western Patagonia (Figure 13 and Figure 14). Extreme precipitations are normally related 

to subscale process, which is not adequately represented by current RCMs. Convective 

rainfall in models are produced through convective parametrization schemes which 

commonly underestimate sub-daily precipitation intensities (Fosser et al., 2014; Prein et al., 

2013). The Eta model precipitation underestimate was already pointed out by Chou et al. 
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(2014b) and Dereczynski et al. (2020) as a possible source of error within the Eta model. In a 

larger temporal scale, RCMs tends to underestimate the average precipitation on South 

America and to overestimate rainfall induced by topography on the Andes Cordillera (Solman 

et al., 2013). Still, there is a reasonable agreement on the southeastern South America, 

especially for the Eta-CanESM2 model, while Eta-MIROC5 highly underestimate precipitation 

intensities in this region. On the other hand, the MSWEP database presented lower 

divergence but slightly overestimate precipitation intensity throughout SA compared to the 

punctual IDFs curves. 

 

Figure 13. Difference in precipitation intensity of a 2-years return period event between local point 
IDFs and Eta cells nested in different GCMs: a) 3-hour interval; b) 24-hour interval. 
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Figure 14. Difference in precipitation intensity of a 100-year return period event between local point 
IDFs and MSWEP/Eta cells nested in different GCMs: a) 3-hours interval; b) 24-hours interval.  

3.2. Temporal and Spatial Scale Analysis 

In this section, different temporal and spatial scales are tested to find out how errors in 

extreme precipitation change with scale. The Eta and MSWEP gridded cells are aggregated 

from 0.2-degree (R_0.2) up to 1.0-degree (R_1.0) and it is compared 1-day (1D) and 5-day 

(5D) precipitation intervals. It is also tested extreme precipitation rates for different return 

periods: 2 (RP2), 10 (RP10) and 100 (RP100) years. As IDF curves are not appropriated for 

large areas and precipitation durations, only MSWEP dataset was utilized for this 

assessment.  

Figure 15 display the differences between Eta and MSWEP extreme precipitation in 

South America for different spatial and temporal scales. In general, the Eta model 

underestimates extreme precipitation of 1- and 5-days duration, as more than 75% of the 

differences are negative. It is understandable the existence of great differences between 

distinct datasets as a single expressive extreme event can considerably alter the Gumbel 

distribution fitted to the precipitation data. However, the Eta-MSWEP differences present 

identifiable spatial patterns and are inherent to all Eta simulations, which might indicate 

modelling systematic bias. All the Eta simulations (Eta-BESM, Eta-CanESM2, Eta-

HadGEM2-ES and Eta-MIROC5) presented similar negative biases for extreme precipitation. 

However, there is no dominant bias for average annual precipitation (Figure 15c). These 

results agrees with Avila-Diaz et al. (2020) who observed negative bias of extreme 

precipitation of 1 and 5 days duration simulated by Eta in Brazil.  
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As expected, the differences in precipitation intensity increase with return period and 

decrease with increasing cell sizes and precipitation intervals (Figure 15). Moving from a cell 

area of 400 km² (0.2o resolution) to 10,000 km² (1.0o resolution), the relative Eta-MSWEP 

difference in extreme precipitation reduces in 3.7 percentage points on average. Changing 

the precipitation duration from 1 to 5 days, the relative difference reduces in 8.4 percentage 

points on average. For instance, the median relative difference of the RP100 / 1D / R_0.2 

events is 45.4% while the median relative difference of the RP100 / 5D / R_1.0 events is 

30.5%: a reduction of nearly 15% percentage points through temporal and spatial 

aggregation. For the former (latter) 3/4 of the cells present differences lower than 60% 

(46%). The biases are smaller for precipitation events of 2-year return period, as the 

precipitation volume difference are below 50% for at least 75% of the cells (third quartile). 

These results indicate that both spatial and temporal aggregation reduce the biases, but the 

temporal aggregation is more relevant. 
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Figure 15. Boxplots of the differences between Eta and MSWEP cells in absolute and relative terms 
for different return periods. a) precipitation interval of 1 day; b) precipitation interval of 5 days; c) 

average annual precipitation 

Figure 16 demonstrates how extreme precipitation intensity decreases with increasing 

cell size. An area Reduction Factor was obtained dividing the average extreme precipitation 
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of a specific cell size grid (>0.2o) by the average extreme precipitation of a 0.2o resolution 

grid. As expected, this Reduction Factor decreases with increasing area and return period, 

possibly because convective rainfalls (short-scale phenomena) have higher influence on 

extreme events (Breinl et al., 2020). For extreme precipitation of 1-day duration, the MSWEP 

Reduction Factor curve has larger slope, which means that the extreme precipitation events 

of the Eta model are probably more spatially dependent. This reinforces the fact that the Eta 

model underestimation of extreme events is smaller at coarser resolution grids. On the other 

hand, Eta and MSWEP Reduction Factor curves are quite similar for 5-day duration events, 

which means that the Eta model might have a more accurate spatial representation of 

extreme precipitation processes in such temporal scale.  

 

Figure 16. Average precipitation intensity reduction with the increase of cell size for events of different 
return periods (RP) in South America. a) 1-day duration events; b) 5-days duration events 

In addition, it is assessed to what extent the MSWEP and Eta precipitation data are 

spatially correlated and how it changes with scale. In other words, it is evaluated in general 

how spatially accurate the Eta simulated rainfall is (right volume on the right spot). The 

Pearson correlation coefficients (𝜌) between the Eta simulations and the MSWEP dataset are 

presented on Table 2. It can be seen a positive correlation between the datasets which is 

especially high for events of 2 return period (𝜌 around 0.5). Once again, it is shown that 

spatial and temporal aggregation approximates Eta simulations to the MSWEP dataset. The 

correlation of very extreme events (RP100) in a 5-day interval (average 𝜌 of 0.41) is higher 

than events of 1-day duration (average 𝜌 of 0.27). In general, the correlation increases by 

Δ𝜌=0.03 when aggregating the cell size from 0.2o to 1.0o resolution and it increases by 
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Δ𝜌=0.10 when considering a longer precipitation interval, from 1 to 5 days. For comparison 

purposes, the correlation coefficients between the Eta simulations themselves (Eta-BESM, 

Eta-CanESM2, Eta-HadGEM2-ES and Eta-MIROC5) are generally over 0.8 and it is close to 

one for events with higher probability of occurrence (RP2). In average precipitation, Eta can 

represent very well the spatial rainfall patterns in South America. The correlation of annual 

average precipitation between Eta and MSWEP approximates to the correlation between Eta 

simulations nested in different GCMs (𝜌 around 0.85), especially the Eta-HadGEM2. In 

summary, this correlation analyses indicate that capability of the Eta RCM model to 

represent spatial patterns of intense precipitation increases with the temporal scale but also 

with the spatial scale to smaller extent. 

Table 2. Correlation coefficients between Eta and MSWEP for different return periods, rainfall duration 
and cell size. 

 

 

3.3. Precipitation bias effects on Streamflow 

Finally, it is evaluated how the precipitation uncertainties from Eta simulations affects 

simulations of flood discharges. The precipitation yielded by Eta and MSWEP are used as 

inputs to the MGB-SA which provide daily discharge time series for all South American 

basins over 1,000 km2 area and latitude lower than 50S. The hydrological model can 

connect the different grid cells within a drainage network and may accumulate or dissipate 

the precipitation uncertainties through the increasing basin areas. Discharges yielded by the 

MGB-SA forced with MSWEP precipitation data is used as reference.  

 

 
Eta-BESM 

1 DAY 5 DAYS 
ANNUAL 

RP100 RP10 RP2 RP100 RP10 RP2 

 R_0.2 0.268 0.348 0.459 0.406 0.450 0.499 0.549 

 R_0.4 0.272 0.349 0.456 0.403 0.445 0.494 0.536 

 R_1.0 0.288 0.364 0.473 0.423 0.465 0.515 0.539 

Eta-CanESM2 
1 DAY 5 DAYS 

ANNUAL 
RP100 RP10 RP2 RP100 RP10 RP2 

 R_0.2 0.267 0.369 0.512 0.431 0.489 0.557 0.645 

 R_0.4 0.281 0.379 0.516 0.448 0.504 0.567 0.637 

 R_1.0 0.301 0.396 0.533 0.474 0.527 0.589 0.661 

Eta-HadGEM2-ES 
1 DAY 5 DAYS 

ANNUAL 
RP100 RP10 RP2 RP100 RP10 RP2 

 R_0.2 0.223 0.328 0.478 0.372 0.437 0.521 0.728 

 R_0.4 0.248 0.346 0.486 0.398 0.456 0.530 0.719 

 R_1.0 0.274 0.368 0.505 0.425 0.480 0.551 0.738 

Eta-MIROC5 
1 DAY 5 DAYS 

ANNUAL 
RP100 RP10 RP2 RP100 RP10 RP2 

 R_0.2 0.276 0.358 0.466 0.382 0.431 0.490 0.657 

 R_0.4 0.287 0.366 0.472 0.390 0.439 0.500 0.683 

 R_1.0 0.313 0.394 0.504 0.424 0.475 0.543 0.745 



68 
 

.  

 

Figure 17. Relative differences of (a) extreme discharge and (b) mean precipitation between Eta and 
reference (MSWEP) simulations in a basin by its accumulated drainage area. (c) Equivalent return 

period of a 100-year discharge from Eta simulations related to the extreme discharges of the reference 
simulation. Blue dots represent individual basins; the yellowish intensity is related to the density of 

blue dots in the graph; the black and red lines show the median and quartiles (1st and 3rd) considering 
basins from a drainage area interval; and the dashed grey line on (a) represents the basins median of 

the long-term mean discharge. 

In general, the MGB-Eta simulations underestimate extreme and mean discharge. As 

river streamflow is mainly governed by the accumulated rainfall upstream, the bias signal of 

discharge and precipitation are basically the same. Figure 17 display how the relative errors 

in absolute terms reduce with increasing drainage area. The relative differences in the long-
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term mean discharge (dashed lines in Figure 17a), which is around 40%, is basically the 

double of the relative differences in mean precipitation (Figure 17b). These results indicate a 

precipitation elasticity of streamflow, 𝛿𝑄/𝛿𝑃 (Brêda et al., 2020; Chiew, 2006), around 1.7 for 

South America in average. Also, mean precipitation and mean discharge errors present 

moderate decrease with drainage area.  

For extreme discharges, the Eta simulations (Eta-BESM, Eta-CanESM2, Eta-

HadGEM2-ES and Eta-MIROC5) presented similar average biases which reduces with 

increasing drainage area. The average relative “bias” of extreme discharges for 1,000 km² 

basins is approximately 46% (Figure 17a). This bias decreases to 40% for 10,000 km² basins 

and to 25% for 100,000 km² basins. A greater negative slope in the drainage area vs 

discharge bias curve is observed between 104 and 105 km². The Eta biases reduction from 

small to large basins are explained by two main aspects: 1. the streamflow at the basin outlet 

is proportional to the accumulated rainfall upstream (spatial aggregation); 2. the time of 

response of larger basins (>100,000 km²) is in the order of week to months magnitudes and 

extreme discharge are related to precipitation of longer intervals (temporal aggregation). 

Thus, as the Eta extreme precipitation biases reduces with spatial and temporal aggregation 

(section 3.2), so do the discharge biases.  

Errors of extreme discharge are more sensitive to the basin drainage area if compared 

to errors of mean discharge. The errors of extreme discharge (RP2 and RP100 – median of 

46%) are higher than the errors of mean discharge (40%) for basins of 1,000 km² (Figure 

17a). However, the relative errors of extreme discharge significantly reduce with increasing 

drainage area (accentuated negative slope). For basins size around 10,000 to 30,000 km², 

the relative errors of extreme and mean discharge are basically the same, as the dashed line 

intercepts the black line in Figure 17a; and for larger basins the errors of extreme discharge 

are even smaller. Thus, it might be an interesting indicator that extreme events are better 

represented for basins larger than 30,000 km². 

Some might argue that the natural variability of extreme discharges is higher for 

smaller basins than for larger basins, which might explain this error reduction with the 

increasing drainage area. For example, a 20% error of discharge in a 1,000 km² basin (in the 

order of 100 m³/s) might be the difference between a 2-year and a 5-year return period 

event; however, for large basins, going from 10,000 m3/s to 12,000 m3/s may represent a 

more significant difference in frequency and impact. Thus, the analysis of relative errors 

presented in Figure 17(a) is not enough to evaluate if the errors related to the RCM biases 

are in fact reducing with drainage area or if it is only a matter of relative errors reduction due 

to the basin size. Therefore, we evaluated the errors in terms of equivalent frequency (Figure 

17c). It was detected the return period from the extreme distribution of the reference 

simulation equivalent to the calculated 100-year discharges of the Eta simulations. In 

general, the 100-year discharges generated by Eta are equivalent to the 5-year discharges of 

the reference simulation for basins around 1,000 km², but these events approximate to a 20-

year return period for basins around 100,000 km². The positive slope from the drainage area 
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x return period curve is mainly noticed for basins greater than 30,000 km² despite of the 

driven GCM, which agrees with the previous analysis about the relative errors. From these 

results, there is a high confidence that the flooding errors generated from the Eta RCM in fact 

reduce with the increasing drainage area.   

 The spatial distribution of the Eta-MSWEP differences related to extreme discharges 

is presented on Figure 18a. It was chosen events of 10-year return period (RP10) to be 

displayed on the map and a similar pattern was found for RP2 and RP100 events. Using Eta 

simulated precipitation as input clearly leads MGB to underestimate discharge on the north 

and central regions of the continent and overestimate it on the west coast of Chile (from 20S 

to 50S). Negative biases are found mainly on Paraguay, Orinoco, and Amazon (downstream 

the Negro confluence) rivers. On the northeast of Brazil, the bias signal is dependent on the 

driving GCM as the downscaling precipitation of MIROC5 and BESM yielded larger positive 

bias while HadGEM2-ES and CanESM2 mostly present a negative bias of discharge. 

Although Eta simulations underestimate extreme precipitation in most South America (see 

sections 3 and 3.2), the extreme discharge of some important large rivers are unbiased or 

present a smaller positive bias, such as in the upper Amazon (upstream the Negro 

confluence), Tocantins (except Eta-HadGEM2-ES), São Francisco, Magdalena and Colorado 

rivers. The spatial and temporal aggregation played an important role in reducing the 

negative biases downstream in the basins. For example, it can be seen on the Paraná, 

Magdalena, and São Francisco basins that Eta precipitation causes underestimation of 

extreme discharge over small rivers, but this effect is dissipated downstream with increasing 

drainage area. For larger basins, the spatial distribution of the differences in extreme 

discharge resemble to the annual precipitation biases (Figure 18b) and not the short-

temporal scales differences that can be identified on Figure 12.  
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Figure 18. a) Relative differences between Eta and MSWEP in discharges that has a return period of 
10 years simulated by the MGB-SA. The line thickness is proportional to the upstream drainage area. 

b) Absolute differences in annual precipitation between Eta and MSWEP. 



72 
 

4. CONCLUSION 

Climate projections are occasionally used for hydrological impact studies in South 

America without a prior investigation on the climate model performances for different scales 

of application. Extreme precipitation is a critical feature in climate modeling since they are 

often associated with subscale processes and carries great uncertainties even on high 

resolution RCMs. Thus, this paper investigated how the Eta RCM nested in 4 GCMs 

performed in relation to short-scale (<1 day and 400 km² area) extreme precipitation and how 

these uncertainties change with different temporal and spatial scales. In addition, it was 

evaluated the effect of Eta precipitation biases on discharge estimates through hydrological 

simulations using the MGB-SA model. Local IDF curves and the MSWEP v2 precipitation 

database were used as reference for performance evaluation. 

 Eta underestimates short-scale extreme precipitation in most South America except on 

the west coast of Patagonia. These biases are independent to the driving GCMs which 

indicates that they are associated with Eta model systematic biases. The Eta 

underestimation for extreme daily precipitation was also pointed by Avila-Diaz et al. (2020) 

for Brazil. A poor performance for short-scale was expected since errors in sub-daily 

precipitation are common for non-convective-permitting models (Fowler et al., 2021a; Prein 

et al., 2015) as Eta. Thus, it might be more appropriate to reach for qualitative approaches 

for short-scale analysis, acknowledging theoretical studies about sub-daily extreme 

precipitation (e.g. Westra et al., 2014; Barbero et al., 2018; Fowler et al., 2021b), while 

convective-permitting modelling is still under development.  

However, the RCM errors over extreme precipitation tend to reduce with increasing 

area and duration. Extreme daily precipitation simulated by Eta presented a stronger spatial 

dependence compared with MSWEP (Figure 16), which reinforce that short-scale processes 

are still not well represented by Eta. However, the spatial dependence of simulated 

precipitation events of 5-days duration is similar to MSWEP. It is more evident the benefits of 

longer precipitation intervals (1 to 5 days) than larger spatial aggregation (0.2o to 1.0o 

resolution) to reduce extreme precipitation biases. Extreme events of 5-day duration present 

significantly lower biases (Figure 15) and higher spatial correlation (Table 2) compared to 

extreme events of 1-day duration. 

The relative differences in mean discharge yielded with Eta and MSWEP data follow 

the same pattern of the relative differences in precipitation but with errors multiplied by a 

factor of 1.7 (rainfall elasticity of streamflow) in average. The relative differences of extreme 

discharge are high for small basins (median is around 40%). However, these “errors” reduce 

with increasing drainage area, especially for basins larger than 30,000 km². For basins of 

such size, relative errors of extreme and mean discharge are basically the same. In terms of 

frequency, the 100-year discharges of Eta simulations are equivalent to a 5-year discharge of 

the reference simulation (MSWEP) for basins around 1,000 km², and to a 20-year discharge 

for basins of 100,000 km². It can be observed that the errors in frequency of extreme events 
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from Eta simulations significantly reduces for basins larger than 30,000 km². Lower errors of 

extreme discharge in large basins may be related to: the averaging precipitation over the 

basin (spatial aggregation) and the extreme precipitation event of longer interval (temporal 

aggregation). At basins greater than 300,000 km², the extreme discharge biases are highly 

correlated and probably largely influenced by the upstream annual mean precipitation and 

not specific precipitation events. 

Although it is observed important biases for short-scale extreme events, those are 

somehow reduced in a regional to continental perspective. The results did not depend on the 

driven GCM, which mean that they are mostly related to the Eta RCM intrinsic biases. Also, 

we observed that the bias of extreme discharge reduces with drainage area especially for 

basins larger than 30,000 km², which might indicate an area threshold for environmental 

investigations using the Eta RCM. It is important that hydrological researchers adhere to an 

uncertainty approach by matching the scale of the hydrological assessment to previous 

climatological evaluations, incorporating their uncertainties. RCMs provide several output 

features but not all of them are meant to be used for impact assessments without an 

adequate data treatment. Although this paper only explored the overall biases of the Eta 

model, it has proposed a framework for hydrological assessment of RCMs and some results 

discussed here could be generalized.  
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Abstract 

A warmer atmosphere is able to hold more water which consequently intensifies the 

hydrological cycle. The projected increase in extreme precipitation has been associated with 

greater floods; however, most recent studies have argued that the reduced soil moisture 

could be causing the opposite effect. We aim to understand how the hydrometeorological 

variables affect flood discharge and what the projections are for South America, a vulnerable 

continent that has been barely studied regarding flood trends. It was used climate data from 

Eta simulations nested in 4 global climate models (BESM, CanESM2, HadGEM2-ES, 

MIROC5) as input for the MGB-SA hydrological model to yield flood discharge estimates. 

Then we were able to project the climate impacts on extreme precipitation, antecedent soil 

moisture, and flood discharge for large rivers (> 1,000 km²) and understand how these 

variables are related. Our results showed a strong sign that antecedent soil moisture is 

expected to be reduced in most of the continent except in Southeastern South America 

(SESA). On the other hand, there are mixed signs for rarer precipitation but a clear spatial 

pattern for 2-year precipitations (RP2), which is expected to increase on the SESA and west 

Amazon and decrease on Central South America (CSA). For basins larger than 100,000 km², 

results indicate a negative change sign, especially for 2-year precipitations, meaning that 

rainfall events that generate ordinary floods in large South American rivers are expected to 

decrease in the XXI century due to climate change. The change signs for flood discharge are 

spatially similar to extreme precipitation; however, many rivers are expected to reduce floods 

in the future while presenting a positive change sign for extreme precipitation. While only half 

of the South American basins are expected to present reduced 2-year precipitations, nearly 

70% of the rivers present a negative sign for 2-year floods, which can be attributed to the 

reduced antecedent soil moisture. 
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1. INTRODUCTION 

The frequency and intensity of extreme rainfall events are expected to increase due to 

global warming (Lenderink and Fowler, 2017; O’Gorman, 2015). The Clausius-Clapeyron 

relation indicates that a warmer atmosphere is able to hold more water vapor at a rate of 6-

7% per degree Celsius. With more water in the atmosphere, rarer storms are predicted to 

increase in magnitude, raising its potential damage (Fischer and Knutti, 2016; Myhre et al., 

2019; Risser and Wehner, 2017). This effect is expected to be even more pronounced for 

sub-daily and local precipitation events (Fowler et al., 2021b; Lenderink and Van Meijgaard, 

2008; Prein et al., 2017), which poses a great threat to vulnerable people living on urban 

impervious areas and hillslopes.  

On the other hand, droughts are predicted to be more recurrent and intense as well 

(Cook et al., 2014; Dai, 2013). The relative humidity is expected to decrease with 

temperature increases over land, especially in regions with limited moisture availability 

(Byrne and O’Gorman, 2018, 2016). Reduced relative humidity inhibits convective formations 

(Yin et al., 2018), affecting the precipitation volume over land and reinforcing the “drier in dry, 

and wetter in wet” paradigm (Feng and Zhang, 2015). In addition, the rise of temperature 

strengthens evapotranspiration; in consequence, it will reduce soil moisture and expand 

aridity (Asadi Zarch et al., 2017; Samaniego et al., 2018), which directly affects agriculture 

and water supply worldwide (Liu et al., 2021; Meza et al., 2020). 

These climatic alterations also have an immediate impact on flooding. At first, it was 

expected that global warming would increase the flood frequency (Alfieri et al., 2017; Milly et 

al., 2002) following the observed increases in extreme precipitation (Papalexiou and 

Montanari, 2019; Sun et al., 2021). However, some recent results showed that increases in 

precipitation do not necessarily translate to increases in flood magnitude, and an interesting 

debate has risen about this claim (see (Do et al., 2020; Wasko et al., 2019; Wasko and 

Sharma, 2017; Yin et al., 2019, 2018)). (Sharma et al., 2018) presented other flood drivers 

affected by global warming in addition to extreme precipitation, such as reduced soil 

moisture, earlier snowmelt, and increased canopy storage capacity (Yu et al., 2020). In 

particular, flood intensity is highly sensitive to antecedent soil moisture (Blöschl et al., 2015; 

Ivancic and Shaw, 2015; Wasko et al., 2020; Wasko and Nathan, 2019), which is expected to 

decrease with climate change. A drier soil can hold more water from rainfall, thus reducing 

runoff and flood magnitude. Therefore, projections of flood discharge will not necessarily 

present the same trend as extreme precipitation since there are other important flood drivers 

also affected by climate change. In addition, there is more confidence in the projected 

increase of fluvial flooding related to anticipated spring snowmelt than extreme precipitation 

(Blöschl et al., 2015; Kundzewicz et al., 2014). 

Nevertheless, more investigation is necessary to understand how climate change may 

impact flooding, as every region has its particularities. Even the projected changes in intense 

precipitation are not always positive. Precipitation intensity seems to decrease with 
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temperature in tropical areas, while high latitude regions present storms intensification above 

the Clausius–Clapeyron relation (Utsumi et al., 2011; Westra et al., 2014; Yin et al., 2018). 

Global-scale investigations have also detected mixed and spatially complex flooding trends, 

with different levels of grouping categories such as continents (Berghuijs et al., 2017; Do et 

al., 2017), regions (Gudmundsson et al., 2021), and climates zones (Do et al., 2017; Slater et 

al., 2021). Studies have found different trend signs for streamflow extremes using distinct 

statistical approaches and databases. For instance, (Do et al., 2017) observed a negative 

trend in the USA, while (Berghuijs et al., 2017) observed a positive one. In Europe, studies 

(Blöschl et al., 2019; Gudmundsson et al., 2021) currently converge to a tendency of more 

flooding in the North (e.g. U.K., Germany, Netherlands) and less flooding in the South (e.g. 

Greece, Italy, Portugal). However, some continents as South America have not been fully 

assessed on global studies due to the limited data record, either for precipitation (Sun et al., 

2021; Yin et al., 2018) or floods (Do et al., 2017). 

South America possesses large rivers systems for which it has been called the “fluvial 

continent” (Fleischmann et al., 2021; Kandus et al., 2018). It contains great wetlands such as 

the Pantanal, and river inundations provide important ecosystem services in those places, 

regulating biogeochemical processes (Junk et al., 2013). In addition, there are highly 

anthropized basins with large dams for hydropower generation, such as the Magdalena and 

La Plata Basins, and climate change threatens the dams' safety and the energy supply (da 

Silva et al., 2020; Fluixá-Sanmartín et al., 2018). Finally, but not less important, floods are 

one of the greatest natural hazards due to human settlements on floodplains. People in 

South America have recently felt the impacts of extreme events (Cunha et al., 2019; de 

Abreu et al., 2019; Netto et al., 2013; Nobre et al., 2016), and it is essential to investigate 

climate projections in such a vulnerable continent (Debortoli et al., 2017; Monte et al., 2021; 

Vörösmarty et al., 2013) to avoid further disasters.  

Global Climate Models (GCMs) are widely used tools to evaluate potential impacts of 

climate change (Donat et al., 2016; Fischer and Knutti, 2016). In particular, assessing future 

alterations in the frequency of extreme events can benefit from downscaled simulations 

provided by Regional Climate Models (RCMs), as they have finer resolution than global ones 

and improved characterization of local features (Giorgi, 2019; Llopart et al., 2020). Regarding 

the South American domain, the Eta model (Mesinger et al., 2012) is one of the most popular 

RCMs for hydrological assessments, especially in Brazil (Borges de Amorim and Chaffe, 

2019). Extreme precipitation indices (e.g. PRECPTOT, R99p, R95p, RX1day, RX5day, and 

CWD) from Eta have already been examined (Avila-Diaz et al., 2020; Chou et al., 2014b; 

Dereczynski et al., 2020). However, these studies have barely covered the climate change 

impacts regarding hydrological extremes in South America. In order to fill this gap, this study 

provides a single integrated and standardized approach for hydrological assessment over the 

continent, which is important for building comparisons between regions and understanding 

average changes and drivers of extreme flood events. 
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Using a hydrological model forced with climate projections, we can evaluate expected 

changes in flood discharge with a reasonable physical representation. A previous 

assessment of streamflow extremes on a continental scale was conducted by (Ribeiro Neto 

et al., 2016) for Brazilian basins, but their hydrological model lacked a proper flood routing 

scheme, which is crucial in large river basins in South America (Paiva et al., 2013). In this 

paper, we use a hydrodynamic-hydrological model for South America forced with projections 

from Eta for the RCP 4.5 and 8.5 scenarios from CMIP5. In this context, the objective of this 

study is twofold. First, we investigate climate change impacts on extreme events in South 

America in terms of antecedent soil moisture, precipitation, and flood discharge at different 

spatial scales. Second, we assess how projections of flood discharge are related to projected 

changes in its main drivers.  

2. METHODOLOGY 

We assess climate change impacts on three hydrological variables: flood discharge, 

extreme precipitation, and antecedent soil moisture. Biased-corrected (Section 2.4) 

precipitation data were obtained from Eta simulations (Section 2.3) nested in 4 Global 

Climate Models (GCM), while flood discharge and soil moisture were simulated by the MGB-

SA hydrological model (Section 2.2). Then, we selected the maximum flood discharge and 

precipitation of each hydrological year for each river reach in the model. Finally, a 

characteristic time was estimated based on flow propagation to identify the soil moisture prior 

to a flood event and to define the duration of extreme precipitation events (Section 2.5).  

The analysis was built on comparing the historical (1961-2005) and future (2021-2065) 

estimates of the highest, second-highest, and median values of the annual maximum 

precipitation and discharge. These estimates correspond to the 44- (RP44), 22- (RP22), and 

2-years (RP2) return period events, respectively, according to the Weibull plotting position 

formula (Weibull, 1939). The relative differences and the change sign (increasing/positive 

and decreasing/negative) between historical and future periods were accessed for every 

downscaled climate model and all river reaches/catchments from the hydrological model. 

This assessment was made for each hydrological variable individually: extreme precipitation 

(section 3.1), antecedent soil moisture (Section 3.2), and flood discharge (Section 3.3). 

Finally, we investigate how the projected changes on these variables are related (Section 

3.4). 

2.1. The Hydrology of South America 

South America occupies only 12% of the Earth’s land surface but is responsible for 

30% of the water flowing to the oceans (Clark et al., 2015b). It contains the 1st and 5th largest 

basins in the world, Amazon and La Plata (mainly formed by the Uruguay and Paraná River 

Basins, Figure 19.a), and the 1st and 4th largest rivers by discharge, Amazon and Orinoco, 

respectively. As nearly 80% of the continent lies within the tropics, most of the basins are 

dominated by a hot and humid climate that drives highly frequent convective rainfalls, 
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especially around the equator. Nevertheless, South America presents some climate diversity 

such as the semi-arid in Eastern South America (ESA), a large area with less than 1000 mm 

of rainfall per year (Figure 19.b) which depends on the São Francisco River for water supply; 

a polar climate in parts over the Andes Cordillera, especially in the higher altitudes; and an 

extremely dry climate, at the Peruvian and Atacama Deserts, located mostly on northern 

Chile (Veblen et al., 2007). 

 

Figure 19. Hydrographic characteristics of South America: a) Largest River basins and the drainage 
network; b) average annual precipitation regime from the MSWEP database and some regions 

identification as the Eastern (ESA), Central (CSA) and Southeastern (SESA) South America; c) South 
American relief highlighting the Andean Cordillera on the west. 

The Andes Cordillera is an important topographic barrier on the west part of the 

continent, which extends between the northern and southern tips (10ºN–55ºS) with altitudes 

above 4 km in some areas (Garreaud et al., 2009) (Figure 19.c). It has a direct effect on the 

air circulation, causing considerable high orographic rainfalls especially on the western 

Amazon and conducting moisture from the Amazon to the Southeastern South America - 

SESA (Alejandro Martinez and Dominguez, 2014; Espinoza et al., 2020). Concomitantly, the 

Andes Cordillera blocks the atmospheric moisture flow creating a rain-shadow effect and 

establishing dry climates over the Peruvian and Atacama Deserts and eastern Patagonia. As 

Patagonia exhibits a negative rainfall gradient from the Andes towards the east, the 

discharge regime of most Patagonian rivers is dominated by snowmelt from the headwater 

streams (Pasquini and Depetris, 2007). However, this article does not discuss results from 

these regions due to hydrological modeling limitations. 
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2.2. The MGB-SA Hydrological Model 

MGB–SA is a continental-scale, semi-distributed hydrological-hydrodynamic model 

developed for integrated simulation of large South American basins (Vinicius A. Siqueira et 

al., 2018). The model is discretized in unit-catchments, each one divided into hydrological 

response units (HRU) with similar characteristics of soil and vegetation. The water balance is 

calculated over a single soil layer (i.e., a bucket model) for every unit-catchment and HRU, at 

a daily time step. Evapotranspiration is based on the Penman-Monteith equation. Surface, 

subsurface, and groundwater runoffs are sent to linear reservoirs to simulate catchment 

delay before flowing to the main river. Flow routing in the main channel is computed using a 

1D local inertia hydrodynamic model, which also accounts for infiltration from flooded areas 

into the unsaturated soil column in floodplains. Until now, there is no simulation of snow 

melting processes in the MGB–SA, which does not compromise the results since runoff 

generation is governed by rainfall in most regions of South America (see the previous 

section). 

Regarding the model setup, the drainage network is discretized in 15 km long river 

reaches, which produces over 30,000 unit-catchments for the whole continent with upstream 

areas > 1000 km². The MGB-SA was calibrated using as input the daily precipitation data 

from the MSWEP v1 database (Beck et al., 2017) and climatological data from the Climate 

Research Unity (CRU) Global Climate v.2. (New et al., 2002). The climate variables from 

CRU database used as input for MGB–SA simulations were temperature, wind speed, air 

relative humidity, atmospheric pressure, and shortwave radiation, which are used internally 

to calculate evapotranspiration. The MGB-SA discharge outputs were validated with hundred 

gauge stations and presented Nash-Sutcliffe efficiency >0.6 for over 55% of the gauges, 

outperforming global hydrological models. It has also performed satisfactorily for other 

hydrological variables, such as evapotranspiration and terrestrial water storage, which were 

compared to remote sensing data and reanalysis products (Vinicius A. Siqueira et al., 2018). 

Therefore, this model becomes suitable to represent different climate scenarios as 

addressed in this paper (Krysanova et al., 2018). 

2.3. The Eta Regional Climate Model 

Eta is an atmospheric model (Mesinger, 1984) with a long history of applications and 

developments by the Brazilian National Institute for Spatial Research (INPE) for Central and 

South America. Despite being initially built for numerical weather predictions (Chou et al., 

2000), it has been recently adapted for regional climate studies (Marengo et al., 2012). Its 

name (Eta) relates to the vertical coordinate 𝜂, which creates a quasi-horizontal surface and 

prevents pressure-gradient forces errors that can be significant on steep regions such as the 

Andes Cordillera (Mesinger et al., 2012). 

The Eta model covers the Central and South American continents from latitude 50oS to 

14.4oN and longitude 84.2oW to 31.6oW. It has a horizontal resolution of 20 km and 38 

vertical levels. We use the Eta model nested in 4 GCMs: BESM (Nobre et al., 2013b), 
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CanESM2 (Chylek et al., 2011), HadGEM2-ES (Collins et al., 2011), and MIROC5 

(Watanabe et al., 2010). The GCMs provide sea surface temperature estimates, lateral 

boundary conditions of the state variables and initial conditions of soil moisture and 

temperature (Chou et al., 2014b).  

We evaluated 2 representative concentration pathways (RCP) from CMIP5 (Taylor et 

al., 2012): RCP4.5 (Thomson et al., 2011) and RCP8.5 (Riahi et al., 2011), which correspond 

to a reasonable controlled and a high emission scenario, respectively. The scenarios are 

named after the expected increase in the radiative forcing for the end of the XXI century due 

to greenhouse gases (GHG) emissions, 4.5 and 8.5 W/m², respectively. The Eta output data 

from the historical (1961-2005) and future (2021-2065) periods were bias-corrected and used 

as inputs to the hydrological model. 

2.4. Bias Correction 

Bias correction is a post-processing step to approximate the simulated data to reality, 

as models have inherent and systematic errors. However, bias correction methods often 

introduce inconsistencies, as they modify the spatiotemporal covariance structure of the 

climate models and ignore the feedbacks among variables (Ehret et al., 2012; Maraun, 

2016). The choice of a method for bias correction is one of the greatest sources of 

uncertainty, especially for extreme precipitation (Iizumi et al., 2017), and in some cases, the 

impact of bias correction uncertainty is higher than the climate signal itself (Hagemann et al., 

2011). Nevertheless, streamflow is extremely sensitive to precipitation and systematic errors 

on such input variable can drastically impact hydrological simulations (Kavetski et al., 2006; 

Sperna Weiland et al., 2015). Thus, using a bias correction method becomes strictly 

necessary in order to reproduce realistic hydrographs (Muerth et al., 2013; Teutschbein and 

Seibert, 2012).  

Several bias correction methods have been described and tested in the literature 

(Maraun, 2016; Teutschbein and Seibert, 2012). Among those, quantile mapping is one of 

the most adopted approaches for precipitation bias correction of hydrological impact 

assessments (Hempel et al., 2013; Pandey et al., 2019; Zheng et al., 2018). The quantile 

mapping method consists of calculating the probability of a simulated event through the 

modeled cumulative distribution function (CDF) and then estimate the equivalent (same 

probability) event using the observed CDF, which can be symbolized by the following 

equation: 

𝑃𝑠𝑖𝑚
∗ = 𝐹𝑜𝑏𝑠

−1 (𝐹𝑠𝑖𝑚(𝑃𝑠𝑖𝑚)) 

Where 𝐹𝑠𝑖𝑚 is the CDF of the simulated data from the historical period; 𝐹𝑜𝑏𝑠
−1  refers to 

the inverse CDF of the observed data from the same historical period; 𝑃𝑠𝑖𝑚 is the simulated 

variable; and 𝑃𝑠𝑖𝑚
∗  is the bias-corrected variable. 
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We have used an empirical quantile mapping method with limited linear extrapolation 

(restriction: 𝐹𝑠𝑖𝑚(𝑃) ≤ 1) for removing bias of precipitation. For the remaining climate 

variables used as input to the hydrological model (e.g. temperature, wind speed), we 

adopted a linear scaling approach (Teutschbein and Seibert, 2012). We used the MSWEP 

v2.2 product (Beck et al., 2019) as our reference precipitation and the CRU database as the 

reference for other atmospheric variables. 

2.5. Characteristic Time (Flood Wave Travel Time) 

In order to adequately relate flood discharge and its respective drivers (antecedent soil 

moisture and precipitation), it is necessary to match the time scale of the 

hydrometeorological events that lead to floods. For example, the duration of a precipitation 

event must be compatible with the catchment size and its response time. Daily precipitation 

can be adequate for catchments up to 1,000 or even 10,000 km², but for larger catchments, 

floods are usually caused by rainfall events of longer duration. Thus, we propose adopting a 

characteristic time (Tc) to allow comparisons between flood discharge, extreme precipitation, 

and antecedent soil moisture.  

We obtained Tc by calculating the flood wave travel time through the catchment 

mainstream. The drainage network of the MGB-SA model is discretized in equal reaches of 

15 km length (Section 2.2). We estimated the flood wave travel time for every river reach 

considering the reach’s length and the speed of a kinematic wave (𝑐 = 𝑑𝑄/𝑑𝐴 ≈ ∆𝑄/(∆𝑉/

∆𝑥), where Q is the discharge, A is the wetted area and 𝑉 is the stored volume over a river 

reach of ∆𝑥 length). The kinematic wave celerity depends on the magnitude of the flood, so 

we estimated Tc by considering a reference discharge with a 2 year return period using the 

MGB-SA simulated time series of Q and V. Then, we divided the reaches lengths (≈ 15 km) 

by the calculated wave celerity (𝑐) to obtain a traveling time per river reach. Finally, to 

estimate the catchment Tc we propagated the flood wave from upstream to downstream, 

adding traveling time increments from river reaches and keeping the value from the larger 

river at confluences. 

Figure 20 demonstrates the estimated Tc for the modeled river reaches in South 

America. For example, the flood wave travel time for the Amazon River is about 56 days, and 

for the Paraná River, 35 days. Because MGB–SA's drainage network includes water bodies 

where intermittent rivers — or potentially no river — exist, especially in arid regions, we 

filtered out river reaches that the mean annual precipitation upstream is below 600 mm yr-1. 
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Figure 20. Characteristic Time (Tc) of a catchment given by the traveling period of a flood wave (days).  

To ensure spatial and temporal consistency in the assessment, we developed a 

procedure to calculate both antecedent soil moisture and extreme precipitation at the level of 

river reaches based on Tc. First, we calculated the average precipitation upstream of a river 

reach with a duration of Tc days and then computed the maximum value for each year. 

Further, the values of antecedent soil moisture were estimated by the average upstream soil 

moisture exactly Tc days before the maximum simulated discharge of a given year. Thus, 

extreme precipitation and antecedent soil moisture were computed for every river reach and 

each year within the historical and future periods. This approach enabled us to perform direct 

comparisons by evaluating changes in signal between extreme discharges, precipitation, and 

antecedent soil moisture. 

3. RESULTS AND DISCUSSION 

3.1. Precipitation 

The analysis for extreme precipitation is associated with the river discharge and the 

accumulated rainfall over a catchment (see section 2.5). Figure 21 demonstrates the spatial 

arrangement of the extreme precipitation change sign through the drainage network. It is 

important to remark that the colors are related to the change sign of extreme precipitation for 

the whole river basin upstream to the river reaches. It is presented the relative differences 

between the future and historical period for the RCP4.5 scenario, more specifically the upper 

(left column) and lower (center column) limits of the models' ensemble, and the agreement 

between the 4 downscaled climate models (BESM, CanESM2, HadGEM2-ES, MIROC5) 

regarding the change sign (right column). This evaluation is made for the 2- and 22-year 

return period events. 



91 
 

 

Figure 21. Relative change of extreme precipitation projections for the RCP4.5 scenario (2021-2065) 
compared to the historical period (1961-2005). Left and center panels show the upper (left) and lower 

(center) limits related to the ensemble of 4 downscaled climate models (BESM, CanESM2, HadGEM2-
ES, MIROC5), respectively, while the right panel indicates the agreement between these models 

regarding the change sign. Relative differences are shown for the second-highest (a) and median (b) 
extreme precipitation from the future and historical periods. 

Firstly, one can observe a considerable difference in spatial consistency between the 

22-year (RP22) and 2-year (RP2) precipitation. The spatial arrangement of RP2 is clearer 

and more delineated. This can be explained by two main reasons: i) large uncertainty for the 

RP22 due to a relatively small sample size (44 years); ii) uncertainties related to the bias-

correction method since the largest precipitation values are on the upper tail of the CDF 

curve. 

Results from the 4 downscaled climate models indicate future increases of extreme 

precipitation for the Uruguay Basin, located in southeastern South America. For other rivers 

such as Tocantins, São Francisco, Magdalena, and Paraguay (right-branch river of the 

Paraná Basin), the simulations indicate a projected reduction for the RP2, but there is no 

clear sign for RP22. In other words, very extreme precipitation might increase in those 
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basins, but the magnitude of recurrent annual extreme precipitation is expected to decrease. 

In addition, a positive change can also be noted in the western Amazon. The results 

presented for extreme precipitation of high frequency (RP2) is similar to what was found for 

long-term mean precipitation in other studies (e.g. Brêda et al., 2020; Ribeiro Neto et al., 

2016; Sorribas et al., 2016).  

 

Figure 22. Relative differences of extreme precipitation simulated by Eta between the historical and 
future periods, on the RCP4.5 scenario. Results are shown for raw (a) and bias-corrected precipitation 

(b), considering different catchment sizes and return periods (2, 22, and 44 years). 

To provide insights on how changes in extreme precipitation are linked to the analyzed 

spatial scale, Figure 22 shows boxplots of relative differences between the historical and 

future (RCP4.5 scenario) periods according to the catchment size.  

Particularly, extreme precipitation is one of the most problematic variables to be 

evaluated in climate impact assessments due to extrapolations of the CDF curve (Cannon et 

al., 2015). Some authors have proposed alternative methods of bias correction focused on 

precipitation extremes (Maity et al., 2019; Mamalakis et al., 2017), which are slightly more 

effective but also more complex. We reckon the quantile mapping limitations; however, we 

have the caution to present results that have not been bias-corrected (Figure 22a) in order to 

understand the impact of this procedure. 

In general, bias correction did not compromise the sign and range of the boxplots, 

except for the 44-year return period precipitation (RP44) on relatively small basins (≈ 1,000 

km²). In this case, the bias correction method has reduced the boxplot interquartile range 

limiting precipitation differences and hiding the positive sign of RP44. Despite that, we can 

see that the sample medians are always close to 0%, but for the rarer events (RP22 and 

RP44) the medians are slightly positive for basins smaller than 100,000 km². For basins 
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larger than 100,000 km², results indicate a negative change sign, especially for RP2, 

meaning that rainfall events that generate ordinary floods in large South American rivers are 

expected to decrease in the XXI century due to climate change. 

In conclusion, we can see that extreme precipitation will respond differently to global 

warming depending on its geographical location, its intensity, and the respective catchment 

size. RP2 is expected to decrease on central and eastern South America, but there is no 

clear sign for the rarer precipitations (RP22 and RP44). This means that, in some places, 

average annual extreme precipitation (RP2) might be reduced, but rarer precipitations might 

be more intense. This statement can be endorsed by Figure 22, as the sample median of 

RP22 and RP44 is often greater than the sample median of RP2. In addition, there is a clear 

difference in the sign of extreme precipitation between medium to large catchments (1,000 to 

100,000 km²) and very large catchments (> 100,000 km²). This can be explained by the 

assumptions made for extreme precipitation, as the duration of such events was given by a 

characteristic time (i.e. flood wave travel time). For very large catchments, extreme 

precipitation lasts from days to weeks and is averaged over a considerably large area, 

representing a completely different process than short and local precipitations. The negative 

sign on very large catchments agrees with other studies that have concluded that convective 

rainfall is supposed to become more intense with global warming; however, they will present 

higher increases for shorter durations (Lenderink and Van Meijgaard, 2008; Wasko and 

Sharma, 2015) and lower spatial extent (Wasko et al., 2016). 

3.2. Soil Moisture 

Flood events depend not only on intense rainfalls but also on the initial conditions of 

the soil. In this article, the antecedent soil moisture refers to the catchment average soil 

saturation degree prior to an annual maximum discharge (see Section 2.5). Figure 23  shows 

change signs from four MGB–SA simulations, each one forced with Eta outputs nested in a 

different GCM (BESM, CanESM2, HadGEM2-ES, MIROC5). 
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Figure 23. Number of downscaled climate models that agree with a positive/increase (+) or a 
negative/decrease (-) change sign for antecedent soil moisture simulated by MGB–SA, considering 

two future scenarios: RCP4.5 and RCP8.5. 

In general, projected changes in antecedent soil moisture from both GHG emissions 

scenarios are similar.  Results show a predominant negative sign north of 20oS, a transitional 

zone around 25oS, and a positive sign on southeastern South America for RCP4.5 and 

RCP8.5. However, there is a smaller agreement among RCP4.5 simulations (orange) on the 

Orinoco Basin, western Amazon and Paraguay Basin, while the negative sign from the 

RCP8.5 simulations is stronger (red). For the Paraná Basin, the negative sign of the northern 

catchments is predominant over the wetter regions south of 20oS as the main river maintains 

the red color even near the river mouth. 

A more pronounced decrease in antecedent soil moisture for the RCP8.5 is also 

demonstrated in Figure 24. Overall, the soil saturation degree prior to an extreme discharge 

event is lower in future scenarios, especially for RCP8.5. In addition, it was observed no 

difference in the antecedent soil saturation degree for different catchment sizes. 

 

Figure 24. Average soil saturation degree prior to the annual maximum discharge for different 
scenarios (historical, RCP4.5 and RCP8.5) and catchment sizes. 

In theory, a general reduction of soil moisture is expected since higher temperatures 

intensify evapotranspiration. Our results agree with the literature that points to drier soil in the 

future due to global warming (Samaniego et al., 2018; Wasko and Nathan, 2019). There is a 
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positive change sign only in southeastern South America, most likely because this region is 

expected to become wetter (Brêda et al., 2020; Chou et al., 2014a; Zaninelli et al., 2019), 

and this precipitation increase will have a stronger impact on the soil moisture compared to 

the projected evapotranspiration increase. 

3.3. Flood Discharge 

To assess to what extent climate change will impact floods in South American rivers, 

we performed projections of annual maximum discharge. Figure 25 shows the relative 

differences of simulated flood discharges for the historical and future periods.  It also shows 

the upper and lower limits of the MGB–SA simulations ensemble (one simulation for each 

driven GCM), and how many members (out of 4) agree about the change sign. In regions 

where more ensemble members agree on the change sign, projections should be more 

reliable.  

The spatial arrangement of flood discharge signs generally follows extreme 

precipitation results, but projected changes in floods present a clearer delineation and 

distinction between regions. The maps in Figure 25 show a predominant negative sign in 

Central and Eastern South America and a positive sign in Southeastern South America and 

western Amazon. Even for the upper limit of MGB–SA simulations, some rivers, such as the 

São Francisco and the Tocantins, are projected to face severe reduction (over 20%) for their 

average annual maximum discharge (RP2). Southern tributaries of the Amazon River are 

also expected to reduce flood magnitude. The Paraná Basin seems to be a transition zone, 

presenting a negative sign for the northern tributaries and positive sign for the southern 

tributaries. 
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Figure 25. Relative change of flood discharge projections for the RCP4.5 scenario compared to the 
historical period. The left and center panels show the upper and lower limits related to the ensemble of 

4 downscaled climate models, respectively, while the right panel indicates the agreement between 
these models regarding the change sign. Relative differences are shown for the second-highest (a) 

and median (b) annual maximum discharges from the future and historical periods. 

As for extreme precipitation, a subtle difference between the change signs of RP2 and 

RP22 can be observed for flood discharges. This can be explained by the randomness of 

rarer events and the limited sample size (44 years) for estimating the return period. For 

example, the Paraná and Magdalena rivers present a negative sign for RP2 but no clear sign 

for RP22. However, studies have provided some evidence that less extreme flood events are 

expected to decrease, particularly in larger catchments, while rarer floods are likely to 

become more intense (see Sharma et al., 2018). So, it is possible that some regions indeed 

present opposing signs for RP2 and RP22. 
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Figure 26. Relative differences between flood discharges simulated for historical and future periods. 
Results are shown for RCP4.5 (a) and RCP8.5 scenarios,  considering different catchment sizes and 

return periods (2, 22, and 44 years). 

Figure 26 summarizes the results for estimated climate impacts on flood discharge. 

Overall, results suggest a reduction of extreme discharge for most catchments in South 

America as the boxplot medians are negative. However, climate change apparently has a 

different impact on ordinary floods (2-year return period) and extraordinary floods (22 year 

return period). In scenario RCP4.5, 66% of the catchments present a negative sign for RP2, 

while only 60% and 59% present a negative sign for RP22 and RP44, respectively. These 

numbers increase to 75%, 69%, and 68% respectively on the scenario RCP8.5. Therefore, at 

least in 7% of the catchments, it is likely that rarer floods, up to a return period of 44 years, 

will become more intense while the average annual maximum discharge is expected to 

decrease. 

Also, there were slight differences related to the catchment sizes. Very large 

catchments are more likely to present extreme discharge reductions than medium to large 

catchments. This is mostly explained by the climate impact on extreme precipitation (see 

Section 3.1), as the projected changes for antecedent soil moisture do not depend on the 

catchment size (Section 3.2). (Do et al., 2017) already have observed decreasing trends in 

floods with catchment size. The authors have detected a positive trend only for groups of 

catchments smaller than 400 km2, which were not assessed in this article due to the 

discretization of the hydrological model (area threshold of 1,000 km2) and the Eta cell size 

(400 km2). 

Thus, our results partially support previous findings. The model outcomes point to a 

general reduction of extreme discharges in South America. Also, there are a few regions 

where the average annual maximum discharge is expected to decrease while greater floods 
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are expected to increase. These outcomes agree with previous studies that claim floods will 

decrease due to global warming, especially because of reduced soil moisture (Do et al., 

2020; Sharma et al., 2018; Wasko and Nathan, 2019; Wasko and Sharma, 2017). On the 

other hand, it contradicts (Hirabayashi et al., 2021), which projected extreme discharge using 

GCMs outputs and concluded that floods will increase in magnitude for most South American 

River Basins. Although (Hirabayashi et al., 2021) have used a larger return period for their 

evaluation (100 years), it is unlikely that their results would be significantly different for 44-

year floods. 

3.4. Flood Drivers Analysis 

Finally, we aim to connect the outcomes described in the previous sections through a 

graphical contingency table (Figure 27), considering results from all 4 climate models and all 

catchments. In Figure 27, the size of the circles represents the number of catchments in a 

sample and their color indicates the percentage of catchments with a positive/negative sign 

for RP2 discharge. The y-axis is associated with the change sign of RP2 precipitation (P), 

while the x-axis refers to the change sign of the median antecedent soil moisture (W) that 

can be either positive (+), negative (-), or neutral (0), whereas neutral means a relative 

difference between present and future within 5% and -5%.  

For example, given that RP2 precipitation is supposed to increase in the future (P+) 

and the antecedent soil moisture is supposed to decrease (W-), 60 to 70% of the catchments 

will present a negative change sign for flood discharge in the RCP4.5 scenario, symbolized 

by the darkish yellow color on the top left corner. In this example, the size of the circle 

indicates that nearly 15,000 catchments present P+ and W- signs simultaneously.  

 
Figure 27. Graphical contingency table relating change signs of RP2 flood discharge, RP2 extreme 

precipitation (P), and antecedent soil moisture (W) for (a) RCP4.5 and (b) RCP8.5 scenarios. The size 
of the circle refers to the number of catchments in a sample, and the color is related to the fraction of 

catchments with a positive/negative change sign. 
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This contingency table reflects the influence of flood drivers. It can be observed that the 

largest circles are on the bottom left corner, colored in dark red. This position on the 

contingency table indicates a negative sign for RP2 precipitation and antecedent soil 

moisture (P- ∩ W-), and its color means that in most catchments, flood discharge will be 

reduced in such conditions. On the other hand, the smallest circles are in the bottom right 

corner (P- ∩ W+) with a light color, light blue for RCP4.5 and light orange for RCP8.5, which 

indicates a similar number of rivers with positive and negative signs for flood discharge. On 

the top right corner, RP2 precipitation and antecedent soil moisture present a positive sign 

(P+ ∩ W+), and consequently, is also expected an increase in flood discharge (dark blue). 

These results indicate that when P and W present the same sign, it is very likely that flood 

discharge will follow the same change. 

Some considerations can be made on the size of the circles: a) circles colored from 

dark yellow to red are larger than those in blue, which means that RP2 discharge will 

decrease in the future for most catchments; b) the number of catchments that present P+, P0 

and P- are approximately the same (sum of columns); c) the circles of column W+ are 

smaller than circles of column W-, thus antecedent soil moisture will be reduced for most 

catchments. Overall, while there is no clear change sign for extreme precipitation, flood 

discharge and antecedent soil moisture are expected to decrease. This suggests that the 

reduced soil moisture is the main responsible for negative change signs of RP2 discharge. 

On the top line (P+) the circles have similar sizes, which means that when RP2 

precipitation is expected to increase, there is no indication of what will happen to antecedent 

soil moisture. However, when RP2 precipitation is expected to decrease (P-), it is expected a 

reduction in antecedent soil moisture (W-) for most of the catchments, or a neutral sign (W0) 

at least. This reinforces the projections of drier soils, as W can equally present a negative 

sign even if extreme precipitation is expected to increase. In other words, the negative 

effects of higher temperatures and consequently greater evaporation might surpass the 

positive effect of increased precipitation on the soil moisture in nearly half of the cases: 

number of P+ ∩ W+ ≈ number of P+ ∩ W-. 

In addition, there are small differences between the climate scenarios, mainly related to 

antecedent soil moisture. For example, circles in column W- for the RCP4.5 scenario are 

smaller than those in W- for the RCP8.5 scenario. This can be explained by the higher 

temperatures expected for RCP8.5, which will intensify evaporation and consequently reduce 

the soil moisture more than the RCP4.5 scenario. 

Finally, we can see that for a P+ ∩ W- condition, 60 to 70% (70 to 80%) of the 

catchments will present a negative sign for flood discharge, and for a P- ∩ W+ condition, 50 

to 60% (40 to 50%) of the catchments will present a positive sign on scenario RCP4.5 

(RCP8.5). These results imply that the sign of antecedent soil moisture is predominant over 

the sign of RP2 precipitation in most cases. We can take the same conclusions when 

analyzing neutral signs (P0 and W0). Our findings agree with other studies that show that 
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antecedent soil moisture is the main driver of recurrent annual floods (Ivancic and Shaw, 

2015; Sharma et al., 2018; Wasko et al., 2020), at least for river basins of 1000 km2 or 

larger. However, we cannot extend our conclusions to rarer floods as a more detailed 

analysis would be necessary. 

4. CONCLUSIONS 

Global warming is expected to intensify the hydrological cycle at a global scale. 

Projected intensification of extreme rainfall generally led to the suggestion that floods would 

also increase. However, more recent analyses showed that projected changes in floods are 

less straightforward than initially thought. The climate alterations present different impacts on 

floods for different regions of the world and depend on processes like antecedent soil 

moisture and the size of the river basins. In this paper, we assessed climate change impacts 

in antecedent soil moisture, extreme precipitation, and flood discharge in South America and 

evaluated how these projections are related. We used outputs from a regional climate model 

(Eta) nested in four global models and a continental-scale hydrologic-hydrodynamic model 

for the analysis. 

There is a clear indication of reduced soil moisture for most of South America due to 

global warming, as suggested in the literature (Sharma et al., 2018; Wasko et al., 2020). For 

the RCP8.5 scenario, the reductions of soil moisture are even more pronounced due to 

higher increases in temperature. We observed a positive change sign in soil moisture only in 

Southeastern South America (SESA), as this region is expected to become significantly more 

humid (Brêda et al., 2020; Zaninelli et al., 2019). 

In general, the average annual maximum precipitation is expected to increase in 

western Amazon and SESA and decrease mainly in Central South America (CSA), especially 

in the São Francisco and Tocantins Basins. For rarer precipitation events (over 20 years of 

return period), a clear spatial pattern in the change sign was not detected, probably because 

of the greater randomness of rarer events and the small sample size (45 years) for frequency 

analysis. Nevertheless, catchments over 100,000 km² were shown to be more susceptible to 

negative signs for extreme precipitation, suggesting that extreme rainfall events that lead to 

floods in large rivers are expected to decrease in South America. 

The spatial arrangement of the change signs of flood discharge is similar to extreme 

precipitation. There is also a positive sign in SESA and western Amazon and a negative sign 

in CSA and Eastern South America, which outlines the influence of extreme precipitation in 

floods. However, the number of catchments exhibiting a negative sign for flood discharge 

was larger than that for extreme precipitation. While the fraction of catchments showing 

positive/negative signs was 50%/50% for extreme precipitation, this relation moved to 

30%/70% for flood discharge. This can be attributed to the projected reduction of soil 

moisture in most of South America. When the average annual maximum precipitation and 
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antecedent soil moisture present different change signs, it is more likely that the average 

annual maximum discharge follows the same sign as soil moisture (over 60% of the time). 

In addition, there were slight differences related to the frequency of flood events. 

Although for most of the catchments in South America, the maximum (RP44) and median 

(RP2) simulated floods presented a reduced magnitude in the future period, at least in 10% 

of the cases, there is a positive sign for the maximum flood despite a negative sign for the 

median annual flood. However, because (i) there was a limited sample size for the 

distribution function (45 years) and (ii) we used a bias removal method that affects the 

precipitation maxima, we cannot be sure if these change signs would remain negative for 

even rarer floods (e.g. 100 or 1,000 years return period). 
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